repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
ioam/holoviews
holoviews/tests/plotting/bokeh/testcurveplot.py
2
18479
import datetime as dt from unittest import skipIf import numpy as np from holoviews.core import NdOverlay, HoloMap, DynamicMap from holoviews.core.options import Cycle, Palette from holoviews.core.util import pd, basestring from holoviews.element import Curve from holoviews.plotting.util import rgb2hex from holoviews.streams import PointerX from .testplot import TestBokehPlot, bokeh_renderer try: from bokeh.models import FactorRange, FixedTicker from holoviews.plotting.bokeh.callbacks import Callback, PointerXCallback except: pass pd_skip = skipIf(pd is None, 'Pandas not available') class TestCurvePlot(TestBokehPlot): def test_batched_curve_subscribers_correctly_attached(self): posx = PointerX() opts = {'NdOverlay': dict(plot=dict(legend_limit=0)), 'Curve': dict(style=dict(line_color=Cycle(values=['red', 'blue'])))} overlay = DynamicMap(lambda x: NdOverlay({i: Curve([(i, j) for j in range(2)]) for i in range(2)}).opts(opts), kdims=[], streams=[posx]) plot = bokeh_renderer.get_plot(overlay) self.assertIn(plot.refresh, posx.subscribers) self.assertNotIn(list(plot.subplots.values())[0].refresh, posx.subscribers) def test_batched_curve_subscribers_correctly_linked(self): # Checks if a stream callback is created to link batched plot # to the stream posx = PointerX() opts = {'NdOverlay': dict(plot=dict(legend_limit=0)), 'Curve': dict(style=dict(line_color=Cycle(values=['red', 'blue'])))} overlay = DynamicMap(lambda x: NdOverlay({i: Curve([(i, j) for j in range(2)]) for i in range(2)}).opts(opts), kdims=[], streams=[posx]) plot = bokeh_renderer.get_plot(overlay) self.assertEqual(len(Callback._callbacks), 1) key = list(Callback._callbacks.keys())[0] self.assertEqual(key, (id(plot.handles['plot']), id(PointerXCallback))) def test_cyclic_palette_curves(self): palette = Palette('Set1') opts = dict(color=palette) hmap = HoloMap({i: NdOverlay({j: Curve(np.random.rand(3)).opts(style=opts) for j in range(3)}) for i in range(3)}) colors = palette[3].values plot = bokeh_renderer.get_plot(hmap) for subp, color in zip(plot.subplots.values(), colors): color = color if isinstance(color, basestring) else rgb2hex(color) self.assertEqual(subp.handles['glyph'].line_color, color) def test_batched_curve_line_color_and_color(self): opts = {'NdOverlay': dict(plot=dict(legend_limit=0)), 'Curve': dict(style=dict(line_color=Cycle(values=['red', 'blue'])))} overlay = NdOverlay({i: Curve([(i, j) for j in range(2)]) for i in range(2)}).opts(opts) plot = bokeh_renderer.get_plot(overlay).subplots[()] line_color = ['red', 'blue'] self.assertEqual(plot.handles['source'].data['line_color'], line_color) def test_batched_curve_alpha_and_color(self): opts = {'NdOverlay': dict(plot=dict(legend_limit=0)), 'Curve': dict(style=dict(alpha=Cycle(values=[0.5, 1])))} overlay = NdOverlay({i: Curve([(i, j) for j in range(2)]) for i in range(2)}).opts(opts) plot = bokeh_renderer.get_plot(overlay).subplots[()] alpha = [0.5, 1.] color = ['#30a2da', '#fc4f30'] self.assertEqual(plot.handles['source'].data['alpha'], alpha) self.assertEqual(plot.handles['source'].data['color'], color) def test_batched_curve_line_width_and_color(self): opts = {'NdOverlay': dict(plot=dict(legend_limit=0)), 'Curve': dict(style=dict(line_width=Cycle(values=[0.5, 1])))} overlay = NdOverlay({i: Curve([(i, j) for j in range(2)]) for i in range(2)}).opts(opts) plot = bokeh_renderer.get_plot(overlay).subplots[()] line_width = [0.5, 1.] color = ['#30a2da', '#fc4f30'] self.assertEqual(plot.handles['source'].data['line_width'], line_width) self.assertEqual(plot.handles['source'].data['color'], color) def test_curve_overlay_datetime_hover(self): obj = NdOverlay({i: Curve([(dt.datetime(2016, 1, j+1), j) for j in range(31)]) for i in range(5)}, kdims=['Test']) opts = {'Curve': {'tools': ['hover']}} obj = obj(plot=opts) self._test_hover_info(obj, [('Test', '@{Test}'), ('x', '@{x_dt_strings}'), ('y', '@{y}')]) def test_curve_overlay_hover_batched(self): obj = NdOverlay({i: Curve(np.random.rand(10,2)) for i in range(5)}, kdims=['Test']) opts = {'Curve': {'tools': ['hover']}, 'NdOverlay': {'legend_limit': 0}} obj = obj(plot=opts) self._test_hover_info(obj, [('Test', '@{Test}')], 'prev') def test_curve_overlay_hover(self): obj = NdOverlay({i: Curve(np.random.rand(10,2)) for i in range(5)}, kdims=['Test']) opts = {'Curve': {'tools': ['hover']}} obj = obj(plot=opts) self._test_hover_info(obj, [('Test', '@{Test}'), ('x', '@{x}'), ('y', '@{y}')], 'nearest') def test_curve_categorical_xaxis(self): curve = Curve((['A', 'B', 'C'], [1,2,3])) plot = bokeh_renderer.get_plot(curve) x_range = plot.handles['x_range'] self.assertIsInstance(x_range, FactorRange) self.assertEqual(x_range.factors, ['A', 'B', 'C']) def test_curve_categorical_xaxis_invert_axes(self): curve = Curve((['A', 'B', 'C'], (1,2,3))).opts(plot=dict(invert_axes=True)) plot = bokeh_renderer.get_plot(curve) y_range = plot.handles['y_range'] self.assertIsInstance(y_range, FactorRange) self.assertEqual(y_range.factors, ['A', 'B', 'C']) def test_curve_datetime64(self): dates = [np.datetime64(dt.datetime(2016,1,i)) for i in range(1, 11)] curve = Curve((dates, np.random.rand(10))) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['x_range'].start, np.datetime64(dt.datetime(2016, 1, 1))) self.assertEqual(plot.handles['x_range'].end, np.datetime64(dt.datetime(2016, 1, 10))) @pd_skip def test_curve_pandas_timestamps(self): dates = pd.date_range('2016-01-01', '2016-01-10', freq='D') curve = Curve((dates, np.random.rand(10))) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['x_range'].start, np.datetime64(dt.datetime(2016, 1, 1))) self.assertEqual(plot.handles['x_range'].end, np.datetime64(dt.datetime(2016, 1, 10))) def test_curve_dt_datetime(self): dates = [dt.datetime(2016,1,i) for i in range(1, 11)] curve = Curve((dates, np.random.rand(10))) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['x_range'].start, np.datetime64(dt.datetime(2016, 1, 1))) self.assertEqual(plot.handles['x_range'].end, np.datetime64(dt.datetime(2016, 1, 10))) def test_curve_heterogeneous_datetime_types_overlay(self): dates64 = [np.datetime64(dt.datetime(2016,1,i)) for i in range(1, 11)] dates = [dt.datetime(2016,1,i) for i in range(2, 12)] curve_dt64 = Curve((dates64, np.random.rand(10))) curve_dt = Curve((dates, np.random.rand(10))) plot = bokeh_renderer.get_plot(curve_dt*curve_dt64) self.assertEqual(plot.handles['x_range'].start, np.datetime64(dt.datetime(2016, 1, 1))) self.assertEqual(plot.handles['x_range'].end, np.datetime64(dt.datetime(2016, 1, 11))) @pd_skip def test_curve_heterogeneous_datetime_types_with_pd_overlay(self): dates_pd = pd.date_range('2016-01-04', '2016-01-13', freq='D') dates64 = [np.datetime64(dt.datetime(2016,1,i)) for i in range(1, 11)] dates = [dt.datetime(2016,1,i) for i in range(2, 12)] curve_dt64 = Curve((dates64, np.random.rand(10))) curve_dt = Curve((dates, np.random.rand(10))) curve_pd = Curve((dates_pd, np.random.rand(10))) plot = bokeh_renderer.get_plot(curve_dt*curve_dt64*curve_pd) self.assertEqual(plot.handles['x_range'].start, np.datetime64(dt.datetime(2016, 1, 1))) self.assertEqual(plot.handles['x_range'].end, np.datetime64(dt.datetime(2016, 1, 13))) def test_curve_fontsize_xlabel(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'xlabel': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['xaxis'].axis_label_text_font_size, '14pt') def test_curve_fontsize_ylabel(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'ylabel': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['yaxis'].axis_label_text_font_size, '14pt') def test_curve_fontsize_both_labels(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'labels': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['xaxis'].axis_label_text_font_size, '14pt') self.assertEqual(plot.handles['yaxis'].axis_label_text_font_size, '14pt') def test_curve_fontsize_xticks(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'xticks': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['xaxis'].major_label_text_font_size, {'value': '14pt'}) def test_curve_fontsize_yticks(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'yticks': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['yaxis'].major_label_text_font_size, {'value': '14pt'}) def test_curve_fontsize_both_ticks(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'ticks': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['xaxis'].major_label_text_font_size, {'value': '14pt'}) self.assertEqual(plot.handles['yaxis'].major_label_text_font_size, {'value': '14pt'}) def test_curve_fontsize_xticks_and_both_ticks(self): curve = Curve(range(10)).opts(plot=dict(fontsize={'xticks': '18pt', 'ticks': '14pt'})) plot = bokeh_renderer.get_plot(curve) self.assertEqual(plot.handles['xaxis'].major_label_text_font_size, {'value': '18pt'}) self.assertEqual(plot.handles['yaxis'].major_label_text_font_size, {'value': '14pt'}) def test_curve_xticks_list(self): curve = Curve(range(10)).opts(plot=dict(xticks=[0, 5, 10])) plot = bokeh_renderer.get_plot(curve).state self.assertIsInstance(plot.xaxis[0].ticker, FixedTicker) self.assertEqual(plot.xaxis[0].ticker.ticks, [0, 5, 10]) def test_curve_xticks_list_of_tuples_xaxis(self): ticks = [(0, 'zero'), (5, 'five'), (10, 'ten')] curve = Curve(range(10)).opts(plot=dict(xticks=ticks)) plot = bokeh_renderer.get_plot(curve).state self.assertIsInstance(plot.xaxis[0].ticker, FixedTicker) self.assertEqual(plot.xaxis[0].major_label_overrides, dict(ticks)) def test_curve_yticks_list(self): curve = Curve(range(10)).opts(plot=dict(yticks=[0, 5, 10])) plot = bokeh_renderer.get_plot(curve).state self.assertIsInstance(plot.yaxis[0].ticker, FixedTicker) self.assertEqual(plot.yaxis[0].ticker.ticks, [0, 5, 10]) def test_curve_xticks_list_of_tuples_yaxis(self): ticks = [(0, 'zero'), (5, 'five'), (10, 'ten')] curve = Curve(range(10)).opts(plot=dict(yticks=ticks)) plot = bokeh_renderer.get_plot(curve).state self.assertIsInstance(plot.yaxis[0].ticker, FixedTicker) self.assertEqual(plot.yaxis[0].major_label_overrides, dict(ticks)) def test_curve_padding_square(self): curve = Curve([1, 2, 3]).options(padding=0.1) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, -0.2) self.assertEqual(x_range.end, 2.2) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_square_per_axis(self): curve = Curve([1, 2, 3]).options(padding=((0, 0.1), (0.1, 0.2))) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, 0) self.assertEqual(x_range.end, 2.2) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.4) def test_curve_padding_hard_xrange(self): curve = Curve([1, 2, 3]).redim.range(x=(0, 3)).options(padding=0.1) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, 0) self.assertEqual(x_range.end, 3) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_soft_xrange(self): curve = Curve([1, 2, 3]).redim.soft_range(x=(0, 3)).options(padding=0.1) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, -0.2) self.assertEqual(x_range.end, 3) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_unequal(self): curve = Curve([1, 2, 3]).options(padding=(0.05, 0.1)) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, -0.1) self.assertEqual(x_range.end, 2.1) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_nonsquare(self): curve = Curve([1, 2, 3]).options(padding=0.1, width=600) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, -0.1) self.assertEqual(x_range.end, 2.1) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_logx(self): curve = Curve([(1, 1), (2, 2), (3,3)]).options(padding=0.1, logx=True) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, 0.89595845984076228) self.assertEqual(x_range.end, 3.3483695221017129) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_logy(self): curve = Curve([1, 2, 3]).options(padding=0.1, logy=True) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, -0.2) self.assertEqual(x_range.end, 2.2) self.assertEqual(y_range.start, 0.89595845984076228) self.assertEqual(y_range.end, 3.3483695221017129) def test_curve_padding_datetime_square(self): curve = Curve([(np.datetime64('2016-04-0%d' % i), i) for i in range(1, 4)]).options( padding=0.1 ) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, np.datetime64('2016-03-31T19:12:00.000000000')) self.assertEqual(x_range.end, np.datetime64('2016-04-03T04:48:00.000000000')) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) def test_curve_padding_datetime_nonsquare(self): curve = Curve([(np.datetime64('2016-04-0%d' % i), i) for i in range(1, 4)]).options( padding=0.1, width=600 ) plot = bokeh_renderer.get_plot(curve) x_range, y_range = plot.handles['x_range'], plot.handles['y_range'] self.assertEqual(x_range.start, np.datetime64('2016-03-31T21:36:00.000000000')) self.assertEqual(x_range.end, np.datetime64('2016-04-03T02:24:00.000000000')) self.assertEqual(y_range.start, 0.8) self.assertEqual(y_range.end, 3.2) ########################### # Styling mapping # ########################### def test_curve_scalar_color_op(self): curve = Curve([(0, 0, 'red'), (0, 1, 'red'), (0, 2, 'red')], vdims=['y', 'color']).options(color='color') plot = bokeh_renderer.get_plot(curve) glyph = plot.handles['glyph'] self.assertEqual(glyph.line_color, 'red') def test_op_ndoverlay_color_value(self): colors = ['blue', 'red'] overlay = NdOverlay({color: Curve(np.arange(i)) for i, color in enumerate(colors)}, 'color').options('Curve', color='color') plot = bokeh_renderer.get_plot(overlay) for subplot, color in zip(plot.subplots.values(), colors): style = dict(subplot.style[subplot.cyclic_index]) style = subplot._apply_transforms(subplot.current_frame, {}, {}, style) self.assertEqual(style['color'], color) def test_curve_color_op(self): curve = Curve([(0, 0, 'red'), (0, 1, 'blue'), (0, 2, 'red')], vdims=['y', 'color']).options(color='color') with self.assertRaises(Exception): bokeh_renderer.get_plot(curve) def test_curve_alpha_op(self): curve = Curve([(0, 0, 0.1), (0, 1, 0.3), (0, 2, 1)], vdims=['y', 'alpha']).options(alpha='alpha') with self.assertRaises(Exception): bokeh_renderer.get_plot(curve) def test_curve_line_width_op(self): curve = Curve([(0, 0, 0.1), (0, 1, 0.3), (0, 2, 1)], vdims=['y', 'linewidth']).options(line_width='linewidth') with self.assertRaises(Exception): bokeh_renderer.get_plot(curve)
bsd-3-clause
returnandrisk/meucci-python
projection_pricing_aggregation.py
1
4119
""" Python code for blog post "mini-Meucci : Applying The Checklist - Steps 3-5" http://www.returnandrisk.com/2016/06/mini-meucci-applying-checklist-steps-3-5.html Copyright (c) 2016 Peter Chan (peter-at-return-and-risk-dot-com) """ #%matplotlib inline from pandas_datareader import data import numpy as np import datetime import math import matplotlib.pyplot as plt import seaborn # Get Yahoo data on 30 DJIA stocks and a few ETFs tickers = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DD','XOM','GE','GS', 'HD','INTC','IBM','JNJ','JPM','MCD','MRK','MSFT','NKE','PFE','PG', 'TRV','UNH','UTX','VZ','V','WMT','DIS','SPY','DIA','TLT','SHY'] start = datetime.datetime(2008, 4, 1) end = datetime.datetime(2016, 5, 31) rawdata = data.DataReader(tickers, 'yahoo', start, end) prices = rawdata.to_frame().unstack(level=1)['Adj Close'] ############################################################################### # Quest for Invariance (random walk model) and Estimation (historical approach) ############################################################################### risk_drivers = np.log(prices) # Set estimation interval = investment horizon (tau) tau = 21 # investment horizon in days invariants = risk_drivers.diff(tau).drop(risk_drivers.index[0:tau]) ############################################################################### # Projection to the Investment Horizon ############################################################################### # Using the historical simulation approach and setting estimation interval = # investment horizon, means that projected invariants = invariants # Recover the projected scenarios for the risk drivers at the tau-day horizon risk_drivers_prjn = risk_drivers.loc[end,:] + invariants ############################################################################### # Pricing at the Investment Horizon ############################################################################### # Compute the projected $ P&L per unit of each stock for all scenarios prices_prjn = np.exp(risk_drivers_prjn) pnl = prices_prjn - prices.loc[end,:] ############################################################################### # Aggregation at the Investment Horizon ############################################################################### # Aggregate the individual stock P&Ls into projected portfolio P&L for all scenarios # Assume equally weighted protfolio at beginning of investment period capital = 1e6 n_asset = 30 asset_tickers = tickers[0:30] asset_weights = np.ones(n_asset) / n_asset # initial holdings ie number of shares h0 = capital * asset_weights / prices.loc[end, asset_tickers] pnl_portfolio = np.dot(pnl.loc[:, asset_tickers], h0) # Apply flexible probabilities to portfolio P&L scenarios n_scenarios = len(pnl_portfolio) # Equal probs equal_probs = np.ones(n_scenarios) / n_scenarios # Time-conditioned flexible probs with exponential decay half_life = 252 * 2 # half life of 2 years es_lambda = math.log(2) / half_life exp_probs = np.exp(-es_lambda * (np.arange(0, n_scenarios)[::-1])) exp_probs = exp_probs / sum(exp_probs) # effective number of scenarios ens_exp_probs = np.exp(sum(-exp_probs * np.log(exp_probs))) # Projected Distribution of Portfolio P&L at Horizon with flexible probabilities import rnr_meucci_functions as rnr mu_port, sigma2_port = rnr.fp_mean_cov(pnl_portfolio.T, equal_probs) mu_port_e, sigma2_port_e = rnr.fp_mean_cov(pnl_portfolio.T, exp_probs) print('Ex-ante portfolio $P&L mean over horizon (equal probs) : {:,.0f}'.format(mu_port)) print('Ex-ante portfolio $P&L volatility over horizon (equal probs) : {:,.0f}'.format(np.sqrt(sigma2_port))) print('') print('Ex-ante portfolio $P&L mean over horizon (flex probs) : {:,.0f}'.format(mu_port_e)) print('Ex-ante portfolio $P&L volatility over horizon (flex probs) : {:,.0f}'.format(np.sqrt(sigma2_port_e))) fig = plt.figure(figsize=(9, 8)) ax = fig.add_subplot(111) ax.hist(pnl_portfolio, 50, weights=exp_probs) ax.set_title('Ex-ante Distribution of Portfolio P&L (flexbile probabilities with exponential decay)') plt.show()
mit
rrohan/scikit-learn
sklearn/linear_model/bayes.py
220
15248
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 ### Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): ### Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) ### Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) ### Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_mean, y_mean, X_std) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) ### Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None ### Iterative procedure of ARDRegression for iter_ in range(self.n_iter): ### Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) ### Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 ### Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) ### Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_mean, y_mean, X_std) return self
bsd-3-clause
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/sklearn/utils/testing.py
2
4641
"""Testing utilities.""" # Copyright (c) 2011 Pietro Berkes # License: Simplified BSD import inspect import pkgutil import urllib2 from StringIO import StringIO import scipy as sp import sklearn from sklearn.base import BaseEstimator from .fixes import savemat try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 from nose.tools import assert_true, assert_false def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def fake_mldata_cache(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set in the cache_path. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name savemat(matfile, datasets, oned_as='column') class mock_urllib2(object): def __init__(self, mock_datasets): """Object that mocks the urllib2 module to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata_cache` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an URLError. """ self.mock_datasets = mock_datasets class HTTPError(urllib2.URLError): code = 404 def urlopen(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name matfile = StringIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata_cache(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise mock_urllib2.HTTPError('%s not found.' % urlname) def quote(self, string, safe='/'): return urllib2.quote(string, safe) def all_estimators(): def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages(path=path, prefix='sklearn.', onerror=lambda x: None): module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) # get rid of abstract base classes all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if issubclass(c[1], BaseEstimator)] estimators = [c for c in estimators if not is_abstract(c[1])] # We sort in order to have reproducible test failures return sorted(estimators)
agpl-3.0
gef756/scipy
scipy/cluster/tests/test_hierarchy.py
26
35153
#! /usr/bin/env python # # Author: Damian Eads # Date: April 17, 2008 # # Copyright (C) 2008 Damian Eads # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (TestCase, run_module_suite, dec, assert_raises, assert_allclose, assert_equal, assert_) from scipy._lib.six import xrange, u import scipy.cluster.hierarchy from scipy.cluster.hierarchy import ( linkage, from_mlab_linkage, to_mlab_linkage, num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, is_isomorphic, single, leaders, correspond, is_monotonic, maxdists, maxinconsts, maxRstat, is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, set_link_color_palette) from scipy.spatial.distance import pdist import hierarchy_test_data # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so # check if it's available try: import matplotlib # and set the backend to be Agg (no gui) matplotlib.use('Agg') # before importing pyplot import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False class TestLinkage(object): def test_linkage_empty_distance_matrix(self): # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. y = np.zeros((0,)) assert_raises(ValueError, linkage, y) def test_linkage_tdist(self): for method in ['single', 'complete', 'average', 'weighted', u('single')]: yield self.check_linkage_tdist, method def check_linkage_tdist(self, method): # Tests linkage(Y, method) on the tdist data set. Z = linkage(hierarchy_test_data.ytdist, method) expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) assert_allclose(Z, expectedZ, atol=1e-10) def test_linkage_X(self): for method in ['centroid', 'median', 'ward']: yield self.check_linkage_q, method def check_linkage_q(self, method): # Tests linkage(Y, method) on the Q data set. Z = linkage(hierarchy_test_data.X, method) expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) assert_allclose(Z, expectedZ, atol=1e-06) class TestInconsistent(object): def test_inconsistent_tdist(self): for depth in hierarchy_test_data.inconsistent_ytdist: yield self.check_inconsistent_tdist, depth def check_inconsistent_tdist(self, depth): Z = hierarchy_test_data.linkage_ytdist_single assert_allclose(inconsistent(Z, depth), hierarchy_test_data.inconsistent_ytdist[depth]) class TestCopheneticDistance(object): def test_linkage_cophenet_tdist_Z(self): # Tests cophenet(Z) on tdist data set. expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) Z = hierarchy_test_data.linkage_ytdist_single M = cophenet(Z) assert_allclose(M, expectedM, atol=1e-10) def test_linkage_cophenet_tdist_Z_Y(self): # Tests cophenet(Z, Y) on tdist data set. Z = hierarchy_test_data.linkage_ytdist_single (c, M) = cophenet(Z, hierarchy_test_data.ytdist) expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) expectedc = 0.639931296433393415057366837573 assert_allclose(c, expectedc, atol=1e-10) assert_allclose(M, expectedM, atol=1e-10) class TestMLabLinkageConversion(object): def test_mlab_linkage_conversion_empty(self): # Tests from/to_mlab_linkage on empty linkage array. X = np.asarray([]) assert_equal(from_mlab_linkage([]), X) assert_equal(to_mlab_linkage([]), X) def test_mlab_linkage_conversion_single_row(self): # Tests from/to_mlab_linkage on linkage array with single row. Z = np.asarray([[0., 1., 3., 2.]]) Zm = [[1, 2, 3]] assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) def test_mlab_linkage_conversion_multiple_rows(self): # Tests from/to_mlab_linkage on linkage array with multiple rows. Zm = np.asarray([[3, 6, 138], [4, 5, 219], [1, 8, 255], [2, 9, 268], [7, 10, 295]]) Z = np.array([[2., 5., 138., 2.], [3., 4., 219., 2.], [0., 7., 255., 3.], [1., 8., 268., 4.], [6., 9., 295., 6.]], dtype=np.double) assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) class TestFcluster(object): def test_fclusterdata(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fclusterdata, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fclusterdata, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fclusterdata, t, 'maxclust' def check_fclusterdata(self, t, criterion): # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] X = hierarchy_test_data.Q_X T = fclusterdata(X, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fcluster, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster, t, 'maxclust' def check_fcluster(self, t, criterion): # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster_monocrit(self): for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster_monocrit, t for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster_maxclust_monocrit, t def check_fcluster_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_distance[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) def check_fcluster_maxclust_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_maxclust[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) class TestLeaders(object): def test_leaders_single(self): # Tests leaders using a flat clustering generated by single linkage. X = hierarchy_test_data.Q_X Y = pdist(X) Z = linkage(Y) T = fcluster(Z, criterion='maxclust', t=3) Lright = (np.array([53, 55, 56]), np.array([2, 3, 1])) L = leaders(Z, T) assert_equal(L, Lright) class TestIsIsomorphic(object): def test_is_isomorphic_1(self): # Tests is_isomorphic on test case #1 (one flat cluster, different labellings) a = [1, 1, 1] b = [2, 2, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_2(self): # Tests is_isomorphic on test case #2 (two flat clusters, different labelings) a = [1, 7, 1] b = [2, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_3(self): # Tests is_isomorphic on test case #3 (no flat clusters) a = [] b = [] assert_(is_isomorphic(a, b)) def test_is_isomorphic_4A(self): # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic) a = [1, 2, 3] b = [1, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_4B(self): # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic) a = [1, 2, 3, 3] b = [1, 3, 2, 3] assert_(is_isomorphic(a, b) == False) assert_(is_isomorphic(b, a) == False) def test_is_isomorphic_4C(self): # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic) a = [7, 2, 3] b = [6, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_5(self): # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random # clusters, random permutation of the labeling). for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc def test_is_isomorphic_6(self): # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random # clusters, random permutation of the labeling, slightly # nonisomorphic.) for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc, True, 5 def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0): for k in range(3): a = np.int_(np.random.rand(nobs) * nclusters) b = np.zeros(a.size, dtype=np.int_) P = np.random.permutation(nclusters) for i in xrange(0, a.shape[0]): b[i] = P[a[i]] if noniso: Q = np.random.permutation(nobs) b[Q[0:nerrors]] += 1 b[Q[0:nerrors]] %= nclusters assert_(is_isomorphic(a, b) == (not noniso)) assert_(is_isomorphic(b, a) == (not noniso)) class TestIsValidLinkage(object): def test_is_valid_linkage_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_linkage_various_size, nrow, ncol, valid def check_is_valid_linkage_various_size(self, nrow, ncol, valid): # Tests is_valid_linkage(Z) with linkage matrics of various sizes Z = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) Z = Z[:nrow, :ncol] assert_(is_valid_linkage(Z) == valid) if not valid: assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_int_type(self): # Tests is_valid_linkage(Z) with integer type. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=int) assert_(is_valid_linkage(Z) == False) assert_raises(TypeError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_empty(self): # Tests is_valid_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(is_valid_linkage(Z) == True) def test_is_valid_linkage_4_and_up_neg_index_left(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (left). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,0] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_index_right(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (right). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,1] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_dist(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative distances. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,2] = -0.5 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_counts(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,3] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) class TestIsValidInconsistent(object): def test_is_valid_im_int_type(self): # Tests is_valid_im(R) with integer type. R = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=int) assert_(is_valid_im(R) == False) assert_raises(TypeError, is_valid_im, R, throw=True) def test_is_valid_im_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_im_various_size, nrow, ncol, valid def check_is_valid_im_various_size(self, nrow, ncol, valid): # Tests is_valid_im(R) with linkage matrics of various sizes R = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) R = R[:nrow, :ncol] assert_(is_valid_im(R) == valid) if not valid: assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_empty(self): # Tests is_valid_im(R) with empty inconsistency matrix. R = np.zeros((0, 4), dtype=np.double) assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) assert_(is_valid_im(R) == True) def test_is_valid_im_4_and_up_neg_index_left(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height means. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,0] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_index_right(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height standard deviations. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,1] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_dist(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,2] = -0.5 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) class TestNumObsLinkage(TestCase): def test_num_obs_linkage_empty(self): # Tests num_obs_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, num_obs_linkage, Z) def test_num_obs_linkage_1x4(self): # Tests num_obs_linkage(Z) on linkage over 2 observations. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) assert_equal(num_obs_linkage(Z), 2) def test_num_obs_linkage_2x4(self): # Tests num_obs_linkage(Z) on linkage over 3 observations. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) assert_equal(num_obs_linkage(Z), 3) def test_num_obs_linkage_4_and_up(self): # Tests num_obs_linkage(Z) on linkage on observation sets between sizes # 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_equal(num_obs_linkage(Z), i) class TestLeavesList(object): def test_leaves_list_1x4(self): # Tests leaves_list(Z) on a 1x4 linkage. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1]) def test_leaves_list_2x4(self): # Tests leaves_list(Z) on a 2x4 linkage. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1, 2]) def test_leaves_list_Q(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_leaves_list_Q, method def check_leaves_list_Q(self, method): # Tests leaves_list(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) node = to_tree(Z) assert_equal(node.pre_order(), leaves_list(Z)) def test_Q_subtree_pre_order(self): # Tests that pre_order() works when called on sub-trees. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') node = to_tree(Z) assert_equal(node.pre_order(), (node.get_left().pre_order() + node.get_right().pre_order())) class TestCorrespond(TestCase): def test_correspond_empty(self): # Tests correspond(Z, y) with empty linkage and condensed distance matrix. y = np.zeros((0,)) Z = np.zeros((0,4)) assert_raises(ValueError, correspond, Z, y) def test_correspond_2_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. for i in xrange(2, 4): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) def test_correspond_4_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + list(zip(list(range(3, 5)), list(range(2, 4))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_correspond_4_and_up_2(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + list(zip(list(range(2, 7)), list(range(16, 21))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_num_obs_linkage_multi_matrix(self): # Tests num_obs_linkage with observation matrices of multiple sizes. for n in xrange(2, 10): X = np.random.rand(n, 4) Y = pdist(X) Z = linkage(Y) assert_equal(num_obs_linkage(Z), n) class TestIsMonotonic(TestCase): def test_is_monotonic_empty(self): # Tests is_monotonic(Z) on an empty linkage. Z = np.zeros((0, 4)) assert_raises(ValueError, is_monotonic, Z) def test_is_monotonic_1x4(self): # Tests is_monotonic(Z) on 1x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_T(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 3]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_F(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting False. Z = np.asarray([[0, 1, 0.4, 2], [2, 3, 0.3, 3]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_T(self): # Tests is_monotonic(Z) on 3x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_3x4_F1(self): # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.2, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F2(self): # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. Z = np.asarray([[0, 1, 0.8, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F3(self): # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.2, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_tdist_linkage1(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Expecting True. Z = linkage(hierarchy_test_data.ytdist, 'single') assert_equal(is_monotonic(Z), True) def test_is_monotonic_tdist_linkage2(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Perturbing. Expecting False. Z = linkage(hierarchy_test_data.ytdist, 'single') Z[2,2] = 0.0 assert_equal(is_monotonic(Z), False) def test_is_monotonic_Q_linkage(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # Q data set. Expecting True. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') assert_equal(is_monotonic(Z), True) class TestMaxDists(object): def test_maxdists_empty_linkage(self): # Tests maxdists(Z) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxdists, Z) def test_maxdists_one_cluster_linkage(self): # Tests maxdists(Z) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxdists_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxdists_Q_linkage, method def check_maxdists_Q_linkage(self, method): # Tests maxdists(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxInconsts(object): def test_maxinconsts_empty_linkage(self): # Tests maxinconsts(Z, R) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_difrow_linkage(self): # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_one_cluster_linkage(self): # Tests maxinconsts(Z, R) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxinconsts_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxinconsts_Q_linkage, method def check_maxinconsts_Q_linkage(self, method): # Tests maxinconsts(Z, R) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxRStat(object): def test_maxRstat_invalid_index(self): for i in [3.3, -1, 4]: yield self.check_maxRstat_invalid_index, i def check_maxRstat_invalid_index(self, i): # Tests maxRstat(Z, R, i). Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) if isinstance(i, int): assert_raises(ValueError, maxRstat, Z, R, i) else: assert_raises(TypeError, maxRstat, Z, R, i) def test_maxRstat_empty_linkage(self): for i in range(4): yield self.check_maxRstat_empty_linkage, i def check_maxRstat_empty_linkage(self, i): # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_difrow_linkage(self): for i in range(4): yield self.check_maxRstat_difrow_linkage, i def check_maxRstat_difrow_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_one_cluster_linkage(self): for i in range(4): yield self.check_maxRstat_one_cluster_linkage, i def check_maxRstat_one_cluster_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxRstat_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: for i in range(4): yield self.check_maxRstat_Q_linkage, method, i def check_maxRstat_Q_linkage(self, method, i): # Tests maxRstat(Z, R, i) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) class TestDendrogram(object): def test_dendrogram_single_linkage_tdist(self): # Tests dendrogram calculation on single linkage of the tdist data set. Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, no_plot=True) leaves = R["leaves"] assert_equal(leaves, [2, 5, 1, 0, 3, 4]) def test_valid_orientation(self): Z = linkage(hierarchy_test_data.ytdist, 'single') assert_raises(ValueError, dendrogram, Z, orientation="foo") @dec.skipif(not have_matplotlib) def test_dendrogram_plot(self): for orientation in ['top', 'bottom', 'left', 'right']: yield self.check_dendrogram_plot, orientation def check_dendrogram_plot(self, orientation): # Tests dendrogram plotting. Z = linkage(hierarchy_test_data.ytdist, 'single') expected = {'color_list': ['g', 'b', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 219.0, 219.0, 0.0], [0.0, 255.0, 255.0, 219.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [45.0, 45.0, 55.0, 55.0], [35.0, 35.0, 50.0, 50.0], [25.0, 25.0, 42.5, 42.5], [10.0, 10.0, 33.75, 33.75]], 'ivl': ['2', '5', '1', '0', '3', '4'], 'leaves': [2, 5, 1, 0, 3, 4]} fig = plt.figure() ax = fig.add_subplot(111) # test that dendrogram accepts ax keyword R1 = dendrogram(Z, ax=ax, orientation=orientation) plt.close() assert_equal(R1, expected) # test plotting to gca (will import pylab) R2 = dendrogram(Z, orientation=orientation) plt.close() assert_equal(R2, expected) @dec.skipif(not have_matplotlib) def test_dendrogram_truncate_mode(self): Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, 2, 'lastp', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['b'], 'dcoord': [[0.0, 295.0, 295.0, 0.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0]], 'ivl': ['(2)', '(4)'], 'leaves': [6, 9]}) R = dendrogram(Z, 2, 'mtica', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['g', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 255.0, 255.0, 0.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [35.0, 35.0, 45.0, 45.0], [25.0, 25.0, 40.0, 40.0], [10.0, 10.0, 32.5, 32.5]], 'ivl': ['2', '5', '1', '0', '(2)'], 'leaves': [2, 5, 1, 0, 7]}) def test_dendrogram_colors(self): # Tests dendrogram plots with alternate colors Z = linkage(hierarchy_test_data.ytdist, 'single') set_link_color_palette(['c', 'm', 'y', 'k']) R = dendrogram(Z, no_plot=True, above_threshold_color='g', color_threshold=250) set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) color_list = R['color_list'] assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) def calculate_maximum_distances(Z): # Used for testing correctness of maxdists. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = Z[i, 2] B[i] = q.max() return B def calculate_maximum_inconsistencies(Z, R, k=3): # Used for testing correctness of maxinconsts. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = R[i, k] B[i] = q.max() return B def test_euclidean_linkage_value_error(): for method in scipy.cluster.hierarchy._cpy_euclid_methods: assert_raises(ValueError, linkage, [[1, 1], [1, 1]], method=method, metric='cityblock') def test_2x2_linkage(): Z1 = linkage([1], method='single', metric='euclidean') Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean') assert_allclose(Z1, Z2) if __name__ == "__main__": run_module_suite()
bsd-3-clause
bsipocz/AstroHackWeek2015
day3-machine-learning/plots/plot_2d_separator.py
41
1513
import numpy as np import matplotlib.pyplot as plt def plot_2d_separator(classifier, X, fill=False, ax=None, eps=None): if eps is None: eps = X.std() / 2. x_min, x_max = X[:, 0].min() - eps, X[:, 0].max() + eps y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps xx = np.linspace(x_min, x_max, 100) yy = np.linspace(y_min, y_max, 100) X1, X2 = np.meshgrid(xx, yy) X_grid = np.c_[X1.ravel(), X2.ravel()] try: decision_values = classifier.decision_function(X_grid) levels = [0] fill_levels = [decision_values.min(), 0, decision_values.max()] except AttributeError: # no decision_function decision_values = classifier.predict_proba(X_grid)[:, 1] levels = [.5] fill_levels = [0, .5, 1] if ax is None: ax = plt.gca() if fill: ax.contourf(X1, X2, decision_values.reshape(X1.shape), levels=fill_levels, colors=['blue', 'red']) else: ax.contour(X1, X2, decision_values.reshape(X1.shape), levels=levels, colors="black") ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) if __name__ == '__main__': from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression X, y = make_blobs(centers=2, random_state=42) clf = LogisticRegression().fit(X, y) plot_2d_separator(clf, X, fill=True) plt.scatter(X[:, 0], X[:, 1], c=y) plt.show()
gpl-2.0
fengzhyuan/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
MohammedWasim/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
dingocuster/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
128
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coef_ with B print("Estimated B") print(np.round(pls2.coef_, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coef_, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
EliHar/Pattern_recognition
openface1/evaluation/lfw.py
10
10846
#!/usr/bin/env python2 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This implements the standard LFW verification experiment. import math import numpy as np import pandas as pd from scipy.interpolate import interp1d from sklearn.cross_validation import KFold from sklearn.metrics import accuracy_score import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.style.use('bmh') import os import sys import argparse from scipy import arange def main(): parser = argparse.ArgumentParser() parser.add_argument( 'tag', type=str, help='The label/tag to put on the ROC curve.') parser.add_argument('workDir', type=str, help='The work directory with labels.csv and reps.csv.') pairsDefault = os.path.expanduser("~/openface/data/lfw/pairs.txt") parser.add_argument('--lfwPairs', type=str, default=os.path.expanduser( "~/openface/data/lfw/pairs.txt"), help='Location of the LFW pairs file from http://vis-www.cs.umass.edu/lfw/pairs.txt') args = parser.parse_args() if not os.path.isfile(args.lfwPairs): print(""" Error in LFW evaluation code. (Source: <openface>/evaluation/lfw.py) The LFW evaluation requires a file containing pairs of faces to evaluate. Download this file from http://vis-www.cs.umass.edu/lfw/pairs.txt and place it in the default location ({}) or pass it as --lfwPairs. """.format(pairsDefault)) sys.exit(-1) print("Loading embeddings.") fname = "{}/labels.csv".format(args.workDir) paths = pd.read_csv(fname, header=None).as_matrix()[:, 1] paths = map(os.path.basename, paths) # Get the filename. # Remove the extension. paths = map(lambda path: os.path.splitext(path)[0], paths) fname = "{}/reps.csv".format(args.workDir) rawEmbeddings = pd.read_csv(fname, header=None).as_matrix() embeddings = dict(zip(*[paths, rawEmbeddings])) pairs = loadPairs(args.lfwPairs) verifyExp(args.workDir, pairs, embeddings) plotVerifyExp(args.workDir, args.tag) def loadPairs(pairsFname): print(" + Reading pairs.") pairs = [] with open(pairsFname, 'r') as f: for line in f.readlines()[1:]: pair = line.strip().split() pairs.append(pair) assert(len(pairs) == 6000) return np.array(pairs) def getEmbeddings(pair, embeddings): if len(pair) == 3: name1 = "{}_{}".format(pair[0], pair[1].zfill(4)) name2 = "{}_{}".format(pair[0], pair[2].zfill(4)) actual_same = True elif len(pair) == 4: name1 = "{}_{}".format(pair[0], pair[1].zfill(4)) name2 = "{}_{}".format(pair[2], pair[3].zfill(4)) actual_same = False else: raise Exception( "Unexpected pair length: {}".format(len(pair))) (x1, x2) = (embeddings[name1], embeddings[name2]) return (x1, x2, actual_same) def writeROC(fname, thresholds, embeddings, pairsTest): with open(fname, "w") as f: f.write("threshold,tp,tn,fp,fn,tpr,fpr\n") tp = tn = fp = fn = 0 for threshold in thresholds: tp = tn = fp = fn = 0 for pair in pairsTest: (x1, x2, actual_same) = getEmbeddings(pair, embeddings) diff = x1 - x2 dist = np.dot(diff.T, diff) predict_same = dist < threshold if predict_same and actual_same: tp += 1 elif predict_same and not actual_same: fp += 1 elif not predict_same and not actual_same: tn += 1 elif not predict_same and actual_same: fn += 1 if tp + fn == 0: tpr = 0 else: tpr = float(tp) / float(tp + fn) if fp + tn == 0: fpr = 0 else: fpr = float(fp) / float(fp + tn) f.write(",".join([str(x) for x in [threshold, tp, tn, fp, fn, tpr, fpr]])) f.write("\n") if tpr == 1.0 and fpr == 1.0: # No further improvements. f.write(",".join([str(x) for x in [4.0, tp, tn, fp, fn, tpr, fpr]])) return def getDistances(embeddings, pairsTrain): list_dist = [] y_true = [] for pair in pairsTrain: (x1, x2, actual_same) = getEmbeddings(pair, embeddings) diff = x1 - x2 dist = np.dot(diff.T, diff) list_dist.append(dist) y_true.append(actual_same) return np.asarray(list_dist), np.array(y_true) def evalThresholdAccuracy(embeddings, pairs, threshold): distances, y_true = getDistances(embeddings, pairs) y_predict = np.zeros(y_true.shape) y_predict[np.where(distances < threshold)] = 1 y_true = np.array(y_true) accuracy = accuracy_score(y_true, y_predict) return accuracy, pairs[np.where(y_true != y_predict)] def findBestThreshold(thresholds, embeddings, pairsTrain): bestThresh = bestThreshAcc = 0 distances, y_true = getDistances(embeddings, pairsTrain) for threshold in thresholds: y_predlabels = np.zeros(y_true.shape) y_predlabels[np.where(distances < threshold)] = 1 accuracy = accuracy_score(y_true, y_predlabels) if accuracy >= bestThreshAcc: bestThreshAcc = accuracy bestThresh = threshold else: # No further improvements. return bestThresh return bestThresh def verifyExp(workDir, pairs, embeddings): print(" + Computing accuracy.") folds = KFold(n=6000, n_folds=10, shuffle=False) thresholds = arange(0, 4, 0.01) if os.path.exists("{}/accuracies.txt".format(workDir)): print("{}/accuracies.txt already exists. Skipping processing.".format(workDir)) else: accuracies = [] with open("{}/accuracies.txt".format(workDir), "w") as f: f.write('fold, threshold, accuracy\n') for idx, (train, test) in enumerate(folds): fname = "{}/l2-roc.fold-{}.csv".format(workDir, idx) writeROC(fname, thresholds, embeddings, pairs[test]) bestThresh = findBestThreshold( thresholds, embeddings, pairs[train]) accuracy, pairs_bad = evalThresholdAccuracy( embeddings, pairs[test], bestThresh) accuracies.append(accuracy) f.write('{}, {:0.2f}, {:0.2f}\n'.format( idx, bestThresh, accuracy)) avg = np.mean(accuracies) std = np.std(accuracies) f.write('\navg, {:0.4f} +/- {:0.4f}\n'.format(avg, std)) print(' + {:0.4f}'.format(avg)) def getAUC(fprs, tprs): sortedFprs, sortedTprs = zip(*sorted(zip(*(fprs, tprs)))) sortedFprs = list(sortedFprs) sortedTprs = list(sortedTprs) if sortedFprs[-1] != 1.0: sortedFprs.append(1.0) sortedTprs.append(sortedTprs[-1]) return np.trapz(sortedTprs, sortedFprs) def plotOpenFaceROC(workDir, plotFolds=True, color=None): fs = [] for i in range(10): rocData = pd.read_csv("{}/l2-roc.fold-{}.csv".format(workDir, i)) fs.append(interp1d(rocData['fpr'], rocData['tpr'])) x = np.linspace(0, 1, 1000) if plotFolds: foldPlot, = plt.plot(x, fs[-1](x), color='grey', alpha=0.5) else: foldPlot = None fprs = [] tprs = [] for fpr in np.linspace(0, 1, 1000): tpr = 0.0 for f in fs: v = f(fpr) if math.isnan(v): v = 0.0 tpr += v tpr /= 10.0 fprs.append(fpr) tprs.append(tpr) if color: meanPlot, = plt.plot(fprs, tprs, color=color) else: meanPlot, = plt.plot(fprs, tprs) AUC = getAUC(fprs, tprs) return foldPlot, meanPlot, AUC def plotVerifyExp(workDir, tag): print("Plotting.") fig, ax = plt.subplots(1, 1) openbrData = pd.read_csv("comparisons/openbr.v1.1.0.DET.csv") openbrData['Y'] = 1 - openbrData['Y'] # brPlot = openbrData.plot(x='X', y='Y', legend=True, ax=ax) brPlot, = plt.plot(openbrData['X'], openbrData['Y']) brAUC = getAUC(openbrData['X'], openbrData['Y']) foldPlot, meanPlot, AUC = plotOpenFaceROC(workDir, color='k') humanData = pd.read_table( "comparisons/kumar_human_crop.txt", header=None, sep=' ') humanPlot, = plt.plot(humanData[1], humanData[0]) humanAUC = getAUC(humanData[1], humanData[0]) deepfaceData = pd.read_table( "comparisons/deepface_ensemble.txt", header=None, sep=' ') dfPlot, = plt.plot(deepfaceData[1], deepfaceData[0], '--', alpha=0.75) deepfaceAUC = getAUC(deepfaceData[1], deepfaceData[0]) # baiduData = pd.read_table( # "comparisons/BaiduIDLFinal.TPFP", header=None, sep=' ') # bPlot, = plt.plot(baiduData[1], baiduData[0]) # baiduAUC = getAUC(baiduData[1], baiduData[0]) eigData = pd.read_table( "comparisons/eigenfaces-original-roc.txt", header=None, sep=' ') eigPlot, = plt.plot(eigData[1], eigData[0]) eigAUC = getAUC(eigData[1], eigData[0]) ax.legend([humanPlot, dfPlot, brPlot, eigPlot, meanPlot, foldPlot], ['Human, Cropped [AUC={:.3f}]'.format(humanAUC), # 'Baidu [{:.3f}]'.format(baiduAUC), 'DeepFace Ensemble [{:.3f}]'.format(deepfaceAUC), 'OpenBR v1.1.0 [{:.3f}]'.format(brAUC), 'Eigenfaces [{:.3f}]'.format(eigAUC), 'OpenFace {} [{:.3f}]'.format(tag, AUC), 'OpenFace {} folds'.format(tag)], loc='lower right') plt.plot([0, 1], color='k', linestyle=':') plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") # plt.ylim(ymin=0,ymax=1) plt.xlim(xmin=0, xmax=1) plt.grid(b=True, which='major', color='k', linestyle='-') plt.grid(b=True, which='minor', color='k', linestyle='-', alpha=0.2) plt.minorticks_on() # fig.savefig(os.path.join(workDir, "roc.pdf")) fig.savefig(os.path.join(workDir, "roc.png")) if __name__ == '__main__': main()
mit
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/core/computation/scope.py
7
9040
""" Module for scope operations """ import sys import struct import inspect import datetime import itertools import pprint import numpy as np import pandas import pandas as pd # noqa from pandas.compat import DeepChainMap, map, StringIO from pandas.core.base import StringMixin import pandas.core.computation as compu def _ensure_scope(level, global_dict=None, local_dict=None, resolvers=(), target=None, **kwargs): """Ensure that we are grabbing the correct scope.""" return Scope(level + 1, global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, target=target) def _replacer(x): """Replace a number with its hexadecimal representation. Used to tag temporary variables with their calling scope's id. """ # get the hex repr of the binary char and remove 0x and pad by pad_size # zeros try: hexin = ord(x) except TypeError: # bytes literals masquerade as ints when iterating in py3 hexin = x return hex(hexin) def _raw_hex_id(obj): """Return the padded hexadecimal id of ``obj``.""" # interpret as a pointer since that's what really what id returns packed = struct.pack('@P', id(obj)) return ''.join(map(_replacer, packed)) _DEFAULT_GLOBALS = { 'Timestamp': pandas._libs.lib.Timestamp, 'datetime': datetime.datetime, 'True': True, 'False': False, 'list': list, 'tuple': tuple, 'inf': np.inf, 'Inf': np.inf, } def _get_pretty_string(obj): """Return a prettier version of obj Parameters ---------- obj : object Object to pretty print Returns ------- s : str Pretty print object repr """ sio = StringIO() pprint.pprint(obj, stream=sio) return sio.getvalue() class Scope(StringMixin): """Object to hold scope, with a few bells to deal with some custom syntax and contexts added by pandas. Parameters ---------- level : int global_dict : dict or None, optional, default None local_dict : dict or Scope or None, optional, default None resolvers : list-like or None, optional, default None target : object Attributes ---------- level : int scope : DeepChainMap target : object temps : dict """ __slots__ = 'level', 'scope', 'target', 'temps' def __init__(self, level, global_dict=None, local_dict=None, resolvers=(), target=None): self.level = level + 1 # shallow copy because we don't want to keep filling this up with what # was there before if there are multiple calls to Scope/_ensure_scope self.scope = DeepChainMap(_DEFAULT_GLOBALS.copy()) self.target = target if isinstance(local_dict, Scope): self.scope.update(local_dict.scope) if local_dict.target is not None: self.target = local_dict.target self.update(local_dict.level) frame = sys._getframe(self.level) try: # shallow copy here because we don't want to replace what's in # scope when we align terms (alignment accesses the underlying # numpy array of pandas objects) self.scope = self.scope.new_child((global_dict or frame.f_globals).copy()) if not isinstance(local_dict, Scope): self.scope = self.scope.new_child((local_dict or frame.f_locals).copy()) finally: del frame # assumes that resolvers are going from outermost scope to inner if isinstance(local_dict, Scope): resolvers += tuple(local_dict.resolvers.maps) self.resolvers = DeepChainMap(*resolvers) self.temps = {} def __unicode__(self): scope_keys = _get_pretty_string(list(self.scope.keys())) res_keys = _get_pretty_string(list(self.resolvers.keys())) return '%s(scope=%s, resolvers=%s)' % (type(self).__name__, scope_keys, res_keys) @property def has_resolvers(self): """Return whether we have any extra scope. For example, DataFrames pass Their columns as resolvers during calls to ``DataFrame.eval()`` and ``DataFrame.query()``. Returns ------- hr : bool """ return bool(len(self.resolvers)) def resolve(self, key, is_local): """Resolve a variable name in a possibly local context Parameters ---------- key : text_type A variable name is_local : bool Flag indicating whether the variable is local or not (prefixed with the '@' symbol) Returns ------- value : object The value of a particular variable """ try: # only look for locals in outer scope if is_local: return self.scope[key] # not a local variable so check in resolvers if we have them if self.has_resolvers: return self.resolvers[key] # if we're here that means that we have no locals and we also have # no resolvers assert not is_local and not self.has_resolvers return self.scope[key] except KeyError: try: # last ditch effort we look in temporaries # these are created when parsing indexing expressions # e.g., df[df > 0] return self.temps[key] except KeyError: raise compu.ops.UndefinedVariableError(key, is_local) def swapkey(self, old_key, new_key, new_value=None): """Replace a variable name, with a potentially new value. Parameters ---------- old_key : str Current variable name to replace new_key : str New variable name to replace `old_key` with new_value : object Value to be replaced along with the possible renaming """ if self.has_resolvers: maps = self.resolvers.maps + self.scope.maps else: maps = self.scope.maps maps.append(self.temps) for mapping in maps: if old_key in mapping: mapping[new_key] = new_value return def _get_vars(self, stack, scopes): """Get specifically scoped variables from a list of stack frames. Parameters ---------- stack : list A list of stack frames as returned by ``inspect.stack()`` scopes : sequence of strings A sequence containing valid stack frame attribute names that evaluate to a dictionary. For example, ('locals', 'globals') """ variables = itertools.product(scopes, stack) for scope, (frame, _, _, _, _, _) in variables: try: d = getattr(frame, 'f_' + scope) self.scope = self.scope.new_child(d) finally: # won't remove it, but DECREF it # in Py3 this probably isn't necessary since frame won't be # scope after the loop del frame def update(self, level): """Update the current scope by going back `level` levels. Parameters ---------- level : int or None, optional, default None """ sl = level + 1 # add sl frames to the scope starting with the # most distant and overwriting with more current # makes sure that we can capture variable scope stack = inspect.stack() try: self._get_vars(stack[:sl], scopes=['locals']) finally: del stack[:], stack def add_tmp(self, value): """Add a temporary variable to the scope. Parameters ---------- value : object An arbitrary object to be assigned to a temporary variable. Returns ------- name : basestring The name of the temporary variable created. """ name = '{0}_{1}_{2}'.format(type(value).__name__, self.ntemps, _raw_hex_id(self)) # add to inner most scope assert name not in self.temps self.temps[name] = value assert name in self.temps # only increment if the variable gets put in the scope return name @property def ntemps(self): """The number of temporary variables in this scope""" return len(self.temps) @property def full_scope(self): """Return the full scope for use with passing to engines transparently as a mapping. Returns ------- vars : DeepChainMap All variables in this scope. """ maps = [self.temps] + self.resolvers.maps + self.scope.maps return DeepChainMap(*maps)
agpl-3.0
IndraVikas/scikit-learn
sklearn/linear_model/randomized_l1.py
95
23365
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], y_numeric=True) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
hickerson/bbn
fable/fable_sources/libtbx/auto_build/package_defs.py
1
1935
""" Listing of current dependencies for CCTBX and related applications (including LABELIT, xia2, DIALS, and Phenix with GUI). Not all of these can be downloaded via the web (yet). """ from __future__ import division BASE_CCI_PKG_URL = "http://cci.lbl.gov/third_party" BASE_XIA_PKG_URL = "http://www.ccp4.ac.uk/xia" # from CCI PYTHON_PKG = "Python-2.7.6_cci.tar.gz" # XXX we maintain a patched copy to avoid an ICE with gcc 3.4 NUMPY_PKG = "numpy-1.6.2.tar.gz" # used many places IMAGING_PKG = "Imaging-1.1.7.tar.gz" # for labelit, gltbx REPORTLAB_PKG = "reportlab-2.6.tar.gz" # for labelit ZLIB_PKG = "zlib-1.2.7.tar.gz" SCIPY_PKG = "scipy-0.11.0.tar.gz" # not used by default PYRTF_PKG = "PyRTF-0.45.tar.gz" # for phenix.table_one, etc. BIOPYTHON_PKG = "biopython-1.58.tar.gz" # used in iotbx # from xia2 page HDF5_PKG = "hdf5-1.8.8.tar.bz2" # dxtbx H5PY_PKG = "h5py-2.0.1-edit.tar.gz" # dxtbx # GUI dependencies LIBPNG_PKG = "libpng-1.2.32.tar.gz" FREETYPE_PKG = "freetype-2.4.2.tar.gz" # Linux-only GETTEXT_PKG = "gettext-0.18.2.tar.gz" GLIB_PKG = "glib-2.12.11.tar.gz" EXPAT_PKG = "expat-1.95.8.tar.gz" FONTCONFIG_PKG = "fontconfig-2.3.95.tar.gz" RENDER_PKG = "render-0.8.tar.gz" XRENDER_PKG = "xrender-0.8.3.tar.gz" XFT_PKG = "xft-2.1.2.tar.gz" PIXMAN_PKG = "pixman-0.19.2.tar.gz" CAIRO_PKG = "cairo-1.8.10.tar.gz" PANGO_PKG = "pango-1.16.1.tar.gz" ATK_PKG = "atk-1.9.1.tar.gz" TIFF_PKG = "tiff-v3.6.1.tar.gz" GTK_PKG = "gtk+-2.10.11.tar.gz" GTK_ENGINE_PKG = "clearlooks-0.5.tar.gz" GTK_THEME_PKG = "gtk_themes.tar.gz" # end Linux-only FONT_PKG = "fonts.tar.gz" WXPYTHON_DEV_PKG = "wxPython-src-3.0.0.0_cci.tar.gz" # Mac 64-bit WXPYTHON_PKG = "wxPython-src-2.8.12.1.tar.gz" # Linux, Mac 32-bit WEBKIT_PKG = "wxwebkit.tar.gz" # not currently used MATPLOTLIB_PKG = "matplotlib-1.3.0.tar.gz" PY2APP_PKG = "py2app-0.7.3.tar.gz" # Mac only
mit
harshaneelhg/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
Sentient07/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
99
4608
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.model_selection import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/sklearn/decomposition/pca.py
5
27151
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # Giorgio Patrini <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from scipy.sparse import issparse from ..externals import six from .base import _BasePCA from ..base import BaseEstimator, TransformerMixin from ..utils import deprecated from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd, svd_flip from ..utils.validation import check_is_fitted from ..utils.arpack import svds def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(_BasePCA): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract. It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD. Notice that this class does not support sparse input. See :class:`TruncatedSVD` for an alternative with sparse data. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, float, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle' and svd_solver == 'full', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1`` and svd_solver == 'full', select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components n_components cannot be equal to n_features for svd_solver == 'arpack'. copy : bool (default True) If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional (default False) When True (False by default) the `components_` vectors are multiplied by the square root of n_samples and then divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. svd_solver : string {'auto', 'full', 'arpack', 'randomized'} auto : the solver is selected by a default policy based on `X.shape` and `n_components`: if the input data is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient 'randomized' method is enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. full : run exact full SVD calling the standard LAPACK solver via `scipy.linalg.svd` and select the components by postprocessing arpack : run SVD truncated to n_components calling ARPACK solver via `scipy.sparse.linalg.svds`. It requires strictly 0 < n_components < X.shape[1] randomized : run randomized SVD by the method of Halko et al. .. versionadded:: 0.18.0 tol : float >= 0, optional (default .0) Tolerance for singular values computed by svd_solver == 'arpack'. .. versionadded:: 0.18.0 iterated_power : int >= 0, or 'auto', (default 'auto') Number of iterations for the power method computed by svd_solver == 'randomized'. .. versionadded:: 0.18.0 random_state : int or RandomState instance or None (default None) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Used by svd_solver == 'arpack' or 'randomized'. .. versionadded:: 0.18.0 Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. The components are sorted by ``explained_variance_``. explained_variance_ : array, [n_components] The amount of variance explained by each of the selected components. .. versionadded:: 0.18 explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Equal to `X.mean(axis=1)`. n_components_ : int The estimated number of components. When n_components is set to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this number is estimated from input data. Otherwise it equals the parameter n_components, or n_features if n_components is None. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. References ---------- For n_components == 'mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`. For svd_solver == 'randomized', see: `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> pca = PCA(n_components=2, svd_solver='full') >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='full', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> pca = PCA(n_components=1, svd_solver='arpack') >>> pca.fit(X) PCA(copy=True, iterated_power='auto', n_components=1, random_state=None, svd_solver='arpack', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244...] See also -------- KernelPCA SparsePCA TruncatedSVD IncrementalPCA """ def __init__(self, n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None): self.n_components = n_components self.copy = copy self.whiten = whiten self.svd_solver = svd_solver self.tol = tol self.iterated_power = iterated_power self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Dispatch to the right submethod depending on the chosen solver.""" # Raise an error for sparse input. # This is more informative than the generic one raised by check_array. if issparse(X): raise TypeError('PCA does not support sparse input. See ' 'TruncatedSVD for a possible alternative.') X = check_array(X, dtype=[np.float64], ensure_2d=True, copy=self.copy) # Handle n_components==None if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components # Handle svd_solver svd_solver = self.svd_solver if svd_solver == 'auto': # Small problem, just call full PCA if max(X.shape) <= 500: svd_solver = 'full' elif n_components >= 1 and n_components < .8 * min(X.shape): svd_solver = 'randomized' # This is also the case of n_components in (0,1) else: svd_solver = 'full' # Call different fits for either full or truncated SVD if svd_solver == 'full': return self._fit_full(X, n_components) elif svd_solver in ['arpack', 'randomized']: return self._fit_truncated(X, n_components, svd_solver) def _fit_full(self, X, n_components): """Fit the model by computing full SVD on X""" n_samples, n_features = X.shape if n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r must be between 0 and " "n_features=%r with svd_solver='full'" % (n_components, n_features)) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) # flip eigenvectors' sign to enforce deterministic output U, V = svd_flip(U, V) components_ = V # Get variance explained by singular values explained_variance_ = (S ** 2) / n_samples total_var = explained_variance_.sum() explained_variance_ratio_ = explained_variance_ / total_var # Postprocess the number of components required if n_components == 'mle': n_components = \ _infer_dimension_(explained_variance_, n_samples, n_features) elif 0 < n_components < 1.0: # number of components for which the cumulated explained # variance percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.searchsorted(ratio_cumsum, n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < min(n_features, n_samples): self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = components_[:n_components] self.n_components_ = n_components self.explained_variance_ = explained_variance_[:n_components] self.explained_variance_ratio_ = \ explained_variance_ratio_[:n_components] return U, S, V def _fit_truncated(self, X, n_components, svd_solver): """Fit the model by computing truncated SVD (by ARPACK or randomized) on X """ n_samples, n_features = X.shape if isinstance(n_components, six.string_types): raise ValueError("n_components=%r cannot be a string " "with svd_solver='%s'" % (n_components, svd_solver)) elif not 1 <= n_components <= n_features: raise ValueError("n_components=%r must be between 1 and " "n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver)) elif svd_solver == 'arpack' and n_components == n_features: raise ValueError("n_components=%r must be stricly less than " "n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver)) random_state = check_random_state(self.random_state) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if svd_solver == 'arpack': # random init solution, as ARPACK does it internally v0 = random_state.uniform(-1, 1, size=min(X.shape)) U, S, V = svds(X, k=n_components, tol=self.tol, v0=v0) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. S = S[::-1] # flip eigenvectors' sign to enforce deterministic output U, V = svd_flip(U[:, ::-1], V[::-1]) elif svd_solver == 'randomized': # sign flipping is done inside U, S, V = randomized_svd(X, n_components=n_components, n_iter=self.iterated_power, flip_sign=True, random_state=random_state) self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = V self.n_components_ = n_components # Get variance explained by singular values self.explained_variance_ = (S ** 2) / n_samples total_var = np.var(X, axis=0) self.explained_variance_ratio_ = \ self.explained_variance_ / total_var.sum() if self.n_components_ < n_features: self.noise_variance_ = (total_var.sum() - self.explained_variance_.sum()) else: self.noise_variance_ = 0. return U, S, V def score_samples(self, X): """Return the log-likelihood of each sample. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) @deprecated("RandomizedPCA was deprecated in 0.18 and will be removed in 0.20. " "Use PCA(svd_solver='randomized') instead. The new implementation " "DOES NOT store whiten ``components_``. Apply transform to get them.") class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD .. deprecated:: 0.18 This class will be removed in 0.20. Use :class:`PCA` with parameter svd_solver 'randomized' instead. The new implementation DOES NOT store whiten ``components_``. Apply transform to get them. Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, default=2 Number of iterations for the power method. .. versionchanged:: 0.18 whiten : bool, optional When True (False by default) the `components_` vectors are multiplied by the square root of (n_samples) and divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. k is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=2, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=2, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
mit
pandas-ml/pandas-ml
pandas_ml/skaccessors/preprocessing.py
2
3152
#!/usr/bin/env python import numpy as np from pandas_ml.core.accessor import _AccessorMethods, _attach_methods from pandas_ml.compat import (_SKLEARN_INSTALLED, is_integer_dtype) if _SKLEARN_INSTALLED: import sklearn.preprocessing as pp _keep_col_classes = [pp.Binarizer, pp.FunctionTransformer, pp.Imputer, pp.KernelCenterer, pp.LabelEncoder, pp.MaxAbsScaler, pp.MinMaxScaler, pp.Normalizer, pp.RobustScaler, pp.StandardScaler] else: _keep_col_classes = [] class PreprocessingMethods(_AccessorMethods): """ Accessor to ``sklearn.preprocessing``. """ _module_name = 'sklearn.preprocessing' def _keep_existing_columns(self, estimator): """ Check whether estimator should preserve existing column names """ return estimator.__class__ in _keep_col_classes def add_dummy_feature(self, value=1.0): """ Call ``sklearn.preprocessing.add_dummy_feature`` using automatic mapping. - ``X``: ``ModelFrame.data`` """ from pandas_ml.core.series import ModelSeries from pandas_ml.core.frame import ModelFrame func = self._module.add_dummy_feature if isinstance(self._df, ModelSeries): data = self._df.to_frame() constructor = ModelFrame else: data = self._data constructor = self._constructor result = func(data.values, value=value) result = constructor(result, index=data.index) columns = result.columns[:-len(data.columns)].append(data.columns) result.columns = columns return result _preprocessing_methods = ['binarize', 'normalize', 'scale'] def _wrap_func(func, func_name): def f(self, *args, **kwargs): from pandas_ml.core.frame import ModelFrame if isinstance(self._df, ModelFrame): values = self._data.values if is_integer_dtype(values): # integer raises an error in normalize values = values.astype(np.float) result = func(values, *args, **kwargs) result = self._constructor(result, index=self._data.index, columns=self._data.columns) else: # ModelSeries values = np.atleast_2d(self._df.values) if is_integer_dtype(values): values = values.astype(np.float) result = func(values, *args, **kwargs) result = self._constructor(result[0], index=self._df.index, name=self._df.name) return result f.__doc__ = ( """ Call ``%s`` using automatic mapping. - ``X``: ``ModelFrame.data`` """ % func_name) return f _attach_methods(PreprocessingMethods, _wrap_func, _preprocessing_methods)
bsd-3-clause
tridge/jsbsim
tests/TestAeroFuncOutput.py
3
1701
# TestAeroFuncOutput.py # # Check that the aerodynamics forces are consistent with the aerodynamics # functions output # # Copyright (c) 2016 Bertrand Coconnier # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, see <http://www.gnu.org/licenses/> # import pandas as pd from JSBSim_utils import JSBSimTestCase, RunTest, CreateFDM class TestAeroFuncOutput(JSBSimTestCase): def testDragFunctions(self): fdm = CreateFDM(self.sandbox) self.script_path = self.sandbox.path_to_jsbsim_file('scripts', 'x153.xml') fdm.load_script(self.script_path) fdm.set_output_directive(self.sandbox.path_to_jsbsim_file('tests', 'output.xml')) fdm.run_ic() while fdm.run(): pass results = pd.read_csv('output.csv', index_col=0) Fdrag = results['F_{Drag} (lbs)'] CDmin = results['aero/coefficient/CDmin'] CDi = results['aero/coefficient/CDi'] self.assertAlmostEqual(abs(Fdrag/(CDmin+CDi)).max(), 1.0, delta=1E-5) RunTest(TestAeroFuncOutput)
lgpl-2.1
edgarcosta92/ns3-dev
scripts/thomas/parse_size.py
1
1465
import csv import numpy as np import matplotlib.pyplot as plt import random #Here we will merge, parse, and filter netflow data. file_format = {"packets":0, "duration": 1, "bytes": 2} BytesThreshold = 80; class MergeAndParse(object): def __init__(self): pass def load_file(self, file_name): lines = [] with open(file_name, 'rb') as f: for line in f: flow = line.split() #accept flow. if int(flow[2])/int(flow[0]) > BytesThreshold: lines.append(flow) return lines def merge_files(self, fileA, fileB): #load files parsedA = self.load_file(fileA) parsedB = self.load_file(fileB) # shuffle data sets random.shuffle(parsedA) random.shuffle(parsedB) #get minimum size so we only take MIN ELEMENTS from both sets min_size = min(len(parsedA), len(parsedB)) data_set = parsedA[:min_size] + parsedB[:min_size] #shuffle again random.shuffle(data_set) return data_set def run(self, fileA, fileB, fileOut): data_set = self.merge_files(fileA, fileB) with open(fileOut, "w") as f: for data_point in data_set: f.write(" ".join(data_point) + "\n") a = MergeAndParse() a.run("../../swift_datasets/netflowA.flows", "../../swift_datasets/netflowB.flows", "../../swift_datasets/netflow.flows")
gpl-2.0
hrjn/scikit-learn
examples/covariance/plot_sparse_cov.py
29
5079
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores_, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
markneville/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_ps.py
69
50262
""" A PostScript backend, which can produce both PostScript .ps and .eps """ from __future__ import division import glob, math, os, shutil, sys, time def _fn_name(): return sys._getframe(1).f_code.co_name try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 from tempfile import gettempdir from cStringIO import StringIO from matplotlib import verbose, __version__, rcParams from matplotlib._pylab_helpers import Gcf from matplotlib.afm import AFM from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like, get_realpath_and_stat, \ is_writable_file_like, maxdict from matplotlib.mlab import quad2cubic from matplotlib.figure import Figure from matplotlib.font_manager import findfont, is_opentype_cff_font from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.ttconv import convert_ttf_to_ps from matplotlib.mathtext import MathTextParser from matplotlib._mathtext_data import uni2type1 from matplotlib.text import Text from matplotlib.path import Path from matplotlib.transforms import IdentityTransform import numpy as npy import binascii import re try: set except NameError: from sets import Set as set if sys.platform.startswith('win'): cmd_split = '&' else: cmd_split = ';' backend_version = 'Level II' debugPS = 0 papersize = {'letter': (8.5,11), 'legal': (8.5,14), 'ledger': (11,17), 'a0': (33.11,46.81), 'a1': (23.39,33.11), 'a2': (16.54,23.39), 'a3': (11.69,16.54), 'a4': (8.27,11.69), 'a5': (5.83,8.27), 'a6': (4.13,5.83), 'a7': (2.91,4.13), 'a8': (2.07,2.91), 'a9': (1.457,2.05), 'a10': (1.02,1.457), 'b0': (40.55,57.32), 'b1': (28.66,40.55), 'b2': (20.27,28.66), 'b3': (14.33,20.27), 'b4': (10.11,14.33), 'b5': (7.16,10.11), 'b6': (5.04,7.16), 'b7': (3.58,5.04), 'b8': (2.51,3.58), 'b9': (1.76,2.51), 'b10': (1.26,1.76)} def _get_papertype(w, h): keys = papersize.keys() keys.sort() keys.reverse() for key in keys: if key.startswith('l'): continue pw, ph = papersize[key] if (w < pw) and (h < ph): return key else: return 'a0' def _num_to_str(val): if is_string_like(val): return val ival = int(val) if val==ival: return str(ival) s = "%1.3f"%val s = s.rstrip("0") s = s.rstrip(".") return s def _nums_to_str(*args): return ' '.join(map(_num_to_str,args)) def quote_ps_string(s): "Quote dangerous characters of S for use in a PostScript string constant." s=s.replace("\\", "\\\\") s=s.replace("(", "\\(") s=s.replace(")", "\\)") s=s.replace("'", "\\251") s=s.replace("`", "\\301") s=re.sub(r"[^ -~\n]", lambda x: r"\%03o"%ord(x.group()), s) return s def seq_allequal(seq1, seq2): """ seq1 and seq2 are either None or sequences or numerix arrays Return True if both are None or both are seqs with identical elements """ if seq1 is None: return seq2 is None if seq2 is None: return False #ok, neither are None:, assuming iterable if len(seq1) != len(seq2): return False return npy.alltrue(npy.equal(seq1, seq2)) class RendererPS(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles. """ fontd = maxdict(50) afmfontd = maxdict(50) def __init__(self, width, height, pswriter, imagedpi=72): """ Although postscript itself is dpi independent, we need to imform the image code about a requested dpi to generate high res images and them scale them before embeddin them """ RendererBase.__init__(self) self.width = width self.height = height self._pswriter = pswriter if rcParams['text.usetex']: self.textcnt = 0 self.psfrag = [] self.imagedpi = imagedpi if rcParams['path.simplify']: self.simplify = (width * imagedpi, height * imagedpi) else: self.simplify = None # current renderer state (None=uninitialised) self.color = None self.linewidth = None self.linejoin = None self.linecap = None self.linedash = None self.fontname = None self.fontsize = None self.hatch = None self.image_magnification = imagedpi/72.0 self._clip_paths = {} self._path_collection_id = 0 self.used_characters = {} self.mathtext_parser = MathTextParser("PS") def track_characters(self, font, s): """Keeps track of which characters are required from each font.""" realpath, stat_key = get_realpath_and_stat(font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update([ord(x) for x in s]) def merge_used_characters(self, other): for stat_key, (realpath, charset) in other.items(): used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(charset) def set_color(self, r, g, b, store=1): if (r,g,b) != self.color: if r==g and r==b: self._pswriter.write("%1.3f setgray\n"%r) else: self._pswriter.write("%1.3f %1.3f %1.3f setrgbcolor\n"%(r,g,b)) if store: self.color = (r,g,b) def set_linewidth(self, linewidth, store=1): if linewidth != self.linewidth: self._pswriter.write("%1.3f setlinewidth\n"%linewidth) if store: self.linewidth = linewidth def set_linejoin(self, linejoin, store=1): if linejoin != self.linejoin: self._pswriter.write("%d setlinejoin\n"%linejoin) if store: self.linejoin = linejoin def set_linecap(self, linecap, store=1): if linecap != self.linecap: self._pswriter.write("%d setlinecap\n"%linecap) if store: self.linecap = linecap def set_linedash(self, offset, seq, store=1): if self.linedash is not None: oldo, oldseq = self.linedash if seq_allequal(seq, oldseq): return if seq is not None and len(seq): s="[%s] %d setdash\n"%(_nums_to_str(*seq), offset) self._pswriter.write(s) else: self._pswriter.write("[] 0 setdash\n") if store: self.linedash = (offset,seq) def set_font(self, fontname, fontsize, store=1): if rcParams['ps.useafm']: return if (fontname,fontsize) != (self.fontname,self.fontsize): out = ("/%s findfont\n" "%1.3f scalefont\n" "setfont\n" % (fontname,fontsize)) self._pswriter.write(out) if store: self.fontname = fontname if store: self.fontsize = fontsize def set_hatch(self, hatch): """ hatch can be one of: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed X - crossed diagonal letters can be combined, in which case all the specified hatchings are done if same letter repeats, it increases the density of hatching in that direction """ hatches = {'horiz':0, 'vert':0, 'diag1':0, 'diag2':0} for letter in hatch: if (letter == '/'): hatches['diag2'] += 1 elif (letter == '\\'): hatches['diag1'] += 1 elif (letter == '|'): hatches['vert'] += 1 elif (letter == '-'): hatches['horiz'] += 1 elif (letter == '+'): hatches['horiz'] += 1 hatches['vert'] += 1 elif (letter.lower() == 'x'): hatches['diag1'] += 1 hatches['diag2'] += 1 def do_hatch(angle, density): if (density == 0): return "" return """\ gsave eoclip %s rotate 0.0 0.0 0.0 0.0 setrgbcolor 0 setlinewidth /hatchgap %d def pathbbox /hatchb exch def /hatchr exch def /hatcht exch def /hatchl exch def hatchl cvi hatchgap idiv hatchgap mul hatchgap hatchr cvi hatchgap idiv hatchgap mul {hatcht m 0 hatchb hatcht sub r } for stroke grestore """ % (angle, 12/density) self._pswriter.write("gsave\n") self._pswriter.write(do_hatch(90, hatches['horiz'])) self._pswriter.write(do_hatch(0, hatches['vert'])) self._pswriter.write(do_hatch(45, hatches['diag1'])) self._pswriter.write(do_hatch(-45, hatches['diag2'])) self._pswriter.write("grestore\n") def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop """ if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() l,b,r,t = texmanager.get_ps_bbox(s, fontsize) w = (r-l) h = (t-b) # TODO: We need a way to get a good baseline from # text.usetex return w, h, 0 if ismath: width, height, descent, pswriter, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width, height, descent if rcParams['ps.useafm']: if ismath: s = s[1:-1] font = self._get_font_afm(prop) l,b,w,h,d = font.get_str_bbox_and_descent(s) fontsize = prop.get_size_in_points() scale = 0.001*fontsize w *= scale h *= scale d *= scale return w, h, d font = self._get_font_ttf(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 #print s, w, h return w, h, d def flipy(self): 'return true if small y numbers are top for renderer' return False def _get_font_afm(self, prop): key = hash(prop) font = self.afmfontd.get(key) if font is None: fname = findfont(prop, fontext='afm') font = self.afmfontd.get(fname) if font is None: font = AFM(file(findfont(prop, fontext='afm'))) self.afmfontd[fname] = font self.afmfontd[key] = font return font def _get_font_ttf(self, prop): key = hash(prop) font = self.fontd.get(key) if font is None: fname = findfont(prop) font = self.fontd.get(fname) if font is None: font = FT2Font(str(fname)) self.fontd[fname] = font self.fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, 72.0) return font def _rgba(self, im): return im.as_rgba_str() def _rgb(self, im): h,w,s = im.as_rgba_str() rgba = npy.fromstring(s, npy.uint8) rgba.shape = (h, w, 4) rgb = rgba[:,:,:3] return h, w, rgb.tostring() def _gray(self, im, rc=0.3, gc=0.59, bc=0.11): rgbat = im.as_rgba_str() rgba = npy.fromstring(rgbat[2], npy.uint8) rgba.shape = (rgbat[0], rgbat[1], 4) rgba_f = rgba.astype(npy.float32) r = rgba_f[:,:,0] g = rgba_f[:,:,1] b = rgba_f[:,:,2] gray = (r*rc + g*gc + b*bc).astype(npy.uint8) return rgbat[0], rgbat[1], gray.tostring() def _hex_lines(self, s, chars_per_line=128): s = binascii.b2a_hex(s) nhex = len(s) lines = [] for i in range(0,nhex,chars_per_line): limit = min(i+chars_per_line, nhex) lines.append(s[i:limit]) return lines def get_image_magnification(self): """ Get the factor by which to magnify images passed to draw_image. Allows a backend to have images at a different resolution to other artists. """ return self.image_magnification def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the Image instance into the current axes; x is the distance in pixels from the left hand side of the canvas and y is the distance from bottom bbox is a matplotlib.transforms.BBox instance for clipping, or None """ im.flipud_out() if im.is_grayscale: h, w, bits = self._gray(im) imagecmd = "image" else: h, w, bits = self._rgb(im) imagecmd = "false 3 colorimage" hexlines = '\n'.join(self._hex_lines(bits)) xscale, yscale = ( w/self.image_magnification, h/self.image_magnification) figh = self.height*72 #print 'values', origin, flipud, figh, h, y clip = [] if bbox is not None: clipx,clipy,clipw,cliph = bbox.bounds clip.append('%s clipbox' % _nums_to_str(clipw, cliph, clipx, clipy)) if clippath is not None: id = self._get_clip_path(clippath, clippath_trans) clip.append('%s' % id) clip = '\n'.join(clip) #y = figh-(y+h) ps = """gsave %(clip)s %(x)s %(y)s translate %(xscale)s %(yscale)s scale /DataString %(w)s string def %(w)s %(h)s 8 [ %(w)s 0 0 -%(h)s 0 %(h)s ] { currentfile DataString readhexstring pop } bind %(imagecmd)s %(hexlines)s grestore """ % locals() self._pswriter.write(ps) # unflip im.flipud_out() def _convert_path(self, path, transform, simplify=None): path = transform.transform_path(path) ps = [] last_points = None for points, code in path.iter_segments(simplify): if code == Path.MOVETO: ps.append("%g %g m" % tuple(points)) elif code == Path.LINETO: ps.append("%g %g l" % tuple(points)) elif code == Path.CURVE3: points = quad2cubic(*(list(last_points[-2:]) + list(points))) ps.append("%g %g %g %g %g %g c" % tuple(points[2:])) elif code == Path.CURVE4: ps.append("%g %g %g %g %g %g c" % tuple(points)) elif code == Path.CLOSEPOLY: ps.append("cl") last_points = points ps = "\n".join(ps) return ps def _get_clip_path(self, clippath, clippath_transform): id = self._clip_paths.get((clippath, clippath_transform)) if id is None: id = 'c%x' % len(self._clip_paths) ps_cmd = ['/%s {' % id] ps_cmd.append(self._convert_path(clippath, clippath_transform)) ps_cmd.extend(['clip', 'newpath', '} bind def\n']) self._pswriter.write('\n'.join(ps_cmd)) self._clip_paths[(clippath, clippath_transform)] = id return id def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a Path instance using the given affine transform. """ ps = self._convert_path(path, transform, self.simplify) self._draw_ps(ps, gc, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draw the markers defined by path at each of the positions in x and y. path coordinates are points, x and y coords will be transformed by the transform """ if debugPS: self._pswriter.write('% draw_markers \n') write = self._pswriter.write if rgbFace: if rgbFace[0]==rgbFace[1] and rgbFace[0]==rgbFace[2]: ps_color = '%1.3f setgray' % rgbFace[0] else: ps_color = '%1.3f %1.3f %1.3f setrgbcolor' % rgbFace # construct the generic marker command: ps_cmd = ['/o {', 'gsave', 'newpath', 'translate'] # dont want the translate to be global ps_cmd.append(self._convert_path(marker_path, marker_trans)) if rgbFace: ps_cmd.extend(['gsave', ps_color, 'fill', 'grestore']) ps_cmd.extend(['stroke', 'grestore', '} bind def']) tpath = trans.transform_path(path) for vertices, code in tpath.iter_segments(): if len(vertices): x, y = vertices[-2:] ps_cmd.append("%g %g o" % (x, y)) ps = '\n'.join(ps_cmd) self._draw_ps(ps, gc, rgbFace, fill=False, stroke=False) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): write = self._pswriter.write path_codes = [] for i, (path, transform) in enumerate(self._iter_collection_raw_paths( master_transform, paths, all_transforms)): name = 'p%x_%x' % (self._path_collection_id, i) ps_cmd = ['/%s {' % name, 'newpath', 'translate'] ps_cmd.append(self._convert_path(path, transform)) ps_cmd.extend(['} bind def\n']) write('\n'.join(ps_cmd)) path_codes.append(name) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_codes, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): ps = "%g %g %s" % (xo, yo, path_id) self._draw_ps(ps, gc, rgbFace) self._path_collection_id += 1 def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): """ draw a Text instance """ w, h, bl = self.get_text_width_height_descent(s, prop, ismath) fontsize = prop.get_size_in_points() corr = 0#w/2*(fontsize-10)/10 pos = _nums_to_str(x-corr, y) thetext = 'psmarker%d' % self.textcnt color = '%1.3f,%1.3f,%1.3f'% gc.get_rgb()[:3] fontcmd = {'sans-serif' : r'{\sffamily %s}', 'monospace' : r'{\ttfamily %s}'}.get( rcParams['font.family'], r'{\rmfamily %s}') s = fontcmd % s tex = r'\color[rgb]{%s} %s' % (color, s) self.psfrag.append(r'\psfrag{%s}[bl][bl][1][%f]{\fontsize{%f}{%f}%s}'%(thetext, angle, fontsize, fontsize*1.25, tex)) ps = """\ gsave %(pos)s moveto (%(thetext)s) show grestore """ % locals() self._pswriter.write(ps) self.textcnt += 1 def draw_text(self, gc, x, y, s, prop, angle, ismath): """ draw a Text instance """ # local to avoid repeated attribute lookups write = self._pswriter.write if debugPS: write("% text\n") if ismath=='TeX': return self.tex(gc, x, y, s, prop, angle) elif ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) elif isinstance(s, unicode): return self.draw_unicode(gc, x, y, s, prop, angle) elif rcParams['ps.useafm']: font = self._get_font_afm(prop) l,b,w,h = font.get_str_bbox(s) fontsize = prop.get_size_in_points() l *= 0.001*fontsize b *= 0.001*fontsize w *= 0.001*fontsize h *= 0.001*fontsize if angle==90: l,b = -b, l # todo generalize for arb rotations pos = _nums_to_str(x-l, y-b) thetext = '(%s)' % s fontname = font.get_fontname() fontsize = prop.get_size_in_points() rotate = '%1.1f rotate' % angle setcolor = '%1.3f %1.3f %1.3f setrgbcolor' % gc.get_rgb()[:3] #h = 0 ps = """\ gsave /%(fontname)s findfont %(fontsize)s scalefont setfont %(pos)s moveto %(rotate)s %(thetext)s %(setcolor)s show grestore """ % locals() self._draw_ps(ps, gc, None) else: font = self._get_font_ttf(prop) font.set_text(s, 0, flags=LOAD_NO_HINTING) self.track_characters(font, s) self.set_color(*gc.get_rgb()) self.set_font(font.get_sfnt()[(1,0,0,6)], prop.get_size_in_points()) write("%s m\n"%_nums_to_str(x,y)) if angle: write("gsave\n") write("%s rotate\n"%_num_to_str(angle)) descent = font.get_descent() / 64.0 if descent: write("0 %s rmoveto\n"%_num_to_str(descent)) write("(%s) show\n"%quote_ps_string(s)) if angle: write("grestore\n") def new_gc(self): return GraphicsContextPS() def draw_unicode(self, gc, x, y, s, prop, angle): """draw a unicode string. ps doesn't have unicode support, so we have to do this the hard way """ if rcParams['ps.useafm']: self.set_color(*gc.get_rgb()) font = self._get_font_afm(prop) fontname = font.get_fontname() fontsize = prop.get_size_in_points() scale = 0.001*fontsize thisx = 0 thisy = font.get_str_bbox_and_descent(s)[4] * scale last_name = None lines = [] for c in s: name = uni2type1.get(ord(c), 'question') try: width = font.get_width_from_char_name(name) except KeyError: name = 'question' width = font.get_width_char('?') if last_name is not None: kern = font.get_kern_dist_from_name(last_name, name) else: kern = 0 last_name = name thisx += kern * scale lines.append('%f %f m /%s glyphshow'%(thisx, thisy, name)) thisx += width * scale thetext = "\n".join(lines) ps = """\ gsave /%(fontname)s findfont %(fontsize)s scalefont setfont %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) else: font = self._get_font_ttf(prop) font.set_text(s, 0, flags=LOAD_NO_HINTING) self.track_characters(font, s) self.set_color(*gc.get_rgb()) self.set_font(font.get_sfnt()[(1,0,0,6)], prop.get_size_in_points()) cmap = font.get_charmap() lastgind = None #print 'text', s lines = [] thisx = 0 thisy = font.get_descent() / 64.0 for c in s: ccode = ord(c) gind = cmap.get(ccode) if gind is None: ccode = ord('?') name = '.notdef' gind = 0 else: name = font.get_glyph_name(gind) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 lastgind = gind thisx += kern/64.0 lines.append('%f %f m /%s glyphshow'%(thisx, thisy, name)) thisx += glyph.linearHoriAdvance/65536.0 thetext = '\n'.join(lines) ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ if debugPS: self._pswriter.write("% mathtext\n") width, height, descent, pswriter, used_characters = \ self.mathtext_parser.parse(s, 72, prop) self.merge_used_characters(used_characters) self.set_color(*gc.get_rgb()) thetext = pswriter.getvalue() ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def _draw_ps(self, ps, gc, rgbFace, fill=True, stroke=True, command=None): """ Emit the PostScript sniplet 'ps' with all the attributes from 'gc' applied. 'ps' must consist of PostScript commands to construct a path. The fill and/or stroke kwargs can be set to False if the 'ps' string already includes filling and/or stroking, in which case _draw_ps is just supplying properties and clipping. """ # local variable eliminates all repeated attribute lookups write = self._pswriter.write if debugPS and command: write("% "+command+"\n") mightstroke = (gc.get_linewidth() > 0.0 and (len(gc.get_rgb()) <= 3 or gc.get_rgb()[3] != 0.0)) stroke = stroke and mightstroke fill = (fill and rgbFace is not None and (len(rgbFace) <= 3 or rgbFace[3] != 0.0)) if mightstroke: self.set_linewidth(gc.get_linewidth()) jint = gc.get_joinstyle() self.set_linejoin(jint) cint = gc.get_capstyle() self.set_linecap(cint) self.set_linedash(*gc.get_dashes()) self.set_color(*gc.get_rgb()[:3]) write('gsave\n') cliprect = gc.get_clip_rectangle() if cliprect: x,y,w,h=cliprect.bounds write('%1.4g %1.4g %1.4g %1.4g clipbox\n' % (w,h,x,y)) clippath, clippath_trans = gc.get_clip_path() if clippath: id = self._get_clip_path(clippath, clippath_trans) write('%s\n' % id) # Jochen, is the strip necessary? - this could be a honking big string write(ps.strip()) write("\n") if fill: if stroke: write("gsave\n") self.set_color(store=0, *rgbFace[:3]) write("fill\ngrestore\n") else: self.set_color(store=0, *rgbFace[:3]) write("fill\n") hatch = gc.get_hatch() if hatch: self.set_hatch(hatch) if stroke: write("stroke\n") write("grestore\n") class GraphicsContextPS(GraphicsContextBase): def get_capstyle(self): return {'butt':0, 'round':1, 'projecting':2}[GraphicsContextBase.get_capstyle(self)] def get_joinstyle(self): return {'miter':0, 'round':1, 'bevel':2}[GraphicsContextBase.get_joinstyle(self)] def new_figure_manager(num, *args, **kwargs): FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasPS(thisFig) manager = FigureManagerPS(canvas, num) return manager class FigureCanvasPS(FigureCanvasBase): def draw(self): pass filetypes = {'ps' : 'Postscript', 'eps' : 'Encapsulated Postscript'} def get_default_filetype(self): return 'ps' def print_ps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'ps', *args, **kwargs) def print_eps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'eps', *args, **kwargs) def _print_ps(self, outfile, format, *args, **kwargs): papertype = kwargs.get("papertype", rcParams['ps.papersize']) papertype = papertype.lower() if papertype == 'auto': pass elif papertype not in papersize: raise RuntimeError( '%s is not a valid papertype. Use one \ of %s'% (papertype, ', '.join( papersize.keys() )) ) orientation = kwargs.get("orientation", "portrait").lower() if orientation == 'landscape': isLandscape = True elif orientation == 'portrait': isLandscape = False else: raise RuntimeError('Orientation must be "portrait" or "landscape"') self.figure.set_dpi(72) # Override the dpi kwarg imagedpi = kwargs.get("dpi", 72) facecolor = kwargs.get("facecolor", "w") edgecolor = kwargs.get("edgecolor", "w") if rcParams['text.usetex']: self._print_figure_tex(outfile, format, imagedpi, facecolor, edgecolor, orientation, isLandscape, papertype) else: self._print_figure(outfile, format, imagedpi, facecolor, edgecolor, orientation, isLandscape, papertype) def _print_figure(self, outfile, format, dpi=72, facecolor='w', edgecolor='w', orientation='portrait', isLandscape=False, papertype=None): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy If outfile is a string, it is interpreted as a file name. If the extension matches .ep* write encapsulated postscript, otherwise write a stand-alone PostScript file. If outfile is a file object, a stand-alone PostScript file is written into this file object. """ isEPSF = format == 'eps' passed_in_file_object = False if is_string_like(outfile): title = outfile tmpfile = os.path.join(gettempdir(), md5(outfile).hexdigest()) elif is_writable_file_like(outfile): title = None tmpfile = os.path.join(gettempdir(), md5(str(hash(outfile))).hexdigest()) passed_in_file_object = True else: raise ValueError("outfile must be a path or a file-like object") fh = file(tmpfile, 'w') # find the appropriate papertype width, height = self.figure.get_size_inches() if papertype == 'auto': if isLandscape: papertype = _get_papertype(height, width) else: papertype = _get_papertype(width, height) if isLandscape: paperHeight, paperWidth = papersize[papertype] else: paperWidth, paperHeight = papersize[papertype] if rcParams['ps.usedistiller'] and not papertype == 'auto': # distillers will improperly clip eps files if the pagesize is # too small if width>paperWidth or height>paperHeight: if isLandscape: papertype = _get_papertype(height, width) paperHeight, paperWidth = papersize[papertype] else: papertype = _get_papertype(width, height) paperWidth, paperHeight = papersize[papertype] # center the figure on the paper xo = 72*0.5*(paperWidth - width) yo = 72*0.5*(paperHeight - height) l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h rotation = 0 if isLandscape: llx, lly, urx, ury = lly, llx, ury, urx xo, yo = 72*paperHeight - yo, xo rotation = 90 bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) self._pswriter = StringIO() renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) self.figure.draw(renderer) self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # write the PostScript headers if isEPSF: print >>fh, "%!PS-Adobe-3.0 EPSF-3.0" else: print >>fh, "%!PS-Adobe-3.0" if title: print >>fh, "%%Title: "+title print >>fh, ("%%Creator: matplotlib version " +__version__+", http://matplotlib.sourceforge.net/") print >>fh, "%%CreationDate: "+time.ctime(time.time()) print >>fh, "%%Orientation: " + orientation if not isEPSF: print >>fh, "%%DocumentPaperSizes: "+papertype print >>fh, "%%%%BoundingBox: %d %d %d %d" % bbox if not isEPSF: print >>fh, "%%Pages: 1" print >>fh, "%%EndComments" Ndict = len(psDefs) print >>fh, "%%BeginProlog" if not rcParams['ps.useafm']: Ndict += len(renderer.used_characters) print >>fh, "/mpldict %d dict def"%Ndict print >>fh, "mpldict begin" for d in psDefs: d=d.strip() for l in d.split('\n'): print >>fh, l.strip() if not rcParams['ps.useafm']: for font_filename, chars in renderer.used_characters.values(): if len(chars): font = FT2Font(font_filename) cmap = font.get_charmap() glyph_ids = [] for c in chars: gind = cmap.get(c) or 0 glyph_ids.append(gind) # The ttf to ps (subsetting) support doesn't work for # OpenType fonts that are Postscript inside (like the # STIX fonts). This will simply turn that off to avoid # errors. if is_opentype_cff_font(font_filename): raise RuntimeError("OpenType CFF fonts can not be saved using the internal Postscript backend at this time.\nConsider using the Cairo backend.") else: fonttype = rcParams['ps.fonttype'] convert_ttf_to_ps(font_filename, fh, rcParams['ps.fonttype'], glyph_ids) print >>fh, "end" print >>fh, "%%EndProlog" if not isEPSF: print >>fh, "%%Page: 1 1" print >>fh, "mpldict begin" #print >>fh, "gsave" print >>fh, "%s translate"%_nums_to_str(xo, yo) if rotation: print >>fh, "%d rotate"%rotation print >>fh, "%s clipbox"%_nums_to_str(width*72, height*72, 0, 0) # write the figure print >>fh, self._pswriter.getvalue() # write the trailer #print >>fh, "grestore" print >>fh, "end" print >>fh, "showpage" if not isEPSF: print >>fh, "%%EOF" fh.close() if rcParams['ps.usedistiller'] == 'ghostscript': gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) if passed_in_file_object: fh = file(tmpfile) print >>outfile, fh.read() else: shutil.move(tmpfile, outfile) def _print_figure_tex(self, outfile, format, dpi, facecolor, edgecolor, orientation, isLandscape, papertype): """ If text.usetex is True in rc, a temporary pair of tex/eps files are created to allow tex to manage the text layout via the PSFrags package. These files are processed to yield the final ps or eps file. """ isEPSF = format == 'eps' title = outfile # write to a temp file, we'll move it to outfile when done tmpfile = os.path.join(gettempdir(), md5(outfile).hexdigest()) fh = file(tmpfile, 'w') self.figure.dpi = 72 # ignore the dpi kwarg width, height = self.figure.get_size_inches() xo = 0 yo = 0 l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) self._pswriter = StringIO() renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) self.figure.draw(renderer) self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # write the Encapsulated PostScript headers print >>fh, "%!PS-Adobe-3.0 EPSF-3.0" if title: print >>fh, "%%Title: "+title print >>fh, ("%%Creator: matplotlib version " +__version__+", http://matplotlib.sourceforge.net/") print >>fh, "%%CreationDate: "+time.ctime(time.time()) print >>fh, "%%%%BoundingBox: %d %d %d %d" % bbox print >>fh, "%%EndComments" Ndict = len(psDefs) print >>fh, "%%BeginProlog" print >>fh, "/mpldict %d dict def"%Ndict print >>fh, "mpldict begin" for d in psDefs: d=d.strip() for l in d.split('\n'): print >>fh, l.strip() print >>fh, "end" print >>fh, "%%EndProlog" print >>fh, "mpldict begin" #print >>fh, "gsave" print >>fh, "%s translate"%_nums_to_str(xo, yo) print >>fh, "%s clipbox"%_nums_to_str(width*72, height*72, 0, 0) # write the figure print >>fh, self._pswriter.getvalue() # write the trailer #print >>fh, "grestore" print >>fh, "end" print >>fh, "showpage" fh.close() if isLandscape: # now we are ready to rotate isLandscape = True width, height = height, width bbox = (lly, llx, ury, urx) temp_papertype = _get_papertype(width, height) if papertype=='auto': papertype = temp_papertype paperWidth, paperHeight = papersize[temp_papertype] else: paperWidth, paperHeight = papersize[papertype] if (width>paperWidth or height>paperHeight) and isEPSF: paperWidth, paperHeight = papersize[temp_papertype] verbose.report('Your figure is too big to fit on %s paper. %s \ paper will be used to prevent clipping.'%(papertype, temp_papertype), 'helpful') texmanager = renderer.get_texmanager() font_preamble = texmanager.get_font_preamble() custom_preamble = texmanager.get_custom_preamble() convert_psfrags(tmpfile, renderer.psfrag, font_preamble, custom_preamble, paperWidth, paperHeight, orientation) if rcParams['ps.usedistiller'] == 'ghostscript': gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['text.usetex']: if False: pass # for debugging else: gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) if isinstance(outfile, file): fh = file(tmpfile) print >>outfile, fh.read() else: shutil.move(tmpfile, outfile) def convert_psfrags(tmpfile, psfrags, font_preamble, custom_preamble, paperWidth, paperHeight, orientation): """ When we want to use the LaTeX backend with postscript, we write PSFrag tags to a temporary postscript file, each one marking a position for LaTeX to render some text. convert_psfrags generates a LaTeX document containing the commands to convert those tags to text. LaTeX/dvips produces the postscript file that includes the actual text. """ tmpdir = os.path.split(tmpfile)[0] epsfile = tmpfile+'.eps' shutil.move(tmpfile, epsfile) latexfile = tmpfile+'.tex' outfile = tmpfile+'.output' latexh = file(latexfile, 'w') dvifile = tmpfile+'.dvi' psfile = tmpfile+'.ps' if orientation=='landscape': angle = 90 else: angle = 0 if rcParams['text.latex.unicode']: unicode_preamble = """\usepackage{ucs} \usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = r"""\documentclass{article} %s %s %s \usepackage[dvips, papersize={%sin,%sin}, body={%sin,%sin}, margin={0in,0in}]{geometry} \usepackage{psfrag} \usepackage[dvips]{graphicx} \usepackage{color} \pagestyle{empty} \begin{document} \begin{figure} \centering \leavevmode %s \includegraphics*[angle=%s]{%s} \end{figure} \end{document} """% (font_preamble, unicode_preamble, custom_preamble, paperWidth, paperHeight, paperWidth, paperHeight, '\n'.join(psfrags), angle, os.path.split(epsfile)[-1]) if rcParams['text.latex.unicode']: latexh.write(s.encode('utf8')) else: try: latexh.write(s) except UnicodeEncodeError, err: verbose.report("You are using unicode and latex, but have " "not enabled the matplotlib 'text.latex.unicode' " "rcParam.", 'helpful') raise latexh.close() # the split drive part of the command is necessary for windows users with # multiple if sys.platform == 'win32': precmd = '%s &&'% os.path.splitdrive(tmpdir)[0] else: precmd = '' command = '%s cd "%s" && latex -interaction=nonstopmode "%s" > "%s"'\ %(precmd, tmpdir, latexfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('LaTeX was not able to process your file:\ \nHere is the full report generated by LaTeX: \n\n%s'% fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) command = '%s cd "%s" && dvips -q -R0 -o "%s" "%s" > "%s"'%(precmd, tmpdir, os.path.split(psfile)[-1], os.path.split(dvifile)[-1], outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('dvips was not able to \ process the following file:\n%s\nHere is the full report generated by dvips: \ \n\n'% dvifile + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(epsfile) shutil.move(psfile, tmpfile) if not debugPS: for fname in glob.glob(tmpfile+'.*'): os.remove(fname) def gs_distill(tmpfile, eps=False, ptype='letter', bbox=None): """ Use ghostscript's pswrite or epswrite device to distill a file. This yields smaller files without illegal encapsulated postscript operators. The output is low-level, converting text to outlines. """ paper = '-sPAPERSIZE=%s'% ptype psfile = tmpfile + '.ps' outfile = tmpfile + '.output' dpi = rcParams['ps.distiller.res'] if sys.platform == 'win32': gs_exe = 'gswin32c' else: gs_exe = 'gs' command = '%s -dBATCH -dNOPAUSE -r%d -sDEVICE=pswrite %s -sOutputFile="%s" \ "%s" > "%s"'% (gs_exe, dpi, paper, psfile, tmpfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('ghostscript was not able to process \ your image.\nHere is the full report generated by ghostscript:\n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(tmpfile) shutil.move(psfile, tmpfile) if eps: pstoeps(tmpfile, bbox) def xpdf_distill(tmpfile, eps=False, ptype='letter', bbox=None): """ Use ghostscript's ps2pdf and xpdf's/poppler's pdftops to distill a file. This yields smaller files without illegal encapsulated postscript operators. This distiller is preferred, generating high-level postscript output that treats text as text. """ pdffile = tmpfile + '.pdf' psfile = tmpfile + '.ps' outfile = tmpfile + '.output' command = 'ps2pdf -dAutoFilterColorImages=false \ -sColorImageFilter=FlateEncode -sPAPERSIZE=%s "%s" "%s" > "%s"'% \ (ptype, tmpfile, pdffile, outfile) if sys.platform == 'win32': command = command.replace('=', '#') verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('ps2pdf was not able to process your \ image.\n\Here is the report generated by ghostscript:\n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) command = 'pdftops -paper match -level2 "%s" "%s" > "%s"'% \ (pdffile, psfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('pdftops was not able to process your \ image.\nHere is the full report generated by pdftops: \n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(tmpfile) shutil.move(psfile, tmpfile) if eps: pstoeps(tmpfile, bbox) for fname in glob.glob(tmpfile+'.*'): os.remove(fname) def get_bbox(tmpfile, bbox): """ Use ghostscript's bbox device to find the center of the bounding box. Return an appropriately sized bbox centered around that point. A bit of a hack. """ outfile = tmpfile + '.output' if sys.platform == 'win32': gs_exe = 'gswin32c' else: gs_exe = 'gs' command = '%s -dBATCH -dNOPAUSE -sDEVICE=bbox "%s"' %\ (gs_exe, tmpfile) verbose.report(command, 'debug') stdin, stdout, stderr = os.popen3(command) verbose.report(stdout.read(), 'debug-annoying') bbox_info = stderr.read() verbose.report(bbox_info, 'helpful') bbox_found = re.search('%%HiResBoundingBox: .*', bbox_info) if bbox_found: bbox_info = bbox_found.group() else: raise RuntimeError('Ghostscript was not able to extract a bounding box.\ Here is the Ghostscript output:\n\n%s'% bbox_info) l, b, r, t = [float(i) for i in bbox_info.split()[-4:]] # this is a hack to deal with the fact that ghostscript does not return the # intended bbox, but a tight bbox. For now, we just center the ink in the # intended bbox. This is not ideal, users may intend the ink to not be # centered. if bbox is None: l, b, r, t = (l-1, b-1, r+1, t+1) else: x = (l+r)/2 y = (b+t)/2 dx = (bbox[2]-bbox[0])/2 dy = (bbox[3]-bbox[1])/2 l,b,r,t = (x-dx, y-dy, x+dx, y+dy) bbox_info = '%%%%BoundingBox: %d %d %d %d' % (l, b, npy.ceil(r), npy.ceil(t)) hires_bbox_info = '%%%%HiResBoundingBox: %.6f %.6f %.6f %.6f' % (l, b, r, t) return '\n'.join([bbox_info, hires_bbox_info]) def pstoeps(tmpfile, bbox): """ Convert the postscript to encapsulated postscript. """ bbox_info = get_bbox(tmpfile, bbox) epsfile = tmpfile + '.eps' epsh = file(epsfile, 'w') tmph = file(tmpfile) line = tmph.readline() # Modify the header: while line: if line.startswith('%!PS'): print >>epsh, "%!PS-Adobe-3.0 EPSF-3.0" print >>epsh, bbox_info elif line.startswith('%%EndComments'): epsh.write(line) print >>epsh, '%%BeginProlog' print >>epsh, 'save' print >>epsh, 'countdictstack' print >>epsh, 'mark' print >>epsh, 'newpath' print >>epsh, '/showpage {} def' print >>epsh, '/setpagedevice {pop} def' print >>epsh, '%%EndProlog' print >>epsh, '%%Page 1 1' break elif line.startswith('%%Bound') \ or line.startswith('%%HiResBound') \ or line.startswith('%%Pages'): pass else: epsh.write(line) line = tmph.readline() # Now rewrite the rest of the file, and modify the trailer. # This is done in a second loop such that the header of the embedded # eps file is not modified. line = tmph.readline() while line: if line.startswith('%%Trailer'): print >>epsh, '%%Trailer' print >>epsh, 'cleartomark' print >>epsh, 'countdictstack' print >>epsh, 'exch sub { end } repeat' print >>epsh, 'restore' if rcParams['ps.usedistiller'] == 'xpdf': # remove extraneous "end" operator: line = tmph.readline() else: epsh.write(line) line = tmph.readline() tmph.close() epsh.close() os.remove(tmpfile) shutil.move(epsfile, tmpfile) class FigureManagerPS(FigureManagerBase): pass FigureManager = FigureManagerPS # The following Python dictionary psDefs contains the entries for the # PostScript dictionary mpldict. This dictionary implements most of # the matplotlib primitives and some abbreviations. # # References: # http://www.adobe.com/products/postscript/pdfs/PLRM.pdf # http://www.mactech.com/articles/mactech/Vol.09/09.04/PostscriptTutorial/ # http://www.math.ubc.ca/people/faculty/cass/graphics/text/www/ # # The usage comments use the notation of the operator summary # in the PostScript Language reference manual. psDefs = [ # x y *m* - "/m { moveto } bind def", # x y *l* - "/l { lineto } bind def", # x y *r* - "/r { rlineto } bind def", # x1 y1 x2 y2 x y *c* - "/c { curveto } bind def", # *closepath* - "/cl { closepath } bind def", # w h x y *box* - """/box { m 1 index 0 r 0 exch r neg 0 r cl } bind def""", # w h x y *clipbox* - """/clipbox { box clip newpath } bind def""", ]
agpl-3.0
louispotok/pandas
pandas/tests/test_base.py
2
46174
# -*- coding: utf-8 -*- from __future__ import print_function import re import sys from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.compat as compat from pandas.core.dtypes.common import ( is_object_dtype, is_datetimetz, is_datetime64_dtype, needs_i8_conversion) import pandas.util.testing as tm from pandas import (Series, Index, DatetimeIndex, TimedeltaIndex, PeriodIndex, Timedelta, IntervalIndex, Interval, CategoricalIndex, Timestamp) from pandas.compat import StringIO, PYPY, long from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.accessor import PandasDelegate from pandas.core.base import PandasObject, NoNewAttributesMixin from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin from pandas._libs.tslib import iNaT class CheckStringMixin(object): def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) if not compat.PY3: unicode(self.container) # noqa def test_tricky_container(self): if not hasattr(self, 'unicode_container'): pytest.skip('Need unicode_container to test with this') repr(self.unicode_container) str(self.unicode_container) bytes(self.unicode_container) if not compat.PY3: unicode(self.unicode_container) # noqa class CheckImmutable(object): mutable_regex = re.compile('does not support mutable operations') def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to assert_raises_regex # (after the Exception kind). tm.assert_raises_regex( TypeError, self.mutable_regex, *args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate(object): class Delegator(object): _properties = ['foo'] _methods = ['bar'] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ='property' ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ='method' ) delegate = self.Delegate(self.Delegator()) def f(): delegate.foo pytest.raises(TypeError, f) def f(): delegate.foo = 5 pytest.raises(TypeError, f) def f(): delegate.foo() pytest.raises(TypeError, f) @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops(object): def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and (obj.is_boolean() or not obj._can_hold_na)): # don't test boolean / int64 index return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None] def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series( getattr(o.index, op), index=o.index, name='a') else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these couuld be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance(expected, np.ndarray): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): pytest.raises(TypeError, lambda: getattr(o, op)) else: pytest.raises(AttributeError, lambda: getattr(o, op)) def test_binary_ops_docs(self): from pandas import DataFrame, Panel op_map = {'add': '+', 'sub': '-', 'mul': '*', 'mod': '%', 'pow': '**', 'truediv': '/', 'floordiv': '//'} for op_name in ['add', 'sub', 'mul', 'mod', 'pow', 'truediv', 'floordiv']: for klass in [Series, DataFrame, Panel]: operand1 = klass.__name__.lower() operand2 = 'other' op = op_map[op_name] expected_str = ' '.join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = ' '.join([operand2, op, operand1]) assert expected_str in getattr(klass, 'r' + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super(TestIndexOps, self).setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] # this fails for numpy < 1.9 # and oddly for *some* platforms # result = None != o # noqa # assert result.iat[0] # assert result.iat[1] if (is_datetime64_dtype(o) or is_datetimetz(o)): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ['shape', 'dtype', 'T', 'nbytes']: assert getattr(o, p, None) is not None # deprecated properties for p in ['flags', 'strides', 'itemsize']: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, 'base') # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_ops(self): for op in ['max', 'min']: for o in self.objs: result = getattr(o, op)() if not isinstance(o, PeriodIndex): expected = getattr(o.values, op)() else: expected = pd.Period( ordinal=getattr(o._ndarray_values, op)(), freq=o.freq) try: assert result == expected except TypeError: # comparing tz-aware series with np.array results in # TypeError expected = expected.astype('M8[ns]').astype('int64') assert result.value == expected def test_nanops(self): # GH 7261 for op in ['max', 'min']: for klass in [Index, Series]: obj = klass([np.nan, 2.0]) assert getattr(obj, op)() == 2.0 obj = klass([np.nan]) assert pd.isna(getattr(obj, op)()) obj = klass([]) assert pd.isna(getattr(obj, op)()) obj = klass([pd.NaT, datetime(2011, 11, 1)]) # check DatetimeIndex monotonic path assert getattr(obj, op)() == datetime(2011, 11, 1) obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT]) # check DatetimeIndex non-monotonic path assert getattr(obj, op)(), datetime(2011, 11, 1) # argmin/max obj = Index(np.arange(5, dtype='int64')) assert obj.argmin() == 0 assert obj.argmax() == 4 obj = Index([np.nan, 1, np.nan, 2]) assert obj.argmin() == 1 assert obj.argmax() == 3 obj = Index([np.nan]) assert obj.argmin() == -1 assert obj.argmax() == -1 obj = Index([pd.NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), pd.NaT]) assert obj.argmin() == 1 assert obj.argmax() == 2 obj = Index([pd.NaT]) assert obj.argmin() == -1 assert obj.argmax() == -1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = 'a' else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) rep = np.repeat(values, range(1, len(o) + 1)) o = klass(rep, index=idx, name='a') # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series(range(10, 0, -1), index=expected_index, dtype='int64', name='a') result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == 'a' result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) elif is_datetimetz(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal(result, orig._values.astype(object).values) else: tm.assert_numpy_array_equal(result, orig.values) assert o.nunique() == len(np.unique(o.values)) def test_value_counts_unique_nunique_null(self): for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetimetz(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = iNaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = 'a' else: if is_datetimetz(o): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = 'a' # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name='a') tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series(list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype='int64', name='a') expected_s = Series(list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype='int64', name='a') result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == 'a' result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == 'a' result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name='a')) elif is_datetimetz(o): # unable to compare NaT / nan vals = values[2:].astype(object).values tm.assert_numpy_array_equal(result[1:], vals) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 def test_value_counts_inferred(self): klasses = [Index, Series] for klass in klasses: s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a'] s = klass(s_values) expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list('acbd')).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list('cdab')) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([.4, .3, .2, .1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(hist, expected) def test_value_counts_bins(self): klasses = [Index, Series] for klass in klasses: s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a'] s = klass(s_values) # bins pytest.raises(TypeError, lambda bins: s.value_counts(bins=bins), 1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ['a', 'b', 'b', 'b', np.nan, np.nan, 'd', 'd', 'a', 'a', 'b'] s = klass(s_values) expected = Series([4, 3, 2], index=['b', 'a', 'd']) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(['a', 'b', np.nan, 'd']) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(['a', 'b', np.nan, 'd'], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize('klass', [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join(['xxyyzz20100101PIE', 'xxyyzz20100101GUM', 'xxyyzz20100101EGG', 'xxyyww20090101EGG', 'foofoo20080909PIE', 'foofoo20080909GUM']) f = StringIO(txt) df = pd.read_fwf(f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"]) s = klass(df['dt'].copy()) s.name = None idx = pd.to_datetime(['2010-01-01 00:00:00Z', '2008-09-09 00:00:00Z', '2009-01-01 00:00:00Z']) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat(['2010-01-01 00:00:00Z', '2009-01-01 00:00:00Z', '2008-09-09 00:00:00Z'], dtype='datetime64[ns]') if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df['dt'].copy() s = klass([v for v in s.values] + [pd.NaT]) result = s.value_counts() assert result.index.dtype == 'datetime64[ns]' tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == 'datetime64[ns]' # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name='dt') result = td.value_counts() expected_s = Series([6], index=[Timedelta('1day')], name='dt') tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(['1 days'], name='dt') if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name='dt') result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o labels, uniques = o.factorize() tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array([5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp) labels, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig).sort_values(), check_names=False) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) labels, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(labels, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name='a') tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep='last') tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep='last') tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with tm.assert_raises_regex( TypeError, r"drop_duplicates\(\) got an unexpected " "keyword argument"): idx.drop_duplicates(inplace=True) else: expected = Series([False] * len(original), index=original.index, name='a') tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name='a') expected = Series([False] * len(original) + [True, True], index=idx, name='a') tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name='a') tm.assert_series_equal(s.duplicated(keep='last'), expected) tm.assert_series_equal(s.drop_duplicates(keep='last'), s[~np.array(base)]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name='a') tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal(s.drop_duplicates(keep=False), s[~np.array(base)]) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame({'a': [1, 1, 1, 'one', 'one'], 'b': [2, 2, np.nan, np.nan, np.nan], 'c': [3, 3, np.nan, np.nan, 'three'], 'd': [1, 2, 3, 4, 4], 'e': [datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT] }) for column in df.columns: for keep in ['first', 'last', False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if (is_object_dtype(o) or (isinstance(o, Series) and is_object_dtype(o.index))): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ((o.memory_usage(index=False) + o.index.memory_usage()) == o.memory_usage(index=True)) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: if isinstance(obj, Index): tm.assert_index_equal(obj.transpose(), obj) else: tm.assert_series_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: tm.assert_raises_regex(ValueError, self.errmsg, obj.transpose, 1) tm.assert_raises_regex(ValueError, self.errmsg, obj.transpose, axes=1) def test_numpy_transpose(self): for obj in self.objs: if isinstance(obj, Index): tm.assert_index_equal(np.transpose(obj), obj) else: tm.assert_series_equal(np.transpose(obj), obj) tm.assert_raises_regex(ValueError, self.errmsg, np.transpose, obj, axes=1) class TestNoNewAttributesMixin(object): def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") def f(): t.b = "test" pytest.raises(AttributeError, f) assert not hasattr(t, "b") class TestToIterable(object): # test that we convert an iterable to python types dtypes = [ ('int8', (int, long)), ('int16', (int, long)), ('int32', (int, long)), ('int64', (int, long)), ('uint8', (int, long)), ('uint16', (int, long)), ('uint32', (int, long)), ('uint64', (int, long)), ('float16', float), ('float32', float), ('float64', float), ('datetime64[ns]', Timestamp), ('datetime64[ns, US/Eastern]', Timestamp), ('timedelta64[ns]', Timedelta)] @pytest.mark.parametrize( 'dtype, rdtype', dtypes) @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype, obj', [ ('object', object, 'a'), ('object', (int, long), 1), ('category', object, 'a'), ('category', (int, long), 1)]) @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype', dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test items / iteritems yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.iteritems())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( 'dtype, rdtype', dtypes + [ ('object', (int, long)), ('category', (int, long))]) @pytest.mark.parametrize('typ', [Series, Index]) def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( 'method', [ lambda x: x.tolist(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=['tolist', 'list', 'iter']) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp('1999-12-31'), Timestamp('2000-12-31')]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp('2011-01-01'), Timestamp('2011-01-02')] s = Series(vals) assert s.dtype == 'datetime64[ns]' for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [Timestamp('2011-01-01', tz='US/Eastern'), Timestamp('2011-01-02', tz='US/Eastern')] s = Series(vals) assert s.dtype == 'datetime64[ns, US/Eastern]' for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta('1 days'), Timedelta('2 days')] s = Series(vals) assert s.dtype == 'timedelta64[ns]' for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period (object dtype, not boxed) vals = [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')] s = Series(vals) assert s.dtype == 'object' for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == 'M' assert res == exp @pytest.mark.parametrize('array, expected_type, dtype', [ (np.array([0, 1], dtype=np.int64), np.ndarray, 'int64'), (np.array(['a', 'b']), np.ndarray, 'object'), (pd.Categorical(['a', 'b']), pd.Categorical, 'category'), (pd.DatetimeIndex(['2017', '2018']), np.ndarray, 'datetime64[ns]'), (pd.DatetimeIndex(['2017', '2018'], tz="US/Central"), pd.DatetimeIndex, 'datetime64[ns, US/Central]'), (pd.TimedeltaIndex([10**10]), np.ndarray, 'm8[ns]'), (pd.PeriodIndex([2018, 2019], freq='A'), np.ndarray, 'object'), (pd.IntervalIndex.from_breaks([0, 1, 2]), np.ndarray, 'object'), ]) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) if isinstance(l_values, np.ndarray): tm.assert_numpy_array_equal(l_values, r_values) elif isinstance(l_values, pd.Index): tm.assert_index_equal(l_values, r_values) elif pd.api.types.is_categorical(l_values): tm.assert_categorical_equal(l_values, r_values) else: raise TypeError("Unexpected type {}".format(type(l_values))) assert l_values.dtype == dtype assert r_values.dtype == dtype @pytest.mark.parametrize('array, expected', [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(['0', '1']), np.array(['0', '1'], dtype=object)), (pd.Categorical(['a', 'a']), np.array([0, 0], dtype='int8')), (pd.DatetimeIndex(['2017-01-01T00:00:00']), np.array(['2017-01-01T00:00:00'], dtype='M8[ns]')), (pd.DatetimeIndex(['2017-01-01T00:00:00'], tz="US/Eastern"), np.array(['2017-01-01T05:00:00'], dtype='M8[ns]')), (pd.TimedeltaIndex([10**10]), np.array([10**10], dtype='m8[ns]')), pytest.param( pd.PeriodIndex(['2017', '2018'], freq='D'), np.array([17167, 17532]), marks=pytest.mark.xfail(reason="PeriodArray Not implemented") ), ]) def test_ndarray_values(array, expected): l_values = pd.Series(array)._ndarray_values r_values = pd.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected)
bsd-3-clause
mehdidc/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
jyt109/stylize
example.py
2
2048
import sys import os from matplotlib import pyplot as plt from scipy.misc import imread,imsave from stylize import render def show_img(img,title): plt.clf() plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.title(title) plt.show() if __name__ == "__main__": try: path = sys.argv[1] except: path = 'resources/iggy.jpg' print "Going to go through a few examples using the stylize.render" # Load an image into a numpy format and see it img = imread(path) plt.imshow(img) plt.xticks([]) plt.yticks([]) plt.title("Our source image, close to continue") plt.show() print "Please wait, rendering..." defaults = render(img,verbose=True) show_img(defaults,"Default stylization - polygonal") print "Please wait, rendering..." landmarks = render(img,features='landmarks',verbose=True) show_img(landmarks,"Landmark features for curved stylization") print "Please wait, rendering..." abstract = render(img,depth=4,verbose=True) show_img(abstract,"A depth of 4 results in an abstract representation") print "Please wait, rendering..." more_detail = render(img,ratio=0.00005,verbose=True) show_img(more_detail,"Ratio 0.00005 results greater detail") print "Please wait, rendering..." less_detail = render(img,ratio=0.001,verbose=True) show_img(less_detail,"Ratio 0.001 results in less detail") print "Please wait, rendering... this one's going to take a minute or so" smoother = render(img,iterations=25,verbose=True) show_img(smoother,"Averaging over 25 iterations to make it smoother") print "Please wait, rendering..." aa = render(img,anti_aliasing=True,verbose=True) show_img(aa,"Anti-aliasing to fight jaggies") print "Saved results are in the examples directory!" imsave('example_images/defaults.png',defaults) imsave('example_images/landmarks.png',landmarks) imsave('example_images/abstract.png',abstract) imsave('example_images/more_detail.png',more_detail) imsave('example_images/less_detail.png',less_detail) imsave('example_images/smoother.png',smoother) imsave('example_images/aa.png',aa)
mit
MKridler/pyxley
examples/datatables/project/app.py
11
3137
from flask import Flask from flask import request, jsonify, render_template, make_response import pandas as pd import json import sys import glob from react import jsx import numpy as np import re import argparse from pyxley.charts.datatables import DataTable from pyxley import SimpleComponent from pyxley.filters import SelectButton from collections import OrderedDict parser = argparse.ArgumentParser(description="Flask Template") parser.add_argument("--env", help="production or local", default="local") args = parser.parse_args() TITLE = "Pyxley" scripts = [ "./bower_components/jquery/dist/jquery.min.js", "./bower_components/datatables/media/js/jquery.dataTables.js", "./dataTables.fixedColumns.js", "./bower_components/d3/d3.min.js", "./bower_components/require/build/require.min.js", "./bower_components/react/react.js", "./bower_components/react-bootstrap/react-bootstrap.min.js", "./conf_int.js", "./bower_components/pyxley/build/pyxley.js" ] css = [ "./bower_components/bootstrap/dist/css/bootstrap.min.css", "./bower_components/datatables/media/css/jquery.dataTables.min.css", "./css/main.css" ] df = pd.DataFrame(json.load(open("./static/data.json", "r"))) df = df.dropna() df["salary"] = df["salary"].apply(lambda x: float(re.sub("[^\d\.]", "", x))) df["lower"] = ( 1. - (0.03*np.random.randn(df.shape[0]) + 0.15)) df["upper"] = ( 1. + (0.03*np.random.randn(df.shape[0]) + 0.15)) df["salary_upper"] = df["upper"]*df["salary"] df["salary_lower"] = df["lower"]*df["salary"] cols = OrderedDict([ ("position", {"label": "Position"}), ("office", {"label": "Office"}), ("start_date", {"label": "Start Date"}), ("salary_lower", {"label": "Salary Range", "confidence": { "lower": "salary_lower", "upper": "salary_upper" } }) ]) addfunc = """ new $.fn.dataTable.FixedColumns(this, { leftColumns: 1, rightColumns: 0 }); confidence_interval(this.api().column(3, {"page":"current"}).data(), "mytable"); """ drawfunc = """ confidence_interval(this.api().column(3, {"page":"current"}).data(), "mytable"); """ tb = DataTable("mytable", "/mytable/", df, columns=cols, paging=True, pageLength=9, scrollX=True, columnDefs=[{ "render": """<svg width="156" height="20"><g></g></svg>""", "orderable": False, "targets": 3 }], sDom='<"top">rt<"bottom"lp><"clear">', deferRender=True, initComplete=addfunc, drawCallback=drawfunc) app = Flask(__name__) tb.register_route(app) ui = SimpleComponent( "Table", "./static/bower_components/pyxley/build/pyxley.js", "component_id", tb.params ) sb = ui.render("./static/layout.js") @app.route('/test', methods=["GET"]) def testtest(): return jsonify(jsfunc) @app.route('/', methods=["GET"]) @app.route('/index', methods=["GET"]) def index(): _scripts = [ "./layout.js" ] return render_template('index.html', title=TITLE, base_scripts=scripts, page_scripts=_scripts, css=css) if __name__ == "__main__": app.run(debug=True)
mit
ucsd-ccbb/jupyter-genomics
src/crispr/ccbbucsd/malicrispr/count_plots.py
1
4021
# third-party libraries import matplotlib.pyplot import numpy import pandas # ccbb libraries from ccbbucsd.utilities.analysis_run_prefixes import strip_run_prefix from ccbbucsd.utilities.files_and_paths import build_multipart_fp, get_file_name_pieces, get_filepaths_by_prefix_and_suffix # project-specific libraries from ccbbucsd.malicrispr.count_files_and_dataframes import get_counts_df __author__ = "Amanda Birmingham" __maintainer__ = "Amanda Birmingham" __email__ = "[email protected]" __status__ = "prototype" DEFAULT_PSEUDOCOUNT = 1 def get_boxplot_suffix(): return "boxplots.png" def make_log2_series(input_series, pseudocount_val): revised_series = input_series + pseudocount_val log2_series = revised_series.apply(numpy.log2) nan_log2_series = log2_series.replace([numpy.inf, -numpy.inf], numpy.nan) return nan_log2_series.dropna().reset_index(drop=True) # note that .reset_index(drop=True) is necessary as matplotlib boxplot function (perhaps among others) # throws an error if the input series doesn't include an item with index 0--which can be the case if # that first item was NaN and was dropped, and series wasn't reindexed. def show_and_save_histogram(output_fp, title, count_data): matplotlib.pyplot.figure(figsize=(20,20)) matplotlib.pyplot.hist(count_data) matplotlib.pyplot.title(title) matplotlib.pyplot.xlabel("log2(raw counts)") matplotlib.pyplot.ylabel("Frequency") matplotlib.pyplot.savefig(output_fp) matplotlib.pyplot.show() def show_and_save_boxplot(output_fp, title, samples_names, samples_data, rotation_val=0): fig = matplotlib.pyplot.figure(1, figsize=(20,20)) ax = fig.add_subplot(111) bp = ax.boxplot(samples_data) ax.set_xticklabels(samples_names, rotation=rotation_val) ax.set_xlabel("samples") ax.set_ylabel("log2(raw counts)") matplotlib.pyplot.title(title) fig.savefig(output_fp, bbox_inches='tight') matplotlib.pyplot.show() def plot_raw_counts(input_dir, input_run_prefix, counts_suffix, output_dir, output_run_prefix, boxplot_suffix): counts_fps_for_run = get_filepaths_by_prefix_and_suffix(input_dir, input_run_prefix, counts_suffix) for curr_counts_fp in counts_fps_for_run: _, curr_sample, _ = get_file_name_pieces(curr_counts_fp) stripped_sample = strip_run_prefix(curr_sample, input_run_prefix) count_header, curr_counts_df = get_counts_df(curr_counts_fp, input_run_prefix) curr_counts_df.rename(columns={count_header:stripped_sample}, inplace=True) count_header = stripped_sample log2_series = make_log2_series(curr_counts_df[count_header], DEFAULT_PSEUDOCOUNT) title = " ".join([input_run_prefix, count_header, "with pseudocount", str(DEFAULT_PSEUDOCOUNT)]) output_fp_prefix = build_multipart_fp(output_dir, [count_header, input_run_prefix]) boxplot_fp = output_fp_prefix + "_" + boxplot_suffix show_and_save_boxplot(boxplot_fp, title, [count_header], log2_series) hist_fp = output_fp_prefix + "_" + "hist.png" show_and_save_histogram(hist_fp, title, log2_series) def plot_combined_raw_counts(input_dir, input_run_prefix, combined_suffix, output_dir, output_run_prefix, boxplot_suffix): output_fp = build_multipart_fp(output_dir, [output_run_prefix, boxplot_suffix]) combined_counts_fp = build_multipart_fp(input_dir, [input_run_prefix, combined_suffix]) combined_counts_df = pandas.read_table(combined_counts_fp) samples_names = combined_counts_df.columns.values[1:] # TODO: remove hardcode samples_data = [] for curr_name in samples_names: log2_series = make_log2_series(combined_counts_df[curr_name], DEFAULT_PSEUDOCOUNT) samples_data.append(log2_series.tolist()) title = " ".join([input_run_prefix, "all samples", "with pseudocount", str(DEFAULT_PSEUDOCOUNT)]) show_and_save_boxplot(output_fp, title, samples_names, samples_data, 90)
mit
deeplook/notebooks
freemium/utils.py
1
9144
""" Utilities, ... Requirements (not strictly tested from scratch, sorry!) conda install -y rasterio # pulls in many other things conda install -c conda-forge ipyleaflet # jupyter labextension install jupyter-leaflet # for jupyterlab conda install -c conda-forge ipywidgets pip install requests pip install folium pip install pillow pip install mercantile pip install contextily pip install geographiclib pip install geopy>=1.15.0 It is recommended to start with an Anaconda distribution. """ import re import os import sys import random from itertools import tee import requests import contextily as ctx from geographiclib.geodesic import Geodesic from geopy.geocoders import Here from geopy.distance import geodesic from ipyleaflet import Marker, CircleMarker, Polyline from ipywidgets import HTML from pyproj import Proj, transform app_id = os.getenv('HEREMAPS_APP_ID') app_code = os.getenv('HEREMAPS_APP_CODE') if not app_id or not app_code: try: from here_credentials import app_id, app_code except ImportError: raise ValueError('Cannot find value for APP_ID and/or APP_CODE...') geocoder = Here(app_id=app_id, app_code=app_code) def mask_app_id(text): "Mask out credentials in given string for presentations." masked = re.sub('app_id=[\-\w]+', 'app_id=******', text) masked = re.sub('app_code=[\-\w]+', 'app_code=******', masked) return masked # Conversion between lat/lon in degrees (and zoom) to x/y/zoom as used in tile sets, # from http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Python from math import radians, degrees, log, cos, tan, pi, atan, sinh def deg2tile(lat_deg, lon_deg, zoom): lat_rad = radians(lat_deg) n = 2.0 ** zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((1.0 - log(tan(lat_rad) + (1 / cos(lat_rad))) / pi) / 2.0 * n) return (xtile, ytile) # not used here def tile2deg(xtile, ytile, zoom): n = 2.0 ** zoom lon_deg = xtile / n * 360.0 - 180.0 lat_rad = atan(sinh(pi * (1 - 2 * ytile / n))) lat_deg = degrees(lat_rad) return (lat_deg, lon_deg) def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def chunks(seq, n): "Yield successive n-sized chunks from l." # for item in zip(*(iter(seq),) * n): yield item for i in range(0, len(seq), n): yield seq[i:i + n] # not used here def latlon_for_address(address): "Return a lat/lon tuple for the given address by geocoding it." res = geocoder.geocode(address) return res.latitude, res.longitude def build_here_tiles_url(**kwdict): """ Return a HERE map tiles URL, based on default values that can be overwritten by kwdict... To be used for map building services like leaflet, folium, and geopandas (with additional fields inside a dict)... """ params = dict( app_id = app_id, app_code = app_code, maptype = 'traffic', tiletype = 'traffictile', scheme = 'normal.day', tilesize = '256', tileformat = 'png8', lg = 'eng', x = '{x}', y = '{y}', z = '{z}', server = random.choice('1234') ) params.update(kwdict) url = ( 'https://{server}.{maptype}.maps.api.here.com' '/maptile/2.1/{tiletype}/newest/{scheme}/{z}/{x}/{y}/{tilesize}/{tileformat}' '?lg={lg}&app_id={app_id}&app_code={app_code}' ).format(**params) return url def build_here_basemap(**kwdict): """ Return a dict HERE map tiles URL, based on default values that can be overwritten with params in kwdict... To be used for ipyleaflet. """ params = dict( url = build_here_tiles_url(**kwdict), min_zoom = 1, max_zoom = 18, attribution = 'Tiles &copy; HERE.com', name = 'HERE' ) params.update(kwdict) return params def get_route_positions(start, end, **kwargs): """ Get routing data. """ lat0, lon0 = start lat1, lon1 = end params = dict( language='en', mode='fastest;car;traffic:disabled' ) params.update(kwargs) url = ( f'https://route.cit.api.here.com' f'/routing/7.2/calculateroute.json' f'?app_id={app_id}&app_code={app_code}' # f'&waypoint0=street!{addr}' f'&waypoint0=geo!{lat0},{lon0}' f'&waypoint1=geo!{lat1},{lon1}' # f'&language={language}' # f'&mode=fastest;car;traffic:disabled' f'&metricsystem=metric' f'&jsonattributes=41' # ? # f'maneuverattributes=po,ti,pt,ac,di,fj,ix' # ? f'&routeattributes=sh,gr' f'&instructionFormat=text' # or html # f'&mode=fastest;publicTransport&combineChange=true&departure=now' ) for key in params: val = params[key] url += f'&{key}={val}' obj = requests.get(url).json() return obj['response']['route'] leg = obj['response']['route'][0]['leg'] res = [] for man in leg[0]['maneuver']: pos = man['position'] lat, lon = pos['latitude'], pos['longitude'] inst = man['instruction'] res.append(dict(lat=lat, lon=lon, maneuver=inst)) return res def add_route_to_map(route, some_map, color='blue'): """ Add a route from the HERE REST API to the given map. This includes markers for all points where a maneuver is needed, like 'turn left'. And it includes a path with lat/lons from start to end and little circle markers around them. """ path_positions = list(chunks(route[0]['shape'], 2)) maneuvers = { (man['position']['latitude'], man['position']['longitude']): man['instruction'] for man in route[0]['leg'][0]['maneuver']} polyline = Polyline( locations=path_positions, color=color, fill=False ) some_map += polyline for lat, lon in path_positions: if (lat, lon) in maneuvers: some_map += CircleMarker(location=(lat, lon), radius=2) marker = Marker(location=(lat, lon), draggable=False) message1 = HTML() message1.value = maneuvers[(lat, lon)] marker.popup = message1 some_map += marker else: some_map += CircleMarker(location=(lat, lon), radius=3) def geo_distance(p, q): "Return the geodesic distance from point p to q (both lat/lon pairs) in meters." (lat0, lon0), (lat1, lon1) = p, q g = Geodesic.WGS84.Inverse(lat0, lon0, lat1, lon1) return g['s12'] def mid_point(loc1, loc2): """ Calculate point in the geodesic middle between two given points. """ geod = Geodesic.WGS84 inv_line = geod.InverseLine(*(loc1 + loc2)) distance_m = geod.Inverse(*(loc1 + loc2))["s12"] loc = inv_line.Position(distance_m / 2, Geodesic.STANDARD | Geodesic.LONG_UNROLL) lat, lon = loc['lat2'], loc['lon2'] return lat, lon class Isoline(object): def __init__(self, the_map, **kwdict): self.the_map = the_map self.isoline = None self.url = ( 'https://isoline.route.api.here.com' '/routing/7.2/calculateisoline.json' '?app_id={app_id}&app_code={app_code}' '&start=geo!{lat},{lon}' '&mode=fastest;car;traffic:disabled' '&range={{meters}}' # seconds/meters '&rangetype=distance' # time/distance #'&departure=now' # 2013-07-04T17:00:00+02 #'&resolution=20' # meters ).format(**kwdict) self.cache = {} def __call__(self, meters=1000): if meters not in self.cache: print('loading', meters) url = self.url.format(meters=meters) obj = requests.get(url).json() self.cache[meters] = obj obj = self.cache[meters] isoline = obj['response']['isoline'][0] shape = isoline['component'][0]['shape'] path = [tuple(map(float, pos.split(','))) for pos in shape] if self.isoline: self.the_map -= self.isoline self.isoline = Polyline(locations=path, color='red', weight=2, fill=True) self.the_map += self.isoline def Mercator2WGS84(x, y): return transform(Proj(init='epsg:3857'), Proj(init='epsg:4326'), x, y) def add_basemap(ax, zoom, url='http://tile.stamen.com/terrain/tileZ/tileX/tileY.png'): # Special thanks to Prof. Martin Christen at FHNW.ch in Basel for # his GIS-Hack to make the output scales show proper lat/lon values! xmin, xmax, ymin, ymax = ax.axis() basemap, extent = ctx.bounds2img(xmin, ymin, xmax, ymax, zoom=zoom, ll=True, url=url) # calculate extent from WebMercator to WGS84 xmin84, ymin84 = Mercator2WGS84(extent[0], extent[2]) xmax84, ymax84 = Mercator2WGS84(extent[1], extent[3]) extentwgs84 = (xmin84, xmax84, ymin84, ymax84) ax.imshow(basemap, extent=extentwgs84, interpolation='bilinear') # restore original x/y limits ax.axis((xmin, xmax, ymin, ymax))
mit
samzhang111/scikit-learn
sklearn/manifold/t_sne.py
52
34602
# Author: Alexander Fabisch -- <[email protected]> # Author: Christopher Moody <[email protected]> # Author: Nick Travers <[email protected]> # License: BSD 3 clause (C) 2014 # This is the exact and Barnes-Hut t-SNE implementation. There are other # modifications of the algorithm: # * Fast Optimization for t-SNE: # http://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf import numpy as np from scipy import linalg import scipy.sparse as sp from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from ..neighbors import BallTree from ..base import BaseEstimator from ..utils import check_array from ..utils import check_random_state from ..utils.extmath import _ravel from ..decomposition import RandomizedPCA from ..metrics.pairwise import pairwise_distances from . import _utils from . import _barnes_hut_tsne from ..utils.fixes import astype MACHINE_EPSILON = np.finfo(np.double).eps def _joint_probabilities(distances, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances. Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity distances = astype(distances, np.float32, copy=False) conditional_P = _utils._binary_search_perplexity( distances, None, desired_perplexity, verbose) P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) return P def _joint_probabilities_nn(distances, neighbors, desired_perplexity, verbose): """Compute joint probabilities p_ij from distances using just nearest neighbors. This method is approximately equal to _joint_probabilities. The latter is O(N), but limiting the joint probability to nearest neighbors improves this substantially to O(uN). Parameters ---------- distances : array, shape (n_samples * (n_samples-1) / 2,) Distances of samples are stored as condensed matrices, i.e. we omit the diagonal and duplicate entries and store everything in a one-dimensional array. desired_perplexity : float Desired perplexity of the joint probability distributions. verbose : int Verbosity level. Returns ------- P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. """ # Compute conditional probabilities such that they approximately match # the desired perplexity distances = astype(distances, np.float32, copy=False) neighbors = astype(neighbors, np.int64, copy=False) conditional_P = _utils._binary_search_perplexity( distances, neighbors, desired_perplexity, verbose) m = "All probabilities should be finite" assert np.all(np.isfinite(conditional_P)), m P = conditional_P + conditional_P.T sum_P = np.maximum(np.sum(P), MACHINE_EPSILON) P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON) assert np.all(np.abs(P) <= 1.0) return P def _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components, skip_num_points=0): """t-SNE objective function: gradient of the KL divergence of p_ijs and q_ijs and the absolute error. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. degrees_of_freedom : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= degrees_of_freedom n **= (degrees_of_freedom + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) # Gradient: dC/dY grad = np.ndarray((n_samples, n_components)) PQd = squareform((P - Q) * n) for i in range(skip_num_points, n_samples): np.dot(_ravel(PQd[i]), X_embedded[i] - X_embedded, out=grad[i]) grad = grad.ravel() c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad *= c return kl_divergence, grad def _kl_divergence_error(params, P, neighbors, degrees_of_freedom, n_samples, n_components): """t-SNE objective function: the absolute error of the KL divergence of p_ijs and q_ijs. Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. neighbors : array (n_samples, K) The neighbors is not actually required to calculate the divergence, but is here to match the signature of the gradient function degrees_of_freedom : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ X_embedded = params.reshape(n_samples, n_components) # Q is a heavy-tailed distribution: Student's t-distribution n = pdist(X_embedded, "sqeuclidean") n += 1. n /= degrees_of_freedom n **= (degrees_of_freedom + 1.0) / -2.0 Q = np.maximum(n / (2.0 * np.sum(n)), MACHINE_EPSILON) # Optimization trick below: np.dot(x, y) is faster than # np.sum(x * y) because it calls BLAS # Objective: C (Kullback-Leibler divergence of P and Q) if len(P.shape) == 2: P = squareform(P) kl_divergence = 2.0 * np.dot(P, np.log(P / Q)) return kl_divergence def _kl_divergence_bh(params, P, neighbors, degrees_of_freedom, n_samples, n_components, angle=0.5, skip_num_points=0, verbose=False): """t-SNE objective function: KL divergence of p_ijs and q_ijs. Uses Barnes-Hut tree methods to calculate the gradient that runs in O(NlogN) instead of O(N^2) Parameters ---------- params : array, shape (n_params,) Unraveled embedding. P : array, shape (n_samples * (n_samples-1) / 2,) Condensed joint probability matrix. neighbors: int64 array, shape (n_samples, K) Array with element [i, j] giving the index for the jth closest neighbor to point i. degrees_of_freedom : float Degrees of freedom of the Student's-t distribution. n_samples : int Number of samples. n_components : int Dimension of the embedded space. angle : float (default: 0.5) This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. verbose : int Verbosity level. Returns ------- kl_divergence : float Kullback-Leibler divergence of p_ij and q_ij. grad : array, shape (n_params,) Unraveled gradient of the Kullback-Leibler divergence with respect to the embedding. """ params = astype(params, np.float32, copy=False) X_embedded = params.reshape(n_samples, n_components) neighbors = astype(neighbors, np.int64, copy=False) if len(P.shape) == 1: sP = squareform(P).astype(np.float32) else: sP = P.astype(np.float32) grad = np.zeros(X_embedded.shape, dtype=np.float32) error = _barnes_hut_tsne.gradient(sP, X_embedded, neighbors, grad, angle, n_components, verbose, dof=degrees_of_freedom) c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom grad = grad.ravel() grad *= c return error, grad def _gradient_descent(objective, p0, it, n_iter, objective_error=None, n_iter_check=1, n_iter_without_progress=50, momentum=0.5, learning_rate=1000.0, min_gain=0.01, min_grad_norm=1e-7, min_error_diff=1e-7, verbose=0, args=None, kwargs=None): """Batch gradient descent with momentum and individual gains. Parameters ---------- objective : function or callable Should return a tuple of cost and gradient for a given parameter vector. When expensive to compute, the cost can optionally be None and can be computed every n_iter_check steps using the objective_error function. p0 : array-like, shape (n_params,) Initial parameter vector. it : int Current number of iterations (this function will be called more than once during the optimization). n_iter : int Maximum number of gradient descent iterations. n_iter_check : int Number of iterations before evaluating the global error. If the error is sufficiently low, we abort the optimization. objective_error : function or callable Should return a tuple of cost and gradient for a given parameter vector. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. momentum : float, within (0.0, 1.0), optional (default: 0.5) The momentum generates a weight for previous gradients that decays exponentially. learning_rate : float, optional (default: 1000.0) The learning rate should be extremely high for t-SNE! Values in the range [100.0, 1000.0] are common. min_gain : float, optional (default: 0.01) Minimum individual gain for each parameter. min_grad_norm : float, optional (default: 1e-7) If the gradient norm is below this threshold, the optimization will be aborted. min_error_diff : float, optional (default: 1e-7) If the absolute difference of two successive cost function values is below this threshold, the optimization will be aborted. verbose : int, optional (default: 0) Verbosity level. args : sequence Arguments to pass to objective function. kwargs : dict Keyword arguments to pass to objective function. Returns ------- p : array, shape (n_params,) Optimum parameters. error : float Optimum. i : int Last iteration. """ if args is None: args = [] if kwargs is None: kwargs = {} p = p0.copy().ravel() update = np.zeros_like(p) gains = np.ones_like(p) error = np.finfo(np.float).max best_error = np.finfo(np.float).max best_iter = 0 for i in range(it, n_iter): new_error, grad = objective(p, *args, **kwargs) grad_norm = linalg.norm(grad) inc = update * grad >= 0.0 dec = np.invert(inc) gains[inc] += 0.05 gains[dec] *= 0.95 np.clip(gains, min_gain, np.inf) grad *= gains update = momentum * update - learning_rate * grad p += update if (i + 1) % n_iter_check == 0: if new_error is None: new_error = objective_error(p, *args) error_diff = np.abs(new_error - error) error = new_error if verbose >= 2: m = "[t-SNE] Iteration %d: error = %.7f, gradient norm = %.7f" print(m % (i + 1, error, grad_norm)) if error < best_error: best_error = error best_iter = i elif i - best_iter > n_iter_without_progress: if verbose >= 2: print("[t-SNE] Iteration %d: did not make any progress " "during the last %d episodes. Finished." % (i + 1, n_iter_without_progress)) break if grad_norm <= min_grad_norm: if verbose >= 2: print("[t-SNE] Iteration %d: gradient norm %f. Finished." % (i + 1, grad_norm)) break if error_diff <= min_error_diff: if verbose >= 2: m = "[t-SNE] Iteration %d: error difference %f. Finished." print(m % (i + 1, error_diff)) break if new_error is not None: error = new_error return p, error, i def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False): """Expresses to what extent the local structure is retained. The trustworthiness is within [0, 1]. It is defined as .. math:: T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1} \sum_{j \in U^{(k)}_i (r(i, j) - k)} where :math:`r(i, j)` is the rank of the embedded datapoint j according to the pairwise distances between the embedded datapoints, :math:`U^{(k)}_i` is the set of points that are in the k nearest neighbors in the embedded space but not in the original space. * "Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study" J. Venna, S. Kaski * "Learning a Parametric Embedding by Preserving Local Structure" L.J.P. van der Maaten Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. X_embedded : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. n_neighbors : int, optional (default: 5) Number of neighbors k that will be considered. precomputed : bool, optional (default: False) Set this flag if X is a precomputed square distance matrix. Returns ------- trustworthiness : float Trustworthiness of the low-dimensional embedding. """ if precomputed: dist_X = X else: dist_X = pairwise_distances(X, squared=True) dist_X_embedded = pairwise_distances(X_embedded, squared=True) ind_X = np.argsort(dist_X, axis=1) ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1] n_samples = X.shape[0] t = 0.0 ranks = np.zeros(n_neighbors) for i in range(n_samples): for j in range(n_neighbors): ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0] ranks -= n_neighbors t += np.sum(ranks[ranks > 0]) t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))) return t class TSNE(BaseEstimator): """t-distributed Stochastic Neighbor Embedding. t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results. It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples. For more tips see Laurens van der Maaten's FAQ [2]. Read more in the :ref:`User Guide <t_sne>`. Parameters ---------- n_components : int, optional (default: 2) Dimension of the embedded space. perplexity : float, optional (default: 30) The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selcting a value between 5 and 50. The choice is not extremely critical since t-SNE is quite insensitive to this parameter. early_exaggeration : float, optional (default: 4.0) Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space. Again, the choice of this parameter is not very critical. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. learning_rate : float, optional (default: 1000) The learning rate can be a critical parameter. It should be between 100 and 1000. If the cost function increases during initial optimization, the early exaggeration factor or the learning rate might be too high. If the cost function gets stuck in a bad local minimum increasing the learning rate helps sometimes. n_iter : int, optional (default: 1000) Maximum number of iterations for the optimization. Should be at least 200. n_iter_without_progress : int, optional (default: 30) Maximum number of iterations without progress before we abort the optimization. min_grad_norm : float, optional (default: 1E-7) If the gradient norm is below this threshold, the optimization will be aborted. metric : string or callable, optional The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. The default is "euclidean" which is interpreted as squared euclidean distance. init : string, optional (default: "random") Initialization of embedding. Possible options are 'random' and 'pca'. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Note that different initializations might result in different local minima of the cost function. method : string (default: 'barnes_hut') By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. method='exact' will run on the slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale to millions of examples. angle : float (default: 0.5) Only used if method='barnes_hut' This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. 'angle' is the angular size (referred to as theta in [3]) of a distant node as measured from a point. If this size is below 'angle' then it is used as a summary node of all points contained within it. This method is not very sensitive to changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. Examples -------- >>> import numpy as np >>> from sklearn.manifold import TSNE >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = TSNE(n_components=2, random_state=0) >>> np.set_printoptions(suppress=True) >>> model.fit_transform(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE array([[ 0.00017599, 0.00003993], [ 0.00009891, 0.00021913], [ 0.00018554, -0.00009357], [ 0.00009528, -0.00001407]]) References ---------- [1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008. [2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding http://homepage.tudelft.nl/19j49/t-SNE.html [3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct):3221-3245, 2014. http://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf """ def __init__(self, n_components=2, perplexity=30.0, early_exaggeration=4.0, learning_rate=1000.0, n_iter=1000, n_iter_without_progress=30, min_grad_norm=1e-7, metric="euclidean", init="random", verbose=0, random_state=None, method='barnes_hut', angle=0.5): if init not in ["pca", "random"] or isinstance(init, np.ndarray): msg = "'init' must be 'pca', 'random' or a NumPy array" raise ValueError(msg) self.n_components = n_components self.perplexity = perplexity self.early_exaggeration = early_exaggeration self.learning_rate = learning_rate self.n_iter = n_iter self.n_iter_without_progress = n_iter_without_progress self.min_grad_norm = min_grad_norm self.metric = metric self.init = init self.verbose = verbose self.random_state = random_state self.method = method self.angle = angle self.embedding_ = None def _fit(self, X, skip_num_points=0): """Fit the model using X as training data. Note that sparse arrays can only be handled by method='exact'. It is recommended that you convert your sparse array to dense (e.g. `X.toarray()`) if it fits in memory, or otherwise using a dimensionality reduction technique (e.g. TrucnatedSVD). Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Note that this when method='barnes_hut', X cannot be a sparse array and if need be will be converted to a 32 bit float array. Method='exact' allows sparse arrays and 64bit floating point inputs. skip_num_points : int (optional, default:0) This does not compute the gradient for points with indices below `skip_num_points`. This is useful when computing transforms of new data where you'd like to keep the old data fixed. """ if self.method not in ['barnes_hut', 'exact']: raise ValueError("'method' must be 'barnes_hut' or 'exact'") if self.angle < 0.0 or self.angle > 1.0: raise ValueError("'angle' must be between 0.0 - 1.0") if self.method == 'barnes_hut' and sp.issparse(X): raise TypeError('A sparse matrix was passed, but dense ' 'data is required for method="barnes_hut". Use ' 'X.toarray() to convert to a dense numpy array if ' 'the array is small enough for it to fit in ' 'memory. Otherwise consider dimensionality ' 'reduction techniques (e.g. TruncatedSVD)') X = check_array(X, dtype=np.float32) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) random_state = check_random_state(self.random_state) if self.early_exaggeration < 1.0: raise ValueError("early_exaggeration must be at least 1, but is " "%f" % self.early_exaggeration) if self.n_iter < 200: raise ValueError("n_iter should be at least 200") if self.metric == "precomputed": if self.init == 'pca': raise ValueError("The parameter init=\"pca\" cannot be used " "with metric=\"precomputed\".") if X.shape[0] != X.shape[1]: raise ValueError("X should be a square distance matrix") distances = X else: if self.verbose: print("[t-SNE] Computing pairwise distances...") if self.metric == "euclidean": distances = pairwise_distances(X, metric=self.metric, squared=True) else: distances = pairwise_distances(X, metric=self.metric) if not np.all(distances >= 0): raise ValueError("All distances should be positive, either " "the metric or precomputed distances given " "as X are not correct") # Degrees of freedom of the Student's t-distribution. The suggestion # degrees_of_freedom = n_components - 1 comes from # "Learning a Parametric Embedding by Preserving Local Structure" # Laurens van der Maaten, 2009. degrees_of_freedom = max(self.n_components - 1.0, 1) n_samples = X.shape[0] # the number of nearest neighbors to find k = min(n_samples - 1, int(3. * self.perplexity + 1)) neighbors_nn = None if self.method == 'barnes_hut': if self.verbose: print("[t-SNE] Computing %i nearest neighbors..." % k) if self.metric == 'precomputed': # Use the precomputed distances to find # the k nearest neighbors and their distances neighbors_nn = np.argsort(distances, axis=1)[:, :k] else: # Find the nearest neighbors for every point bt = BallTree(X) # LvdM uses 3 * perplexity as the number of neighbors # And we add one to not count the data point itself # In the event that we have very small # of points # set the neighbors to n - 1 distances_nn, neighbors_nn = bt.query(X, k=k + 1) neighbors_nn = neighbors_nn[:, 1:] P = _joint_probabilities_nn(distances, neighbors_nn, self.perplexity, self.verbose) else: P = _joint_probabilities(distances, self.perplexity, self.verbose) assert np.all(np.isfinite(P)), "All probabilities should be finite" assert np.all(P >= 0), "All probabilities should be zero or positive" assert np.all(P <= 1), ("All probabilities should be less " "or then equal to one") if self.init == 'pca': pca = RandomizedPCA(n_components=self.n_components, random_state=random_state) X_embedded = pca.fit_transform(X) elif isinstance(self.init, np.ndarray): X_embedded = self.init elif self.init == 'random': X_embedded = None else: raise ValueError("Unsupported initialization scheme: %s" % self.init) return self._tsne(P, degrees_of_freedom, n_samples, random_state, X_embedded=X_embedded, neighbors=neighbors_nn, skip_num_points=skip_num_points) def _tsne(self, P, degrees_of_freedom, n_samples, random_state, X_embedded=None, neighbors=None, skip_num_points=0): """Runs t-SNE.""" # t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P # and the Student's t-distributions Q. The optimization algorithm that # we use is batch gradient descent with three stages: # * early exaggeration with momentum 0.5 # * early exaggeration with momentum 0.8 # * final optimization with momentum 0.8 # The embedding is initialized with iid samples from Gaussians with # standard deviation 1e-4. if X_embedded is None: # Initialize embedding randomly X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components) params = X_embedded.ravel() opt_args = {} opt_args = {"n_iter": 50, "momentum": 0.5, "it": 0, "learning_rate": self.learning_rate, "verbose": self.verbose, "n_iter_check": 25, "kwargs": dict(skip_num_points=skip_num_points)} if self.method == 'barnes_hut': m = "Must provide an array of neighbors to use Barnes-Hut" assert neighbors is not None, m obj_func = _kl_divergence_bh objective_error = _kl_divergence_error sP = squareform(P).astype(np.float32) neighbors = neighbors.astype(np.int64) args = [sP, neighbors, degrees_of_freedom, n_samples, self.n_components] opt_args['args'] = args opt_args['min_grad_norm'] = 1e-3 opt_args['n_iter_without_progress'] = 30 # Don't always calculate the cost since that calculation # can be nearly as expensive as the gradient opt_args['objective_error'] = objective_error opt_args['kwargs']['angle'] = self.angle opt_args['kwargs']['verbose'] = self.verbose else: obj_func = _kl_divergence opt_args['args'] = [P, degrees_of_freedom, n_samples, self.n_components] opt_args['min_error_diff'] = 0.0 opt_args['min_grad_norm'] = 0.0 # Early exaggeration P *= self.early_exaggeration params, error, it = _gradient_descent(obj_func, params, **opt_args) opt_args['n_iter'] = 100 opt_args['momentum'] = 0.8 opt_args['it'] = it + 1 params, error, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print("[t-SNE] Error after %d iterations with early " "exaggeration: %f" % (it + 1, error)) # Save the final number of iterations self.n_iter_final = it # Final optimization P /= self.early_exaggeration opt_args['n_iter'] = self.n_iter opt_args['it'] = it + 1 params, error, it = _gradient_descent(obj_func, params, **opt_args) if self.verbose: print("[t-SNE] Error after %d iterations: %f" % (it + 1, error)) X_embedded = params.reshape(n_samples, self.n_components) return X_embedded def fit_transform(self, X, y=None): """Fit X into an embedded space and return that transformed output. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. Returns ------- X_new : array, shape (n_samples, n_components) Embedding of the training data in low-dimensional space. """ embedding = self._fit(X) self.embedding_ = embedding return self.embedding_ def fit(self, X, y=None): """Fit X into an embedded space. Parameters ---------- X : array, shape (n_samples, n_features) or (n_samples, n_samples) If the metric is 'precomputed' X must be a square distance matrix. Otherwise it contains a sample per row. If the method is 'exact', X may be a sparse matrix of type 'csr', 'csc' or 'coo'. """ self.fit_transform(X) return self def _check_fitted(self): if self.embedding_ is None: raise ValueError("Cannot call `transform` unless `fit` has" "already been called")
bsd-3-clause
andrewnc/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
mlperf/training_results_v0.7
Fujitsu/benchmarks/resnet/implementations/implementation_open/mxnet/example/multivariate_time_series/src/lstnet.py
17
11583
# !/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- #Todo: Ensure skip connection implementation is correct import os import math import numpy as np import pandas as pd import mxnet as mx import argparse import logging import metrics logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Deep neural network for multivariate time series forecasting", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default='../data', help='relative path to input data') parser.add_argument('--max-records', type=int, default=None, help='total records before data split') parser.add_argument('--q', type=int, default=24*7, help='number of historical measurements included in each training example') parser.add_argument('--horizon', type=int, default=3, help='number of measurements ahead to predict') parser.add_argument('--splits', type=str, default="0.6,0.2", help='fraction of data to use for train & validation. remainder used for test.') parser.add_argument('--batch-size', type=int, default=128, help='the batch size.') parser.add_argument('--filter-list', type=str, default="6,12,18", help='unique filter sizes') parser.add_argument('--num-filters', type=int, default=100, help='number of each filter size') parser.add_argument('--recurrent-state-size', type=int, default=100, help='number of hidden units in each unrolled recurrent cell') parser.add_argument('--seasonal-period', type=int, default=24, help='time between seasonal measurements') parser.add_argument('--time-interval', type=int, default=1, help='time between each measurement') parser.add_argument('--gpus', type=str, default='', help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu. ') parser.add_argument('--optimizer', type=str, default='adam', help='the optimizer type') parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate') parser.add_argument('--dropout', type=float, default=0.2, help='dropout rate for network') parser.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') parser.add_argument('--save-period', type=int, default=20, help='save checkpoint for every n epochs') parser.add_argument('--model_prefix', type=str, default='electricity_model', help='prefix for saving model params') def build_iters(data_dir, max_records, q, horizon, splits, batch_size): """ Load & generate training examples from multivariate time series data :return: data iters & variables required to define network architecture """ # Read in data as numpy array df = pd.read_csv(os.path.join(data_dir, "electricity.txt"), sep=",", header=None) feature_df = df.iloc[:, :].astype(float) x = feature_df.as_matrix() x = x[:max_records] if max_records else x # Construct training examples based on horizon and window x_ts = np.zeros((x.shape[0] - q, q, x.shape[1])) y_ts = np.zeros((x.shape[0] - q, x.shape[1])) for n in range(x.shape[0]): if n + 1 < q: continue elif n + 1 + horizon > x.shape[0]: continue else: y_n = x[n + horizon, :] x_n = x[n + 1 - q:n + 1, :] x_ts[n-q] = x_n y_ts[n-q] = y_n # Split into training and testing data training_examples = int(x_ts.shape[0] * splits[0]) valid_examples = int(x_ts.shape[0] * splits[1]) x_train, y_train = x_ts[:training_examples], \ y_ts[:training_examples] x_valid, y_valid = x_ts[training_examples:training_examples + valid_examples], \ y_ts[training_examples:training_examples + valid_examples] x_test, y_test = x_ts[training_examples + valid_examples:], \ y_ts[training_examples + valid_examples:] #build iterators to feed batches to network train_iter = mx.io.NDArrayIter(data=x_train, label=y_train, batch_size=batch_size) val_iter = mx.io.NDArrayIter(data=x_valid, label=y_valid, batch_size=batch_size) test_iter = mx.io.NDArrayIter(data=x_test, label=y_test, batch_size=batch_size) return train_iter, val_iter, test_iter def sym_gen(train_iter, q, filter_list, num_filter, dropout, rcells, skiprcells, seasonal_period, time_interval): input_feature_shape = train_iter.provide_data[0][1] X = mx.symbol.Variable(train_iter.provide_data[0].name) Y = mx.sym.Variable(train_iter.provide_label[0].name) # reshape data before applying convolutional layer (takes 4D shape incase you ever work with images) conv_input = mx.sym.reshape(data=X, shape=(0, 1, q, -1)) ############### # CNN Component ############### outputs = [] for i, filter_size in enumerate(filter_list): # pad input array to ensure number output rows = number input rows after applying kernel padi = mx.sym.pad(data=conv_input, mode="constant", constant_value=0, pad_width=(0, 0, 0, 0, filter_size - 1, 0, 0, 0)) convi = mx.sym.Convolution(data=padi, kernel=(filter_size, input_feature_shape[2]), num_filter=num_filter) acti = mx.sym.Activation(data=convi, act_type='relu') trans = mx.sym.reshape(mx.sym.transpose(data=acti, axes=(0, 2, 1, 3)), shape=(0, 0, 0)) outputs.append(trans) cnn_features = mx.sym.Concat(*outputs, dim=2) cnn_reg_features = mx.sym.Dropout(cnn_features, p=dropout) ############### # RNN Component ############### stacked_rnn_cells = mx.rnn.SequentialRNNCell() for i, recurrent_cell in enumerate(rcells): stacked_rnn_cells.add(recurrent_cell) stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout)) outputs, states = stacked_rnn_cells.unroll(length=q, inputs=cnn_reg_features, merge_outputs=False) rnn_features = outputs[-1] #only take value from final unrolled cell for use later #################### # Skip-RNN Component #################### stacked_rnn_cells = mx.rnn.SequentialRNNCell() for i, recurrent_cell in enumerate(skiprcells): stacked_rnn_cells.add(recurrent_cell) stacked_rnn_cells.add(mx.rnn.DropoutCell(dropout)) outputs, states = stacked_rnn_cells.unroll(length=q, inputs=cnn_reg_features, merge_outputs=False) # Take output from cells p steps apart p = int(seasonal_period / time_interval) output_indices = list(range(0, q, p)) outputs.reverse() skip_outputs = [outputs[i] for i in output_indices] skip_rnn_features = mx.sym.concat(*skip_outputs, dim=1) ########################## # Autoregressive Component ########################## auto_list = [] for i in list(range(input_feature_shape[2])): time_series = mx.sym.slice_axis(data=X, axis=2, begin=i, end=i+1) fc_ts = mx.sym.FullyConnected(data=time_series, num_hidden=1) auto_list.append(fc_ts) ar_output = mx.sym.concat(*auto_list, dim=1) ###################### # Prediction Component ###################### neural_components = mx.sym.concat(*[rnn_features, skip_rnn_features], dim=1) neural_output = mx.sym.FullyConnected(data=neural_components, num_hidden=input_feature_shape[2]) model_output = neural_output + ar_output loss_grad = mx.sym.LinearRegressionOutput(data=model_output, label=Y) return loss_grad, [v.name for v in train_iter.provide_data], [v.name for v in train_iter.provide_label] def train(symbol, train_iter, valid_iter, data_names, label_names): devs = mx.cpu() if args.gpus is None or args.gpus is '' else [mx.gpu(int(i)) for i in args.gpus.split(',')] module = mx.mod.Module(symbol, data_names=data_names, label_names=label_names, context=devs) module.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label) module.init_params(mx.initializer.Uniform(0.1)) module.init_optimizer(optimizer=args.optimizer, optimizer_params={'learning_rate': args.lr}) for epoch in range(1, args.num_epochs+1): train_iter.reset() val_iter.reset() for batch in train_iter: module.forward(batch, is_train=True) # compute predictions module.backward() # compute gradients module.update() # update parameters train_pred = module.predict(train_iter).asnumpy() train_label = train_iter.label[0][1].asnumpy() print('\nMetrics: Epoch %d, Training %s' % (epoch, metrics.evaluate(train_pred, train_label))) val_pred = module.predict(val_iter).asnumpy() val_label = val_iter.label[0][1].asnumpy() print('Metrics: Epoch %d, Validation %s' % (epoch, metrics.evaluate(val_pred, val_label))) if epoch % args.save_period == 0 and epoch > 1: module.save_checkpoint(prefix=os.path.join("../models/", args.model_prefix), epoch=epoch, save_optimizer_states=False) if epoch == args.num_epochs: module.save_checkpoint(prefix=os.path.join("../models/", args.model_prefix), epoch=epoch, save_optimizer_states=False) if __name__ == '__main__': # parse args args = parser.parse_args() args.splits = list(map(float, args.splits.split(','))) args.filter_list = list(map(int, args.filter_list.split(','))) # Check valid args if not max(args.filter_list) <= args.q: raise AssertionError("no filter can be larger than q") if not args.q >= math.ceil(args.seasonal_period / args.time_interval): raise AssertionError("size of skip connections cannot exceed q") # Build data iterators train_iter, val_iter, test_iter = build_iters(args.data_dir, args.max_records, args.q, args.horizon, args.splits, args.batch_size) # Choose cells for recurrent layers: each cell will take the output of the previous cell in the list rcells = [mx.rnn.GRUCell(num_hidden=args.recurrent_state_size)] skiprcells = [mx.rnn.LSTMCell(num_hidden=args.recurrent_state_size)] # Define network symbol symbol, data_names, label_names = sym_gen(train_iter, args.q, args.filter_list, args.num_filters, args.dropout, rcells, skiprcells, args.seasonal_period, args.time_interval) # train cnn model train(symbol, train_iter, val_iter, data_names, label_names)
apache-2.0
jerryyjr/cosc445_project
scripts/plot-synchronization.py
4
3866
""" Plots the synchronization between cells Copyright (C) 2012 Ahmet Ay, Jack Holland, Adriana Sperlea This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import matplotlib.pyplot as plt import pylab import sys import shared import math def main(): # check the given arguments if len(sys.argv) < 6: usage() else: folder = sys.argv[1] parsets = shared.toInt(sys.argv[2]) ofolder = sys.argv[3] image_name = sys.argv[4] excel_name = sys.argv[5] mutants = ["wildtype", "delta", "her1", "her7", "her7her13", "her13"] markers = ['o', '^', 's', '*', 'h', 'D'] colors = ['k', 'b', 'g', 'r', 'c', 'm'] num_mutants = 6 # Create excel file in which the data used to create the plots will be stored excel_file = shared.openFile(ofolder + "/" + excel_name + "-sync.csv", "w") for index in range(num_mutants): mutant = mutants[index] marker = markers[index] color = colors[index] # open the first file to get the height, width and interval f = shared.openFile(folder + "/" + mutant + "/set_0_sync_mh1.feats", "r") # split the lines to get data data = [line.split(",") for line in f] # calculate the tissue size height = shared.toInt(data[0][0]) interval = shared.toFlo(data[0][1]) #split_time = shared.toFlo(data[0][2]) width = len(data[1]) - 1 indexes = [0 for i in range(width)] averages = [0 for i in range(width)] stderr = [0 for i in range(width)] for parset in range(parsets): f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_sync_mh1.feats", "r") # split the lines to get data data = [line.split(",") for line in f] for col in range(width): for line in range(1, height + 1): averages[col] += shared.toFlo(data[line][col]) f.close() for col in range(width): indexes[col] = (((interval / 2) * col + (interval / 2) * col + interval) / 2) / 6 averages[col] /= height * parsets if mutant == "wildtype": excel_file.write("mutant,") for index in indexes: excel_file.write(str(index) + ",") excel_file.write("\n") for parset in range(parsets): f = shared.openFile(folder + "/" + mutant + "/set_" + str(parset) + "_sync_mh1.feats", "r") data = [line.split(",") for line in f] # std error = std deviation / sqrt(num data points) for col in range(width): for line in range(1, height + 1): stderr[col] += (shared.toFlo(data[line][col]) - averages[col]) ** 2 stderr[col] = math.sqrt(stderr[col] / (height * parsets)) stderr[col] /= math.sqrt(height * parsets) # Print the means and standard deviations to the excel_file excel_file.write(mutant + ",") for average in averages: excel_file.write(str(average) + ",") excel_file.write("\n,") for stder in stderr: excel_file.write(str(stder) + ",") excel_file.write("\n") plt.errorbar(indexes, averages, stderr, fmt='ro', linestyle='-', marker=marker, color=color, label=mutant) plt.legend(prop={'size':8}, loc=3) pylab.xlim([0, (width + 1) * (interval / 2) / 6]) plt.savefig(ofolder + "/" + image_name + ".png", format = "png") plt.close() def usage(): print "Usage: python plot-synchronization.py <directory with synchronization files> <number of parameter sets> <directory to store the image> <name of image> <name of excel file>" exit(0) main()
gpl-3.0
amitgroup/parts-net
pnet/bernoulli_mm.py
1
19546
from __future__ import division, print_function, absolute_import from sklearn.utils.extmath import logsumexp from sklearn.utils import check_random_state from sklearn.base import BaseEstimator import numpy as np import random, collections import scipy.sparse # Author: Gustav Larsson # Mark Stoehr <[email protected]> # EPS = np.finfo(float).eps def log_product_of_bernoullis_mixture_likelihood(X, log_odds, log_inv_mean_sums): """Log likelihood function for the product of Bernoullis mixture distribution """ return np.dot(X,log_odds.T) + log_inv_mean_sums def sample_bernoulli(mean, n_samples=1, random_state=None, data_type=np.uint8): """Generate random samples from a Bernoulli distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.rand(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) return (rand.T < mean).T.astype(data_type) class BernoulliMM(BaseEstimator): """ Bernoulli Mixture model with an EM solver. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. random_state : RandomState or an int seed (0 by default) A random number generator instance min_prob : float, optional Floor for the minimum probability thresh : float, optional Convergence threshold. n_iter : float, optional Number of EM iterations to perform n_init : int, optional Number of random initializations to perform with the best kept. params : string, optional Controls which parameters are updated during training. If 'w' is in the string then the weights are updated, and if 'm' is in the string then the means are updated. The default is 'wm'. init_params : string, optional Controls which parameters are updated during initialization. If 'w' is in the string then the weights are updated, and if 'm' is in the string then the means are updated. The default is 'wm'. float_type : numpy type, optional What float type to use for the parameter arrays. Attributes ---------- `weights_` : array, shape (`n_components`,) Stores the mixing weights for each component `means_` : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. `converged_` : bool True when convergence was reached in fit(), False otherwise. Examples -------- Create a mixture model with 2 mixture componenents. >>> import amitgroup as ag >>> import numpy as np >>> data = np.array([[1, 1, 0], [0, 0, 1], [1, 1, 1]]) >>> mixture = ag.stats.BernoulliMixture(2, data) Run the algorithm until specified tolerance. >>> mixture.run_EM(1e-3) Display the mixture templates and the corresponding weights. >>> mixture.templates # doctest: +SKIP array([[ 0.95 , 0.95 , 0.50010438], [ 0.05 , 0.05 , 0.95 ]]) >>> mixture.weights # doctest: +SKIP array([ 0.66671347, 0.33328653]) Display the latent variable, describing what combination of mixture components a certain data frame came from: >>> mixture.affinities # doctest: +SKIP array([[ 9.99861515e-01, 1.38484719e-04], [ 2.90861524e-03, 9.97091385e-01], [ 9.97376426e-01, 2.62357439e-03]]) """ def __init__(self, n_components=1, random_state=None, thresh=1e-6, min_prob=1e-2, min_num=30, n_iter=100,tol=1e-6, n_init=1, params='wm', init_params='wm',blocksize=0, float_type=np.float64, binary_type=np.uint8, verbose=False): self.n_components = n_components self.thresh = thresh self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.float_type = float_type self.binary_type = binary_type self.min_prob = min_prob self.min_num = 30 self.verbose=verbose # blocksize controls whether we do the likelihood computation in blocks to prevent memory blowup self.blocksize = blocksize if self.n_init < 1: raise ValueError('BernoulliMM estimation requires at least one run') self.weights_ = np.ones(self.n_components,dtype=self.float_type)/ self.n_components self.converged_ = False def score_samples(self, X): """Evaluate the model on data Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob: array_like, shape (n_samples,) Log probabilities of each data point in X responsibilities: array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('the shape of X is not compatible with self') if self.blocksize > 0: logprob = np.zeros(X.shape[0],dtype=self.float_type) responsibilities = np.zeros((X.shape[0],self.n_components),dtype=self.float_type) block_id = 0 for block_id in range(0,X.shape[0],self.blocksize): blockend = min(X.shape[0],block_id+self.blocksize) lpr = (log_product_of_bernoullis_mixture_likelihood(X[block_id:blockend], self.log_odds_, self.log_inv_mean_sums_) + np.log(self.weights_)) logprob[block_id:blockend] = logsumexp(lpr, axis=1) responsibilities[block_id:blockend] = np.exp(lpr - (logprob[block_id:blockend])[:, np.newaxis]) else: lpr = (log_product_of_bernoullis_mixture_likelihood(X, self.log_odds_, self.log_inv_mean_sums_) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ data_shape = X.shape[1:] # flatten data to just be binary vectors data_length = np.prod(data_shape) if len(data_shape) > 1: logprob, responsibilities = self.score_samples(X.reshape(X.shape[0], data_length)) else: logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: X[comp_in_X] = sample_bernoulli( self.means_[comp], num_comp_in_X, random_state=random_state, data_type=self.binary_type).T return X def set_means_weights(self,means,weights): """ Set the means and the weights of the model so that one can load a model from being saved. """ self.means_ = means self.weights_ = weights self.log_odds_, self.log_inv_mean_sums_ = _compute_log_odds_inv_means_sums(self.means_) def fit(self, X): """ Run the EM algorithm to specified convergence. Parameters ---------- X : array_like, shape (n,) + d List of data points assumed that the dimensions are such that `np.prod(X.shape[1:])==n_features` """ random_state = check_random_state(self.random_state) X = np.asarray(X, dtype=self.binary_type) if X.ndim == 1: X = X[:, np.newaxis] if self.verbose: print('Starting EM with {} samples, {} dimensions and {} classes'.format(X.shape[0], X.shape[1], self.n_components)) data_shape = X.shape[1:] # flatten data to just be binary vectors data_length = np.prod(data_shape) if len(data_shape) > 1: X = X.reshape(X.shape[0], data_length) if X.shape[0] < self.n_components: raise ValueError( 'BernoulliMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) inv_X = 1 - X max_log_prob = -np.infty # if debug_plot: # plw = ag.plot.PlottingWindow(subplots=(1, self.num_mix), figsize=(self.num_mix*3, 3)) for cur_init in range(self.n_init): if self.verbose: print("Current parameter initialization: {0}".format(cur_init)) if 'm' in self.init_params or not hasattr(self,'means_'): if self.verbose: print("Initializing means") if 0: indices = np.arange(X.shape[0]) random_state.shuffle(indices) self.means_ = np.array(tuple( np.clip(X[indices[i::self.n_components]].mean(0), self.min_prob, 1-self.min_prob) for i in range(self.n_components))) repr_samples = X[random_state.choice(X.shape[0], self.n_components, replace=False)] #self.means_ = repr_samples.clip(self.min_prob, 1 - self.min_prob) self.means_ = repr_samples.clip(0.2, 0.8) self.log_odds_, self.log_inv_mean_sums_ = _compute_log_odds_inv_means_sums(self.means_) if 'w' in self.init_params or not hasattr(self,'weights_'): if self.verbose: print("Initializing weights") self.weights_ = np.tile(1.0 / self.n_components, self.n_components) log_likelihood = [] self.iterations = 0 self.converged_ = False for i in range(self.n_iter): # Expectation Step curr_log_likelihood, responsibilities = self.score_samples(X) log_likelihood.append(curr_log_likelihood.sum()) if self.verbose: print("Iteration {0}: loglikelihood {1}".format(i, log_likelihood[-1])) # check for convergence if i > 0 and abs(log_likelihood[-1] - log_likelihood[-2])/abs(log_likelihood[-2]) < \ self.thresh: self.converged_ = True break # ag.info("Iteration {0}: loglikelihood {1}".format(self.iterations, loglikelihood)) # maximization step self._do_mstep(X, responsibilities, self.params, self.min_prob) if self.n_iter: if log_likelihood[-1] > max_log_prob: if self.verbose: print("updated best params for {0}".format(self.score(X).sum())) max_log_prob = log_likelihood[-1] best_params = {'weights': self.weights_, 'means' : self.means_} # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") if len(data_shape) > 1: X = X.reshape(*( (X.shape[0],) + data_shape)) if self.n_iter: self.means_ = best_params['means'] self.log_odds_, self.log_inv_mean_sums_ = _compute_log_odds_inv_means_sums(self.means_) self.weights_ = best_params['weights'] return self def _do_mstep(self, X, responsibilities, params, min_prob=1e-7): """ Perform the Mstep of the EM algorithm and return the class weights """ weights = responsibilities.sum(axis=0) if self.blocksize > 0: weighted_X_sum=np.zeros((weights.shape[0],X.shape[1]),dtype=self.float_type) for blockstart in range(0,X.shape[0],self.blocksize): blockend=min(X.shape[0],blockstart+self.blocksize) res = responsibilities[blockstart:blockend].T weighted_X_sum += np.dot(res,X[blockstart:blockend]) else: weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = np.clip(weighted_X_sum * inverse_weights,min_prob,1-min_prob) self.log_odds_, self.log_inv_mean_sums_ = _compute_log_odds_inv_means_sums(self.means_) return weights def _n_parameters(self): """Return the number of free parameters in the model""" ndim = self.means_.shape[1] mean_params = ndim * self.n_components return int(mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() def cluster_underlying_data(self,Z,X=None, responsibilities=None): """In cases where binary codes for underlying data are clustered and we wish to recover clusters from the underlying data based on the clustering of binary codes Parameters ---------- Z : array of shape(n_samples, k) List of k-dimensional data points. Each row corresponds to a single data point. X is the binary codes for these data, or the responsibilities are a posterior distribution over the classes that generated the data. X : array of shape(n_samples, n_dimensions), optional List of n_dimensions-dimensional data points. Each row corresponds to a single data point. Should be defined if responsibilities is None. Should be binary data responsibilities : array of shape(n_samples, n_components) Should be defined if X is None, posterior distribution over the n_components for each data point. Returns """ # check that the number of data points matches the number # of data estimated if X is None: if responsibilities is None: raise RuntimeError("no binary data provided") else: responsibilities = self.predict_proba(X) responsibilities = responsibilities.T underlying_clusters = np.dot(responsibilities, Z.reshape(Z.shape[0],np.prod(Z.shape[1:]))) / np.lib.stride_tricks.as_strided(responsibilities.sum(1), shape=(responsibilities.shape[0], np.prod(Z.shape[1:])), strides=(responsibilities.strides[0],0)) return underlying_clusters def _compute_log_odds_inv_means_sums(means): """Compute the log odds, and the sums over the log inverse means to enable fast likelihood computation """ log_inv_means = np.log(1-means) return np.log(means) - log_inv_means, log_inv_means.sum(-1)
bsd-3-clause
dchilds7/Deysha-Star-Formation
vispy/visuals/isocurve.py
18
7809
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division import numpy as np from .line import LineVisual from ..color import ColorArray from ..color.colormap import _normalize, get_colormap from ..geometry.isocurve import isocurve from ..testing import has_matplotlib # checking for matplotlib _HAS_MPL = has_matplotlib() if _HAS_MPL: from matplotlib import _cntr as cntr class IsocurveVisual(LineVisual): """Displays an isocurve of a 2D scalar array. Parameters ---------- data : ndarray | None 2D scalar array. levels : ndarray, shape (Nlev,) | None The levels at which the isocurve is constructed from "*data*". color_lev : Color, colormap name, tuple, list or array The color to use when drawing the line. If a list is given, it must be of shape (Nlev), if an array is given, it must be of shape (Nlev, ...). and provide one color per level (rgba, colorname). clim : tuple (min, max) limits to apply when mapping level values through a colormap. **kwargs : dict Keyword arguments to pass to `LineVisual`. Notes ----- """ def __init__(self, data=None, levels=None, color_lev=None, clim=None, **kwargs): self._data = None self._levels = levels self._color_lev = color_lev self._clim = clim self._need_color_update = True self._need_level_update = True self._need_recompute = True self._X = None self._Y = None self._iso = None self._level_min = None self._data_is_uniform = False self._lc = None self._cl = None self._li = None self._connect = None self._verts = None kwargs['method'] = 'gl' kwargs['antialias'] = False LineVisual.__init__(self, **kwargs) if data is not None: self.set_data(data) @property def levels(self): """ The threshold at which the isocurve is constructed from the 2D data. """ return self._levels @levels.setter def levels(self, levels): self._levels = levels self._need_level_update = True self._need_recompute = True self.update() @property def color(self): return self._color_lev @color.setter def color(self, color): self._color_lev = color self._need_level_update = True self._need_color_update = True self.update() def set_data(self, data): """ Set the scalar array data Parameters ---------- data : ndarray A 2D array of scalar values. The isocurve is constructed to show all locations in the scalar field equal to ``self.levels``. """ self._data = data # if using matplotlib isoline algorithm we have to check for meshgrid # and we can setup the tracer object here if _HAS_MPL: if self._X is None or self._X.T.shape != data.shape: self._X, self._Y = np.meshgrid(np.arange(data.shape[0]), np.arange(data.shape[1])) self._iso = cntr.Cntr(self._X, self._Y, self._data.astype(float)) if self._clim is None: self._clim = (data.min(), data.max()) # sanity check, # should we raise an error here, since no isolines can be drawn? # for now, _prepare_draw returns False if no isoline can be drawn if self._data.min() != self._data.max(): self._data_is_uniform = False else: self._data_is_uniform = True self._need_recompute = True self.update() def _get_verts_and_connect(self, paths): """ retrieve vertices and connects from given paths-list """ verts = np.vstack(paths) gaps = np.add.accumulate(np.array([len(x) for x in paths])) - 1 connect = np.ones(gaps[-1], dtype=bool) connect[gaps[:-1]] = False return verts, connect def _compute_iso_line(self): """ compute LineVisual vertices, connects and color-index """ level_index = [] connects = [] verts = [] # calculate which level are within data range # this works for now and the existing examples, but should be tested # thoroughly also with the data-sanity check in set_data-function choice = np.nonzero((self.levels > self._data.min()) & (self._levels < self._data.max())) levels_to_calc = np.array(self.levels)[choice] # save minimum level index self._level_min = choice[0][0] for level in levels_to_calc: # if we use matplotlib isoline algorithm we need to add half a # pixel in both (x,y) dimensions because isolines are aligned to # pixel centers if _HAS_MPL: nlist = self._iso.trace(level, level, 0) paths = nlist[:len(nlist)//2] v, c = self._get_verts_and_connect(paths) v += np.array([0.5, 0.5]) else: paths = isocurve(self._data.astype(float).T, level, extend_to_edge=True, connected=True) v, c = self._get_verts_and_connect(paths) level_index.append(v.shape[0]) connects.append(np.hstack((c, [False]))) verts.append(v) self._li = np.hstack(level_index) self._connect = np.hstack(connects) self._verts = np.vstack(verts) def _compute_iso_color(self): """ compute LineVisual color from level index and corresponding color """ level_color = [] colors = self._lc for i, index in enumerate(self._li): level_color.append(np.zeros((index, 4)) + colors[i+self._level_min]) self._cl = np.vstack(level_color) def _levels_to_colors(self): # computes ColorArrays for given levels # try _color_lev as colormap, except as everything else try: f_color_levs = get_colormap(self._color_lev) except: colors = ColorArray(self._color_lev).rgba else: lev = _normalize(self._levels, self._clim[0], self._clim[1]) # map function expects (Nlev,1)! colors = f_color_levs.map(lev[:, np.newaxis]) # broadcast to (nlev, 4) array if len(colors) == 1: colors = colors * np.ones((len(self._levels), 1)) # detect color_lev/levels mismatch and raise error if (len(colors) != len(self._levels)): raise TypeError("Color/level mismatch. Color must be of shape " "(Nlev, ...) and provide one color per level") self._lc = colors def _prepare_draw(self, view): if (self._data is None or self._levels is None or self._color_lev is None or self._data_is_uniform): return False if self._need_level_update: self._levels_to_colors() self._need_level_update = False if self._need_recompute: self._compute_iso_line() self._compute_iso_color() LineVisual.set_data(self, pos=self._verts, connect=self._connect, color=self._cl) self._need_recompute = False if self._need_color_update: self._compute_iso_color() LineVisual.set_data(self, color=self._cl) self._need_color_update = False return LineVisual._prepare_draw(self, view)
bsd-3-clause
petricm/DIRAC
Core/Utilities/Graphs/PieGraph.py
4
5568
######################################################################## # $HeadURL$ ######################################################################## """ PieGraph represents a pie graph The DIRAC Graphs package is derived from the GraphTool plotting package of the CMS/Phedex Project by ... <to be added> """ from __future__ import print_function __RCSID__ = "$Id$" import numpy, math, time from matplotlib.patches import Wedge, Shadow from matplotlib.cbook import is_string_like from DIRAC.Core.Utilities.Graphs.PlotBase import PlotBase from DIRAC.Core.Utilities.Graphs.GraphData import GraphData from DIRAC.Core.Utilities.Graphs.GraphUtilities import * class PieGraph( PlotBase ): def __init__( self, data, ax, prefs, *args, **kw ): PlotBase.__init__( self, data, ax, prefs, *args, **kw ) self.pdata = data def pie( self, explode = None, colors = None, autopct = None, pctdistance = 0.6, shadow = False ): start = time.time() labels = self.pdata.getLabels() if labels[0][0] == "NoLabels": try: self.pdata.initialize(key_type='string') self.pdata.sortLabels() labels = self.pdata.getLabels() nLabels = self.pdata.getNumberOfLabels() explode = [0.] * nLabels if nLabels > 0: explode[0] = 0.1 except Exception as x: print("PieGraph Error: can not interpret data for the plot") #labels.reverse() values = [l[1] for l in labels] x = numpy.array( values, numpy.float64 ) self.legendData = labels sx = float( numpy.sum( x ) ) if sx > 1: x = numpy.divide( x, sx ) labels = [l[0] for l in labels] if explode is None: explode = [0] * len( x ) assert( len( x ) == len( labels ) ) assert( len( x ) == len( explode ) ) plot_axis_labels = self.prefs.get( 'plot_axis_labels', True ) center = 0, 0 radius = 1.1 theta1 = 0 i = 0 texts = [] slices = [] autotexts = [] for frac, label, expl in zip( x, labels, explode ): x, y = center theta2 = theta1 + frac thetam = 2 * math.pi * 0.5 * ( theta1 + theta2 ) x += expl * math.cos( thetam ) y += expl * math.sin( thetam ) color = self.palette.getColor( label ) w = Wedge( ( x, y ), radius, 360. * theta1, 360. * theta2, facecolor = color, lw = pixelToPoint( 0.5, self.dpi ), edgecolor = '#999999' ) slices.append( w ) self.ax.add_patch( w ) w.set_label( label ) if shadow: # make sure to add a shadow after the call to # add_patch so the figure and transform props will be # set shad = Shadow( w, -0.02, -0.02, #props={'facecolor':w.get_facecolor()} ) shad.set_zorder( 0.9 * w.get_zorder() ) self.ax.add_patch( shad ) if plot_axis_labels: if frac > 0.03: xt = x + 1.05 * radius * math.cos( thetam ) yt = y + 1.05 * radius * math.sin( thetam ) thetam %= 2 * math.pi if 0 < thetam and thetam < math.pi: valign = 'bottom' elif thetam == 0 or thetam == math.pi: valign = 'center' else: valign = 'top' if thetam > math.pi / 2.0 and thetam < 3.0 * math.pi / 2.0: halign = 'right' elif thetam == math.pi / 2.0 or thetam == 3.0 * math.pi / 2.0: halign = 'center' else: halign = 'left' t = self.ax.text( xt, yt, label, size = pixelToPoint( self.prefs['subtitle_size'], self.dpi ), horizontalalignment = halign, verticalalignment = valign ) t.set_family( self.prefs['font_family'] ) t.set_fontname( self.prefs['font'] ) t.set_size( pixelToPoint( self.prefs['text_size'], self.dpi ) ) texts.append( t ) if autopct is not None: xt = x + pctdistance * radius * math.cos( thetam ) yt = y + pctdistance * radius * math.sin( thetam ) if is_string_like( autopct ): s = autopct % ( 100. * frac ) elif callable( autopct ): s = autopct( 100. * frac ) else: raise TypeError( 'autopct must be callable or a format string' ) t = self.ax.text( xt, yt, s, horizontalalignment = 'center', verticalalignment = 'center' ) t.set_family( self.prefs['font_family'] ) t.set_fontname( self.prefs['font'] ) t.set_size( pixelToPoint( self.prefs['text_size'], self.dpi ) ) autotexts.append( t ) theta1 = theta2 i += 1 self.legendData.reverse() self.ax.set_xlim( ( -1.25, 1.25 ) ) self.ax.set_ylim( ( -1.25, 1.25 ) ) self.ax.set_axis_off() if autopct is None: return slices, texts else: return slices, texts, autotexts min_amount = .1 def getLegendData( self ): return self.legendData def draw( self ): self.ylabel = '' self.prefs['square_axis'] = True PlotBase.draw( self ) def my_display( x ): if x > 100 * self.min_amount: return '%.1f' % x + '%' else: return "" nLabels = self.pdata.getNumberOfLabels() explode = [0.] * nLabels if nLabels > 0: explode[0] = 0.1 self.wedges, text_labels, percent = self.pie( explode = explode, autopct = my_display )
gpl-3.0
yafeunteun/wikipedia-spam-classifier
revscoring/revscoring/utilities/tune.py
1
9729
""" Tunes a set of models against a training set to identify the best model/configuration. Usage: tune <params-config> <features> <label> [--observations=<path>] [--scoring=<type>] [--test-prop=<prop>] [--folds=<num>] [--report=<path>] [--label-type=<type>] [--processes=<num>] [--cv-timeout=<mins>] [--scale-features] [--verbose] [--debug] Options: <params-config> The path to a YAML configuration file containing the models and parameter values to search when tuning <features> The classpath to a feature_list to use when interpreting the feature values of the observations <label> The name of the field to be predicted --observations=<path> The path to a file containing observations to train and test against. [default: <stdin>] --scoring=<type> The type of scoring strategy to optimize for when choosing parameter sets [default: roc_auc] --folds=<num> The number of cross-validation folds to try [default: 5] --report=<path> Path to a file to write the tuning report to [default: <stdout>] --processes=<num> The number of parallel processes to start for model building [default: <cpu-count>] --cv-timeout=<mins> The number of minutes to wait for a model to cross-validate before timing out [default: <forever>] --scale-features Scales the feature values before tuning --verbose Print progress information to stderr --debug Print debug information to stderr """ import datetime import json import logging import multiprocessing import sys import time import traceback from collections import defaultdict import docopt import numpy import yamlconf from sklearn import cross_validation, grid_search, preprocessing from tabulate import tabulate from . import metrics from .. import __version__ from ..dependencies import solve from .util import Timeout, read_observations logger = logging.getLogger(__name__) def main(argv=None): args = docopt.docopt(__doc__, argv=argv) logging.basicConfig( level=logging.INFO if not args['--debug'] else logging.DEBUG, format='%(asctime)s %(levelname)s:%(name)s -- %(message)s' ) params_config = yamlconf.load(open(args['<params-config>'])) features_path = args['<features>'] features = yamlconf.import_path(features_path) if args['--observations'] == "<stdin>": observations = read_observations(sys.stdin) else: observations = read_observations(open(args['--observations'])) logger.info("Reading feature values & labels...") label_name = args['<label>'] value_labels = \ [(list(solve(features, cache=ob['cache'])), ob[label_name]) for ob in observations] # Get a sepecialized scorer if we have one scoring = metrics.SCORERS.get(args['--scoring'], args['--scoring']) folds = int(args['--folds']) if args['--report'] == "<stdout>": report = sys.stdout else: report = open(args['--report'], "w") if args['--processes'] == "<cpu-count>": processes = multiprocessing.cpu_count() else: processes = int(args['--processes']) if args['--cv-timeout'] == "<forever>": cv_timeout = None else: cv_timeout = float(args['--cv-timeout']) * 60 # Convert to seconds scale_features = args['--scale-features'] verbose = args['--verbose'] run(params_config, features_path, value_labels, scoring, folds, report, processes, cv_timeout, scale_features, verbose) def run(params_config, features_path, value_labels, scoring, folds, report, processes, cv_timeout, scale_features, verbose): if scale_features: logger.debug("Scaling features...") ss = preprocessing.StandardScaler() feature_values, labels = (list(vect) for vect in zip(*value_labels)) scaled_feature_values = ss.fit_transform(feature_values) value_labels = list(zip(scaled_feature_values, labels)) # Prepare the worker pool logger.debug("Starting up multiprocessing pool (processes={0})" .format(processes)) pool = multiprocessing.Pool(processes=processes) # Start writing the model tuning report possible_labels = set(label for _, label in value_labels) report.write("# Model tuning report\n") report.write("- Revscoring version: {0}\n".format(__version__)) report.write("- Features: {0}\n".format(features_path)) report.write("- Date: {0}\n".format(datetime.datetime.now().isoformat())) report.write("- Observations: {0}\n".format(len(value_labels))) report.write("- Labels: {0}\n".format(json.dumps(list(possible_labels)))) report.write("- Scoring: {0}\n".format(scoring)) report.write("- Folds: {0}\n".format(folds)) report.write("\n") # For each estimator and paramset, submit the job. cv_result_sets = defaultdict(lambda: []) for name, estimator, param_grid in _estimator_param_grid(params_config): logger.debug("Submitting jobs for {0}:".format(name)) for params in param_grid: logger.debug("\tsubmitting {0}..." .format(format_params(params))) result = pool.apply_async(_cross_validate, [value_labels, estimator, params], {'cv_timeout': cv_timeout, 'scoring': scoring, 'folds': folds}) cv_result_sets[name].append((params, result)) # Barrier synchronization logger.info("Running gridsearch for {0} model/params pairs ..." .format(sum(len(p_r) for p_r in cv_result_sets))) grid_scores = [] for name, param_results in cv_result_sets.items(): for params, result in param_results: scores = result.get() # This is a line that blocks grid_scores.append((name, params, scores.mean(), scores.std())) # Write the rest of the report! First, print the top 10 combinations report.write("# Top scoring configurations\n") grid_scores.sort(key=lambda gs: gs[2], reverse=True) table = tabulate( ((name, round(mean_score, 3), round(std_score, 3), format_params(params)) for name, params, mean_score, std_score in grid_scores[:10]), headers=["model", "mean(scores)", "std(scores)", "params"], tablefmt="pipe" ) report.write(table + "\n") report.write("\n") # Now print out scores for each model. report.write("# Models\n") for name, param_results in cv_result_sets.items(): report.write("## {0}\n".format(name)) param_scores = ((p, r.get()) for p, r in param_results) param_stats = [(p, s.mean(), s.std()) for p, s in param_scores] param_stats.sort(key=lambda v: v[1], reverse=True) table = tabulate( ((round(mean_score, 3), round(std_score, 3), format_params(params)) for params, mean_score, std_score in param_stats), headers=["mean(scores)", "std(scores)", "params"], tablefmt="pipe" ) report.write(table + "\n") report.write("\n") report.close() def format_params(doc): return ", ".join("{0}={1}".format(k, json.dumps(v)) for k, v in doc.items()) def _estimator_param_grid(params_config): for name, config in params_config.items(): try: EstimatorClass = yamlconf.import_module(config['class']) estimator = EstimatorClass() except Exception: logger.warn("Could not load estimator {0}" .format(config['class'])) logger.warn("Exception:\n" + traceback.format_exc()) continue if not hasattr(estimator, "fit"): logger.warn("Estimator {0} does not have a fit() method." .format(config['class'])) continue param_grid = grid_search.ParameterGrid(config['params']) yield name, estimator, param_grid def _cross_validate(value_labels, estimator, params, scoring="roc_auc", folds=5, cv_timeout=None, verbose=False): start = time.time() feature_values, labels = (list(vect) for vect in zip(*value_labels)) estimator.set_params(**params) try: logger.debug("Running cross-validation for " + "{0} with timeout of {1} seconds" .format(estimator.__class__.__name__, cv_timeout)) with Timeout(cv_timeout): scores = cross_validation.cross_val_score( estimator, feature_values, labels, scoring=scoring, cv=folds) duration = time.time() - start logger.debug("Cross-validated {0} with {1} in {2} minutes: {3} ({4})" .format(estimator.__class__.__name__, format_params(params), round(duration / 60, 3), round(scores.mean(), 3), round(scores.std(), 3))) return scores except Exception: logger.warn("Could not cross-validate estimator {0}" .format(estimator.__class__.__name__)) logger.warn("Exception:\n" + traceback.format_exc()) return numpy.array([0] * folds)
mit
hlin117/statsmodels
statsmodels/examples/try_polytrend.py
33
1477
from __future__ import print_function import numpy as np #import statsmodels.linear_model.regression as smreg from scipy import special import statsmodels.api as sm from statsmodels.datasets.macrodata import data dta = data.load() gdp = np.log(dta.data['realgdp']) from numpy import polynomial from scipy import special maxorder = 20 polybase = special.chebyt polybase = special.legendre t = np.linspace(-1,1,len(gdp)) exog = np.column_stack([polybase(i)(t) for i in range(maxorder)]) fitted = [sm.OLS(gdp, exog[:, :maxr]).fit().fittedvalues for maxr in range(2,maxorder)] print((np.corrcoef(exog[:,1:6], rowvar=0)*10000).astype(int)) import matplotlib.pyplot as plt plt.figure() plt.plot(gdp, 'o') for i in range(maxorder-2): plt.plot(fitted[i]) plt.figure() #plt.plot(gdp, 'o') for i in range(maxorder-4, maxorder-2): #plt.figure() plt.plot(gdp - fitted[i]) plt.title(str(i+2)) plt.figure() plt.plot(gdp, '.') plt.plot(fitted[-1], lw=2, color='r') plt.plot(fitted[0], lw=2, color='g') plt.title('GDP and Polynomial Trend') plt.figure() plt.plot(gdp - fitted[-1], lw=2, color='r') plt.plot(gdp - fitted[0], lw=2, color='g') plt.title('Residual GDP minus Polynomial Trend (green: linear, red: legendre(20))') #orthonormalize an exog using QR ex2 = t[:,None]**np.arange(6) #np.vander has columns reversed q2,r2 = np.linalg.qr(ex2, mode='full') np.max(np.abs(np.dot(q2.T, q2)-np.eye(6))) plt.figure() plt.plot(q2, lw=2) plt.show()
bsd-3-clause
Debaq/Triada
FullAxis_GUI/DB/BASE DE DATOS EXPERIMENTO/experimento 3/barbara hicks/medidor3.py
27
3052
import argparse import sys import matplotlib import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import json parser = argparse.ArgumentParser(description="Does some awesome things.") parser.add_argument('message', type=str, help="pass a message into the script") args = parser.parse_args(sys.argv[1:]) data = [] New_data=[] dt=[] with open(args.message) as json_file: data = json.load(json_file) def graph(grid,d_tiempo): plt.switch_backend('TkAgg') #default on my system f = plt.figure(num=args.message, figsize=(20,15)) mng = plt._pylab_helpers.Gcf.figs.get(f.number, None) print(New_data) mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.title(args.message) if grid == 1: tempo = d_tiempo tempo_init = tempo[0] tempo_end = tempo[-1] gs1 = GridSpec(4, 1) gs1.update(left=0.05, right=0.95, wspace=0.5, hspace=0.3, bottom=0.08) ax1 = plt.subplot(gs1[0, :]) ax1.grid() ax1.set_ylabel('Pitch',fontsize=8) if grid ==1: L1 = ax1.plot(d_tiempo,New_data['pitch']) else: L1 = ax1.plot(d_tiempo,data['pitch']) ax2 = plt.subplot(gs1[1, :]) ax2.grid() ax2.set_ylabel('Roll',fontsize=8) if grid ==1: L1 = ax2.plot(d_tiempo,New_data['roll']) else: L1 = ax2.plot(d_tiempo,data['roll']) ax3 = plt.subplot(gs1[2, :]) ax3.grid() ax3.set_ylabel('Yaw',fontsize=8) if grid ==1: L1 = ax3.plot(d_tiempo,New_data['yaw']) else: L1 = ax3.plot(d_tiempo,data['yaw']) ax4 = plt.subplot(gs1[3, :]) ax4.grid() ax4.set_ylabel('Tiempo',fontsize=8) if grid ==1: L1 = ax4.plot(d_tiempo,New_data['ledblue']) L2 = ax4.plot(d_tiempo,New_data['ledred']) else: L1 = ax4.plot(d_tiempo,data['ledblue']) L2 = ax4.plot(d_tiempo,data['ledred']) plt.show() def find_nearest(array,values): idx = np.abs(np.subtract.outer(array, values)).argmin(0) return idx def corte(init_cut,end_cut,a,b,c,d,e,f,g,h,i): a=a[init_cut:end_cut] b=b[init_cut:end_cut] c=c[init_cut:end_cut] d=d[init_cut:end_cut] e=e[init_cut:end_cut] f=f[init_cut:end_cut] g=g[init_cut:end_cut] h=h[init_cut:end_cut] i=i[init_cut:end_cut] datos={'roll':a,'pitch':b,'yaw':c, 'X':d, 'Y':e, 'Z':f,'time':g, 'ledblue':h, 'ledred':i} return datos def reset_tempo(var_in,var_out): uni = var_in[0] for t in range(0,len(var_in)): var_out.append(round((var_in[t]-uni),3)) return var_out graph(0,data['time']) init_cut = float(input("tiempo inicial: ")) init_cuty = find_nearest(data['time'],init_cut) end_cut = float(input("tiempo final: ")) end_cuty = find_nearest(data['time'],end_cut) New_data=corte(init_cuty,end_cuty,data['pitch'],data['roll'],data['yaw'],data['X'],data['Y'],data['Z'],data['time'],data['ledblue'],data['ledred']) data = [] print(data) data = New_data print(data) dt = reset_tempo(New_data['time'],dt) graph(0,dt)
gpl-3.0
mehdidc/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
wchan/tensorflow
tensorflow/examples/skflow/boston.py
1
1609
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import datasets, cross_validation, metrics from sklearn import preprocessing from tensorflow.contrib import skflow # Load dataset boston = datasets.load_boston() X, y = boston.data, boston.target # Split dataset into train / test X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2, random_state=42) # Scale data (training set) to 0 mean and unit standard deviation. scaler = preprocessing.StandardScaler() X_train = scaler.fit_transform(X_train) # Build 2 layer fully connected DNN with 10, 10 units respectively. regressor = skflow.TensorFlowDNNRegressor(hidden_units=[10, 10], steps=5000, learning_rate=0.1, batch_size=1) # Fit regressor.fit(X_train, y_train) # Predict and score score = metrics.mean_squared_error(regressor.predict(scaler.fit_transform(X_test)), y_test) print('MSE: {0:f}'.format(score))
apache-2.0
rew4332/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_queue_runner_test.py
30
4727
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow.contrib.learn.python.learn.dataframe.queues.feeding_functions as ff # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(tf.test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with tf.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff.enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1))] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with tf.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff.enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with tf.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff.enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1))] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with tf.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff.enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": tf.test.main()
apache-2.0
mne-tools/mne-tools.github.io
dev/_downloads/cae85de1d2b532e063fb12463baa0fca/publication_figure.py
10
11215
""" .. _ex-publication-figure: =================================== Make figures more publication ready =================================== In this example, we show several use cases to take MNE plots and customize them for a more publication-ready look. """ # Authors: Eric Larson <[email protected]> # Daniel McCloy <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) ############################################################################### # Imports # ------- # We are importing everything we need for this example: import os.path as op import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import (make_axes_locatable, ImageGrid, inset_locator) import mne ############################################################################### # Evoked plot with brain activation # --------------------------------- # # Suppose we want a figure with an evoked plot on top, and the brain activation # below, with the brain subplot slightly bigger than the evoked plot. Let's # start by loading some :ref:`example data <sample-dataset>`. data_path = mne.datasets.sample.data_path() subjects_dir = op.join(data_path, 'subjects') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis-meg-eeg-lh.stc') fname_evoked = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') evoked = mne.read_evokeds(fname_evoked, 'Left Auditory') evoked.pick_types(meg='grad').apply_baseline((None, 0.)) max_t = evoked.get_peak()[1] stc = mne.read_source_estimate(fname_stc) ############################################################################### # During interactive plotting, we might see figures like this: evoked.plot() stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample', subjects_dir=subjects_dir, initial_time=max_t, time_viewer=False, show_traces=False) ############################################################################### # To make a publication-ready figure, first we'll re-plot the brain on a white # background, take a screenshot of it, and then crop out the white margins. # While we're at it, let's change the colormap, set custom colormap limits and # remove the default colorbar (so we can add a smaller, vertical one later): colormap = 'viridis' clim = dict(kind='value', lims=[4, 8, 12]) # Plot the STC, get the brain image, crop it: brain = stc.plot(views='lat', hemi='split', size=(800, 400), subject='sample', subjects_dir=subjects_dir, initial_time=max_t, background='w', colorbar=False, clim=clim, colormap=colormap, time_viewer=False, show_traces=False) screenshot = brain.screenshot() brain.close() ############################################################################### # Now let's crop out the white margins and the white gap between hemispheres. # The screenshot has dimensions ``(h, w, 3)``, with the last axis being R, G, B # values for each pixel, encoded as integers between ``0`` and ``255``. ``(255, # 255, 255)`` encodes a white pixel, so we'll detect any pixels that differ # from that: nonwhite_pix = (screenshot != 255).any(-1) nonwhite_row = nonwhite_pix.any(1) nonwhite_col = nonwhite_pix.any(0) cropped_screenshot = screenshot[nonwhite_row][:, nonwhite_col] # before/after results fig = plt.figure(figsize=(4, 4)) axes = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.5) for ax, image, title in zip(axes, [screenshot, cropped_screenshot], ['Before', 'After']): ax.imshow(image) ax.set_title('{} cropping'.format(title)) ############################################################################### # A lot of figure settings can be adjusted after the figure is created, but # many can also be adjusted in advance by updating the # :data:`~matplotlib.rcParams` dictionary. This is especially useful when your # script generates several figures that you want to all have the same style: # Tweak the figure style plt.rcParams.update({ 'ytick.labelsize': 'small', 'xtick.labelsize': 'small', 'axes.labelsize': 'small', 'axes.titlesize': 'medium', 'grid.color': '0.75', 'grid.linestyle': ':', }) ############################################################################### # Now let's create our custom figure. There are lots of ways to do this step. # Here we'll create the figure and the subplot axes in one step, specifying # overall figure size, number and arrangement of subplots, and the ratio of # subplot heights for each row using :mod:`GridSpec keywords # <matplotlib.gridspec>`. Other approaches (using # :func:`~matplotlib.pyplot.subplot2grid`, or adding each axes manually) are # shown commented out, for reference. # sphinx_gallery_thumbnail_number = 4 # figsize unit is inches fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(4.5, 3.), gridspec_kw=dict(height_ratios=[3, 4])) # alternate way #1: using subplot2grid # fig = plt.figure(figsize=(4.5, 3.)) # axes = [plt.subplot2grid((7, 1), (0, 0), rowspan=3), # plt.subplot2grid((7, 1), (3, 0), rowspan=4)] # alternate way #2: using figure-relative coordinates # fig = plt.figure(figsize=(4.5, 3.)) # axes = [fig.add_axes([0.125, 0.58, 0.775, 0.3]), # left, bot., width, height # fig.add_axes([0.125, 0.11, 0.775, 0.4])] # we'll put the evoked plot in the upper axes, and the brain below evoked_idx = 0 brain_idx = 1 # plot the evoked in the desired subplot, and add a line at peak activation evoked.plot(axes=axes[evoked_idx]) peak_line = axes[evoked_idx].axvline(max_t, color='#66CCEE', ls='--') # custom legend axes[evoked_idx].legend( [axes[evoked_idx].lines[0], peak_line], ['MEG data', 'Peak time'], frameon=True, columnspacing=0.1, labelspacing=0.1, fontsize=8, fancybox=True, handlelength=1.8) # remove the "N_ave" annotation axes[evoked_idx].texts = [] # Remove spines and add grid axes[evoked_idx].grid(True) axes[evoked_idx].set_axisbelow(True) for key in ('top', 'right'): axes[evoked_idx].spines[key].set(visible=False) # Tweak the ticks and limits axes[evoked_idx].set( yticks=np.arange(-200, 201, 100), xticks=np.arange(-0.2, 0.51, 0.1)) axes[evoked_idx].set( ylim=[-225, 225], xlim=[-0.2, 0.5]) # now add the brain to the lower axes axes[brain_idx].imshow(cropped_screenshot) axes[brain_idx].axis('off') # add a vertical colorbar with the same properties as the 3D one divider = make_axes_locatable(axes[brain_idx]) cax = divider.append_axes('right', size='5%', pad=0.2) cbar = mne.viz.plot_brain_colorbar(cax, clim, colormap, label='Activation (F)') # tweak margins and spacing fig.subplots_adjust( left=0.15, right=0.9, bottom=0.01, top=0.9, wspace=0.1, hspace=0.5) # add subplot labels for ax, label in zip(axes, 'AB'): ax.text(0.03, ax.get_position().ymax, label, transform=fig.transFigure, fontsize=12, fontweight='bold', va='top', ha='left') ############################################################################### # Custom timecourse with montage inset # ------------------------------------ # # Suppose we want a figure with some mean timecourse extracted from a number of # sensors, and we want a smaller panel within the figure to show a head outline # with the positions of those sensors clearly marked. # If you are familiar with MNE, you know that this is something that # :func:`mne.viz.plot_compare_evokeds` does, see an example output in # :ref:`ex-hf-sef-data` at the bottom. # # In this part of the example, we will show you how to achieve this result on # your own figure, without having to use :func:`mne.viz.plot_compare_evokeds`! # # Let's start by loading some :ref:`example data <sample-dataset>`. data_path = mne.datasets.sample.data_path() fname_raw = op.join(data_path, "MEG", "sample", "sample_audvis_raw.fif") raw = mne.io.read_raw_fif(fname_raw) # For the sake of the example, we focus on EEG data raw.pick_types(meg=False, eeg=True) ############################################################################### # Let's make a plot. # channels to plot: to_plot = [f"EEG {i:03}" for i in range(1, 5)] # get the data for plotting in a short time interval from 10 to 20 seconds start = int(raw.info['sfreq'] * 10) stop = int(raw.info['sfreq'] * 20) data, times = raw.get_data(picks=to_plot, start=start, stop=stop, return_times=True) # Scale the data from the MNE internal unit V to µV data *= 1e6 # Take the mean of the channels mean = np.mean(data, axis=0) # make a figure fig, ax = plt.subplots(figsize=(4.5, 3)) # plot some EEG data ax.plot(times, mean) ############################################################################### # So far so good. Now let's add the smaller figure within the figure to show # exactly, which sensors we used to make the timecourse. # For that, we use an "inset_axes" that we plot into our existing axes. # The head outline with the sensor positions can be plotted using the # `~mne.io.Raw` object that is the source of our data. # Specifically, that object already contains all the sensor positions, # and we can plot them using the ``plot_sensors`` method. # recreate the figure (only necessary for our documentation server) fig, ax = plt.subplots(figsize=(4.5, 3)) ax.plot(times, mean) axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2) # pick_channels() edits the raw object in place, so we'll make a copy here # so that our raw object stays intact for potential later analysis raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins) ############################################################################### # That looks nice. But the sensor dots are way too big for our taste. Luckily, # all MNE-Python plots use Matplotlib under the hood and we can customize # each and every facet of them. # To make the sensor dots smaller, we need to first get a handle on them to # then apply a ``*.set_*`` method on them. # If we inspect our axes we find the objects contained in our plot: print(axins.get_children()) ############################################################################### # That's quite a a lot of objects, but we know that we want to change the # sensor dots, and those are most certainly a "PathCollection" object. # So let's have a look at how many "collections" we have in the axes. print(axins.collections) ############################################################################### # There is only one! Those must be the sensor dots we were looking for. # We finally found exactly what we needed. Sometimes this can take a bit of # experimentation. sensor_dots = axins.collections[0] # Recreate the figure once more; shrink the sensor dots; add axis labels fig, ax = plt.subplots(figsize=(4.5, 3)) ax.plot(times, mean) axins = inset_locator.inset_axes(ax, width="30%", height="30%", loc=2) raw.copy().pick_channels(to_plot).plot_sensors(title="", axes=axins) sensor_dots = axins.collections[0] sensor_dots.set_sizes([1]) # add axis labels, and adjust bottom figure margin to make room for them ax.set(xlabel="Time (s)", ylabel="Amplitude (µV)") fig.subplots_adjust(bottom=0.2)
bsd-3-clause
idoerg/BOA
src/classify/mnbayes.py
1
9467
""" NOTE: OUT OF DATE Multinomial Naive Bayes classifier """ import nltk from nltk.classify.scikitlearn import SklearnClassifier from sklearn.naive_bayes import MultinomialNB import pylab as pl from sklearn.utils import shuffle from sklearn.metrics import roc_curve, auc import os,sys import itertools import argparse from collections import defaultdict import random import Bio import re from Bio import SeqIO, SeqFeature from Bio.SeqRecord import SeqRecord from Bio import Entrez import training import genbank import cPickle import gzip import copy import text_classifier word_reg = re.compile("[a-z]+") class MNBayes(text_classifier.TextClassifier): def __init__(self,trainDir,labelFile,numTrees=10): self.classifier = None self.labelFile = labelFile self.trainingDir = trainDir self.labels = None self.all_words = None self.numTrees = numTrees self.classifier = SklearnClassifier(MultinomialNB()) #self.labels = training.setup(labelFile) #self.train() def train(self): feature_sets = self.getFeatures() self.classifier.train(feature_sets) """ Determines training error""" def trainingError(self): feature_sets = self.getFeatures() p = nltk.classify.accuracy(self.classifier,feature_sets) return p """ Make sure that the algorithm works on training data using a k fold cross validation scheme """ def kfoldCrossValidation(self,k): feature_sets = self.getFeatures() error = 0 for i in range(k): self.classifier = SklearnClassifier(MultinomialNB()) n = len(feature_sets)/k train_set,test_set = feature_sets[:n*i],feature_sets[n*i:] test_set1 = feature_sets[:n*i] train_set = feature_sets[n*i:n*(i+1)] test_set2 = feature_sets[i+1:] test_set = test_set1+test_set2 self.classifier.train(feature_sets) p = nltk.classify.accuracy(self.classifier,test_set) return p """ Make sure that the algorithm works on training data using a leave one out cross validation scheme """ def leave1OutCrossValidation(self): error = 0 feature_sets = self.getFeatures() N = len(feature_sets) for i in range(N): self.classifier = SklearnClassifier(MultinomialNB()) train_set1,test_set,train_set2 = feature_sets[:i],feature_sets[i],feature_sets[i+1:] train_set = train_set1+train_set2 test_set = [test_set] self.classifier.train(feature_sets) p = nltk.classify.accuracy(self.classifier,test_set) error+=p return error/N """ Construct a learning curve to see if there is overfitting""" def learningCurve(self,numTrials=4): accuracies = [] feature_sets = self.getFeatures() for k in xrange(1,len(feature_sets)-1): total = 0 for i in xrange(numTrials): self.classifier = SklearnClassifier(MultinomialNB()) random.shuffle(feature_sets) train_set,test_set = feature_sets[:k],feature_sets[k:] self.classifier.train(feature_sets) p = nltk.classify.accuracy(self.classifier,test_set) total+=p accuracies.append(total/numTrials) return accuracies """ Train on only k features and return training labels and predicted labels """ def testClassify(self,k): feature_sets = self.getFeatures() random.shuffle(feature_sets) self.classifier = SklearnClassifier(MultinomialNB()) self.classifier.train(feature_sets[k:]) features,ref_labels = zip(*feature_sets[:k]) pred_labels = self.classifier.classify_many(features) return ref_labels,pred_labels """ nltk confusion matrix """ def confusionMatrix(self,ref,test): ref.sort(key=lambda x: x[0]) test.sort(key=lambda x: x[0]) _,ref_labels = zip(*ref) _,test_labels = zip(*test) cm = ConfusionMatrix(ref_labels, test_labels) return cm """ Classifies proteins based on its text """ def classify(self,db,fastain): proIDs,features,labels = [],[],[] prevFeatureset = '' prevText = '' for seq_record in SeqIO.parse(fastain, "fasta"): title = seq_record.id toks = title.split("|") proteinID = toks[5] query_rows = genbank.proteinQuery(proteinID,db) ids,text = zip(*query_rows) text = ''.join(map(str,text)) if text=='': label = ['na'] else: text = word_reg.findall(text) featureset = self.gene_features(text) assert text!=prevText assert featureset!=prevFeatureset prevFeatureset = featureset prevText = text label = self.classifier.batch_classify([featureset]) proIDs.append(proteinID) labels+=label return zip(proIDs,labels) def go(): pass if __name__=="__main__": parser = argparse.ArgumentParser(description=\ 'A naive bayes classifier that attempts to categorize context genes') parser.add_argument(\ '--training-labels', type=str, required=False, help='A training data set to serve as a template for categorizing context genes') parser.add_argument(\ '--genbank-files', type=str, nargs="+", required=False, help='Genbank files containing annotations of bacterial genes') parser.add_argument(\ '--test', action='store_const', const=True, default=False, help='Run unittests') args = parser.parse_args() if not args.test: go() else: del sys.argv[1:] import unittest class TestTraining1(unittest.TestCase): def setUp(self): self.root = os.environ['BACFINDER_HOME'] self.genbankDir = "%s/example/Streptococcus_pyogenes"%self.root self.trainDir = "%s/data/training/protein"%self.root self.genbankFile = "%s/example/Streptococcus_pyogenes/NC_011375.gbk"%self.root self.test_file = "test_labels.txt" string = "\n".join(["#Organism: Y12234.1 (as-48A-D1) and AJ438950.1 (as-48E - H), Enterococcus faecalis subsp. liquefaciens plasmid submitted as separate sequences)", "#Reference: http://jb.asm.org/content/190/1/240.full, http://aem.asm.org/content/69/2/1229.full.pdf", "#locus_tag label name", "CAA72917.1 toxin", "CAA72918.1 modifier", "CAA72919.1 transport", '#Organism: AF061787.1, Escherichia coli plasmid pTUC100', '#Reference: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93700', '#locus_tag label name', 'AAD28494.1 toxin', 'AAD28495.1 modifier', 'AAD28496.1 modifier', 'AAD28497.1 transport']) open(self.test_file,'w').write("%s\n"%string) def tearDown(self): os.remove(self.test_file) def testText(self): nb = MNBayes(self.trainDir,self.test_file) nb.train() p = nb.trainingError() print "Accuracy:",p def test1(self): #Labs = training.setup(self.genbankDir,self.labelFile) nb = MNBayes(self.trainDir,self.test_file) nb.train() #nb.classifier.show_most_informative_features() class TestTraining2(unittest.TestCase): def setUp(self): #self.genbankDir = "../example/Streptococcus_pyogenes" #self.genbankFile = "../example/Streptococcus_pyogenes/NC_011375.gbk" self.root = os.environ['BACFINDER_HOME'] self.trainDir = "%s/data/training/protein"%self.root self.labelFile = "%s/data/training/training_proteins.txt"%self.root self.zip = "test_serial.zip" #Obtain training labels def test1(self): #Labs = training.setup(self.genbankDir,self.labelFile) nb = MNBayes(self.trainDir,self.labelFile) nb.train() original = copy.deepcopy(nb) #nb.classifier.show_most_informative_features() nb.dump(self.zip) nb.load(self.zip) self.assertEquals(nb.labelFile,original.labelFile) def test2(self): #Obtain training labels #Labs = training.setup(self.genbankDir,self.labelFile) nb = MNBayes(self.trainDir,self.labelFile) nb.train() p = nb.trainingError() print "Accuracy:",p self.assertTrue(p>0.5) unittest.main()
gpl-3.0
jjx02230808/project0223
sklearn/datasets/__init__.py
72
3807
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_breast_cancer from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
Sentient07/scikit-learn
sklearn/tests/test_pipeline.py
13
31148
""" Test the pipeline module. """ from tempfile import mkdtemp import shutil import time import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_dict_equal from sklearn.base import clone, BaseEstimator from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer from sklearn.externals.joblib import Memory JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class NoFit(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class NoTrans(NoFit): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class NoInvTransf(NoTrans): def transform(self, X, y=None): return X class Transf(NoInvTransf): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class TransfFitParams(Transf): def fit(self, X, y, **fit_params): self.fit_params = fit_params return self class Mult(BaseEstimator): def __init__(self, mult=1): self.mult = mult def fit(self, X, y): return self def transform(self, X): return np.asarray(X) * self.mult def inverse_transform(self, X): return np.asarray(X) / self.mult def predict(self, X): return (np.asarray(X) * self.mult).sum(axis=1) predict_proba = predict_log_proba = decision_function = predict def score(self, X, y=None): return np.sum(X) class FitParamT(BaseEstimator): """Mock classifier """ def __init__(self): self.successful = False def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def fit_predict(self, X, y, should_succeed=False): self.fit(X, y, should_succeed=should_succeed) return self.predict(X) def score(self, X, y=None, sample_weight=None): if sample_weight is not None: X = X * sample_weight return np.sum(X) class DummyTransf(Transf): """Transformer which store the column means""" def fit(self, X, y): self.means_ = np.mean(X, axis=0) # store timestamp to figure out whether the result of 'fit' has been # cached or not self.timestamp_ = time.time() return self def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method assert_raises_regex(TypeError, 'Last step of Pipeline should implement fit. ' '.*NoFit.*', Pipeline, [('clf', NoFit())]) # Smoke test with only an estimator clf = NoTrans() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't instantiate with non-transformers on the way # Note that NoTrans implements fit, but not transform assert_raises_regex(TypeError, 'All intermediate steps should be transformers' '.*\\bNoTrans\\b.*', Pipeline, [('t', NoTrans()), ('svc', clf)]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) # invalid parameters should raise an error message assert_raise_message( TypeError, "fit() got an unexpected keyword argument 'bad'", pipe.fit, None, None, clf__bad=True ) def test_pipeline_sample_weight_supported(): # Pipeline should pass sample_weight X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X, y=None) assert_equal(pipe.score(X), 3) assert_equal(pipe.score(X, y=None), 3) assert_equal(pipe.score(X, y=None, sample_weight=None), 3) assert_equal(pipe.score(X, sample_weight=np.array([2, 3])), 8) def test_pipeline_sample_weight_unsupported(): # When sample_weight is None it shouldn't be passed X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', Mult())]) pipe.fit(X, y=None) assert_equal(pipe.score(X), 3) assert_equal(pipe.score(X, sample_weight=None), 3) assert_raise_message( TypeError, "score() got an unexpected keyword argument 'sample_weight'", pipe.score, X, sample_weight=np.array([2, 3]) ) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(svd_solver='full', n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = PCA(n_components=2, svd_solver='randomized', whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # As pipeline doesn't clone estimators on construction, # it must have its own estimators scaler_for_pipeline = StandardScaler() km_for_pipeline = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([ ('scaler', scaler_for_pipeline), ('Kmeans', km_for_pipeline) ]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA(svd_solver='full') pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_fit_predict_with_intermediate_fit_params(): # tests that Pipeline passes fit_params to intermediate steps # when fit_predict is invoked pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())]) pipe.fit_predict(X=None, y=None, transf__should_get_this=True, clf__should_succeed=True) assert_true(pipe.named_steps['transf'].fit_params['should_get_this']) assert_true(pipe.named_steps['clf'].successful) assert_false('should_succeed' in pipe.named_steps['transf'].fit_params) def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", Transf()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) # test error if some elements do not support transform assert_raises_regex(TypeError, 'All estimators should implement fit and ' 'transform.*\\bNoTrans\\b', FeatureUnion, [("transform", Transf()), ("no_transform", NoTrans())]) def test_make_union(): pca = PCA(svd_solver='full') mock = Transf() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transf")) assert_equal(transformers, (pca, mock)) def test_make_union_kwargs(): pca = PCA(svd_solver='full') mock = Transf() fu = make_union(pca, mock, n_jobs=3) assert_equal(fu.transformer_list, make_union(pca, mock).transformer_list) assert_equal(3, fu.n_jobs) # invalid keyword parameters should raise an error message assert_raise_message( TypeError, 'Unknown keyword arguments: "transformer_weights"', make_union, pca, mock, transformer_weights={'pca': 10, 'Transf': 1} ) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2, svd_solver='full') pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transf = Transf() pipeline = Pipeline([('mock', transf)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transf.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_set_pipeline_steps(): transf1 = Transf() transf2 = Transf() pipeline = Pipeline([('mock', transf1)]) assert_true(pipeline.named_steps['mock'] is transf1) # Directly setting attr pipeline.steps = [('mock2', transf2)] assert_true('mock' not in pipeline.named_steps) assert_true(pipeline.named_steps['mock2'] is transf2) assert_equal([('mock2', transf2)], pipeline.steps) # Using set_params pipeline.set_params(steps=[('mock', transf1)]) assert_equal([('mock', transf1)], pipeline.steps) # Using set_params to replace single step pipeline.set_params(mock=transf2) assert_equal([('mock', transf2)], pipeline.steps) # With invalid data pipeline.set_params(steps=[('junk', ())]) assert_raises(TypeError, pipeline.fit, [[1]], [1]) assert_raises(TypeError, pipeline.fit_transform, [[1]], [1]) def test_set_pipeline_step_none(): # Test setting Pipeline steps to None X = np.array([[1]]) y = np.array([1]) mult2 = Mult(mult=2) mult3 = Mult(mult=3) mult5 = Mult(mult=5) def make(): return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)]) pipeline = make() exp = 2 * 3 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline.set_params(m3=None) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) assert_dict_equal(pipeline.get_params(deep=True), {'steps': pipeline.steps, 'm2': mult2, 'm3': None, 'last': mult5, 'memory': None, 'm2__mult': 2, 'last__mult': 5, }) pipeline.set_params(m2=None) exp = 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) # for other methods, ensure no AttributeErrors on None: other_methods = ['predict_proba', 'predict_log_proba', 'decision_function', 'transform', 'score'] for method in other_methods: getattr(pipeline, method)(X) pipeline.set_params(m2=mult2) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline = make() pipeline.set_params(last=None) # mult2 and mult3 are active exp = 6 assert_array_equal([[exp]], pipeline.fit(X, y).transform(X)) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) assert_raise_message(AttributeError, "'NoneType' object has no attribute 'predict'", getattr, pipeline, 'predict') # Check None step at construction time exp = 2 * 5 pipeline = Pipeline([('m2', mult2), ('m3', None), ('last', mult5)]) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) def test_pipeline_ducktyping(): pipeline = make_pipeline(Mult(5)) pipeline.predict pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(Transf()) assert_false(hasattr(pipeline, 'predict')) pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(None) assert_false(hasattr(pipeline, 'predict')) pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(Transf(), NoInvTransf()) assert_false(hasattr(pipeline, 'predict')) pipeline.transform assert_false(hasattr(pipeline, 'inverse_transform')) pipeline = make_pipeline(NoInvTransf(), Transf()) assert_false(hasattr(pipeline, 'predict')) pipeline.transform assert_false(hasattr(pipeline, 'inverse_transform')) def test_make_pipeline(): t1 = Transf() t2 = Transf() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transf-1") assert_equal(pipe.steps[1][0], "transf-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transf-1") assert_equal(pipe.steps[1][0], "transf-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = PCA(n_components=2, svd_solver='randomized', random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", Transf()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) ft = FeatureUnion([("tr1", Transf())]).fit([[1]]) assert_raise_message(AttributeError, 'Transformer tr1 (type Transf) does not provide ' 'get_feature_names', ft.get_feature_names) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_set_feature_union_steps(): mult2 = Mult(2) mult2.get_feature_names = lambda: ['x2'] mult3 = Mult(3) mult3.get_feature_names = lambda: ['x3'] mult5 = Mult(5) mult5.get_feature_names = lambda: ['x5'] ft = FeatureUnion([('m2', mult2), ('m3', mult3)]) assert_array_equal([[2, 3]], ft.transform(np.asarray([[1]]))) assert_equal(['m2__x2', 'm3__x3'], ft.get_feature_names()) # Directly setting attr ft.transformer_list = [('m5', mult5)] assert_array_equal([[5]], ft.transform(np.asarray([[1]]))) assert_equal(['m5__x5'], ft.get_feature_names()) # Using set_params ft.set_params(transformer_list=[('mock', mult3)]) assert_array_equal([[3]], ft.transform(np.asarray([[1]]))) assert_equal(['mock__x3'], ft.get_feature_names()) # Using set_params to replace single step ft.set_params(mock=mult5) assert_array_equal([[5]], ft.transform(np.asarray([[1]]))) assert_equal(['mock__x5'], ft.get_feature_names()) def test_set_feature_union_step_none(): mult2 = Mult(2) mult2.get_feature_names = lambda: ['x2'] mult3 = Mult(3) mult3.get_feature_names = lambda: ['x3'] X = np.asarray([[1]]) ft = FeatureUnion([('m2', mult2), ('m3', mult3)]) assert_array_equal([[2, 3]], ft.fit(X).transform(X)) assert_array_equal([[2, 3]], ft.fit_transform(X)) assert_equal(['m2__x2', 'm3__x3'], ft.get_feature_names()) ft.set_params(m2=None) assert_array_equal([[3]], ft.fit(X).transform(X)) assert_array_equal([[3]], ft.fit_transform(X)) assert_equal(['m3__x3'], ft.get_feature_names()) ft.set_params(m3=None) assert_array_equal([[]], ft.fit(X).transform(X)) assert_array_equal([[]], ft.fit_transform(X)) assert_equal([], ft.get_feature_names()) # check we can change back ft.set_params(m3=mult3) assert_array_equal([[3]], ft.fit(X).transform(X)) def test_step_name_validation(): bad_steps1 = [('a__q', Mult(2)), ('b', Mult(3))] bad_steps2 = [('a', Mult(2)), ('a', Mult(3))] for cls, param in [(Pipeline, 'steps'), (FeatureUnion, 'transformer_list')]: # we validate in construction (despite scikit-learn convention) bad_steps3 = [('a', Mult(2)), (param, Mult(3))] for bad_steps, message in [ (bad_steps1, "Step names must not contain __: got ['a__q']"), (bad_steps2, "Names provided are not unique: ['a', 'a']"), (bad_steps3, "Step names conflict with constructor " "arguments: ['%s']" % param), ]: # three ways to make invalid: # - construction assert_raise_message(ValueError, message, cls, **{param: bad_steps}) # - setattr est = cls(**{param: [('a', Mult(1))]}) setattr(est, param, bad_steps) assert_raise_message(ValueError, message, est.fit, [[1]], [1]) assert_raise_message(ValueError, message, est.fit_transform, [[1]], [1]) # - set_params est = cls(**{param: [('a', Mult(1))]}) est.set_params(**{param: bad_steps}) assert_raise_message(ValueError, message, est.fit, [[1]], [1]) assert_raise_message(ValueError, message, est.fit_transform, [[1]], [1]) def test_pipeline_wrong_memory(): # Test that an error is raised when memory is not a string or a Memory # instance iris = load_iris() X = iris.data y = iris.target # Define memory as an integer memory = 1 cached_pipe = Pipeline([('transf', DummyTransf()), ('svc', SVC())], memory=memory) assert_raises_regex(ValueError, "'memory' should either be a string or a" " joblib.Memory instance, got 'memory=1' instead.", cached_pipe.fit, X, y) def test_pipeline_memory(): iris = load_iris() X = iris.data y = iris.target cachedir = mkdtemp() try: memory = Memory(cachedir=cachedir, verbose=10) # Test with Transformer + SVC clf = SVC(probability=True, random_state=0) transf = DummyTransf() pipe = Pipeline([('transf', clone(transf)), ('svc', clf)]) cached_pipe = Pipeline([('transf', transf), ('svc', clf)], memory=memory) # Memoize the transformer at the first fit cached_pipe.fit(X, y) pipe.fit(X, y) # Get the time stamp of the tranformer in the cached pipeline ts = cached_pipe.named_steps['transf'].timestamp_ # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert_false(hasattr(transf, 'means_')) # Check that we are reading the cache while fitting # a second time cached_pipe.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert_equal(ts, cached_pipe.named_steps['transf'].timestamp_) # Create a new pipeline with cloned estimators # Check that even changing the name step does not affect the cache hit clf_2 = SVC(probability=True, random_state=0) transf_2 = DummyTransf() cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)], memory=memory) cached_pipe_2.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe_2.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe_2.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe_2.named_steps['transf_2'].means_) assert_equal(ts, cached_pipe_2.named_steps['transf_2'].timestamp_) finally: shutil.rmtree(cachedir)
bsd-3-clause
rrohan/scikit-learn
sklearn/utils/extmath.py
70
21951
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) or (M, ) Argument to the logistic function out: array-like, shape: (M, N) or (M, ), optional: Preallocated output array. Returns ------- out: array, shape (M, N) or (M, ) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function copy: bool, optional Copy X or not. Returns ------- out: array, shape (M, N) Softmax function evaluated at every point in x """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
Phlos/LASIF_scripts
analyse_misfits.py
1
22062
# scripts to analyse misfit import matplotlib.pyplot as plt import numpy as np import os from lasif.components.project import Project from lasif import LASIFNotFoundError from lasif import LASIFAdjointSourceCalculationError def calc_misfit_for_channel(comm, event_name, iteration_name, channel_name): ''' calculate the misfit for a specific channel ''' # obtain information about the windows wm = comm.windows.get(event_name, iteration_name) it = comm.iterations.get(iteration_name) event_weight = it.events[event_name]["event_weight"] wins = wm.get(channel_name) station_weight = it.events[event_name]["stations"][".".join(channel_name.split(".")[:2])]["station_weight"] channel_misfit = 0 total_channel_weight = 0 for win in wins.windows: try: misfit = win.misfit_value except LASIFAdjointSourceCalculationError: continue except LASIFNotFoundError as e: print str(e) continue channel_misfit += misfit * win.weight total_channel_weight += win.weight # rare, but sometimes all wins for a certain channel fail the calculation if total_channel_weight == 0: print 'total channel weight is zero' # make sure the misfits are consistent with adj src calculation channel_misfit *= event_weight * station_weight / total_channel_weight print "channel {1} misfit is {0:.5f}".format(channel_misfit, channel_name) def calc_misfit_per_event(comm, iteration_name, event_name): # loop over windows to calculate total misfit # obtain information about the windows wm = comm.windows.get(event_name, iteration_name) # obtain information about all stations for this event #stations = comm.query.get_all_stations_for_event(event_name) it = comm.iterations.get(iteration_name) event_weight = it.events[event_name]["event_weight"] channels = wm.list() if len(channels) == 0: print 'Warning! event '+event_name+' has no windows for iteration '+iteration_name+' ! ' return np.nan event_misfit = 0 for channel in channels: wins = wm.get(channel) station_weight = it.events[event_name]["stations"][".".join(channel.split(".")[:2])]["station_weight"] channel_misfit = 0 total_channel_weight = 0 for win in wins.windows: try: misfit = win.misfit_value except LASIFAdjointSourceCalculationError: continue except LASIFNotFoundError as e: print str(e) continue channel_misfit += misfit * win.weight total_channel_weight += win.weight # rare, but sometimes all wins for a certain channel fail the calculation if total_channel_weight == 0: continue # make sure the misfits are consistent with adj src calculation channel_misfit *= event_weight * station_weight / total_channel_weight #print "channel {1} misfit is {0:.2f}".format(channel_misfit, channel) event_misfit += channel_misfit return event_misfit ''' # station list for windows window_stations = wm.list() if len(window_stations) == 0: print "Event "+event_name+" contained no windows in iteration "+iteration+" in project "+Lasif_path return 0. #- for every station for that particular event, obtain misfits misfit_sum = 0. for stationID, value in stations.iteritems(): # Loop as dicts are unordered. # get windows for station wins = wm.get_windows_for_station(stationID) # get window info # get the misfits of all windows # determine number of windows sz = np.size(wins) misfit_sta = 0. for ii in np.arange(sz): misfit_val = wins[ii].windows[0].misfit_value # non-normalised misfit_wt = wins[ii].windows[0].weight # window weight? misfit_weighted = misfit_val * misfit_wt misfit_sta += misfit_weighted misfit_sum += misfit_sta ''' return misfit_sum def calc_misfit(Lasif_path='./EMed_full/', iteration_name='0_new', save=False, verbose=True): ''' For a given Lasif project and iteration name, calculate the total misfit ''' # import the project communicator comm = Project(Lasif_path).comm it = comm.iterations.get(iteration_name) # for each event, calculate event misfit (loop over windows like in plot_misfit_map etc) total_misfit = 0. dict_event_misfits = {} for event_name in sorted(it.events.keys()): if verbose: print ' ...event '+event_name event_misfit = calc_misfit_per_event(comm, iteration_name, event_name) dict_event_misfits[event_name] = event_misfit total_misfit += event_misfit if save: outfile = 'iter_misfit.'+iteration_name+'.npy' print 'saving file to '+outfile np.save(outfile, (total_misfit, dict_event_misfits) ) return total_misfit, dict_event_misfits def calc_misfit_development_dict(misfit_dict, event_list, iter_list): ''' Dictionary transform tool. Super dumb. Make a dict of misfits with order misfit_dict[event_name][iteration_name] from one with order misfit_dict[iteration_name][event_name] input: misfit_dict: stored as misfit_dict[iter_name][event_name] ''' dict_misfits_per_event = {} for event_name in event_list: misf_per_event = {} for iteration_name in iter_list: # the index [1] is because index [0] stores the total iteration misfit if event_name in misfit_dict[iteration_name][1].keys(): misf_per_event[iteration_name] = misfit_dict[iteration_name][1][event_name] if any(misf_per_event): # add to dictionary if there are any iterations with this event dict_misfits_per_event[event_name] = misf_per_event return dict_misfits_per_event #def add_sisyphus_misfit_log(ax1, filename, normalise): ''' This function does not work well ''' #misfit_log = [float(x.split(' ')[-1].strip()) for x in open(filename).readlines()] #iters=[] #n_full_iters = len(misfit_log)/4 #for ii in range(n_full_iters): #for jj in range(5)[1:]: #iters.append(ii+0.1*jj) ##print 'iters len {}, misfit log len {}'.format(len(iters), len(misfit_log)) ## plotting #print 'value of misfit_log[0] is {}'.format(misfit_log[0]) #print 'value of misfit_log[1] is {}'.format(misfit_log[1]) #if normalise: #misfit_log = [x / misfit_log[0] for x in misfit_log] #ax1.plot(iters, misfit_log, label='SISYPHUS misfits incl. test steps') #ax1.plot(iters[3::4], misfit_log[3::4], marker='o', label='SISYPHUS misfits of _4 models') #return iters, misfit_log def plot_misfit_development(Lasif_path='EMed_full', iter_list=['10_new', '19_4'], misfit_dict_in={}, highlight_event=[], normalise=True, sort_alpha_by='init_misfit', verbose=True, save=False, savepath='./plots/'): ''' Plot the misfit developement as a function of iteration for the supplied list of iterations (or 'ALL') INPUT: lasif_path the path to the Lasif project iter_list = [] a list that contains the iterations to be compared. They will be shown in the order supplied misfit_dict={} a list of pre-calculated misfits per iter. If it is empty, the misfits will be calculated normalise should all misfits be normalised by their initial value. sort_alpha_by how should the event misfit lines be shaded? verbose How much output is given save True or False; whether the figure should be plotted or saved. savepath: location where plot is saved ('./plots/' by default) OUTPUT: dict_misfits_per_event : a dictionary of misfits per event ordered misfit{event}{iter} misfit_dict : same, but ordered misfit{iter}{event} {a figure} : a figure with misfit development per event as a function of iteration. ''' ############################## ### some preparation ############################## # make sure the function doesn't accidentally work on external vars. misfit_dict = misfit_dict_in.copy() # import the project communicator & get event list comm = Project(Lasif_path).comm event_list = sorted(comm.events.list()) ############################################ ### Loading/calculating event misfits ############################################ # loop over iters to check if misfit exists for it in iter_list: misfit_npy_file_name='iter_misfit.'+it+'.npy' if it in misfit_dict.keys(): print 'Misfit for iteration '+it+' already exists' continue elif os.path.exists(misfit_npy_file_name): print 'Loading misfit for iteration '+it+' from file' misfit_dict[it] = np.load(misfit_npy_file_name) else: print 'Calculating misfit for iteration '+it misfit_dict[it] = calc_misfit(Lasif_path, it, save=True, verbose=verbose) ############################################ ### Make new dict with misf[event][iter] ### instead of misf[iter][event] ############################################ # (This method is objectively rather stupid... #+ I wish I had a table or something) # invert the dictionary #if not any(dict_misfits_per_event): dict_misfits_per_event = calc_misfit_development_dict(misfit_dict, event_list, iter_list) # loop over iterations to obtain iteration misfit list iter_misfit_total=[] for iter_name in iter_list: if iter_name in misfit_dict.keys(): iter_misfit_total.append(misfit_dict[iter_name][0]) else: iter_misfit_total.append(np.nan) # loop over events to gather the development of misfits #dict_misfits_per_event = {} # also save some other event properties for plotting sorting misf1 = {}; maxmisf1 = 0; event_mags={}; maxmag = 0; minmag=15 evmag_normd = {}; maxmag_normd = 0 no_misfits = [] for event_name in event_list: if event_name in dict_misfits_per_event.keys(): misf_per_event = dict_misfits_per_event[event_name] else: print 'event '+event_name+' has no misfits for any of these iterations.' no_misfits.append(event_name) # make a list of events that are in at least one of the iterations event_list_reduced = [x for x in event_list if x not in no_misfits] # calculate some properties for event_name in event_list_reduced: # first misfit determination for iter_name in iter_list: if event_name in misfit_dict[iter_name][1].keys(): misf1[event_name] = misfit_dict[iter_name][1][event_name] break maxmisf1 = max(misf1[event_name], maxmisf1) # event magnitude event_mags[event_name] = comm.events.get(event_name)['magnitude'] maxmag = max(event_mags[event_name], maxmag) minmag = min(event_mags[event_name], minmag) # number of stations nsta = len(comm.query.get_all_stations_for_event(event_name)) # normalised event magnitude evmag_normd[event_name] = event_mags[event_name] / nsta maxmag_normd = max(maxmag_normd, evmag_normd[event_name]) #------------------------ # PLOTTING #------------------------ if save: plt.ioff() fig, ax1 = plt.subplots(1, figsize=(12.,10.)) # plot in figure plotline = {}; firstline=True; for event_name in event_list_reduced: # transform dict to lists (for plotting) y=[] for itname in iter_list: if itname in dict_misfits_per_event[event_name]: y.append(dict_misfits_per_event[event_name][itname]) else: print 'Warning! event '+event_name+' has no misfit for iter '+itname y.append(np.nan) x = np.arange(len(iter_list)) + 0.5 # plot real or normalised misfit if normalise: plotline[event_name] = ax1.plot(x,y/misf1[event_name], color='black') labely=('normalised misfit') else: plotline[event_name] = ax1.plot(x,y, color='black') labely=('misfit') # only give one event a label (not 83 black lines) if firstline: plotline[event_name][0].set_label('misfits per event, shaded by '+sort_alpha_by) firstline=False # shade the lines according to sort_alpha_by if sort_alpha_by=='init_misfit': alpha_value = misf1[event_name]/maxmisf1 elif sort_alpha_by=='event_mag': alpha_value = (event_mags[event_name]-minmag)/(maxmag-minmag) alpha_value = max(alpha_value, 0.1) #print 'alpha for '+event_name+' is {0:.2f} because mag here is {1:.1f}'.format(alpha_value, event_mags[event_name]) elif sort_alpha_by=='event_mag_by_nsta': alpha_value = (evmag_normd[event_name] / maxmag_normd ) plotline[event_name][0].set_alpha(alpha_value) # give the highlighted event special looks if event_name in highlight_event: plotline[event_name][0].set_color('green') plotline[event_name][0].set_linewidth(2) plotline[event_name][0].set_label('event '+event_name) # Plot total misfit development if normalise: ax1.plot(x,iter_misfit_total/iter_misfit_total[0], color='red', linewidth=2, label='total misfit') eilim = ax1.get_ylim() ax1.set_ylim(max(eilim[0], 0.7), min(eilim[1], max(iter_misfit_total/iter_misfit_total[0]) * 1.1)) else: ax1.plot(x,iter_misfit_total, color='red', linewidth=2, label='total misfit') eilim = ax1.get_ylim() ax1.set_ylim(max(eilim[0], 0.7*min(iter_misfit_total)), min(eilim[1], max(iter_misfit_total) * 1.1)) # Prettify the plot ax1.set_xticks(x) ax1.set_xticklabels(iter_list) ax1.set_xlim(0,len(iter_list)) ax1.set_xlabel('iteration name') ax1.set_ylabel(labely) ax1.set_title('Misfit development across iterations') plt.legend(loc='upper left') # actual drawing if save: if normalise: normorno='.normalised' else: normorno='' if len(highlight_event)>0: hili='.highlight-'+str(highlight_event) else: hili='' savename='misfit_development.'+iter_list[0]+'-to-'+iter_list[-1]+normorno+'.alpha_sorted_'+sort_alpha_by+hili+'.png' savepath=os.path.join(savepath,savename) print 'saving figure to '+savepath plt.savefig(savepath) plt.close() else: plt.ion() plt.show() plt.ioff() return dict_misfits_per_event, misfit_dict def plot_misfit_log_sisyphus(filename, iter_list, save=False, savepath='./plots/', inversion_name='inv_20170731'): ''' Plot the misfit development based on Alexey's misfit ''' misfit_log = [x.split(' ')[-1].strip() for x in open(filename).readlines()] iters=[] n_full_iters = len(misfit_log)/4 for ii in range(n_full_iters): for jj in range(5)[1:]: iters.append(ii+0.1*jj) print 'iters len {}, misfit log len {}'.format(len(iters), len(misfit_log)) # plotting fig, ax1 = plt.subplots(1, figsize=(12.,10.)) ax1.plot(iters, misfit_log, label='misfits incl. test steps') ax1.plot(iters[3::4], misfit_log[3::4], marker='o', label='misfits of _4 models') # Prettify the plot ax1.set_xlabel('iteration') ax1.set_ylabel('total misfit') ax1.set_title('Misfit development from SISYPHUS misfit.log for '+inversion_name) ax1.set_xticks(iters[3::4]) ax1.set_xticklabels(iter_list) plt.legend() # Actual displaying if save: savename=inversion_name+'.misfit_development.sisyphus.png' savepath=os.path.join(savepath,savename) print 'saving figure to '+savepath plt.savefig(savepath) plt.close() else: plt.ion() plt.show() plt.ioff() def get_good_bad_events(misfit_dict, iter1, iter2, goodorbad=None): ''' Print out the events that are good or bad (misfit increase, or misfit decrease) ''' good_ones = []; bad_ones=[] for event_name in misfit_dict[iter1][1].keys(): m_init = misfit_dict[iter1][1][event_name] m_final= misfit_dict[iter2][1][event_name] if m_final < m_init: good_ones.append(event_name) elif m_final > m_init: bad_ones.append(event_name) if goodorbad=='bad': for event_name in bad_ones: m_init = misfit_dict[iter1][1][event_name] m_final= misfit_dict[iter2][1][event_name] incr = m_final - m_init rel_incr = (m_final - m_init) / m_init print 'event {0:<9} is bad: '.format(event_name)+ \ 'misfit went {0:6.2f} --> {1:6.2f}'.format(m_init, m_final) +\ '({0:+5.1f} = {1:+5.1f}%)'.format(incr, 100.*rel_incr) elif goodorbad=='good': for event_name in good_ones: m_init = misfit_dict[iter1][1][event_name] m_final= misfit_dict[iter2][1][event_name] incr = m_final - m_init rel_incr = (m_final - m_init) / m_init print 'event {0:<9} is good: '.format(event_name)+ \ 'misfit went {0:6.2f} --> {1:6.2f}'.format(m_init, m_final) +\ '({0:+5.1f} = {1:5.1f}%)'.format(incr, 100.*rel_incr) return good_ones, bad_ones def plot_iter_correlations(Lasif_path, iter_name, prop1, prop2, save=False, savepath='./plots/', loglogplot=False, no_output=True): ''' Plot for example the correlation between # of windows and total misfit Properties calculated for each event are: nsta : # of stations available nwinsta : # of windows in iter nwinsta/nsta : percentage of stations with windows event_magnitude : event magnitude total_misfit : total misfit in iter event_magnitude*nsta : event mangitude corrected for the number of stations available prop1 and prop2 can be any of the above ''' # check whether input is alright allowed_props = ['total_misfit', 'nsta', 'nwinsta', 'event_magnitude', 'nwinsta/nsta', 'event_magnitude*nsta'] for prop in [prop1, prop2]: if prop not in allowed_props: print 'ERROR: property {} not in allowed properties, i.e. {}'.format(prop, ', '.join(allowed_props)) return from LASIF_scripts.external_fn.Annotations import AnnoteFinder # Lasif preparation from lasif.components.project import Project comm = Project(Lasif_path).comm it = comm.iterations.get(iter_name) events_in_iter = sorted(it.events.keys()) ## ==================== ## Gathering properties # misfits - dict # Obtaining misfits in the usable format (if misfits are required if 'total_misfit' in [prop1, prop2]: misfit_npy_file_name='iter_misfit.'+iter_name+'.npy' if os.path.exists(misfit_npy_file_name): print 'Loading misfit for iteration '+iter_name+' from file' _, misfits_per_event = np.load(misfit_npy_file_name) elif Lasif_path: print 'Calculating misfit for iteration '+iter_name _, misfits_per_event = calc_misfit(Lasif_path, iter_name, save=True, verbose=True) else: print 'Error: need to calculate misfits, but no lasif path supplied' return # make into list misfits = [] for event_name in events_in_iter: misfits.append(misfits_per_event[event_name]) # number of stations per event - dict nsta = [] for event_name in events_in_iter: itev = it.events[event_name] #nsta[event_name] = len(itev['stations']) nsta.append(len(itev['stations'])) # number of stations with windows per event - dict nwinsta = [] for event_name in events_in_iter: wm = comm.windows.get(event_name, iter_name) window_channels = wm.list() window_stations = ['.'.join(chan.split('.')[:-2]) for chan in window_channels] window_stations = sorted(list(set(window_stations))) # nwinsta[event_name] = len(window_stations) nwinsta.append(len(window_stations)) # event magnitude mags = [] for event_name in events_in_iter: ev = comm.events.get(event_name) # mags[event_name] = ev['magnitude'] mags.append(ev['magnitude']) ## ==================== ## Plotting properties propslist = []; labels = [] for prop in [prop1, prop2]: if prop == 'total_misfit': propslist.append(misfits) labels.append('total misfit for event') elif prop == 'nsta': propslist.append(nsta) labels.append('number of stations for event') elif prop == 'nwinsta': propslist.append(nwinsta) labels.append('number of stations with windows for event') elif prop == 'event_magnitude': propslist.append(mags) labels.append('event magnitude') elif prop == 'nwinsta/nsta': propslist.append([100.*x/y for x,y in zip(nwinsta, nsta)]) labels.append('percentage of stations with windows') elif prop == 'event_magnitude*nsta': propslist.append([x*y for x,y in zip(mags, nsta)]) labels.append('event magnitude * number of stations for event') if not len(propslist) == 2: print 'ERROR: not two property lists?: {}'.format(len(propslist)) return # plot fig, ax1 = plt.subplots(1, figsize=(12.,10.)) # x = range(10) # y = range(10) # annotes = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] # fig, ax = plt.subplots() # ax.scatter(x,y) # af = AnnoteFinder(x,y, annotes, ax=ax) # fig.canvas.mpl_connect('button_press_event', af) # plt.show() ax1.scatter(propslist[0], propslist[1], marker='o', edgecolor='none') ax1.grid(True) af = AnnoteFinder(propslist[0], propslist[1], events_in_iter, ax=ax1) ax1.set_xlabel(labels[0]) ax1.set_ylabel(labels[1]) ax1.set_title('Correlations for {}'.format(iter_name)) if loglogplot: ax1.set_xscale('log') ax1.set_yscale('log') # Make the annotations visible upon clicking a point fig.canvas.mpl_connect('button_press_event', af) # Actual displaying if save: savename='iter_{}.correlations.{}-vs-{}.png'.format(iter_name, prop1, prop2) savepath=os.path.join(savepath,savename) print 'saving figure to '+savepath plt.savefig(savepath) plt.close() else: plt.ion() plt.show() plt.ioff() if not no_output: return fig, ax1
gpl-3.0
etyephe/pygom
pygom/model/deterministic.py
1
73661
""" .. moduleauthor:: Edwin Tye <[email protected]> This module is defined such that operation on ode are all gathered in one place. Future extension of operations should be added here """ __all__ = ['DeterministicOde'] import copy import io from numbers import Number # import sympy.core.numbers import numpy as np import sympy import scipy.linalg from sympy.core.function import diff from .base_ode_model import BaseOdeModel from ._model_errors import ArrayError, InputError, \ IntegrationError, InitializeError from ._model_verification import simplifyEquation # import ode_utils as myUtil # from .ode_utils import shapeAdjust, compileCode from . import ode_utils from . import _ode_composition class DeterministicOde(BaseOdeModel): """ This contains the interface and operation built above the already defined set of ode Parameters ---------- state: list A list of states (string) param: list A list of the parameters (string) derived_param: list A list of the derived parameters (tuple of (string,string)) transition: list A list of transition (:class:`.Transition`) birth_death: list A list of birth or death process (:class:`.Transition`) ode: list A list of ode (:class:`Transition`) """ def __init__(self, state=None, param=None, derived_param=None, transition=None, birth_death=None, ode=None): """ Constructor that is built on top of a BaseOdeModel """ super(DeterministicOde, self).__init__(state, param, derived_param, transition, birth_death, ode) self._ode = None self._odeCompile = None # and we assume initially that we don't want the Jacobian self._Jacobian = None self._JacobianCompile = None # wtf... why! self._diffJacobian = None self._diffJacobianCompile = None # Information... yea, what else would you expect self._Grad = None self._GradCompile = None # more information.... self._GradJacobian = None self._GradJacobianCompile = None # More information!! ROAR! I think this is useless though # because this is the hessian of the ode which most of the # time we don't really care self._Hessian = None self._HessianWithParam = None # all the symbols that we need in order to compile # s = state + t # sp = state + t + param # the latter is required to compile the symbolic code # to the numeric setting self._s = self._stateList + [self._t] self._sp = self._s + self._paramList # information regarding the integration. We want an internal # storage so we can invoke the plot method within the same class self._t0 = None self._x0 = None self._odeOutput = None self._odeSolution = None self._odeTime = None self._intName = None self._paramValue = [0]*len(self._paramList) # the class for shape re-adjustment. We would always like to # operate in the matrix form if possible as it takes up less # memory when operating, but the output is required to be of # the vector form self._SAUtil = ode_utils.shapeAdjust(self.num_state, self.num_param) # compile the code. Note that we need the class because we # compile both the formatted and unformatted version. self._SC = ode_utils.compileCode() def __eq__(self, other): if isinstance(other, DeterministicOde): if self.get_ode_eqn() == other.get_ode_eqn(): return True else: return False else: return False def __repr__(self): return "DeterministicOde" + self._get_model_str() ######################################################################## # # Information about the ode # ######################################################################## # TODO: check and see whether it is linear correctly! def linear_ode(self): """ To check whether the input ode is linear Returns ------- bool True if it is linear, False otherwise """ # we always assume that it is true to begin with # if the ode is linear, then a numerical integration # scheme is a waste of time is_linear = True # if we do not current possess the jacobian, we find it! ROAR! if self._Jacobian is None: self.get_jacobian_eqn() # a really stupid way to determining whether it is linear. # have not figured out a better way yet... a = self._Jacobian.atoms() for s in self._stateDict.values(): if s in a: is_linear = False # for i in range(0, self._numState): # for j in range(0, self._numState): # for k in range(0, self._numState): # if self._Jacobian[i,j].has(self._stateList[k]): # isLinear = False return is_linear # TODO: To check whether we have a DAE or just an ODE # def isDAE(self): # return None # TODO: To find out whether there are situation where the # jacobian is actually singular, i.e. if it can be a DAE # def canDAE(self,x0,t0): ######################################################################## # # Information about the ode # ######################################################################## def get_ode_eqn(self, param_sub=False): """ Find the algebraic equations of the ode system. Returns ------- :class:`sympy.matrices.matrices` ode in matrix form """ if self._ode is None: self._findOde() elif self._hasNewTransition: self._findOde() else: pass if param_sub: return self._ode.subs(self._parameters) else: return self._ode def print_ode(self, latex_output=False): """ Prints the ode in symbolic form onto the screen/console in actual symbols rather than the word of the symbol. Parameters ---------- latex_output: bool, optional Defaults to false which prints the equation in terms of symbols, if set to yes then the formula in terms of latex equations will be printed onto the screen. """ A = self.get_ode_eqn() B = sympy.zeros(A.rows, 2) for i in range(A.shape[0]): B[i, 0] = sympy.symbols('d' + str(self._stateList[i]) + '/dt=') B[i, 1] = A[i] if latex_output: print(sympy.latex(B, mat_str="array", mat_delim=None, inv_trig_style='full')) else: sympy.pretty_print(B) def _findOde(self): # lets see how we have defined our ode # if it is explicit, then we go straight to the easy case if self._explicitOde: # we have explicit ode and we should obtain them directly super(DeterministicOde, self)._computeOdeVector() else: # super(DeterministicOde, self)._computeTransitionMatrix() # super(DeterministicOde, self)._computeTransitionVector() # convert the transition matrix into the set of ode self._ode = sympy.zeros(self.num_state, 1) pureTransitionList = self._getAllTransition(pureTransitions=True) from_list, to, eqn = self._unrollTransitionList(pureTransitionList) for i, eqn in enumerate(eqn): for k in from_list[i]: self._ode[k] -= eqn for k in to[i]: self._ode[k] += eqn # now we just need to add in the birth death processes super(DeterministicOde, self)._computeBirthDeathVector() self._ode += self._birthDeathVector self._s = [s for s in self._iterStateList()] + [self._t] self._sp = self._s + [p for p in self._iterParamList()] # happy! self._hasNewTransition = False # tests to see whether we have an autonomous system. Need to # convert a non-autonmous system into an autonomous. Note that # we will not do the conversion internally and require the # user to do this. May consider this a feature in the future. for i, eqn in enumerate(self._ode): if self._t in eqn.atoms(): raise Exception("Input is a non-autonomous system. " + "We can only deal with an autonomous " + "system at this moment in time") self. _ode[i], isDifficult = simplifyEquation(eqn) self._isDifficult = self._isDifficult or isDifficult if self._isDifficult: self._odeCompile = self._SC.compileExprAndFormat(self._sp, self._ode, modules='mpmath', outType="vec") else: self._odeCompile = self._SC.compileExprAndFormat(self._sp, self._ode, outType="vec") # assign None to all others because we have reset the set of equations. self._Grad = None self._Hessian = None self._Jacobian = None self._diffJacobian = None return self._ode def get_transition_graph(self, file_name=None, show=True): """ Returns the transition graph using graphviz Parameters ---------- file_name: str, optional name of the output file, defaults to None show: bool, optional If the graph should be plotted, defaults to True Returns ------- :class:`graphviz.Digraph` """ dot = _ode_composition.generateTransitionGraph(self, file_name) if show: import matplotlib.image as mpimg import matplotlib.pyplot as plt img = mpimg.imread(io.BytesIO(dot.pipe("png"))) plt.imshow(img) plt.show(block=False) return dot else: return dot # # this is the main ode solver # def ode(self, state, t): """ Evaluate the ode given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- :class:`numpy.ndarray` output of the same length as the ode """ return self.eval_ode(time=t, state=state) def ode_T(self, t, state): """ Same as :meth:`ode` but with t as the first parameter """ return self.ode(state, t) def eval_ode(self, parameters=None, time=None, state=None): """ Evaluate the ode given time, state and parameters. An extension of :meth:`ode` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: numeric The current time state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.matrix` or :class:`mpmath.matrix` output of the same length as the ode. Notes ----- There are differences between the output of this function and :meth:`.ode`. Name and order of state and time are also different. See Also -------- :meth:`.ode` """ if self._ode is None or self._hasNewTransition: self.get_ode_eqn() eval_param = self._getEvalParam(state, time, parameters) return self._odeCompile(eval_param) ######################################################################## # # jacobian related operations # ######################################################################## def is_stiff(self, state=None, t=None): """ Test on the eigenvalues of the jacobian. We classify the problem as stiff if any of the eigenvalues are positive Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- :class:`numpy.ndarray` eigenvalues of the system given input """ e = self.jacobian_eigenvalue(state, t) return np.any(e > 0) def jacobian_eigenvalue(self, state=None, t=None): """ Find out the eigenvalues of the jacobian given state and time. If None is given, the initial values are used. Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- bool True if any eigenvalue is positive """ if state is None or t is None: if self._x0 is not None and self._t0 is not None: J = self.jacobian(self._x0, self._t0) else: J = self.jacobian(state, t) return scipy.linalg.eig(J)[0] def jacobian(self, state, t): """ Evaluate the jacobian given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- :class:`numpy.ndarray` Matrix of dimension [number of state x number of state] """ return self.eval_jacobian(time=t, state=state) def jacobian_T(self, t, state): """ Same as :meth:`jacobian` but with t as first parameter """ return self.jacobian(state, t) def _Jacobian_NoCheck(self, state, t): return self._evalJacobian_NoCheck(time=t, state=state) def _JacobianT_NoCheck(self, t, state): return self._Jacobian_NoCheck(state, t) def get_jacobian_eqn(self): """ Returns the jacobian in algebraic form Returns ------- :class:`sympy.matrices.matrices` A matrix of dimension [number of state x number of state] """ if self._Jacobian is None: self.get_ode_eqn() states = [s for s in self._iterStateList()] self._Jacobian = self._ode.jacobian(states) for i in range(self.num_state): for j in range(self.num_state): eqn = self._Jacobian[i, j] if eqn != 0: self._Jacobian[i, j], isDifficult = simplifyEquation(eqn) self._isDifficult = self._isDifficult or isDifficult f = self._SC.compileExprAndFormat if self._isDifficult: self._JacobianCompile = f(self._sp, self._Jacobian, modules='mpmath') else: self._JacobianCompile = f(self._sp, self._Jacobian) return self._Jacobian def eval_jacobian(self, parameters=None, time=None, state=None): """ Evaluate the jacobian given parameters, state and time. An extension of :meth:`.jacobian` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.matrix` or :class:`mpmath.matrix` Matrix of dimension [number of state x number of state] Notes ----- Name and order of state and time are also different. See Also -------- :meth:`.jacobian` """ if self._Jacobian is None or self._hasNewTransition: self.get_ode_eqn() self.get_jacobian_eqn() eval_param = self._getEvalParam(state, time, parameters) return self._JacobianCompile(eval_param) def _evalJacobian_NoCheck(self, time, state): """ Same as :meth:`eval_jacobian` but without the checks """ eval_param = list(state) + [time] + self._paramValue return self._JacobianCompile(eval_param) ###### the sum of jacobian, i.e a_{i} = \sum_{j=1}^{d} J_{i,j} def sens_jacobian_state(self, state_param, t): """ Evaluate the jacobian of the sensitivity w.r.t. the state given state and time Parameters ---------- state_param: array like The current numerical value for the states as well as the sensitivities, which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- :class:`numpy.ndarray` Matrix of dimension [number of state * number of parameters x number of state] """ state = state_param[0:self.num_state] sens = state_param[self.num_state::] return self.eval_sens_jacobian_state(time=t, state=state, sens=sens) def sens_jacobian_state_T(self, t, state): """ Same as :meth:`sens_jacobian_state_T` but with t as first parameter """ return self.sens_jacobian_state(state, t) def eval_sens_jacobian_state(self, time=None, state=None, sens=None): """ Evaluate the jacobian of the sensitivities w.r.t the states given parameters, state and time. An extension of :meth:`.sens_jacobian_state` but now also include the parameters. Parameters ---------- time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` sens: :class:`numpy.ndarray` The sensitivities for the jacobians Returns ------- :class:`numpy.nparray` Matrix of dimension [number of state x number of state] Notes ----- Name and order of state and time are also different. See Also -------- :meth:`.sens_jacobian_state` """ nS = self.num_state nP = self.num_param # dot first, then transpose, then reshape # basically, some magic # don't ask me what is actually going on here, I did it # while having my wizard hat on return np.reshape(self.diff_jacobian(state, time).dot( self._SAUtil.vecToMatSens(sens)).transpose(), (nS*nP, nS)) ############################## derivative of jacobian def diff_jacobian(self, state, t): """ Evaluate the differential of jacobian given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` t: double The current time Returns ------- :class:`numpy.ndarray` Matrix of dimension [number of state x number of state] """ return self.eval_diff_jacobian(time=t, state=state) def diff_jacobian_T(self, t, state): """ Same as :meth:`diff_jacobian` but with t as first parameter """ return self.diff_jacobian(state, t) def get_diff_jacobian_eqn(self): """ Returns the jacobian differentiate w.r.t. states in algebraic form Returns ------- list list of size (num of state,) each with :mod:`sympy.matrices.matrices` of dimension [number of state x number of state] """ if self._diffJacobian is None: self.get_ode_eqn() diff_jac = list() for eqn in self._ode: J = sympy.zeros(self.num_state, self.num_state) for i, si in enumerate(self._iterStateList()): diffEqn, D1 = simplifyEquation(diff(eqn, si, 1)) for j, sj in enumerate(self._iterStateList()): J[i,j], D2 = simplifyEquation(diff(diffEqn, sj, 1)) self._isDifficult = self._isDifficult or D1 or D2 #binding. diff_jac.append(J) # extract first matrix as base. we have to get the first element # as base if we want to use the class method of the object diffJacMatrix = diff_jac[0] for i in range(1, len(diff_jac)): # sympy internal matrix joining diffJacMatrix = diffJacMatrix.col_join(diff_jac[i]) self._diffJacobian = copy.deepcopy(diffJacMatrix) f = self._SC.compileExprAndFormat if self._isDifficult: self._diffJacobianCompile = f(self._sp, self._diffJacobian, modules='mpmath') else: self._diffJacobianCompile = f(self._sp, self._diffJacobian) return self._diffJacobian def eval_diff_jacobian(self, parameters=None, time=None, state=None): """ Evaluate the differential of the jacobian given parameters, state and time. An extension of :meth:`.diff_jacobian` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.matrix` or :class:`mpmath.matrix` Matrix of dimension [number of state x number of state] Notes ----- Name and order of state and time are also different. See Also -------- :meth:`.jacobian` """ if self._diffJacobian is None or self._hasNewTransition: self.get_ode_eqn() self.get_diff_jacobian_eqn() eval_param = self._getEvalParam(state, time, parameters) return self._diffJacobianCompile(eval_param) ######################################################################## # # Gradient related operations # ######################################################################## def get_grad_eqn(self): """ Return the gradient of the ode in algebraic form Returns ------- :class:`sympy.matrices.matrices` A matrix of dimension [number of state x number of parameters] """ # finds if self._Grad is None: ode = self.get_ode_eqn() self._Grad = sympy.zeros(self.num_state, self.num_param) for i in range(self.num_state): # need to adjust such that the first index is not # included because it correspond to time for j, p in enumerate(self._iterParamList()): eqn, isDifficult = simplifyEquation(diff(ode[i], p, 1)) self._Grad[i,j] = eqn self._isDifficult = self._isDifficult or isDifficult if self._isDifficult: self._GradCompile = self._SC.compileExprAndFormat(self._sp, self._Grad, modules='mpmath', outType="mat") else: self._GradCompile = self._SC.compileExprAndFormat(self._sp, self._Grad, outType="mat") return self._Grad def grad(self, state, time): """ Evaluate the gradient given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` time: numeric The current time Returns ------- :class:`numpy.ndarray` Matrix of dimension [number of state x number of parameters] """ return self.eval_grad(state=state, time=time) def grad_T(self, t, state): """ Same as :meth:`grad_T` but with t as first parameter """ return self.grad(state, t) def eval_grad(self, parameters=None, time=None, state=None): """ Evaluate the gradient given parameters, state and time. An extension of :meth:`grad` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.matrix` or :class:`mpmath.matrix` Matrix of dimension [number of state x number of state] Notes ----- Name and order of state and time are also different. See Also -------- :meth:`.grad` """ if self._Grad is None or self._hasNewTransition: self.get_ode_eqn() self.get_grad_eqn() eval_param = self._getEvalParam(state, time, parameters) return self._GradCompile(eval_param) # # jacobian of the Gradiant # def get_grad_jacobian_eqn(self): """ Return the jacobian of the gradient in algebraic form Returns ------- :class:`sympy.matrices.matrices` A matrix of dimension [number of state * number of parameters x number of state] See also -------- :meth:`.get_grad_eqn` """ if self._GradJacobian is None: self._GradJacobian = sympy.zeros(self.num_state*self.num_param, self.num_state) G = self.get_grad_eqn() for k in range(0, self.num_param): for i in range(0, self.num_state): for j, s in enumerate(self._iterStateList()): z = k*self.num_state + i eqn, isDifficult = simplifyEquation(diff(G[i,k], s, 1)) self._GradJacobian[z,j] = eqn self._isDifficult = self._isDifficult or isDifficult # end of the triple loop. All elements are now filled f = self._SC.compileExprAndFormat if self._isDifficult: self._GradJacobianCompile = f(self._sp, self._GradJacobian, modules='mpmath') else: self._GradJacobianCompile = f(self._sp, self._GradJacobian) return self._GradJacobian def grad_jacobian(self, state, time): """ Evaluate the Jacobian of the gradient given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` time: numeric The current time Returns ------- :class:`numpy.ndarray` Matrix of dimension [number of state x number of parameters] See also -------- :meth:`.grad` """ return self.eval_grad_jacobian(state=state, time=time) def grad_jacobianT(self, t, state): """ Same as :meth:`grad_jacobian` but with t as first parameter """ return self.grad_jacobian(state, t) def eval_grad_jacobian(self, parameters=None, time=None, state=None): """ Evaluate the jacobian of the gradient given parameters, state and time. An extension of :meth:`.grad_jacobian` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.matrix` or :class:`mpmath.matrix` Matrix of dimension [number of state x number of state] Notes ----- Name and order of state and time are also different. See Also -------- :meth:`.grad_jacobian`, :meth:`.get_grad_jacobian_eqn` """ if self._GradJacobian is None or self._hasNewTransition: self.get_ode_eqn() self.get_grad_jacobian_eqn() eval_param = self._getEvalParam(state, time, parameters) return self._GradJacobianCompile(eval_param) ######################################################################## # # hessian related operations # ######################################################################## def get_hessian_eqn(self): """ Return the Hessian of the ode in algebraic form Returns ------- list list of dimension number of state, each with matrix [number of parameters x number of parameters] in :mod:`sympy.matricies.matricies` Notes ----- We deliberately return a list instead of a 3d array of a tensor to avoid confusion """ if self._Hessian is None: ode = self.get_ode_eqn() self._Hessian = list() # roll out the equation one by one. Each H below is a the # second derivative of f_{j}(x), the j^{th} ode. Each ode # correspond to a state for eqn in ode: H = sympy.zeros(self.num_param, self.num_param) # although this can be simplified by first finding the gradient # it is not required so we will be slow here for i, pi in enumerate(self._iterParamList()): a = diff(eqn, pi, 1) for j, pj in enumerate(self._iterParamList()): H[i,j], isDifficult = simplifyEquation(diff(a, pj, 1)) self._isDifficult = self._isDifficult or isDifficult # end of double loop. Finished one state self._Hessian.append(H) return self._Hessian def hessian(self, state, time): """ Evaluate the hessian given state and time Parameters ---------- state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` time: double The current time Returns ------- list list of dimension number of state, each with matrix [number of parameters x number of parameters] in :mod:`sympy.matricies.matricies` """ A = self.eval_hessian(state=state, time=time) return [np.array(H, float) for H in A] def eval_hessian(self, parameters=None, time=None, state=None): """ Evaluate the hessian given parameters, state and time. An extension of :meth:`hessian` but now also include the parameters. Parameters ---------- parameters: list see :meth:`.parameters` time: double The current time state: array list The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- list list of dimension number of state, each with matrix [number of parameters x number of parameters] in :mod:`sympy.matricies.matricies` See Also -------- :meth:`.grad`, :meth:`.eval_grad` """ if self._hasNewTransition: self.get_ode_eqn() eval_param = list() eval_param = self._addTimeEvalParam(eval_param, time) eval_param = self._addStateEvalParam(eval_param, state) if parameters is None: if self._HessianWithParam is None: self._computeHessianParam() else: self.parameters = parameters if self._Hessian is None: self._computeHessianParam() if len(eval_param) == 0: return self._Hessian else: H = list() for i in range(0, self.num_state): H = self._HessianWithParam[i].subs(eval_param) return H def _computeHessianParam(self): self._Hessian = self.get_hessian_eqn() self._HessianWithParam = copy.deepcopy(self._Hessian) for H in self._HessianWithParam: H = H.subs(self._parameters) return None ######################################################################## # # Sensitivity related operations (1st forward) # ######################################################################## def sensitivity(self, sens, t, state, by_state=False): """ Evaluate the sensitivity given state and time. The default is to output the values by parameters, i.e. :math:`s_{i},\\ldots,s_{i+n}` are partial derivatives w.r.t. the states for :math:`i \\in {1,1+p,1+2p,1+3p, \\ldots, 1+(n-1)p}`. This is to take advantage of the fact that we have a block diagonal jacobian that was already evaluated Parameters ---------- sens: array like The starting sensitivity of size [number of state x number of parameters]. Which are normally zero or one, depending on whether the initial conditions are also variables. t: double The current time state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` by_state: bool how we want the output to be arranged. Default is True so that we have a block diagonal structure Returns ------- :class:`numpy.ndarray` """ # TODO: allows the functionality to not evaluate all sensitivity # S = \nabla_{time} \frac{\partial State}{\partial Parameters} # rearrange the input if required if by_state: S = np.reshape(sens, (self.num_state, self.num_param)) else: S = self._SAUtil.vecToMatSens(sens) return self.eval_sensitivity(S=S, t=t, state=state, by_state=by_state) def sensitivity_T(self, t, sens, state, by_state=False): """ Same as :meth:`sensitivity` but with t as first parameter """ return self.sensitivity(sens, t, state, by_state) def eval_sensitivity(self, S, t, state, by_state=False): """ Evaluate the sensitivity given state and time Parameters ---------- S: array like Which should be :class:`numpy.ndarray`. The starting sensitivity of size [number of state x number of parameters]. Which are normally zero or one, depending on whether the initial conditions are also variables. t: double The current time state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` by_state: bool how we want the output to be arranged. Default is True so that we have a block diagonal structure Returns ------- :class:`numpy.ndarray` Notes ----- It is different to :meth:`.eval_ode` and :meth:`.eval_jacobian` in that the extra input argument is not a parameter See Also -------- :meth:`.sensitivity` """ # jacobian * sensitivities + G # where G is the gradient J = self.jacobian(state, t) G = self.grad(state, t) A = np.dot(J, S) + G if by_state: return np.reshape(A, self.num_state*self.num_param) else: return self._SAUtil.matToVecSens(A) def ode_and_sensitivity(self, state_param, t, by_state=False): """ Evaluate the sensitivity given state and time Parameters ---------- state_param: array like The current numerical value for the states as well as the sensitivities values all in one. We assume that the state values comes first. t: double The current time by_state: bool Whether the output vector should be arranged by state or by parameters. If False, then it means that the vector of output is arranged according to looping i,j from Sensitivity_{i,j} with i being the state and j the param. This is the preferred way because it leds to a block diagonal Jacobian Returns ------- :class:`list` concatenation of 2 element. First contains the ode, second the sensitivity. Both are of type :class:`numpy.ndarray` See Also -------- :meth:`.sensitivity` , :meth:`.ode` """ if len(state_param) == self.num_state: raise InputError("You have only inputted the initial condition " + "for the states and not the sensitivity") # unrolling, assuming that we would always put the state first # there is no safety checks on this because it is impossible to # distinguish what is state and what is sensitivity as they are # all numeric value that can take the full range (-\infty,\infty) state = state_param[0:self.num_state] sens = state_param[self.num_state::] out1 = self.ode(state, t) out2 = self.sensitivity(sens, t, state, by_state) return np.append(out1, out2) def ode_and_sensitivity_T(self, t, state_param, by_state=False): """ Same as :meth:`ode_and_sensitivity` but with t as first parameter """ return self.ode_and_sensitivity(state_param, t, by_state) def ode_and_sensitivity_jacobian(self, state_param, t, by_state=False): """ Evaluate the sensitivity given state and time. Output a block diagonal sparse matrix as default. Parameters ---------- state_param: array like The current numerical value for the states as well as the sensitivities values all in one. We assume that the state values comes first. t: double The current time by_state: bool How the output is arranged, according to the vector of output. It can be in terms of state or parameters, where by state means that the jacobian is a block diagonal matrix. Returns ------- :class:`numpy.ndarray` output of a square matrix of size: number of ode + 1 times number of parameters See Also -------- :meth:`.ode_and_sensitivity` """ if len(state_param) == self.num_state: raise InputError("Expecting both the state and the sensitivities") else: state = state_param[0:self.num_state] # now we start the computation J = self.jacobian(state, t) # create the block diagonal Jacobian, assuming that whoever is # calling this function wants it arranges by state-parameters # Note that none of the ode integrator in scipy allow a sparse Jacobian # matrix. All of them accept a banded matrix in packed format but not # an actual sparse, or specifying the number of bands. outJ = np.kron(np.eye(self.num_param), J) # Jacobian of the gradient GJ = self.grad_jacobian(state, t) # and now we add the gradient sensJacobianOfState = GJ + self.sens_jacobian_state(state_param, t) if by_state: arrange_vector = np.zeros(self.num_state * self.num_param) k = 0 for j in range(0, self.num_param): for i in range(0, self.num_state): if i == 0: arrange_vector[k] = (i*self.num_state) + j else: arrange_vector[k] = (i*(self.num_state - 1)) + j k += 1 outJ = outJ[np.array(arrange_vector,int), :] idx = np.array(arrange_vector, int) sensJacobianOfState = sensJacobianOfState[idx, :] # The Jacobian of the ode, then the sensitivities w.r.t state and # the sensitivities. In block form. Theoretically, only the diagonal # blocks are important but we output the full matrix for completeness return np.asarray(np.bmat([ [J, np.zeros((self.num_state, self.num_state*self.num_param))], [sensJacobianOfState, outJ] ])) def ode_and_sensitivity_jacobian_T(self, t, state_param, by_state=False): """ Same as :meth:`ode_and_sensitivity_jacobian` but with t as first parameter """ return self.ode_and_sensitivity_jacobian(state_param, t, by_state) ######################################################################## # # Include initial value as parameters. Sensitivity related operations # (1st forward) # ######################################################################## def sensitivityIV(self, sensIV, t, state): """ Evaluate the sensitivity which include the initial values as our parameters given state and time. The default is to output the values by parameters, i.e. :math:`s_{i},\\ldots,s_{i+n}` are partial derivatives w.r.t. the states for :math:`i \\in {1,1+p,1+2p,1+3p, \\ldots, 1+(n-1)p}`. This is to take advantage of the fact that we have a block diagonal Jacobian that was already evaluated. Parameters ---------- sensIV: array like The starting sensitivity of size [number of state x number of parameters] + [number of state x number of state] for the initial condition. The latter is an identity matrix at time zero. t: double The current time state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.ndarray` output of the same length as the ode """ nS = self.num_state nP = self.num_param # separate information out. Again, we do have not have checks here # as it will be impossible to distinguish what is correct sens = sensIV[:(nS*nP)] S = self._SAUtil.vecToMatSens(sens) IV = np.reshape(sensIV[-(nS*nS):], (nS, nS), 'F') return self.eval_sensitivityIV(S=S, IV=IV, t=t, state=state) def sensitivityIV_T(self, t, sensIV, state): """ Same as :meth:`sensitivityIV` but with t as first parameter """ return self.sensitivityIV(sensIV, t, state) def eval_sensitivityIV(self, S, IV, t, state): """ Evaluate the sensitivity with initial values given state and time Parameters ---------- S: array like Which should be :class:`numpy.ndarray`. The starting sensitivity of size [number of state x number of parameters]. Which are normally zero or one, depending on whether the initial conditions are also variables. IV: array like sensitivities for the initial values t: double The current time state: array like The current numerical value for the states which can be :class:`numpy.ndarray` or :class:`list` Returns ------- :class:`numpy.ndarray` :math:`f(s(x,\\theta))` and :math:`f(s(x_{0}))` Notes ----- It is different to :meth:`.eval_ode` and :meth:`.eval_jacobian` in that the extra input argument is not a parameter. See Also -------- :meth:`.sensitivityIV` """ # jacobian * sensitivities + G # where G is the gradient # Evidently, A below uses the same operations as # A = self.eval_sensitivity(S,t,state) # but we are evaluating them explicitly here because # we will be using J as well when computing B J = self.jacobian(state, t) G = self.grad(state, t) A = np.dot(J, S) + G # and jacobian * sensitivities of the initial condition B = np.dot(J, IV) # we want to output by parameters return self._SAUtil.matToVecSens(A), B.flatten('F') def ode_and_sensitivityIV(self, state_param, t): """ Evaluate the sensitivity given state and time Parameters ---------- state_param: array like The current numerical value for the states as well as the sensitivities values all in one. We assume that the state values comes first. t: double The current time Returns ------- :class:`list` concatenation of 3 element. First contains the ode, second the sensitivity, then the sensitivity of the initial value. All of them are of type :class:`numpy.ndarray` See Also -------- :meth:`.sensitivity` , :meth:`.ode` """ if len(state_param) == self.num_state: raise InputError("You have only inputed the initial condition " + "for the states and not the sensitivity") # unrolling, assuming that we would always put the state first state = state_param[0:self.num_state] # the remainings sens_iv = state_param[self.num_state::] # separate evaluation out1 = self.ode(state, t) out2,out3 = self.sensitivityIV(sens_iv, t, state) return np.append(np.append(out1, out2), out3) def ode_and_sensitivityIV_T(self, t, state_param): """ Same as :meth:`ode_and_sensitivityIV` but with t as first parameter """ return self.ode_and_sensitivityIV(state_param, t) def ode_and_sensitivityIV_jacobian(self, state_param, t): """ Evaluate the sensitivity given state and time. Output a block diagonal sparse matrix as default. Parameters ---------- state_param: array like The current numerical value for the states as well as the sensitivities values all in one. We assume that the state values comes first. t: double The current time byState: bool How the output is arranged, according to the vector of output. It can be in terms of state or parameters, where by state means that the jacobian is a block diagonal matrix. Returns ------- :class:`numpy.ndarray` output of a square matrix of size: number of ode + 1 times number of parameters See Also -------- :meth:`.ode_and_sensitivity` """ if len(state_param) == self.num_state: raise InputError("Expecting both the state and the sensitivities") else: state = state_param[0:self.num_state] nS = self.num_state nP = self.num_param # now we start the computation, the simply one :) J = self.jacobian(state, t) # now the jacobian of the state vs initial value DJ = self.diff_jacobian(state, t) A = DJ.dot(np.reshape(state_param[(nS*(nP+1))::], (nS, nS), 'F')) A = np.reshape(A.transpose(), (nS*nS, nS)) if nP == 0: return np.asarray(np.bmat([ [J, np.zeros((nS, nS*nS))], [A, np.kron(np.eye(nS), J)] ])) else: # create the block diagonal jacobian, assuming that whoever is # calling this function wants it arranges by state-parameters outJ = np.kron(np.eye(nP), J) # jacobian of the gradient GJ = self.grad_jacobian(state, t) GS = self.sens_jacobian_state(state_param[:(nS*(nP + 1))], t) sensJacobianOfState = GJ + GS # The jacobian of the ode, then the sensitivities w.r.t state # and the sensitivities. In block form return np.asarray(np.bmat([ [J, np.zeros((nS, nS*nP)), np.zeros((nS, nS*nS))], [sensJacobianOfState, outJ, np.zeros((nS*nP, nS*nS))], [A, np.zeros((nS*nS, nS*nP)), np.kron(np.eye(nS), J)] ])) def ode_and_sensitivityIV_jacobian_T(self, t, state_param): """ Same as :meth:`ode_and_sensitivityIV_jacobian` but with t as first parameter """ return self.ode_and_sensitivityIV_jacobian(state_param, t) ############################################################################ # # Adjoint # ############################################################################ def adjoint_interpolate(self, state, t, interpolant, func=None): """ Compute the adjoint given the adjoint vector, time, the functions which was used to interpolate the state variable Parameters ---------- state: array like The current value of lambda, where lambda's are the Lagrangian multipliers of the differential equation. t: double The current time. interpolant: list list of interpolating functions of the state func: callable This should take inputs similar to an ode, i.e. of the form func(y,t). If j(y,t) is the cost function, then func is a function that calculates :math:`\\partial j \\over \\partial x`. Returns ------- :class:`numpy.ndarray` output of the same length as the ode """ state_param = [o(t) for o in interpolant] return self.adjoint(state, t, state_param, func) def adjoint_interpolate_T(self, t, state, interpolant, objInput=None): """ Same as :meth:`adjoint_interpolate` but with t as first parameter """ return self.adjoint_interpolate(state, t, interpolant, objInput) def _adjointInterpolate_NoCheck(self, state, t, interpolant, func=None): state_param = [o(t) for o in interpolant] return self._adjoint_NoCheck(state, t, state_param, func) def _adjointInterpolateT_NoCheck(self, t, state, interpolant, func=None): return self._adjoint_NoCheck(state, t, interpolant, func) def adjoint(self, state, t, state_param, func=None): """ Compute the adjoint given the adjoint vector, time, state variable and the objective function. Note that this function is very restrictive in the sense that the (original) state variable changes through time but this assumes it is a constant, i.e. we assume that the original system is linear. Parameters ---------- state: array like The current value of lambda, where lambda's are the Lagrangian multipliers of the differential equation. t: double The current time. state_param: array like The state vector that is (or maybe) required to evaluate the jacobian of the original system func: callable This should take inputs similar to an ode, i.e. of the form func(y,t). If j(y,t) is the cost function, then func is a function that calculates :math:`\\partial j \\over \\partial x`. Returns ------- :class:`numpy.ndarray` output of the same length as the ode Notes ----- The size of lambda should be the same as the state. The integral should be starting from T, the final time of the original system and is integrated backwards (for stability). """ J = self.jacobian(state_param, t) if func is None: return np.dot(state, -J) else: return func(state_param, t) - J.transpose().dot(state) def _adjoint_NoCheck(self, state, t, state_param, func=None): J = self._Jacobian_NoCheck(state_param, t) if func is None: return np.dot(state, -J) else: return func(state_param, t) - J.transpose().dot(state) def _adjoinT_NoCheck(self, t, state, state_param, func=None): return self._adjoint_NoCheck(state, t, state_param, func) def adjoint_T(self, t, state, state_param, func=None): """ Same as :meth:`adjoint` but with t as first parameter """ return self.adjoint(state, t, state_param, func) def adjoint_jacobian(self, state, t, state_param, func=None): """ Compute the jacobian of the adjoint given the adjoint vector, time, state variable and the objective function. This is simply the same as the negative jacobian of the ode transposed. Parameters ---------- state: array like The current value of lambda, where lambda's are the Lagrangian multipliers of the differential equation. t: double The current time. state_param: array like The state vector that is (or maybe) required to evaluate the jacobian of the original system func: callable This should take inputs similar to an ode, i.e. of the form func(y,t). If j(y,t) is the cost function, then func is a function that calculates :math:`\\partial j \\over \\partial x`. Returns ------- :class:`numpy.ndarray` output of is a two dimensional array of size [number of state x number of state] Notes ----- It takes the same number of argument as the adjoint for simplicity when integrating. See Also -------- :meth:`.adjoint` """ return -self.jacobian(state_param, t).transpose() def adjoint_jacobian_T(self, t, state, state_param, func=None): """ Same as :meth:`adjoint_jacobian_T` but with t being the first parameter """ return self.adjoint_jacobian(state, t, state_param, func) def adjoint_interpolate_jacobian(self, state, t, interpolant, func=None): """ Compute the Jacobian of the adjoint given the adjoint vector, time, function of the interpolation on the state variables and the objective function. This is simply the same as the negative Jacobian of the ode transposed. Parameters ---------- state: array like The current value of lambda, where lambda's are the Lagrangian multipliers of the differential equation. t: double The current time. interpolant: list list of interpolating functions of the state func: callable This should take inputs similar to an ode, i.e. of the form func(y,t). If j(y,t) is the cost function, then func is a function that calculates :math:`\\partial j \\over \\partial x`. Returns ------- :class:`numpy.ndarray` output of is a two dimensional array of size [number of state x number of state] Notes ----- Same as :meth:`.adjoint_jacobian` but takes a list of interpolating function instead of a single (vector) value See Also -------- :meth:`.adjoint_jacobian` """ state_param = [o(t) for o in interpolant] return self.adjoint_jacobian(state, t, state_param, func) def adjoint_interpolate_jacobian_T(self, t, state, interpolant, func=None): """ Same as :meth:`adjoint_interpolate_jacobian` but with t as first parameter """ return self.adjoint_interpolate_jacobian(state, t, interpolant, func) ######################################################################## # # Sensitivity, forward-forward operations # ######################################################################## def forwardforward(self, ff, t, state, s): """ Evaluate a single :math:`f(x)` of the forward-forward sensitivities Parameters ---------- ff: array like the forward-forward sensitivities in vector form t: numeric time state: array like the current state s: array like forward sensitivities in vector form Returns ------- :class:`numpy.ndarray` :math:`f(x)` of size [number of state * (number of parameters * number of parameters)] """ # byState is simply stupid in the forward forward case because the # second derivative makes things only rational if we look at it from # the state point of view S = self._SAUtil.vecToMatSens(s) FF = self._SAUtil.vecToMatFF(ff) return self.eval_forwardforward(FF=FF, S=S, state=state, t=t) def forwardforward_T(self, t, ff, s, state): """ Same as :meth:`forwardforward` but with t as the first parameter """ return self.forwardforward(ff, t, state, s) def eval_forwardforward(self, FF, S, state, t): """ Evaluate a single f(x) of the forward-forward sensitivities Parameters ---------- FF: array like this is in fact a 3rd order Tensor, aka 3d array S: array like sensitivities in matrix form state: array like the current state t: numeric time Returns ------- :class:`numpy.ndarray` f(x) of size [number of state * (number of parameters * number of parameters)] """ J = self.jacobian(state, t) diffJ = self.diff_jacobian(state, t) # evaluating by state/ode, the matrix of second derivative # we have kron products into all these evaluations and the class # here use a sparse matrix operation outFF = self._SAUtil.kronParam(J).dot(FF) outFF += self._SAUtil.kronState(A=S.T, pre=True).dot(diffJ).dot(S) # now we need to magic our list / matrix into a vector, aka append # each of the vectorized matrix one after another return self._SAUtil.matToVecFF(outFF) def ode_and_forwardforward(self, state_param, t): """ Evaluate a single f(x) of the ode and the forward-forward sensitivities Parameters ---------- state_param: array like state and forward-forward sensitivities in vector form t: numeric time Returns ------- :class:`numpy.ndarray` same size as the state_param input """ if len(state_param) == self.num_state: raise InputError("You have only inputted the initial condition " + "for the states and not the sensitivity") elif len(state_param) == ((self.num_state + 1)*self.num_param): raise InputError("You have only inputted the initial condition " + "for the states and the sensitivity but not " + "the forward forward condition") # unrolling of parameters state = state_param[0:self.num_state] # we want the index up to numState * (numParam + 1) # as in, (numState * numParam + numState, # number of sensitivities + number of ode) sens = state_param[self.num_state:(self.num_state*(self.num_param + 1))] # the rest are then the forward forward sensitivities ff = state_param[(self.num_state*(self.num_param + 1))::] out1 = self.ode(state, t) out2 = self.sensitivity(sens, t, state) out3 = self.forwardforward(ff, t, state, sens) return np.append(np.append(out1, out2), out3) def ode_and_forwardforward_T(self, t, state_param): """ Same as :meth:`odeAndForwardForward` but with time as the first input """ return self.ode_and_forwardforward(state_param, t) def ode_and_forwardforward_jacobian(self, state_param, t): """ Return the jacobian after evaluation given the input of the state and the forward forward sensitivities Parameters ---------- state_param: array like state and forward-forward sensitivities in vector form t: numeric time Returns ------- :class:`numpy.ndarray` size of (a,a) where a is the length of the state_param input """ if len(state_param) == self.num_state: state = state_param else: state = state_param[0:self.num_state] J = self.jacobian(state, t) # create the block diagonal jacobian, assuming that whoever is # calling this function wants it arranges by state-parameters # We are only construct the block diagonal jacobian here # instead of the full one unlike some of the other methods within # this class outJS = np.kron(np.eye(self.num_param), J) outJFF = np.kron(np.eye(self.num_param*self.num_param), J) # The jacobian of the ode, then the sensitivities, then the # forward forward sensitivities return scipy.linalg.block_diag(J, outJS, outJFF) def ode_and_forwardforward_jacobian_T(self, t, state_param): """ Same as :meth:`ode_and_forwardforward_jacobian` but with t being the first parameters """ return self.ode_and_forwardforward_jacobian(state_param, t) ######################################################################## # # Initial conditions, integrations and result plots # ######################################################################## @property def initial_state(self): """ Return the initial state values """ return self._x0 @initial_state.setter def initial_state(self, x0): """ Set the initial state values Parameters ---------- x0: array like initial condition of x at time 0 """ err_str = "More than one state in the defined system" if isinstance(x0, np.ndarray): self._x0 = x0 elif isinstance(x0, (list, tuple)): self._x0 = np.array(x0) elif isinstance(x0, (int, float)): if self.num_state == 1: self._x0 = np.array([x0]) else: raise InitializeError(err_str) else: raise InitializeError("err_str") if len(self._x0) != self.num_state: raise Exception("Number of state is " + str(self.num_state)+ " but " + str(len(self._x0))+ " detected") @property def initial_time(self): """ Return the initial time """ return self._t0 @initial_time.setter def initial_time(self, t0): """ Set the initial time Parameters ---------- t0: numeric initial time where x0 is observed """ err_str = "Initial time should be a " if isinstance(t0, Number): self._t0 = t0 elif ode_utils.is_list_like(t0): if len(t0) == 1: if isinstance(t0[0], Number): self._t0 = t0[0] else: raise InitializeError(err_str + "numeric value") else: raise InitializeError(err_str + "single value") elif isinstance(t0, (list, tuple)): if len(t0) == 1: self._t0 = np.array(t0[0]) else: raise InitializeError(err_str + "single value") else: raise InitializeError(err_str + "numeric value") @property def initial_values(self): """ Returns the initial values, both time and state as a tuple (x0, t0) """ return self.initial_state, self.initial_time @initial_values.setter def initial_values(self, x0t0): """ Set the initial values, both time and state Parameters ---------- x0t0: array like initial condition of x at time t and the initial time t where x is observed """ assert len(x0t0) == 2, "Initial values require (x0, t0)" self.initial_state = x0t0[0] self.initial_time = x0t0[1] def integrate(self, t, full_output=False): """ Integrate over a range of t when t is an array and a output at time t Parameters ---------- t: array like the range of time points which we want to see the result of full_output: bool if we want additional information """ # type checking self._setIntegrateTime(t) # if our parameters are stochastic, then we are going to generate # another set of parameters to run if self._stochasticParam is not None: # this should always be true. If not, then we have screwed up # somewhere within this class. if isinstance(self._stochasticParam, dict): self.parameters = self._stochasticParam return self._integrate(self._odeTime, full_output) def integrate2(self, t, full_output=False, method=None): """ Integrate over a range of t when t is an array and a output at time t. Select a suitable method to integrate when method is None. Parameters ---------- t: array like the range of time points which we want to see the result of full_output: bool if we want additional information method: str, optional the integration method. All those available in :class:`ode <scipy.integrate.ode>` are allowed with 'vode' and 'ivode' representing the non-stiff and stiff version respectively. Defaults to None, which tries to choose the integration method via eigenvalue analysis (only one) using the initial conditions """ self._setIntegrateTime(t) # if our parameters are stochastic, then we are going to generate # another set of parameters to run if self._stochasticParam is not None: # this should always be true if isinstance(self._stochasticParam, dict): self.parameters = self._stochasticParam return self._integrate2(self._odeTime, full_output, method) def _setIntegrateTime(self, t): """ Set the full set of integration time including the origin """ assert self._t0 is not None, "Initial time not set" if ode_utils.is_list_like(t): if isinstance(t[0], Number): t = np.append(self._t0, t) else: raise ArrayError("Expecting a list of numeric value") elif isinstance(t, Number): t = np.append(self._t0, np.array(t)) else: raise ArrayError("Expecting an array like input or a single " + "numeric value") self._odeTime = t def _integrate(self, t, full_output=True): """ Integrate using :class:`scipy.integrate.odeint` underneath """ assert self._t0 is not None, "Initial time not set" f = ode_utils.integrate self._odeSolution, self._odeOutput = f(self, self._x0, t, full_output=True) if full_output: return self._odeSolution, self._odeOutput else: return self._odeSolution def _integrate2(self, t, full_output=True, method=None): """ Integrate using :class:`scipy.integrate.ode` underneath """ assert self._x0 is not None, "Initial state not set" f = ode_utils.integrateFuncJac self._odeSolution, self._odeOutput = f(self.ode_T, self.jacobian_T, self._x0, t[0], t[1::], includeOrigin=True, full_output=True, method=method) if full_output: return self._odeSolution, self._odeOutput else: return self._odeSolution def plot(self): """ Plot the results of the integration Notes ----- If we have 3 states or more, it will always be arrange such that it has 3 columns. Uses the operation from :mod:`odeutils` """ # just need to make sure that we have # already gotten the solution to the integration if self._odeSolution is None: try: self._integrate(self._odeTime) ode_utils.plot(self._odeSolution, self._odeTime, self._stateList) except: raise IntegrationError("Have not performed the integration yet") else: ode_utils.plot(self._odeSolution, self._odeTime, self._stateList) ######################################################################## # Unrolling of the information from vector to sympy # t # state ######################################################################## def _addTimeEvalParam(self, eval_param, t): eval_param.append((self._t, t)) return eval_param def _addStateEvalParam(self, eval_param, state): super(DeterministicOde, self).state = state if self._state is not None: eval_param += self._state return eval_param def _getEvalParam(self, state, time, parameters): if state is None or time is None: raise InputError("Have to input both state and time") if parameters is not None: self.parameters = parameters elif self._parameters is None: if self.num_param == 0: pass else: raise InputError("Have not set the parameters yet") if isinstance(state, list): eval_param = state + [time] elif hasattr(state, '__iter__'): eval_param = list(state) + [time] else: eval_param = [state] + [time] return eval_param + self._paramValue
gpl-2.0
terkkila/scikit-learn
sklearn/cluster/mean_shift_.py
106
14056
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None, got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape stop_thresh = 1e-3 * bandwidth # when mean has converged center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # For each seed, climb gradient until convergence or max_iter for my_mean in seeds: completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): center_intensity_dict[tuple(my_mean)] = len(points_within) break completed_iterations += 1 if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f, using data" " points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
pnedunuri/scikit-learn
sklearn/covariance/tests/test_covariance.py
69
11116
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) print(np.amin(mahal_dist), np.amax(mahal_dist)) assert(np.amin(mahal_dist) > 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # Create X with 1 sample and 5 features X_1sample = np.arange(5).reshape(1, 5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0:1] oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # warning should be raised when using only 1 sample X_1sample = np.arange(5).reshape(1, 5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
christinahedges/PyKE
setup.py
2
3141
#!/usr/bin/env python import os import sys from setuptools import setup # Prepare and send a new release to PyPI if "release" in sys.argv[-1]: os.system("python setup.py sdist") os.system("twine upload dist/*") os.system("rm -rf dist/pyketools*") sys.exit() # Load the __version__ variable without importing the package already exec(open('pyke/version.py').read()) entry_points = {'console_scripts': [ 'kepbls = pyke.kepbls:kepbls_main', 'kepclean = pyke.kepclean:kepclean_main', 'kepclip = pyke.kepclip:kepclip_main', 'kepconvert = pyke.kepconvert:kepconvert_main', 'kepcotrend = pyke.kepcotrend:kepcotrend_main', 'kepdetrend = pyke.kepdetrend:kepdetrend_main', 'kepdiffim = pyke.kepdiffim:kepdiffim_main', 'kepdraw = pyke.kepdraw:kepdraw_main', 'kepdynamic = pyke.kepdynamic:kepdynamic_main', 'kepextract = pyke.kepextract:kepextract_main', 'kepffi = pyke.kepffi:kepffi_main', 'kepfilter = pyke.kepfilter:kepfilter_main', 'kepflatten = pyke.kepflatten:kepflatten_main', 'kepfold = pyke.kepfold:kepfold_main', 'kepperiodogram = pyke.kepperiodogram:kepperiodogram_main', 'kephead = pyke.kephead:kephead_main', 'kepimages = pyke.kepimages:kepimages_main', 'kepmask = pyke.kepmask:kepmask_main', 'kepoutlier = pyke.kepoutlier:kepoutlier_main', 'keppca = pyke.keppca:keppca_main', 'keppixseries = pyke.keppixseries:keppixseries_main', 'kepprf = pyke.kepprf:kepprf_main', 'kepprfphot = pyke.kepprfphot:kepprfphot_main', 'keprange = pyke.keprange:keprange_main', 'kepsff = pyke.kepsff:kepsff_main', 'kepsmooth = pyke.kepsmooth:kepsmooth_main', 'kepstddev = pyke.kepstddev:kepstddev_main', 'kepstitch = pyke.kepstitch:kepstitch_main', 'keptimefix = pyke.keptimefix:keptimefix_main', 'keptrial = pyke.keptrial:keptrial_main', 'keptrim = pyke.keptrim:keptrim_main', 'kepwindow = pyke.kepwindow:kepwindow_main', ]} setup(name='pyketools', version=__version__, description="Tools to inspect and analyze the pixels and lightcurves " "obtained by NASA's Kepler, K2, and TESS space telescopes.", long_description=open('README.rst').read(), author='KeplerGO', author_email='[email protected]', license='MIT', packages=['pyke'], install_requires=['numpy>=1.11', 'astropy>=1.3', 'scipy>=0.17.0', 'matplotlib>=1.5.3', 'tqdm', 'oktopus', 'bs4', 'requests'], setup_requires=['pytest-runner'], tests_require=['pytest', 'pytest-cov'], entry_points=entry_points, include_package_data=True, classifiers=[ "Development Status :: 5 - Production/Stable", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Astronomy", ], )
mit
shangwuhencc/scikit-learn
sklearn/datasets/tests/test_base.py
205
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
google-research/google-research
ravens/ravens/utils.py
1
22236
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python """Miscellaneous utilities.""" import cv2 import matplotlib import matplotlib.pyplot as plt import meshcat import meshcat.geometry as g import meshcat.transformations as mtf import numpy as np import pybullet as p import transformations #----------------------------------------------------------------------------- # HEIGHTMAP UTILS #----------------------------------------------------------------------------- def get_heightmap(points, colors, bounds, pixel_size): """Get top-down (z-axis) orthographic heightmap image from 3D pointcloud. Args: points: HxWx3 float array of 3D points in world coordinates. colors: HxWx3 uint8 array of values in range 0-255 aligned with points. bounds: 3x2 float array of values (rows: X,Y,Z; columns: min,max) defining region in 3D space to generate heightmap in world coordinates. pixel_size: float defining size of each pixel in meters. Returns: heightmap: HxW float array of height (from lower z-bound) in meters. colormap: HxWx3 uint8 array of backprojected color aligned with heightmap. """ width = int(np.round((bounds[0, 1] - bounds[0, 0]) / pixel_size)) height = int(np.round((bounds[1, 1] - bounds[1, 0]) / pixel_size)) heightmap = np.zeros((height, width), dtype=np.float32) colormap = np.zeros((height, width, colors.shape[-1]), dtype=np.uint8) # Filter out 3D points that are outside of the predefined bounds. ix = (points[Ellipsis, 0] >= bounds[0, 0]) & (points[Ellipsis, 0] < bounds[0, 1]) iy = (points[Ellipsis, 1] >= bounds[1, 0]) & (points[Ellipsis, 1] < bounds[1, 1]) iz = (points[Ellipsis, 2] >= bounds[2, 0]) & (points[Ellipsis, 2] < bounds[2, 1]) valid = ix & iy & iz points = points[valid] colors = colors[valid] # Sort 3D points by z-value, which works with array assignment to simulate # z-buffering for rendering the heightmap image. iz = np.argsort(points[:, -1]) points, colors = points[iz], colors[iz] px = np.int32(np.floor((points[:, 0] - bounds[0, 0]) / pixel_size)) py = np.int32(np.floor((points[:, 1] - bounds[1, 0]) / pixel_size)) px = np.clip(px, 0, width - 1) py = np.clip(py, 0, height - 1) heightmap[py, px] = points[:, 2] - bounds[2, 0] for c in range(colors.shape[-1]): colormap[py, px, c] = colors[:, c] return heightmap, colormap def get_pointcloud(depth, intrinsics): """Get 3D pointcloud from perspective depth image. Args: depth: HxW float array of perspective depth in meters. intrinsics: 3x3 float array of camera intrinsics matrix. Returns: points: HxWx3 float array of 3D points in camera coordinates. """ height, width = depth.shape xlin = np.linspace(0, width - 1, width) ylin = np.linspace(0, height - 1, height) px, py = np.meshgrid(xlin, ylin) px = (px - intrinsics[0, 2]) * (depth / intrinsics[0, 0]) py = (py - intrinsics[1, 2]) * (depth / intrinsics[1, 1]) points = np.float32([px, py, depth]).transpose(1, 2, 0) return points def transform_pointcloud(points, transform): """Apply rigid transformation to 3D pointcloud. Args: points: HxWx3 float array of 3D points in camera coordinates. transform: 4x4 float array representing a rigid transformation matrix. Returns: points: HxWx3 float array of transformed 3D points. """ padding = ((0, 0), (0, 0), (0, 1)) homogen_points = np.pad(points.copy(), padding, 'constant', constant_values=1) for i in range(3): points[Ellipsis, i] = np.sum(transform[i, :] * homogen_points, axis=-1) return points def reconstruct_heightmaps(color, depth, configs, bounds, pixel_size): """Reconstruct top-down heightmap views from multiple 3D pointclouds.""" heightmaps, colormaps = [], [] for color, depth, config in zip(color, depth, configs): intrinsics = np.array(config['intrinsics']).reshape(3, 3) xyz = get_pointcloud(depth, intrinsics) position = np.array(config['position']).reshape(3, 1) rotation = p.getMatrixFromQuaternion(config['rotation']) rotation = np.array(rotation).reshape(3, 3) transform = np.eye(4) transform[:3, :] = np.hstack((rotation, position)) xyz = transform_pointcloud(xyz, transform) heightmap, colormap = get_heightmap(xyz, color, bounds, pixel_size) heightmaps.append(heightmap) colormaps.append(colormap) return heightmaps, colormaps def pix_to_xyz(pixel, height, bounds, pixel_size, skip_height=False): """Convert from pixel location on heightmap to 3D position.""" u, v = pixel x = bounds[0, 0] + v * pixel_size y = bounds[1, 0] + u * pixel_size if not skip_height: z = bounds[2, 0] + height[u, v] else: z = 0.0 return (x, y, z) def xyz_to_pix(position, bounds, pixel_size): """Convert from 3D position to pixel location on heightmap.""" u = int(np.round((position[1] - bounds[1, 0]) / pixel_size)) v = int(np.round((position[0] - bounds[0, 0]) / pixel_size)) return (u, v) def unproject_vectorized(uv_coordinates, depth_values, intrinsic, distortion): """Vectorized version of unproject(), for N points. Args: uv_coordinates: pixel coordinates to unproject of shape (n, 2). depth_values: depth values corresponding index-wise to the uv_coordinates of shape (n). intrinsic: array of shape (3, 3). This is typically the return value of intrinsics_to_matrix. distortion: camera distortion parameters of shape (5,). Returns: xyz coordinates in camera frame of shape (n, 3). """ cam_mtx = intrinsic # shape [3, 3] cam_dist = np.array(distortion) # shape [5] # shape of points_undistorted is [N, 2] after the squeeze(). points_undistorted = cv2.undistortPoints( uv_coordinates.reshape((-1, 1, 2)), cam_mtx, cam_dist).squeeze() x = points_undistorted[:, 0] * depth_values y = points_undistorted[:, 1] * depth_values xyz = np.vstack((x, y, depth_values)).T return xyz def unproject_depth_vectorized(im_depth, depth_dist, camera_mtx, camera_dist): """Unproject depth image into 3D point cloud, using calibration. Args: im_depth: raw depth image, pre-calibration of shape (height, width). depth_dist: depth distortion parameters of shape (8,) camera_mtx: intrinsics matrix of shape (3, 3). This is typically the return value of intrinsics_to_matrix. camera_dist: camera distortion parameters shape (5,). Returns: numpy array of shape [3, H*W]. each column is xyz coordinates """ h, w = im_depth.shape # shape of each u_map, v_map is [H, W]. u_map, v_map = np.meshgrid(np.linspace( 0, w - 1, w), np.linspace(0, h - 1, h)) adjusted_depth = depth_dist[0] + im_depth * depth_dist[1] # shape after stack is [N, 2], where N = H * W. uv_coordinates = np.stack((u_map.reshape(-1), v_map.reshape(-1)), axis=-1) return unproject_vectorized(uv_coordinates, adjusted_depth.reshape(-1), camera_mtx, camera_dist) #----------------------------------------------------------------------------- # MATH UTILS #----------------------------------------------------------------------------- def sample_distribution(prob, n_samples=1): """Sample data point from a custom distribution.""" flat_prob = np.ndarray.flatten(prob) / np.sum(prob) rand_ind = np.random.choice( np.arange(len(flat_prob)), n_samples, p=flat_prob, replace=False) rand_ind_coords = np.array(np.unravel_index(rand_ind, prob.shape)).T return np.int32(rand_ind_coords.squeeze()) #------------------------------------------------------------------------- # Transformation Helper Functions #------------------------------------------------------------------------- def invert(pose): return p.invertTransform(pose[0], pose[1]) def multiply(pose0, pose1): return p.multiplyTransforms(pose0[0], pose0[1], pose1[0], pose1[1]) def apply(pose, position): position = np.float32(position) position_shape = position.shape position = np.float32(position).reshape(3, -1) rotation = np.float32(p.getMatrixFromQuaternion(pose[1])).reshape(3, 3) translation = np.float32(pose[0]).reshape(3, 1) position = rotation @ position + translation return tuple(position.reshape(position_shape)) def eulerXYZ_to_quatXYZW(rotation): # pylint: disable=invalid-name """Abstraction for converting from a 3-parameter rotation to quaterion. This will help us easily switch which rotation parameterization we use. Quaternion should be in xyzw order for pybullet. Args: rotation: a 3-parameter rotation, in xyz order tuple of 3 floats Returns: quaternion, in xyzw order, tuple of 4 floats """ euler_zxy = (rotation[2], rotation[0], rotation[1]) quaternion_wxyz = transformations.quaternion_from_euler( *euler_zxy, axes='szxy') q = quaternion_wxyz quaternion_xyzw = (q[1], q[2], q[3], q[0]) return quaternion_xyzw def quatXYZW_to_eulerXYZ(quaternion_xyzw): # pylint: disable=invalid-name """Abstraction for converting from quaternion to a 3-parameter toation. This will help us easily switch which rotation parameterization we use. Quaternion should be in xyzw order for pybullet. Args: quaternion_xyzw: in xyzw order, tuple of 4 floats Returns: rotation: a 3-parameter rotation, in xyz order, tuple of 3 floats """ q = quaternion_xyzw quaternion_wxyz = np.array([q[3], q[0], q[1], q[2]]) euler_zxy = transformations.euler_from_quaternion( quaternion_wxyz, axes='szxy') euler_xyz = (euler_zxy[1], euler_zxy[2], euler_zxy[0]) return euler_xyz def apply_transform(transform_to_from, points_from): r"""Transforms points (3D) into new frame. Using transform_to_from notation. Args: transform_to_from: numpy.ndarray of shape [B,4,4], SE3 points_from: numpy.ndarray of shape [B,3,N] Returns: points_to: numpy.ndarray of shape [B,3,N] """ num_points = points_from.shape[-1] # non-batched if len(transform_to_from.shape) == 2: ones = np.ones((1, num_points)) # makes these each into homogenous vectors points_from = np.vstack((points_from, ones)) # [4,N] points_to = transform_to_from @ points_from # [4,N] return points_to[0:3, :] # [3,N] # batched else: assert len(transform_to_from.shape) == 3 batch_size = transform_to_from.shape[0] zeros = np.ones((batch_size, 1, num_points)) points_from = np.concatenate((points_from, zeros), axis=1) assert points_from.shape[1] == 4 points_to = transform_to_from @ points_from return points_to[:, 0:3, :] #----------------------------------------------------------------------------- # IMAGE UTILS #----------------------------------------------------------------------------- def preprocess(img): """Pre-process input (subtract mean, divide by std).""" color_mean = 0.18877631 depth_mean = 0.00509261 color_std = 0.07276466 depth_std = 0.00903967 img[:, :, :3] = (img[:, :, :3] / 255 - color_mean) / color_std img[:, :, 3:] = (img[:, :, 3:] - depth_mean) / depth_std return img def get_fused_heightmap(obs, configs, bounds, pix_size): """Reconstruct orthographic heightmaps with segmentation masks.""" heightmaps, colormaps = reconstruct_heightmaps( obs['color'], obs['depth'], configs, bounds, pix_size) colormaps = np.float32(colormaps) heightmaps = np.float32(heightmaps) # Fuse maps from different views. valid = np.sum(colormaps, axis=3) > 0 repeat = np.sum(valid, axis=0) repeat[repeat == 0] = 1 cmap = np.sum(colormaps, axis=0) / repeat[Ellipsis, None] cmap = np.uint8(np.round(cmap)) hmap = np.max(heightmaps, axis=0) # Max to handle occlusions. return cmap, hmap def get_image_transform(theta, trans, pivot=(0, 0)): """Compute composite 2D rigid transformation matrix.""" # Get 2D rigid transformation matrix that rotates an image by theta (in # radians) around pivot (in pixels) and translates by trans vector (in # pixels) pivot_t_image = np.array([[1., 0., -pivot[0]], [0., 1., -pivot[1]], [0., 0., 1.]]) image_t_pivot = np.array([[1., 0., pivot[0]], [0., 1., pivot[1]], [0., 0., 1.]]) transform = np.array([[np.cos(theta), -np.sin(theta), trans[0]], [np.sin(theta), np.cos(theta), trans[1]], [0., 0., 1.]]) return np.dot(image_t_pivot, np.dot(transform, pivot_t_image)) def check_transform(image, pixel, transform): """Valid transform only if pixel locations are still in FoV after transform.""" new_pixel = np.flip( np.int32( np.round( np.dot(transform, np.float32([pixel[1], pixel[0], 1.]).reshape(3, 1))))[:2].squeeze()) valid = np.all( new_pixel >= 0 ) and new_pixel[0] < image.shape[0] and new_pixel[1] < image.shape[1] return valid, new_pixel def get_se3_from_image_transform(theta, trans, pivot, heightmap, bounds, pixel_size): """Calculate SE3 from image transform.""" position_center = pix_to_xyz( np.flip(np.int32(np.round(pivot))), heightmap, bounds, pixel_size, skip_height=False) new_position_center = pix_to_xyz( np.flip(np.int32(np.round(pivot + trans))), heightmap, bounds, pixel_size, skip_height=True) # Don't look up the z height, it might get augmented out of frame new_position_center = (new_position_center[0], new_position_center[1], position_center[2]) delta_position = np.array(new_position_center) - np.array(position_center) t_world_center = np.eye(4) t_world_center[0:3, 3] = np.array(position_center) t_centernew_center = np.eye(4) euler_zxy = (-theta, 0, 0) t_centernew_center[0:3, 0:3] = transformations.euler_matrix( *euler_zxy, axes='szxy')[0:3, 0:3] t_centernew_center_tonly = np.eye(4) t_centernew_center_tonly[0:3, 3] = -delta_position t_centernew_center = t_centernew_center @ t_centernew_center_tonly t_world_centernew = t_world_center @ np.linalg.inv(t_centernew_center) return t_world_center, t_world_centernew def get_random_image_transform_params(image_size): theta_sigma = 2 * np.pi / 6 theta = np.random.normal(0, theta_sigma) trans_sigma = np.min(image_size) / 6 trans = np.random.normal(0, trans_sigma, size=2) # [x, y] pivot = (image_size[1] / 2, image_size[0] / 2) return theta, trans, pivot def perturb(input_image, pixels, set_theta_zero=False): """Data augmentation on images.""" image_size = input_image.shape[:2] # Compute random rigid transform. while True: theta, trans, pivot = get_random_image_transform_params(image_size) if set_theta_zero: theta = 0. transform = get_image_transform(theta, trans, pivot) transform_params = theta, trans, pivot # Ensure pixels remain in the image after transform. is_valid = True new_pixels = [] new_rounded_pixels = [] for pixel in pixels: pixel = np.float32([pixel[1], pixel[0], 1.]).reshape(3, 1) rounded_pixel = np.int32(np.round(transform @ pixel))[:2].squeeze() rounded_pixel = np.flip(rounded_pixel) pixel = (transform @ pixel)[:2].squeeze() pixel = np.flip(pixel) in_fov_rounded = rounded_pixel[0] < image_size[0] and rounded_pixel[ 1] < image_size[1] in_fov = pixel[0] < image_size[0] and pixel[1] < image_size[1] is_valid = is_valid and np.all(rounded_pixel >= 0) and np.all( pixel >= 0) and in_fov_rounded and in_fov new_pixels.append(pixel) new_rounded_pixels.append(rounded_pixel) if is_valid: break # Apply rigid transform to image and pixel labels. input_image = cv2.warpAffine( input_image, transform[:2, :], (image_size[1], image_size[0]), flags=cv2.INTER_NEAREST) return input_image, new_pixels, new_rounded_pixels, transform_params #----------------------------------------------------------------------------- # PLOT UTILS #----------------------------------------------------------------------------- # Plot colors (Tableau palette). COLORS = { 'blue': [078.0 / 255.0, 121.0 / 255.0, 167.0 / 255.0], 'red': [255.0 / 255.0, 087.0 / 255.0, 089.0 / 255.0], 'green': [089.0 / 255.0, 169.0 / 255.0, 079.0 / 255.0], 'orange': [242.0 / 255.0, 142.0 / 255.0, 043.0 / 255.0], 'yellow': [237.0 / 255.0, 201.0 / 255.0, 072.0 / 255.0], 'purple': [176.0 / 255.0, 122.0 / 255.0, 161.0 / 255.0], 'pink': [255.0 / 255.0, 157.0 / 255.0, 167.0 / 255.0], 'cyan': [118.0 / 255.0, 183.0 / 255.0, 178.0 / 255.0], 'brown': [156.0 / 255.0, 117.0 / 255.0, 095.0 / 255.0], 'gray': [186.0 / 255.0, 176.0 / 255.0, 172.0 / 255.0] } def plot(fname, # pylint: disable=dangerous-default-value title, ylabel, xlabel, data, xlim=[-np.inf, 0], xticks=None, ylim=[np.inf, -np.inf], show_std=True): """Plot frame data.""" # Data is a dictionary that maps experiment names to tuples with 3 # elements: x (size N array) and y (size N array) and y_std (size N array) # Get data limits. for name, (x, y, _) in data.items(): del name y = np.array(y) xlim[0] = max(xlim[0], np.min(x)) xlim[1] = max(xlim[1], np.max(x)) ylim[0] = min(ylim[0], np.min(y)) ylim[1] = max(ylim[1], np.max(y)) # Draw background. plt.title(title, fontsize=14) plt.ylim(ylim) plt.ylabel(ylabel, fontsize=14) plt.yticks(fontsize=14) plt.xlim(xlim) plt.xlabel(xlabel, fontsize=14) plt.grid(True, linestyle='-', color=[0.8, 0.8, 0.8]) ax = plt.gca() for axis in ['top', 'bottom', 'left', 'right']: ax.spines[axis].set_color('#000000') plt.rcParams.update({'font.size': 14}) plt.rcParams['mathtext.default'] = 'regular' matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 # Draw data. color_iter = 0 for name, (x, y, std) in data.items(): del name x, y, std = np.float32(x), np.float32(y), np.float32(std) upper = np.clip(y + std, ylim[0], ylim[1]) lower = np.clip(y - std, ylim[0], ylim[1]) color = COLORS[list(COLORS.keys())[color_iter]] if show_std: plt.fill_between(x, upper, lower, color=color, linewidth=0, alpha=0.3) plt.plot(x, y, color=color, linewidth=2, marker='o', alpha=1.) color_iter += 1 if xticks: plt.xticks(ticks=range(len(xticks)), labels=xticks, fontsize=14) else: plt.xticks(fontsize=14) plt.legend([name for name, _ in data.items()], loc='lower right', fontsize=14) plt.tight_layout() plt.savefig(fname) plt.clf() #----------------------------------------------------------------------------- # MESHCAT UTILS #----------------------------------------------------------------------------- def create_visualizer(clear=True): print('Waiting for meshcat server... have you started a server?') vis = meshcat.Visualizer(zmq_url='tcp://127.0.0.1:6000') if clear: vis.delete() return vis def make_frame(vis, name, h, radius, o=1.0): """Add a red-green-blue triad to the Meschat visualizer. Args: vis (MeshCat Visualizer): the visualizer name (string): name for this frame (should be unique) h (float): height of frame visualization radius (float): radius of frame visualization o (float): opacity """ vis[name]['x'].set_object( g.Cylinder(height=h, radius=radius), g.MeshLambertMaterial(color=0xff0000, reflectivity=0.8, opacity=o)) rotate_x = mtf.rotation_matrix(np.pi / 2.0, [0, 0, 1]) rotate_x[0, 3] = h / 2 vis[name]['x'].set_transform(rotate_x) vis[name]['y'].set_object( g.Cylinder(height=h, radius=radius), g.MeshLambertMaterial(color=0x00ff00, reflectivity=0.8, opacity=o)) rotate_y = mtf.rotation_matrix(np.pi / 2.0, [0, 1, 0]) rotate_y[1, 3] = h / 2 vis[name]['y'].set_transform(rotate_y) vis[name]['z'].set_object( g.Cylinder(height=h, radius=radius), g.MeshLambertMaterial(color=0x0000ff, reflectivity=0.8, opacity=o)) rotate_z = mtf.rotation_matrix(np.pi / 2.0, [1, 0, 0]) rotate_z[2, 3] = h / 2 vis[name]['z'].set_transform(rotate_z) def meshcat_visualize(vis, obs, act, info): """Visualize data using meshcat.""" for key in sorted(info.keys()): pose = info[key] pick_transform = np.eye(4) pick_transform[0:3, 3] = pose[0] quaternion_wxyz = np.asarray( [pose[1][3], pose[1][0], pose[1][1], pose[1][2]]) pick_transform[0:3, 0:3] = mtf.quaternion_matrix(quaternion_wxyz)[0:3, 0:3] label = 'obj_' + str(key) make_frame(vis, label, h=0.05, radius=0.0012, o=1.0) vis[label].set_transform(pick_transform) for cam_index in range(len(act['camera_config'])): verts = unproject_depth_vectorized( obs['depth'][cam_index], [0, 1], np.array(act['camera_config'][cam_index]['intrinsics']).reshape(3, 3), np.zeros(5)) # switch from [N,3] to [3,N] verts = verts.T cam_transform = np.eye(4) cam_transform[0:3, 3] = act['camera_config'][cam_index]['position'] quaternion_xyzw = act['camera_config'][cam_index]['rotation'] quaternion_wxyz = np.asarray([ quaternion_xyzw[3], quaternion_xyzw[0], quaternion_xyzw[1], quaternion_xyzw[2] ]) cam_transform[0:3, 0:3] = mtf.quaternion_matrix(quaternion_wxyz)[0:3, 0:3] verts = apply_transform(cam_transform, verts) colors = obs['color'][cam_index].reshape(-1, 3).T / 255.0 vis['pointclouds/' + str(cam_index)].set_object( g.PointCloud(position=verts, color=colors))
apache-2.0
michaelaye/planet4
tests/old_test_clustering.py
1
3094
# setup import tempfile from pathlib import Path import pandas as pd import pkg_resources as pr import pytest from planet4 import clustering with pr.resource_stream('planet4', 'data/test_db.csv') as f: data = pd.read_csv(f) # import warnings # with warnings.catch_warnings(): # warnings.filterwarnings("ignore", # category=DeprecationWarning) # @pytest.fixture(autouse=True, scope='module') def tdir(): _tdir = tempfile.mkdtemp() yield Path(_tdir.name) # teardown _tdir.cleanup() imid1 = 'APF000012w' imid2 = 'APF000012q' imid1data = data[data.image_id == imid1] imid2data = data[data.image_id == imid2] fans1 = imid1data[imid1data.marking == 'fan'] blotches1 = imid1data[imid1data.marking == 'blotch'] fans2 = imid2data[imid2data.marking == 'fan'] blotches2 = imid2data[imid2data.marking == 'blotch'] # basic clustering manager cm = clustering.ClusteringManager(dbname='ignore', output_dir=tdir) def test_calc_fnotch(): actual = clustering.calc_fnotch(4, 4) assert actual == 0.5 actual = clustering.calc_fnotch(4, 0) assert actual == 1 actual = clustering.calc_fnotch(0, 4) assert actual == 0 def test_dbscan_xy_blotch(): # using only x and y (or image_x,image_y) coords = ['image_x', 'image_y'] X = blotches1[coords].values dbscanner = clustering.DBScanner(X, min_samples=2) assert dbscanner.n_clusters == 26 assert dbscanner.n_rejected == 25 def test_dbscan_xy_fan(): # using only x and y (or image_x,image_y) coords = ['image_x', 'image_y'] X = fans1[coords].values dbscanner = clustering.DBScanner(X, min_samples=2) assert dbscanner.n_clusters == 7 assert dbscanner.n_rejected == 11 def test_dbscan_xy_angle_blotch(): coords = ['image_x', 'image_y', 'angle'] X = blotches1[coords].values dbscanner = clustering.DBScanner(X, min_samples=2) assert dbscanner.n_clusters == 35 assert dbscanner.n_rejected == 102 def test_dbscan_xy_angle_fan(): coords = ['image_x', 'image_y', 'angle'] X = fans1[coords].values dbscanner = clustering.DBScanner(X, min_samples=2) assert dbscanner.n_clusters == 6 assert dbscanner.n_rejected == 15 def test_clustering_basics(): cm.cluster_image_id(imid1, data=imid1data) assert cm.n_classifications == 94 cm.cluster_image_id(imid2, data=imid2data) assert cm.n_classifications == 121 for subdir in ['applied_cut_0.5', 'just_clustering']: expected = tdir / subdir assert expected.exists() and expected.is_dir() def test_output_file_creation(): for marking in ['blotches', 'fans', 'fnotches']: for ftype in ['.csv']: expected = tdir / (imid1 + '_' + marking + ftype) assert expected.exists() for marking in ['blotches']: for ftype in ['.csv']: expected = tdir / (imid2 + '_' + marking + ftype) if marking == 'blotches': assert expected.exists() else: # 12q,i.e. imdid2 only has blotches assert not expected.exists()
isc
daodaoliang/neural-network-animation
matplotlib/tests/test_style.py
10
1977
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import shutil import tempfile from contextlib import contextmanager import matplotlib as mpl from matplotlib import style from matplotlib.style.core import USER_LIBRARY_PATHS, STYLE_EXTENSION import six PARAM = 'image.cmap' VALUE = 'pink' DUMMY_SETTINGS = {PARAM: VALUE} @contextmanager def temp_style(style_name, settings=None): """Context manager to create a style sheet in a temporary directory.""" settings = DUMMY_SETTINGS temp_file = '%s.%s' % (style_name, STYLE_EXTENSION) # Write style settings to file in the temp directory. tempdir = tempfile.mkdtemp() with open(os.path.join(tempdir, temp_file), 'w') as f: for k, v in six.iteritems(settings): f.write('%s: %s' % (k, v)) # Add temp directory to style path and reload so we can access this style. USER_LIBRARY_PATHS.append(tempdir) style.reload_library() try: yield finally: shutil.rmtree(tempdir) style.reload_library() def test_available(): with temp_style('_test_', DUMMY_SETTINGS): assert '_test_' in style.available def test_use(): mpl.rcParams[PARAM] = 'gray' with temp_style('test', DUMMY_SETTINGS): with style.context('test'): assert mpl.rcParams[PARAM] == VALUE def test_use_url(): with temp_style('test', DUMMY_SETTINGS): with style.context('https://gist.github.com/adrn/6590261/raw'): assert mpl.rcParams['axes.facecolor'] == "#adeade" def test_context(): mpl.rcParams[PARAM] = 'gray' with temp_style('test', DUMMY_SETTINGS): with style.context('test'): assert mpl.rcParams[PARAM] == VALUE # Check that this value is reset after the exiting the context. assert mpl.rcParams[PARAM] == 'gray' if __name__ == '__main__': from numpy import testing testing.run_module_suite()
mit
AlexisEidelman/Til
til/data/data/Cohort.py
2
2269
# -*- coding:utf-8 -*- ''' Created on 13 december 2013 @author: a.eidelman Ce programme : - Input : Output : ''' from til.data.DataTil import DataTil, variables_til import numpy as np from pandas import DataFrame class Cohort(DataTil): """ La classe qui permet de lancer le travail sur les données La structure de classe n'est peut-être pas nécessaire pour l'instant """ def __init__(self, size=1000): DataTil.__init__(self) self.survey_date = 100*2009 + 1 self.survey_year = 2009 self.size = size self.name = 'cohort' def load(self): print "création de l'importation des données" size = self.size for name_table in ['men','foy','ind']: vars_int, vars_float = variables_til[name_table] vars = ['id','period','pond'] + vars_int + vars_float table = DataFrame(index=range(size), columns=vars) for var in vars_int: table[var] = 0 for var in vars_float: table[var] = table[var].astype(float) table['pond'] = 1.0 table['period'] = self.survey_date table['id'] = range(size) self.__setattr__(name_table, table) print "fin de la créations des données" def _output_name(self): return 'Cohort_' + str(self.size) + '.h5' def imputations(self): #TODO: findet ? self.ind['sexe'] = np.random.random_integers(0, 1, size = self.size) self.ind['civilstate'] = 2 self.ind['workstate'] = 11 def links(self): size = self.size rg = range(size) self.ind['men'] = rg self.ind['foy'] = rg self.ind[['pere','mere','conj']] = -1 self.foy['vous'] = rg self.men['pref'] = rg # special household self.ind['men'] += 10 self.ind['foy'] += 10 self.foy['id'] += 10 self.men['id'] += 10 if __name__ == '__main__': import time start_t = time.time() data = Cohort(1000) data.load() data.imputations() data.links() data.format_to_liam() data.final_check() data.store_to_liam()
gpl-3.0
onecodex/onecodex
onecodex/analyses.py
2
15702
import six import warnings from onecodex.exceptions import OneCodexException from onecodex.lib.enums import AbundanceMetric, Rank from onecodex.viz import ( VizPCAMixin, VizHeatmapMixin, VizMetadataMixin, VizDistanceMixin, VizBargraphMixin, ) class AnalysisMixin( VizPCAMixin, VizHeatmapMixin, VizMetadataMixin, VizDistanceMixin, VizBargraphMixin ): """Contains methods for analyzing Classifications results. Notes ----- Three DataFrames are required by most methods: collated counts, collated metadata, and taxonomy. This data is obtained from either a `ClassificationsDataFrame` or a `SampleCollection`. Both classes use this mixin. `AnalysisMixin` pulls additional methods in from `onecodex.distance`, `onecodex.taxonomy`, and `onecodex.viz`. """ def _get_auto_rank(self, rank): """Attempt to figure out what rank we should use for analyses.""" if rank == Rank.Auto: # if we're an accessor for a ClassificationsDataFrame, use its _rank property if self.__class__.__name__ == "OneCodexAccessor": return self._rank if AbundanceMetric.has_value(self._metric) or self._is_metagenomic: return Rank.Species else: return Rank.Genus else: return rank def _guess_normalized(self): """Return True if the collated counts in `self._results` appear to be normalized. Notes ----- It's possible that the _results df has already been normalized, which can cause some methods to fail. This method lets us guess whether that's true and act accordingly. """ return ( getattr(self, "_normalized", False) or AbundanceMetric.has_value(self._metric) or bool((self._results.sum(axis=1).round(4) == 1.0).all()) ) # noqa def _metadata_fetch(self, metadata_fields, label=None): """Fetch and transform given metadata fields from `self.metadata`. Takes a list of metadata fields, some of which can contain taxon names or taxon IDs, and returns a DataFrame with transformed data that can be used for plotting. Parameters ---------- metadata_fields : `list` of `string` A list of metadata fields, taxon names, or taxon IDs to fetch and transform for display. label : `string` or `callable`, optional A metadata field (or function) used to label each analysis. If passing a function, a dict containing the metadata for each analysis is passed as the first and only positional argument. The callable function must return a string. If this argument is not given, and "Label" is in `metadata_fields`, "Label" will be set to the filename associated with an analysis. Notes ----- Taxon names and IDs are transformed into the relative abundances of those taxa within their own rank. For example, 'Bacteroides' will return the relative abundances of 'Bacteroides' among all taxa of rank genus. Taxon IDs are stored as strings in `ClassificationsDataFrame` and are coerced to strings if integers are given. Metadata fields are returned as is, from the `self.metadata` DataFrame. If multiple metadata fields are specified in a tuple, their values are joined as strings separated by underscore. Multiple metadata fields in a tuple must both be categorical. That is, a numerical field and boolean can not be joined, or the result would be something like '87.4_True'. Returns ------- `pandas.DataFrame` Columns are renamed (if applicable) metadata fields and rows are `Classifications.id`. Elements are transformed values. Not all metadata fields will have been renamed, but will be present in the below `dict` nonetheless. `dict` Keys are metadata fields and values are renamed metadata fields. This can be used to map metadata fields which were passed to this function, to prettier names. For example, if 'bacteroid' is passed, it will be matched with the Bacteroides genus and renamed to 'Bacteroides (816)', which includes its taxon ID. """ import pandas as pd help_metadata = ", ".join(self.metadata.keys()) magic_metadata = pd.DataFrame({"classification_id": self._results.index}).set_index( "classification_id" ) # if user passed label kwarg but didn't put "Label" in the fields, assume the user wants # that field added if label is not None and "Label" not in metadata_fields: metadata_fields.append("Label") # if we magically rename fields, keep track magic_fields = {} for f in set([f for f in metadata_fields if f]): if isinstance(f, tuple): # joined categorical metadata for field in f: if field not in self.metadata: raise OneCodexException( "Metric {} not found. Choose from: {}".format(field, help_metadata) ) if not ( pd.api.types.is_bool_dtype(self.metadata[field]) or pd.api.types.is_categorical_dtype(self.metadata[field]) # noqa or pd.api.types.is_object_dtype(self.metadata[field]) # noqa ): raise OneCodexException( "When specifying multiple metadata fields, all must be categorical" ) # concatenate the columns together with underscores composite_field = "_".join(f) magic_metadata[composite_field] = "" magic_metadata[composite_field] = ( magic_metadata[composite_field] .str.cat([self.metadata[field].astype(str) for field in f], sep="_") .str.lstrip("_") ) magic_fields[f] = composite_field else: str_f = str(f) if str_f == "Label": magic_metadata[str_f] = self.metadata["filename"] magic_fields[f] = str_f if isinstance(label, six.string_types): if label in self.metadata.columns: magic_metadata[str_f] = self.metadata[label].astype(str) else: raise OneCodexException( "Label field {} not found. Choose from: {}".format( label, help_metadata ) ) elif callable(label): for classification_id, metadata in self.metadata.to_dict( orient="index" ).items(): c_id_label = label(metadata) if not isinstance(c_id_label, six.string_types): raise OneCodexException( "Expected string from label function, got: {}".format( type(c_id_label).__name__ ) ) magic_metadata.loc[classification_id, "Label"] = c_id_label elif label is not None: raise OneCodexException( "Expected string or callable for label, got: {}".format( type(label).__name__ ) ) # add an incremented number to duplicate labels (e.g., same filename) duplicate_labels = ( magic_metadata[str_f] .where(magic_metadata[str_f].duplicated(keep=False)) .dropna() ) if not duplicate_labels.empty: duplicate_counts = {label: 1 for label in duplicate_labels} for c_id in magic_metadata.index: label = magic_metadata[str_f][c_id] if duplicate_labels.isin([label]).any(): magic_metadata[str_f][c_id] = "{} ({})".format( label, duplicate_counts[label] ) duplicate_counts[label] += 1 elif str_f in self.metadata: # exactly matches existing metadata field magic_metadata[f] = self.metadata[str_f] magic_fields[f] = str_f elif str_f in self._results.keys(): # is a tax_id tax_name = self.taxonomy["name"][str_f] # report within-rank abundance df = self.to_df(rank=self.taxonomy["rank"][str_f]) renamed_field = "{} ({})".format(tax_name, str_f) magic_metadata[renamed_field] = df[str_f] magic_fields[f] = renamed_field else: # try to match it up with a taxon name hits = [] # don't both searching if the query is really short if len(str_f) > 4: for tax_id, tax_name in zip(self.taxonomy.index, self.taxonomy["name"]): # if it's an exact match, use that and skip the rest if str_f.lower() == tax_name.lower(): hits = [(tax_id, tax_name)] break # otherwise, keep trying to match elif str_f.lower() in tax_name.lower(): hits.append((tax_id, tax_name)) # take the hit with the lowest tax_id hits = sorted(hits, key=lambda x: int(x[0])) if hits: # report within-rank abundance df = self.to_df(rank=self.taxonomy["rank"][hits[0][0]]) renamed_field = "{} ({})".format(hits[0][1], hits[0][0]) magic_metadata[renamed_field] = df[hits[0][0]] magic_fields[f] = renamed_field else: # matched nothing raise OneCodexException( "Metric or taxon {} not found. Choose from: {}".format( str_f, help_metadata ) ) return magic_metadata, magic_fields def to_df( self, rank=Rank.Auto, top_n=None, threshold=None, remove_zeros=True, normalize="auto", table_format="wide", ): """Generate a ClassificationDataFrame, performing any specified transformations. Takes the ClassificationsDataFrame associated with these samples, or SampleCollection, does some filtering, and returns a ClassificationsDataFrame copy. Parameters ---------- rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. top_n : `integer`, optional Return only the top N most abundant taxa. threshold : `float`, optional Return only taxa more abundant than this threshold in one or more samples. remove_zeros : `bool`, optional Do not return taxa that have zero abundance in every sample. normalize : {'auto', True, False} Convert read counts to relative abundances (each sample sums to 1.0). table_format : {'long', 'wide'} If wide, rows are classifications, cols are taxa, elements are counts. If long, rows are observations with three cols each: classification_id, tax_id, and count. Returns ------- `ClassificationsDataFrame` """ from onecodex.dataframes import ClassificationsDataFrame rank = self._get_auto_rank(rank) df = self._results.copy() # subset by taxa if rank: if rank == "kingdom": warnings.warn( "Did you mean to specify rank=kingdom? Use rank=superkingdom to see Bacteria, " "Archaea and Eukaryota." ) tax_ids_to_keep = [] for tax_id in df.keys(): if self.taxonomy["rank"][tax_id] == rank: tax_ids_to_keep.append(tax_id) if len(tax_ids_to_keep) == 0: raise OneCodexException("No taxa kept--is rank ({}) correct?".format(rank)) df = df.loc[:, tax_ids_to_keep] # normalize if normalize is False and self._guess_normalized(): raise OneCodexException("Data has already been normalized and this can not be undone.") if normalize is True or (normalize == "auto" and rank): if not self._guess_normalized(): # Replace nans with zeros for samples that have a total abundance of zero. df = df.div(df.sum(axis=1), axis=0).fillna(0.0) # remove columns (tax_ids) with no values that are > 0 if remove_zeros: df = df.loc[:, (df != 0).any(axis=0)] # restrict to taxa appearing in one or more samples at the given threshold if threshold: df = df.loc[:, df.max() >= threshold] # restrict to N most abundant taxa if top_n: idx = df.sum(axis=0).sort_values(ascending=False).head(top_n).index df = df.loc[:, idx] # additional data to copy into the ClassificationsDataFrame ocx_data = { "ocx_metadata": self.metadata.copy(), "ocx_rank": rank, "ocx_metric": self._metric, "ocx_taxonomy": self.taxonomy.copy(), "ocx_normalized": normalize, } # generate long-format table if table_format == "long": pretty_metric_name = self._make_pretty_metric_name(self._metric, normalize) long_df = {"classification_id": [], "tax_id": [], pretty_metric_name: []} for t_id in df: for c_id, count in df[t_id].iteritems(): long_df["classification_id"].append(c_id) long_df["tax_id"].append(t_id) long_df[pretty_metric_name].append(count) results_df = ClassificationsDataFrame(long_df, **ocx_data) elif table_format == "wide": results_df = ClassificationsDataFrame(df, **ocx_data) else: raise OneCodexException("table_format must be one of: long, wide") return results_df @staticmethod def _make_pretty_metric_name(metric, normalized): if AbundanceMetric.has_value(metric): return "Relative Abundance" if normalized: return "Reads (Normalized)" else: return "Reads" @property def metric(self): return self._make_pretty_metric_name(self._metric, self._guess_normalized())
mit
petosegan/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
anurag313/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
TomAugspurger/pandas
pandas/tests/reshape/merge/test_merge.py
1
77688
from collections import OrderedDict from datetime import date, datetime, timedelta import random import re import numpy as np import pytest from pandas.core.dtypes.common import is_categorical_dtype, is_object_dtype from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, ) import pandas._testing as tm from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import MergeError, merge N = 50 NGROUPS = 8 def get_test_data(ngroups=NGROUPS, n=N): unique_groups = list(range(ngroups)) arr = np.asarray(np.tile(unique_groups, n // ngroups)) if len(arr) < n: arr = np.asarray(list(arr) + unique_groups[: n - len(arr)]) random.shuffle(arr) return arr def get_series(): return [ pd.Series([1], dtype="int64"), pd.Series([1], dtype="Int64"), pd.Series([1.23]), pd.Series(["foo"]), pd.Series([True]), pd.Series([pd.Timestamp("2018-01-01")]), pd.Series([pd.Timestamp("2018-01-01", tz="US/Eastern")]), ] def get_series_na(): return [ pd.Series([np.nan], dtype="Int64"), pd.Series([np.nan], dtype="float"), pd.Series([np.nan], dtype="object"), pd.Series([pd.NaT]), ] @pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name) def series_of_dtype(request): """ A parametrized fixture returning a variety of Series of different dtypes """ return request.param @pytest.fixture(params=get_series(), ids=lambda x: x.dtype.name) def series_of_dtype2(request): """ A duplicate of the series_of_dtype fixture, so that it can be used twice by a single function """ return request.param @pytest.fixture(params=get_series_na(), ids=lambda x: x.dtype.name) def series_of_dtype_all_na(request): """ A parametrized fixture returning a variety of Series with all NA values """ return request.param class TestMerge: def setup_method(self, method): # aggregate multiple columns self.df = DataFrame( { "key1": get_test_data(), "key2": get_test_data(), "data1": np.random.randn(N), "data2": np.random.randn(N), } ) # exclude a couple keys for fun self.df = self.df[self.df["key2"] > 1] self.df2 = DataFrame( { "key1": get_test_data(n=N // 5), "key2": get_test_data(ngroups=NGROUPS // 2, n=N // 5), "value": np.random.randn(N // 5), } ) self.left = DataFrame( {"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)} ) self.right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"]) def test_merge_inner_join_empty(self): # GH 15328 df_empty = pd.DataFrame() df_a = pd.DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") result = pd.merge(df_empty, df_a, left_index=True, right_index=True) expected = pd.DataFrame({"a": []}, index=[], dtype="int64") tm.assert_frame_equal(result, expected) def test_merge_common(self): joined = merge(self.df, self.df2) exp = merge(self.df, self.df2, on=["key1", "key2"]) tm.assert_frame_equal(joined, exp) def test_merge_non_string_columns(self): # https://github.com/pandas-dev/pandas/issues/17962 # Checks that method runs for non string column names left = pd.DataFrame( {0: [1, 0, 1, 0], 1: [0, 1, 0, 0], 2: [0, 0, 2, 0], 3: [1, 0, 0, 3]} ) right = left.astype(float) expected = left result = pd.merge(left, right) tm.assert_frame_equal(expected, result) def test_merge_index_as_on_arg(self): # GH14355 left = self.df.set_index("key1") right = self.df2.set_index("key1") result = merge(left, right, on="key1") expected = merge(self.df, self.df2, on="key1").set_index("key1") tm.assert_frame_equal(result, expected) def test_merge_index_singlekey_right_vs_left(self): left = DataFrame( {"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)} ) right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"]) merged1 = merge( left, right, left_on="key", right_index=True, how="left", sort=False ) merged2 = merge( right, left, right_on="key", left_index=True, how="right", sort=False ) tm.assert_frame_equal(merged1, merged2.loc[:, merged1.columns]) merged1 = merge( left, right, left_on="key", right_index=True, how="left", sort=True ) merged2 = merge( right, left, right_on="key", left_index=True, how="right", sort=True ) tm.assert_frame_equal(merged1, merged2.loc[:, merged1.columns]) def test_merge_index_singlekey_inner(self): left = DataFrame( {"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)} ) right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"]) # inner join result = merge(left, right, left_on="key", right_index=True, how="inner") expected = left.join(right, on="key").loc[result.index] tm.assert_frame_equal(result, expected) result = merge(right, left, right_on="key", left_index=True, how="inner") expected = left.join(right, on="key").loc[result.index] tm.assert_frame_equal(result, expected.loc[:, result.columns]) def test_merge_misspecified(self): msg = "Must pass right_on or right_index=True" with pytest.raises(pd.errors.MergeError, match=msg): merge(self.left, self.right, left_index=True) msg = "Must pass left_on or left_index=True" with pytest.raises(pd.errors.MergeError, match=msg): merge(self.left, self.right, right_index=True) msg = ( 'Can only pass argument "on" OR "left_on" and "right_on", not ' "a combination of both" ) with pytest.raises(pd.errors.MergeError, match=msg): merge(self.left, self.left, left_on="key", on="key") msg = r"len\(right_on\) must equal len\(left_on\)" with pytest.raises(ValueError, match=msg): merge(self.df, self.df2, left_on=["key1"], right_on=["key1", "key2"]) def test_index_and_on_parameters_confusion(self): msg = "right_index parameter must be of type bool, not <class 'list'>" with pytest.raises(ValueError, match=msg): merge( self.df, self.df2, how="left", left_index=False, right_index=["key1", "key2"], ) msg = "left_index parameter must be of type bool, not <class 'list'>" with pytest.raises(ValueError, match=msg): merge( self.df, self.df2, how="left", left_index=["key1", "key2"], right_index=False, ) with pytest.raises(ValueError, match=msg): merge( self.df, self.df2, how="left", left_index=["key1", "key2"], right_index=["key1", "key2"], ) def test_merge_overlap(self): merged = merge(self.left, self.left, on="key") exp_len = (self.left["key"].value_counts() ** 2).sum() assert len(merged) == exp_len assert "v1_x" in merged assert "v1_y" in merged def test_merge_different_column_key_names(self): left = DataFrame({"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 4]}) right = DataFrame({"rkey": ["foo", "bar", "qux", "foo"], "value": [5, 6, 7, 8]}) merged = left.merge( right, left_on="lkey", right_on="rkey", how="outer", sort=True ) exp = pd.Series(["bar", "baz", "foo", "foo", "foo", "foo", np.nan], name="lkey") tm.assert_series_equal(merged["lkey"], exp) exp = pd.Series(["bar", np.nan, "foo", "foo", "foo", "foo", "qux"], name="rkey") tm.assert_series_equal(merged["rkey"], exp) exp = pd.Series([2, 3, 1, 1, 4, 4, np.nan], name="value_x") tm.assert_series_equal(merged["value_x"], exp) exp = pd.Series([6, np.nan, 5, 8, 5, 8, 7], name="value_y") tm.assert_series_equal(merged["value_y"], exp) def test_merge_copy(self): left = DataFrame({"a": 0, "b": 1}, index=range(10)) right = DataFrame({"c": "foo", "d": "bar"}, index=range(10)) merged = merge(left, right, left_index=True, right_index=True, copy=True) merged["a"] = 6 assert (left["a"] == 0).all() merged["d"] = "peekaboo" assert (right["d"] == "bar").all() def test_merge_nocopy(self): left = DataFrame({"a": 0, "b": 1}, index=range(10)) right = DataFrame({"c": "foo", "d": "bar"}, index=range(10)) merged = merge(left, right, left_index=True, right_index=True, copy=False) merged["a"] = 6 assert (left["a"] == 6).all() merged["d"] = "peekaboo" assert (right["d"] == "peekaboo").all() def test_intelligently_handle_join_key(self): # #733, be a bit more 1337 about not returning unconsolidated DataFrame left = DataFrame( {"key": [1, 1, 2, 2, 3], "value": list(range(5))}, columns=["value", "key"] ) right = DataFrame({"key": [1, 1, 2, 3, 4, 5], "rvalue": list(range(6))}) joined = merge(left, right, on="key", how="outer") expected = DataFrame( { "key": [1, 1, 1, 1, 2, 2, 3, 4, 5], "value": np.array([0, 0, 1, 1, 2, 3, 4, np.nan, np.nan]), "rvalue": [0, 1, 0, 1, 2, 2, 3, 4, 5], }, columns=["value", "key", "rvalue"], ) tm.assert_frame_equal(joined, expected) def test_merge_join_key_dtype_cast(self): # #8596 df1 = DataFrame({"key": [1], "v1": [10]}) df2 = DataFrame({"key": [2], "v1": [20]}) df = merge(df1, df2, how="outer") assert df["key"].dtype == "int64" df1 = DataFrame({"key": [True], "v1": [1]}) df2 = DataFrame({"key": [False], "v1": [0]}) df = merge(df1, df2, how="outer") # GH13169 # this really should be bool assert df["key"].dtype == "object" df1 = DataFrame({"val": [1]}) df2 = DataFrame({"val": [2]}) lkey = np.array([1]) rkey = np.array([2]) df = merge(df1, df2, left_on=lkey, right_on=rkey, how="outer") assert df["key_0"].dtype == "int64" def test_handle_join_key_pass_array(self): left = DataFrame( {"key": [1, 1, 2, 2, 3], "value": np.arange(5)}, columns=["value", "key"] ) right = DataFrame({"rvalue": np.arange(6)}) key = np.array([1, 1, 2, 3, 4, 5]) merged = merge(left, right, left_on="key", right_on=key, how="outer") merged2 = merge(right, left, left_on=key, right_on="key", how="outer") tm.assert_series_equal(merged["key"], merged2["key"]) assert merged["key"].notna().all() assert merged2["key"].notna().all() left = DataFrame({"value": np.arange(5)}, columns=["value"]) right = DataFrame({"rvalue": np.arange(6)}) lkey = np.array([1, 1, 2, 2, 3]) rkey = np.array([1, 1, 2, 3, 4, 5]) merged = merge(left, right, left_on=lkey, right_on=rkey, how="outer") tm.assert_series_equal( merged["key_0"], Series([1, 1, 1, 1, 2, 2, 3, 4, 5], name="key_0") ) left = DataFrame({"value": np.arange(3)}) right = DataFrame({"rvalue": np.arange(6)}) key = np.array([0, 1, 1, 2, 2, 3], dtype=np.int64) merged = merge(left, right, left_index=True, right_on=key, how="outer") tm.assert_series_equal(merged["key_0"], Series(key, name="key_0")) def test_no_overlap_more_informative_error(self): dt = datetime.now() df1 = DataFrame({"x": ["a"]}, index=[dt]) df2 = DataFrame({"y": ["b", "c"]}, index=[dt, dt]) msg = ( "No common columns to perform merge on. " f"Merge options: left_on={None}, right_on={None}, " f"left_index={False}, right_index={False}" ) with pytest.raises(MergeError, match=msg): merge(df1, df2) def test_merge_non_unique_indexes(self): dt = datetime(2012, 5, 1) dt2 = datetime(2012, 5, 2) dt3 = datetime(2012, 5, 3) dt4 = datetime(2012, 5, 4) df1 = DataFrame({"x": ["a"]}, index=[dt]) df2 = DataFrame({"y": ["b", "c"]}, index=[dt, dt]) _check_merge(df1, df2) # Not monotonic df1 = DataFrame({"x": ["a", "b", "q"]}, index=[dt2, dt, dt4]) df2 = DataFrame( {"y": ["c", "d", "e", "f", "g", "h"]}, index=[dt3, dt3, dt2, dt2, dt, dt] ) _check_merge(df1, df2) df1 = DataFrame({"x": ["a", "b"]}, index=[dt, dt]) df2 = DataFrame({"y": ["c", "d"]}, index=[dt, dt]) _check_merge(df1, df2) def test_merge_non_unique_index_many_to_many(self): dt = datetime(2012, 5, 1) dt2 = datetime(2012, 5, 2) dt3 = datetime(2012, 5, 3) df1 = DataFrame({"x": ["a", "b", "c", "d"]}, index=[dt2, dt2, dt, dt]) df2 = DataFrame( {"y": ["e", "f", "g", " h", "i"]}, index=[dt2, dt2, dt3, dt, dt] ) _check_merge(df1, df2) def test_left_merge_empty_dataframe(self): left = DataFrame({"key": [1], "value": [2]}) right = DataFrame({"key": []}) result = merge(left, right, on="key", how="left") tm.assert_frame_equal(result, left) result = merge(right, left, on="key", how="right") tm.assert_frame_equal(result, left) @pytest.mark.parametrize( "kwarg", [ dict(left_index=True, right_index=True), dict(left_index=True, right_on="x"), dict(left_on="a", right_index=True), dict(left_on="a", right_on="x"), ], ) def test_merge_left_empty_right_empty(self, join_type, kwarg): # GH 10824 left = pd.DataFrame(columns=["a", "b", "c"]) right = pd.DataFrame(columns=["x", "y", "z"]) exp_in = pd.DataFrame( columns=["a", "b", "c", "x", "y", "z"], index=pd.Index([], dtype=object), dtype=object, ) result = pd.merge(left, right, how=join_type, **kwarg) tm.assert_frame_equal(result, exp_in) def test_merge_left_empty_right_notempty(self): # GH 10824 left = pd.DataFrame(columns=["a", "b", "c"]) right = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["x", "y", "z"]) exp_out = pd.DataFrame( { "a": np.array([np.nan] * 3, dtype=object), "b": np.array([np.nan] * 3, dtype=object), "c": np.array([np.nan] * 3, dtype=object), "x": [1, 4, 7], "y": [2, 5, 8], "z": [3, 6, 9], }, columns=["a", "b", "c", "x", "y", "z"], ) exp_in = exp_out[0:0] # make empty DataFrame keeping dtype # result will have object dtype exp_in.index = exp_in.index.astype(object) def check1(exp, kwarg): result = pd.merge(left, right, how="inner", **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how="left", **kwarg) tm.assert_frame_equal(result, exp) def check2(exp, kwarg): result = pd.merge(left, right, how="right", **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how="outer", **kwarg) tm.assert_frame_equal(result, exp) for kwarg in [ dict(left_index=True, right_index=True), dict(left_index=True, right_on="x"), ]: check1(exp_in, kwarg) check2(exp_out, kwarg) kwarg = dict(left_on="a", right_index=True) check1(exp_in, kwarg) exp_out["a"] = [0, 1, 2] check2(exp_out, kwarg) kwarg = dict(left_on="a", right_on="x") check1(exp_in, kwarg) exp_out["a"] = np.array([np.nan] * 3, dtype=object) check2(exp_out, kwarg) def test_merge_left_notempty_right_empty(self): # GH 10824 left = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["a", "b", "c"]) right = pd.DataFrame(columns=["x", "y", "z"]) exp_out = pd.DataFrame( { "a": [1, 4, 7], "b": [2, 5, 8], "c": [3, 6, 9], "x": np.array([np.nan] * 3, dtype=object), "y": np.array([np.nan] * 3, dtype=object), "z": np.array([np.nan] * 3, dtype=object), }, columns=["a", "b", "c", "x", "y", "z"], ) exp_in = exp_out[0:0] # make empty DataFrame keeping dtype # result will have object dtype exp_in.index = exp_in.index.astype(object) def check1(exp, kwarg): result = pd.merge(left, right, how="inner", **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how="right", **kwarg) tm.assert_frame_equal(result, exp) def check2(exp, kwarg): result = pd.merge(left, right, how="left", **kwarg) tm.assert_frame_equal(result, exp) result = pd.merge(left, right, how="outer", **kwarg) tm.assert_frame_equal(result, exp) for kwarg in [ dict(left_index=True, right_index=True), dict(left_index=True, right_on="x"), dict(left_on="a", right_index=True), dict(left_on="a", right_on="x"), ]: check1(exp_in, kwarg) check2(exp_out, kwarg) def test_merge_empty_frame(self, series_of_dtype, series_of_dtype2): # GH 25183 df = pd.DataFrame( {"key": series_of_dtype, "value": series_of_dtype2}, columns=["key", "value"], ) df_empty = df[:0] expected = pd.DataFrame( { "value_x": pd.Series(dtype=df.dtypes["value"]), "key": pd.Series(dtype=df.dtypes["key"]), "value_y": pd.Series(dtype=df.dtypes["value"]), }, columns=["value_x", "key", "value_y"], ) actual = df_empty.merge(df, on="key") tm.assert_frame_equal(actual, expected) def test_merge_all_na_column(self, series_of_dtype, series_of_dtype_all_na): # GH 25183 df_left = pd.DataFrame( {"key": series_of_dtype, "value": series_of_dtype_all_na}, columns=["key", "value"], ) df_right = pd.DataFrame( {"key": series_of_dtype, "value": series_of_dtype_all_na}, columns=["key", "value"], ) expected = pd.DataFrame( { "key": series_of_dtype, "value_x": series_of_dtype_all_na, "value_y": series_of_dtype_all_na, }, columns=["key", "value_x", "value_y"], ) actual = df_left.merge(df_right, on="key") tm.assert_frame_equal(actual, expected) def test_merge_nosort(self): # GH#2098, TODO: anything to do? d = { "var1": np.random.randint(0, 10, size=10), "var2": np.random.randint(0, 10, size=10), "var3": [ datetime(2012, 1, 12), datetime(2011, 2, 4), datetime(2010, 2, 3), datetime(2012, 1, 12), datetime(2011, 2, 4), datetime(2012, 4, 3), datetime(2012, 3, 4), datetime(2008, 5, 1), datetime(2010, 2, 3), datetime(2012, 2, 3), ], } df = DataFrame.from_dict(d) var3 = df.var3.unique() var3.sort() new = DataFrame.from_dict({"var3": var3, "var8": np.random.random(7)}) result = df.merge(new, on="var3", sort=False) exp = merge(df, new, on="var3", sort=False) tm.assert_frame_equal(result, exp) assert (df.var3.unique() == result.var3.unique()).all() def test_merge_nan_right(self): df1 = DataFrame({"i1": [0, 1], "i2": [0, 1]}) df2 = DataFrame({"i1": [0], "i3": [0]}) result = df1.join(df2, on="i1", rsuffix="_") expected = ( DataFrame( { "i1": {0: 0.0, 1: 1}, "i2": {0: 0, 1: 1}, "i1_": {0: 0, 1: np.nan}, "i3": {0: 0.0, 1: np.nan}, None: {0: 0, 1: 0}, } ) .set_index(None) .reset_index()[["i1", "i2", "i1_", "i3"]] ) tm.assert_frame_equal(result, expected, check_dtype=False) df1 = DataFrame({"i1": [0, 1], "i2": [0.5, 1.5]}) df2 = DataFrame({"i1": [0], "i3": [0.7]}) result = df1.join(df2, rsuffix="_", on="i1") expected = DataFrame( { "i1": {0: 0, 1: 1}, "i1_": {0: 0.0, 1: np.nan}, "i2": {0: 0.5, 1: 1.5}, "i3": {0: 0.69999999999999996, 1: np.nan}, } )[["i1", "i2", "i1_", "i3"]] tm.assert_frame_equal(result, expected) def test_merge_type(self): class NotADataFrame(DataFrame): @property def _constructor(self): return NotADataFrame nad = NotADataFrame(self.df) result = nad.merge(self.df2, on="key1") assert isinstance(result, NotADataFrame) def test_join_append_timedeltas(self): # timedelta64 issues with join/merge # GH 5695 d = {"d": datetime(2013, 11, 5, 5, 56), "t": timedelta(0, 22500)} df = DataFrame(columns=list("dt")) df = df.append(d, ignore_index=True) result = df.append(d, ignore_index=True) expected = DataFrame( { "d": [datetime(2013, 11, 5, 5, 56), datetime(2013, 11, 5, 5, 56)], "t": [timedelta(0, 22500), timedelta(0, 22500)], } ) tm.assert_frame_equal(result, expected) td = np.timedelta64(300000000) lhs = DataFrame(Series([td, td], index=["A", "B"])) rhs = DataFrame(Series([td], index=["A"])) result = lhs.join(rhs, rsuffix="r", how="left") expected = DataFrame( { "0": Series([td, td], index=list("AB")), "0r": Series([td, pd.NaT], index=list("AB")), } ) tm.assert_frame_equal(result, expected) def test_other_datetime_unit(self): # GH 13389 df1 = pd.DataFrame({"entity_id": [101, 102]}) s = pd.Series([None, None], index=[101, 102], name="days") for dtype in [ "datetime64[D]", "datetime64[h]", "datetime64[m]", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ]: df2 = s.astype(dtype).to_frame("days") # coerces to datetime64[ns], thus should not be affected assert df2["days"].dtype == "datetime64[ns]" result = df1.merge(df2, left_on="entity_id", right_index=True) exp = pd.DataFrame( { "entity_id": [101, 102], "days": np.array(["nat", "nat"], dtype="datetime64[ns]"), }, columns=["entity_id", "days"], ) tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"]) def test_other_timedelta_unit(self, unit): # GH 13389 df1 = pd.DataFrame({"entity_id": [101, 102]}) s = pd.Series([None, None], index=[101, 102], name="days") dtype = f"m8[{unit}]" df2 = s.astype(dtype).to_frame("days") assert df2["days"].dtype == "m8[ns]" result = df1.merge(df2, left_on="entity_id", right_index=True) exp = pd.DataFrame( {"entity_id": [101, 102], "days": np.array(["nat", "nat"], dtype=dtype)}, columns=["entity_id", "days"], ) tm.assert_frame_equal(result, exp) def test_overlapping_columns_error_message(self): df = DataFrame({"key": [1, 2, 3], "v1": [4, 5, 6], "v2": [7, 8, 9]}) df2 = DataFrame({"key": [1, 2, 3], "v1": [4, 5, 6], "v2": [7, 8, 9]}) df.columns = ["key", "foo", "foo"] df2.columns = ["key", "bar", "bar"] expected = DataFrame( { "key": [1, 2, 3], "v1": [4, 5, 6], "v2": [7, 8, 9], "v3": [4, 5, 6], "v4": [7, 8, 9], } ) expected.columns = ["key", "foo", "foo", "bar", "bar"] tm.assert_frame_equal(merge(df, df2), expected) # #2649, #10639 df2.columns = ["key1", "foo", "foo"] msg = r"Data columns not unique: Index\(\['foo', 'foo'\], dtype='object'\)" with pytest.raises(MergeError, match=msg): merge(df, df2) def test_merge_on_datetime64tz(self): # GH11405 left = pd.DataFrame( { "key": pd.date_range("20151010", periods=2, tz="US/Eastern"), "value": [1, 2], } ) right = pd.DataFrame( { "key": pd.date_range("20151011", periods=3, tz="US/Eastern"), "value": [1, 2, 3], } ) expected = DataFrame( { "key": pd.date_range("20151010", periods=4, tz="US/Eastern"), "value_x": [1, 2, np.nan, np.nan], "value_y": [np.nan, 1, 2, 3], } ) result = pd.merge(left, right, on="key", how="outer") tm.assert_frame_equal(result, expected) left = pd.DataFrame( { "key": [1, 2], "value": pd.date_range("20151010", periods=2, tz="US/Eastern"), } ) right = pd.DataFrame( { "key": [2, 3], "value": pd.date_range("20151011", periods=2, tz="US/Eastern"), } ) expected = DataFrame( { "key": [1, 2, 3], "value_x": list(pd.date_range("20151010", periods=2, tz="US/Eastern")) + [pd.NaT], "value_y": [pd.NaT] + list(pd.date_range("20151011", periods=2, tz="US/Eastern")), } ) result = pd.merge(left, right, on="key", how="outer") tm.assert_frame_equal(result, expected) assert result["value_x"].dtype == "datetime64[ns, US/Eastern]" assert result["value_y"].dtype == "datetime64[ns, US/Eastern]" def test_merge_on_datetime64tz_empty(self): # https://github.com/pandas-dev/pandas/issues/25014 dtz = pd.DatetimeTZDtype(tz="UTC") right = pd.DataFrame( { "date": [pd.Timestamp("2018", tz=dtz.tz)], "value": [4.0], "date2": [pd.Timestamp("2019", tz=dtz.tz)], }, columns=["date", "value", "date2"], ) left = right[:0] result = left.merge(right, on="date") expected = pd.DataFrame( { "value_x": pd.Series(dtype=float), "date2_x": pd.Series(dtype=dtz), "date": pd.Series(dtype=dtz), "value_y": pd.Series(dtype=float), "date2_y": pd.Series(dtype=dtz), }, columns=["value_x", "date2_x", "date", "value_y", "date2_y"], ) tm.assert_frame_equal(result, expected) def test_merge_datetime64tz_with_dst_transition(self): # GH 18885 df1 = pd.DataFrame( pd.date_range("2017-10-29 01:00", periods=4, freq="H", tz="Europe/Madrid"), columns=["date"], ) df1["value"] = 1 df2 = pd.DataFrame( { "date": pd.to_datetime( [ "2017-10-29 03:00:00", "2017-10-29 04:00:00", "2017-10-29 05:00:00", ] ), "value": 2, } ) df2["date"] = df2["date"].dt.tz_localize("UTC").dt.tz_convert("Europe/Madrid") result = pd.merge(df1, df2, how="outer", on="date") expected = pd.DataFrame( { "date": pd.date_range( "2017-10-29 01:00", periods=7, freq="H", tz="Europe/Madrid" ), "value_x": [1] * 4 + [np.nan] * 3, "value_y": [np.nan] * 4 + [2] * 3, } ) tm.assert_frame_equal(result, expected) def test_merge_non_unique_period_index(self): # GH #16871 index = pd.period_range("2016-01-01", periods=16, freq="M") df = DataFrame(list(range(len(index))), index=index, columns=["pnum"]) df2 = concat([df, df]) result = df.merge(df2, left_index=True, right_index=True, how="inner") expected = DataFrame( np.tile(np.arange(16, dtype=np.int64).repeat(2).reshape(-1, 1), 2), columns=["pnum_x", "pnum_y"], index=df2.sort_index().index, ) tm.assert_frame_equal(result, expected) def test_merge_on_periods(self): left = pd.DataFrame( {"key": pd.period_range("20151010", periods=2, freq="D"), "value": [1, 2]} ) right = pd.DataFrame( { "key": pd.period_range("20151011", periods=3, freq="D"), "value": [1, 2, 3], } ) expected = DataFrame( { "key": pd.period_range("20151010", periods=4, freq="D"), "value_x": [1, 2, np.nan, np.nan], "value_y": [np.nan, 1, 2, 3], } ) result = pd.merge(left, right, on="key", how="outer") tm.assert_frame_equal(result, expected) left = pd.DataFrame( {"key": [1, 2], "value": pd.period_range("20151010", periods=2, freq="D")} ) right = pd.DataFrame( {"key": [2, 3], "value": pd.period_range("20151011", periods=2, freq="D")} ) exp_x = pd.period_range("20151010", periods=2, freq="D") exp_y = pd.period_range("20151011", periods=2, freq="D") expected = DataFrame( { "key": [1, 2, 3], "value_x": list(exp_x) + [pd.NaT], "value_y": [pd.NaT] + list(exp_y), } ) result = pd.merge(left, right, on="key", how="outer") tm.assert_frame_equal(result, expected) assert result["value_x"].dtype == "Period[D]" assert result["value_y"].dtype == "Period[D]" def test_indicator(self): # PR #10054. xref #7412 and closes #8790. df1 = DataFrame( {"col1": [0, 1], "col_conflict": [1, 2], "col_left": ["a", "b"]} ) df1_copy = df1.copy() df2 = DataFrame( { "col1": [1, 2, 3, 4, 5], "col_conflict": [1, 2, 3, 4, 5], "col_right": [2, 2, 2, 2, 2], } ) df2_copy = df2.copy() df_result = DataFrame( { "col1": [0, 1, 2, 3, 4, 5], "col_conflict_x": [1, 2, np.nan, np.nan, np.nan, np.nan], "col_left": ["a", "b", np.nan, np.nan, np.nan, np.nan], "col_conflict_y": [np.nan, 1, 2, 3, 4, 5], "col_right": [np.nan, 2, 2, 2, 2, 2], } ) df_result["_merge"] = Categorical( [ "left_only", "both", "right_only", "right_only", "right_only", "right_only", ], categories=["left_only", "right_only", "both"], ) df_result = df_result[ [ "col1", "col_conflict_x", "col_left", "col_conflict_y", "col_right", "_merge", ] ] test = merge(df1, df2, on="col1", how="outer", indicator=True) tm.assert_frame_equal(test, df_result) test = df1.merge(df2, on="col1", how="outer", indicator=True) tm.assert_frame_equal(test, df_result) # No side effects tm.assert_frame_equal(df1, df1_copy) tm.assert_frame_equal(df2, df2_copy) # Check with custom name df_result_custom_name = df_result df_result_custom_name = df_result_custom_name.rename( columns={"_merge": "custom_name"} ) test_custom_name = merge( df1, df2, on="col1", how="outer", indicator="custom_name" ) tm.assert_frame_equal(test_custom_name, df_result_custom_name) test_custom_name = df1.merge( df2, on="col1", how="outer", indicator="custom_name" ) tm.assert_frame_equal(test_custom_name, df_result_custom_name) # Check only accepts strings and booleans msg = "indicator option can only accept boolean or string arguments" with pytest.raises(ValueError, match=msg): merge(df1, df2, on="col1", how="outer", indicator=5) with pytest.raises(ValueError, match=msg): df1.merge(df2, on="col1", how="outer", indicator=5) # Check result integrity test2 = merge(df1, df2, on="col1", how="left", indicator=True) assert (test2._merge != "right_only").all() test2 = df1.merge(df2, on="col1", how="left", indicator=True) assert (test2._merge != "right_only").all() test3 = merge(df1, df2, on="col1", how="right", indicator=True) assert (test3._merge != "left_only").all() test3 = df1.merge(df2, on="col1", how="right", indicator=True) assert (test3._merge != "left_only").all() test4 = merge(df1, df2, on="col1", how="inner", indicator=True) assert (test4._merge == "both").all() test4 = df1.merge(df2, on="col1", how="inner", indicator=True) assert (test4._merge == "both").all() # Check if working name in df for i in ["_right_indicator", "_left_indicator", "_merge"]: df_badcolumn = DataFrame({"col1": [1, 2], i: [2, 2]}) msg = ( "Cannot use `indicator=True` option when data contains a " f"column named {i}|" "Cannot use name of an existing column for indicator column" ) with pytest.raises(ValueError, match=msg): merge(df1, df_badcolumn, on="col1", how="outer", indicator=True) with pytest.raises(ValueError, match=msg): df1.merge(df_badcolumn, on="col1", how="outer", indicator=True) # Check for name conflict with custom name df_badcolumn = DataFrame({"col1": [1, 2], "custom_column_name": [2, 2]}) msg = "Cannot use name of an existing column for indicator column" with pytest.raises(ValueError, match=msg): merge( df1, df_badcolumn, on="col1", how="outer", indicator="custom_column_name", ) with pytest.raises(ValueError, match=msg): df1.merge( df_badcolumn, on="col1", how="outer", indicator="custom_column_name" ) # Merge on multiple columns df3 = DataFrame({"col1": [0, 1], "col2": ["a", "b"]}) df4 = DataFrame({"col1": [1, 1, 3], "col2": ["b", "x", "y"]}) hand_coded_result = DataFrame( {"col1": [0, 1, 1, 3], "col2": ["a", "b", "x", "y"]} ) hand_coded_result["_merge"] = Categorical( ["left_only", "both", "right_only", "right_only"], categories=["left_only", "right_only", "both"], ) test5 = merge(df3, df4, on=["col1", "col2"], how="outer", indicator=True) tm.assert_frame_equal(test5, hand_coded_result) test5 = df3.merge(df4, on=["col1", "col2"], how="outer", indicator=True) tm.assert_frame_equal(test5, hand_coded_result) def test_validation(self): left = DataFrame( {"a": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"]}, index=range(4), ) right = DataFrame( { "a": ["a", "b", "c", "d", "e"], "c": ["meow", "bark", "um... weasel noise?", "nay", "chirp"], }, index=range(5), ) # Make sure no side effects. left_copy = left.copy() right_copy = right.copy() result = merge(left, right, left_index=True, right_index=True, validate="1:1") tm.assert_frame_equal(left, left_copy) tm.assert_frame_equal(right, right_copy) # make sure merge still correct expected = DataFrame( { "a_x": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"], "a_y": ["a", "b", "c", "d"], "c": ["meow", "bark", "um... weasel noise?", "nay"], }, index=range(4), columns=["a_x", "b", "a_y", "c"], ) result = merge( left, right, left_index=True, right_index=True, validate="one_to_one" ) tm.assert_frame_equal(result, expected) expected_2 = DataFrame( { "a": ["a", "b", "c", "d"], "b": ["cat", "dog", "weasel", "horse"], "c": ["meow", "bark", "um... weasel noise?", "nay"], }, index=range(4), ) result = merge(left, right, on="a", validate="1:1") tm.assert_frame_equal(left, left_copy) tm.assert_frame_equal(right, right_copy) tm.assert_frame_equal(result, expected_2) result = merge(left, right, on="a", validate="one_to_one") tm.assert_frame_equal(result, expected_2) # One index, one column expected_3 = DataFrame( { "b": ["cat", "dog", "weasel", "horse"], "a": ["a", "b", "c", "d"], "c": ["meow", "bark", "um... weasel noise?", "nay"], }, columns=["b", "a", "c"], index=range(4), ) left_index_reset = left.set_index("a") result = merge( left_index_reset, right, left_index=True, right_on="a", validate="one_to_one", ) tm.assert_frame_equal(result, expected_3) # Dups on right right_w_dups = right.append(pd.DataFrame({"a": ["e"], "c": ["moo"]}, index=[4])) merge( left, right_w_dups, left_index=True, right_index=True, validate="one_to_many", ) msg = "Merge keys are not unique in right dataset; not a one-to-one merge" with pytest.raises(MergeError, match=msg): merge( left, right_w_dups, left_index=True, right_index=True, validate="one_to_one", ) with pytest.raises(MergeError, match=msg): merge(left, right_w_dups, on="a", validate="one_to_one") # Dups on left left_w_dups = left.append( pd.DataFrame({"a": ["a"], "c": ["cow"]}, index=[3]), sort=True ) merge( left_w_dups, right, left_index=True, right_index=True, validate="many_to_one", ) msg = "Merge keys are not unique in left dataset; not a one-to-one merge" with pytest.raises(MergeError, match=msg): merge( left_w_dups, right, left_index=True, right_index=True, validate="one_to_one", ) with pytest.raises(MergeError, match=msg): merge(left_w_dups, right, on="a", validate="one_to_one") # Dups on both merge(left_w_dups, right_w_dups, on="a", validate="many_to_many") msg = "Merge keys are not unique in right dataset; not a many-to-one merge" with pytest.raises(MergeError, match=msg): merge( left_w_dups, right_w_dups, left_index=True, right_index=True, validate="many_to_one", ) msg = "Merge keys are not unique in left dataset; not a one-to-many merge" with pytest.raises(MergeError, match=msg): merge(left_w_dups, right_w_dups, on="a", validate="one_to_many") # Check invalid arguments msg = "Not a valid argument for validate" with pytest.raises(ValueError, match=msg): merge(left, right, on="a", validate="jibberish") # Two column merge, dups in both, but jointly no dups. left = DataFrame( { "a": ["a", "a", "b", "b"], "b": [0, 1, 0, 1], "c": ["cat", "dog", "weasel", "horse"], }, index=range(4), ) right = DataFrame( { "a": ["a", "a", "b"], "b": [0, 1, 0], "d": ["meow", "bark", "um... weasel noise?"], }, index=range(3), ) expected_multi = DataFrame( { "a": ["a", "a", "b"], "b": [0, 1, 0], "c": ["cat", "dog", "weasel"], "d": ["meow", "bark", "um... weasel noise?"], }, index=range(3), ) msg = ( "Merge keys are not unique in either left or right dataset; " "not a one-to-one merge" ) with pytest.raises(MergeError, match=msg): merge(left, right, on="a", validate="1:1") result = merge(left, right, on=["a", "b"], validate="1:1") tm.assert_frame_equal(result, expected_multi) def test_merge_two_empty_df_no_division_error(self): # GH17776, PR #17846 a = pd.DataFrame({"a": [], "b": [], "c": []}) with np.errstate(divide="raise"): merge(a, a, on=("a", "b")) @pytest.mark.parametrize("how", ["right", "outer"]) @pytest.mark.parametrize( "index,expected_index", [ ( CategoricalIndex([1, 2, 4]), CategoricalIndex([1, 2, 4, None, None, None]), ), ( DatetimeIndex(["2001-01-01", "2002-02-02", "2003-03-03"]), DatetimeIndex( ["2001-01-01", "2002-02-02", "2003-03-03", pd.NaT, pd.NaT, pd.NaT] ), ), (Float64Index([1, 2, 3]), Float64Index([1, 2, 3, None, None, None])), (Int64Index([1, 2, 3]), Float64Index([1, 2, 3, None, None, None])), ( IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4)]), IntervalIndex.from_tuples( [(1, 2), (2, 3), (3, 4), np.nan, np.nan, np.nan] ), ), ( PeriodIndex(["2001-01-01", "2001-01-02", "2001-01-03"], freq="D"), PeriodIndex( ["2001-01-01", "2001-01-02", "2001-01-03", pd.NaT, pd.NaT, pd.NaT], freq="D", ), ), ( TimedeltaIndex(["1d", "2d", "3d"]), TimedeltaIndex(["1d", "2d", "3d", pd.NaT, pd.NaT, pd.NaT]), ), ], ) def test_merge_on_index_with_more_values(self, how, index, expected_index): # GH 24212 # pd.merge gets [0, 1, 2, -1, -1, -1] as left_indexer, ensure that # -1 is interpreted as a missing value instead of the last element df1 = pd.DataFrame({"a": [0, 1, 2], "key": [0, 1, 2]}, index=index) df2 = pd.DataFrame({"b": [0, 1, 2, 3, 4, 5]}) result = df1.merge(df2, left_on="key", right_index=True, how=how) expected = pd.DataFrame( [ [0, 0, 0], [1, 1, 1], [2, 2, 2], [np.nan, 3, 3], [np.nan, 4, 4], [np.nan, 5, 5], ], columns=["a", "key", "b"], ) expected.set_index(expected_index, inplace=True) tm.assert_frame_equal(result, expected) def test_merge_right_index_right(self): # Note: the expected output here is probably incorrect. # See https://github.com/pandas-dev/pandas/issues/17257 for more. # We include this as a regression test for GH-24897. left = pd.DataFrame({"a": [1, 2, 3], "key": [0, 1, 1]}) right = pd.DataFrame({"b": [1, 2, 3]}) expected = pd.DataFrame( {"a": [1, 2, 3, None], "key": [0, 1, 1, 2], "b": [1, 2, 2, 3]}, columns=["a", "key", "b"], index=[0, 1, 2, np.nan], ) result = left.merge(right, left_on="key", right_index=True, how="right") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("how", ["left", "right"]) def test_merge_preserves_row_order(self, how): # GH 27453 left_df = pd.DataFrame({"animal": ["dog", "pig"], "max_speed": [40, 11]}) right_df = pd.DataFrame({"animal": ["quetzal", "pig"], "max_speed": [80, 11]}) result = left_df.merge(right_df, on=["animal", "max_speed"], how=how) if how == "right": expected = pd.DataFrame( {"animal": ["quetzal", "pig"], "max_speed": [80, 11]} ) else: expected = pd.DataFrame({"animal": ["dog", "pig"], "max_speed": [40, 11]}) tm.assert_frame_equal(result, expected) def test_merge_take_missing_values_from_index_of_other_dtype(self): # GH 24212 left = pd.DataFrame( { "a": [1, 2, 3], "key": pd.Categorical(["a", "a", "b"], categories=list("abc")), } ) right = pd.DataFrame( {"b": [1, 2, 3]}, index=pd.CategoricalIndex(["a", "b", "c"]) ) result = left.merge(right, left_on="key", right_index=True, how="right") expected = pd.DataFrame( { "a": [1, 2, 3, None], "key": pd.Categorical(["a", "a", "b", "c"]), "b": [1, 1, 2, 3], }, index=[0, 1, 2, np.nan], ) expected = expected.reindex(columns=["a", "key", "b"]) tm.assert_frame_equal(result, expected) def test_merge_readonly(self): # https://github.com/pandas-dev/pandas/issues/27943 data1 = pd.DataFrame( np.arange(20).reshape((4, 5)) + 1, columns=["a", "b", "c", "d", "e"] ) data2 = pd.DataFrame( np.arange(20).reshape((5, 4)) + 1, columns=["a", "b", "x", "y"] ) data1._mgr.blocks[0].values.flags.writeable = False data1.merge(data2) # no error def _check_merge(x, y): for how in ["inner", "left", "outer"]: result = x.join(y, how=how) expected = merge(x.reset_index(), y.reset_index(), how=how, sort=True) expected = expected.set_index("index") # TODO check_names on merge? tm.assert_frame_equal(result, expected, check_names=False) class TestMergeDtypes: @pytest.mark.parametrize( "right_vals", [["foo", "bar"], Series(["foo", "bar"]).astype("category")] ) def test_different(self, right_vals): left = DataFrame( { "A": ["foo", "bar"], "B": Series(["foo", "bar"]).astype("category"), "C": [1, 2], "D": [1.0, 2.0], "E": Series([1, 2], dtype="uint64"), "F": Series([1, 2], dtype="int32"), } ) right = DataFrame({"A": right_vals}) # GH 9780 # We allow merging on object and categorical cols and cast # categorical cols to object result = pd.merge(left, right, on="A") assert is_object_dtype(result.A.dtype) @pytest.mark.parametrize("d1", [np.int64, np.int32, np.int16, np.int8, np.uint8]) @pytest.mark.parametrize("d2", [np.int64, np.float64, np.float32, np.float16]) def test_join_multi_dtypes(self, d1, d2): dtype1 = np.dtype(d1) dtype2 = np.dtype(d2) left = DataFrame( { "k1": np.array([0, 1, 2] * 8, dtype=dtype1), "k2": ["foo", "bar"] * 12, "v": np.array(np.arange(24), dtype=np.int64), } ) index = MultiIndex.from_tuples([(2, "bar"), (1, "foo")]) right = DataFrame({"v2": np.array([5, 7], dtype=dtype2)}, index=index) result = left.join(right, on=["k1", "k2"]) expected = left.copy() if dtype2.kind == "i": dtype2 = np.dtype("float64") expected["v2"] = np.array(np.nan, dtype=dtype2) expected.loc[(expected.k1 == 2) & (expected.k2 == "bar"), "v2"] = 5 expected.loc[(expected.k1 == 1) & (expected.k2 == "foo"), "v2"] = 7 tm.assert_frame_equal(result, expected) result = left.join(right, on=["k1", "k2"], sort=True) expected.sort_values(["k1", "k2"], kind="mergesort", inplace=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "int_vals, float_vals, exp_vals", [ ([1, 2, 3], [1.0, 2.0, 3.0], {"X": [1, 2, 3], "Y": [1.0, 2.0, 3.0]}), ([1, 2, 3], [1.0, 3.0], {"X": [1, 3], "Y": [1.0, 3.0]}), ([1, 2], [1.0, 2.0, 3.0], {"X": [1, 2], "Y": [1.0, 2.0]}), ], ) def test_merge_on_ints_floats(self, int_vals, float_vals, exp_vals): # GH 16572 # Check that float column is not cast to object if # merging on float and int columns A = DataFrame({"X": int_vals}) B = DataFrame({"Y": float_vals}) expected = DataFrame(exp_vals) result = A.merge(B, left_on="X", right_on="Y") tm.assert_frame_equal(result, expected) result = B.merge(A, left_on="Y", right_on="X") tm.assert_frame_equal(result, expected[["Y", "X"]]) def test_merge_key_dtype_cast(self): # GH 17044 df1 = DataFrame({"key": [1.0, 2.0], "v1": [10, 20]}, columns=["key", "v1"]) df2 = DataFrame({"key": [2], "v2": [200]}, columns=["key", "v2"]) result = df1.merge(df2, on="key", how="left") expected = DataFrame( {"key": [1.0, 2.0], "v1": [10, 20], "v2": [np.nan, 200.0]}, columns=["key", "v1", "v2"], ) tm.assert_frame_equal(result, expected) def test_merge_on_ints_floats_warning(self): # GH 16572 # merge will produce a warning when merging on int and # float columns where the float values are not exactly # equal to their int representation A = DataFrame({"X": [1, 2, 3]}) B = DataFrame({"Y": [1.1, 2.5, 3.0]}) expected = DataFrame({"X": [3], "Y": [3.0]}) with tm.assert_produces_warning(UserWarning): result = A.merge(B, left_on="X", right_on="Y") tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(UserWarning): result = B.merge(A, left_on="Y", right_on="X") tm.assert_frame_equal(result, expected[["Y", "X"]]) # test no warning if float has NaNs B = DataFrame({"Y": [np.nan, np.nan, 3.0]}) with tm.assert_produces_warning(None): result = B.merge(A, left_on="Y", right_on="X") tm.assert_frame_equal(result, expected[["Y", "X"]]) def test_merge_incompat_infer_boolean_object(self): # GH21119: bool + object bool merge OK df1 = DataFrame({"key": Series([True, False], dtype=object)}) df2 = DataFrame({"key": [True, False]}) expected = DataFrame({"key": [True, False]}, dtype=object) result = pd.merge(df1, df2, on="key") tm.assert_frame_equal(result, expected) result = pd.merge(df2, df1, on="key") tm.assert_frame_equal(result, expected) # with missing value df1 = DataFrame({"key": Series([True, False, np.nan], dtype=object)}) df2 = DataFrame({"key": [True, False]}) expected = DataFrame({"key": [True, False]}, dtype=object) result = pd.merge(df1, df2, on="key") tm.assert_frame_equal(result, expected) result = pd.merge(df2, df1, on="key") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "df1_vals, df2_vals", [ # merge on category coerces to object ([0, 1, 2], Series(["a", "b", "a"]).astype("category")), ([0.0, 1.0, 2.0], Series(["a", "b", "a"]).astype("category")), # no not infer ([0, 1], pd.Series([False, True], dtype=object)), ([0, 1], pd.Series([False, True], dtype=bool)), ], ) def test_merge_incompat_dtypes_are_ok(self, df1_vals, df2_vals): # these are explicitly allowed incompat merges, that pass thru # the result type is dependent on if the values on the rhs are # inferred, otherwise these will be coerced to object df1 = DataFrame({"A": df1_vals}) df2 = DataFrame({"A": df2_vals}) result = pd.merge(df1, df2, on=["A"]) assert is_object_dtype(result.A.dtype) result = pd.merge(df2, df1, on=["A"]) assert is_object_dtype(result.A.dtype) @pytest.mark.parametrize( "df1_vals, df2_vals", [ # do not infer to numeric (Series([1, 2], dtype="uint64"), ["a", "b", "c"]), (Series([1, 2], dtype="int32"), ["a", "b", "c"]), ([0, 1, 2], ["0", "1", "2"]), ([0.0, 1.0, 2.0], ["0", "1", "2"]), ([0, 1, 2], ["0", "1", "2"]), ( pd.date_range("1/1/2011", periods=2, freq="D"), ["2011-01-01", "2011-01-02"], ), (pd.date_range("1/1/2011", periods=2, freq="D"), [0, 1]), (pd.date_range("1/1/2011", periods=2, freq="D"), [0.0, 1.0]), ( pd.date_range("20130101", periods=3), pd.date_range("20130101", periods=3, tz="US/Eastern"), ), ], ) def test_merge_incompat_dtypes_error(self, df1_vals, df2_vals): # GH 9780, GH 15800 # Raise a ValueError when a user tries to merge on # dtypes that are incompatible (e.g., obj and int/float) df1 = DataFrame({"A": df1_vals}) df2 = DataFrame({"A": df2_vals}) msg = ( f"You are trying to merge on {df1['A'].dtype} and " f"{df2['A'].dtype} columns. If you wish to proceed " "you should use pd.concat" ) msg = re.escape(msg) with pytest.raises(ValueError, match=msg): pd.merge(df1, df2, on=["A"]) # Check that error still raised when swapping order of dataframes msg = ( f"You are trying to merge on {df2['A'].dtype} and " f"{df1['A'].dtype} columns. If you wish to proceed " "you should use pd.concat" ) msg = re.escape(msg) with pytest.raises(ValueError, match=msg): pd.merge(df2, df1, on=["A"]) @pytest.fixture def left(): np.random.seed(1234) return DataFrame( { "X": Series(np.random.choice(["foo", "bar"], size=(10,))).astype( CDT(["foo", "bar"]) ), "Y": np.random.choice(["one", "two", "three"], size=(10,)), } ) @pytest.fixture def right(): np.random.seed(1234) return DataFrame( {"X": Series(["foo", "bar"]).astype(CDT(["foo", "bar"])), "Z": [1, 2]} ) class TestMergeCategorical: def test_identical(self, left): # merging on the same, should preserve dtypes merged = pd.merge(left, left, on="X") result = merged.dtypes.sort_index() expected = Series( [CategoricalDtype(), np.dtype("O"), np.dtype("O")], index=["X", "Y_x", "Y_y"], ) tm.assert_series_equal(result, expected) def test_basic(self, left, right): # we have matching Categorical dtypes in X # so should preserve the merged column merged = pd.merge(left, right, on="X") result = merged.dtypes.sort_index() expected = Series( [CategoricalDtype(), np.dtype("O"), np.dtype("int64")], index=["X", "Y", "Z"], ) tm.assert_series_equal(result, expected) def test_merge_categorical(self): # GH 9426 right = DataFrame( { "c": {0: "a", 1: "b", 2: "c", 3: "d", 4: "e"}, "d": {0: "null", 1: "null", 2: "null", 3: "null", 4: "null"}, } ) left = DataFrame( { "a": {0: "f", 1: "f", 2: "f", 3: "f", 4: "f"}, "b": {0: "g", 1: "g", 2: "g", 3: "g", 4: "g"}, } ) df = pd.merge(left, right, how="left", left_on="b", right_on="c") # object-object expected = df.copy() # object-cat # note that we propagate the category # because we don't have any matching rows cright = right.copy() cright["d"] = cright["d"].astype("category") result = pd.merge(left, cright, how="left", left_on="b", right_on="c") expected["d"] = expected["d"].astype(CategoricalDtype(["null"])) tm.assert_frame_equal(result, expected) # cat-object cleft = left.copy() cleft["b"] = cleft["b"].astype("category") result = pd.merge(cleft, cright, how="left", left_on="b", right_on="c") tm.assert_frame_equal(result, expected) # cat-cat cright = right.copy() cright["d"] = cright["d"].astype("category") cleft = left.copy() cleft["b"] = cleft["b"].astype("category") result = pd.merge(cleft, cright, how="left", left_on="b", right_on="c") tm.assert_frame_equal(result, expected) def tests_merge_categorical_unordered_equal(self): # GH-19551 df1 = DataFrame( { "Foo": Categorical(["A", "B", "C"], categories=["A", "B", "C"]), "Left": ["A0", "B0", "C0"], } ) df2 = DataFrame( { "Foo": Categorical(["C", "B", "A"], categories=["C", "B", "A"]), "Right": ["C1", "B1", "A1"], } ) result = pd.merge(df1, df2, on=["Foo"]) expected = DataFrame( { "Foo": pd.Categorical(["A", "B", "C"]), "Left": ["A0", "B0", "C0"], "Right": ["A1", "B1", "C1"], } ) tm.assert_frame_equal(result, expected) def test_other_columns(self, left, right): # non-merge columns should preserve if possible right = right.assign(Z=right.Z.astype("category")) merged = pd.merge(left, right, on="X") result = merged.dtypes.sort_index() expected = Series( [CategoricalDtype(), np.dtype("O"), CategoricalDtype()], index=["X", "Y", "Z"], ) tm.assert_series_equal(result, expected) # categories are preserved assert left.X.values.is_dtype_equal(merged.X.values) assert right.Z.values.is_dtype_equal(merged.Z.values) @pytest.mark.parametrize( "change", [ lambda x: x, lambda x: x.astype(CDT(["foo", "bar", "bah"])), lambda x: x.astype(CDT(ordered=True)), ], ) def test_dtype_on_merged_different(self, change, join_type, left, right): # our merging columns, X now has 2 different dtypes # so we must be object as a result X = change(right.X.astype("object")) right = right.assign(X=X) assert is_categorical_dtype(left.X.values.dtype) # assert not left.X.values.is_dtype_equal(right.X.values) merged = pd.merge(left, right, on="X", how=join_type) result = merged.dtypes.sort_index() expected = Series( [np.dtype("O"), np.dtype("O"), np.dtype("int64")], index=["X", "Y", "Z"] ) tm.assert_series_equal(result, expected) def test_self_join_multiple_categories(self): # GH 16767 # non-duplicates should work with multiple categories m = 5 df = pd.DataFrame( { "a": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"] * m, "b": ["t", "w", "x", "y", "z"] * 2 * m, "c": [ letter for each in ["m", "n", "u", "p", "o"] for letter in [each] * 2 * m ], "d": [ letter for each in [ "aa", "bb", "cc", "dd", "ee", "ff", "gg", "hh", "ii", "jj", ] for letter in [each] * m ], } ) # change them all to categorical variables df = df.apply(lambda x: x.astype("category")) # self-join should equal ourselves result = pd.merge(df, df, on=list(df.columns)) tm.assert_frame_equal(result, df) def test_dtype_on_categorical_dates(self): # GH 16900 # dates should not be coerced to ints df = pd.DataFrame( [[date(2001, 1, 1), 1.1], [date(2001, 1, 2), 1.3]], columns=["date", "num2"] ) df["date"] = df["date"].astype("category") df2 = pd.DataFrame( [[date(2001, 1, 1), 1.3], [date(2001, 1, 3), 1.4]], columns=["date", "num4"] ) df2["date"] = df2["date"].astype("category") expected_outer = pd.DataFrame( [ [pd.Timestamp("2001-01-01"), 1.1, 1.3], [pd.Timestamp("2001-01-02"), 1.3, np.nan], [pd.Timestamp("2001-01-03"), np.nan, 1.4], ], columns=["date", "num2", "num4"], ) result_outer = pd.merge(df, df2, how="outer", on=["date"]) tm.assert_frame_equal(result_outer, expected_outer) expected_inner = pd.DataFrame( [[pd.Timestamp("2001-01-01"), 1.1, 1.3]], columns=["date", "num2", "num4"] ) result_inner = pd.merge(df, df2, how="inner", on=["date"]) tm.assert_frame_equal(result_inner, expected_inner) @pytest.mark.parametrize("ordered", [True, False]) @pytest.mark.parametrize( "category_column,categories,expected_categories", [ ([False, True, True, False], [True, False], [True, False]), ([2, 1, 1, 2], [1, 2], [1, 2]), (["False", "True", "True", "False"], ["True", "False"], ["True", "False"]), ], ) def test_merging_with_bool_or_int_cateorical_column( self, category_column, categories, expected_categories, ordered ): # GH 17187 # merging with a boolean/int categorical column df1 = pd.DataFrame({"id": [1, 2, 3, 4], "cat": category_column}) df1["cat"] = df1["cat"].astype(CDT(categories, ordered=ordered)) df2 = pd.DataFrame({"id": [2, 4], "num": [1, 9]}) result = df1.merge(df2) expected = pd.DataFrame( {"id": [2, 4], "cat": expected_categories, "num": [1, 9]} ) expected["cat"] = expected["cat"].astype(CDT(categories, ordered=ordered)) tm.assert_frame_equal(expected, result) def test_merge_on_int_array(self): # GH 23020 df = pd.DataFrame({"A": pd.Series([1, 2, np.nan], dtype="Int64"), "B": 1}) result = pd.merge(df, df, on="A") expected = pd.DataFrame( {"A": pd.Series([1, 2, np.nan], dtype="Int64"), "B_x": 1, "B_y": 1} ) tm.assert_frame_equal(result, expected) @pytest.fixture def left_df(): return DataFrame({"a": [20, 10, 0]}, index=[2, 1, 0]) @pytest.fixture def right_df(): return DataFrame({"b": [300, 100, 200]}, index=[3, 1, 2]) class TestMergeOnIndexes: @pytest.mark.parametrize( "how, sort, expected", [ ("inner", False, DataFrame({"a": [20, 10], "b": [200, 100]}, index=[2, 1])), ("inner", True, DataFrame({"a": [10, 20], "b": [100, 200]}, index=[1, 2])), ( "left", False, DataFrame({"a": [20, 10, 0], "b": [200, 100, np.nan]}, index=[2, 1, 0]), ), ( "left", True, DataFrame({"a": [0, 10, 20], "b": [np.nan, 100, 200]}, index=[0, 1, 2]), ), ( "right", False, DataFrame( {"a": [np.nan, 10, 20], "b": [300, 100, 200]}, index=[3, 1, 2] ), ), ( "right", True, DataFrame( {"a": [10, 20, np.nan], "b": [100, 200, 300]}, index=[1, 2, 3] ), ), ( "outer", False, DataFrame( {"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]}, index=[0, 1, 2, 3], ), ), ( "outer", True, DataFrame( {"a": [0, 10, 20, np.nan], "b": [np.nan, 100, 200, 300]}, index=[0, 1, 2, 3], ), ), ], ) def test_merge_on_indexes(self, left_df, right_df, how, sort, expected): result = pd.merge( left_df, right_df, left_index=True, right_index=True, how=how, sort=sort ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "index", [ CategoricalIndex(["A", "B"], categories=["A", "B"], name="index_col"), Float64Index([1.0, 2.0], name="index_col"), Int64Index([1, 2], name="index_col"), UInt64Index([1, 2], name="index_col"), RangeIndex(start=0, stop=2, name="index_col"), DatetimeIndex(["2018-01-01", "2018-01-02"], name="index_col"), ], ids=lambda x: type(x).__name__, ) def test_merge_index_types(index): # gh-20777 # assert key access is consistent across index types left = DataFrame({"left_data": [1, 2]}, index=index) right = DataFrame({"right_data": [1.0, 2.0]}, index=index) result = left.merge(right, on=["index_col"]) expected = DataFrame( OrderedDict([("left_data", [1, 2]), ("right_data", [1.0, 2.0])]), index=index ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "on,left_on,right_on,left_index,right_index,nm", [ (["outer", "inner"], None, None, False, False, "B"), (None, None, None, True, True, "B"), (None, ["outer", "inner"], None, False, True, "B"), (None, None, ["outer", "inner"], True, False, "B"), (["outer", "inner"], None, None, False, False, None), (None, None, None, True, True, None), (None, ["outer", "inner"], None, False, True, None), (None, None, ["outer", "inner"], True, False, None), ], ) def test_merge_series(on, left_on, right_on, left_index, right_index, nm): # GH 21220 a = pd.DataFrame( {"A": [1, 2, 3, 4]}, index=pd.MultiIndex.from_product( [["a", "b"], [0, 1]], names=["outer", "inner"] ), ) b = pd.Series( [1, 2, 3, 4], index=pd.MultiIndex.from_product( [["a", "b"], [1, 2]], names=["outer", "inner"] ), name=nm, ) expected = pd.DataFrame( {"A": [2, 4], "B": [1, 3]}, index=pd.MultiIndex.from_product([["a", "b"], [1]], names=["outer", "inner"]), ) if nm is not None: result = pd.merge( a, b, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, ) tm.assert_frame_equal(result, expected) else: msg = "Cannot merge a Series without a name" with pytest.raises(ValueError, match=msg): result = pd.merge( a, b, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, ) @pytest.mark.parametrize( "col1, col2, kwargs, expected_cols", [ (0, 0, dict(suffixes=("", "_dup")), ["0", "0_dup"]), (0, 0, dict(suffixes=(None, "_dup")), [0, "0_dup"]), (0, 0, dict(suffixes=("_x", "_y")), ["0_x", "0_y"]), ("a", 0, dict(suffixes=(None, "_y")), ["a", 0]), (0.0, 0.0, dict(suffixes=("_x", None)), ["0.0_x", 0.0]), ("b", "b", dict(suffixes=(None, "_y")), ["b", "b_y"]), ("a", "a", dict(suffixes=("_x", None)), ["a_x", "a"]), ("a", "b", dict(suffixes=("_x", None)), ["a", "b"]), ("a", "a", dict(suffixes=[None, "_x"]), ["a", "a_x"]), (0, 0, dict(suffixes=["_a", None]), ["0_a", 0]), ("a", "a", dict(), ["a_x", "a_y"]), (0, 0, dict(), ["0_x", "0_y"]), ], ) def test_merge_suffix(col1, col2, kwargs, expected_cols): # issue: 24782 a = pd.DataFrame({col1: [1, 2, 3]}) b = pd.DataFrame({col2: [4, 5, 6]}) expected = pd.DataFrame([[1, 4], [2, 5], [3, 6]], columns=expected_cols) result = a.merge(b, left_index=True, right_index=True, **kwargs) tm.assert_frame_equal(result, expected) result = pd.merge(a, b, left_index=True, right_index=True, **kwargs) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "how,expected", [ ( "right", DataFrame( {"A": [100, 200, 300], "B1": [60, 70, np.nan], "B2": [600, 700, 800]} ), ), ( "outer", DataFrame( { "A": [100, 200, 1, 300], "B1": [60, 70, 80, np.nan], "B2": [600, 700, np.nan, 800], } ), ), ], ) def test_merge_duplicate_suffix(how, expected): left_df = DataFrame({"A": [100, 200, 1], "B": [60, 70, 80]}) right_df = DataFrame({"A": [100, 200, 300], "B": [600, 700, 800]}) result = merge(left_df, right_df, on="A", how=how, suffixes=("_x", "_x")) expected.columns = ["A", "B_x", "B_x"] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "col1, col2, suffixes", [ ("a", "a", [None, None]), ("a", "a", (None, None)), ("a", "a", ("", None)), (0, 0, [None, None]), (0, 0, (None, "")), ], ) def test_merge_suffix_error(col1, col2, suffixes): # issue: 24782 a = pd.DataFrame({col1: [1, 2, 3]}) b = pd.DataFrame({col2: [3, 4, 5]}) # TODO: might reconsider current raise behaviour, see issue 24782 msg = "columns overlap but no suffix specified" with pytest.raises(ValueError, match=msg): pd.merge(a, b, left_index=True, right_index=True, suffixes=suffixes) @pytest.mark.parametrize("col1, col2, suffixes", [("a", "a", None), (0, 0, None)]) def test_merge_suffix_none_error(col1, col2, suffixes): # issue: 24782 a = pd.DataFrame({col1: [1, 2, 3]}) b = pd.DataFrame({col2: [3, 4, 5]}) # TODO: might reconsider current raise behaviour, see GH24782 msg = "iterable" with pytest.raises(TypeError, match=msg): pd.merge(a, b, left_index=True, right_index=True, suffixes=suffixes) @pytest.mark.parametrize("cat_dtype", ["one", "two"]) @pytest.mark.parametrize("reverse", [True, False]) def test_merge_equal_cat_dtypes(cat_dtype, reverse): # see gh-22501 cat_dtypes = { "one": CategoricalDtype(categories=["a", "b", "c"], ordered=False), "two": CategoricalDtype(categories=["a", "b", "c"], ordered=False), } df1 = DataFrame( {"foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]), "left": [1, 2, 3]} ).set_index("foo") data_foo = ["a", "b", "c"] data_right = [1, 2, 3] if reverse: data_foo.reverse() data_right.reverse() df2 = DataFrame( {"foo": Series(data_foo).astype(cat_dtypes[cat_dtype]), "right": data_right} ).set_index("foo") result = df1.merge(df2, left_index=True, right_index=True) expected = DataFrame( { "left": [1, 2, 3], "right": [1, 2, 3], "foo": Series(["a", "b", "c"]).astype(cat_dtypes["one"]), } ).set_index("foo") tm.assert_frame_equal(result, expected) def test_merge_equal_cat_dtypes2(): # see gh-22501 cat_dtype = CategoricalDtype(categories=["a", "b", "c"], ordered=False) # Test Data df1 = DataFrame( {"foo": Series(["a", "b"]).astype(cat_dtype), "left": [1, 2]} ).set_index("foo") df2 = DataFrame( {"foo": Series(["a", "b", "c"]).astype(cat_dtype), "right": [3, 2, 1]} ).set_index("foo") result = df1.merge(df2, left_index=True, right_index=True) expected = DataFrame( {"left": [1, 2], "right": [3, 2], "foo": Series(["a", "b"]).astype(cat_dtype)} ).set_index("foo") tm.assert_frame_equal(result, expected) def test_merge_on_cat_and_ext_array(): # GH 28668 right = DataFrame( {"a": Series([pd.Interval(0, 1), pd.Interval(1, 2)], dtype="interval")} ) left = right.copy() left["a"] = left["a"].astype("category") result = pd.merge(left, right, how="inner", on="a") expected = right.copy() tm.assert_frame_equal(result, expected) def test_merge_multiindex_columns(): # Issue #28518 # Verify that merging two dataframes give the expected labels # The original cause of this issue come from a bug lexsort_depth and is tested in # test_lexsort_depth letters = ["a", "b", "c", "d"] numbers = ["1", "2", "3"] index = pd.MultiIndex.from_product((letters, numbers), names=["outer", "inner"]) frame_x = pd.DataFrame(columns=index) frame_x["id"] = "" frame_y = pd.DataFrame(columns=index) frame_y["id"] = "" l_suf = "_x" r_suf = "_y" result = frame_x.merge(frame_y, on="id", suffixes=((l_suf, r_suf))) # Constructing the expected results expected_labels = [l + l_suf for l in letters] + [l + r_suf for l in letters] expected_index = pd.MultiIndex.from_product( [expected_labels, numbers], names=["outer", "inner"] ) expected = pd.DataFrame(columns=expected_index) expected["id"] = "" tm.assert_frame_equal(result, expected) def test_merge_datetime_upcast_dtype(): # https://github.com/pandas-dev/pandas/issues/31208 df1 = pd.DataFrame({"x": ["a", "b", "c"], "y": ["1", "2", "4"]}) df2 = pd.DataFrame( {"y": ["1", "2", "3"], "z": pd.to_datetime(["2000", "2001", "2002"])} ) result = pd.merge(df1, df2, how="left", on="y") expected = pd.DataFrame( { "x": ["a", "b", "c"], "y": ["1", "2", "4"], "z": pd.to_datetime(["2000", "2001", "NaT"]), } ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("n_categories", [5, 128]) def test_categorical_non_unique_monotonic(n_categories): # GH 28189 # With n_categories as 5, we test the int8 case is hit in libjoin, # with n_categories as 128 we test the int16 case. left_index = CategoricalIndex([0] + list(range(n_categories))) df1 = DataFrame(range(n_categories + 1), columns=["value"], index=left_index) df2 = DataFrame( [[6]], columns=["value"], index=CategoricalIndex([0], categories=np.arange(n_categories)), ) result = merge(df1, df2, how="left", left_index=True, right_index=True) expected = DataFrame( [[i, 6.0] if i < 2 else [i, np.nan] for i in range(n_categories + 1)], columns=["value_x", "value_y"], index=left_index, ) tm.assert_frame_equal(expected, result)
bsd-3-clause
PatrickOReilly/scikit-learn
benchmarks/bench_lasso.py
111
3364
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import matplotlib.pyplot as plt alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) plt.figure('scikit-learn LASSO benchmark results') plt.subplot(211) plt.plot(list_n_samples, lasso_results, 'b-', label='Lasso') plt.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') plt.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) plt.legend(loc='upper left') plt.xlabel('number of samples') plt.ylabel('Time (s)') plt.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) plt.subplot(212) plt.plot(list_n_features, lasso_results, 'b-', label='Lasso') plt.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') plt.title('%d samples, alpha=%s' % (n_samples, alpha)) plt.legend(loc='upper left') plt.xlabel('number of features') plt.ylabel('Time (s)') plt.axis('tight') plt.show()
bsd-3-clause
anne-urai/serialDDM
graphicalModels/examples/weaklensing.py
7
1465
""" A model for weak lensing ======================== This is (**Daft** co-author) Hogg's model for the obsevational cosmology method known as *weak gravitational lensing*, if that method were properly probabilistic (which it usually isn't). Hogg put the model here for one very important reason: *Because he can*. Oh, and it demonstrates that you can represent non-trivial scientific projects with **Daft**. """ from matplotlib import rc rc("font", family="serif", size=12) rc("text", usetex=True) import daft pgm = daft.PGM([4.7, 2.35], origin=[-1.35, 2.2]) pgm.add_node(daft.Node("Omega", r"$\Omega$", -1, 4)) pgm.add_node(daft.Node("gamma", r"$\gamma$", 0, 4)) pgm.add_node(daft.Node("obs", r"$\epsilon^{\mathrm{obs}}_n$", 1, 4, observed=True)) pgm.add_node(daft.Node("alpha", r"$\alpha$", 3, 4)) pgm.add_node(daft.Node("true", r"$\epsilon^{\mathrm{true}}_n$", 2, 4)) pgm.add_node(daft.Node("sigma", r"$\sigma_n$", 1, 3)) pgm.add_node(daft.Node("Sigma", r"$\Sigma$", 0, 3)) pgm.add_node(daft.Node("x", r"$x_n$", 2, 3, observed=True)) pgm.add_plate(daft.Plate([0.5, 2.25, 2, 2.25], label=r"galaxies $n$")) pgm.add_edge("Omega", "gamma") pgm.add_edge("gamma", "obs") pgm.add_edge("alpha", "true") pgm.add_edge("true", "obs") pgm.add_edge("x", "obs") pgm.add_edge("Sigma", "sigma") pgm.add_edge("sigma", "obs") pgm.render() pgm.figure.savefig("weaklensing.pdf") pgm.figure.savefig("weaklensing.png", dpi=150)
mit
ericdill/bokeh
bokeh/charts/builder/tests/test_dot_builder.py
33
3939
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Dot from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestDot(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() xyvalues['python']=[2, 5] xyvalues['pypy']=[12, 40] xyvalues['jython']=[22, 30] xyvaluesdf = pd.DataFrame(xyvalues, index=['lists', 'loops']) cat = ['lists', 'loops'] catjython = ['lists:0.75', 'loops:0.75'] catpypy = ['lists:0.5', 'loops:0.5'] catpython = ['lists:0.25', 'loops:0.25'] python = seg_top_python = [2, 5] pypy = seg_top_pypy = [12, 40] jython = seg_top_jython = [22, 30] zero = [0, 0] for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Dot, _xy, cat=cat) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['cat'], cat) assert_array_equal(builder._data['catjython'], catjython) assert_array_equal(builder._data['catpython'], catpython) assert_array_equal(builder._data['catpypy'], catpypy) assert_array_equal(builder._data['python'], python) assert_array_equal(builder._data['jython'], jython) assert_array_equal(builder._data['pypy'], pypy) assert_array_equal(builder._data['seg_top_python'], seg_top_python) assert_array_equal(builder._data['seg_top_jython'], seg_top_jython) assert_array_equal(builder._data['seg_top_pypy'], seg_top_pypy) assert_array_equal(builder._data['z_python'], zero) assert_array_equal(builder._data['z_pypy'], zero) assert_array_equal(builder._data['z_jython'], zero) assert_array_equal(builder._data['zero'], zero) lvalues = [[2, 5], [12, 40], [22, 30]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Dot, _xy, cat=cat) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['cat'], cat) assert_array_equal(builder._data['cat0'], catpython) assert_array_equal(builder._data['cat1'], catpypy) assert_array_equal(builder._data['cat2'], catjython) assert_array_equal(builder._data['0'], python) assert_array_equal(builder._data['1'], pypy) assert_array_equal(builder._data['2'], jython) assert_array_equal(builder._data['seg_top_0'], seg_top_python) assert_array_equal(builder._data['seg_top_1'], seg_top_pypy) assert_array_equal(builder._data['seg_top_2'], seg_top_jython) assert_array_equal(builder._data['z_0'], zero) assert_array_equal(builder._data['z_1'], zero) assert_array_equal(builder._data['z_2'], zero) assert_array_equal(builder._data['zero'], zero)
bsd-3-clause
dbaranchuk/hnsw
plots/graphic_PQ8_R10.py
1
2425
OIMI_PQ8_R10_txt = ''' 0.2790 0.3233 0.3838 0.4227 0.4701 0.4844 0.4984 0.5040 ''' OIMI_PQ8_T_txt = ''' 1.10 1.12 1.35 1.65 2.65 3.73 6.79 10.8 ''' IVF2M_PQ8_R10_txt = ''' 0.3329 0.3926 0.4625 0.5019 0.5413 0.5531 0.5615 0.5648 ''' IVF2M_PQ8_T_txt = ''' 0.22 0.24 0.33 0.42 0.79 1.22 2.15 3.10 ''' IVF4M_PQ8_R10_txt = ''' 0.3754 0.4351 0.4981 0.5321 0.5591 0.5684 0.5743 0.5772 ''' IVF4M_PQ8_T_txt = ''' 0.32 0.37 0.60 0.88 1.90 3.15 6.15 9.14 ''' IVFG_PQ8_R10_txt = ''' 0.2997 0.3607 0.4497 0.5054 0.5669 0.5805 0.5924 0.5961 ''' IVFG_PQ8_T_txt = ''' 0.22 0.24 0.34 0.45 0.92 1.36 2.50 3.64 ''' IVFGP_PQ8_R10_txt = ''' 0.3493 0.4152 0.4996 0.5440 0.5819 0.5908 0.5987 0.6037 ''' IVFGP_PQ8_T_txt = ''' 0.25 0.28 0.39 0.53 1.10 1.65 2.91 4.26 ''' from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy import re import seaborn as sns sns.set(style='ticks', palette='Set2') sns.despine() dataset = "DEEP" if dataset == "DEEP": OIMI_PQ8_R10 = re.findall(r"[0-9.]+", OIMI_PQ8_R10_txt) OIMI_PQ8_T = re.findall(r"[0-9.]+", OIMI_PQ8_T_txt) IVF2M_PQ8_R10 = re.findall(r"[0-9.]+", IVF2M_PQ8_R10_txt) IVF2M_PQ8_T = re.findall(r"[0-9.]+", IVF2M_PQ8_T_txt) IVF4M_PQ8_R10 = re.findall(r"[0-9.]+", IVF4M_PQ8_R10_txt) IVF4M_PQ8_T = re.findall(r"[0-9.]+", IVF4M_PQ8_T_txt) IVFG_PQ8_R10 = re.findall(r"[0-9.]+", IVFG_PQ8_R10_txt) IVFG_PQ8_T = re.findall(r"[0-9.]+", IVFG_PQ8_T_txt) IVFGP_PQ8_R10 = re.findall(r"[0-9.]+", IVFGP_PQ8_R10_txt) IVFGP_PQ8_T = re.findall(r"[0-9.]+", IVFGP_PQ8_T_txt) plt.figure(figsize=[5,4]) lineOIMI, = plt.plot(OIMI_PQ8_T, OIMI_PQ8_R10, 'r', label = 'OIMI-D-OADC $K{=}2^{14}$') lineIVF2M, = plt.plot(IVF2M_PQ8_T, IVF2M_PQ8_R10, '-g', label = 'IVFOADC $K{=}2^{21}$') lineIVF4M, = plt.plot(IVF4M_PQ8_T, IVF4M_PQ8_R10, '-m', label = 'IVFOADC $K{=}2^{22}$') lineIVFG, = plt.plot(IVFG_PQ8_T, IVFG_PQ8_R10, '-c', label = 'IVFOADC+G $K{=}2^{20}$') lineIVFGP, = plt.plot(IVFGP_PQ8_T, IVFGP_PQ8_R10, '--b', label = 'IVFOADC+G+P $K{=}2^{20}$') plt.xticks(numpy.arange(0.2, 2.01, 0.2)) plt.yticks(numpy.arange(0.3, 0.61, 0.05)) plt.axis([0.2, 2.0, 0.30, 0.601]) #plt.xlabel('Time (ms)', fontsize=12) plt.ylabel('R@10, 8 bytes', fontsize=12) #plt.legend(frameon = True, fontsize=9, loc=4) pp = PdfPages('recallR10_PQ8.pdf') pp.savefig(bbox_inches='tight') pp.close()
apache-2.0
robin-lai/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
PaloAltoNetworks-BD/SplunkforPaloAltoNetworks
Splunk_TA_paloalto/bin/splunk_ta_paloalto/aob_py3/future/utils/__init__.py
8
20325
""" A selection of cross-compatible functions for Python 2 and 3. This module exports useful functions for 2/3 compatible code: * bind_method: binds functions to classes * ``native_str_to_bytes`` and ``bytes_to_native_str`` * ``native_str``: always equal to the native platform string object (because this may be shadowed by imports from future.builtins) * lists: lrange(), lmap(), lzip(), lfilter() * iterable method compatibility: - iteritems, iterkeys, itervalues - viewitems, viewkeys, viewvalues These use the original method if available, otherwise they use items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bytes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bchr(c): Take an integer and make a 1-character byte string * bord(c) Take the result of indexing on a byte string and make an integer * tobytes(s) Take a text string, a byte string, or a sequence of characters taken from a byte string, and make a byte string. * raise_from() * raise_with_traceback() This module also defines these decorators: * ``python_2_unicode_compatible`` * ``with_metaclass`` * ``implements_iterator`` Some of the functions in this module come from the following sources: * Jinja2 (BSD licensed: see https://github.com/mitsuhiko/jinja2/blob/master/LICENSE) * Pandas compatibility module pandas.compat * six.py by Benjamin Peterson * Django """ import types import sys import numbers import functools import copy import inspect PY3 = sys.version_info[0] == 3 PY35_PLUS = sys.version_info[0:2] >= (3, 5) PY36_PLUS = sys.version_info[0:2] >= (3, 6) PY2 = sys.version_info[0] == 2 PY26 = sys.version_info[0:2] == (2, 6) PY27 = sys.version_info[0:2] == (2, 7) PYPY = hasattr(sys, 'pypy_translation_info') def python_2_unicode_compatible(cls): """ A decorator that defines __unicode__ and __str__ methods under Python 2. Under Python 3, this decorator is a no-op. To support Python 2 and 3 with a single code base, define a __str__ method returning unicode text and apply this decorator to the class, like this:: >>> from future.utils import python_2_unicode_compatible >>> @python_2_unicode_compatible ... class MyClass(object): ... def __str__(self): ... return u'Unicode string: \u5b54\u5b50' >>> a = MyClass() Then, after this import: >>> from future.builtins import str the following is ``True`` on both Python 3 and 2:: >>> str(a) == a.encode('utf-8').decode('utf-8') True and, on a Unicode-enabled terminal with the right fonts, these both print the Chinese characters for Confucius:: >>> print(a) >>> print(str(a)) The implementation comes from django.utils.encoding. """ if not PY3: cls.__unicode__ = cls.__str__ cls.__str__ = lambda self: self.__unicode__().encode('utf-8') return cls def with_metaclass(meta, *bases): """ Function from jinja2/_compat.py. License: BSD. Use it like this:: class BaseForm(object): pass class FormType(type): pass class Form(with_metaclass(FormType, BaseForm)): pass This requires a bit of explanation: the basic idea is to make a dummy metaclass for one level of class instantiation that replaces itself with the actual metaclass. Because of internal type checks we also need to make sure that we downgrade the custom metaclass for one level to something closer to type (that's why __call__ and __init__ comes back from type etc.). This has the advantage over six.with_metaclass of not introducing dummy classes into the final MRO. """ class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass('temporary_class', None, {}) # Definitions from pandas.compat and six.py follow: if PY3: def bchr(s): return bytes([s]) def bstr(s): if isinstance(s, str): return bytes(s, 'latin-1') else: return bytes(s) def bord(s): return s string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes else: # Python 2 def bchr(s): return chr(s) def bstr(s): return str(s) def bord(s): return ord(s) string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str ### if PY3: def tobytes(s): if isinstance(s, bytes): return s else: if isinstance(s, str): return s.encode('latin-1') else: return bytes(s) else: # Python 2 def tobytes(s): if isinstance(s, unicode): return s.encode('latin-1') else: return ''.join(s) tobytes.__doc__ = """ Encodes to latin-1 (where the first 256 chars are the same as ASCII.) """ if PY3: def native_str_to_bytes(s, encoding='utf-8'): return s.encode(encoding) def bytes_to_native_str(b, encoding='utf-8'): return b.decode(encoding) def text_to_native_str(t, encoding=None): return t else: # Python 2 def native_str_to_bytes(s, encoding=None): from future.types import newbytes # to avoid a circular import return newbytes(s) def bytes_to_native_str(b, encoding=None): return native(b) def text_to_native_str(t, encoding='ascii'): """ Use this to create a Py2 native string when "from __future__ import unicode_literals" is in effect. """ return unicode(t).encode(encoding) native_str_to_bytes.__doc__ = """ On Py3, returns an encoded string. On Py2, returns a newbytes type, ignoring the ``encoding`` argument. """ if PY3: # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: import __builtin__ # Python 2-builtin ranges produce lists lrange = __builtin__.range lzip = __builtin__.zip lmap = __builtin__.map lfilter = __builtin__.filter def isidentifier(s, dotted=False): ''' A function equivalent to the str.isidentifier method on Py3 ''' if dotted: return all(isidentifier(a) for a in s.split('.')) if PY3: return s.isidentifier() else: import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") return bool(_name_re.match(s)) def viewitems(obj, **kwargs): """ Function for iterating over dictionary items with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewitems", None) if not func: func = obj.items return func(**kwargs) def viewkeys(obj, **kwargs): """ Function for iterating over dictionary keys with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewkeys", None) if not func: func = obj.keys return func(**kwargs) def viewvalues(obj, **kwargs): """ Function for iterating over dictionary values with the same set-like behaviour on Py2.7 as on Py3. Passes kwargs to method.""" func = getattr(obj, "viewvalues", None) if not func: func = obj.values return func(**kwargs) def iteritems(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewitems(). """ func = getattr(obj, "iteritems", None) if not func: func = obj.items return func(**kwargs) def iterkeys(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewkeys(). """ func = getattr(obj, "iterkeys", None) if not func: func = obj.keys return func(**kwargs) def itervalues(obj, **kwargs): """Use this only if compatibility with Python versions before 2.7 is required. Otherwise, prefer viewvalues(). """ func = getattr(obj, "itervalues", None) if not func: func = obj.values return func(**kwargs) def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has an issue with bound/unbound methods if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) def getexception(): return sys.exc_info()[1] def _get_caller_globals_and_locals(): """ Returns the globals and locals of the calling frame. Is there an alternative to frame hacking here? """ caller_frame = inspect.stack()[2] myglobals = caller_frame[0].f_globals mylocals = caller_frame[0].f_locals return myglobals, mylocals def _repr_strip(mystring): """ Returns the string without any initial or final quotes. """ r = repr(mystring) if r.startswith("'") and r.endswith("'"): return r[1:-1] else: return r if PY3: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ myglobals, mylocals = _get_caller_globals_and_locals() # We pass the exception and cause along with other globals # when we exec(): myglobals = myglobals.copy() myglobals['__python_future_raise_from_exc'] = exc myglobals['__python_future_raise_from_cause'] = cause execstr = "raise __python_future_raise_from_exc from __python_future_raise_from_cause" exec(execstr, myglobals, mylocals) def raise_(tp, value=None, tb=None): """ A function that matches the Python 2.x ``raise`` statement. This allows re-raising exceptions with the cls value and traceback on Python 2 and 3. """ if value is not None and isinstance(tp, Exception): raise TypeError("instance exception may not have a separate value") if value is not None: exc = tp(value) else: exc = tp if exc.__traceback__ is not tb: raise exc.with_traceback(tb) raise exc def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: def raise_from(exc, cause): """ Equivalent to: raise EXCEPTION from CAUSE on Python 3. (See PEP 3134). """ # Is either arg an exception class (e.g. IndexError) rather than # instance (e.g. IndexError('my message here')? If so, pass the # name of the class undisturbed through to "raise ... from ...". if isinstance(exc, type) and issubclass(exc, Exception): e = exc() # exc = exc.__name__ # execstr = "e = " + _repr_strip(exc) + "()" # myglobals, mylocals = _get_caller_globals_and_locals() # exec(execstr, myglobals, mylocals) else: e = exc e.__suppress_context__ = False if isinstance(cause, type) and issubclass(cause, Exception): e.__cause__ = cause() e.__suppress_context__ = True elif cause is None: e.__cause__ = None e.__suppress_context__ = True elif isinstance(cause, BaseException): e.__cause__ = cause e.__suppress_context__ = True else: raise TypeError("exception causes must derive from BaseException") e.__context__ = sys.exc_info()[1] raise e exec(''' def raise_(tp, value=None, tb=None): raise tp, value, tb def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback '''.strip()) raise_with_traceback.__doc__ = ( """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" ) # Deprecated alias for backward compatibility with ``future`` versions < 0.11: reraise = raise_ def implements_iterator(cls): ''' From jinja2/_compat.py. License: BSD. Use as a decorator like this:: @implements_iterator class UppercasingIterator(object): def __init__(self, iterable): self._iter = iter(iterable) def __iter__(self): return self def __next__(self): return next(self._iter).upper() ''' if PY3: return cls else: cls.next = cls.__next__ del cls.__next__ return cls if PY3: get_next = lambda x: x.next else: get_next = lambda x: x.__next__ def encode_filename(filename): if PY3: return filename else: if isinstance(filename, unicode): return filename.encode('utf-8') return filename def is_new_style(cls): """ Python 2.7 has both new-style and old-style classes. Old-style classes can be pesky in some circumstances, such as when using inheritance. Use this function to test for whether a class is new-style. (Python 3 only has new-style classes.) """ return hasattr(cls, '__class__') and ('__dict__' in dir(cls) or hasattr(cls, '__slots__')) # The native platform string and bytes types. Useful because ``str`` and # ``bytes`` are redefined on Py2 by ``from future.builtins import *``. native_str = str native_bytes = bytes def istext(obj): """ Deprecated. Use:: >>> isinstance(obj, str) after this import: >>> from future.builtins import str """ return isinstance(obj, type(u'')) def isbytes(obj): """ Deprecated. Use:: >>> isinstance(obj, bytes) after this import: >>> from future.builtins import bytes """ return isinstance(obj, type(b'')) def isnewbytes(obj): """ Equivalent to the result of ``isinstance(obj, newbytes)`` were ``__instancecheck__`` not overridden on the newbytes subclass. In other words, it is REALLY a newbytes instance, not a Py2 native str object? """ # TODO: generalize this so that it works with subclasses of newbytes # Import is here to avoid circular imports: from future.types.newbytes import newbytes return type(obj) == newbytes def isint(obj): """ Deprecated. Tests whether an object is a Py3 ``int`` or either a Py2 ``int`` or ``long``. Instead of using this function, you can use: >>> from future.builtins import int >>> isinstance(obj, int) The following idiom is equivalent: >>> from numbers import Integral >>> isinstance(obj, Integral) """ return isinstance(obj, numbers.Integral) def native(obj): """ On Py3, this is a no-op: native(obj) -> obj On Py2, returns the corresponding native Py2 types that are superclasses for backported objects from Py3: >>> from builtins import str, bytes, int >>> native(str(u'ABC')) u'ABC' >>> type(native(str(u'ABC'))) unicode >>> native(bytes(b'ABC')) b'ABC' >>> type(native(bytes(b'ABC'))) bytes >>> native(int(10**20)) 100000000000000000000L >>> type(native(int(10**20))) long Existing native types on Py2 will be returned unchanged: >>> type(native(u'ABC')) unicode """ if hasattr(obj, '__native__'): return obj.__native__() else: return obj # Implementation of exec_ is from ``six``: if PY3: import builtins exec_ = getattr(builtins, "exec") else: def exec_(code, globs=None, locs=None): """Execute code in a namespace.""" if globs is None: frame = sys._getframe(1) globs = frame.f_globals if locs is None: locs = frame.f_locals del frame elif locs is None: locs = globs exec("""exec code in globs, locs""") # Defined here for backward compatibility: def old_div(a, b): """ DEPRECATED: import ``old_div`` from ``past.utils`` instead. Equivalent to ``a / b`` on Python 2 without ``from __future__ import division``. TODO: generalize this to other objects (like arrays etc.) """ if isinstance(a, numbers.Integral) and isinstance(b, numbers.Integral): return a // b else: return a / b def as_native_str(encoding='utf-8'): ''' A decorator to turn a function or method call that returns text, i.e. unicode, into one that returns a native platform str. Use it as a decorator like this:: from __future__ import unicode_literals class MyClass(object): @as_native_str(encoding='ascii') def __repr__(self): return next(self._iter).upper() ''' if PY3: return lambda f: f else: def encoder(f): @functools.wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs).encode(encoding=encoding) return wrapper return encoder # listvalues and listitems definitions from Nick Coghlan's (withdrawn) # PEP 496: try: dict.iteritems except AttributeError: # Python 3 def listvalues(d): return list(d.values()) def listitems(d): return list(d.items()) else: # Python 2 def listvalues(d): return d.values() def listitems(d): return d.items() if PY3: def ensure_new_type(obj): return obj else: def ensure_new_type(obj): from future.types.newbytes import newbytes from future.types.newstr import newstr from future.types.newint import newint from future.types.newdict import newdict native_type = type(native(obj)) # Upcast only if the type is already a native (non-future) type if issubclass(native_type, type(obj)): # Upcast if native_type == str: # i.e. Py2 8-bit str return newbytes(obj) elif native_type == unicode: return newstr(obj) elif native_type == int: return newint(obj) elif native_type == long: return newint(obj) elif native_type == dict: return newdict(obj) else: return obj else: # Already a new type assert type(obj) in [newbytes, newstr] return obj __all__ = ['PY2', 'PY26', 'PY3', 'PYPY', 'as_native_str', 'bind_method', 'bord', 'bstr', 'bytes_to_native_str', 'encode_filename', 'ensure_new_type', 'exec_', 'get_next', 'getexception', 'implements_iterator', 'is_new_style', 'isbytes', 'isidentifier', 'isint', 'isnewbytes', 'istext', 'iteritems', 'iterkeys', 'itervalues', 'lfilter', 'listitems', 'listvalues', 'lmap', 'lrange', 'lzip', 'native', 'native_bytes', 'native_str', 'native_str_to_bytes', 'old_div', 'python_2_unicode_compatible', 'raise_', 'raise_with_traceback', 'reraise', 'text_to_native_str', 'tobytes', 'viewitems', 'viewkeys', 'viewvalues', 'with_metaclass' ]
isc
bigdataelephants/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
31
3340
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): """Tests the FastMCD algorithm implementation """ ### Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) ### Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) ### Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) ### 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) print(clf.threshold) assert_raises(Exception, clf.predict, X) assert_raises(Exception, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
tzonghao/influxdb-python
influxdb/influxdb08/dataframe_client.py
4
7291
# -*- coding: utf-8 -*- """DataFrame client for InfluxDB v0.8.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import math import warnings from .client import InfluxDBClient class DataFrameClient(InfluxDBClient): """Primary defintion of the DataFrameClient for v0.8. The ``DataFrameClient`` object holds information necessary to connect to InfluxDB. Requests can be made to InfluxDB directly through the client. The client reads and writes from pandas DataFrames. """ def __init__(self, ignore_nan=True, *args, **kwargs): """Initialize an instance of the DataFrameClient.""" super(DataFrameClient, self).__init__(*args, **kwargs) try: global pd import pandas as pd except ImportError as ex: raise ImportError('DataFrameClient requires Pandas, ' '"{ex}" problem importing'.format(ex=str(ex))) self.EPOCH = pd.Timestamp('1970-01-01 00:00:00.000+00:00') self.ignore_nan = ignore_nan def write_points(self, data, *args, **kwargs): """Write to multiple time series names. :param data: A dictionary mapping series names to pandas DataFrames :param time_precision: [Optional, default 's'] Either 's', 'm', 'ms' or 'u'. :param batch_size: [Optional] Value to write the points in batches instead of all at one time. Useful for when doing data dumps from one database to another or when doing a massive write operation :type batch_size: int """ batch_size = kwargs.get('batch_size') time_precision = kwargs.get('time_precision', 's') if batch_size: kwargs.pop('batch_size') # don't hand over to InfluxDBClient for key, data_frame in data.items(): number_batches = int(math.ceil( len(data_frame) / float(batch_size))) for batch in range(number_batches): start_index = batch * batch_size end_index = (batch + 1) * batch_size outdata = [ self._convert_dataframe_to_json( name=key, dataframe=data_frame .iloc[start_index:end_index].copy(), time_precision=time_precision)] InfluxDBClient.write_points(self, outdata, *args, **kwargs) return True outdata = [ self._convert_dataframe_to_json(name=key, dataframe=dataframe, time_precision=time_precision) for key, dataframe in data.items()] return InfluxDBClient.write_points(self, outdata, *args, **kwargs) def write_points_with_precision(self, data, time_precision='s'): """Write to multiple time series names. DEPRECATED """ warnings.warn( "write_points_with_precision is deprecated, and will be removed " "in future versions. Please use " "``DataFrameClient.write_points(time_precision='..')`` instead.", FutureWarning) return self.write_points(data, time_precision='s') def query(self, query, time_precision='s', chunked=False): """Query data into DataFrames. Returns a DataFrame for a single time series and a map for multiple time series with the time series as value and its name as key. :param time_precision: [Optional, default 's'] Either 's', 'm', 'ms' or 'u'. :param chunked: [Optional, default=False] True if the data shall be retrieved in chunks, False otherwise. """ result = InfluxDBClient.query(self, query=query, time_precision=time_precision, chunked=chunked) if len(result) == 0: return result elif len(result) == 1: return self._to_dataframe(result[0], time_precision) else: ret = {} for time_series in result: ret[time_series['name']] = self._to_dataframe(time_series, time_precision) return ret @staticmethod def _to_dataframe(json_result, time_precision): dataframe = pd.DataFrame(data=json_result['points'], columns=json_result['columns']) if 'sequence_number' in dataframe.keys(): dataframe.sort_values(['time', 'sequence_number'], inplace=True) else: dataframe.sort_values(['time'], inplace=True) pandas_time_unit = time_precision if time_precision == 'm': pandas_time_unit = 'ms' elif time_precision == 'u': pandas_time_unit = 'us' dataframe.index = pd.to_datetime(list(dataframe['time']), unit=pandas_time_unit, utc=True) del dataframe['time'] return dataframe def _convert_dataframe_to_json(self, dataframe, name, time_precision='s'): if not isinstance(dataframe, pd.DataFrame): raise TypeError('Must be DataFrame, but type was: {0}.' .format(type(dataframe))) if not (isinstance(dataframe.index, pd.PeriodIndex) or isinstance(dataframe.index, pd.DatetimeIndex)): raise TypeError('Must be DataFrame with DatetimeIndex or \ PeriodIndex.') if isinstance(dataframe.index, pd.PeriodIndex): dataframe.index = dataframe.index.to_timestamp() else: dataframe.index = pd.to_datetime(dataframe.index) if dataframe.index.tzinfo is None: dataframe.index = dataframe.index.tz_localize('UTC') dataframe['time'] = [self._datetime_to_epoch(dt, time_precision) for dt in dataframe.index] data = {'name': name, 'columns': [str(column) for column in dataframe.columns], 'points': [self._convert_array(x) for x in dataframe.values]} return data def _convert_array(self, array): try: global np import numpy as np except ImportError as ex: raise ImportError('DataFrameClient requires Numpy, ' '"{ex}" problem importing'.format(ex=str(ex))) if self.ignore_nan: number_types = (int, float, np.number) condition = (all(isinstance(el, number_types) for el in array) and np.isnan(array)) return list(np.where(condition, None, array)) return list(array) def _datetime_to_epoch(self, datetime, time_precision='s'): seconds = (datetime - self.EPOCH).total_seconds() if time_precision == 's': return seconds elif time_precision == 'm' or time_precision == 'ms': return seconds * 1000 elif time_precision == 'u': return seconds * 1000000
mit
zronyj/TC3Q
Data/wu.py
2
1324
import urllib2 import json import pandas as pd data = {} def num_or_dump(x): try: t = float(x) except ValueError as e: t = -9999. return t llave = raw_input("Ingresa la llave para la API de WUnderground: ") for a in range(2008,2018): d = urllib2.urlopen('http://api.wunderground.com/api/' + llave + '/history_' + str(a) + '0622/q/MGGT.json') j = d.read() with open(str(a) + ".json","w") as f: f.write(j) pj = json.loads(j) temp = [] ttime = [] restantes = 24 - len(pj["history"]["observations"]) for o in pj["history"]["observations"]: hora = int(o["date"]["hour"]) if not(hora in ttime): ttime.append(hora) temp.append({"hora":hora, "temperatura":num_or_dump(o["tempm"]), "humedad":num_or_dump(o["hum"]), "presion":num_or_dump(o["pressurem"]), "lluvia":bool(int(o["rain"])), "visibilidad":num_or_dump(o["vism"])}) totales = set(range(24)) dados = set(ttime) restantes = list(totales.difference(dados)) for i in restantes: temp.append({"hora":i, "temperatura":-9999., "humedad":-9999., "presion":-9999., "lluvia":False, "visibilidad":-9999.}) data[str(a)] = temp[:] d.close() for p in ["temperatura", "humedad", "presion", "lluvia", "visibilidad"]: v = pd.DataFrame.from_dict({a:[t[p] for t in data[a]] for a in data.keys()}) v.to_csv(p + ".csv")
gpl-2.0
kaffeebrauer/Lean
Algorithm.Framework/Portfolio/MeanVarianceOptimizationPortfolioConstructionModel.py
1
6913
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Indicators import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import * from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer from datetime import timedelta import numpy as np import pandas as pd ### <summary> ### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory. ### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns. ### </summary> class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel): def __init__(self, lookback = 1, period = 63, resolution = Resolution.Daily, optimizer = None): """Initialize the model Args: lookback(int): Historical return lookback period period(int): The time interval of history price to calculate the weight resolution: The resolution of the history price optimizer(class): Method used to compute the portfolio weights""" self.lookback = lookback self.period = period self.resolution = resolution self.optimizer = MinimumVariancePortfolioOptimizer() if optimizer is None else optimizer self.symbolDataBySymbol = {} self.pendingRemoval = [] def CreateTargets(self, algorithm, insights): """ Create portfolio targets from the specified insights Args: algorithm: The algorithm instance insights: The insights to create portoflio targets from Returns: An enumerable of portoflio targets to be sent to the execution model """ targets = [] for symbol in self.pendingRemoval: targets.append(PortfolioTarget.Percent(algorithm, symbol, 0)) self.pendingRemoval.clear() symbols = [insight.Symbol for insight in insights] if len(symbols) == 0 or all([insight.Magnitude == 0 for insight in insights]): return targets for insight in insights: symbolData = self.symbolDataBySymbol.get(insight.Symbol) if insight.Magnitude is None: algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.')) symbolData.Add(algorithm.Time, insight.Magnitude) # Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols } returns = pd.DataFrame(returns) # The portfolio optimizer finds the optional weights for the given data weights = self.optimizer.Optimize(returns) weights = pd.Series(weights, index = returns.columns) # Create portfolio targets from the specified insights for insight in insights: weight = weights[str(insight.Symbol)] target = PortfolioTarget.Percent(algorithm, insight.Symbol, weight) if target is not None: targets.append(target) return targets def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities for removed in changes.RemovedSecurities: self.pendingRemoval.append(removed.Symbol) symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) symbolData.Reset() # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback * self.period, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period) symbolData.WarmUpIndicators(history.loc[ticker]) self.symbolDataBySymbol[symbol] = symbolData class MeanVarianceSymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback, period): self.symbol = symbol self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback) self.roc.Updated += self.OnRateOfChangeUpdated self.window = RollingWindow[IndicatorDataPoint](period) def Reset(self): self.roc.Updated -= self.OnRateOfChangeUpdated self.roc.Reset() self.window.Reset() def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.roc.Update(tuple.Index, tuple.close) def OnRateOfChangeUpdated(self, roc, value): if roc.IsReady: self.window.Add(value) def Add(self, time, value): item = IndicatorDataPoint(self.symbol, time, value) self.window.Add(item) @property def Return(self): return pd.Series( data = [(1 + float(x.Value))**252 - 1 for x in self.window], index = [x.EndTime for x in self.window]) @property def IsReady(self): return self.window.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)
apache-2.0
ldirer/scikit-learn
sklearn/model_selection/tests/test_search.py
5
51772
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from sklearn.externals.joblib._compat import PY3_OR_LATER from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.linear_model import Ridge, SGDClassifier from sklearn.model_selection.tests.common import OneTimeSplitter # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.classes_ = np.unique(Y) return self def predict(self, T): return T.shape[0] def transform(self, X): return X + self.foo_param def inverse_transform(self, X): return X - self.foo_param predict_proba = predict predict_log_proba = predict decision_function = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3]) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs): X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam', 'eggs']) searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs) # The CheckingClassifer generates an assertion error if # a parameter is missing or has length != len(X). assert_raise_message(AssertionError, "Expected fit parameter(s) ['eggs'] not seen.", searcher.fit, X, y, spam=np.ones(10)) assert_raise_message(AssertionError, "Fit parameter spam has length 1; expected 4.", searcher.fit, X, y, spam=np.ones(1), eggs=np.zeros(10)) searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10)) def test_grid_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(GridSearchCV) def test_random_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1) def test_grid_search_fit_params_deprecation(): # NOTE: Remove this test in v0.21 # Use of `fit_params` in the class constructor is deprecated, # but will still work until v0.21. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_warns(DeprecationWarning, grid_search.fit, X, y) def test_grid_search_fit_params_two_places(): # NOTE: Remove this test in v0.21 # If users try to input fit parameters in both # the constructor (deprecated use) and the `fit` # method, we'll ignore the values passed to the constructor. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) # The "spam" array is too short and will raise an # error in the CheckingClassifier if used. grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(1)}) expected_warning = ('Ignoring fit_params passed as a constructor ' 'argument in favor of keyword arguments to ' 'the "fit" method.') assert_warns_message(RuntimeWarning, expected_warning, grid_search.fit, X, y, spam=np.ones(10)) # Verify that `fit` prefers its own kwargs by giving valid # kwargs in the constructor and invalid in the method call grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_raise_message(AssertionError, "Fit parameter spam has length 1", grid_search.fit, X, y, spam=np.ones(1)) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = search_no_scoring.score(X, y) score_accuracy = search_accuracy.score(X, y) score_no_score_auc = search_no_score_method_auc.score(X, y) score_auc = search_auc.score(X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_groups(): # Check if ValueError (when groups is None) propagates to GridSearchCV # And also check if groups is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) groups = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The 'groups' parameter should not be None.", gs.fit, X, y) gs.fit(X, y, groups=groups) non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_group_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_classes__property(): # Test that classes_ property matches best_estimator_.classes_ X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) Cs = [.1, 1, 10] grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) grid_search.fit(X, y) assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_) # Test that regressors do not have a classes_ attribute grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]}) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute before it's fit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute without a refit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}, refit=False) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) def test_trivial_cv_results_attr(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_no_refit(): # Test that GSCV can be used for model selection alone without refitting clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(not hasattr(grid_search, "best_estimator_") and hasattr(grid_search, "best_index_") and hasattr(grid_search, "best_params_")) # Make sure the predict/transform etc fns raise meaningfull error msg for fn_name in ('predict', 'predict_proba', 'predict_log_proba', 'transform', 'inverse_transform'): assert_raise_message(NotFittedError, ('refit=False. %s is available only after ' 'refitting on the best parameters' % fn_name), getattr(grid_search, fn_name), X) def test_grid_search_error(): # Test that grid search will capture errors on data with different length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_when_param_grid_includes_range(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = None if PY3_OR_LATER: grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}) else: grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)}) grid_search.fit(X, y) assert_equal(grid_search.best_estimator_.foo_param, 2) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a non-empty sequence.", GridSearchCV, clf, param_dict) param_dict = {"C": "1,2,3"} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "cv_results_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='fowlkes_mallows_score') grid_search.fit(X, y) # So can FMS ;) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def check_cv_results_array_types(cv_results, param_keys, score_keys): # Check if the search `cv_results`'s array are of correct types assert_true(all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)) assert_true(all(cv_results[key].dtype == object for key in param_keys)) assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)) assert_true(all(cv_results[key].dtype == np.float64 for key in score_keys if not key.startswith('rank'))) assert_true(cv_results['rank_test_score'].dtype == np.int32) def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand): # Test the search.cv_results_ contains all the required results assert_array_equal(sorted(cv_results.keys()), sorted(param_keys + score_keys + ('params',))) assert_true(all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)) def check_cv_results_grid_scores_consistency(search): # TODO Remove in 0.20 cv_results = search.cv_results_ res_scores = np.vstack(list([cv_results["split%d_test_score" % i] for i in range(search.n_splits_)])).T res_means = cv_results["mean_test_score"] res_params = cv_results["params"] n_cand = len(res_params) grid_scores = assert_warns(DeprecationWarning, getattr, search, 'grid_scores_') assert_equal(len(grid_scores), n_cand) # Check consistency of the structure of grid_scores for i in range(n_cand): assert_equal(grid_scores[i].parameters, res_params[i]) assert_array_equal(grid_scores[i].cv_validation_scores, res_scores[i, :]) assert_array_equal(grid_scores[i].mean_validation_score, res_means[i]) def test_grid_search_cv_results(): X, y = make_classification(n_samples=50, n_features=4, random_state=42) n_splits = 3 n_grid_points = 6 params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]), dict(kernel=['poly', ], degree=[1, 2])] grid_search = GridSearchCV(SVC(), cv=n_splits, iid=False, param_grid=params) grid_search.fit(X, y) grid_search_iid = GridSearchCV(SVC(), cv=n_splits, iid=True, param_grid=params) grid_search_iid.fit(X, y) param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_candidates = n_grid_points for search, iid in zip((grid_search, grid_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check if score and timing are reasonable assert_true(all(cv_results['rank_test_score'] >= 1)) assert_true(all(cv_results[k] >= 0) for k in score_keys if k is not 'rank_test_score') assert_true(all(cv_results[k] <= 1) for k in score_keys if 'time' not in k and k is not 'rank_test_score') # Check cv_results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates) # Check masking cv_results = grid_search.cv_results_ n_candidates = len(grid_search.cv_results_['params']) assert_true(all((cv_results['param_C'].mask[i] and cv_results['param_gamma'].mask[i] and not cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'linear')) assert_true(all((not cv_results['param_C'].mask[i] and not cv_results['param_gamma'].mask[i] and cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'rbf')) check_cv_results_grid_scores_consistency(search) def test_random_search_cv_results(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # scipy.stats dists now supports `seed` but we still support scipy 0.12 # which doesn't support the seed. Hence the assertions in the test for # random_search alone should not depend on randomization. n_splits = 3 n_search_iter = 30 params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=False, param_distributions=params) random_search.fit(X, y) random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=True, param_distributions=params) random_search_iid.fit(X, y) param_keys = ('param_C', 'param_gamma') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_cand = n_search_iter for search, iid in zip((random_search, random_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_cand) # For random_search, all the param array vals should be unmasked assert_false(any(cv_results['param_C'].mask) or any(cv_results['param_gamma'].mask)) check_cv_results_grid_scores_consistency(search) def test_search_iid_param(): # Test the IID parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv) for search in (grid_search, random_search): search.fit(X, y) assert_true(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s_i][0] for s_i in range(search.n_splits_))) train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] # Test the first candidate assert_equal(search.cv_results_['param_C'][0], 1) assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) assert_array_almost_equal(train_cv_scores, [1, 1]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average and weighted std expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4. expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 + 3. / 4 * (expected_test_mean - 1. / 3.) ** 2) assert_almost_equal(test_mean, expected_test_mean) assert_almost_equal(test_std, expected_test_std) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) # once with iid=False grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv, iid=False) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv, iid=False) for search in (grid_search, random_search): search.fit(X, y) assert_false(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s][0] for s in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s][0] for s in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] assert_equal(search.cv_results_['param_C'][0], 1) # scores are the same as above assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) # Unweighted mean/std is used assert_almost_equal(test_mean, np.mean(test_cv_scores)) assert_almost_equal(test_std, np.std(test_cv_scores)) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) def test_search_cv_results_rank_tie_breaking(): X, y = make_blobs(n_samples=50, random_state=42) # The two C values are close enough to give similar models # which would result in a tie of their mean cv-scores param_grid = {'C': [1, 1.001, 0.001]} grid_search = GridSearchCV(SVC(), param_grid=param_grid) random_search = RandomizedSearchCV(SVC(), n_iter=3, param_distributions=param_grid) for search in (grid_search, random_search): search.fit(X, y) cv_results = search.cv_results_ # Check tie breaking strategy - # Check that there is a tie in the mean scores between # candidates 1 and 2 alone assert_almost_equal(cv_results['mean_test_score'][0], cv_results['mean_test_score'][1]) assert_almost_equal(cv_results['mean_train_score'][0], cv_results['mean_train_score'][1]) try: assert_almost_equal(cv_results['mean_test_score'][1], cv_results['mean_test_score'][2]) except AssertionError: pass try: assert_almost_equal(cv_results['mean_train_score'][1], cv_results['mean_train_score'][2]) except AssertionError: pass # 'min' rank should be assigned to the tied candidates assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3]) def test_search_cv_results_none_param(): X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1] estimators = (DecisionTreeRegressor(), DecisionTreeClassifier()) est_parameters = {"random_state": [0, None]} cv = KFold(random_state=0) for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv).fit(X, y) assert_array_equal(grid_search.cv_results_['param_random_state'], [0, None]) @ignore_warnings() def test_search_cv_timing(): svc = LinearSVC(random_state=0) X = [[1, ], [2, ], [3, ], [4, ]] y = [0, 1, 1, 0] gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0) rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2) for search in (gs, rs): search.fit(X, y) for key in ['mean_fit_time', 'std_fit_time']: # NOTE The precision of time.time in windows is not high # enough for the fit/score times to be non-zero for trivial X and y assert_true(np.all(search.cv_results_[key] >= 0)) assert_true(np.all(search.cv_results_[key] < 1)) for key in ['mean_score_time', 'std_score_time']: assert_true(search.cv_results_[key][1] >= 0) assert_true(search.cv_results_[key][0] == 0.0) assert_true(np.all(search.cv_results_[key] < 1)) def test_grid_search_correct_score_results(): # test that correct scores are used n_splits = 3 clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits) cv_results = grid_search.fit(X, y).cv_results_ # Test scorer names result_keys = list(cv_results.keys()) expected_keys = (("mean_test_score", "rank_test_score") + tuple("split%d_test_score" % cv_i for cv_i in range(n_splits))) assert_true(all(np.in1d(expected_keys, result_keys))) cv = StratifiedKFold(n_splits=n_splits) n_splits = grid_search.n_splits_ for candidate_i, C in enumerate(Cs): clf.set_params(C=C) cv_scores = np.array( list(grid_search.cv_results_['split%d_test_score' % s][candidate_i] for s in range(n_splits))) for i, (train, test) in enumerate(cv.split(X, y)): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, cv_scores[i]) def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) grid_search_pickled = pickle.loads(pickle.dumps(grid_search)) assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X)) random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) random_search_pickled = pickle.loads(pickle.dumps(random_search)) assert_array_almost_equal(random_search.predict(X), random_search_pickled.predict(X)) def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) res_params = grid_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, grid_search.cv_results_['split%d_test_score' % i][cand_i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) res_params = random_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, random_search.cv_results_['split%d_test_score' % i][cand_i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. def get_cand_scores(i): return np.array(list(gs.cv_results_['split%d_test_score' % s][i] for s in range(gs.n_splits_))) assert all((np.all(get_cand_scores(cand_i) == 0.0) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER)) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) assert all(np.all(np.isnan(get_cand_scores(cand_i))) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_stochastic_gradient_loss_param(): # Make sure the predict_proba works when loss is specified # as one of the parameters in the param_grid. param_grid = { 'loss': ['log'], } X = np.arange(24).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) # When the estimator is not fitted, `predict_proba` is not available as the # loss is 'hinge'. assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) clf.predict_proba(X) clf.predict_log_proba(X) # Make sure `predict_proba` is not available when setting loss=['hinge'] # in param_grid param_grid = { 'loss': ['hinge'], } clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) assert_false(hasattr(clf, "predict_proba")) def test_search_train_scores_set_to_false(): X = np.arange(6).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = LinearSVC(random_state=0) gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, return_train_score=False) gs.fit(X, y) def test_grid_search_cv_splits_consistency(): # Check if a one time iterable is accepted as a cv parameter. n_samples = 100 n_splits = 5 X, y = make_classification(n_samples=n_samples, random_state=0) gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples)) gs.fit(X, y) gs2 = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=KFold(n_splits=n_splits)) gs2.fit(X, y) def _pop_time_keys(cv_results): for key in ('mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'): cv_results.pop(key) return cv_results # OneTimeSplitter is a non-re-entrant cv where split can be called only # once if ``cv.split`` is called once per param setting in GridSearchCV.fit # the 2nd and 3rd parameter will not be evaluated as no train/test indices # will be generated for the 2nd and subsequent cv.split calls. # This is a check to make sure cv.split is not called once per param # setting. np.testing.assert_equal(_pop_time_keys(gs.cv_results_), _pop_time_keys(gs2.cv_results_)) # Check consistency of folds across the parameters gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.1, 0.2, 0.2]}, cv=KFold(n_splits=n_splits, shuffle=True)) gs.fit(X, y) # As the first two param settings (C=0.1) and the next two param # settings (C=0.2) are same, the test and train scores must also be # same as long as the same train/test indices are generated for all # the cv splits, for both param setting for score_type in ('train', 'test'): per_param_scores = {} for param_i in range(4): per_param_scores[param_i] = list( gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i] for s in range(5)) assert_array_almost_equal(per_param_scores[0], per_param_scores[1]) assert_array_almost_equal(per_param_scores[2], per_param_scores[3]) def test_transform_inverse_transform_round_trip(): clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) grid_search.fit(X, y) X_round_trip = grid_search.inverse_transform(grid_search.transform(X)) assert_array_equal(X, X_round_trip)
bsd-3-clause
phiedulxp/tweet_search
ie/current_event_ie.py
1
3580
from pycorenlp import StanfordCoreNLP nlp = StanfordCoreNLP('http://localhost:9000') from datetime import datetime,timedelta from collections import defaultdict,Counter from pprint import pprint from tqdm import tqdm import re import pymongo from pymongo import InsertOne, DeleteMany, ReplaceOne, UpdateOne from pymongo.errors import BulkWriteError client = pymongo.MongoClient('localhost:27017') db = client.tweet import pandas as pd def get_ner_dict(word,ner): ner_tuple = zip(word,ner) splits = [0] for index,nt in enumerate(ner_tuple): if index == 0: temp = nt[1] continue if temp != nt[1]: splits.append(index) temp = nt[1] continue else: temp = nt[1] continue ner_dict = defaultdict(list) for index,s in enumerate(splits): nt = ner_tuple[splits[index-1]:s] if len(nt) == 0: continue if nt[0][1] != u'O': ner_dict[nt[0][1]].append(' '.join([i[0] for i in nt])) ner_dict = dict(ner_dict) for k,v in ner_dict.iteritems(): ner_dict[k] = list(set(v)) return ner_dict def get_most_common(items): count = Counter(items) return count.most_common()[0][0] def best_openie(openies): if len(openies) == 0: return {} openie_df = pd.DataFrame.from_dict(openies) object_lsit = openie_df['object'].tolist() object_,lenth = object_lsit[0],len(object_lsit[0]) for i in object_lsit[1:]: if len(i) >= lenth: # get the longest object object_,lenth = i,len(i) return {'subject':get_most_common(openie_df.subject), 'relation':get_most_common(openie_df.relation), 'object':object_} def ie_pipeline(text): output = nlp.annotate(text, properties={ 'annotators': 'truecase,ner,openie',#sentiment 'outputFormat': 'json', }) sentences = output['sentences'] if len(sentences) == 0: return { #'word':{}, #'truecaseText':{}, #'lemma':{}, #'pos':{}, #'ner':{}, 'ner_list':{}, 'openie':{}, #'sentiment':{}, } words = [] #truecaseTexts = [] #lemmas = [] #poss = [] ners = [] openies = [] #sentiments = [] for sentence in sentences: tokens_df = pd.DataFrame.from_dict(sentence['tokens']) words.extend(tokens_df['word'].tolist()) #truecaseTexts.extend(tokens_df['truecaseText'].tolist()) #lemmas.extend(tokens_df['lemma'].tolist()) #poss.extend(tokens_df['pos'].tolist()) ners.extend(tokens_df['ner'].tolist()) for i in sentence['openie']: temp = i.pop('objectSpan') temp = i.pop('relationSpan') temp = i.pop('subjectSpan') openies.extend(sentence['openie']) #sentiments.append((sentence['sentiment'],sentence['sentimentValue'])) ner_dict = get_ner_dict(words,ners) return { #'word':words, #'truecaseText':truecaseTexts, #'lemma':lemmas, #'pos':poss, #'ner':ners, 'ner_dict':ner_dict, 'openie':best_openie(openies), #'sentiment':sentiments, } def batch_ie(texts): ies = [] for text in tqdm(texts): ies.append(ie_pipeline(re.sub('http.+','',text.encode('utf-8')))) return ies def clear_description(des): return re.sub('\([\w ]+\)','',des).strip() if __name__ == '__main__': query = db.current_event.find({'ie':None},{'_id':1,'event.title':1,'event.description':1}) ids = [] texts = [] for i in query: ids.append(i['_id']) texts.append(i['event']['title']+'. '+clear_description(i['event']['description'])) ies = batch_ie(texts) requests = [UpdateOne({'_id': _id,'ie':None}, {'$set': {'ie':ies[index]}}) for index,_id in tqdm(enumerate(ids))] try: result = db.current_event.bulk_write(requests) pprint(result.bulk_api_result) except BulkWriteError as bwe: pprint(bwe.details) client.close()
mit
lucashtnguyen/wqio
wqio/tests/core_tests/features_tests.py
1
49106
import os from nose.tools import * import numpy as np import numpy.testing as nptest from wqio import testing from wqio.testing.testutils import setup_prefix usetex = testing.compare_versions(utility='latex') import matplotlib matplotlib.rcParams['text.usetex'] = usetex import matplotlib.pyplot as plt import seaborn.apionly as seaborn import pandas import pandas.util.testing as pdtest from matplotlib.testing.decorators import image_comparison, cleanup from wqio.core.features import ( Parameter, DrainageArea, Location, Dataset, DataCollection ) from wqio import utils import warnings @nottest def testfilter(data): return data[data['res'] > 5], False class _base_Parameter_Mixin(object): def setup(self): self.known_name = 'Copper' self.known_units = 'ug/L' self.known_pu_nocomma = 'Copper (ug/L)' self.known_pu_comma = 'Copper, ug/L' self.param = Parameter(name=self.known_name, units=self.known_units) def teardown(self): pass def test_name(self): assert_equal(self.known_name, self.param.name) def test_units(self): assert_equal(self.known_units, self.param.units) def test_paramunit_nocomma(self): assert_equal(self.known_pu_nocomma, self.param.paramunit(usecomma=False)) def test_paramunit_comma(self): assert_equal(self.known_pu_comma, self.param.paramunit(usecomma=True)) def teardown(self): plt.close('all') class test_Parameter_simple(_base_Parameter_Mixin): def setup(self): self.known_name = 'Copper' self.known_units = 'ug/L' self.known_pu_nocomma = 'Copper (ug/L)' self.known_pu_comma = 'Copper, ug/L' self.param = Parameter(name=self.known_name, units=self.known_units) class test_Parameter_complex(_base_Parameter_Mixin): #place holder for when TeX/validation/etc gets integrated def setup(self): self.known_name = 'Nitrate & Nitrite' self.known_units = 'mg/L' self.known_pu_nocomma = 'Nitrate & Nitrite (mg/L)' self.known_pu_comma = 'Nitrate & Nitrite, mg/L' self.param = Parameter(name=self.known_name, units=self.known_units) class test_DrainageArea(object): def setup(self): self.total_area = 100.0 self.imp_area = 75.0 self.bmp_area = 10.0 self.da = DrainageArea(self.total_area, self.imp_area, self.bmp_area) self.volume_conversion = 5 self.known_storm_runoff = 82.5 self.known_annual_runoff = 75.25 self.storm_depth = 1.0 self.storm_volume = self.storm_depth * (self.total_area + self.bmp_area) self.annualFactor = 0.9 def test_total_area(self): assert_true(hasattr(self.da, 'total_area')) assert_equal(self.total_area, self.da.total_area) def test_imp_area(self): assert_true(hasattr(self.da, 'imp_area')) assert_equal(self.imp_area, self.da.imp_area) def test_bmp_area(self): assert_true(hasattr(self.da, 'bmp_area')) assert_equal(self.bmp_area, self.da.bmp_area) def test_simple_method_noConversion(self): assert_true(hasattr(self.da, 'simple_method')) runoff = self.da.simple_method(1) nptest.assert_almost_equal(self.known_storm_runoff, runoff, decimal=3) assert_greater(self.storm_volume, runoff) def test_simple_method_Conversion(self): assert_true(hasattr(self.da, 'simple_method')) runoff = self.da.simple_method(1, volume_conversion=self.volume_conversion) nptest.assert_almost_equal(self.known_storm_runoff * self.volume_conversion, runoff, decimal=3) assert_greater(self.storm_volume * self.volume_conversion, runoff) def test_simple_method_annualFactor(self): assert_true(hasattr(self.da, 'simple_method')) runoff = self.da.simple_method(1, annualFactor=self.annualFactor) nptest.assert_almost_equal(self.known_annual_runoff, runoff, decimal=3) assert_greater(self.storm_volume, runoff) def teardown(self): plt.close('all') class _base_LocationMixin(object): @nottest def makePath(self, filename): return os.path.join(self.prefix, filename) @nottest def main_setup(self): # basic test data self.tolerance = 0.05 self.known_bsIter = 1500 self.data = testing.getTestROSData() # Location stuff self.known_station_name = 'Influent' self.known_station_type = 'inflow' self.known_plot_marker = 'o' self.known_scatter_marker = 'v' self.known_color = np.array((0.32157, 0.45271, 0.66667)) self.known_rescol = 'res' self.known_qualcol = 'qual' self.known_all_positive = True self.known_include = True self.known_exclude = False self.known_hasData = True self.known_min_detect = 2.00 self.known_min_DL = 5.00 self.known_filtered_include = False def teardown(self): plt.close('all') def test_bsIter(self): assert_true(hasattr(self.loc, 'bsIter')) assert_equal(self.loc.bsIter, self.known_bsIter) def test_useROS(self): assert_true(hasattr(self.loc, 'useROS')) assert_equal(self.loc.useROS, self.known_useRos) def test_name(self): assert_true(hasattr(self.loc, 'name')) assert_equal(self.loc.name, self.known_station_name) def test_N(self): assert_true(hasattr(self.loc, 'N')) assert_equal(self.loc.N, self.known_N) def test_hasData(self): assert_true(hasattr(self.loc, 'hasData')) assert_equal(self.loc.hasData, self.known_hasData) def test_ND(self): assert_true(hasattr(self.loc, 'ND')) assert_equal(self.loc.ND, self.known_ND) def test_fractionND(self): assert_true(hasattr(self.loc, 'fractionND')) assert_equal(self.loc.fractionND, self.known_fractionND) def test_NUnique(self): assert_true(hasattr(self.loc, 'NUnique')) assert_equal(self.loc.NUnique, self.known_NUnique) def test_analysis_space(self): assert_true(hasattr(self.loc, 'analysis_space')) assert_equal(self.loc.analysis_space, self.known_analysis_space) def test_cov(self): assert_true(hasattr(self.loc, 'cov')) nptest.assert_allclose(self.loc.cov, self.known_cov, rtol=self.tolerance) def test_geomean(self): assert_true(hasattr(self.loc, 'geomean')) nptest.assert_allclose(self.loc.geomean, self.known_geomean, rtol=self.tolerance) def test_geomean_conf_interval(self): assert_true(hasattr(self.loc, 'geomean_conf_interval')) nptest.assert_allclose( self.loc.geomean_conf_interval, self.known_geomean_conf_interval, rtol=self.tolerance ) def test_geostd(self): assert_true(hasattr(self.loc, 'geostd')) nptest.assert_allclose( self.loc.geostd, self.known_geostd, rtol=self.tolerance ) def test_logmean(self): assert_true(hasattr(self.loc, 'logmean')) nptest.assert_allclose( self.loc.logmean, self.known_logmean, rtol=self.tolerance ) def test_logmean_conf_interval(self): assert_true(hasattr(self.loc, 'logmean_conf_interval')) nptest.assert_allclose(self.loc.logmean_conf_interval, self.known_logmean_conf_interval, rtol=self.tolerance) def test_logstd(self): assert_true(hasattr(self.loc, 'logstd')) nptest.assert_allclose(self.loc.logstd, self.known_logstd, rtol=self.tolerance) def test_max(self): assert_true(hasattr(self.loc, 'max')) assert_equal(self.loc.max, self.known_max) def test_mean(self): assert_true(hasattr(self.loc, 'mean')) nptest.assert_allclose(self.loc.mean, self.known_mean, rtol=self.tolerance) def test_mean_conf_interval(self): assert_true(hasattr(self.loc, 'mean_conf_interval')) nptest.assert_allclose(self.loc.mean_conf_interval, self.known_mean_conf_interval, rtol=self.tolerance) def test_median(self): assert_true(hasattr(self.loc, 'median')) nptest.assert_allclose(self.loc.median, self.known_median, rtol=self.tolerance) def test_median_conf_interval(self): assert_true(hasattr(self.loc, 'median_conf_interval')) nptest.assert_allclose(self.loc.median_conf_interval, self.known_median_conf_interval, rtol=self.tolerance*1.5) def test_min(self): assert_true(hasattr(self.loc, 'min')) assert_equal(self.loc.min, self.known_min) def test_min_detect(self): assert_true(hasattr(self.loc, 'min_detect')) assert_equal(self.loc.min_detect, self.known_min_detect) def test_min_DL(self): assert_true(hasattr(self.loc, 'min_DL')) assert_equal(self.loc.min_DL, self.known_min_DL) def test_pctl10(self): assert_true(hasattr(self.loc, 'pctl10')) nptest.assert_allclose(self.loc.pctl10, self.known_pctl10, rtol=self.tolerance) def test_pctl25(self): assert_true(hasattr(self.loc, 'pctl25')) nptest.assert_allclose(self.loc.pctl25, self.known_pctl25, rtol=self.tolerance) def test_pctl75(self): assert_true(hasattr(self.loc, 'pctl75')) nptest.assert_allclose(self.loc.pctl75, self.known_pctl75, rtol=self.tolerance) def test_pctl90(self): assert_true(hasattr(self.loc, 'pctl90')) nptest.assert_allclose(self.loc.pctl90, self.known_pctl90, rtol=self.tolerance) def test_pnorm(self): assert_true(hasattr(self.loc, 'pnorm')) nptest.assert_allclose(self.loc.pnorm, self.known_pnorm, rtol=self.tolerance) def test_plognorm(self): assert_true(hasattr(self.loc, 'plognorm')) nptest.assert_allclose(self.loc.plognorm, self.known_plognorm, rtol=self.tolerance) def test_shapiro(self): assert_true(hasattr(self.loc, 'shapiro')) nptest.assert_allclose(self.loc.shapiro, self.known_shapiro, rtol=self.tolerance) def test_shapiro_log(self): assert_true(hasattr(self.loc, 'shapiro_log')) nptest.assert_allclose(self.loc.shapiro_log, self.known_shapiro_log, rtol=self.tolerance) def test_lilliefors(self): assert_true(hasattr(self.loc, 'lilliefors')) nptest.assert_allclose(self.loc.lilliefors, self.known_lilliefors, rtol=self.tolerance) def test_lilliefors_log(self): assert_true(hasattr(self.loc, 'lilliefors_log')) nptest.assert_allclose(self.loc.lilliefors_log, self.known_lilliefors_log, rtol=self.tolerance) def test_anderson(self): assert_true(hasattr(self.loc, 'anderson')) nptest.assert_almost_equal(self.loc.anderson[0], self.known_anderson[0], decimal=5) nptest.assert_allclose(self.loc.anderson[1], self.known_anderson[1], rtol=self.tolerance) nptest.assert_allclose(self.loc.anderson[2], self.known_anderson[2], rtol=self.tolerance) def test_anderson_log(self): assert_true(hasattr(self.loc, 'anderson')) nptest.assert_almost_equal(self.loc.anderson_log[0], self.known_anderson_log[0], decimal=5) nptest.assert_allclose(self.loc.anderson_log[1], self.known_anderson_log[1], rtol=self.tolerance) nptest.assert_allclose(self.loc.anderson_log[2], self.known_anderson_log[2], rtol=self.tolerance) def test_skew(self): assert_true(hasattr(self.loc, 'skew')) nptest.assert_allclose(self.loc.skew, self.known_skew, rtol=self.tolerance) def test_std(self): assert_true(hasattr(self.loc, 'std')) nptest.assert_allclose(self.loc.std, self.known_std, rtol=self.tolerance) def test_station_name(self): assert_true(hasattr(self.loc, 'station_name')) assert_equal(self.loc.station_name, self.known_station_name) def test_station_type(self): assert_true(hasattr(self.loc, 'station_type')) assert_equal(self.loc.station_type, self.known_station_type) def test_symbology_plot_marker(self): assert_true(hasattr(self.loc, 'plot_marker')) assert_equal(self.loc.plot_marker, self.known_plot_marker) def test_symbology_scatter_marker(self): assert_true(hasattr(self.loc, 'scatter_marker')) assert_equal(self.loc.scatter_marker, self.known_scatter_marker) def test_symbology_color(self): assert_true(hasattr(self.loc, 'color')) nptest.assert_almost_equal( np.array(self.loc.color), self.known_color, decimal=4 ) def test_data(self): assert_true(hasattr(self.loc, 'data')) assert_true(isinstance(self.loc.data, np.ndarray)) def test_full_data(self): assert_true(hasattr(self.loc, 'full_data')) assert_true(isinstance(self.loc.full_data, pandas.DataFrame)) def test_full_data_columns(self): assert_true('res' in self.data.columns) assert_true('qual' in self.data.columns) def test_all_positive(self): assert_true(hasattr(self.loc, 'all_positive')) assert_equal(self.loc.all_positive, self.known_all_positive) def test_include(self): assert_true(hasattr(self.loc, 'include')) assert_equal(self.loc.include, self.known_include) def test_exclude(self): assert_true(hasattr(self.loc, 'exclude')) assert_equal(self.loc.exclude, self.known_exclude) def test_include_setter(self): self.loc.include = not self.known_include assert_equal(self.loc.include, not self.known_include) assert_equal(self.loc.exclude, not self.known_exclude) def test_applyFilter_exists(self): assert_true(hasattr(self.loc, 'applyFilter')) def test_applyFilter_works(self): self.loc.applyFilter(testfilter) assert_tuple_equal(self.loc.filtered_data.shape, self.known_filtered_shape) assert_tuple_equal(self.loc.full_data.shape, self.known_filtered_shape) assert_tuple_equal(self.loc.data.shape, self.known_filtered_data_shape) assert_equal(self.loc.include, self.known_filtered_include) @raises(ValueError) def test_applyFilter_badDataOutput(self): def badTestFilter(data): return 4, False self.loc.applyFilter(badTestFilter) @raises(ValueError) def test_applyFilter_badIncludeOutput(self): def badTestFilter(data): df = pandas.Series(np.random.normal(size=37)) return df, 'JUNK' self.loc.applyFilter(badTestFilter) class test_Location_ROS(_base_LocationMixin): def setup(self): self.main_setup() self.loc = Location(self.data, station_type='inflow', bsIter=self.known_bsIter, rescol='res', qualcol='qual', useROS=True) # known statistics self.known_N = 35 self.known_ND = 7 self.known_fractionND = 0.2 self.known_NUnique = 31 self.known_analysis_space = 'lognormal' self.known_cov = 0.597430584141 self.known_geomean = 8.08166947637 self.known_geomean_conf_interval = [6.63043647, 9.79058872] self.known_geostd = 1.79152565521 self.known_logmean = 2.08959846955 self.known_logmean_conf_interval = [1.89167063, 2.28142159] self.known_logstd = 0.583067578178 self.known_max = 22.97 self.known_mean = 9.59372041292 self.known_mean_conf_interval = [7.75516047, 11.45197482] self.known_median = 7.73851689962 self.known_median_conf_interval = [5.66, 8.71] self.known_min = 2.0 self.known_pctl10 = 4.04355908285 self.known_pctl25 = 5.615 self.known_pctl75 = 11.725 self.known_pctl90 = 19.178 self.known_pnorm = 0.00179254170507 self.known_plognorm = 0.521462738514 self.known_shapiro = [ 0.886889, 0.001789] self.known_shapiro_log = [ 0.972679, 0.520949] self.known_lilliefors = [ 0.18518 , 0.003756] self.known_lilliefors_log = [ 0.091855, 0.635536] self.known_anderson = (1.543888, [ 0.527, 0.6 , 0.719, 0.839, 0.998], [ 15. , 10. , 5. , 2.5, 1. ]) self.known_anderson_log = (0.30409633964188032, [ 0.527, 0.6 , 0.719, 0.839, 0.998], [ 15. , 10. , 5. , 2.5, 1. ]) self.known_skew = 0.869052892573 self.known_std = 5.52730949374 self.known_useRos = True self.known_all_positive = True self.known_filtered_shape = (27,2) self.known_filtered_data_shape = (27,) class test_Location_noROS(_base_LocationMixin): def setup(self): self.main_setup() # set useROS to True, then turn it off later to make sure that everything # propogated correctly self.loc = Location(self.data, station_type='inflow', bsIter=self.known_bsIter, rescol='res', qualcol='qual', useROS=True) # turn ROS off self.loc.useROS = False # known statistics self.known_N = 35 self.known_ND = 7 self.known_fractionND = 0.2 self.known_NUnique = 30 self.known_analysis_space = 'lognormal' self.known_cov = 0.534715517405 self.known_geomean = 8.82772846655 self.known_geomean_conf_interval = [7.37541563, 10.5446939] self.known_geostd = 1.68975502971 self.known_logmean = 2.17789772971 self.known_logmean_conf_interval = [1.99815226, 2.35562279] self.known_logstd = 0.524583565596 self.known_max = 22.97 self.known_mean = 10.1399679143 self.known_mean_conf_interval = [8.3905866, 11.96703843] self.known_median = 8.671859 self.known_median_conf_interval1 = [6.65, 9.85] self.known_median_conf_interval2 = [6.65, 10.82] self.known_min = 2.0 self.known_pctl10 = 5.0 self.known_pctl25 = 5.805 self.known_pctl75 = 11.725 self.known_pctl90 = 19.178 self.known_pnorm = 0.00323620648123 self.known_plognorm = 0.306435495615 self.known_shapiro = [ 0.896744, 0.003236] self.known_shapiro_log = [ 0.964298, 0.306435] self.known_lilliefors = [ 0.160353, 0.023078] self.known_lilliefors_log = [ 0.08148, 0.84545] self.known_anderson = (1.4392085, [ 0.527, 0.6 , 0.719, 0.839, 0.998], [ 15. , 10. , 5. , 2.5, 1. ]) self.known_anderson_log = (0.3684061, [ 0.527, 0.6 , 0.719, 0.839, 0.998], [ 15. , 10. , 5. , 2.5, 1. ]) self.known_skew = 0.853756570358 self.known_std = 5.24122841148 self.known_useRos = False self.known_filtered_shape = (30,2) self.known_filtered_data_shape = (30,) def test_median_conf_interval(self): assert_true(hasattr(self.loc, 'median_conf_interval')) try: nptest.assert_allclose(self.loc.median_conf_interval, self.known_median_conf_interval1, rtol=self.tolerance) except AssertionError: nptest.assert_allclose(self.loc.median_conf_interval, self.known_median_conf_interval2, rtol=self.tolerance) @nottest def setup_location(station_type): data = testing.getTestROSData() np.random.seed(0) loc = Location(data, station_type=station_type, bsIter=10000, rescol='res', qualcol='qual', useROS=True) plt.rcdefaults() return loc @image_comparison(baseline_images=[ 'test_loc_boxplot_default', 'test_loc_boxplot_patch_artists', 'test_loc_boxplot_linscale', 'test_loc_boxplot_no_mean', 'test_loc_boxplot_width', 'test_loc_boxplot_no_notch', 'test_loc_boxplot_bacteria_geomean', 'test_loc_boxplot_with_ylabel', 'test_loc_boxplot_fallback_to_vert_scatter', 'test_loc_boxplot_provided_ax', 'test_loc_boxplot_custom_position' ], extensions=['png']) def test_location_boxplot(): xlims = {'left': 0, 'right': 2} loc = setup_location('inflow') loc.color = 'cornflowerblue' loc.plot_marker = 'o' fig1 = loc.boxplot() fig2 = loc.boxplot(patch_artist=True, xlims=xlims) fig3 = loc.boxplot(yscale='linear', xlims=xlims) loc.color = 'firebrick' loc.plot_marker = 'd' fig4 = loc.boxplot(showmean=False, xlims=xlims) fig5 = loc.boxplot(width=1.25, xlims=xlims) fig6 = loc.boxplot(notch=False, xlims=xlims) loc.color = 'forestgreen' loc.plot_marker = 's' fig7 = loc.boxplot(bacteria=True, xlims=xlims) fig8 = loc.boxplot(ylabel='Test Ylabel', xlims=xlims) fig9 = loc.boxplot(minpoints=np.inf, xlims=xlims) fig10, ax10 = plt.subplots() fig10 = loc.boxplot(ax=ax10, xlims=xlims) assert_true(isinstance(fig10, plt.Figure)) assert_raises(ValueError, loc.boxplot, ax='junk') fig11 = loc.boxplot(pos=1.5, xlims=xlims) @image_comparison(baseline_images=[ 'test_loc_probplot_default', 'test_loc_probplot_provided_ax', 'test_loc_probplot_yscale_linear', 'test_loc_probplot_ppax', 'test_loc_probplot_qqax', 'test_loc_probplot_ylabel', 'test_loc_probplot_clear_yticks', 'test_loc_probplot_no_managegrid', 'test_loc_probplot_no_rotate_xticklabels', 'test_loc_probplot_no_set_xlims', 'test_loc_probplot_plotopts1', 'test_loc_probplot_plotopts2', ], extensions=['png']) def test_location_probplot(): loc = setup_location('inflow') loc.color = 'cornflowerblue' loc.plot_marker = 'o' fig1 = loc.probplot() fig2, ax2 = plt.subplots() fig2 = loc.probplot(ax=ax2) assert_true(isinstance(fig2, plt.Figure)) assert_raises(ValueError, loc.probplot, ax='junk') fig3 = loc.probplot(yscale='linear') fig4 = loc.probplot(axtype='pp') fig5 = loc.probplot(axtype='qq') loc.color = 'firebrick' loc.plot_marker = 'd' fig6 = loc.probplot(ylabel='test ylabel') fig7 = loc.probplot(clearYLabels=True) fig8 = loc.probplot(managegrid=False) loc.color = 'forestgreen' loc.plot_marker = 'd' fig10 = loc.probplot(rotateticklabels=False) fig11 = loc.probplot(setxlimits=False) fig12 = loc.probplot(markersize=10, linestyle='--', color='blue', markerfacecolor='none', markeredgecolor='green') fig13 = loc.probplot(markeredgewidth=2, markerfacecolor='none', markeredgecolor='green') @image_comparison(baseline_images=[ 'test_loc_statplot_custom_position', 'test_loc_statplot_yscale_linear', 'test_loc_statplot_no_notch', 'test_loc_statplot_no_mean', 'test_loc_statplot_custom_width', 'test_loc_statplot_bacteria_true', 'test_loc_statplot_ylabeled', 'test_loc_statplot_qq', 'test_loc_statplot_pp', 'test_loc_statplot_patch_artist', ], extensions=['png']) def test_location_statplot(): loc = setup_location('inflow') loc.color = 'cornflowerblue' loc.plot_marker = 'o' fig1 = loc.statplot(pos=1.25) fig2 = loc.statplot(yscale='linear') fig3 = loc.statplot(notch=False) loc.color = 'firebrick' loc.plot_marker = 'd' fig4 = loc.statplot(showmean=False) fig5 = loc.statplot(width=1.5) fig6 = loc.statplot(bacteria=True) fig7 = loc.statplot(ylabel='Test Y-Label') loc.color = 'forestgreen' loc.plot_marker = 's' fig8 = loc.statplot(axtype='qq') fig9 = loc.statplot(axtype='pp') fig10 = loc.statplot(patch_artist=True) assert_true(fig10, plt.Figure) @image_comparison(baseline_images=[ 'test_loc_vertical_scatter_default', 'test_loc_vertical_scatter_provided_ax', 'test_loc_vertical_scatter_pos', 'test_loc_vertical_scatter_nojitter', 'test_loc_vertical_scatter_alpha', 'test_loc_vertical_scatter_ylabel', 'test_loc_vertical_scatter_yscale_linear', 'test_loc_vertical_scatter_not_ignoreROS', 'test_loc_vertical_scatter_markersize', ], extensions=['png']) def test_location_verticalScatter(): xlims = {'left': 0, 'right': 2} loc = setup_location('inflow') loc.color = 'cornflowerblue' loc.plot_marker = 'o' fig1 = loc.verticalScatter() fig2, ax2 = plt.subplots() fig2 = loc.verticalScatter(ax=ax2, xlims=xlims) assert_true(isinstance(fig2, plt.Figure)) assert_raises(ValueError, loc.verticalScatter, ax='junk', xlims=xlims) fig3 = loc.verticalScatter(pos=1.25, xlims=xlims) fig4 = loc.verticalScatter(jitter=0.0, xlims=xlims) fig5 = loc.verticalScatter(alpha=0.25, xlims=xlims) loc.color = 'firebrick' loc.plot_marker = 's' loc.verticalScatter(ylabel='Test Y-Label', xlims=xlims) loc.verticalScatter(yscale='linear', xlims=xlims) loc.verticalScatter(ignoreROS=False, xlims=xlims) loc.verticalScatter(markersize=8, xlims=xlims) class test_Dataset(object): def setup(self): self.maxDiff = None # basic test data self.tolerance = 0.05 self.known_bsIter = 750 in_data = testing.getTestROSData() in_data['res'] += 3 out_data = testing.getTestROSData() out_data['res'] -= 1.5 self.influent = Location(in_data, station_type='inflow', bsIter=self.known_bsIter, rescol='res', qualcol='qual', useROS=False) self.effluent = Location(out_data, station_type='outflow', bsIter=self.known_bsIter, rescol='res', qualcol='qual', useROS=False) self.ds = Dataset(self.influent, self.effluent) self.fig, self.ax = plt.subplots() self.known_dumpFile = None self.known_kendall_stats = (1.000000e+00, 2.916727e-17) self.known_kendall_tau = self.known_kendall_stats[0] self.known_kendall_p = self.known_kendall_stats[1] self.known_mannwhitney_stats = (2.980000e+02, 1.125761e-04) self.known_mannwhitney_u = self.known_mannwhitney_stats[0] self.known_mannwhitney_p = self.known_mannwhitney_stats[1] * 2 self.known_spearman_stats = (1.0, 0.0) self.known_spearman_rho = self.known_spearman_stats[0] self.known_spearman_p = self.known_spearman_stats[1] self.known_theil_stats = (1.0, -4.5, 1.0, 1.0) self.known_theil_hislope = self.known_theil_stats[0] self.known_theil_intercept = self.known_theil_stats[1] self.known_theil_loslope = self.known_theil_stats[2] self.known_theil_medslope = self.known_theil_stats[3] self.known_wilcoxon_stats = (0.0, 2.4690274207037342e-07) self.known_wilcoxon_z = self.known_wilcoxon_stats[0] self.known_wilcoxon_p = self.known_wilcoxon_stats[1] self.known__non_paired_stats = True self.known__paired_stats = True self.known_definition = {'attr1': 'test1', 'attr2': 'test2'} self.known_include = True self.known_exclude = not self.known_include self.known_medianCIsOverlap = False def teardown(self): self.ax.cla() self.fig.clf() plt.close('all') @nottest def makePath(self, filename): return os.path.join(self.prefix, filename) def test_data(self): assert_true(hasattr(self.ds, 'data')) assert_true(isinstance(self.ds.data, pandas.DataFrame)) def test_paired_data(self): assert_true(hasattr(self.ds, 'paired_data')) assert_true(isinstance(self.ds.paired_data, pandas.DataFrame)) def test__non_paired_stats(self): assert_true(hasattr(self.ds, '_non_paired_stats')) assert_equal(self.ds._non_paired_stats, self.known__non_paired_stats) def test__paired_stats(self): assert_true(hasattr(self.ds, '_paired_stats')) assert_equal(self.ds._paired_stats, self.known__paired_stats) def test_name(self): assert_true(hasattr(self.ds, 'name')) assert_true(self.ds.name is None) def test_name_set(self): assert_true(hasattr(self.ds, 'name')) testname = 'Test Name' self.ds.name = testname assert_equal(self.ds.name, testname) def test_defintion_default(self): assert_true(hasattr(self.ds, 'definition')) assert_dict_equal(self.ds.definition, {}) def test_defintion_set(self): assert_true(hasattr(self.ds, 'definition')) self.ds.definition = self.known_definition assert_dict_equal(self.ds.definition, self.known_definition) def test_include(self): assert_true(hasattr(self.ds, 'include')) assert_equal(self.ds.include, self.known_include) def test_exclude(self): assert_true(hasattr(self.ds, 'exclude')) assert_equal(self.ds.exclude, self.known_exclude) def test_wilcoxon_z(self): assert_true(hasattr(self.ds, 'wilcoxon_z')) nptest.assert_allclose(self.ds.wilcoxon_z, self.known_wilcoxon_z, rtol=self.tolerance) def test_wilcoxon_p(self): assert_true(hasattr(self.ds, 'wilcoxon_p')) nptest.assert_allclose(self.ds.wilcoxon_p, self.known_wilcoxon_p, rtol=self.tolerance) def test_mannwhitney_u(self): assert_true(hasattr(self.ds, 'mannwhitney_u')) nptest.assert_allclose(self.ds.mannwhitney_u, self.known_mannwhitney_u, rtol=self.tolerance) def test_mannwhitney_p(self): assert_true(hasattr(self.ds, 'mannwhitney_p')) nptest.assert_allclose(self.ds.mannwhitney_p, self.known_mannwhitney_p, rtol=self.tolerance) def test_kendall_tau(self): assert_true(hasattr(self.ds, 'kendall_tau')) nptest.assert_allclose(self.ds.kendall_tau, self.known_kendall_tau, rtol=self.tolerance) def test_kendall_p(self): assert_true(hasattr(self.ds, 'kendall_p')) nptest.assert_allclose(self.ds.kendall_p, self.known_kendall_p, rtol=self.tolerance) def test_spearman_rho(self): assert_true(hasattr(self.ds, 'spearman_rho')) nptest.assert_allclose(self.ds.spearman_rho, self.known_spearman_rho, rtol=self.tolerance) def test_spearman_p(self): assert_true(hasattr(self.ds, 'spearman_p')) nptest.assert_allclose(self.ds.spearman_p, self.known_spearman_p, rtol=self.tolerance) def test_theil_medslope(self): assert_true(hasattr(self.ds, 'theil_medslope')) nptest.assert_allclose(self.ds.theil_medslope, self.known_theil_medslope, rtol=self.tolerance) def test_theil_intercept(self): assert_true(hasattr(self.ds, 'theil_intercept')) nptest.assert_allclose(self.ds.theil_intercept, self.known_theil_intercept, rtol=self.tolerance) def test_theil_loslope(self): assert_true(hasattr(self.ds, 'theil_loslope')) nptest.assert_allclose(self.ds.theil_loslope, self.known_theil_loslope, rtol=self.tolerance) def test_theil_hilope(self): assert_true(hasattr(self.ds, 'theil_hislope')) nptest.assert_allclose(self.ds.theil_hislope, self.known_theil_hislope, rtol=self.tolerance) def test_wilcoxon_stats(self): assert_true(hasattr(self.ds, '_wilcoxon_stats')) nptest.assert_allclose(self.ds._wilcoxon_stats, self.known_wilcoxon_stats, rtol=self.tolerance) def test_mannwhitney_stats(self): assert_true(hasattr(self.ds, '_mannwhitney_stats')) nptest.assert_allclose(self.ds._mannwhitney_stats, self.known_mannwhitney_stats, rtol=self.tolerance) def test_kendall_stats(self): assert_true(hasattr(self.ds, '_kendall_stats')) nptest.assert_allclose(self.ds._kendall_stats, self.known_kendall_stats, rtol=self.tolerance) def test_spearman_stats(self): assert_true(hasattr(self.ds, '_spearman_stats')) nptest.assert_allclose(self.ds._spearman_stats, self.known_spearman_stats, rtol=self.tolerance) def test_theil_stats(self): assert_true(hasattr(self.ds, '_theil_stats')) nptest.assert_almost_equal(self.ds._theil_stats['medslope'], self.known_theil_stats[0], decimal=4) nptest.assert_almost_equal(self.ds._theil_stats['intercept'], self.known_theil_stats[1], decimal=4) nptest.assert_almost_equal(self.ds._theil_stats['loslope'], self.known_theil_stats[2], decimal=4) nptest.assert_almost_equal(self.ds._theil_stats['hislope'], self.known_theil_stats[3], decimal=4) assert_true(not self.ds._theil_stats['is_inverted']) assert_true('estimated_effluent' in list(self.ds._theil_stats.keys())) assert_true('estimate_error' in list(self.ds._theil_stats.keys())) def test_theil_effluent_ties(self): cache_theil_stats = self.ds._theil_stats self.ds.useROS = True self.ds.effluent.useROS = False # restores ties in the effl data assert_true(self.ds._theil_stats['is_inverted']) def test_medianCIsOverlap(self): assert_equal(self.known_medianCIsOverlap, self.ds.medianCIsOverlap) def test__repr__normal(self): self.ds.__repr__ def test_repr__None(self): self.ds.definition = None self.ds.__repr__ def test_reset_useROS(self): #warnings.simplefilter("error") self.ds.useROS = True infl_ros_mean = self.ds.influent.mean effl_ros_mean = self.ds.effluent.mean self.ds.useROS = False infl_raw_mean = self.ds.influent.mean effl_raw_mean = self.ds.effluent.mean assert_true(infl_ros_mean != infl_raw_mean) assert_true(effl_ros_mean != effl_raw_mean) @nottest def setup_dataset(extra_NDs=False): np.random.seed(0) in_data = testing.getTestROSData() in_data['res'] += 3 out_data = testing.getTestROSData() out_data['res'] -= 1.5 if extra_NDs: in_data.loc[[0, 1, 2], 'qual'] = 'ND' out_data.loc[[14, 15, 16], 'qual'] = 'ND' influent = Location(in_data, station_type='inflow', bsIter=10000, rescol='res', qualcol='qual', useROS=False) effluent = Location(out_data, station_type='outflow', bsIter=10000, rescol='res', qualcol='qual', useROS=False) ds = Dataset(influent, effluent, name='Test Dataset') plt.rcdefaults() return ds @image_comparison(baseline_images=[ 'test_ds_boxplot_default', 'test_ds_boxplot_patch_artists', 'test_ds_boxplot_linscale', 'test_ds_boxplot_no_mean', 'test_ds_boxplot_width', 'test_ds_boxplot_no_notch', 'test_ds_boxplot_bacteria_geomean', 'test_ds_boxplot_with_ylabel', 'test_ds_boxplot_fallback_to_vert_scatter', 'test_ds_boxplot_provided_ax', 'test_ds_boxplot_custom_position', 'test_ds_boxplot_custom_offset', 'test_ds_boxplot_single_tick', 'test_ds_boxplot_single_tick_no_name', ], extensions=['png']) def test_dataset_boxplot(): xlims = {'left': 0, 'right': 2} ds = setup_dataset() fig1 = ds.boxplot() fig2 = ds.boxplot(patch_artist=True, xlims=xlims) fig3 = ds.boxplot(yscale='linear', xlims=xlims) fig4 = ds.boxplot(showmean=False, xlims=xlims) fig5 = ds.boxplot(width=1.25, xlims=xlims) fig6 = ds.boxplot(notch=False, xlims=xlims) fig7 = ds.boxplot(bacteria=True, xlims=xlims) fig8 = ds.boxplot(ylabel='Test Ylabel', xlims=xlims) fig9 = ds.boxplot(minpoints=np.inf, xlims=xlims) fig10, ax10 = plt.subplots() fig10 = ds.boxplot(ax=ax10, xlims=xlims) assert_true(isinstance(fig10, plt.Figure)) assert_raises(ValueError, ds.boxplot, ax='junk') fig11 = ds.boxplot(pos=1.5, xlims=xlims) fig12 = ds.boxplot(offset=0.75, xlims=xlims) fig13 = ds.boxplot(bothTicks=False, xlims=xlims) ds.name = None fig14 = ds.boxplot(bothTicks=False, xlims=xlims) @image_comparison(baseline_images=[ 'test_ds_probplot_default', 'test_ds_probplot_provided_ax', 'test_ds_probplot_yscale_linear', 'test_ds_probplot_ppax', 'test_ds_probplot_qqax', 'test_ds_probplot_ylabel', 'test_ds_probplot_clear_yticks', 'test_ds_probplot_no_managegrid', 'test_ds_probplot_no_rotate_xticklabels', 'test_ds_probplot_no_set_xlims', ], extensions=['png']) def test_dataset_probplot(): ds = setup_dataset() fig1 = ds.probplot() fig2, ax2 = plt.subplots() fig2 = ds.probplot(ax=ax2) assert_true(isinstance(fig2, plt.Figure)) assert_raises(ValueError, ds.probplot, ax='junk') fig3 = ds.probplot(yscale='linear') fig4 = ds.probplot(axtype='pp') fig5 = ds.probplot(axtype='qq') fig6 = ds.probplot(ylabel='test ylabel') fig7 = ds.probplot(clearYLabels=True) fig8 = ds.probplot(managegrid=False) fig10 = ds.probplot(rotateticklabels=False) fig11 = ds.probplot(setxlimits=False) @image_comparison(baseline_images=[ 'test_ds_statplot_custom_position', 'test_ds_statplot_yscale_linear', 'test_ds_statplot_no_notch', 'test_ds_statplot_no_mean', 'test_ds_statplot_custom_width', 'test_ds_statplot_bacteria_true', 'test_ds_statplot_ylabeled', 'test_ds_statplot_qq', 'test_ds_statplot_pp', 'test_ds_statplot_patch_artist', ], extensions=['png']) def test_dataset_statplot(): ds = setup_dataset() fig1 = ds.statplot(pos=1.25) fig2 = ds.statplot(yscale='linear') fig3 = ds.statplot(notch=False) fig4 = ds.statplot(showmean=False) fig5 = ds.statplot(width=1.5) fig6 = ds.statplot(bacteria=True) fig7 = ds.statplot(ylabel='Test Y-Label') fig8 = ds.statplot(axtype='qq') fig9 = ds.statplot(axtype='pp') fig10 = ds.statplot(patch_artist=True) assert_true(fig10, plt.Figure) @image_comparison(baseline_images=[ 'test_ds_scatterplot_default', 'test_ds_scatterplot_provided_ax', 'test_ds_scatterplot_xscale_linear', 'test_ds_scatterplot_xyscale_linear', 'test_ds_scatterplot_yscale_linear', 'test_ds_scatterplot_xlabel', 'test_ds_scatterplot_ylabel', 'test_ds_scatterplot_no_xlabel', 'test_ds_scatterplot_no_ylabel', 'test_ds_scatterplot_no_legend', 'test_ds_scatterplot_one2one', 'test_ds_scatterplot_useROS', ], extensions=['png']) def test_dataset_scatterplot(): ds = setup_dataset(extra_NDs=True) fig1 = ds.scatterplot() fig2, ax2 = plt.subplots() fig2 = ds.scatterplot(ax=ax2) assert_true(isinstance(fig2, plt.Figure)) assert_raises(ValueError, ds.scatterplot, ax='junk') fig3 = ds.scatterplot(xscale='linear') fig5 = ds.scatterplot(xscale='linear', yscale='linear') fig4 = ds.scatterplot(yscale='linear') fig6 = ds.scatterplot(xlabel='X-label') fig7 = ds.scatterplot(ylabel='Y-label') fig8 = ds.scatterplot(xlabel='') fig9 = ds.scatterplot(ylabel='') fig10 = ds.scatterplot(showlegend=False) fig10 = ds.scatterplot(one2one=True) fig11 = ds.scatterplot(useROS=True) @image_comparison(baseline_images=[ 'test_ds__plot_NDs_both', 'test_ds__plot_NDs_effluent', 'test_ds__plot_NDs_influent', 'test_ds__plot_NDs_neither', ], extensions=['png']) def test_dataset__plot_NDs(): ds = setup_dataset(extra_NDs=True) markerkwargs = dict( linestyle='none', markerfacecolor='black', markeredgecolor='white', markeredgewidth=0.5, markersize=6, zorder=10, ) fig1, ax1 = plt.subplots() ds._plot_nds(ax1, which='both', marker='d', **markerkwargs) fig2, ax2 = plt.subplots() ds._plot_nds(ax2, which='effluent', marker='<', **markerkwargs) fig3, ax3 = plt.subplots() ds._plot_nds(ax3, which='influent', marker='v', **markerkwargs) fig4, ax4 = plt.subplots() ds._plot_nds(ax4, which='neither', marker='o', **markerkwargs) @image_comparison(baseline_images=[ 'test_ds_joint_hist', 'test_ds_joint_kde', 'test_ds_joint_rug', 'test_ds_joint_kde_rug_hist', ], extensions=['png']) def test_dataset_jointplot(): ds = setup_dataset(extra_NDs=True) def do_jointplots(ds, hist=False, kde=False, rug=False): jg = ds.jointplot(hist=hist, kde=kde, rug=rug) assert_true(isinstance(jg, seaborn.JointGrid)) return jg.fig fig1 = do_jointplots(ds, hist=True) fig2 = do_jointplots(ds, kde=True) fig3 = do_jointplots(ds, rug=True) fig4 = do_jointplots(ds, hist=True, kde=True, rug=True) @nottest def make_dc_data(): np.random.seed(0) dl_map = { 'A': 0.1, 'B': 0.2, 'C': 0.3, 'D': 0.4, 'E': 0.1, 'F': 0.2, 'G': 0.3, 'H': 0.4, } index = pandas.MultiIndex.from_product([ list('ABCDEFGH'), list('1234567'), ['GA', 'AL', 'OR', 'CA'], ['Inflow', 'Outflow', 'Reference'] ], names=['param', 'bmp', 'state', 'loc']) array = np.random.lognormal(mean=0.75, sigma=1.25, size=len(index)) data = pandas.DataFrame(data=array, index=index, columns=['res']) data['DL'] = data.apply( lambda r: dl_map.get(r.name[0]), axis=1 ) data['res'] = data.apply( lambda r: dl_map.get(r.name[0]) if r['res'] < r['DL'] else r['res'], axis=1 ) data['qual'] = data.apply( lambda r: 'ND' if r['res'] <= r['DL'] else '=', axis=1 ) return data class _base_DataCollecionMixin(object): @nottest def _base_setup(self): self.known_raw_rescol = 'res' self.known_roscol = 'ros_res' self.known_qualcol = 'qual' self.known_stationcol = 'loc' self.known_paramcol = 'param' self.known_ndval = 'ND' def teardown(self): plt.close('all') def test__raw_rescol(self): assert_equal(self.dc._raw_rescol, self.known_raw_rescol) def test_data(self): assert_true(isinstance(self.dc.data, pandas.DataFrame)) def test_roscol(self): assert_equal(self.dc.roscol, self.known_roscol) def test_rescol(self): assert_equal(self.dc.rescol, self.known_rescol) def test_qualcol(self): assert_equal(self.dc.qualcol, self.known_qualcol) def test_stationncol(self): assert_equal(self.dc.stationcol, self.known_stationcol) def test_paramcol(self): assert_equal(self.dc.paramcol, self.known_paramcol) def test_ndval(self): assert_equal(self.dc.ndval, self.known_ndval) def test_bsIter(self): assert_equal(self.dc.bsIter, self.known_bsIter) def test_groupby(self): assert_equal(self.dc.groupby, self.known_groupby) def test_columns(self): assert_equal(self.dc.columns, self.known_columns) def test_filterfxn(self): assert_true(hasattr(self.dc, 'filterfxn')) def test_tidy_exists(self): assert_true(hasattr(self.dc, 'tidy')) def test_tidy_type(self): assert_true(isinstance(self.dc.tidy, pandas.DataFrame)) def test_tidy_cols(self): tidycols = self.dc.tidy.columns.tolist() knowncols = self.known_columns + [self.known_roscol] assert_list_equal(sorted(tidycols), sorted(knowncols)) def test_means(self): np.random.seed(0) pdtest.assert_frame_equal( np.round(self.dc.means, 3), self.known_means, check_names=False ) def test_medians(self): np.random.seed(0) pdtest.assert_frame_equal( np.round(self.dc.medians, 3), self.known_medians, check_names=False ) def test__generic_stat(self): np.random.seed(0) pdtest.assert_frame_equal( np.round(self.dc._generic_stat(np.min), 3), self.known_genericstat, check_names=False ) class test_DataCollection_baseline(_base_DataCollecionMixin): def setup(self): self._base_setup() self.dc = DataCollection(make_dc_data(), paramcol='param', stationcol='loc') self.known_rescol = 'ros_res' self.known_groupby = ['loc', 'param'] self.known_columns = ['loc', 'param', 'res', 'qual'] self.known_bsIter = 10000 self.known_means = pandas.DataFrame({ ('Reference', 'upper'): { 'A': 3.859, 'D': 5.586, 'F': 9.406, 'C': 6.346, 'B': 7.387, 'E': 4.041, 'G': 5.619, 'H': 3.402 }, ('Inflow', 'upper'): { 'A': 9.445, 'D': 7.251, 'F': 8.420, 'C': 6.157, 'B': 10.362, 'E': 5.542, 'G': 5.581, 'H': 4.687 }, ('Inflow', 'lower'): { 'A': 2.781, 'D': 1.798, 'F': 2.555, 'C': 1.665, 'B': 3.946, 'E': 2.427, 'G': 2.266, 'H': 1.916 }, ('Reference', 'lower'): { 'A': 1.403, 'D': 2.203, 'F': 1.486, 'C': 1.845, 'B': 2.577, 'E': 1.240, 'G': 1.829, 'H': 1.710 }, ('Outflow', 'stat'): { 'A': 4.804, 'D': 4.457, 'F': 3.503, 'C': 3.326, 'B': 6.284, 'E': 4.023, 'G': 2.759, 'H': 2.629 }, ('Outflow', 'lower'): { 'A': 2.715, 'D': 1.877, 'F': 2.479, 'C': 2.347, 'B': 3.610, 'E': 2.479, 'G': 1.644, 'H': 1.572 }, ('Reference', 'stat'): { 'A': 2.550, 'D': 3.829, 'F': 4.995, 'C': 3.882, 'B': 4.917, 'E': 2.605, 'G': 3.653, 'H': 2.515 }, ('Inflow', 'stat'): { 'A': 5.889, 'D': 4.216, 'F': 5.405, 'C': 3.668, 'B': 6.944, 'E': 3.872, 'G': 3.912, 'H': 3.248 }, ('Outflow', 'upper'): { 'A': 7.080, 'D': 7.425, 'F': 4.599, 'C': 4.318, 'B': 9.160, 'E': 5.606, 'G': 3.880, 'H': 3.824 } }) self.known_medians = pandas.DataFrame({ ('Reference', 'upper'): { 'A': 2.051, 'D': 3.719, 'F': 2.131, 'C': 2.893, 'B': 4.418, 'E': 1.883, 'G': 2.513, 'H': 2.846 }, ('Inflow', 'upper'): { 'A': 3.485, 'D': 2.915, 'F': 4.345, 'C': 2.012, 'B': 6.327, 'E': 4.113, 'G': 3.841, 'H': 2.829 }, ('Inflow', 'lower'): { 'A': 1.329, 'D': 0.766, 'F': 1.178, 'C': 0.924, 'B': 1.691, 'E': 1.302, 'G': 0.735, 'H': 1.305 }, ('Reference', 'lower'): { 'A': 0.691, 'D': 1.190, 'F': 0.752, 'C': 0.938, 'B': 0.833, 'E': 0.612, 'G': 1.137, 'H': 0.976 }, ('Outflow', 'stat'): { 'A': 2.515, 'D': 1.627, 'F': 2.525, 'C': 2.860, 'B': 2.871, 'E': 2.364, 'G': 1.525, 'H': 1.618 }, ('Outflow', 'lower'): { 'A': 1.234, 'D': 0.877, 'F': 1.500, 'C': 1.272, 'B': 0.889, 'E': 1.317, 'G': 0.817, 'H': 0.662 }, ('Reference', 'stat'): { 'A': 1.313, 'D': 2.314, 'F': 1.564, 'C': 1.856, 'B': 2.298, 'E': 1.243, 'G': 1.987, 'H': 2.003 }, ('Inflow', 'stat'): { 'A': 2.712, 'D': 1.934, 'F': 2.671, 'C': 1.439, 'B': 3.848, 'E': 2.789, 'G': 2.162, 'H': 1.849 }, ('Outflow', 'upper'): { 'A': 3.554, 'D': 1.930, 'F': 4.227, 'C': 3.736, 'B': 5.167, 'E': 3.512, 'G': 2.421, 'H': 2.387 } }) self.known_genericstat = pandas.DataFrame({ ('Inflow', 'stat'): { 'H': 0.2100, 'A': 0.1780, 'B': 0.4330, 'C': 0.1160, 'D': 0.1070, 'E': 0.2360, 'F': 0.1570, 'G': 0.0960 }, ('Outflow', 'lower'): { 'H': 0.1280, 'A': 0.3440, 'B': 0.4090, 'C': 0.2190, 'D': 0.1180, 'E': 0.1260, 'F': 0.3000, 'G': 0.1240 }, ('Inflow', 'lower'): { 'H': 0.2100, 'A': 0.1780, 'B': 0.4330, 'C': 0.1160, 'D': 0.1070, 'E': 0.2360, 'F': 0.1570, 'G': 0.0960 }, ('Reference', 'upper'): { 'H': 0.4620, 'A': 0.4840, 'B': 0.4580, 'C': 0.3570, 'D': 0.5630, 'E': 0.2970, 'F': 0.3600, 'G': 0.4000 }, ('Reference', 'lower'): { 'H': 0.2210, 'A': 0.1190, 'B': 0.3070, 'C': 0.1350, 'D': 0.2090, 'E': 0.2110, 'F': 0.0990, 'G': 0.1890 }, ('Reference', 'stat'): { 'H': 0.2210, 'A': 0.1190, 'B': 0.3070, 'C': 0.1350, 'D': 0.2090, 'E': 0.2110, 'F': 0.0990, 'G': 0.1890 }, ('Inflow', 'upper'): { 'H': 0.6600, 'A': 0.2760, 'B': 1.2250, 'C': 0.4990, 'D': 0.4130, 'E': 0.3510, 'F': 0.5930, 'G': 0.2790 }, ('Outflow', 'stat'): { 'H': 0.1280, 'A': 0.3440, 'B': 0.4090, 'C': 0.2190, 'D': 0.1180, 'E': 0.1260, 'F': 0.3000, 'G': 0.1240 }, ('Outflow', 'upper'): { 'H': 0.3150, 'A': 0.5710, 'B': 0.5490, 'C': 0.4920, 'D': 0.4790, 'E': 0.7710, 'F': 0.6370, 'G': 0.3070 } })
bsd-3-clause
bartosh/zipline
tests/test_continuous_futures.py
3
62530
# # Copyright 2016 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import deque from functools import partial from textwrap import dedent from numpy import ( arange, array, int64, full, repeat, tile, ) from numpy.testing import assert_almost_equal import pandas as pd from pandas import Timestamp, DataFrame from zipline import TradingAlgorithm from zipline.assets.continuous_futures import ( OrderedContracts, delivery_predicate ) from zipline.data.minute_bars import FUTURES_MINUTES_PER_DAY from zipline.errors import SymbolNotFound from zipline.testing.fixtures import ( WithAssetFinder, WithCreateBarData, WithDataPortal, WithBcolzFutureMinuteBarReader, WithSimParams, ZiplineTestCase, ) class ContinuousFuturesTestCase(WithCreateBarData, WithDataPortal, WithSimParams, WithBcolzFutureMinuteBarReader, ZiplineTestCase): START_DATE = pd.Timestamp('2015-01-05', tz='UTC') END_DATE = pd.Timestamp('2016-10-19', tz='UTC') SIM_PARAMS_START = pd.Timestamp('2016-01-26', tz='UTC') SIM_PARAMS_END = pd.Timestamp('2016-01-28', tz='UTC') SIM_PARAMS_DATA_FREQUENCY = 'minute' TRADING_CALENDAR_STRS = ('us_futures',) TRADING_CALENDAR_PRIMARY_CAL = 'us_futures' TRADING_ENV_FUTURE_CHAIN_PREDICATES = { 'BZ': partial(delivery_predicate, set(['F', 'H'])), } @classmethod def make_root_symbols_info(self): return pd.DataFrame({ 'root_symbol': ['FO', 'BZ', 'MA', 'DF'], 'root_symbol_id': [1, 2, 3, 4], 'exchange': ['CME', 'CME', 'CME', 'CME']}) @classmethod def make_futures_info(self): fo_frame = DataFrame({ 'symbol': ['FOF16', 'FOG16', 'FOH16', 'FOJ16', 'FOK16', 'FOF22', 'FOG22'], 'sid': range(0, 7), 'root_symbol': ['FO'] * 7, 'asset_name': ['Foo'] * 7, 'start_date': [Timestamp('2015-01-05', tz='UTC'), Timestamp('2015-02-05', tz='UTC'), Timestamp('2015-03-05', tz='UTC'), Timestamp('2015-04-05', tz='UTC'), Timestamp('2015-05-05', tz='UTC'), Timestamp('2021-01-05', tz='UTC'), Timestamp('2015-01-05', tz='UTC')], 'end_date': [Timestamp('2016-08-19', tz='UTC'), Timestamp('2016-09-19', tz='UTC'), Timestamp('2016-10-19', tz='UTC'), Timestamp('2016-11-19', tz='UTC'), Timestamp('2022-08-19', tz='UTC'), Timestamp('2022-09-19', tz='UTC'), # Set the last contract's end date (which is the last # date for which there is data to a value that is # within the range of the dates being tested. This # models real life scenarios where the end date of the # furthest out contract is not necessarily the # greatest end date all contracts in the chain. Timestamp('2015-02-05', tz='UTC')], 'notice_date': [Timestamp('2016-01-27', tz='UTC'), Timestamp('2016-02-26', tz='UTC'), Timestamp('2016-03-24', tz='UTC'), Timestamp('2016-04-26', tz='UTC'), Timestamp('2016-05-26', tz='UTC'), Timestamp('2022-01-26', tz='UTC'), Timestamp('2022-02-26', tz='UTC')], 'expiration_date': [Timestamp('2016-01-27', tz='UTC'), Timestamp('2016-02-26', tz='UTC'), Timestamp('2016-03-24', tz='UTC'), Timestamp('2016-04-26', tz='UTC'), Timestamp('2016-05-26', tz='UTC'), Timestamp('2022-01-26', tz='UTC'), Timestamp('2022-02-26', tz='UTC')], 'auto_close_date': [Timestamp('2016-01-27', tz='UTC'), Timestamp('2016-02-26', tz='UTC'), Timestamp('2016-03-24', tz='UTC'), Timestamp('2016-04-26', tz='UTC'), Timestamp('2016-05-26', tz='UTC'), Timestamp('2022-01-26', tz='UTC'), Timestamp('2022-02-26', tz='UTC')], 'tick_size': [0.001] * 7, 'multiplier': [1000.0] * 7, 'exchange': ['CME'] * 7, }) # BZ is set up to test chain predicates, for futures such as PL which # only use a subset of contracts for the roll chain. bz_frame = DataFrame({ 'symbol': ['BZF16', 'BZG16', 'BZH16'], 'root_symbol': ['BZ'] * 3, 'asset_name': ['Baz'] * 3, 'sid': range(10, 13), 'start_date': [Timestamp('2005-01-01', tz='UTC'), Timestamp('2005-01-21', tz='UTC'), Timestamp('2005-01-21', tz='UTC')], 'end_date': [Timestamp('2016-08-19', tz='UTC'), Timestamp('2016-11-21', tz='UTC'), Timestamp('2016-10-19', tz='UTC')], 'notice_date': [Timestamp('2016-01-11', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-03-09', tz='UTC')], 'expiration_date': [Timestamp('2016-01-11', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-03-09', tz='UTC')], 'auto_close_date': [Timestamp('2016-01-11', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-03-09', tz='UTC')], 'tick_size': [0.001] * 3, 'multiplier': [1000.0] * 3, 'exchange': ['CME'] * 3, }) # MA is set up to test a contract which is has no active volume. ma_frame = DataFrame({ 'symbol': ['MAG16', 'MAH16', 'MAJ16'], 'root_symbol': ['MA'] * 3, 'asset_name': ['Most Active'] * 3, 'sid': range(14, 17), 'start_date': [Timestamp('2005-01-01', tz='UTC'), Timestamp('2005-01-21', tz='UTC'), Timestamp('2005-01-21', tz='UTC')], 'end_date': [Timestamp('2016-08-19', tz='UTC'), Timestamp('2016-11-21', tz='UTC'), Timestamp('2016-10-19', tz='UTC')], 'notice_date': [Timestamp('2016-02-17', tz='UTC'), Timestamp('2016-03-16', tz='UTC'), Timestamp('2016-04-13', tz='UTC')], 'expiration_date': [Timestamp('2016-02-17', tz='UTC'), Timestamp('2016-03-16', tz='UTC'), Timestamp('2016-04-13', tz='UTC')], 'auto_close_date': [Timestamp('2016-02-17', tz='UTC'), Timestamp('2016-03-16', tz='UTC'), Timestamp('2016-04-13', tz='UTC')], 'tick_size': [0.001] * 3, 'multiplier': [1000.0] * 3, 'exchange': ['CME'] * 3, }) # DF is set up to have a double volume flip between the 'F' and 'G' # contracts, and then a really early temporary volume flip between the # 'G' and 'H' contracts. df_frame = DataFrame({ 'symbol': ['DFF16', 'DFG16', 'DFH16'], 'root_symbol': ['DF'] * 3, 'asset_name': ['Double Flip'] * 3, 'sid': range(17, 20), 'start_date': [Timestamp('2005-01-01', tz='UTC'), Timestamp('2005-02-01', tz='UTC'), Timestamp('2005-03-01', tz='UTC')], 'end_date': [Timestamp('2016-08-19', tz='UTC'), Timestamp('2016-09-19', tz='UTC'), Timestamp('2016-10-19', tz='UTC')], 'notice_date': [Timestamp('2016-02-19', tz='UTC'), Timestamp('2016-03-18', tz='UTC'), Timestamp('2016-04-22', tz='UTC')], 'expiration_date': [Timestamp('2016-02-19', tz='UTC'), Timestamp('2016-03-18', tz='UTC'), Timestamp('2016-04-22', tz='UTC')], 'auto_close_date': [Timestamp('2016-02-17', tz='UTC'), Timestamp('2016-03-16', tz='UTC'), Timestamp('2016-04-20', tz='UTC')], 'tick_size': [0.001] * 3, 'multiplier': [1000.0] * 3, 'exchange': ['CME'] * 3, }) return pd.concat([fo_frame, bz_frame, ma_frame, df_frame]) @classmethod def make_future_minute_bar_data(cls): tc = cls.trading_calendar start = pd.Timestamp('2016-01-26', tz='UTC') end = pd.Timestamp('2016-04-29', tz='UTC') dts = tc.minutes_for_sessions_in_range(start, end) sessions = tc.sessions_in_range(start, end) # Generate values in the XXY.YYY space, with XX representing the # session and Y.YYY representing the minute within the session. # e.g. the close of the 23rd session would be 231.440. r = 10.0 day_markers = repeat( arange(r, r * len(sessions) + r, r), FUTURES_MINUTES_PER_DAY) r = 0.001 min_markers = tile( arange(r, r * FUTURES_MINUTES_PER_DAY + r, r), len(sessions)) markers = day_markers + min_markers # Volume uses a similar scheme as above but times 1000. r = 10.0 * 1000 vol_day_markers = repeat( arange(r, r * len(sessions) + r, r, dtype=int64), FUTURES_MINUTES_PER_DAY) r = 0.001 * 1000 vol_min_markers = tile( arange(r, r * FUTURES_MINUTES_PER_DAY + r, r, dtype=int64), len(sessions)) vol_markers = vol_day_markers + vol_min_markers base_df = pd.DataFrame( { 'open': full(len(dts), 102000.0) + markers, 'high': full(len(dts), 109000.0) + markers, 'low': full(len(dts), 101000.0) + markers, 'close': full(len(dts), 105000.0) + markers, 'volume': full(len(dts), 10000, dtype=int64) + vol_markers, }, index=dts) # Add the sid to the ones place of the prices, so that the ones # place can be used to eyeball the source contract. # For volume roll tests end sid volume early. # FOF16 cuts out day before autoclose of 01-26 # FOG16 cuts out on autoclose # FOH16 cuts out 4 days before autoclose # FOJ16 cuts out 3 days before autoclose # Make FOG22 have a blip of trading, but not be the actively trading, # so that it does not particpate in volume rolls. sid_to_vol_stop_session = { 0: Timestamp('2016-01-26', tz='UTC'), 1: Timestamp('2016-02-26', tz='UTC'), 2: Timestamp('2016-03-18', tz='UTC'), 3: Timestamp('2016-04-20', tz='UTC'), 6: Timestamp('2016-01-27', tz='UTC'), } for i in range(20): df = base_df.copy() df += i * 10000 if i in sid_to_vol_stop_session: vol_stop_session = sid_to_vol_stop_session[i] m_open = tc.open_and_close_for_session(vol_stop_session)[0] loc = dts.searchsorted(m_open) # Add a little bit of noise to roll. So that predicates that # check for exactly 0 do not work, since there may be # stragglers after a roll. df.volume.values[loc] = 1000 df.volume.values[loc + 1:] = 0 j = i - 1 if j in sid_to_vol_stop_session: non_primary_end = sid_to_vol_stop_session[j] m_close = tc.open_and_close_for_session(non_primary_end)[1] if m_close > dts[0]: loc = dts.get_loc(m_close) # Add some volume before a roll, since a contract may be # entered earlier than when it is the primary. df.volume.values[:loc + 1] = 10 if i == 15: # No volume for MAH16 df.volume.values[:] = 0 if i == 17: end_loc = dts.searchsorted('2016-02-16 23:00:00+00:00') df.volume.values[:end_loc] = 10 df.volume.values[end_loc:] = 0 if i == 18: cross_loc_1 = dts.searchsorted('2016-02-09 23:01:00+00:00') cross_loc_2 = dts.searchsorted('2016-02-11 23:01:00+00:00') cross_loc_3 = dts.searchsorted('2016-02-15 23:01:00+00:00') end_loc = dts.searchsorted('2016-03-15 23:01:00+00:00') df.volume.values[:cross_loc_1] = 5 df.volume.values[cross_loc_1:cross_loc_2] = 15 df.volume.values[cross_loc_2:cross_loc_3] = 5 df.volume.values[cross_loc_3:end_loc] = 15 df.volume.values[end_loc:] = 0 if i == 19: early_cross_1 = dts.searchsorted('2016-03-01 23:01:00+00:00') early_cross_2 = dts.searchsorted('2016-03-03 23:01:00+00:00') end_loc = dts.searchsorted('2016-04-19 23:01:00+00:00') df.volume.values[:early_cross_1] = 1 df.volume.values[early_cross_1:early_cross_2] = 20 df.volume.values[early_cross_2:end_loc] = 10 df.volume.values[end_loc:] = 0 yield i, df def test_double_volume_switch(self): """ Test that when a double volume switch occurs we treat the first switch as the roll, assuming it is within a certain distance of the next auto close date. See `VolumeRollFinder._active_contract` for a full explanation and example. """ cf = self.asset_finder.create_continuous_future( 'DF', 0, 'volume', None, ) sessions = self.trading_calendar.sessions_in_range( '2016-02-09', '2016-02-17', ) for session in sessions: bar_data = self.create_bardata(lambda: session) contract = bar_data.current(cf, 'contract') # The 'G' contract surpasses the 'F' contract in volume on # 2016-02-10, which means that the 'G' contract should become the # front contract starting on 2016-02-11. if session < pd.Timestamp('2016-02-11', tz='UTC'): self.assertEqual(contract.symbol, 'DFF16') else: self.assertEqual(contract.symbol, 'DFG16') # TODO: This test asserts behavior about a back contract briefly # spiking in volume, but more than a week before the front contract's # auto close date, meaning it does not fall in the 'grace' period used # by `VolumeRollFinder._active_contract`. The current behavior is that # during the spike, the back contract is considered current, but it may # be worth changing that behavior in the future. # sessions = self.trading_calendar.sessions_in_range( # '2016-03-01', '2016-03-21', # ) # for session in sessions: # bar_data = self.create_bardata(lambda: session) # contract = bar_data.current(cf, 'contract') # if session < pd.Timestamp('2016-03-16', tz='UTC'): # self.assertEqual(contract.symbol, 'DFG16') # else: # self.assertEqual(contract.symbol, 'DFH16') def test_create_continuous_future(self): cf_primary = self.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) self.assertEqual(cf_primary.root_symbol, 'FO') self.assertEqual(cf_primary.offset, 0) self.assertEqual(cf_primary.roll_style, 'calendar') self.assertEqual(cf_primary.start_date, Timestamp('2015-01-05', tz='UTC')) self.assertEqual(cf_primary.end_date, Timestamp('2022-09-19', tz='UTC')) retrieved_primary = self.asset_finder.retrieve_asset( cf_primary.sid) self.assertEqual(retrieved_primary, cf_primary) cf_secondary = self.asset_finder.create_continuous_future( 'FO', 1, 'calendar', None) self.assertEqual(cf_secondary.root_symbol, 'FO') self.assertEqual(cf_secondary.offset, 1) self.assertEqual(cf_secondary.roll_style, 'calendar') self.assertEqual(cf_primary.start_date, Timestamp('2015-01-05', tz='UTC')) self.assertEqual(cf_primary.end_date, Timestamp('2022-09-19', tz='UTC')) retrieved = self.asset_finder.retrieve_asset( cf_secondary.sid) self.assertEqual(retrieved, cf_secondary) self.assertNotEqual(cf_primary, cf_secondary) # Assert that the proper exception is raised if the given root symbol # does not exist. with self.assertRaises(SymbolNotFound): self.asset_finder.create_continuous_future( 'NO', 0, 'calendar', None) def test_current_contract(self): cf_primary = self.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) bar_data = self.create_bardata( lambda: pd.Timestamp('2016-01-26', tz='UTC')) contract = bar_data.current(cf_primary, 'contract') self.assertEqual(contract.symbol, 'FOF16') bar_data = self.create_bardata( lambda: pd.Timestamp('2016-01-27', tz='UTC')) contract = bar_data.current(cf_primary, 'contract') self.assertEqual(contract.symbol, 'FOG16', 'Auto close at beginning of session so FOG16 is now ' 'the current contract.') def test_get_value_contract_daily(self): cf_primary = self.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) contract = self.data_portal.get_spot_value( cf_primary, 'contract', pd.Timestamp('2016-01-26', tz='UTC'), 'daily', ) self.assertEqual(contract.symbol, 'FOF16') contract = self.data_portal.get_spot_value( cf_primary, 'contract', pd.Timestamp('2016-01-27', tz='UTC'), 'daily', ) self.assertEqual(contract.symbol, 'FOG16', 'Auto close at beginning of session so FOG16 is now ' 'the current contract.') # Test that the current contract outside of the continuous future's # start and end dates is None. contract = self.data_portal.get_spot_value( cf_primary, 'contract', self.START_DATE - self.trading_calendar.day, 'daily', ) self.assertIsNone(contract) def test_get_value_close_daily(self): cf_primary = self.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) value = self.data_portal.get_spot_value( cf_primary, 'close', pd.Timestamp('2016-01-26', tz='UTC'), 'daily', ) self.assertEqual(value, 105011.44) value = self.data_portal.get_spot_value( cf_primary, 'close', pd.Timestamp('2016-01-27', tz='UTC'), 'daily', ) self.assertEqual(value, 115021.44, 'Auto close at beginning of session so FOG16 is now ' 'the current contract.') # Check a value which occurs after the end date of the last known # contract, to prevent a regression where the end date of the last # contract was used instead of the max date of all contracts. value = self.data_portal.get_spot_value( cf_primary, 'close', pd.Timestamp('2016-03-26', tz='UTC'), 'daily', ) self.assertEqual(value, 135441.44, 'Value should be for FOJ16, even though last ' 'contract ends before query date.') def test_current_contract_volume_roll(self): cf_primary = self.asset_finder.create_continuous_future( 'FO', 0, 'volume', None) bar_data = self.create_bardata( lambda: pd.Timestamp('2016-01-26', tz='UTC')) contract = bar_data.current(cf_primary, 'contract') self.assertEqual(contract.symbol, 'FOF16') bar_data = self.create_bardata( lambda: pd.Timestamp('2016-01-27', tz='UTC')) contract = bar_data.current(cf_primary, 'contract') self.assertEqual(contract.symbol, 'FOG16', 'Auto close at beginning of session. FOG16 is now ' 'the current contract.') bar_data = self.create_bardata( lambda: pd.Timestamp('2016-02-26', tz='UTC')) contract = bar_data.current(cf_primary, 'contract') self.assertEqual(contract.symbol, 'FOH16', 'Volume switch to FOH16, should have triggered roll.') def test_current_contract_in_algo(self): code = dedent(""" from zipline.api import ( record, continuous_future, schedule_function, get_datetime, ) def initialize(algo): algo.primary_cl = continuous_future('FO', 0, 'calendar', None) algo.secondary_cl = continuous_future('FO', 1, 'calendar', None) schedule_function(record_current_contract) def record_current_contract(algo, data): record(datetime=get_datetime()) record(primary=data.current(algo.primary_cl, 'contract')) record(secondary=data.current(algo.secondary_cl, 'contract')) """) algo = TradingAlgorithm(script=code, sim_params=self.sim_params, trading_calendar=self.trading_calendar, env=self.env) results = algo.run(self.data_portal) result = results.iloc[0] self.assertEqual(result.primary.symbol, 'FOF16', 'Primary should be FOF16 on first session.') self.assertEqual(result.secondary.symbol, 'FOG16', 'Secondary should be FOG16 on first session.') result = results.iloc[1] # Second day, primary should switch to FOG self.assertEqual(result.primary.symbol, 'FOG16', 'Primary should be FOG16 on second session, auto ' 'close is at beginning of the session.') self.assertEqual(result.secondary.symbol, 'FOH16', 'Secondary should be FOH16 on second session, auto ' 'close is at beginning of the session.') result = results.iloc[2] # Second day, primary should switch to FOG self.assertEqual(result.primary.symbol, 'FOG16', 'Primary should remain as FOG16 on third session.') self.assertEqual(result.secondary.symbol, 'FOH16', 'Secondary should remain as FOH16 on third session.') def test_current_chain_in_algo(self): code = dedent(""" from zipline.api import ( record, continuous_future, schedule_function, get_datetime, ) def initialize(algo): algo.primary_cl = continuous_future('FO', 0, 'calendar', None) algo.secondary_cl = continuous_future('FO', 1, 'calendar', None) schedule_function(record_current_contract) def record_current_contract(algo, data): record(datetime=get_datetime()) primary_chain = data.current_chain(algo.primary_cl) secondary_chain = data.current_chain(algo.secondary_cl) record(primary_len=len(primary_chain)) record(primary_first=primary_chain[0].symbol) record(primary_last=primary_chain[-1].symbol) record(secondary_len=len(secondary_chain)) record(secondary_first=secondary_chain[0].symbol) record(secondary_last=secondary_chain[-1].symbol) """) algo = TradingAlgorithm(script=code, sim_params=self.sim_params, trading_calendar=self.trading_calendar, env=self.env) results = algo.run(self.data_portal) result = results.iloc[0] self.assertEqual(result.primary_len, 6, 'There should be only 6 contracts in the chain for ' 'the primary, there are 7 contracts defined in the ' 'fixture, but one has a start after the simulation ' 'date.') self.assertEqual(result.secondary_len, 5, 'There should be only 5 contracts in the chain for ' 'the primary, there are 7 contracts defined in the ' 'fixture, but one has a start after the simulation ' 'date. And the first is not included because it is ' 'the primary on that date.') self.assertEqual(result.primary_first, 'FOF16', 'Front of primary chain should be FOF16 on first ' 'session.') self.assertEqual(result.secondary_first, 'FOG16', 'Front of secondary chain should be FOG16 on first ' 'session.') self.assertEqual(result.primary_last, 'FOG22', 'End of primary chain should be FOK16 on first ' 'session.') self.assertEqual(result.secondary_last, 'FOG22', 'End of secondary chain should be FOK16 on first ' 'session.') # Second day, primary should switch to FOG result = results.iloc[1] self.assertEqual(result.primary_len, 5, 'There should be only 5 contracts in the chain for ' 'the primary, there are 7 contracts defined in the ' 'fixture, but one has a start after the simulation ' 'date. The first is not included because of roll.') self.assertEqual(result.secondary_len, 4, 'There should be only 4 contracts in the chain for ' 'the primary, there are 7 contracts defined in the ' 'fixture, but one has a start after the simulation ' 'date. The first is not included because of roll, ' 'the second is the primary on that date.') self.assertEqual(result.primary_first, 'FOG16', 'Front of primary chain should be FOG16 on second ' 'session.') self.assertEqual(result.secondary_first, 'FOH16', 'Front of secondary chain should be FOH16 on second ' 'session.') # These values remain FOJ16 because fixture data is not exhaustive # enough to move the end of the chain. self.assertEqual(result.primary_last, 'FOG22', 'End of primary chain should be FOK16 on second ' 'session.') self.assertEqual(result.secondary_last, 'FOG22', 'End of secondary chain should be FOK16 on second ' 'session.') def test_history_sid_session(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) window = self.data_portal.get_history_window( [cf], Timestamp('2016-03-04 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-01-26', cf], 0, "Should be FOF16 at beginning of window.") self.assertEqual(window.loc['2016-01-27', cf], 1, "Should be FOG16 after first roll.") self.assertEqual(window.loc['2016-02-25', cf], 1, "Should be FOG16 on session before roll.") self.assertEqual(window.loc['2016-02-26', cf], 2, "Should be FOH16 on session with roll.") self.assertEqual(window.loc['2016-02-29', cf], 2, "Should be FOH16 on session after roll.") # Advance the window a month. window = self.data_portal.get_history_window( [cf], Timestamp('2016-04-06 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-02-25', cf], 1, "Should be FOG16 at beginning of window.") self.assertEqual(window.loc['2016-02-26', cf], 2, "Should be FOH16 on session with roll.") self.assertEqual(window.loc['2016-02-29', cf], 2, "Should be FOH16 on session after roll.") self.assertEqual(window.loc['2016-03-24', cf], 3, "Should be FOJ16 on session with roll.") self.assertEqual(window.loc['2016-03-28', cf], 3, "Should be FOJ16 on session after roll.") def test_history_sid_session_delivery_predicate(self): cf = self.data_portal.asset_finder.create_continuous_future( 'BZ', 0, 'calendar', None) window = self.data_portal.get_history_window( [cf], Timestamp('2016-01-11 18:01', tz='US/Eastern').tz_convert('UTC'), 3, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-01-08', cf], 10, "Should be BZF16 at beginning of window.") self.assertEqual(window.loc['2016-01-11', cf], 12, "Should be BZH16 after first roll, having skipped " "over BZG16.") self.assertEqual(window.loc['2016-01-12', cf], 12, "Should have remained BZG16") def test_history_sid_session_secondary(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 1, 'calendar', None) window = self.data_portal.get_history_window( [cf], Timestamp('2016-03-04 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-01-26', cf], 1, "Should be FOG16 at beginning of window.") self.assertEqual(window.loc['2016-01-27', cf], 2, "Should be FOH16 after first roll.") self.assertEqual(window.loc['2016-02-25', cf], 2, "Should be FOH16 on session before roll.") self.assertEqual(window.loc['2016-02-26', cf], 3, "Should be FOJ16 on session with roll.") self.assertEqual(window.loc['2016-02-29', cf], 3, "Should be FOJ16 on session after roll.") # Advance the window a month. window = self.data_portal.get_history_window( [cf], Timestamp('2016-04-06 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-02-25', cf], 2, "Should be FOH16 at beginning of window.") self.assertEqual(window.loc['2016-02-26', cf], 3, "Should be FOJ16 on session with roll.") self.assertEqual(window.loc['2016-02-29', cf], 3, "Should be FOJ16 on session after roll.") self.assertEqual(window.loc['2016-03-24', cf], 4, "Should be FOK16 on session with roll.") self.assertEqual(window.loc['2016-03-28', cf], 4, "Should be FOK16 on session after roll.") def test_history_sid_session_volume_roll(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'volume', None) window = self.data_portal.get_history_window( [cf], Timestamp('2016-03-04 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') # Volume cuts out for FOF16 on 2016-01-25 self.assertEqual(window.loc['2016-01-26', cf], 0, "Should be FOF16 at beginning of window.") self.assertEqual(window.loc['2016-01-27', cf], 1, "Should have rolled to FOG16.") self.assertEqual(window.loc['2016-02-25', cf], 1, "Should be FOG16 on session before roll.") self.assertEqual(window.loc['2016-02-26', cf], 2, "Should be FOH16 on session with roll.") self.assertEqual(window.loc['2016-02-29', cf], 2, "Should be FOH16 on session after roll.") # Advance the window a month. window = self.data_portal.get_history_window( [cf], Timestamp('2016-04-06 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1d', 'sid', 'minute') self.assertEqual(window.loc['2016-02-25', cf], 1, "Should be FOG16 at beginning of window.") self.assertEqual(window.loc['2016-02-26', cf], 2, "Should be FOH16 on roll session.") self.assertEqual(window.loc['2016-02-29', cf], 2, "Should remain FOH16.") self.assertEqual(window.loc['2016-03-17', cf], 2, "Should be FOH16 on session before volume cuts out.") self.assertEqual(window.loc['2016-03-18', cf], 2, "Should be FOH16 on session where the volume of " "FOH16 cuts out, the roll is upcoming.") self.assertEqual(window.loc['2016-03-24', cf], 3, "Should have rolled to FOJ16.") self.assertEqual(window.loc['2016-03-28', cf], 3, "Should have remained FOJ16.") def test_history_sid_minute(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-01-26 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'sid', 'minute') self.assertEqual(window.loc['2016-01-26 22:32', cf], 0, "Should be FOF16 at beginning of window. A minute " "which is in the 01-26 session, before the roll.") self.assertEqual(window.loc['2016-01-26 23:00', cf], 0, "Should be FOF16 on on minute before roll minute.") self.assertEqual(window.loc['2016-01-26 23:01', cf], 1, "Should be FOG16 on minute after roll.") # Advance the window a day. window = self.data_portal.get_history_window( [cf], Timestamp('2016-01-27 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'sid', 'minute') self.assertEqual(window.loc['2016-01-27 22:32', cf], 1, "Should be FOG16 at beginning of window.") self.assertEqual(window.loc['2016-01-27 23:01', cf], 1, "Should remain FOG16 on next session.") def test_history_close_session(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-03-06', tz='UTC'), 30, '1d', 'close', 'daily') assert_almost_equal( window.loc['2016-01-26', cf], 105011.440, err_msg="At beginning of window, should be FOG16's first value.") assert_almost_equal( window.loc['2016-02-26', cf], 125241.440, err_msg="On session with roll, should be FOH16's 24th value.") assert_almost_equal( window.loc['2016-02-29', cf], 125251.440, err_msg="After roll, Should be FOH16's 25th value.") # Advance the window a month. window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-04-06', tz='UTC'), 30, '1d', 'close', 'daily') assert_almost_equal( window.loc['2016-02-24', cf], 115221.440, err_msg="At beginning of window, should be FOG16's 22nd value.") assert_almost_equal( window.loc['2016-02-26', cf], 125241.440, err_msg="On session with roll, should be FOH16's 24th value.") assert_almost_equal( window.loc['2016-02-29', cf], 125251.440, err_msg="On session after roll, should be FOH16's 25th value.") assert_almost_equal( window.loc['2016-03-24', cf], 135431.440, err_msg="On session with roll, should be FOJ16's 43rd value.") assert_almost_equal( window.loc['2016-03-28', cf], 135441.440, err_msg="On session after roll, Should be FOJ16's 44th value.") def test_history_close_session_skip_volume(self): cf = self.data_portal.asset_finder.create_continuous_future( 'MA', 0, 'volume', None) window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-03-06', tz='UTC'), 30, '1d', 'close', 'daily') assert_almost_equal( window.loc['2016-01-26', cf], 245011.440, err_msg="At beginning of window, should be MAG16's first value.") assert_almost_equal( window.loc['2016-02-26', cf], 265241.440, err_msg="Should have skipped MAH16 to MAJ16.") assert_almost_equal( window.loc['2016-02-29', cf], 265251.440, err_msg="Should have remained MAJ16.") # Advance the window a month. window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-04-06', tz='UTC'), 30, '1d', 'close', 'daily') assert_almost_equal( window.loc['2016-02-24', cf], 265221.440, err_msg="Should be MAJ16, having skipped MAH16.") assert_almost_equal( window.loc['2016-02-29', cf], 265251.440, err_msg="Should be MAJ1 for rest of window.") assert_almost_equal( window.loc['2016-03-24', cf], 265431.440, err_msg="Should be MAJ16 for rest of window.") def test_history_close_session_adjusted(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) cf_mul = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', 'mul') cf_add = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', 'add') window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-03-06', tz='UTC'), 30, '1d', 'close', 'daily') # Unadjusted value is: 115011.44 # Adjustment is based on hop from 115231.44 to 125231.44 # a ratio of ~0.920 assert_almost_equal( window.loc['2016-01-26', cf_mul], 124992.348, err_msg="At beginning of window, should be FOG16's first value, " "adjusted.") # Difference of 7008.561 assert_almost_equal( window.loc['2016-01-26', cf_add], 125011.44, err_msg="At beginning of window, should be FOG16's first value, " "adjusted.") assert_almost_equal( window.loc['2016-02-26', cf_mul], 125241.440, err_msg="On session with roll, should be FOH16's 24th value, " "unadjusted.") assert_almost_equal( window.loc['2016-02-26', cf_add], 125241.440, err_msg="On session with roll, should be FOH16's 24th value, " "unadjusted.") assert_almost_equal( window.loc['2016-02-29', cf_mul], 125251.440, err_msg="After roll, Should be FOH16's 25th value, unadjusted.") assert_almost_equal( window.loc['2016-02-29', cf_add], 125251.440, err_msg="After roll, Should be FOH16's 25th value, unadjusted.") # Advance the window a month. window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-04-06', tz='UTC'), 30, '1d', 'close', 'daily') # Unadjusted value: 115221.44 # Adjustments based on hops: # 2016-02-25 00:00:00+00:00 # front 115231.440 # back 125231.440 # ratio: ~0.920 # difference: 10000.0 # and # 2016-03-23 00:00:00+00:00 # front 125421.440 # back 135421.440 # ratio: ~1.080 # difference: 10000.00 assert_almost_equal( window.loc['2016-02-24', cf_mul], 135236.905, err_msg="At beginning of window, should be FOG16's 22nd value, " "with two adjustments.") assert_almost_equal( window.loc['2016-02-24', cf_add], 135251.44, err_msg="At beginning of window, should be FOG16's 22nd value, " "with two adjustments") # Unadjusted: 125241.44 assert_almost_equal( window.loc['2016-02-26', cf_mul], 135259.442, err_msg="On session with roll, should be FOH16's 24th value, " "with one adjustment.") assert_almost_equal( window.loc['2016-02-26', cf_add], 135271.44, err_msg="On session with roll, should be FOH16's 24th value, " "with one adjustment.") # Unadjusted: 125251.44 assert_almost_equal( window.loc['2016-02-29', cf_mul], 135270.241, err_msg="On session after roll, should be FOH16's 25th value, " "with one adjustment.") assert_almost_equal( window.loc['2016-02-29', cf_add], 135281.44, err_msg="On session after roll, should be FOH16's 25th value, " "unadjusted.") # Unadjusted: 135431.44 assert_almost_equal( window.loc['2016-03-24', cf_mul], 135431.44, err_msg="On session with roll, should be FOJ16's 43rd value, " "unadjusted.") assert_almost_equal( window.loc['2016-03-24', cf_add], 135431.44, err_msg="On session with roll, should be FOJ16's 43rd value.") # Unadjusted: 135441.44 assert_almost_equal( window.loc['2016-03-28', cf_mul], 135441.44, err_msg="On session after roll, Should be FOJ16's 44th value.") assert_almost_equal( window.loc['2016-03-28', cf_add], 135441.44, err_msg="On session after roll, Should be FOJ16's 44th value.") def test_history_close_minute(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) window = self.data_portal.get_history_window( [cf.sid], Timestamp('2016-02-25 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') self.assertEqual(window.loc['2016-02-25 22:32', cf], 115231.412, "Should be FOG16 at beginning of window. A minute " "which is in the 02-25 session, before the roll.") self.assertEqual(window.loc['2016-02-25 23:00', cf], 115231.440, "Should be FOG16 on on minute before roll minute.") self.assertEqual(window.loc['2016-02-25 23:01', cf], 125240.001, "Should be FOH16 on minute after roll.") # Advance the window a session. window = self.data_portal.get_history_window( [cf], Timestamp('2016-02-28 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') self.assertEqual(window.loc['2016-02-26 22:32', cf], 125241.412, "Should be FOH16 at beginning of window.") self.assertEqual(window.loc['2016-02-28 23:01', cf], 125250.001, "Should remain FOH16 on next session.") def test_history_close_minute_adjusted(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', None) cf_mul = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', 'mul') cf_add = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'calendar', 'add') window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-02-25 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') # Unadjusted: 115231.412 # Adjustment based on roll: # 2016-02-25 23:00:00+00:00 # front: 115231.440 # back: 125231.440 # Ratio: ~0.920 # Difference: 10000.00 self.assertEqual(window.loc['2016-02-25 22:32', cf_mul], 125231.41, "Should be FOG16 at beginning of window. A minute " "which is in the 02-25 session, before the roll.") self.assertEqual(window.loc['2016-02-25 22:32', cf_add], 125231.412, "Should be FOG16 at beginning of window. A minute " "which is in the 02-25 session, before the roll.") # Unadjusted: 115231.44 # Should use same ratios as above. self.assertEqual(window.loc['2016-02-25 23:00', cf_mul], 125231.44, "Should be FOG16 on on minute before roll minute, " "adjusted.") self.assertEqual(window.loc['2016-02-25 23:00', cf_add], 125231.44, "Should be FOG16 on on minute before roll minute, " "adjusted.") self.assertEqual(window.loc['2016-02-25 23:01', cf_mul], 125240.001, "Should be FOH16 on minute after roll, unadjusted.") self.assertEqual(window.loc['2016-02-25 23:01', cf_add], 125240.001, "Should be FOH16 on minute after roll, unadjusted.") # Advance the window a session. window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-02-28 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') # No adjustments in this window. self.assertEqual(window.loc['2016-02-26 22:32', cf_mul], 125241.412, "Should be FOH16 at beginning of window.") self.assertEqual(window.loc['2016-02-28 23:01', cf_mul], 125250.001, "Should remain FOH16 on next session.") def test_history_close_minute_adjusted_volume_roll(self): cf = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'volume', None) cf_mul = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'volume', 'mul') cf_add = self.data_portal.asset_finder.create_continuous_future( 'FO', 0, 'volume', 'add') window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-02-25 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') # Unadjusted: 115231.412 # Adjustment based on roll: # 2016-02-25 23:00:00+00:00 # front: 115231.440 # back: 125231.440 # Ratio: ~0.920 # Difference: 10000.00 self.assertEqual(window.loc['2016-02-25 22:32', cf_mul], 125231.41, "Should be FOG16 at beginning of window. A minute " "which is in the 02-25 session, before the roll.") self.assertEqual(window.loc['2016-02-25 22:32', cf_add], 125231.412, "Should be FOG16 at beginning of window. A minute " "which is in the 02-25 session, before the roll.") # Unadjusted: 115231.44 # Should use same ratios as above. self.assertEqual(window.loc['2016-02-25 23:00', cf_mul], 125231.44, "Should be FOG16 on on minute before roll minute, " "adjusted.") self.assertEqual(window.loc['2016-02-25 23:00', cf_add], 125231.44, "Should be FOG16 on on minute before roll minute, " "adjusted.") self.assertEqual(window.loc['2016-02-25 23:01', cf_mul], 125240.001, "Should be FOH16 on minute after roll, unadjusted.") self.assertEqual(window.loc['2016-02-25 23:01', cf_add], 125240.001, "Should be FOH16 on minute after roll, unadjusted.") # Advance the window a session. window = self.data_portal.get_history_window( [cf, cf_mul, cf_add], Timestamp('2016-02-28 18:01', tz='US/Eastern').tz_convert('UTC'), 30, '1m', 'close', 'minute') # No adjustments in this window. self.assertEqual(window.loc['2016-02-26 22:32', cf_mul], 125241.412, "Should be FOH16 at beginning of window.") self.assertEqual(window.loc['2016-02-28 23:01', cf_mul], 125250.001, "Should remain FOH16 on next session.") class OrderedContractsTestCase(WithAssetFinder, ZiplineTestCase): @classmethod def make_root_symbols_info(self): return pd.DataFrame({ 'root_symbol': ['FO', 'BA', 'BZ'], 'root_symbol_id': [1, 2, 3], 'exchange': ['CME', 'CME', 'CME']}) @classmethod def make_futures_info(self): fo_frame = DataFrame({ 'root_symbol': ['FO'] * 4, 'asset_name': ['Foo'] * 4, 'symbol': ['FOF16', 'FOG16', 'FOH16', 'FOJ16'], 'sid': range(1, 5), 'start_date': pd.date_range('2015-01-01', periods=4, tz="UTC"), 'end_date': pd.date_range('2016-01-01', periods=4, tz="UTC"), 'notice_date': pd.date_range('2016-01-01', periods=4, tz="UTC"), 'expiration_date': pd.date_range( '2016-01-01', periods=4, tz="UTC"), 'auto_close_date': pd.date_range( '2016-01-01', periods=4, tz="UTC"), 'tick_size': [0.001] * 4, 'multiplier': [1000.0] * 4, 'exchange': ['CME'] * 4, }) # BA is set up to test a quarterly roll, to test Eurodollar-like # behavior # The roll should go from BAH16 -> BAM16 ba_frame = DataFrame({ 'root_symbol': ['BA'] * 3, 'asset_name': ['Bar'] * 3, 'symbol': ['BAF16', 'BAG16', 'BAH16'], 'sid': range(5, 8), 'start_date': pd.date_range('2015-01-01', periods=3, tz="UTC"), 'end_date': pd.date_range('2016-01-01', periods=3, tz="UTC"), 'notice_date': pd.date_range('2016-01-01', periods=3, tz="UTC"), 'expiration_date': pd.date_range( '2016-01-01', periods=3, tz="UTC"), 'auto_close_date': pd.date_range( '2016-01-01', periods=3, tz="UTC"), 'tick_size': [0.001] * 3, 'multiplier': [1000.0] * 3, 'exchange': ['CME'] * 3, }) # BZ is set up to test the case where the first contract in a chain has # an auto close date before its start date. It also tests the case # where a contract in the chain has a start date after the auto close # date of the previous contract, leaving a gap with no active contract. bz_frame = DataFrame({ 'root_symbol': ['BZ'] * 4, 'asset_name': ['Baz'] * 4, 'symbol': ['BZF15', 'BZG15', 'BZH15', 'BZJ16'], 'sid': range(8, 12), 'start_date': [ pd.Timestamp('2015-01-02', tz='UTC'), pd.Timestamp('2015-01-03', tz='UTC'), pd.Timestamp('2015-02-23', tz='UTC'), pd.Timestamp('2015-02-24', tz='UTC'), ], 'end_date': pd.date_range( '2015-02-01', periods=4, freq='MS', tz='UTC', ), 'notice_date': [ pd.Timestamp('2014-12-31', tz='UTC'), pd.Timestamp('2015-02-18', tz='UTC'), pd.Timestamp('2015-03-18', tz='UTC'), pd.Timestamp('2015-04-17', tz='UTC'), ], 'expiration_date': pd.date_range( '2015-02-01', periods=4, freq='MS', tz='UTC', ), 'auto_close_date': [ pd.Timestamp('2014-12-29', tz='UTC'), pd.Timestamp('2015-02-16', tz='UTC'), pd.Timestamp('2015-03-16', tz='UTC'), pd.Timestamp('2015-04-15', tz='UTC'), ], 'tick_size': [0.001] * 4, 'multiplier': [1000.0] * 4, 'exchange': ['CME'] * 4, }) return pd.concat([fo_frame, ba_frame, bz_frame]) def test_contract_at_offset(self): contract_sids = array([1, 2, 3, 4], dtype=int64) start_dates = pd.date_range('2015-01-01', periods=4, tz="UTC") contracts = deque(self.asset_finder.retrieve_all(contract_sids)) oc = OrderedContracts('FO', contracts) self.assertEquals(1, oc.contract_at_offset(1, 0, start_dates[-1].value), "Offset of 0 should return provided sid") self.assertEquals(2, oc.contract_at_offset(1, 1, start_dates[-1].value), "Offset of 1 should return next sid in chain.") self.assertEquals(None, oc.contract_at_offset(4, 1, start_dates[-1].value), "Offset at end of chain should not crash.") def test_active_chain(self): contract_sids = array([1, 2, 3, 4], dtype=int64) contracts = deque(self.asset_finder.retrieve_all(contract_sids)) oc = OrderedContracts('FO', contracts) # Test sid 1 as days increment, as the sessions march forward # a contract should be added per day, until all defined contracts # are returned. chain = oc.active_chain(1, pd.Timestamp('2014-12-31', tz='UTC').value) self.assertEquals([], list(chain), "On session before first start date, no contracts " "in chain should be active.") chain = oc.active_chain(1, pd.Timestamp('2015-01-01', tz='UTC').value) self.assertEquals([1], list(chain), "[1] should be the active chain on 01-01, since all " "other start dates occur after 01-01.") chain = oc.active_chain(1, pd.Timestamp('2015-01-02', tz='UTC').value) self.assertEquals([1, 2], list(chain), "[1, 2] should be the active contracts on 01-02.") chain = oc.active_chain(1, pd.Timestamp('2015-01-03', tz='UTC').value) self.assertEquals([1, 2, 3], list(chain), "[1, 2, 3] should be the active contracts on 01-03.") chain = oc.active_chain(1, pd.Timestamp('2015-01-04', tz='UTC').value) self.assertEquals(4, len(chain), "[1, 2, 3, 4] should be the active contracts on " "01-04, this is all defined contracts in the test " "case.") chain = oc.active_chain(1, pd.Timestamp('2015-01-05', tz='UTC').value) self.assertEquals(4, len(chain), "[1, 2, 3, 4] should be the active contracts on " "01-05. This tests the case where all start dates " "are before the query date.") # Test querying each sid at a time when all should be alive. chain = oc.active_chain(2, pd.Timestamp('2015-01-05', tz='UTC').value) self.assertEquals([2, 3, 4], list(chain)) chain = oc.active_chain(3, pd.Timestamp('2015-01-05', tz='UTC').value) self.assertEquals([3, 4], list(chain)) chain = oc.active_chain(4, pd.Timestamp('2015-01-05', tz='UTC').value) self.assertEquals([4], list(chain)) # Test defined contract to check edge conditions. chain = oc.active_chain(4, pd.Timestamp('2015-01-03', tz='UTC').value) self.assertEquals([], list(chain), "No contracts should be active, since 01-03 is " "before 4's start date.") chain = oc.active_chain(4, pd.Timestamp('2015-01-04', tz='UTC').value) self.assertEquals([4], list(chain), "[4] should be active beginning at its start date.") def test_delivery_predicate(self): contract_sids = range(5, 8) contracts = deque(self.asset_finder.retrieve_all(contract_sids)) oc = OrderedContracts('BA', contracts, chain_predicate=partial(delivery_predicate, set(['F', 'H']))) # Test sid 1 as days increment, as the sessions march forward # a contract should be added per day, until all defined contracts # are returned. chain = oc.active_chain(5, pd.Timestamp('2015-01-05', tz='UTC').value) self.assertEquals( [5, 7], list(chain), "Contract BAG16 (sid=6) should be ommitted from chain, since " "it does not satisfy the roll predicate.") def test_auto_close_before_start(self): contract_sids = array([8, 9, 10, 11], dtype=int64) contracts = self.asset_finder.retrieve_all(contract_sids) oc = OrderedContracts('BZ', deque(contracts)) # The OrderedContracts chain should omit BZF16 and start with BZG16. self.assertEqual(oc.start_date, contracts[1].start_date) self.assertEqual(oc.end_date, contracts[-1].end_date) self.assertEqual(oc.contract_before_auto_close(oc.start_date.value), 9) # The OrderedContracts chain should end on the last contract even # though there is a gap between the auto close date of BZG16 and the # start date of BZH16. During this period, BZH16 should be considered # the center contract, as a placeholder of sorts. self.assertEqual( oc.contract_before_auto_close(contracts[1].notice_date.value), 10, ) self.assertEqual( oc.contract_before_auto_close(contracts[2].start_date.value), 10, ) class NoPrefetchContinuousFuturesTestCase(ContinuousFuturesTestCase): DATA_PORTAL_MINUTE_HISTORY_PREFETCH = 0 DATA_PORTAL_DAILY_HISTORY_PREFETCH = 0
apache-2.0
mdespriee/spark
python/setup.py
4
10245
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import glob import os import sys from setuptools import setup, find_packages from shutil import copyfile, copytree, rmtree if sys.version_info < (2, 7): print("Python versions prior to 2.7 are not supported for pip installed PySpark.", file=sys.stderr) sys.exit(-1) try: exec(open('pyspark/version.py').read()) except IOError: print("Failed to load PySpark version file for packaging. You must be in Spark's python dir.", file=sys.stderr) sys.exit(-1) VERSION = __version__ # noqa # A temporary path so we can access above the Python project root and fetch scripts and jars we need TEMP_PATH = "deps" SPARK_HOME = os.path.abspath("../") # Provide guidance about how to use setup.py incorrect_invocation_message = """ If you are installing pyspark from spark source, you must first build Spark and run sdist. To build Spark with maven you can run: ./build/mvn -DskipTests clean package Building the source dist is done in the Python directory: cd python python setup.py sdist pip install dist/*.tar.gz""" # Figure out where the jars are we need to package with PySpark. JARS_PATH = glob.glob(os.path.join(SPARK_HOME, "assembly/target/scala-*/jars/")) if len(JARS_PATH) == 1: JARS_PATH = JARS_PATH[0] elif (os.path.isfile("../RELEASE") and len(glob.glob("../jars/spark*core*.jar")) == 1): # Release mode puts the jars in a jars directory JARS_PATH = os.path.join(SPARK_HOME, "jars") elif len(JARS_PATH) > 1: print("Assembly jars exist for multiple scalas ({0}), please cleanup assembly/target".format( JARS_PATH), file=sys.stderr) sys.exit(-1) elif len(JARS_PATH) == 0 and not os.path.exists(TEMP_PATH): print(incorrect_invocation_message, file=sys.stderr) sys.exit(-1) EXAMPLES_PATH = os.path.join(SPARK_HOME, "examples/src/main/python") SCRIPTS_PATH = os.path.join(SPARK_HOME, "bin") DATA_PATH = os.path.join(SPARK_HOME, "data") LICENSES_PATH = os.path.join(SPARK_HOME, "licenses") SCRIPTS_TARGET = os.path.join(TEMP_PATH, "bin") JARS_TARGET = os.path.join(TEMP_PATH, "jars") EXAMPLES_TARGET = os.path.join(TEMP_PATH, "examples") DATA_TARGET = os.path.join(TEMP_PATH, "data") LICENSES_TARGET = os.path.join(TEMP_PATH, "licenses") # Check and see if we are under the spark path in which case we need to build the symlink farm. # This is important because we only want to build the symlink farm while under Spark otherwise we # want to use the symlink farm. And if the symlink farm exists under while under Spark (e.g. a # partially built sdist) we should error and have the user sort it out. in_spark = (os.path.isfile("../core/src/main/scala/org/apache/spark/SparkContext.scala") or (os.path.isfile("../RELEASE") and len(glob.glob("../jars/spark*core*.jar")) == 1)) def _supports_symlinks(): """Check if the system supports symlinks (e.g. *nix) or not.""" return getattr(os, "symlink", None) is not None if (in_spark): # Construct links for setup try: os.mkdir(TEMP_PATH) except: print("Temp path for symlink to parent already exists {0}".format(TEMP_PATH), file=sys.stderr) sys.exit(-1) # If you are changing the versions here, please also change ./python/pyspark/sql/utils.py and # ./python/run-tests.py. In case of Arrow, you should also check ./pom.xml. _minimum_pandas_version = "0.19.2" _minimum_pyarrow_version = "0.8.0" try: # We copy the shell script to be under pyspark/python/pyspark so that the launcher scripts # find it where expected. The rest of the files aren't copied because they are accessed # using Python imports instead which will be resolved correctly. try: os.makedirs("pyspark/python/pyspark") except OSError: # Don't worry if the directory already exists. pass copyfile("pyspark/shell.py", "pyspark/python/pyspark/shell.py") if (in_spark): # Construct the symlink farm - this is necessary since we can't refer to the path above the # package root and we need to copy the jars and scripts which are up above the python root. if _supports_symlinks(): os.symlink(JARS_PATH, JARS_TARGET) os.symlink(SCRIPTS_PATH, SCRIPTS_TARGET) os.symlink(EXAMPLES_PATH, EXAMPLES_TARGET) os.symlink(DATA_PATH, DATA_TARGET) os.symlink(LICENSES_PATH, LICENSES_TARGET) else: # For windows fall back to the slower copytree copytree(JARS_PATH, JARS_TARGET) copytree(SCRIPTS_PATH, SCRIPTS_TARGET) copytree(EXAMPLES_PATH, EXAMPLES_TARGET) copytree(DATA_PATH, DATA_TARGET) copytree(LICENSES_PATH, LICENSES_TARGET) else: # If we are not inside of SPARK_HOME verify we have the required symlink farm if not os.path.exists(JARS_TARGET): print("To build packaging must be in the python directory under the SPARK_HOME.", file=sys.stderr) if not os.path.isdir(SCRIPTS_TARGET): print(incorrect_invocation_message, file=sys.stderr) sys.exit(-1) # Scripts directive requires a list of each script path and does not take wild cards. script_names = os.listdir(SCRIPTS_TARGET) scripts = list(map(lambda script: os.path.join(SCRIPTS_TARGET, script), script_names)) # We add find_spark_home.py to the bin directory we install so that pip installed PySpark # will search for SPARK_HOME with Python. scripts.append("pyspark/find_spark_home.py") # Parse the README markdown file into rst for PyPI long_description = "!!!!! missing pandoc do not upload to PyPI !!!!" try: import pypandoc long_description = pypandoc.convert('README.md', 'rst') except ImportError: print("Could not import pypandoc - required to package PySpark", file=sys.stderr) except OSError: print("Could not convert - pandoc is not installed", file=sys.stderr) setup( name='pyspark', version=VERSION, description='Apache Spark Python API', long_description=long_description, author='Spark Developers', author_email='[email protected]', url='https://github.com/apache/spark/tree/master/python', packages=['pyspark', 'pyspark.mllib', 'pyspark.mllib.linalg', 'pyspark.mllib.stat', 'pyspark.ml', 'pyspark.ml.linalg', 'pyspark.ml.param', 'pyspark.sql', 'pyspark.streaming', 'pyspark.bin', 'pyspark.jars', 'pyspark.python.pyspark', 'pyspark.python.lib', 'pyspark.data', 'pyspark.licenses', 'pyspark.examples.src.main.python'], include_package_data=True, package_dir={ 'pyspark.jars': 'deps/jars', 'pyspark.bin': 'deps/bin', 'pyspark.python.lib': 'lib', 'pyspark.data': 'deps/data', 'pyspark.licenses': 'deps/licenses', 'pyspark.examples.src.main.python': 'deps/examples', }, package_data={ 'pyspark.jars': ['*.jar'], 'pyspark.bin': ['*'], 'pyspark.python.lib': ['*.zip'], 'pyspark.data': ['*.txt', '*.data'], 'pyspark.licenses': ['*.txt'], 'pyspark.examples.src.main.python': ['*.py', '*/*.py']}, scripts=scripts, license='http://www.apache.org/licenses/LICENSE-2.0', install_requires=['py4j==0.10.8.1'], setup_requires=['pypandoc'], extras_require={ 'ml': ['numpy>=1.7'], 'mllib': ['numpy>=1.7'], 'sql': [ 'pandas>=%s' % _minimum_pandas_version, 'pyarrow>=%s' % _minimum_pyarrow_version, ] }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy'] ) finally: # We only cleanup the symlink farm if we were in Spark, otherwise we are installing rather than # packaging. if (in_spark): # Depending on cleaning up the symlink farm or copied version if _supports_symlinks(): os.remove(os.path.join(TEMP_PATH, "jars")) os.remove(os.path.join(TEMP_PATH, "bin")) os.remove(os.path.join(TEMP_PATH, "examples")) os.remove(os.path.join(TEMP_PATH, "data")) os.remove(os.path.join(TEMP_PATH, "licenses")) else: rmtree(os.path.join(TEMP_PATH, "jars")) rmtree(os.path.join(TEMP_PATH, "bin")) rmtree(os.path.join(TEMP_PATH, "examples")) rmtree(os.path.join(TEMP_PATH, "data")) rmtree(os.path.join(TEMP_PATH, "licenses")) os.rmdir(TEMP_PATH)
apache-2.0
cython-testbed/pandas
pandas/tests/tseries/offsets/test_offsets.py
1
133743
from distutils.version import LooseVersion from datetime import date, datetime, timedelta import pytest import pytz from pandas.compat import range from pandas import compat import numpy as np from pandas.compat.numpy import np_datetime64_compat from pandas.core.series import Series from pandas._libs.tslibs import conversion from pandas._libs.tslibs.frequencies import (get_freq_code, get_freq_str, INVALID_FREQ_ERR_MSG) from pandas.tseries.frequencies import _offset_map, get_offset from pandas.core.indexes.datetimes import ( _to_m8, DatetimeIndex, _daterange_cache) from pandas.core.indexes.timedeltas import TimedeltaIndex import pandas._libs.tslibs.offsets as liboffsets from pandas._libs.tslibs.offsets import CacheableOffset from pandas.tseries.offsets import (BDay, CDay, BQuarterEnd, BMonthEnd, BusinessHour, WeekOfMonth, CBMonthEnd, CustomBusinessHour, CBMonthBegin, BYearEnd, MonthEnd, MonthBegin, SemiMonthBegin, SemiMonthEnd, BYearBegin, QuarterBegin, BQuarterBegin, BMonthBegin, DateOffset, Week, YearBegin, YearEnd, Day, QuarterEnd, BusinessMonthEnd, FY5253, Nano, Easter, FY5253Quarter, LastWeekOfMonth, Tick, CalendarDay) import pandas.tseries.offsets as offsets from pandas.io.pickle import read_pickle from pandas._libs.tslibs import timezones from pandas._libs.tslib import NaT, Timestamp from pandas._libs.tslibs.timedeltas import Timedelta import pandas._libs.tslib as tslib import pandas.util.testing as tm from pandas.tseries.holiday import USFederalHolidayCalendar from .common import assert_offset_equal, assert_onOffset class WeekDay(object): # TODO: Remove: This is not used outside of tests MON = 0 TUE = 1 WED = 2 THU = 3 FRI = 4 SAT = 5 SUN = 6 #### # Misc function tests #### def test_to_m8(): valb = datetime(2007, 10, 1) valu = _to_m8(valb) assert isinstance(valu, np.datetime64) # assert valu == np.datetime64(datetime(2007,10,1)) # def test_datetime64_box(): # valu = np.datetime64(datetime(2007,10,1)) # valb = _dt_box(valu) # assert type(valb) == datetime # assert valb == datetime(2007,10,1) ##### # DateOffset Tests ##### class Base(object): _offset = None d = Timestamp(datetime(2008, 1, 2)) timezones = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Tokyo', 'dateutil/US/Pacific'] def _get_offset(self, klass, value=1, normalize=False): # create instance from offset class if klass is FY5253: klass = klass(n=value, startingMonth=1, weekday=1, variation='last', normalize=normalize) elif klass is FY5253Quarter: klass = klass(n=value, startingMonth=1, weekday=1, qtr_with_extra_week=1, variation='last', normalize=normalize) elif klass is LastWeekOfMonth: klass = klass(n=value, weekday=5, normalize=normalize) elif klass is WeekOfMonth: klass = klass(n=value, week=1, weekday=5, normalize=normalize) elif klass is Week: klass = klass(n=value, weekday=5, normalize=normalize) elif klass is DateOffset: klass = klass(days=value, normalize=normalize) else: try: klass = klass(value, normalize=normalize) except Exception: klass = klass(normalize=normalize) return klass def test_apply_out_of_range(self, tz_naive_fixture): tz = tz_naive_fixture if self._offset is None: return # try to create an out-of-bounds result timestamp; if we can't create # the offset skip try: if self._offset in (BusinessHour, CustomBusinessHour): # Using 10000 in BusinessHour fails in tz check because of DST # difference offset = self._get_offset(self._offset, value=100000) else: offset = self._get_offset(self._offset, value=10000) result = Timestamp('20080101') + offset assert isinstance(result, datetime) assert result.tzinfo is None # Check tz is preserved t = Timestamp('20080101', tz=tz) result = t + offset assert isinstance(result, datetime) assert t.tzinfo == result.tzinfo except tslib.OutOfBoundsDatetime: raise except (ValueError, KeyError): # we are creating an invalid offset # so ignore pass def test_offsets_compare_equal(self): # root cause of GH#456: __ne__ was not implemented if self._offset is None: return offset1 = self._offset() offset2 = self._offset() assert not offset1 != offset2 assert offset1 == offset2 def test_rsub(self): if self._offset is None or not hasattr(self, "offset2"): # i.e. skip for TestCommon and YQM subclasses that do not have # offset2 attr return assert self.d - self.offset2 == (-self.offset2).apply(self.d) def test_radd(self): if self._offset is None or not hasattr(self, "offset2"): # i.e. skip for TestCommon and YQM subclasses that do not have # offset2 attr return assert self.d + self.offset2 == self.offset2 + self.d def test_sub(self): if self._offset is None or not hasattr(self, "offset2"): # i.e. skip for TestCommon and YQM subclasses that do not have # offset2 attr return off = self.offset2 with pytest.raises(Exception): off - self.d assert 2 * off - off == off assert self.d - self.offset2 == self.d + self._offset(-2) assert self.d - self.offset2 == self.d - (2 * off - off) def testMult1(self): if self._offset is None or not hasattr(self, "offset1"): # i.e. skip for TestCommon and YQM subclasses that do not have # offset1 attr return assert self.d + 10 * self.offset1 == self.d + self._offset(10) assert self.d + 5 * self.offset1 == self.d + self._offset(5) def testMult2(self): if self._offset is None: return assert self.d + (-5 * self._offset(-10)) == self.d + self._offset(50) assert self.d + (-3 * self._offset(-2)) == self.d + self._offset(6) class TestCommon(Base): # exected value created by Base._get_offset # are applied to 2011/01/01 09:00 (Saturday) # used for .apply and .rollforward expecteds = {'Day': Timestamp('2011-01-02 09:00:00'), 'CalendarDay': Timestamp('2011-01-02 09:00:00'), 'DateOffset': Timestamp('2011-01-02 09:00:00'), 'BusinessDay': Timestamp('2011-01-03 09:00:00'), 'CustomBusinessDay': Timestamp('2011-01-03 09:00:00'), 'CustomBusinessMonthEnd': Timestamp('2011-01-31 09:00:00'), 'CustomBusinessMonthBegin': Timestamp('2011-01-03 09:00:00'), 'MonthBegin': Timestamp('2011-02-01 09:00:00'), 'BusinessMonthBegin': Timestamp('2011-01-03 09:00:00'), 'MonthEnd': Timestamp('2011-01-31 09:00:00'), 'SemiMonthEnd': Timestamp('2011-01-15 09:00:00'), 'SemiMonthBegin': Timestamp('2011-01-15 09:00:00'), 'BusinessMonthEnd': Timestamp('2011-01-31 09:00:00'), 'YearBegin': Timestamp('2012-01-01 09:00:00'), 'BYearBegin': Timestamp('2011-01-03 09:00:00'), 'YearEnd': Timestamp('2011-12-31 09:00:00'), 'BYearEnd': Timestamp('2011-12-30 09:00:00'), 'QuarterBegin': Timestamp('2011-03-01 09:00:00'), 'BQuarterBegin': Timestamp('2011-03-01 09:00:00'), 'QuarterEnd': Timestamp('2011-03-31 09:00:00'), 'BQuarterEnd': Timestamp('2011-03-31 09:00:00'), 'BusinessHour': Timestamp('2011-01-03 10:00:00'), 'CustomBusinessHour': Timestamp('2011-01-03 10:00:00'), 'WeekOfMonth': Timestamp('2011-01-08 09:00:00'), 'LastWeekOfMonth': Timestamp('2011-01-29 09:00:00'), 'FY5253Quarter': Timestamp('2011-01-25 09:00:00'), 'FY5253': Timestamp('2011-01-25 09:00:00'), 'Week': Timestamp('2011-01-08 09:00:00'), 'Easter': Timestamp('2011-04-24 09:00:00'), 'Hour': Timestamp('2011-01-01 10:00:00'), 'Minute': Timestamp('2011-01-01 09:01:00'), 'Second': Timestamp('2011-01-01 09:00:01'), 'Milli': Timestamp('2011-01-01 09:00:00.001000'), 'Micro': Timestamp('2011-01-01 09:00:00.000001'), 'Nano': Timestamp(np_datetime64_compat( '2011-01-01T09:00:00.000000001Z'))} def test_immutable(self, offset_types): # GH#21341 check that __setattr__ raises offset = self._get_offset(offset_types) with pytest.raises(AttributeError): offset.normalize = True with pytest.raises(AttributeError): offset.n = 91 def test_return_type(self, offset_types): offset = self._get_offset(offset_types) # make sure that we are returning a Timestamp result = Timestamp('20080101') + offset assert isinstance(result, Timestamp) # make sure that we are returning NaT assert NaT + offset is NaT assert offset + NaT is NaT assert NaT - offset is NaT assert (-offset).apply(NaT) is NaT def test_offset_n(self, offset_types): offset = self._get_offset(offset_types) assert offset.n == 1 neg_offset = offset * -1 assert neg_offset.n == -1 mul_offset = offset * 3 assert mul_offset.n == 3 def test_offset_freqstr(self, offset_types): offset = self._get_offset(offset_types) freqstr = offset.freqstr if freqstr not in ('<Easter>', "<DateOffset: days=1>", 'LWOM-SAT', ): code = get_offset(freqstr) assert offset.rule_code == code def _check_offsetfunc_works(self, offset, funcname, dt, expected, normalize=False): if normalize and issubclass(offset, Tick): # normalize=True disallowed for Tick subclasses GH#21427 return offset_s = self._get_offset(offset, normalize=normalize) func = getattr(offset_s, funcname) result = func(dt) assert isinstance(result, Timestamp) assert result == expected result = func(Timestamp(dt)) assert isinstance(result, Timestamp) assert result == expected # see gh-14101 exp_warning = None ts = Timestamp(dt) + Nano(5) if (offset_s.__class__.__name__ == 'DateOffset' and (funcname == 'apply' or normalize) and ts.nanosecond > 0): exp_warning = UserWarning # test nanosecond is preserved with tm.assert_produces_warning(exp_warning, check_stacklevel=False): result = func(ts) assert isinstance(result, Timestamp) if normalize is False: assert result == expected + Nano(5) else: assert result == expected if isinstance(dt, np.datetime64): # test tz when input is datetime or Timestamp return for tz in self.timezones: expected_localize = expected.tz_localize(tz) tz_obj = timezones.maybe_get_tz(tz) dt_tz = conversion.localize_pydatetime(dt, tz_obj) result = func(dt_tz) assert isinstance(result, Timestamp) assert result == expected_localize result = func(Timestamp(dt, tz=tz)) assert isinstance(result, Timestamp) assert result == expected_localize # see gh-14101 exp_warning = None ts = Timestamp(dt, tz=tz) + Nano(5) if (offset_s.__class__.__name__ == 'DateOffset' and (funcname == 'apply' or normalize) and ts.nanosecond > 0): exp_warning = UserWarning # test nanosecond is preserved with tm.assert_produces_warning(exp_warning, check_stacklevel=False): result = func(ts) assert isinstance(result, Timestamp) if normalize is False: assert result == expected_localize + Nano(5) else: assert result == expected_localize def test_apply(self, offset_types): sdt = datetime(2011, 1, 1, 9, 0) ndt = np_datetime64_compat('2011-01-01 09:00Z') for dt in [sdt, ndt]: expected = self.expecteds[offset_types.__name__] self._check_offsetfunc_works(offset_types, 'apply', dt, expected) expected = Timestamp(expected.date()) self._check_offsetfunc_works(offset_types, 'apply', dt, expected, normalize=True) def test_rollforward(self, offset_types): expecteds = self.expecteds.copy() # result will not be changed if the target is on the offset no_changes = ['Day', 'MonthBegin', 'SemiMonthBegin', 'YearBegin', 'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro', 'Nano', 'DateOffset', 'CalendarDay'] for n in no_changes: expecteds[n] = Timestamp('2011/01/01 09:00') expecteds['BusinessHour'] = Timestamp('2011-01-03 09:00:00') expecteds['CustomBusinessHour'] = Timestamp('2011-01-03 09:00:00') # but be changed when normalize=True norm_expected = expecteds.copy() for k in norm_expected: norm_expected[k] = Timestamp(norm_expected[k].date()) normalized = {'Day': Timestamp('2011-01-02 00:00:00'), 'CalendarDay': Timestamp('2011-01-02 00:00:00'), 'DateOffset': Timestamp('2011-01-02 00:00:00'), 'MonthBegin': Timestamp('2011-02-01 00:00:00'), 'SemiMonthBegin': Timestamp('2011-01-15 00:00:00'), 'YearBegin': Timestamp('2012-01-01 00:00:00'), 'Week': Timestamp('2011-01-08 00:00:00'), 'Hour': Timestamp('2011-01-01 00:00:00'), 'Minute': Timestamp('2011-01-01 00:00:00'), 'Second': Timestamp('2011-01-01 00:00:00'), 'Milli': Timestamp('2011-01-01 00:00:00'), 'Micro': Timestamp('2011-01-01 00:00:00')} norm_expected.update(normalized) sdt = datetime(2011, 1, 1, 9, 0) ndt = np_datetime64_compat('2011-01-01 09:00Z') for dt in [sdt, ndt]: expected = expecteds[offset_types.__name__] self._check_offsetfunc_works(offset_types, 'rollforward', dt, expected) expected = norm_expected[offset_types.__name__] self._check_offsetfunc_works(offset_types, 'rollforward', dt, expected, normalize=True) def test_rollback(self, offset_types): expecteds = {'BusinessDay': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessDay': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessMonthEnd': Timestamp('2010-12-31 09:00:00'), 'CustomBusinessMonthBegin': Timestamp('2010-12-01 09:00:00'), 'BusinessMonthBegin': Timestamp('2010-12-01 09:00:00'), 'MonthEnd': Timestamp('2010-12-31 09:00:00'), 'SemiMonthEnd': Timestamp('2010-12-31 09:00:00'), 'BusinessMonthEnd': Timestamp('2010-12-31 09:00:00'), 'BYearBegin': Timestamp('2010-01-01 09:00:00'), 'YearEnd': Timestamp('2010-12-31 09:00:00'), 'BYearEnd': Timestamp('2010-12-31 09:00:00'), 'QuarterBegin': Timestamp('2010-12-01 09:00:00'), 'BQuarterBegin': Timestamp('2010-12-01 09:00:00'), 'QuarterEnd': Timestamp('2010-12-31 09:00:00'), 'BQuarterEnd': Timestamp('2010-12-31 09:00:00'), 'BusinessHour': Timestamp('2010-12-31 17:00:00'), 'CustomBusinessHour': Timestamp('2010-12-31 17:00:00'), 'WeekOfMonth': Timestamp('2010-12-11 09:00:00'), 'LastWeekOfMonth': Timestamp('2010-12-25 09:00:00'), 'FY5253Quarter': Timestamp('2010-10-26 09:00:00'), 'FY5253': Timestamp('2010-01-26 09:00:00'), 'Easter': Timestamp('2010-04-04 09:00:00')} # result will not be changed if the target is on the offset for n in ['Day', 'MonthBegin', 'SemiMonthBegin', 'YearBegin', 'Week', 'Hour', 'Minute', 'Second', 'Milli', 'Micro', 'Nano', 'DateOffset', 'CalendarDay']: expecteds[n] = Timestamp('2011/01/01 09:00') # but be changed when normalize=True norm_expected = expecteds.copy() for k in norm_expected: norm_expected[k] = Timestamp(norm_expected[k].date()) normalized = {'Day': Timestamp('2010-12-31 00:00:00'), 'CalendarDay': Timestamp('2010-12-31 00:00:00'), 'DateOffset': Timestamp('2010-12-31 00:00:00'), 'MonthBegin': Timestamp('2010-12-01 00:00:00'), 'SemiMonthBegin': Timestamp('2010-12-15 00:00:00'), 'YearBegin': Timestamp('2010-01-01 00:00:00'), 'Week': Timestamp('2010-12-25 00:00:00'), 'Hour': Timestamp('2011-01-01 00:00:00'), 'Minute': Timestamp('2011-01-01 00:00:00'), 'Second': Timestamp('2011-01-01 00:00:00'), 'Milli': Timestamp('2011-01-01 00:00:00'), 'Micro': Timestamp('2011-01-01 00:00:00')} norm_expected.update(normalized) sdt = datetime(2011, 1, 1, 9, 0) ndt = np_datetime64_compat('2011-01-01 09:00Z') for dt in [sdt, ndt]: expected = expecteds[offset_types.__name__] self._check_offsetfunc_works(offset_types, 'rollback', dt, expected) expected = norm_expected[offset_types.__name__] self._check_offsetfunc_works(offset_types, 'rollback', dt, expected, normalize=True) def test_onOffset(self, offset_types): dt = self.expecteds[offset_types.__name__] offset_s = self._get_offset(offset_types) assert offset_s.onOffset(dt) # when normalize=True, onOffset checks time is 00:00:00 if issubclass(offset_types, Tick): # normalize=True disallowed for Tick subclasses GH#21427 return offset_n = self._get_offset(offset_types, normalize=True) assert not offset_n.onOffset(dt) if offset_types in (BusinessHour, CustomBusinessHour): # In default BusinessHour (9:00-17:00), normalized time # cannot be in business hour range return date = datetime(dt.year, dt.month, dt.day) assert offset_n.onOffset(date) def test_add(self, offset_types, tz_naive_fixture): tz = tz_naive_fixture dt = datetime(2011, 1, 1, 9, 0) offset_s = self._get_offset(offset_types) expected = self.expecteds[offset_types.__name__] result_dt = dt + offset_s result_ts = Timestamp(dt) + offset_s for result in [result_dt, result_ts]: assert isinstance(result, Timestamp) assert result == expected expected_localize = expected.tz_localize(tz) result = Timestamp(dt, tz=tz) + offset_s assert isinstance(result, Timestamp) assert result == expected_localize # normalize=True, disallowed for Tick subclasses GH#21427 if issubclass(offset_types, Tick): return offset_s = self._get_offset(offset_types, normalize=True) expected = Timestamp(expected.date()) result_dt = dt + offset_s result_ts = Timestamp(dt) + offset_s for result in [result_dt, result_ts]: assert isinstance(result, Timestamp) assert result == expected expected_localize = expected.tz_localize(tz) result = Timestamp(dt, tz=tz) + offset_s assert isinstance(result, Timestamp) assert result == expected_localize def test_pickle_v0_15_2(self, datapath): offsets = {'DateOffset': DateOffset(years=1), 'MonthBegin': MonthBegin(1), 'Day': Day(1), 'YearBegin': YearBegin(1), 'Week': Week(1)} pickle_path = datapath('tseries', 'offsets', 'data', 'dateoffset_0_15_2.pickle') # This code was executed once on v0.15.2 to generate the pickle: # with open(pickle_path, 'wb') as f: pickle.dump(offsets, f) # tm.assert_dict_equal(offsets, read_pickle(pickle_path)) class TestDateOffset(Base): def setup_method(self, method): self.d = Timestamp(datetime(2008, 1, 2)) _offset_map.clear() def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert ((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert ((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert ((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert ((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert (DateOffset(months=2).copy() == DateOffset(months=2)) def test_eq(self): offset1 = DateOffset(days=1) offset2 = DateOffset(days=365) assert offset1 != offset2 class TestBusinessDay(Base): _offset = BDay def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset1 = self.offset self.offset2 = BDay(2) def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == '<BusinessDay>' assert repr(self.offset2) == '<2 * BusinessDays>' if compat.PY37: expected = '<BusinessDay: offset=datetime.timedelta(days=1)>' else: expected = '<BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_call(self): assert self.offset2(self.d) == datetime(2008, 1, 3) def testRollback1(self): assert BDay(10).rollback(self.d) == self.d def testRollback2(self): assert (BDay(10).rollback(datetime(2008, 1, 5)) == datetime(2008, 1, 4)) def testRollforward1(self): assert BDay(10).rollforward(self.d) == self.d def testRollforward2(self): assert (BDay(10).rollforward(datetime(2008, 1, 5)) == datetime(2008, 1, 7)) def test_roll_date_object(self): offset = BDay() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 14) result = offset.rollforward(dt) assert result == datetime(2012, 9, 17) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, d, expected in tests: assert_onOffset(offset, d, expected) apply_cases = [] apply_cases.append((BDay(), { datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) apply_cases.append((2 * BDay(), { datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) apply_cases.append((-BDay(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) apply_cases.append((-2 * BDay(), { datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) apply_cases.append((BDay(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) @pytest.mark.parametrize('case', apply_cases) def test_apply(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + BDay(10) assert result == datetime(2012, 11, 6) result = dt + BDay(100) - BDay(100) assert result == dt off = BDay() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 12, 23) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2011, 12, 26) assert rs == xp off = BDay() * 10 rs = datetime(2014, 1, 5) + off # see #5890 xp = datetime(2014, 1, 17) assert rs == xp def test_apply_corner(self): pytest.raises(TypeError, BDay().apply, BMonthEnd()) class TestBusinessHour(Base): _offset = BusinessHour def setup_method(self, method): self.d = datetime(2014, 7, 1, 10, 00) self.offset1 = BusinessHour() self.offset2 = BusinessHour(n=3) self.offset3 = BusinessHour(n=-1) self.offset4 = BusinessHour(n=-4) from datetime import time as dt_time self.offset5 = BusinessHour(start=dt_time(11, 0), end=dt_time(14, 30)) self.offset6 = BusinessHour(start='20:00', end='05:00') self.offset7 = BusinessHour(n=-2, start=dt_time(21, 30), end=dt_time(6, 30)) def test_constructor_errors(self): from datetime import time as dt_time with pytest.raises(ValueError): BusinessHour(start=dt_time(11, 0, 5)) with pytest.raises(ValueError): BusinessHour(start='AAA') with pytest.raises(ValueError): BusinessHour(start='14:00:05') def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset1) == '<BusinessHour: BH=09:00-17:00>' assert repr(self.offset2) == '<3 * BusinessHours: BH=09:00-17:00>' assert repr(self.offset3) == '<-1 * BusinessHour: BH=09:00-17:00>' assert repr(self.offset4) == '<-4 * BusinessHours: BH=09:00-17:00>' assert repr(self.offset5) == '<BusinessHour: BH=11:00-14:30>' assert repr(self.offset6) == '<BusinessHour: BH=20:00-05:00>' assert repr(self.offset7) == '<-2 * BusinessHours: BH=21:30-06:30>' def test_with_offset(self): expected = Timestamp('2014-07-01 13:00') assert self.d + BusinessHour() * 3 == expected assert self.d + BusinessHour(n=3) == expected def test_eq(self): for offset in [self.offset1, self.offset2, self.offset3, self.offset4]: assert offset == offset assert BusinessHour() != BusinessHour(-1) assert BusinessHour(start='09:00') == BusinessHour() assert BusinessHour(start='09:00') != BusinessHour(start='09:01') assert (BusinessHour(start='09:00', end='17:00') != BusinessHour(start='17:00', end='09:01')) def test_hash(self): for offset in [self.offset1, self.offset2, self.offset3, self.offset4]: assert hash(offset) == hash(offset) def test_call(self): assert self.offset1(self.d) == datetime(2014, 7, 1, 11) assert self.offset2(self.d) == datetime(2014, 7, 1, 13) assert self.offset3(self.d) == datetime(2014, 6, 30, 17) assert self.offset4(self.d) == datetime(2014, 6, 30, 14) def test_sub(self): # we have to override test_sub here becasue self.offset2 is not # defined as self._offset(2) off = self.offset2 with pytest.raises(Exception): off - self.d assert 2 * off - off == off assert self.d - self.offset2 == self.d + self._offset(-3) def testRollback1(self): assert self.offset1.rollback(self.d) == self.d assert self.offset2.rollback(self.d) == self.d assert self.offset3.rollback(self.d) == self.d assert self.offset4.rollback(self.d) == self.d assert self.offset5.rollback(self.d) == datetime(2014, 6, 30, 14, 30) assert self.offset6.rollback(self.d) == datetime(2014, 7, 1, 5, 0) assert self.offset7.rollback(self.d) == datetime(2014, 7, 1, 6, 30) d = datetime(2014, 7, 1, 0) assert self.offset1.rollback(d) == datetime(2014, 6, 30, 17) assert self.offset2.rollback(d) == datetime(2014, 6, 30, 17) assert self.offset3.rollback(d) == datetime(2014, 6, 30, 17) assert self.offset4.rollback(d) == datetime(2014, 6, 30, 17) assert self.offset5.rollback(d) == datetime(2014, 6, 30, 14, 30) assert self.offset6.rollback(d) == d assert self.offset7.rollback(d) == d assert self._offset(5).rollback(self.d) == self.d def testRollback2(self): assert (self._offset(-3).rollback(datetime(2014, 7, 5, 15, 0)) == datetime(2014, 7, 4, 17, 0)) def testRollforward1(self): assert self.offset1.rollforward(self.d) == self.d assert self.offset2.rollforward(self.d) == self.d assert self.offset3.rollforward(self.d) == self.d assert self.offset4.rollforward(self.d) == self.d assert (self.offset5.rollforward(self.d) == datetime(2014, 7, 1, 11, 0)) assert (self.offset6.rollforward(self.d) == datetime(2014, 7, 1, 20, 0)) assert (self.offset7.rollforward(self.d) == datetime(2014, 7, 1, 21, 30)) d = datetime(2014, 7, 1, 0) assert self.offset1.rollforward(d) == datetime(2014, 7, 1, 9) assert self.offset2.rollforward(d) == datetime(2014, 7, 1, 9) assert self.offset3.rollforward(d) == datetime(2014, 7, 1, 9) assert self.offset4.rollforward(d) == datetime(2014, 7, 1, 9) assert self.offset5.rollforward(d) == datetime(2014, 7, 1, 11) assert self.offset6.rollforward(d) == d assert self.offset7.rollforward(d) == d assert self._offset(5).rollforward(self.d) == self.d def testRollforward2(self): assert (self._offset(-3).rollforward(datetime(2014, 7, 5, 16, 0)) == datetime(2014, 7, 7, 9)) def test_roll_date_object(self): offset = BusinessHour() dt = datetime(2014, 7, 6, 15, 0) result = offset.rollback(dt) assert result == datetime(2014, 7, 4, 17) result = offset.rollforward(dt) assert result == datetime(2014, 7, 7, 9) normalize_cases = [] normalize_cases.append((BusinessHour(normalize=True), { datetime(2014, 7, 1, 8): datetime(2014, 7, 1), datetime(2014, 7, 1, 17): datetime(2014, 7, 2), datetime(2014, 7, 1, 16): datetime(2014, 7, 2), datetime(2014, 7, 1, 23): datetime(2014, 7, 2), datetime(2014, 7, 1, 0): datetime(2014, 7, 1), datetime(2014, 7, 4, 15): datetime(2014, 7, 4), datetime(2014, 7, 4, 15, 59): datetime(2014, 7, 4), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7), datetime(2014, 7, 5, 23): datetime(2014, 7, 7), datetime(2014, 7, 6, 10): datetime(2014, 7, 7)})) normalize_cases.append((BusinessHour(-1, normalize=True), { datetime(2014, 7, 1, 8): datetime(2014, 6, 30), datetime(2014, 7, 1, 17): datetime(2014, 7, 1), datetime(2014, 7, 1, 16): datetime(2014, 7, 1), datetime(2014, 7, 1, 10): datetime(2014, 6, 30), datetime(2014, 7, 1, 0): datetime(2014, 6, 30), datetime(2014, 7, 7, 10): datetime(2014, 7, 4), datetime(2014, 7, 7, 10, 1): datetime(2014, 7, 7), datetime(2014, 7, 5, 23): datetime(2014, 7, 4), datetime(2014, 7, 6, 10): datetime(2014, 7, 4)})) normalize_cases.append((BusinessHour(1, normalize=True, start='17:00', end='04:00'), { datetime(2014, 7, 1, 8): datetime(2014, 7, 1), datetime(2014, 7, 1, 17): datetime(2014, 7, 1), datetime(2014, 7, 1, 23): datetime(2014, 7, 2), datetime(2014, 7, 2, 2): datetime(2014, 7, 2), datetime(2014, 7, 2, 3): datetime(2014, 7, 2), datetime(2014, 7, 4, 23): datetime(2014, 7, 5), datetime(2014, 7, 5, 2): datetime(2014, 7, 5), datetime(2014, 7, 7, 2): datetime(2014, 7, 7), datetime(2014, 7, 7, 17): datetime(2014, 7, 7)})) @pytest.mark.parametrize('case', normalize_cases) def test_normalize(self, case): offset, cases = case for dt, expected in compat.iteritems(cases): assert offset.apply(dt) == expected on_offset_cases = [] on_offset_cases.append((BusinessHour(), { datetime(2014, 7, 1, 9): True, datetime(2014, 7, 1, 8, 59): False, datetime(2014, 7, 1, 8): False, datetime(2014, 7, 1, 17): True, datetime(2014, 7, 1, 17, 1): False, datetime(2014, 7, 1, 18): False, datetime(2014, 7, 5, 9): False, datetime(2014, 7, 6, 12): False})) on_offset_cases.append((BusinessHour(start='10:00', end='15:00'), { datetime(2014, 7, 1, 9): False, datetime(2014, 7, 1, 10): True, datetime(2014, 7, 1, 15): True, datetime(2014, 7, 1, 15, 1): False, datetime(2014, 7, 5, 12): False, datetime(2014, 7, 6, 12): False})) on_offset_cases.append((BusinessHour(start='19:00', end='05:00'), { datetime(2014, 7, 1, 9, 0): False, datetime(2014, 7, 1, 10, 0): False, datetime(2014, 7, 1, 15): False, datetime(2014, 7, 1, 15, 1): False, datetime(2014, 7, 5, 12, 0): False, datetime(2014, 7, 6, 12, 0): False, datetime(2014, 7, 1, 19, 0): True, datetime(2014, 7, 2, 0, 0): True, datetime(2014, 7, 4, 23): True, datetime(2014, 7, 5, 1): True, datetime(2014, 7, 5, 5, 0): True, datetime(2014, 7, 6, 23, 0): False, datetime(2014, 7, 7, 3, 0): False})) @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): offset, cases = case for dt, expected in compat.iteritems(cases): assert offset.onOffset(dt) == expected opening_time_cases = [] # opening time should be affected by sign of n, not by n's value and # end opening_time_cases.append(([BusinessHour(), BusinessHour(n=2), BusinessHour(n=4), BusinessHour(end='10:00'), BusinessHour(n=2, end='4:00'), BusinessHour(n=4, end='15:00')], { datetime(2014, 7, 1, 11): (datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 9)), datetime(2014, 7, 1, 18): (datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 9)), datetime(2014, 7, 1, 23): (datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 9)), datetime(2014, 7, 2, 8): (datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 9)), # if timestamp is on opening time, next opening time is # as it is datetime(2014, 7, 2, 9): (datetime(2014, 7, 2, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 2, 10): (datetime(2014, 7, 3, 9), datetime(2014, 7, 2, 9)), # 2014-07-05 is saturday datetime(2014, 7, 5, 10): (datetime(2014, 7, 7, 9), datetime(2014, 7, 4, 9)), datetime(2014, 7, 4, 10): (datetime(2014, 7, 7, 9), datetime(2014, 7, 4, 9)), datetime(2014, 7, 4, 23): (datetime(2014, 7, 7, 9), datetime(2014, 7, 4, 9)), datetime(2014, 7, 6, 10): (datetime(2014, 7, 7, 9), datetime(2014, 7, 4, 9)), datetime(2014, 7, 7, 5): (datetime(2014, 7, 7, 9), datetime(2014, 7, 4, 9)), datetime(2014, 7, 7, 9, 1): (datetime(2014, 7, 8, 9), datetime(2014, 7, 7, 9))})) opening_time_cases.append(([BusinessHour(start='11:15'), BusinessHour(n=2, start='11:15'), BusinessHour(n=3, start='11:15'), BusinessHour(start='11:15', end='10:00'), BusinessHour(n=2, start='11:15', end='4:00'), BusinessHour(n=3, start='11:15', end='15:00')], { datetime(2014, 7, 1, 11): (datetime(2014, 7, 1, 11, 15), datetime(2014, 6, 30, 11, 15)), datetime(2014, 7, 1, 18): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 1, 11, 15)), datetime(2014, 7, 1, 23): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 1, 11, 15)), datetime(2014, 7, 2, 8): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 1, 11, 15)), datetime(2014, 7, 2, 9): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 1, 11, 15)), datetime(2014, 7, 2, 10): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 1, 11, 15)), datetime(2014, 7, 2, 11, 15): (datetime(2014, 7, 2, 11, 15), datetime(2014, 7, 2, 11, 15)), datetime(2014, 7, 2, 11, 15, 1): (datetime(2014, 7, 3, 11, 15), datetime(2014, 7, 2, 11, 15)), datetime(2014, 7, 5, 10): (datetime(2014, 7, 7, 11, 15), datetime(2014, 7, 4, 11, 15)), datetime(2014, 7, 4, 10): (datetime(2014, 7, 4, 11, 15), datetime(2014, 7, 3, 11, 15)), datetime(2014, 7, 4, 23): (datetime(2014, 7, 7, 11, 15), datetime(2014, 7, 4, 11, 15)), datetime(2014, 7, 6, 10): (datetime(2014, 7, 7, 11, 15), datetime(2014, 7, 4, 11, 15)), datetime(2014, 7, 7, 5): (datetime(2014, 7, 7, 11, 15), datetime(2014, 7, 4, 11, 15)), datetime(2014, 7, 7, 9, 1): (datetime(2014, 7, 7, 11, 15), datetime(2014, 7, 4, 11, 15))})) opening_time_cases.append(([BusinessHour(-1), BusinessHour(n=-2), BusinessHour(n=-4), BusinessHour(n=-1, end='10:00'), BusinessHour(n=-2, end='4:00'), BusinessHour(n=-4, end='15:00')], { datetime(2014, 7, 1, 11): (datetime(2014, 7, 1, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 1, 18): (datetime(2014, 7, 1, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 1, 23): (datetime(2014, 7, 1, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 2, 8): (datetime(2014, 7, 1, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 2, 9): (datetime(2014, 7, 2, 9), datetime(2014, 7, 2, 9)), datetime(2014, 7, 2, 10): (datetime(2014, 7, 2, 9), datetime(2014, 7, 3, 9)), datetime(2014, 7, 5, 10): (datetime(2014, 7, 4, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 4, 10): (datetime(2014, 7, 4, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 4, 23): (datetime(2014, 7, 4, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 6, 10): (datetime(2014, 7, 4, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 7, 5): (datetime(2014, 7, 4, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 7, 9): (datetime(2014, 7, 7, 9), datetime(2014, 7, 7, 9)), datetime(2014, 7, 7, 9, 1): (datetime(2014, 7, 7, 9), datetime(2014, 7, 8, 9))})) opening_time_cases.append(([BusinessHour(start='17:00', end='05:00'), BusinessHour(n=3, start='17:00', end='03:00')], { datetime(2014, 7, 1, 11): (datetime(2014, 7, 1, 17), datetime(2014, 6, 30, 17)), datetime(2014, 7, 1, 18): (datetime(2014, 7, 2, 17), datetime(2014, 7, 1, 17)), datetime(2014, 7, 1, 23): (datetime(2014, 7, 2, 17), datetime(2014, 7, 1, 17)), datetime(2014, 7, 2, 8): (datetime(2014, 7, 2, 17), datetime(2014, 7, 1, 17)), datetime(2014, 7, 2, 9): (datetime(2014, 7, 2, 17), datetime(2014, 7, 1, 17)), datetime(2014, 7, 4, 17): (datetime(2014, 7, 4, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 5, 10): (datetime(2014, 7, 7, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 4, 10): (datetime(2014, 7, 4, 17), datetime(2014, 7, 3, 17)), datetime(2014, 7, 4, 23): (datetime(2014, 7, 7, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 6, 10): (datetime(2014, 7, 7, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 7, 5): (datetime(2014, 7, 7, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 7, 17, 1): (datetime(2014, 7, 8, 17), datetime(2014, 7, 7, 17)), })) opening_time_cases.append(([BusinessHour(-1, start='17:00', end='05:00'), BusinessHour(n=-2, start='17:00', end='03:00')], { datetime(2014, 7, 1, 11): (datetime(2014, 6, 30, 17), datetime(2014, 7, 1, 17)), datetime(2014, 7, 1, 18): (datetime(2014, 7, 1, 17), datetime(2014, 7, 2, 17)), datetime(2014, 7, 1, 23): (datetime(2014, 7, 1, 17), datetime(2014, 7, 2, 17)), datetime(2014, 7, 2, 8): (datetime(2014, 7, 1, 17), datetime(2014, 7, 2, 17)), datetime(2014, 7, 2, 9): (datetime(2014, 7, 1, 17), datetime(2014, 7, 2, 17)), datetime(2014, 7, 2, 16, 59): (datetime(2014, 7, 1, 17), datetime(2014, 7, 2, 17)), datetime(2014, 7, 5, 10): (datetime(2014, 7, 4, 17), datetime(2014, 7, 7, 17)), datetime(2014, 7, 4, 10): (datetime(2014, 7, 3, 17), datetime(2014, 7, 4, 17)), datetime(2014, 7, 4, 23): (datetime(2014, 7, 4, 17), datetime(2014, 7, 7, 17)), datetime(2014, 7, 6, 10): (datetime(2014, 7, 4, 17), datetime(2014, 7, 7, 17)), datetime(2014, 7, 7, 5): (datetime(2014, 7, 4, 17), datetime(2014, 7, 7, 17)), datetime(2014, 7, 7, 18): (datetime(2014, 7, 7, 17), datetime(2014, 7, 8, 17))})) @pytest.mark.parametrize('case', opening_time_cases) def test_opening_time(self, case): _offsets, cases = case for offset in _offsets: for dt, (exp_next, exp_prev) in compat.iteritems(cases): assert offset._next_opening_time(dt) == exp_next assert offset._prev_opening_time(dt) == exp_prev apply_cases = [] apply_cases.append((BusinessHour(), { datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 12), datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 16), datetime(2014, 7, 1, 19): datetime(2014, 7, 2, 10), datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 2, 9, 30, 15), datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 10), datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 12), # out of business hours datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 10), datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 10), datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 10), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 10), # saturday datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 10), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 10), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 9, 30), datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 9, 30, 30)})) apply_cases.append((BusinessHour(4), { datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 15), datetime(2014, 7, 1, 13): datetime(2014, 7, 2, 9), datetime(2014, 7, 1, 15): datetime(2014, 7, 2, 11), datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 12), datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 13), datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 15), datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 13), datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 13), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 13), datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 13), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 13), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 12, 30), datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 12, 30, 30)})) apply_cases.append((BusinessHour(-1), { datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 10), datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 12), datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 14), datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 15), datetime(2014, 7, 1, 10): datetime(2014, 6, 30, 17), datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 1, 15, 30, 15), datetime(2014, 7, 1, 9, 30, 15): datetime(2014, 6, 30, 16, 30, 15), datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 16), datetime(2014, 7, 1, 5): datetime(2014, 6, 30, 16), datetime(2014, 7, 2, 11): datetime(2014, 7, 2, 10), # out of business hours datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 16), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 16), datetime(2014, 7, 2, 23): datetime(2014, 7, 2, 16), datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 16), # saturday datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 16), datetime(2014, 7, 7, 9): datetime(2014, 7, 4, 16), datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 4, 16, 30), datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 4, 16, 30, 30)})) apply_cases.append((BusinessHour(-4), { datetime(2014, 7, 1, 11): datetime(2014, 6, 30, 15), datetime(2014, 7, 1, 13): datetime(2014, 6, 30, 17), datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 11), datetime(2014, 7, 1, 16): datetime(2014, 7, 1, 12), datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 13), datetime(2014, 7, 2, 11): datetime(2014, 7, 1, 15), datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 13), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 13), datetime(2014, 7, 2, 23): datetime(2014, 7, 2, 13), datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 13), datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 13), datetime(2014, 7, 4, 18): datetime(2014, 7, 4, 13), datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 4, 13, 30), datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 4, 13, 30, 30)})) apply_cases.append((BusinessHour(start='13:00', end='16:00'), { datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 14), datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), datetime(2014, 7, 1, 15): datetime(2014, 7, 2, 13), datetime(2014, 7, 1, 19): datetime(2014, 7, 2, 14), datetime(2014, 7, 1, 16): datetime(2014, 7, 2, 14), datetime(2014, 7, 1, 15, 30, 15): datetime(2014, 7, 2, 13, 30, 15), datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 14), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 14)})) apply_cases.append((BusinessHour(n=2, start='13:00', end='16:00'), { datetime(2014, 7, 1, 17): datetime(2014, 7, 2, 15), datetime(2014, 7, 2, 14): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 15), datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 15), datetime(2014, 7, 2, 14, 30): datetime(2014, 7, 3, 13, 30), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 15), datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 15), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 15), datetime(2014, 7, 4, 14, 30): datetime(2014, 7, 7, 13, 30), datetime(2014, 7, 4, 14, 30, 30): datetime(2014, 7, 7, 13, 30, 30)})) apply_cases.append((BusinessHour(n=-1, start='13:00', end='16:00'), { datetime(2014, 7, 2, 11): datetime(2014, 7, 1, 15), datetime(2014, 7, 2, 13): datetime(2014, 7, 1, 15), datetime(2014, 7, 2, 14): datetime(2014, 7, 1, 16), datetime(2014, 7, 2, 15): datetime(2014, 7, 2, 14), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 15), datetime(2014, 7, 2, 16): datetime(2014, 7, 2, 15), datetime(2014, 7, 2, 13, 30, 15): datetime(2014, 7, 1, 15, 30, 15), datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 15), datetime(2014, 7, 7, 11): datetime(2014, 7, 4, 15)})) apply_cases.append((BusinessHour(n=-3, start='10:00', end='16:00'), { datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 13), datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 11), datetime(2014, 7, 2, 8): datetime(2014, 7, 1, 13), datetime(2014, 7, 2, 13): datetime(2014, 7, 1, 16), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 13), datetime(2014, 7, 2, 11, 30): datetime(2014, 7, 1, 14, 30), datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 13), datetime(2014, 7, 4, 10): datetime(2014, 7, 3, 13), datetime(2014, 7, 5, 15): datetime(2014, 7, 4, 13), datetime(2014, 7, 4, 16): datetime(2014, 7, 4, 13), datetime(2014, 7, 4, 12, 30): datetime(2014, 7, 3, 15, 30), datetime(2014, 7, 4, 12, 30, 30): datetime(2014, 7, 3, 15, 30, 30)})) apply_cases.append((BusinessHour(start='19:00', end='05:00'), { datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 20), datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 20), datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 20), datetime(2014, 7, 2, 13): datetime(2014, 7, 2, 20), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 20), datetime(2014, 7, 2, 4, 30): datetime(2014, 7, 2, 19, 30), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 1), datetime(2014, 7, 4, 10): datetime(2014, 7, 4, 20), datetime(2014, 7, 4, 23): datetime(2014, 7, 5, 0), datetime(2014, 7, 5, 0): datetime(2014, 7, 5, 1), datetime(2014, 7, 5, 4): datetime(2014, 7, 7, 19), datetime(2014, 7, 5, 4, 30): datetime(2014, 7, 7, 19, 30), datetime(2014, 7, 5, 4, 30, 30): datetime(2014, 7, 7, 19, 30, 30)})) apply_cases.append((BusinessHour(n=-1, start='19:00', end='05:00'), { datetime(2014, 7, 1, 17): datetime(2014, 7, 1, 4), datetime(2014, 7, 2, 14): datetime(2014, 7, 2, 4), datetime(2014, 7, 2, 8): datetime(2014, 7, 2, 4), datetime(2014, 7, 2, 13): datetime(2014, 7, 2, 4), datetime(2014, 7, 2, 20): datetime(2014, 7, 2, 5), datetime(2014, 7, 2, 19): datetime(2014, 7, 2, 4), datetime(2014, 7, 2, 19, 30): datetime(2014, 7, 2, 4, 30), datetime(2014, 7, 3, 0): datetime(2014, 7, 2, 23), datetime(2014, 7, 3, 6): datetime(2014, 7, 3, 4), datetime(2014, 7, 4, 23): datetime(2014, 7, 4, 22), datetime(2014, 7, 5, 0): datetime(2014, 7, 4, 23), datetime(2014, 7, 5, 4): datetime(2014, 7, 5, 3), datetime(2014, 7, 7, 19, 30): datetime(2014, 7, 5, 4, 30), datetime(2014, 7, 7, 19, 30, 30): datetime(2014, 7, 5, 4, 30, 30)})) @pytest.mark.parametrize('case', apply_cases) def test_apply(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) apply_large_n_cases = [] # A week later apply_large_n_cases.append((BusinessHour(40), { datetime(2014, 7, 1, 11): datetime(2014, 7, 8, 11), datetime(2014, 7, 1, 13): datetime(2014, 7, 8, 13), datetime(2014, 7, 1, 15): datetime(2014, 7, 8, 15), datetime(2014, 7, 1, 16): datetime(2014, 7, 8, 16), datetime(2014, 7, 1, 17): datetime(2014, 7, 9, 9), datetime(2014, 7, 2, 11): datetime(2014, 7, 9, 11), datetime(2014, 7, 2, 8): datetime(2014, 7, 9, 9), datetime(2014, 7, 2, 19): datetime(2014, 7, 10, 9), datetime(2014, 7, 2, 23): datetime(2014, 7, 10, 9), datetime(2014, 7, 3, 0): datetime(2014, 7, 10, 9), datetime(2014, 7, 5, 15): datetime(2014, 7, 14, 9), datetime(2014, 7, 4, 18): datetime(2014, 7, 14, 9), datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 14, 9, 30), datetime(2014, 7, 7, 9, 30, 30): datetime(2014, 7, 14, 9, 30, 30)})) # 3 days and 1 hour before apply_large_n_cases.append((BusinessHour(-25), { datetime(2014, 7, 1, 11): datetime(2014, 6, 26, 10), datetime(2014, 7, 1, 13): datetime(2014, 6, 26, 12), datetime(2014, 7, 1, 9): datetime(2014, 6, 25, 16), datetime(2014, 7, 1, 10): datetime(2014, 6, 25, 17), datetime(2014, 7, 3, 11): datetime(2014, 6, 30, 10), datetime(2014, 7, 3, 8): datetime(2014, 6, 27, 16), datetime(2014, 7, 3, 19): datetime(2014, 6, 30, 16), datetime(2014, 7, 3, 23): datetime(2014, 6, 30, 16), datetime(2014, 7, 4, 9): datetime(2014, 6, 30, 16), datetime(2014, 7, 5, 15): datetime(2014, 7, 1, 16), datetime(2014, 7, 6, 18): datetime(2014, 7, 1, 16), datetime(2014, 7, 7, 9, 30): datetime(2014, 7, 1, 16, 30), datetime(2014, 7, 7, 10, 30, 30): datetime(2014, 7, 2, 9, 30, 30)})) # 5 days and 3 hours later apply_large_n_cases.append((BusinessHour(28, start='21:00', end='02:00'), { datetime(2014, 7, 1, 11): datetime(2014, 7, 9, 0), datetime(2014, 7, 1, 22): datetime(2014, 7, 9, 1), datetime(2014, 7, 1, 23): datetime(2014, 7, 9, 21), datetime(2014, 7, 2, 2): datetime(2014, 7, 10, 0), datetime(2014, 7, 3, 21): datetime(2014, 7, 11, 0), datetime(2014, 7, 4, 1): datetime(2014, 7, 11, 23), datetime(2014, 7, 4, 2): datetime(2014, 7, 12, 0), datetime(2014, 7, 4, 3): datetime(2014, 7, 12, 0), datetime(2014, 7, 5, 1): datetime(2014, 7, 14, 23), datetime(2014, 7, 5, 15): datetime(2014, 7, 15, 0), datetime(2014, 7, 6, 18): datetime(2014, 7, 15, 0), datetime(2014, 7, 7, 1): datetime(2014, 7, 15, 0), datetime(2014, 7, 7, 23, 30): datetime(2014, 7, 15, 21, 30)})) @pytest.mark.parametrize('case', apply_large_n_cases) def test_apply_large_n(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_apply_nanoseconds(self): tests = [] tests.append((BusinessHour(), {Timestamp('2014-07-04 15:00') + Nano(5): Timestamp( '2014-07-04 16:00') + Nano(5), Timestamp('2014-07-04 16:00') + Nano(5): Timestamp( '2014-07-07 09:00') + Nano(5), Timestamp('2014-07-04 16:00') - Nano(5): Timestamp( '2014-07-04 17:00') - Nano(5)})) tests.append((BusinessHour(-1), {Timestamp('2014-07-04 15:00') + Nano(5): Timestamp( '2014-07-04 14:00') + Nano(5), Timestamp('2014-07-04 10:00') + Nano(5): Timestamp( '2014-07-04 09:00') + Nano(5), Timestamp('2014-07-04 10:00') - Nano(5): Timestamp( '2014-07-03 17:00') - Nano(5), })) for offset, cases in tests: for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_datetimeindex(self): idx1 = DatetimeIndex(start='2014-07-04 15:00', end='2014-07-08 10:00', freq='BH') idx2 = DatetimeIndex(start='2014-07-04 15:00', periods=12, freq='BH') idx3 = DatetimeIndex(end='2014-07-08 10:00', periods=12, freq='BH') expected = DatetimeIndex(['2014-07-04 15:00', '2014-07-04 16:00', '2014-07-07 09:00', '2014-07-07 10:00', '2014-07-07 11:00', '2014-07-07 12:00', '2014-07-07 13:00', '2014-07-07 14:00', '2014-07-07 15:00', '2014-07-07 16:00', '2014-07-08 09:00', '2014-07-08 10:00'], freq='BH') for idx in [idx1, idx2, idx3]: tm.assert_index_equal(idx, expected) idx1 = DatetimeIndex(start='2014-07-04 15:45', end='2014-07-08 10:45', freq='BH') idx2 = DatetimeIndex(start='2014-07-04 15:45', periods=12, freq='BH') idx3 = DatetimeIndex(end='2014-07-08 10:45', periods=12, freq='BH') expected = DatetimeIndex(['2014-07-04 15:45', '2014-07-04 16:45', '2014-07-07 09:45', '2014-07-07 10:45', '2014-07-07 11:45', '2014-07-07 12:45', '2014-07-07 13:45', '2014-07-07 14:45', '2014-07-07 15:45', '2014-07-07 16:45', '2014-07-08 09:45', '2014-07-08 10:45'], freq='BH') expected = idx1 for idx in [idx1, idx2, idx3]: tm.assert_index_equal(idx, expected) class TestCustomBusinessHour(Base): _offset = CustomBusinessHour holidays = ['2014-06-27', datetime(2014, 6, 30), np.datetime64('2014-07-02')] def setup_method(self, method): # 2014 Calendar to check custom holidays # Sun Mon Tue Wed Thu Fri Sat # 6/22 23 24 25 26 27 28 # 29 30 7/1 2 3 4 5 # 6 7 8 9 10 11 12 self.d = datetime(2014, 7, 1, 10, 00) self.offset1 = CustomBusinessHour(weekmask='Tue Wed Thu Fri') self.offset2 = CustomBusinessHour(holidays=self.holidays) def test_constructor_errors(self): from datetime import time as dt_time with pytest.raises(ValueError): CustomBusinessHour(start=dt_time(11, 0, 5)) with pytest.raises(ValueError): CustomBusinessHour(start='AAA') with pytest.raises(ValueError): CustomBusinessHour(start='14:00:05') def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset1) == '<CustomBusinessHour: CBH=09:00-17:00>' assert repr(self.offset2) == '<CustomBusinessHour: CBH=09:00-17:00>' def test_with_offset(self): expected = Timestamp('2014-07-01 13:00') assert self.d + CustomBusinessHour() * 3 == expected assert self.d + CustomBusinessHour(n=3) == expected def test_eq(self): for offset in [self.offset1, self.offset2]: assert offset == offset assert CustomBusinessHour() != CustomBusinessHour(-1) assert (CustomBusinessHour(start='09:00') == CustomBusinessHour()) assert (CustomBusinessHour(start='09:00') != CustomBusinessHour(start='09:01')) assert (CustomBusinessHour(start='09:00', end='17:00') != CustomBusinessHour(start='17:00', end='09:01')) assert (CustomBusinessHour(weekmask='Tue Wed Thu Fri') != CustomBusinessHour(weekmask='Mon Tue Wed Thu Fri')) assert (CustomBusinessHour(holidays=['2014-06-27']) != CustomBusinessHour(holidays=['2014-06-28'])) def test_sub(self): # override the Base.test_sub implementation because self.offset2 is # defined differently in this class than the test expects pass def test_hash(self): assert hash(self.offset1) == hash(self.offset1) assert hash(self.offset2) == hash(self.offset2) def test_call(self): assert self.offset1(self.d) == datetime(2014, 7, 1, 11) assert self.offset2(self.d) == datetime(2014, 7, 1, 11) def testRollback1(self): assert self.offset1.rollback(self.d) == self.d assert self.offset2.rollback(self.d) == self.d d = datetime(2014, 7, 1, 0) # 2014/07/01 is Tuesday, 06/30 is Monday(holiday) assert self.offset1.rollback(d) == datetime(2014, 6, 27, 17) # 2014/6/30 and 2014/6/27 are holidays assert self.offset2.rollback(d) == datetime(2014, 6, 26, 17) def testRollback2(self): assert (self._offset(-3).rollback(datetime(2014, 7, 5, 15, 0)) == datetime(2014, 7, 4, 17, 0)) def testRollforward1(self): assert self.offset1.rollforward(self.d) == self.d assert self.offset2.rollforward(self.d) == self.d d = datetime(2014, 7, 1, 0) assert self.offset1.rollforward(d) == datetime(2014, 7, 1, 9) assert self.offset2.rollforward(d) == datetime(2014, 7, 1, 9) def testRollforward2(self): assert (self._offset(-3).rollforward(datetime(2014, 7, 5, 16, 0)) == datetime(2014, 7, 7, 9)) def test_roll_date_object(self): offset = BusinessHour() dt = datetime(2014, 7, 6, 15, 0) result = offset.rollback(dt) assert result == datetime(2014, 7, 4, 17) result = offset.rollforward(dt) assert result == datetime(2014, 7, 7, 9) normalize_cases = [] normalize_cases.append(( CustomBusinessHour(normalize=True, holidays=holidays), {datetime(2014, 7, 1, 8): datetime(2014, 7, 1), datetime(2014, 7, 1, 17): datetime(2014, 7, 3), datetime(2014, 7, 1, 16): datetime(2014, 7, 3), datetime(2014, 7, 1, 23): datetime(2014, 7, 3), datetime(2014, 7, 1, 0): datetime(2014, 7, 1), datetime(2014, 7, 4, 15): datetime(2014, 7, 4), datetime(2014, 7, 4, 15, 59): datetime(2014, 7, 4), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7), datetime(2014, 7, 5, 23): datetime(2014, 7, 7), datetime(2014, 7, 6, 10): datetime(2014, 7, 7)})) normalize_cases.append(( CustomBusinessHour(-1, normalize=True, holidays=holidays), {datetime(2014, 7, 1, 8): datetime(2014, 6, 26), datetime(2014, 7, 1, 17): datetime(2014, 7, 1), datetime(2014, 7, 1, 16): datetime(2014, 7, 1), datetime(2014, 7, 1, 10): datetime(2014, 6, 26), datetime(2014, 7, 1, 0): datetime(2014, 6, 26), datetime(2014, 7, 7, 10): datetime(2014, 7, 4), datetime(2014, 7, 7, 10, 1): datetime(2014, 7, 7), datetime(2014, 7, 5, 23): datetime(2014, 7, 4), datetime(2014, 7, 6, 10): datetime(2014, 7, 4)})) normalize_cases.append(( CustomBusinessHour(1, normalize=True, start='17:00', end='04:00', holidays=holidays), {datetime(2014, 7, 1, 8): datetime(2014, 7, 1), datetime(2014, 7, 1, 17): datetime(2014, 7, 1), datetime(2014, 7, 1, 23): datetime(2014, 7, 2), datetime(2014, 7, 2, 2): datetime(2014, 7, 2), datetime(2014, 7, 2, 3): datetime(2014, 7, 3), datetime(2014, 7, 4, 23): datetime(2014, 7, 5), datetime(2014, 7, 5, 2): datetime(2014, 7, 5), datetime(2014, 7, 7, 2): datetime(2014, 7, 7), datetime(2014, 7, 7, 17): datetime(2014, 7, 7)})) @pytest.mark.parametrize('norm_cases', normalize_cases) def test_normalize(self, norm_cases): offset, cases = norm_cases for dt, expected in compat.iteritems(cases): assert offset.apply(dt) == expected def test_onOffset(self): tests = [] tests.append((CustomBusinessHour(start='10:00', end='15:00', holidays=self.holidays), {datetime(2014, 7, 1, 9): False, datetime(2014, 7, 1, 10): True, datetime(2014, 7, 1, 15): True, datetime(2014, 7, 1, 15, 1): False, datetime(2014, 7, 5, 12): False, datetime(2014, 7, 6, 12): False})) for offset, cases in tests: for dt, expected in compat.iteritems(cases): assert offset.onOffset(dt) == expected apply_cases = [] apply_cases.append(( CustomBusinessHour(holidays=holidays), {datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 12), datetime(2014, 7, 1, 13): datetime(2014, 7, 1, 14), datetime(2014, 7, 1, 15): datetime(2014, 7, 1, 16), datetime(2014, 7, 1, 19): datetime(2014, 7, 3, 10), datetime(2014, 7, 1, 16): datetime(2014, 7, 3, 9), datetime(2014, 7, 1, 16, 30, 15): datetime(2014, 7, 3, 9, 30, 15), datetime(2014, 7, 1, 17): datetime(2014, 7, 3, 10), datetime(2014, 7, 2, 11): datetime(2014, 7, 3, 10), # out of business hours datetime(2014, 7, 2, 8): datetime(2014, 7, 3, 10), datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 10), datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 10), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 10), # saturday datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 10), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 10), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 9, 30), datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 9, 30, 30)})) apply_cases.append(( CustomBusinessHour(4, holidays=holidays), {datetime(2014, 7, 1, 11): datetime(2014, 7, 1, 15), datetime(2014, 7, 1, 13): datetime(2014, 7, 3, 9), datetime(2014, 7, 1, 15): datetime(2014, 7, 3, 11), datetime(2014, 7, 1, 16): datetime(2014, 7, 3, 12), datetime(2014, 7, 1, 17): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 11): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 8): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 19): datetime(2014, 7, 3, 13), datetime(2014, 7, 2, 23): datetime(2014, 7, 3, 13), datetime(2014, 7, 3, 0): datetime(2014, 7, 3, 13), datetime(2014, 7, 5, 15): datetime(2014, 7, 7, 13), datetime(2014, 7, 4, 17): datetime(2014, 7, 7, 13), datetime(2014, 7, 4, 16, 30): datetime(2014, 7, 7, 12, 30), datetime(2014, 7, 4, 16, 30, 30): datetime(2014, 7, 7, 12, 30, 30)})) @pytest.mark.parametrize('apply_case', apply_cases) def test_apply(self, apply_case): offset, cases = apply_case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) nano_cases = [] nano_cases.append( (CustomBusinessHour(holidays=holidays), {Timestamp('2014-07-01 15:00') + Nano(5): Timestamp('2014-07-01 16:00') + Nano(5), Timestamp('2014-07-01 16:00') + Nano(5): Timestamp('2014-07-03 09:00') + Nano(5), Timestamp('2014-07-01 16:00') - Nano(5): Timestamp('2014-07-01 17:00') - Nano(5)})) nano_cases.append( (CustomBusinessHour(-1, holidays=holidays), {Timestamp('2014-07-01 15:00') + Nano(5): Timestamp('2014-07-01 14:00') + Nano(5), Timestamp('2014-07-01 10:00') + Nano(5): Timestamp('2014-07-01 09:00') + Nano(5), Timestamp('2014-07-01 10:00') - Nano(5): Timestamp('2014-06-26 17:00') - Nano(5)})) @pytest.mark.parametrize('nano_case', nano_cases) def test_apply_nanoseconds(self, nano_case): offset, cases = nano_case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) class TestCustomBusinessDay(Base): _offset = CDay def setup_method(self, method): self.d = datetime(2008, 1, 1) self.nd = np_datetime64_compat('2008-01-01 00:00:00Z') self.offset = CDay() self.offset1 = self.offset self.offset2 = CDay(2) def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == '<CustomBusinessDay>' assert repr(self.offset2) == '<2 * CustomBusinessDays>' if compat.PY37: expected = '<BusinessDay: offset=datetime.timedelta(days=1)>' else: expected = '<BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_call(self): assert self.offset2(self.d) == datetime(2008, 1, 3) assert self.offset2(self.nd) == datetime(2008, 1, 3) def testRollback1(self): assert CDay(10).rollback(self.d) == self.d def testRollback2(self): assert (CDay(10).rollback(datetime(2008, 1, 5)) == datetime(2008, 1, 4)) def testRollforward1(self): assert CDay(10).rollforward(self.d) == self.d def testRollforward2(self): assert (CDay(10).rollforward(datetime(2008, 1, 5)) == datetime(2008, 1, 7)) def test_roll_date_object(self): offset = CDay() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 14) result = offset.rollforward(dt) assert result == datetime(2012, 9, 17) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [(CDay(), datetime(2008, 1, 1), True), (CDay(), datetime(2008, 1, 5), False)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): offset, d, expected = case assert_onOffset(offset, d, expected) apply_cases = [] apply_cases.append((CDay(), { datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) apply_cases.append((2 * CDay(), { datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) apply_cases.append((-CDay(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) apply_cases.append((-2 * CDay(), { datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) apply_cases.append((CDay(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) @pytest.mark.parametrize('case', apply_cases) def test_apply(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CDay(10) assert result == datetime(2012, 11, 6) result = dt + CDay(100) - CDay(100) assert result == dt off = CDay() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 12, 23) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2011, 12, 26) assert rs == xp def test_apply_corner(self): pytest.raises(Exception, CDay().apply, BMonthEnd()) def test_holidays(self): # Define a TradingDay offset holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')] tday = CDay(holidays=holidays) for year in range(2012, 2015): dt = datetime(year, 4, 30) xp = datetime(year, 5, 2) rs = dt + tday assert rs == xp def test_weekmask(self): weekmask_saudi = 'Sat Sun Mon Tue Wed' # Thu-Fri Weekend weekmask_uae = '1111001' # Fri-Sat Weekend weekmask_egypt = [1, 1, 1, 1, 0, 0, 1] # Fri-Sat Weekend bday_saudi = CDay(weekmask=weekmask_saudi) bday_uae = CDay(weekmask=weekmask_uae) bday_egypt = CDay(weekmask=weekmask_egypt) dt = datetime(2013, 5, 1) xp_saudi = datetime(2013, 5, 4) xp_uae = datetime(2013, 5, 2) xp_egypt = datetime(2013, 5, 2) assert xp_saudi == dt + bday_saudi assert xp_uae == dt + bday_uae assert xp_egypt == dt + bday_egypt xp2 = datetime(2013, 5, 5) assert xp2 == dt + 2 * bday_saudi assert xp2 == dt + 2 * bday_uae assert xp2 == dt + 2 * bday_egypt def test_weekmask_and_holidays(self): weekmask_egypt = 'Sun Mon Tue Wed Thu' # Fri-Sat Weekend holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')] bday_egypt = CDay(holidays=holidays, weekmask=weekmask_egypt) dt = datetime(2013, 4, 30) xp_egypt = datetime(2013, 5, 5) assert xp_egypt == dt + 2 * bday_egypt @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_calendar(self): calendar = USFederalHolidayCalendar() dt = datetime(2014, 1, 17) assert_offset_equal(CDay(calendar=calendar), dt, datetime(2014, 1, 21)) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self.offset) _check_roundtrip(self.offset2) _check_roundtrip(self.offset * 2) def test_pickle_compat_0_14_1(self, datapath): hdays = [datetime(2013, 1, 1) for ele in range(4)] pth = datapath('tseries', 'offsets', 'data', 'cday-0.14.1.pickle') cday0_14_1 = read_pickle(pth) cday = CDay(holidays=hdays) assert cday == cday0_14_1 class CustomBusinessMonthBase(object): def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask='Mon Wed Fri') assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == '<CustomBusinessMonthEnd>' assert repr(self.offset2) == '<2 * CustomBusinessMonthEnds>' def testCall(self): assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert (CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31)) def testRollback2(self): assert CBMonthEnd(10).rollback(self.d) == datetime(2007, 12, 31) def testRollforward1(self): assert CBMonthEnd(10).rollforward(self.d) == datetime(2008, 1, 31) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 8, 31) result = offset.rollforward(dt) assert result == datetime(2012, 9, 28) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [(CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): offset, d, expected = case assert_onOffset(offset, d, expected) apply_cases = [] apply_cases.append((CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29)})) apply_cases.append((2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31)})) apply_cases.append((-CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31)})) apply_cases.append((-2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 11, 30), datetime(2008, 2, 9): datetime(2007, 12, 31)})) apply_cases.append((CBMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29)})) @pytest.mark.parametrize('case', apply_cases) def test_apply(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthEnd(10) assert result == datetime(2013, 7, 31) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthEnd() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 29) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 5, 31) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ['2012-01-31', datetime(2012, 2, 28), np.datetime64('2012-02-29')] bm_offset = CBMonthEnd(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 30) assert dt + 2 * bm_offset == datetime(2012, 2, 27) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): from pandas.tseries.holiday import USFederalHolidayCalendar hcal = USFederalHolidayCalendar() freq = CBMonthEnd(calendar=hcal) assert (DatetimeIndex(start='20120101', end='20130101', freq=freq).tolist()[0] == datetime(2012, 1, 31)) class TestCustomBusinessMonthBegin(CustomBusinessMonthBase, Base): _offset = CBMonthBegin def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` doesnt match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == '<CustomBusinessMonthBegin>' assert repr(self.offset2) == '<2 * CustomBusinessMonthBegins>' def testCall(self): assert self.offset2(self.d) == datetime(2008, 3, 3) def testRollback1(self): assert (CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31)) def testRollback2(self): assert CBMonthBegin(10).rollback(self.d) == datetime(2008, 1, 1) def testRollforward1(self): assert CBMonthBegin(10).rollforward(self.d) == datetime(2008, 1, 1) def test_roll_date_object(self): offset = CBMonthBegin() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 9, 3) result = offset.rollforward(dt) assert result == datetime(2012, 10, 1) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [(CBMonthBegin(), datetime(2008, 1, 1), True), (CBMonthBegin(), datetime(2008, 1, 31), False)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): offset, dt, expected = case assert_onOffset(offset, dt, expected) apply_cases = [] apply_cases.append((CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 2, 7): datetime(2008, 3, 3)})) apply_cases.append((2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 3, 3), datetime(2008, 2, 7): datetime(2008, 4, 1)})) apply_cases.append((-CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 12, 3), datetime(2008, 2, 8): datetime(2008, 2, 1)})) apply_cases.append((-2 * CBMonthBegin(), { datetime(2008, 1, 1): datetime(2007, 11, 1), datetime(2008, 2, 9): datetime(2008, 1, 1)})) apply_cases.append((CBMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 7): datetime(2008, 2, 1)})) @pytest.mark.parametrize('case', apply_cases) def test_apply(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) def test_apply_large_n(self): dt = datetime(2012, 10, 23) result = dt + CBMonthBegin(10) assert result == datetime(2013, 8, 1) result = dt + CDay(100) - CDay(100) assert result == dt off = CBMonthBegin() * 6 rs = datetime(2012, 1, 1) - off xp = datetime(2011, 7, 1) assert rs == xp st = datetime(2011, 12, 18) rs = st + off xp = datetime(2012, 6, 1) assert rs == xp def test_holidays(self): # Define a TradingDay offset holidays = ['2012-02-01', datetime(2012, 2, 2), np.datetime64('2012-03-01')] bm_offset = CBMonthBegin(holidays=holidays) dt = datetime(2012, 1, 1) assert dt + bm_offset == datetime(2012, 1, 2) assert dt + 2 * bm_offset == datetime(2012, 2, 3) @pytest.mark.filterwarnings("ignore:Non:pandas.errors.PerformanceWarning") def test_datetimeindex(self): hcal = USFederalHolidayCalendar() cbmb = CBMonthBegin(calendar=hcal) assert (DatetimeIndex(start='20120101', end='20130101', freq=cbmb).tolist()[0] == datetime(2012, 1, 3)) class TestWeek(Base): _offset = Week d = Timestamp(datetime(2008, 1, 2)) offset1 = _offset() offset2 = _offset(2) def test_repr(self): assert repr(Week(weekday=0)) == "<Week: weekday=0>" assert repr(Week(n=-1, weekday=0)) == "<-1 * Week: weekday=0>" assert repr(Week(n=-2, weekday=0)) == "<-2 * Weeks: weekday=0>" def test_corner(self): with pytest.raises(ValueError): Week(weekday=7) with pytest.raises(ValueError, match="Day must be"): Week(weekday=-1) def test_isAnchored(self): assert Week(weekday=0).isAnchored() assert not Week().isAnchored() assert not Week(2, weekday=2).isAnchored() assert not Week(2).isAnchored() offset_cases = [] # not business week offset_cases.append((Week(), { datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) # Mon offset_cases.append((Week(weekday=0), { datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) # n=0 -> roll forward. Mon offset_cases.append((Week(0, weekday=0), { datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) # n=0 -> roll forward. Mon offset_cases.append((Week(-2, weekday=1), { datetime(2010, 4, 6): datetime(2010, 3, 23), datetime(2010, 4, 8): datetime(2010, 3, 30), datetime(2010, 4, 5): datetime(2010, 3, 23)})) @pytest.mark.parametrize('case', offset_cases) def test_offset(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize('weekday', range(7)) def test_onOffset(self, weekday): offset = Week(weekday=weekday) for day in range(1, 8): date = datetime(2008, 1, day) if day % 7 == weekday: expected = True else: expected = False assert_onOffset(offset, date, expected) class TestWeekOfMonth(Base): _offset = WeekOfMonth offset1 = _offset() offset2 = _offset(2) def test_constructor(self): with pytest.raises(ValueError, match="^Week"): WeekOfMonth(n=1, week=4, weekday=0) with pytest.raises(ValueError, match="^Week"): WeekOfMonth(n=1, week=-1, weekday=0) with pytest.raises(ValueError, match="^Day"): WeekOfMonth(n=1, week=0, weekday=-1) with pytest.raises(ValueError, match="^Day"): WeekOfMonth(n=1, week=0, weekday=-7) def test_repr(self): assert (repr(WeekOfMonth(weekday=1, week=2)) == "<WeekOfMonth: week=2, weekday=1>") def test_offset(self): date1 = datetime(2011, 1, 4) # 1st Tuesday of Month date2 = datetime(2011, 1, 11) # 2nd Tuesday of Month date3 = datetime(2011, 1, 18) # 3rd Tuesday of Month date4 = datetime(2011, 1, 25) # 4th Tuesday of Month # see for loop for structure test_cases = [ (-2, 2, 1, date1, datetime(2010, 11, 16)), (-2, 2, 1, date2, datetime(2010, 11, 16)), (-2, 2, 1, date3, datetime(2010, 11, 16)), (-2, 2, 1, date4, datetime(2010, 12, 21)), (-1, 2, 1, date1, datetime(2010, 12, 21)), (-1, 2, 1, date2, datetime(2010, 12, 21)), (-1, 2, 1, date3, datetime(2010, 12, 21)), (-1, 2, 1, date4, datetime(2011, 1, 18)), (0, 0, 1, date1, datetime(2011, 1, 4)), (0, 0, 1, date2, datetime(2011, 2, 1)), (0, 0, 1, date3, datetime(2011, 2, 1)), (0, 0, 1, date4, datetime(2011, 2, 1)), (0, 1, 1, date1, datetime(2011, 1, 11)), (0, 1, 1, date2, datetime(2011, 1, 11)), (0, 1, 1, date3, datetime(2011, 2, 8)), (0, 1, 1, date4, datetime(2011, 2, 8)), (0, 0, 1, date1, datetime(2011, 1, 4)), (0, 1, 1, date2, datetime(2011, 1, 11)), (0, 2, 1, date3, datetime(2011, 1, 18)), (0, 3, 1, date4, datetime(2011, 1, 25)), (1, 0, 0, date1, datetime(2011, 2, 7)), (1, 0, 0, date2, datetime(2011, 2, 7)), (1, 0, 0, date3, datetime(2011, 2, 7)), (1, 0, 0, date4, datetime(2011, 2, 7)), (1, 0, 1, date1, datetime(2011, 2, 1)), (1, 0, 1, date2, datetime(2011, 2, 1)), (1, 0, 1, date3, datetime(2011, 2, 1)), (1, 0, 1, date4, datetime(2011, 2, 1)), (1, 0, 2, date1, datetime(2011, 1, 5)), (1, 0, 2, date2, datetime(2011, 2, 2)), (1, 0, 2, date3, datetime(2011, 2, 2)), (1, 0, 2, date4, datetime(2011, 2, 2)), (1, 2, 1, date1, datetime(2011, 1, 18)), (1, 2, 1, date2, datetime(2011, 1, 18)), (1, 2, 1, date3, datetime(2011, 2, 15)), (1, 2, 1, date4, datetime(2011, 2, 15)), (2, 2, 1, date1, datetime(2011, 2, 15)), (2, 2, 1, date2, datetime(2011, 2, 15)), (2, 2, 1, date3, datetime(2011, 3, 15)), (2, 2, 1, date4, datetime(2011, 3, 15))] for n, week, weekday, dt, expected in test_cases: offset = WeekOfMonth(n, week=week, weekday=weekday) assert_offset_equal(offset, dt, expected) # try subtracting result = datetime(2011, 2, 1) - WeekOfMonth(week=1, weekday=2) assert result == datetime(2011, 1, 12) result = datetime(2011, 2, 3) - WeekOfMonth(week=0, weekday=2) assert result == datetime(2011, 2, 2) on_offset_cases = [(0, 0, datetime(2011, 2, 7), True), (0, 0, datetime(2011, 2, 6), False), (0, 0, datetime(2011, 2, 14), False), (1, 0, datetime(2011, 2, 14), True), (0, 1, datetime(2011, 2, 1), True), (0, 1, datetime(2011, 2, 8), False)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): week, weekday, dt, expected = case offset = WeekOfMonth(week=week, weekday=weekday) assert offset.onOffset(dt) == expected class TestLastWeekOfMonth(Base): _offset = LastWeekOfMonth offset1 = _offset() offset2 = _offset(2) def test_constructor(self): with pytest.raises(ValueError, match="^N cannot be 0"): LastWeekOfMonth(n=0, weekday=1) with pytest.raises(ValueError, match="^Day"): LastWeekOfMonth(n=1, weekday=-1) with pytest.raises(ValueError, match="^Day"): LastWeekOfMonth(n=1, weekday=7) def test_offset(self): # Saturday last_sat = datetime(2013, 8, 31) next_sat = datetime(2013, 9, 28) offset_sat = LastWeekOfMonth(n=1, weekday=5) one_day_before = (last_sat + timedelta(days=-1)) assert one_day_before + offset_sat == last_sat one_day_after = (last_sat + timedelta(days=+1)) assert one_day_after + offset_sat == next_sat # Test On that day assert last_sat + offset_sat == next_sat # Thursday offset_thur = LastWeekOfMonth(n=1, weekday=3) last_thurs = datetime(2013, 1, 31) next_thurs = datetime(2013, 2, 28) one_day_before = last_thurs + timedelta(days=-1) assert one_day_before + offset_thur == last_thurs one_day_after = last_thurs + timedelta(days=+1) assert one_day_after + offset_thur == next_thurs # Test on that day assert last_thurs + offset_thur == next_thurs three_before = last_thurs + timedelta(days=-3) assert three_before + offset_thur == last_thurs two_after = last_thurs + timedelta(days=+2) assert two_after + offset_thur == next_thurs offset_sunday = LastWeekOfMonth(n=1, weekday=WeekDay.SUN) assert datetime(2013, 7, 31) + offset_sunday == datetime(2013, 8, 25) on_offset_cases = [ (WeekDay.SUN, datetime(2013, 1, 27), True), (WeekDay.SAT, datetime(2013, 3, 30), True), (WeekDay.MON, datetime(2013, 2, 18), False), # Not the last Mon (WeekDay.SUN, datetime(2013, 2, 25), False), # Not a SUN (WeekDay.MON, datetime(2013, 2, 25), True), (WeekDay.SAT, datetime(2013, 11, 30), True), (WeekDay.SAT, datetime(2006, 8, 26), True), (WeekDay.SAT, datetime(2007, 8, 25), True), (WeekDay.SAT, datetime(2008, 8, 30), True), (WeekDay.SAT, datetime(2009, 8, 29), True), (WeekDay.SAT, datetime(2010, 8, 28), True), (WeekDay.SAT, datetime(2011, 8, 27), True), (WeekDay.SAT, datetime(2019, 8, 31), True)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): weekday, dt, expected = case offset = LastWeekOfMonth(weekday=weekday) assert offset.onOffset(dt) == expected class TestSemiMonthEnd(Base): _offset = SemiMonthEnd offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = (datetime(2007, 12, 31), datetime(2008, 1, 15), datetime(2008, 1, 31), datetime(2008, 2, 15), datetime(2008, 2, 29), datetime(2008, 3, 15), datetime(2008, 3, 31), datetime(2008, 4, 15), datetime(2008, 4, 30), datetime(2008, 5, 15), datetime(2008, 5, 31), datetime(2008, 6, 15), datetime(2008, 6, 30), datetime(2008, 7, 15), datetime(2008, 7, 31), datetime(2008, 8, 15), datetime(2008, 8, 31), datetime(2008, 9, 15), datetime(2008, 9, 30), datetime(2008, 10, 15), datetime(2008, 10, 31), datetime(2008, 11, 15), datetime(2008, 11, 30), datetime(2008, 12, 15), datetime(2008, 12, 31)) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthEnd(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) result = SemiMonthEnd().apply_index(s) exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = DatetimeIndex(start=dates[0], end=dates[-1], freq='SM') exp = DatetimeIndex(dates) tm.assert_index_equal(result, exp) offset_cases = [] offset_cases.append((SemiMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 31)})) offset_cases.append((SemiMonthEnd(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 20), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 20), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20)})) offset_cases.append((SemiMonthEnd(0), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 16): datetime(2008, 1, 31), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 15)})) offset_cases.append((SemiMonthEnd(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 16), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 16)})) offset_cases.append((SemiMonthEnd(2), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 11, 30)})) offset_cases.append((SemiMonthEnd(-1), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 30): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2006, 12, 31)})) offset_cases.append((SemiMonthEnd(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2007, 1, 4): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2007, 1, 1): datetime(2006, 12, 31)})) offset_cases.append((SemiMonthEnd(-2), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 3, 15): datetime(2008, 2, 15), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 14): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 15)})) @pytest.mark.parametrize('case', offset_cases) def test_offset(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize('case', offset_cases) def test_apply_index(self, case): offset, cases = case s = DatetimeIndex(cases.keys()) result = offset.apply_index(s) exp = DatetimeIndex(cases.values()) tm.assert_index_equal(result, exp) on_offset_cases = [(datetime(2007, 12, 31), True), (datetime(2007, 12, 15), True), (datetime(2007, 12, 14), False), (datetime(2007, 12, 1), False), (datetime(2008, 2, 29), True)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): dt, expected = case assert_onOffset(SemiMonthEnd(), dt, expected) @pytest.mark.parametrize('klass', [Series, DatetimeIndex]) def test_vectorized_offset_addition(self, klass): s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = klass([Timestamp('2000-01-01 00:15:00', tz='US/Central'), Timestamp('2000-02-01', tz='US/Central')], name='a') result = s + SemiMonthEnd() result2 = SemiMonthEnd() + s exp = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), Timestamp('2000-02-15', tz='US/Central')], name='a') tm.assert_equal(result, exp) tm.assert_equal(result2, exp) class TestSemiMonthBegin(Base): _offset = SemiMonthBegin offset1 = _offset() offset2 = _offset(2) def test_offset_whole_year(self): dates = (datetime(2007, 12, 15), datetime(2008, 1, 1), datetime(2008, 1, 15), datetime(2008, 2, 1), datetime(2008, 2, 15), datetime(2008, 3, 1), datetime(2008, 3, 15), datetime(2008, 4, 1), datetime(2008, 4, 15), datetime(2008, 5, 1), datetime(2008, 5, 15), datetime(2008, 6, 1), datetime(2008, 6, 15), datetime(2008, 7, 1), datetime(2008, 7, 15), datetime(2008, 8, 1), datetime(2008, 8, 15), datetime(2008, 9, 1), datetime(2008, 9, 15), datetime(2008, 10, 1), datetime(2008, 10, 15), datetime(2008, 11, 1), datetime(2008, 11, 15), datetime(2008, 12, 1), datetime(2008, 12, 15)) for base, exp_date in zip(dates[:-1], dates[1:]): assert_offset_equal(SemiMonthBegin(), base, exp_date) # ensure .apply_index works as expected s = DatetimeIndex(dates[:-1]) result = SemiMonthBegin().apply_index(s) exp = DatetimeIndex(dates[1:]) tm.assert_index_equal(result, exp) # ensure generating a range with DatetimeIndex gives same result result = DatetimeIndex(start=dates[0], end=dates[-1], freq='SMS') exp = DatetimeIndex(dates) tm.assert_index_equal(result, exp) offset_cases = [] offset_cases.append((SemiMonthBegin(), { datetime(2008, 1, 1): datetime(2008, 1, 15), datetime(2008, 1, 15): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 15), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 15), datetime(2006, 12, 1): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2007, 1, 1)})) offset_cases.append((SemiMonthBegin(day_of_month=20), { datetime(2008, 1, 1): datetime(2008, 1, 20), datetime(2008, 1, 15): datetime(2008, 1, 20), datetime(2008, 1, 21): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 14): datetime(2006, 12, 20), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 1): datetime(2007, 1, 20), datetime(2006, 12, 1): datetime(2006, 12, 20), datetime(2006, 12, 15): datetime(2006, 12, 20)})) offset_cases.append((SemiMonthBegin(0), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 2, 1), datetime(2008, 1, 15): datetime(2008, 1, 15), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 2): datetime(2006, 12, 15), datetime(2007, 1, 1): datetime(2007, 1, 1)})) offset_cases.append((SemiMonthBegin(0, day_of_month=16), { datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 16): datetime(2008, 1, 16), datetime(2008, 1, 15): datetime(2008, 1, 16), datetime(2008, 1, 31): datetime(2008, 2, 1), datetime(2006, 12, 29): datetime(2007, 1, 1), datetime(2006, 12, 31): datetime(2007, 1, 1), datetime(2007, 1, 5): datetime(2007, 1, 16), datetime(2007, 1, 1): datetime(2007, 1, 1)})) offset_cases.append((SemiMonthBegin(2), { datetime(2008, 1, 1): datetime(2008, 2, 1), datetime(2008, 1, 31): datetime(2008, 2, 15), datetime(2006, 12, 1): datetime(2007, 1, 1), datetime(2006, 12, 29): datetime(2007, 1, 15), datetime(2006, 12, 15): datetime(2007, 1, 15), datetime(2007, 1, 1): datetime(2007, 2, 1), datetime(2007, 1, 16): datetime(2007, 2, 15), datetime(2006, 11, 1): datetime(2006, 12, 1)})) offset_cases.append((SemiMonthBegin(-1), { datetime(2007, 1, 1): datetime(2006, 12, 15), datetime(2008, 6, 30): datetime(2008, 6, 15), datetime(2008, 6, 14): datetime(2008, 6, 1), datetime(2008, 12, 31): datetime(2008, 12, 15), datetime(2006, 12, 29): datetime(2006, 12, 15), datetime(2006, 12, 15): datetime(2006, 12, 1), datetime(2007, 1, 1): datetime(2006, 12, 15)})) offset_cases.append((SemiMonthBegin(-1, day_of_month=4), { datetime(2007, 1, 1): datetime(2006, 12, 4), datetime(2007, 1, 4): datetime(2007, 1, 1), datetime(2008, 6, 30): datetime(2008, 6, 4), datetime(2008, 12, 31): datetime(2008, 12, 4), datetime(2006, 12, 5): datetime(2006, 12, 4), datetime(2006, 12, 30): datetime(2006, 12, 4), datetime(2006, 12, 2): datetime(2006, 12, 1), datetime(2007, 1, 1): datetime(2006, 12, 4)})) offset_cases.append((SemiMonthBegin(-2), { datetime(2007, 1, 1): datetime(2006, 12, 1), datetime(2008, 6, 30): datetime(2008, 6, 1), datetime(2008, 6, 14): datetime(2008, 5, 15), datetime(2008, 12, 31): datetime(2008, 12, 1), datetime(2006, 12, 29): datetime(2006, 12, 1), datetime(2006, 12, 15): datetime(2006, 11, 15), datetime(2007, 1, 1): datetime(2006, 12, 1)})) @pytest.mark.parametrize('case', offset_cases) def test_offset(self, case): offset, cases = case for base, expected in compat.iteritems(cases): assert_offset_equal(offset, base, expected) @pytest.mark.parametrize('case', offset_cases) def test_apply_index(self, case): offset, cases = case s = DatetimeIndex(cases.keys()) result = offset.apply_index(s) exp = DatetimeIndex(cases.values()) tm.assert_index_equal(result, exp) on_offset_cases = [(datetime(2007, 12, 1), True), (datetime(2007, 12, 15), True), (datetime(2007, 12, 14), False), (datetime(2007, 12, 31), False), (datetime(2008, 2, 15), True)] @pytest.mark.parametrize('case', on_offset_cases) def test_onOffset(self, case): dt, expected = case assert_onOffset(SemiMonthBegin(), dt, expected) @pytest.mark.parametrize('klass', [Series, DatetimeIndex]) def test_vectorized_offset_addition(self, klass): s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + SemiMonthBegin() result2 = SemiMonthBegin() + s exp = klass([Timestamp('2000-02-01 00:15:00', tz='US/Central'), Timestamp('2000-03-01', tz='US/Central')], name='a') tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = klass([Timestamp('2000-01-01 00:15:00', tz='US/Central'), Timestamp('2000-02-01', tz='US/Central')], name='a') result = s + SemiMonthBegin() result2 = SemiMonthBegin() + s exp = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), Timestamp('2000-02-15', tz='US/Central')], name='a') tm.assert_equal(result, exp) tm.assert_equal(result2, exp) def test_Easter(): assert_offset_equal(Easter(), datetime(2010, 1, 1), datetime(2010, 4, 4)) assert_offset_equal(Easter(), datetime(2010, 4, 5), datetime(2011, 4, 24)) assert_offset_equal(Easter(2), datetime(2010, 1, 1), datetime(2011, 4, 24)) assert_offset_equal(Easter(), datetime(2010, 4, 4), datetime(2011, 4, 24)) assert_offset_equal(Easter(2), datetime(2010, 4, 4), datetime(2012, 4, 8)) assert_offset_equal(-Easter(), datetime(2011, 1, 1), datetime(2010, 4, 4)) assert_offset_equal(-Easter(), datetime(2010, 4, 5), datetime(2010, 4, 4)) assert_offset_equal(-Easter(2), datetime(2011, 1, 1), datetime(2009, 4, 12)) assert_offset_equal(-Easter(), datetime(2010, 4, 4), datetime(2009, 4, 12)) assert_offset_equal(-Easter(2), datetime(2010, 4, 4), datetime(2008, 3, 23)) class TestOffsetNames(object): def test_get_offset_name(self): assert BDay().freqstr == 'B' assert BDay(2).freqstr == '2B' assert BMonthEnd().freqstr == 'BM' assert Week(weekday=0).freqstr == 'W-MON' assert Week(weekday=1).freqstr == 'W-TUE' assert Week(weekday=2).freqstr == 'W-WED' assert Week(weekday=3).freqstr == 'W-THU' assert Week(weekday=4).freqstr == 'W-FRI' assert LastWeekOfMonth(weekday=WeekDay.SUN).freqstr == "LWOM-SUN" def test_get_offset(): with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): get_offset('gibberish') with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): get_offset('QS-JAN-B') pairs = [ ('B', BDay()), ('b', BDay()), ('bm', BMonthEnd()), ('Bm', BMonthEnd()), ('W-MON', Week(weekday=0)), ('W-TUE', Week(weekday=1)), ('W-WED', Week(weekday=2)), ('W-THU', Week(weekday=3)), ('W-FRI', Week(weekday=4))] for name, expected in pairs: offset = get_offset(name) assert offset == expected, ("Expected %r to yield %r (actual: %r)" % (name, expected, offset)) def test_get_offset_legacy(): pairs = [('w@Sat', Week(weekday=5))] for name, expected in pairs: with pytest.raises(ValueError, match=INVALID_FREQ_ERR_MSG): get_offset(name) class TestOffsetAliases(object): def setup_method(self, method): _offset_map.clear() def test_alias_equality(self): for k, v in compat.iteritems(_offset_map): if v is None: continue assert k == v.copy() def test_rule_code(self): lst = ['M', 'MS', 'BM', 'BMS', 'D', 'B', 'H', 'T', 'S', 'L', 'U'] for k in lst: assert k == get_offset(k).rule_code # should be cached - this is kind of an internals test... assert k in _offset_map assert k == (get_offset(k) * 3).rule_code suffix_lst = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] base = 'W' for v in suffix_lst: alias = '-'.join([base, v]) assert alias == get_offset(alias).rule_code assert alias == (get_offset(alias) * 5).rule_code suffix_lst = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] base_lst = ['A', 'AS', 'BA', 'BAS', 'Q', 'QS', 'BQ', 'BQS'] for base in base_lst: for v in suffix_lst: alias = '-'.join([base, v]) assert alias == get_offset(alias).rule_code assert alias == (get_offset(alias) * 5).rule_code lst = ['M', 'D', 'B', 'H', 'T', 'S', 'L', 'U'] for k in lst: code, stride = get_freq_code('3' + k) assert isinstance(code, int) assert stride == 3 assert k == get_freq_str(code) def test_dateoffset_misc(): oset = offsets.DateOffset(months=2, days=4) # it works oset.freqstr assert (not offsets.DateOffset(months=2) == 2) def test_freq_offsets(): off = BDay(1, offset=timedelta(0, 1800)) assert (off.freqstr == 'B+30Min') off = BDay(1, offset=timedelta(0, -1800)) assert (off.freqstr == 'B-30Min') def get_all_subclasses(cls): ret = set() this_subclasses = cls.__subclasses__() ret = ret | set(this_subclasses) for this_subclass in this_subclasses: ret | get_all_subclasses(this_subclass) return ret class TestCaching(object): # as of GH 6479 (in 0.14.0), offset caching is turned off # as of v0.12.0 only BusinessMonth/Quarter were actually caching def setup_method(self, method): _daterange_cache.clear() _offset_map.clear() def run_X_index_creation(self, cls): inst1 = cls() if not inst1.isAnchored(): assert not inst1._should_cache(), cls return assert inst1._should_cache(), cls DatetimeIndex(start=datetime(2013, 1, 31), end=datetime(2013, 3, 31), freq=inst1, normalize=True) assert cls() in _daterange_cache, cls def test_should_cache_month_end(self): assert not MonthEnd()._should_cache() def test_should_cache_bmonth_end(self): assert not BusinessMonthEnd()._should_cache() def test_should_cache_week_month(self): assert not WeekOfMonth(weekday=1, week=2)._should_cache() def test_all_cacheableoffsets(self): for subclass in get_all_subclasses(CacheableOffset): if subclass.__name__[0] == "_" \ or subclass in TestCaching.no_simple_ctr: continue self.run_X_index_creation(subclass) def test_month_end_index_creation(self): DatetimeIndex(start=datetime(2013, 1, 31), end=datetime(2013, 3, 31), freq=MonthEnd(), normalize=True) assert not MonthEnd() in _daterange_cache def test_bmonth_end_index_creation(self): DatetimeIndex(start=datetime(2013, 1, 31), end=datetime(2013, 3, 29), freq=BusinessMonthEnd(), normalize=True) assert not BusinessMonthEnd() in _daterange_cache def test_week_of_month_index_creation(self): inst1 = WeekOfMonth(weekday=1, week=2) DatetimeIndex(start=datetime(2013, 1, 31), end=datetime(2013, 3, 29), freq=inst1, normalize=True) inst2 = WeekOfMonth(weekday=1, week=2) assert inst2 not in _daterange_cache class TestReprNames(object): def test_str_for_named_is_name(self): # look at all the amazing combinations! month_prefixes = ['A', 'AS', 'BA', 'BAS', 'Q', 'BQ', 'BQS', 'QS'] names = [prefix + '-' + month for prefix in month_prefixes for month in ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']] days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] names += ['W-' + day for day in days] names += ['WOM-' + week + day for week in ('1', '2', '3', '4') for day in days] _offset_map.clear() for name in names: offset = get_offset(name) assert offset.freqstr == name def get_utc_offset_hours(ts): # take a Timestamp and compute total hours of utc offset o = ts.utcoffset() return (o.days * 24 * 3600 + o.seconds) / 3600.0 class TestDST(object): """ test DateOffset additions over Daylight Savings Time """ # one microsecond before the DST transition ts_pre_fallback = "2013-11-03 01:59:59.999999" ts_pre_springfwd = "2013-03-10 01:59:59.999999" # test both basic names and dateutil timezones timezone_utc_offsets = { 'US/Eastern': dict(utc_offset_daylight=-4, utc_offset_standard=-5, ), 'dateutil/US/Pacific': dict(utc_offset_daylight=-7, utc_offset_standard=-8, ) } valid_date_offsets_singular = [ 'weekday', 'day', 'hour', 'minute', 'second', 'microsecond' ] valid_date_offsets_plural = [ 'weeks', 'days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds' ] def _test_all_offsets(self, n, **kwds): valid_offsets = self.valid_date_offsets_plural if n > 1 \ else self.valid_date_offsets_singular for name in valid_offsets: self._test_offset(offset_name=name, offset_n=n, **kwds) def _test_offset(self, offset_name, offset_n, tstart, expected_utc_offset): offset = DateOffset(**{offset_name: offset_n}) t = tstart + offset if expected_utc_offset is not None: assert get_utc_offset_hours(t) == expected_utc_offset if offset_name == 'weeks': # dates should match assert t.date() == timedelta(days=7 * offset.kwds[ 'weeks']) + tstart.date() # expect the same day of week, hour of day, minute, second, ... assert (t.dayofweek == tstart.dayofweek and t.hour == tstart.hour and t.minute == tstart.minute and t.second == tstart.second) elif offset_name == 'days': # dates should match assert timedelta(offset.kwds['days']) + tstart.date() == t.date() # expect the same hour of day, minute, second, ... assert (t.hour == tstart.hour and t.minute == tstart.minute and t.second == tstart.second) elif offset_name in self.valid_date_offsets_singular: # expect the singular offset value to match between tstart and t datepart_offset = getattr(t, offset_name if offset_name != 'weekday' else 'dayofweek') assert datepart_offset == offset.kwds[offset_name] else: # the offset should be the same as if it was done in UTC assert (t == (tstart.tz_convert('UTC') + offset) .tz_convert('US/Pacific')) def _make_timestamp(self, string, hrs_offset, tz): if hrs_offset >= 0: offset_string = '{hrs:02d}00'.format(hrs=hrs_offset) else: offset_string = '-{hrs:02d}00'.format(hrs=-1 * hrs_offset) return Timestamp(string + offset_string).tz_convert(tz) def test_fallback_plural(self): # test moving from daylight savings to standard time import dateutil for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_daylight'] hrs_post = utc_offsets['utc_offset_standard'] if LooseVersion(dateutil.__version__) < LooseVersion('2.6.0'): # buggy ambiguous behavior in 2.6.0 # GH 14621 # https://github.com/dateutil/dateutil/issues/321 self._test_all_offsets( n=3, tstart=self._make_timestamp(self.ts_pre_fallback, hrs_pre, tz), expected_utc_offset=hrs_post) elif LooseVersion(dateutil.__version__) > LooseVersion('2.6.0'): # fixed, but skip the test continue def test_springforward_plural(self): # test moving from standard to daylight savings for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] hrs_post = utc_offsets['utc_offset_daylight'] self._test_all_offsets( n=3, tstart=self._make_timestamp(self.ts_pre_springfwd, hrs_pre, tz), expected_utc_offset=hrs_post) def test_fallback_singular(self): # in the case of singular offsets, we don't necessarily know which utc # offset the new Timestamp will wind up in (the tz for 1 month may be # different from 1 second) so we don't specify an expected_utc_offset for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] self._test_all_offsets(n=1, tstart=self._make_timestamp( self.ts_pre_fallback, hrs_pre, tz), expected_utc_offset=None) def test_springforward_singular(self): for tz, utc_offsets in self.timezone_utc_offsets.items(): hrs_pre = utc_offsets['utc_offset_standard'] self._test_all_offsets(n=1, tstart=self._make_timestamp( self.ts_pre_springfwd, hrs_pre, tz), expected_utc_offset=None) offset_classes = {MonthBegin: ['11/2/2012', '12/1/2012'], MonthEnd: ['11/2/2012', '11/30/2012'], BMonthBegin: ['11/2/2012', '12/3/2012'], BMonthEnd: ['11/2/2012', '11/30/2012'], CBMonthBegin: ['11/2/2012', '12/3/2012'], CBMonthEnd: ['11/2/2012', '11/30/2012'], SemiMonthBegin: ['11/2/2012', '11/15/2012'], SemiMonthEnd: ['11/2/2012', '11/15/2012'], Week: ['11/2/2012', '11/9/2012'], YearBegin: ['11/2/2012', '1/1/2013'], YearEnd: ['11/2/2012', '12/31/2012'], BYearBegin: ['11/2/2012', '1/1/2013'], BYearEnd: ['11/2/2012', '12/31/2012'], QuarterBegin: ['11/2/2012', '12/1/2012'], QuarterEnd: ['11/2/2012', '12/31/2012'], BQuarterBegin: ['11/2/2012', '12/3/2012'], BQuarterEnd: ['11/2/2012', '12/31/2012'], Day: ['11/4/2012', '11/4/2012 23:00']}.items() @pytest.mark.parametrize('tup', offset_classes) def test_all_offset_classes(self, tup): offset, test_values = tup first = Timestamp(test_values[0], tz='US/Eastern') + offset() second = Timestamp(test_values[1], tz='US/Eastern') assert first == second # --------------------------------------------------------------------- def test_get_offset_day_error(): # subclass of _BaseOffset must override _day_opt attribute, or we should # get a NotImplementedError with pytest.raises(NotImplementedError): DateOffset()._get_offset_day(datetime.now()) def test_valid_default_arguments(offset_types): # GH#19142 check that the calling the constructors without passing # any keyword arguments produce valid offsets cls = offset_types cls() @pytest.mark.parametrize('kwd', sorted(list(liboffsets.relativedelta_kwds))) def test_valid_month_attributes(kwd, month_classes): # GH#18226 cls = month_classes # check that we cannot create e.g. MonthEnd(weeks=3) with pytest.raises(TypeError): cls(**{kwd: 3}) @pytest.mark.parametrize('kwd', sorted(list(liboffsets.relativedelta_kwds))) def test_valid_relativedelta_kwargs(kwd): # Check that all the arguments specified in liboffsets.relativedelta_kwds # are in fact valid relativedelta keyword args DateOffset(**{kwd: 1}) @pytest.mark.parametrize('kwd', sorted(list(liboffsets.relativedelta_kwds))) def test_valid_tick_attributes(kwd, tick_classes): # GH#18226 cls = tick_classes # check that we cannot create e.g. Hour(weeks=3) with pytest.raises(TypeError): cls(**{kwd: 3}) def test_validate_n_error(): with pytest.raises(TypeError): DateOffset(n='Doh!') with pytest.raises(TypeError): MonthBegin(n=timedelta(1)) with pytest.raises(TypeError): BDay(n=np.array([1, 2], dtype=np.int64)) def test_require_integers(offset_types): cls = offset_types with pytest.raises(ValueError): cls(n=1.5) def test_tick_normalize_raises(tick_classes): # check that trying to create a Tick object with normalize=True raises # GH#21427 cls = tick_classes with pytest.raises(ValueError): cls(n=3, normalize=True) def test_weeks_onoffset(): # GH#18510 Week with weekday = None, normalize = False should always # be onOffset offset = Week(n=2, weekday=None) ts = Timestamp('1862-01-13 09:03:34.873477378+0210', tz='Africa/Lusaka') fast = offset.onOffset(ts) slow = (ts + offset) - offset == ts assert fast == slow # negative n offset = Week(n=2, weekday=None) ts = Timestamp('1856-10-24 16:18:36.556360110-0717', tz='Pacific/Easter') fast = offset.onOffset(ts) slow = (ts + offset) - offset == ts assert fast == slow def test_weekofmonth_onoffset(): # GH#18864 # Make sure that nanoseconds don't trip up onOffset (and with it apply) offset = WeekOfMonth(n=2, week=2, weekday=0) ts = Timestamp('1916-05-15 01:14:49.583410462+0422', tz='Asia/Qyzylorda') fast = offset.onOffset(ts) slow = (ts + offset) - offset == ts assert fast == slow # negative n offset = WeekOfMonth(n=-3, week=1, weekday=0) ts = Timestamp('1980-12-08 03:38:52.878321185+0500', tz='Asia/Oral') fast = offset.onOffset(ts) slow = (ts + offset) - offset == ts assert fast == slow def test_last_week_of_month_on_offset(): # GH#19036, GH#18977 _adjust_dst was incorrect for LastWeekOfMonth offset = LastWeekOfMonth(n=4, weekday=6) ts = Timestamp('1917-05-27 20:55:27.084284178+0200', tz='Europe/Warsaw') slow = (ts + offset) - offset == ts fast = offset.onOffset(ts) assert fast == slow # negative n offset = LastWeekOfMonth(n=-4, weekday=5) ts = Timestamp('2005-08-27 05:01:42.799392561-0500', tz='America/Rainy_River') slow = (ts + offset) - offset == ts fast = offset.onOffset(ts) assert fast == slow class TestCalendarDay(object): def test_add_across_dst_scalar(self): # GH 22274 ts = Timestamp('2016-10-30 00:00:00+0300', tz='Europe/Helsinki') expected = Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki') result = ts + CalendarDay(1) assert result == expected result = result - CalendarDay(1) assert result == ts @pytest.mark.parametrize('box', [DatetimeIndex, Series]) def test_add_across_dst_array(self, box): # GH 22274 ts = Timestamp('2016-10-30 00:00:00+0300', tz='Europe/Helsinki') expected = Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki') arr = box([ts]) expected = box([expected]) result = arr + CalendarDay(1) tm.assert_equal(result, expected) result = result - CalendarDay(1) tm.assert_equal(arr, result) @pytest.mark.parametrize('arg', [ Timestamp("2018-11-03 01:00:00", tz='US/Pacific'), DatetimeIndex([Timestamp("2018-11-03 01:00:00", tz='US/Pacific')]) ]) def test_raises_AmbiguousTimeError(self, arg): # GH 22274 with pytest.raises(pytz.AmbiguousTimeError): arg + CalendarDay(1) @pytest.mark.parametrize('arg', [ Timestamp("2019-03-09 02:00:00", tz='US/Pacific'), DatetimeIndex([Timestamp("2019-03-09 02:00:00", tz='US/Pacific')]) ]) def test_raises_NonExistentTimeError(self, arg): # GH 22274 with pytest.raises(pytz.NonExistentTimeError): arg + CalendarDay(1) @pytest.mark.parametrize('arg, exp', [ [1, 2], [-1, 0], [-5, -4] ]) def test_arithmetic(self, arg, exp): # GH 22274 result = CalendarDay(1) + CalendarDay(arg) expected = CalendarDay(exp) assert result == expected @pytest.mark.parametrize('arg', [ timedelta(1), Day(1), Timedelta(1), TimedeltaIndex([timedelta(1)]) ]) def test_invalid_arithmetic(self, arg): # GH 22274 # CalendarDay (relative time) cannot be added to Timedelta-like objects # (absolute time) with pytest.raises(TypeError): CalendarDay(1) + arg
bsd-3-clause
LLPLab/LearningPyML
kNN-digits/handWritingRecognition.py
1
1425
#!/usr/bin/env python # encoding: utf-8 """ @version: 1.0 @author: Juay @file: handWritingRecognition.py @time: 2015/11/16 16:06 """ import numpy as np import os from sklearn import neighbors def img2vector(filepath): vector = np.genfromtxt(filepath, dtype=np.int8, delimiter=1) return vector.flatten() def gener_data_set(path_prefix): training_files = os.listdir(path_prefix) dataset = [] labels = [] dataset_append = dataset.append labels_append = labels.append for trf in training_files: dataset_append(img2vector(path_prefix + '/' + trf)) labels_append(int(trf[0])) return dataset, labels def test_data_set(path_prefix, dataSet, labels): testData, testLabels = gener_data_set(path_prefix) test_files = os.listdir(path_prefix) clf = neighbors.KNeighborsClassifier(algorithm='auto') clf.fit(dataSet, labels) error = 0 clf_predict = clf.predict for index, t in enumerate(testData): pre_value = clf_predict(t) if pre_value[0] != testLabels[index]: print "Predict value is %s, the read value is %s, filePath is %s" % \ (pre_value[0], testLabels[index], test_files[index]) error += 1 print error print float(error) * 100.0 / len(testData) if __name__ == "__main__": dataset, labels = gener_data_set('trainingDigits') test_data_set('testDigits', dataset, labels)
mit
russel1237/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
fro391/Investing
ML/Regression_Intro.py
1
1680
import pandas as pd import quandl,math, datetime import numpy as np from sklearn import preprocessing, cross_validation, svm from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt from matplotlib import style import urllib import pickle style.use('ggplot') #df = quandl.get('WIKI/GOOG') #get stock info into pandas df '''urllib.urlretrieve('http://real-chart.finance.yahoo.com/table.csv?s=BRK-A&a=03&b=12&c=1996&d=08&e=28&f=2016&g=d&ignore=.csv', 'BRK-A.csv')''' df = pd.read_csv('BRK-A.csv',index_col=0) #make HL pct and pct change columns and select necessary columns df = df [['Open','High','Low','Adj Close','Volume']] df ['HL_PCT'] = (df['High'] - df['Adj Close'])/df['Adj Close'] * 100.0 df ['PCT_change'] = (df['Adj Close'] - df['Open'])/df['Open'] * 100.0 df = df[['Adj Close','HL_PCT','PCT_change','Volume']] forecast_col = 'Adj Close' df.fillna(-99999,inplace = True) forecast_out = int(math.ceil(0.01*len(df))) #days to forecast out df['label'] = df[forecast_col].shift(-forecast_out) #shifting so that forecast_col will have future data x = np.array(df.drop(['label'],1)) x = preprocessing.scale(x) x = x[:-forecast_out] x_lately = x[-forecast_out:] df.dropna(inplace=True) y = np.array(df['label']) x_train,x_test,y_train, y_test = cross_validation.train_test_split(x,y,test_size = 0.2) '''clf = LinearRegression() clf.fit(x_train,y_train) #pickling classifier with open('LinearR.pickle','wb') as f: pickle.dump(clf,f)''' pickle_in = open('LinearR.pickle','rb') clf = pickle.load(pickle_in) accuracy = clf.score(x_test,y_test) forecast_set = clf.predict(x_lately) print forecast_set,accuracy,forecast_out
gpl-2.0
ozak/geopandas
geopandas/tests/test_dissolve.py
1
3100
from __future__ import absolute_import import pytest import numpy as np import pandas as pd import geopandas from geopandas import GeoDataFrame, read_file from pandas.util.testing import assert_frame_equal @pytest.fixture def nybb_polydf(): nybb_filename = geopandas.datasets.get_path('nybb') nybb_polydf = read_file(nybb_filename) nybb_polydf = nybb_polydf[['geometry', 'BoroName', 'BoroCode']] nybb_polydf = nybb_polydf.rename(columns={'geometry': 'myshapes'}) nybb_polydf = nybb_polydf.set_geometry('myshapes') nybb_polydf['manhattan_bronx'] = 5 nybb_polydf.loc[3:4, 'manhattan_bronx'] = 6 return nybb_polydf @pytest.fixture def merged_shapes(nybb_polydf): # Merged geometry manhattan_bronx = nybb_polydf.loc[3:4, ] others = nybb_polydf.loc[0:2, ] collapsed = [others.geometry.unary_union, manhattan_bronx.geometry.unary_union] merged_shapes = GeoDataFrame( {'myshapes': collapsed}, geometry='myshapes', index=pd.Index([5, 6], name='manhattan_bronx')) return merged_shapes @pytest.fixture def first(merged_shapes): first = merged_shapes.copy() first['BoroName'] = ['Staten Island', 'Manhattan'] first['BoroCode'] = [5, 1] return first @pytest.fixture def expected_mean(merged_shapes): test_mean = merged_shapes.copy() test_mean['BoroCode'] = [4, 1.5] return test_mean def test_geom_dissolve(nybb_polydf, first): test = nybb_polydf.dissolve('manhattan_bronx') assert test.geometry.name == 'myshapes' assert test.geom_almost_equals(first).all() def test_dissolve_retains_existing_crs(nybb_polydf): assert nybb_polydf.crs is not None test = nybb_polydf.dissolve('manhattan_bronx') assert test.crs is not None def test_dissolve_retains_nonexisting_crs(nybb_polydf): nybb_polydf.crs = None test = nybb_polydf.dissolve('manhattan_bronx') assert test.crs is None def first_dissolve(nybb_polydf, first): test = nybb_polydf.dissolve('manhattan_bronx') assert_frame_equal(first, test, check_column_type=False) def test_mean_dissolve(nybb_polydf, first, expected_mean): test = nybb_polydf.dissolve('manhattan_bronx', aggfunc='mean') assert_frame_equal(expected_mean, test, check_column_type=False) test = nybb_polydf.dissolve('manhattan_bronx', aggfunc=np.mean) assert_frame_equal(expected_mean, test, check_column_type=False) def test_multicolumn_dissolve(nybb_polydf, first): multi = nybb_polydf.copy() multi['dup_col'] = multi.manhattan_bronx multi_test = multi.dissolve(['manhattan_bronx', 'dup_col'], aggfunc='first') first_copy = first.copy() first_copy['dup_col'] = first_copy.index first_copy = first_copy.set_index([first_copy.index, 'dup_col']) assert_frame_equal(multi_test, first_copy, check_column_type=False) def test_reset_index(nybb_polydf, first): test = nybb_polydf.dissolve('manhattan_bronx', as_index=False) comparison = first.reset_index() assert_frame_equal(comparison, test, check_column_type=False)
bsd-3-clause
hishnash/inspyred
docs/moonshot.py
2
9510
# Title: Moon probe evolution example # Author: Mike Vella #start_imports import os import math import itertools from matplotlib import pyplot as plt from matplotlib.patches import Circle from random import Random from time import time import inspyred #end_imports # All units are in SI unless stated otherwise. # Global constants #start_globals G = 6.67300e-11 # Universal gravitational constant earth_mass = 5.9742e24 earth_radius = 6.378e6 moon_mass = 7.36e22 moon_radius = 1.737e6 moon_position = (384403e3, 0) earth_position = (0, 0) #end_globals def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ...""" a, b = itertools.tee(iterable) next(b, None) return itertools.izip(a, b) def distance_between(position_a, position_b): return math.sqrt((position_a[0] - position_b[0])**2 + (position_a[1] - position_b[1])**2) def gravitational_force(position_a, mass_a, position_b, mass_b): """Returns the gravitational force between the two bodies a and b.""" distance = distance_between(position_a, position_b) # Calculate the direction and magnitude of the force. angle = math.atan2(position_a[1] - position_b[1], position_a[0] - position_b[0]) magnitude = G * mass_a * mass_b / (distance**2) # Find the x and y components of the force. # Determine sign based on which one is the larger body. sign = -1 if mass_b > mass_a else 1 x_force = sign * magnitude * math.cos(angle) y_force = sign * magnitude * math.sin(angle) return x_force, y_force def force_on_satellite(position, mass): """Returns the total gravitational force acting on the body from the Earth and Moon.""" earth_grav_force = gravitational_force(position, mass, earth_position, earth_mass) moon_grav_force = gravitational_force(position, mass, moon_position, moon_mass) F_x = earth_grav_force[0] + moon_grav_force[0] F_y = earth_grav_force[1] + moon_grav_force[1] return F_x, F_y def acceleration_of_satellite(position, mass): """Returns the acceleration based on all forces acting upon the body.""" F_x, F_y = force_on_satellite(position, mass) return F_x / mass, F_y / mass def moonshot(orbital_height, satellite_mass, boost_velocity, initial_y_velocity, time_step=60, max_iterations=5e4, plot_trajectory=False): fitness = 0.0 distance_from_earth_center = orbital_height + earth_radius eqb_velocity = math.sqrt(G * earth_mass / distance_from_earth_center) # Start the simulation. # Keep up with the positions of the satellite as it moves. position = [(earth_radius + orbital_height, 0.0)] # The initial position of the satellite. velocity = [0.0, initial_y_velocity] time = 0 min_distance_from_moon = distance_between(position[-1], moon_position) - moon_radius i = 0 keep_simulating = True rockets_boosted = False while keep_simulating: # Calculate the acceleration and corresponding change in velocity. # (This is effectively the Forward Euler Algorithm.) acceleration = acceleration_of_satellite(position[-1], satellite_mass) velocity[0] += acceleration[0] * time_step velocity[1] += acceleration[1] * time_step # Start the rocket burn: # add a boost in the +x direction of 1m/s # closest point to the moon if position[-1][1] < -100 and position[-1][0] > distance_from_earth_center-100 and not rockets_boosted: launch_point = position[-1] velocity[0] += boost_velocity[0] velocity[1] += boost_velocity[1] rockets_boosted = True # Calculate the new position based on the velocity. position.append((position[-1][0] + velocity[0] * time_step, position[-1][1] + velocity[1] * time_step)) time += time_step if i >= max_iterations: keep_simulating = False distance_from_moon_surface = distance_between(position[-1], moon_position) - moon_radius distance_from_earth_surface = distance_between(position[-1], earth_position) - earth_radius if distance_from_moon_surface < min_distance_from_moon: min_distance_from_moon = distance_from_moon_surface # See if the satellite crashes into the Moon or the Earth, or # if the satellite gets too far away (radio contact is lost). if distance_from_moon_surface <= 0: fitness += 100000 # penalty of 100,000 km if crash on moon keep_simulating = False elif distance_from_earth_surface <= 0: keep_simulating = False fitness -= 100000 # reward of 100,000 km if land on earth elif distance_from_earth_surface > 2 * distance_between(earth_position, moon_position): keep_simulating = False #radio contact lost i += 1 # Augment the fitness to include the minimum distance (in km) # that the satellite made it to the Moon (lower without crashing is better). fitness += min_distance_from_moon / 1000.0 # Augment the fitness to include 1% of the total distance # traveled by the probe (in km). This means the probe # should prefer shorter paths. total_distance = 0 for p, q in pairwise(position): total_distance += distance_between(p, q) fitness += total_distance / 1000.0 * 0.01 if plot_trajectory: axes = plt.gca() earth = Circle(earth_position, earth_radius, facecolor='b', alpha=1) moon = Circle(moon_position, moon_radius, facecolor='0.5', alpha=1) axes.add_artist(earth) axes.add_artist(moon) axes.annotate('Earth', xy=earth_position, xycoords='data', xytext=(0, 1e2), textcoords='offset points', arrowprops=dict(arrowstyle="->")) axes.annotate('Moon', xy=moon_position, xycoords='data', xytext=(0, 1e2), textcoords='offset points', arrowprops=dict(arrowstyle="->")) x = [p[0] for p in position] y = [p[1] for p in position] cm = plt.get_cmap('gist_rainbow') lines = plt.scatter(x, y, c=range(len(x)), cmap=cm, marker='o', s=2) plt.setp(lines, edgecolors='None') plt.axis("equal") plt.grid("on") projdir = os.path.dirname(os.getcwd()) name = '{0}/{1}.pdf'.format(projdir, str(fitness)) plt.savefig(name, format="pdf") plt.clf() return fitness def satellite_generator(random, args): chromosome = [] bounder = args["_ec"].bounder # The constraints are as follows: # orbital satellite boost velocity initial y # height mass (x, y) velocity for lo, hi in zip(bounder.lower_bound, bounder.upper_bound): chromosome.append(random.uniform(lo, hi)) return chromosome def moonshot_evaluator(candidates, args): fitness=[] for chromosome in candidates: orbital_height = chromosome[0] satellite_mass = chromosome[1] boost_velocity = (chromosome[2], chromosome[3]) initial_y_velocity = chromosome[4] fitness.append(moonshot(orbital_height, satellite_mass, boost_velocity, initial_y_velocity)) return fitness def custom_observer(population, num_generations, num_evaluations, args): best = max(population) print('Generations: {0} Evaluations: {1} Best: {2}'.format(num_generations, num_evaluations, str(best))) #start_main rand = Random() rand.seed(int(time())) # The constraints are as follows: # orbital satellite boost velocity initial y # height mass (x, y) velocity constraints=((6e6, 10.0, 3e3, -10000.0, 4000), (8e6, 40.0, 9e3, 10000.0, 6000)) algorithm = inspyred.ec.EvolutionaryComputation(rand) algorithm.terminator = inspyred.ec.terminators.evaluation_termination algorithm.observer = inspyred.ec.observers.file_observer algorithm.selector = inspyred.ec.selectors.tournament_selection algorithm.replacer = inspyred.ec.replacers.generational_replacement algorithm.variator = [inspyred.ec.variators.blend_crossover, inspyred.ec.variators.gaussian_mutation] projdir = os.path.dirname(os.getcwd()) stat_file_name = '{0}/moonshot_ec_statistics.csv'.format(projdir) ind_file_name = '{0}/moonshot_ec_individuals.csv'.format(projdir) stat_file = open(stat_file_name, 'w') ind_file = open(ind_file_name, 'w') final_pop = algorithm.evolve(generator=satellite_generator, evaluator=moonshot_evaluator, pop_size=100, maximize=False, bounder=inspyred.ec.Bounder(constraints[0], constraints[1]), num_selected=100, tournament_size=2, num_elites=1, mutation_rate=0.3, max_evaluations=600, statistics_file=stat_file, individuals_file=ind_file) stat_file.close() ind_file.close() # Sort and print the fittest individual, who will be at index 0. final_pop.sort(reverse=True) best = final_pop[0] components = best.candidate print('\nFittest individual:') print(best) moonshot(components[0], components[1], (components[2], components[3]), components[4], plot_trajectory=True) #end_main
mit
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/sklearn/linear_model/tests/test_theil_sen.py
55
9939
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import ( assert_almost_equal, assert_greater, assert_less, raises, ) @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr with open(os.devnull, 'w') as devnull: sys.stdout = devnull sys.stderr = devnull yield devnull.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1 / (np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
mit
CxAalto/gtfspy
gtfspy/plots.py
1
1812
import pandas from matplotlib import pyplot as plt """ A collection of various useful plots. """ def plot_trip_counts_per_day(G, ax=None, highlight_dates=None, highlight_date_labels=None, show=False): """ Parameters ---------- G: gtfspy.GTFS ax: maptlotlib.Axes, optional highlight_dates: list[str|datetime.datetime] The values of highlight dates should represent dates, and or datetime objects. highlight_date_labels: list The labels for each highlight dates. show: bool, optional whether or not to immediately show the results Returns ------- ax: maptlotlib.Axes object """ daily_trip_counts = G.get_trip_counts_per_day() if ax is None: _fig, ax = plt.subplots() daily_trip_counts["datetime"] = pandas.to_datetime(daily_trip_counts["date_str"]) daily_trip_counts.plot("datetime", "trip_counts", kind="line", ax=ax, marker="o", color="C0", ls=":", label="Trip counts") ax.set_xlabel("Date") ax.set_ylabel("Trip counts per day") if highlight_dates is not None: assert isinstance(highlight_dates, list) if highlight_date_labels is not None: assert isinstance(highlight_date_labels, list) assert len(highlight_dates) == len(highlight_date_labels), "Number of highlight date labels do not match" else: highlight_date_labels = [None] * len(highlight_dates) for i, (highlight_date, label) in enumerate(zip(highlight_dates, highlight_date_labels)): color = "C" + str(int(i % 8 + 1)) highlight_date = pandas.to_datetime(highlight_date) ax.axvline(highlight_date, color=color, label=label) ax.legend(loc="best") ax.grid() if show: plt.show() return ax
mit
annoviko/pyclustering
pyclustering/cluster/tests/unit/ut_syncsom.py
1
4569
"""! @brief Unit-tests for SYNC-SOM algorithm. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import unittest; # Generate images without having a window appear. import matplotlib; matplotlib.use('Agg'); from pyclustering.cluster.syncsom import syncsom; from pyclustering.utils import read_sample; from pyclustering.samples.definitions import SIMPLE_SAMPLES; class SyncsomUnitTest(unittest.TestCase): def templateLengthSomCluster(self, file, som_map_size, radius, eps): sample = read_sample(file); network = syncsom(sample, som_map_size[0], som_map_size[1], radius); network.process(collect_dynamic = False, order = eps); # Check unique som_clusters = network.get_som_clusters(); indexes = set(); for som_cluster in som_clusters: for index in som_cluster: assert (index in indexes) is False; indexes.add(index); def testSomClusterAllocationSampleSimple1(self): self.templateLengthSomCluster(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [3, 3], 1.0, 0.99); def testSomClusterAllocationSampleSimple3(self): self.templateLengthSomCluster(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [3, 3], 1.0, 0.99); def testSomClusterAllocationSampleSimple4(self): self.templateLengthSomCluster(SIMPLE_SAMPLES.SAMPLE_SIMPLE4, [3, 3], 1.0, 0.99); def testSomClusterAllocationSampleSimple5(self): self.templateLengthSomCluster(SIMPLE_SAMPLES.SAMPLE_SIMPLE5, [3, 3], 1.0, 0.99); def templateLengthProcessData(self, file, som_map_size, radius, eps, expected_cluster_length): result_testing = False; # If phases crosses each other because of random part of the network then we should try again. for _ in range(0, 5, 1): sample = read_sample(file); network = syncsom(sample, som_map_size[0], som_map_size[1], radius); network.process(collect_dynamic = False, order = eps); clusters = network.get_clusters(); obtained_cluster_sizes = [len(cluster) for cluster in clusters]; if (len(sample) != sum(obtained_cluster_sizes)): continue; obtained_cluster_sizes.sort(); expected_cluster_length.sort(); #print(obtained_cluster_sizes, expected_cluster_length); if (obtained_cluster_sizes != expected_cluster_length): continue; # Unit-test is passed result_testing = True; break; assert result_testing; def testClusterAllocationSampleSimple1ByGeaterAmoutNeurons(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [5, 5], 1.0, 0.999, [5, 5]); def testClusterAllocationSampleSimple1AsSom(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [1, 2], 1.0, 0.999, [5, 5]); def testClusterAllocationSampleSimple1(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE1, [2, 2], 1.0, 0.999, [5, 5]); def testClusterAllocationSampleSimple2(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE2, [5, 5], 1.0, 0.999, [10, 5, 8]); def testClusterAllocationSampleSimple3(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE3, [5, 5], 1.0, 0.999, [10, 10, 10, 30]); def testClusterAllocationOneDimensionDataSampleSimple7AsSom(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, [1, 2], 1.0, 0.999, [10, 10]); def testClusterAllocationOneDimensionDataSampleSimple7(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE7, [3, 3], 1.0, 0.999, [10, 10]); def testClusterAllocationOneDimensionDataSampleSimple9AsSom(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [1, 2], 1.0, 0.999, [20, 10]); def testClusterAllocationOneDimensionDataSampleSimple9(self): self.templateLengthProcessData(SIMPLE_SAMPLES.SAMPLE_SIMPLE9, [3, 3], 1.0, 0.999, [20, 10]); def testShowLayersProcessing(self): sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1); network = syncsom(sample, 4, 4, 1.0); network.process(collect_dynamic = False, order = 0.99); network.show_som_layer(); network.show_sync_layer();
gpl-3.0
dhruv13J/scikit-learn
examples/mixture/plot_gmm_sin.py
248
2747
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
godfrey4000/ncexplorer
ncexplorer/plotter/canvas.py
1
1953
''' Created on May 29, 2017 @author: neil ''' import matplotlib as mpl # The Qt5Agg backend, which is what is selected by default, has a bug that # pegs the CPU at 99%, making the system very slow. Forcing the backend to # be TkAgg works around this problem. mpl.use('TkAgg') import matplotlib.pyplot as plt # Turns off the toolbar on the plot window. mpl.rcParams['toolbar'] = 'None' class PlottingCanvas(object): def __init__(self, figsize): # For newer version, jet isn't the default colormap anymore. plt.set_cmap('jet') plt.ion() self._figure = plt.figure(figsize=figsize) self._figsize = figsize self._axes = [] # FIXME: This is a real kludge. In jupyter notebooks, the colorbar # provokes a IndexException. This is a temporary work-around until the # cause of this can be found and fixed. def colorbar_ok(self): return True def add_map(self): # FIXME: Manage the canvas real estate. ax = self._figure.add_subplot(111) self._axes.append(ax) return ax def clear(self): self._figure.clf() def show(self): self._figure.show() def plotobj(self): return plt def __unicode__(self): pretty = [] pretty.append("Pyplot instance: %s" % plt) pretty.append("Figure instance: %s" % self._figure) pretty.append("Number of subplots: %s" % len(self._axes)) return u'\n'.join(pretty) def __repr__(self): return unicode(self) def __str__(self): return unicode(self).encode('utf-8') class NotebookCanvas(object): def __init__(self, figsize): self._figure = plt.figure(figsize=figsize) def colorbar_ok(self): return True def add_map(self): ax = self._figure.add_subplot(111) return ax def clear(self): pass def show(self): plt.ion()
mit
vatika/Automated-Essay-Grading
weighted_kappa.py
1
2444
import numpy as np import csv import sklearn import nltk def confusion_matrix(rater_a, rater_b, min_rating=None, max_rating=None): """ Returns the confusion matrix between rater's ratings """ assert(len(rater_a) == len(rater_b)) if min_rating is None: min_rating = min(rater_a + rater_b) if max_rating is None: max_rating = max(rater_a + rater_b) num_ratings = int(max_rating - min_rating + 1) conf_mat = [[0 for i in range(num_ratings)] for j in range(num_ratings)] for a, b in zip(rater_a, rater_b): try: conf_mat[a[0] - min_rating][b[0] - min_rating] += 1 except: print "human score = " + str(a[0]) + " machine score = " + str(b) return conf_mat def quadratic_weighted_kappa(rater_a, rater_b, min_rating=None, max_rating=None): k= rater_a.flatten() rater_a = np.array(rater_a, dtype=int) rater_b = np.array(rater_b, dtype=int) assert(len(rater_a) == len(rater_b)) if min_rating is None: min_rating = min(min(rater_a), min(rater_b)) if max_rating is None: max_rating = max(max(rater_a), max(rater_b)) conf_mat = confusion_matrix(rater_a, rater_b, min_rating, max_rating) num_ratings = len(conf_mat) num_scored_items = float(len(rater_a)) hist_rater_a = histogram(rater_a, min_rating, max_rating) hist_rater_b = histogram(rater_b, min_rating, max_rating) numerator = 0.0 denominator = 0.0 for i in range(num_ratings): for j in range(num_ratings): expected_count = (hist_rater_a[i] * hist_rater_b[j] / num_scored_items) d = pow(i - j, 2.0) / pow(num_ratings - 1, 2.0) numerator += d * conf_mat[i][j] / num_scored_items denominator += d * expected_count / num_scored_items return 1.0 - numerator / denominator def histogram(ratings, min_rating=None, max_rating=None): """ Returns the counts of each type of rating that a rater made """ if min_rating is None: min_rating = min(ratings) if max_rating is None: max_rating = max(ratings) num_ratings = int(max_rating - min_rating + 1) hist_ratings = [0 for x in range(num_ratings)] for r in ratings: try: hist_ratings[r - min_rating] += 1 except: hist_ratings[r[0] - min_rating] += 1 return hist_ratings
gpl-2.0
anirudhjayaraman/scikit-learn
sklearn/tests/test_pipeline.py
35
15221
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises, assert_raises_regex, assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA() pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_X1d_inverse_transform(): transformer = TransfT() pipeline = make_pipeline(transformer) X = np.ones(10) msg = "1d X will not be reshaped in pipeline.inverse_transform" assert_warns_message(FutureWarning, msg, pipeline.inverse_transform, X)
bsd-3-clause
DavidMFreeman34/NoahDavidCollab
pythagoreanMJ.py
1
1625
#----------------------------------------- # Python + Matplotlib Penrose # Taken from http://www.bubuko.com/infodetail-911894.html #----------------------------------------- import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from matplotlib.path import Path from matplotlib.patches import PathPatch from mpmath import * plt.figure(figsize=(1.5,1.5),dpi=500) plt.subplot(aspect=1) plt.axis([0,1,0,1]) plt.xticks([]) plt.yticks([]) plt.axis('off') print "Pythagorean(m,j) Tiling" m = input('Enter the value of m (an integer at least 3): ') n = input('Enter the value of j (less than m): ') p=m-1 q=n-m mp.dps = 20 mp.pretty = True f = lambda x: x**m-x**n-1 L=findroot(f,1) l=L**(0.5) def subdivide(triangles): result = [] for color,A,B,C in triangles: if color == p: P = A + (C-A)*(l**(0-2*m)) result +=[(0,A,P,B),(n,B,P,C)] for i in xrange(p): if color == i: result +=[(i+1,A,B,C)] return result cmap = mpl.cm.autumn def DrawFigure(triangles): for color,A,B,C in triangles: vertices = [A,B,C,A] codes = [Path.MOVETO]+[Path.LINETO]*3 tri = Path(vertices,codes) for i in xrange(m): if color == i: tri_patch=PathPatch(tri,facecolor=cmap(i / float(m)),edgecolor='#000000',linewidth=0.05) plt.gca().add_patch(tri_patch) plt.show() # plt.savefig("Pythag10-1.pdf", format='pdf') triangles = [] A=np.array([0,0]) B=np.array([l**(-m),0]) C=np.array([l**(-m),l**q]) triangles.append([0,A,B,C]) a = input('Enter number of divisions: ') for j in xrange(a): triangles=subdivide(triangles) DrawFigure(triangles)
mit
jmikko/EasyMKL
Python/toytest_EasyMKL.py
1
3068
""" @author: Michele Donini @email: [email protected] Toy test of the algorithm EasyMKL.py. """ # Test: from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import roc_auc_score from sklearn.datasets import make_classification from EasyMKL import EasyMKL from komd import KOMD from cvxopt import matrix import numpy as np import matplotlib.pyplot as plt # Binary classification problem random_state = np.random.RandomState(0) X, Y = make_classification(n_samples=1000, n_features=50, n_informative=10, n_redundant=10, n_repeated=10, n_classes=2, n_clusters_per_class=5, weights=None, flip_y=0.0, class_sep=0.5, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=random_state) X = matrix(X) Y = matrix([1.0 if y>0 else -1.0 for y in Y]) # Train & Test: pertr = 90 idtrain = range(0,len(Y) * pertr / 100) idtest = range(len(Y) * pertr / 100,len(Y)) Ytr = Y[idtrain] Yte = Y[idtest] # Selected features for each weak kernel: featlist = [[random_state.randint(0,X.size[1]) for i in range(5)] for j in range(50)] # Generation of the weak Kernels: klist = [rbf_kernel(X[:,f], gamma = 0.1) for f in featlist] klisttr = [matrix(k)[idtrain,idtrain] for k in klist] klistte = [matrix(k)[idtest,idtrain] for k in klist] # EasyMKL initialization: l = 0.5 # lambda easy = EasyMKL(lam=l, tracenorm = True) easy.train(klisttr,Ytr) # Evaluation: rtr = roc_auc_score(np.array(Ytr),np.array(easy.rank(klisttr))) print 'AUC EasyMKL train:',rtr ranktest = np.array(easy.rank(klistte)) rte = roc_auc_score(np.array(Yte),ranktest) print 'AUC EasyMKL test:',rte print 'weights of kernels:', easy.weights # Comparison with respect the single kernels: print '\n\n\n\n\nSingle kernel analisys using KOMD:' YYtr = matrix(np.diag(list(Ytr))) for idx,f in enumerate(featlist): classifier = KOMD(lam=l, Kf = 'rbf', rbf_gamma = 0.1) y_score = classifier.fit(X[idtrain,f], Ytr).decision_function(X[idtest,f]) print 'K with features:',f,'AUC test:',roc_auc_score(np.array(Yte), np.array(y_score)) print '\t\t margin train: \t\t',(easy.gamma.T * YYtr * matrix(klist[idx])[idtrain,idtrain] * YYtr * easy.gamma)[0] print '\t\t weight assigned: \t',easy.weights[idx] # Some (not so useful) images, only if the X.size[1]==2 (2 dimensional datasets): PLOT_THE_CLASS = True ranktestnorm = [ (2 * (r - np.min(ranktest))) / (np.max(ranktest) - np.min(ranktest)) - 1.0 for r in ranktest] if PLOT_THE_CLASS and X.size[1] == 2: plt.figure(1) plt.scatter(X[idtrain, 0], X[idtrain, 1], marker='*', s = 140, c=Ytr, cmap='spring') plt.scatter(X[idtest, 0], X[idtest, 1], marker='o', s = 180, c=ranktestnorm, cmap='spring') plt.colorbar()
gpl-3.0
karlnapf/shogun
applications/easysvm/esvm/plots.py
7
6555
""" This module contains code for commonly used plots """ # This software is distributed under BSD 3-clause license (see LICENSE file). # # Authors: Soeren Sonnenburg import sys import random import numpy import warnings import shutil from shogun import Labels from shogun import * def plotroc(output, LTE, draw_random=False, figure_fname="", roc_label='ROC'): """Plot the receiver operating characteristic curve""" import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(4,4)) fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points=pm.get_ROC() points=numpy.array(points).T # for pylab.plot pylab.plot(points[0], points[1], 'b-', label=roc_label) if draw_random: pylab.plot([0, 1], [0, 1], 'r-', label='random guessing') pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('1 - specificity (false positive rate)',size=10) pylab.ylabel('sensitivity (true positive rate)',size=10) pylab.legend(loc='lower right', prop = matplotlib.font_manager.FontProperties('tiny')) if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auROC=pm.get_auROC() return auROC ; def plotprc(output, LTE, figure_fname="", prc_label='PRC'): """Plot the precision recall curve""" import pylab import matplotlib pylab.figure(2,dpi=150,figsize=(4,4)) pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points=pm.get_PRC() points=numpy.array(points).T # for pylab.plot pylab.plot(points[0], points[1], 'b-', label=prc_label) pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('sensitivity (true positive rate)',size=10) pylab.ylabel('precision (1 - false discovery rate)',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auPRC=pm.get_auPRC() return auPRC ; def plotcloud(cloud, figure_fname="", label='cloud'): """Plot the cloud of points (the first two dimensions only)""" import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(4,4)) pos = [] neg = [] for i in xrange(len(cloud)): if cloud[i][0]==1: pos.append(cloud[i][1:]) elif cloud[i][0]==-1: neg.append(cloud[i][1:]) fontdict=dict(family="cursive",weight="bold",size=10,y=1.05) ; pylab.title(label, fontdict) points=numpy.array(pos).T # for pylab.plot pylab.plot(points[0], points[1], 'b+', label='positive') points=numpy.array(neg).T # for pylab.plot pylab.plot(points[0], points[1], 'rx', label='negative') #pylab.axis([0, 1, 0, 1]) #ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) #pylab.xticks(ticks,size=10) #pylab.yticks(ticks,size=10) pylab.xlabel('dimension 1',size=10) pylab.ylabel('dimension 2',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) def plot_poims(poimfilename, poim, max_poim, diff_poim, poim_totalmass, poimdegree, max_len): """Plot a summary of the information in poims""" import pylab import matplotlib pylab.figure(3, dpi=150, figsize=(4,5)) # summary figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; pylab.subplot(3,2,1) pylab.title('Total POIM Mass', fontdict) pylab.plot(poim_totalmass) ; pylab.ylabel('weight mass', size=5) pylab.subplot(3,2,3) pylab.title('POIMs', fontdict) pylab.pcolor(max_poim, shading='flat') ; pylab.subplot(3,2,5) pylab.title('Differential POIMs', fontdict) pylab.pcolor(diff_poim, shading='flat') ; for plot in [3, 5]: pylab.subplot(3,2,plot) ticks=numpy.arange(1., poimdegree+1, 1, dtype=numpy.float64) ticks_str = [] for i in xrange(0, poimdegree): ticks_str.append("%i" % (i+1)) ticks[i] = i + 0.5 pylab.yticks(ticks, ticks_str) pylab.ylabel('degree', size=5) # per k-mer figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.04) ; # 1-mers pylab.subplot(3,2,2) pylab.title('1-mer Positional Importance', fontdict) pylab.pcolor(poim[0], shading='flat') ; ticks_str = ['A', 'C', 'G', 'T'] ticks = [0.5, 1.5, 2.5, 3.5] pylab.yticks(ticks, ticks_str, size=5) pylab.axis([0, max_len, 0, 4]) # 2-mers pylab.subplot(3,2,4) pylab.title('2-mer Positional Importance', fontdict) pylab.pcolor(poim[1], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: ticks_str.append(l1+l2) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 16]) # 3-mers pylab.subplot(3,2,6) pylab.title('3-mer Positional Importance', fontdict) pylab.pcolor(poim[2], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: for l3 in ['A', 'C', 'G', 'T']: if numpy.mod(i,4)==0: ticks_str.append(l1+l2+l3) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 64]) # x-axis on last two figures for plot in [5, 6]: pylab.subplot(3,2,plot) pylab.xlabel('sequence position', size=5) # finishing up for plot in xrange(0,6): pylab.subplot(3,2,plot+1) pylab.xticks(fontsize=5) for plot in [1,3,5]: pylab.subplot(3,2,plot) pylab.yticks(fontsize=5) pylab.subplots_adjust(hspace=0.35) ; # write to file warnings.filterwarnings('ignore','Could not match*') pylab.savefig('/tmp/temppylabfig.png') shutil.move('/tmp/temppylabfig.png',poimfilename)
bsd-3-clause
jobovy/galpy
tests/test_galpypaper.py
1
26615
# Test that all of the examples in the galpy paper run from __future__ import print_function, division import os import numpy import pytest def test_overview(): from galpy.potential import NFWPotential np= NFWPotential(normalize=1.) from galpy.orbit import Orbit o= Orbit(vxvv=[1.,0.1,1.1,0.1,0.02,0.]) from galpy.actionAngle import actionAngleSpherical aA= actionAngleSpherical(pot=np) js= aA(o) assert numpy.fabs((js[0]-0.00980542)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' assert numpy.fabs((js[1]-1.1)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' assert numpy.fabs((js[2]-0.00553155)/js[0]) < 10.**-3., 'Action calculation in the overview section has changed' from galpy.df import quasiisothermaldf qdf= quasiisothermaldf(1./3.,0.2,0.1,1.,1., pot=np,aA=aA) assert numpy.fabs((qdf(o)-61.57476085)/61.57476085) < 10.**-3., 'qdf calculation in the overview section has changed' return None def test_import(): import galpy import galpy.potential import galpy.orbit import galpy.actionAngle import galpy.df import galpy.util return None def test_units(): # Import changed because of bovy_conversion --> conversion name change from galpy.util import conversion print(conversion.force_in_pcMyr2(220.,8.))#pc/Myr^2 assert numpy.fabs(conversion.force_in_pcMyr2(220.,8.)-6.32793804994) < 10.**-4., 'unit conversion has changed' print(conversion.dens_in_msolpc3(220.,8.))#Msolar/pc^3 # Loosen tolerances including mass bc of 0.025% change in Msun in astropyv2 assert numpy.fabs((conversion.dens_in_msolpc3(220.,8.)-0.175790330079)/0.175790330079) < 0.0003, 'unit conversion has changed' print(conversion.surfdens_in_msolpc2(220.,8.))#Msolar/pc^2 assert numpy.fabs((conversion.surfdens_in_msolpc2(220.,8.)-1406.32264063)/1406.32264063) < 0.0003, 'unit conversion has changed' print(conversion.mass_in_1010msol(220.,8.))#10^10 Msolar assert numpy.fabs((conversion.mass_in_1010msol(220.,8.)-9.00046490005)/9.00046490005) < 0.0003, 'unit conversion has changed' print(conversion.freq_in_Gyr(220.,8.))#1/Gyr assert numpy.fabs(conversion.freq_in_Gyr(220.,8.)-28.1245845523) < 10.**-4., 'unit conversion has changed' print(conversion.time_in_Gyr(220.,8.))#Gyr assert numpy.fabs(conversion.time_in_Gyr(220.,8.)-0.0355560807712) < 10.**-4., 'unit conversion has changed' return None def test_potmethods(): from galpy.potential import DoubleExponentialDiskPotential dp= DoubleExponentialDiskPotential(normalize=1., hr=3./8.,hz=0.3/8.) dp(1.,0.1) # The potential itself at R=1., z=0.1 assert numpy.fabs(dp(1.,0.1)+1.1037196286636572) < 10.**-4., 'potmethods has changed' dp.Rforce(1.,0.1) # The radial force assert numpy.fabs(dp.Rforce(1.,0.1)+0.9147659436328015) < 10.**-4., 'potmethods has changed' dp.zforce(1.,0.1) # The vertical force assert numpy.fabs(dp.zforce(1.,0.1)+0.50056789703079607) < 10.**-4., 'potmethods has changed' dp.R2deriv(1.,0.1) # The second radial derivative # Loosened tolerance, because new (more precise) calculation differs by 3e-4 assert numpy.fabs(dp.R2deriv(1.,0.1)+1.0189440730205248) < 3 * 10.**-4., 'potmethods has changed' dp.z2deriv(1.,0.1) # The second vertical derivative # Loosened tolerance, because new (more precise) calculation differs by 4e-4 assert numpy.fabs(dp.z2deriv(1.,0.1)-1.0648350937842703) < 4 * 10.**-4., 'potmethods has changed' dp.Rzderiv(1.,0.1) # The mixed radial,vertical derivative assert numpy.fabs(dp.Rzderiv(1.,0.1)+1.1872449759212851) < 10.**-4., 'potmethods has changed' dp.dens(1.,0.1) # The density assert numpy.fabs(dp.dens(1.,0.1)-0.076502355610946121) < 10.**-4., 'potmethods has changed' dp.dens(1.,0.1,forcepoisson=True) # Using Poisson's eqn. assert numpy.fabs(dp.dens(1.,0.1,forcepoisson=True)-0.076446652249682681) < 10.**-4., 'potmethods has changed' dp.mass(1.,0.1) # The mass assert numpy.fabs(dp.mass(1.,0.1)-0.7281629803939751) < 10.**-4., 'potmethods has changed' dp.vcirc(1.) # The circular velocity at R=1. assert numpy.fabs(dp.vcirc(1.)-1.0) < 10.**-4., 'potmethods has changed' # By definition, because of normalize=1. dp.omegac(1.) # The rotational frequency assert numpy.fabs(dp.omegac(1.)-1.0) < 10.**-4., 'potmethods has changed' # Also because of normalize=1. dp.epifreq(1.) # The epicycle frequency # Loosened tolerance, because new (more precise) calculation differs by 1e-3 assert numpy.fabs(dp.epifreq(1.)-1.3301123099210266) < 2 * 10.**-3., 'potmethods has changed' dp.verticalfreq(1.) # The vertical frequency # Loosened tolerance, because new (more precise) calculation differs by 1e-3 assert numpy.fabs(dp.verticalfreq(1.)-3.7510872575640293) < 10.**-3., 'potmethods has changed' dp.flattening(1.,0.1) #The flattening (see caption) assert numpy.fabs(dp.flattening(1.,0.1)-0.42748757564198159) < 10.**-4., 'potmethods has changed' dp.lindbladR(1.75,m='corotation') # co-rotation resonance assert numpy.fabs(dp.lindbladR(1.75,m='corotation')-0.540985051273488) < 10.**-4., 'potmethods has changed' return None from galpy.potential import Potential def smoothInterp(t,dt,tform): """Smooth interpolation in time, following Dehnen (2000)""" if t < tform: smooth= 0. elif t > (tform+dt): smooth= 1. else: xi= 2.*(t-tform)/dt-1. smooth= (3./16.*xi**5.-5./8*xi**3.+15./16.*xi+.5) return smooth class TimeInterpPotential(Potential): """Potential that smoothly interpolates in time between two static potentials""" def __init__(self,pot1,pot2,dt=100.,tform=50.): """pot1= potential for t < tform, pot2= potential for t > tform+dt, dt: time over which to turn on pot2, tform: time at which the interpolation is switched on""" Potential.__init__(self,amp=1.) self._pot1= pot1 self._pot2= pot2 self._tform= tform self._dt= dt return None def _Rforce(self,R,z,phi=0.,t=0.): smooth= smoothInterp(t,self._dt,self._tform) return (1.-smooth)*self._pot1.Rforce(R,z)+smooth*self._pot2.Rforce(R,z) def _zforce(self,R,z,phi=0.,t=0.): smooth= smoothInterp(t,self._dt,self._tform) return (1.-smooth)*self._pot1.zforce(R,z)+smooth*self._pot2.zforce(R,z) def test_TimeInterpPotential(): #Just to check that the code above has run properly from galpy.potential import LogarithmicHaloPotential, \ MiyamotoNagaiPotential lp= LogarithmicHaloPotential(normalize=1.) mp= MiyamotoNagaiPotential(normalize=1.) tip= TimeInterpPotential(lp,mp) assert numpy.fabs(tip.Rforce(1.,0.1,t=10.)-lp.Rforce(1.,0.1)) < 10.**-8., 'TimeInterPotential does not work as expected' assert numpy.fabs(tip.Rforce(1.,0.1,t=200.)-mp.Rforce(1.,0.1)) < 10.**-8., 'TimeInterPotential does not work as expected' return None @pytest.mark.skip(reason="Test does not work correctly") def test_potentialAPIChange_warning(): # Test that a warning is displayed about the API change for evaluatePotentials etc. functions from what is given in the galpy paper #Turn warnings into errors to test for them import warnings from galpy.util import galpyWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always",galpyWarning) import galpy.potential raisedWarning= False for wa in w: raisedWarning= (str(wa.message) == "A major change in versions > 1.1 is that all galpy.potential functions and methods take the potential as the first argument; previously methods such as evaluatePotentials, evaluateDensities, etc. would be called with (R,z,Pot), now they are called as (Pot,R,z) for greater consistency across the codebase") if raisedWarning: break assert raisedWarning, "Importing galpy.potential does not raise warning about evaluatePotentials API change" return None def test_orbitint(): import numpy from galpy.potential import MWPotential2014 from galpy.potential import evaluatePotentials as evalPot from galpy.orbit import Orbit E, Lz= -1.25, 0.6 o1= Orbit([0.8,0.,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.)),0.]) ts= numpy.linspace(0.,100.,2001) o1.integrate(ts,MWPotential2014) o1.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k') o2= Orbit([0.8,0.3,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.-0.3**2./2.)),0.]) o2.integrate(ts,MWPotential2014) o2.plot(xrange=[0.3,1.],yrange=[-0.2,0.2],color='k') return None # Currently fails because o.jr(type='adiabatic') doesn't yet work for new Orbits @pytest.mark.xfail(raises=NotImplementedError,strict=True) def test_orbmethods(): from galpy.orbit import Orbit from galpy.potential import MWPotential2014 # 8/17/2019: added explicit z=0.025, because that was the default at the # time of the galpy paper, but the default has been changed o= Orbit([0.8,0.3,0.75,0.,0.2,0.],zo=0.025) # setup R,vR,vT,z,vz,phi times= numpy.linspace(0.,10.,1001) # Output times o.integrate(times,MWPotential2014) # Integrate o.E() # Energy assert numpy.fabs(o.E()+1.2547650648697966) < 10.**-5., 'Orbit method does not work as expected' o.L() # Angular momentum assert numpy.all(numpy.fabs(o.L()-numpy.array([[ 0. , -0.16, 0.6 ]])) < 10.**-5.), 'Orbit method does not work as expected' o.Jacobi(OmegaP=0.65) #Jacobi integral E-OmegaP Lz assert numpy.fabs(o.Jacobi(OmegaP=0.65)-numpy.array([-1.64476506])) < 10.**-5., 'Orbit method does not work as expected' o.ER(times[-1]), o.Ez(times[-1]) # Rad. and vert. E at end assert numpy.fabs(o.ER(times[-1])+1.27601734263047) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.Ez(times[-1])-0.021252201847851909) < 10.**-5., 'Orbit method does not work as expected' o.rperi(), o.rap(), o.zmax() # Peri-/apocenter r, max. |z| assert numpy.fabs(o.rperi()-0.44231993168097) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.rap()-0.87769030382105) < 10.**-5., 'Orbit method does not work as expected' assert numpy.fabs(o.zmax()-0.077452357289016) < 10.**-5., 'Orbit method does not work as expected' o.e() # eccentricity (rap-rperi)/(rap+rperi) assert numpy.fabs(o.e()-0.32982348199330563) < 10.**-5., 'Orbit method does not work as expected' o.R(2.,ro=8.) # Cylindrical radius at time 2. in kpc assert numpy.fabs(o.R(2.,ro=8.)-3.5470772876920007) < 10.**-3., 'Orbit method does not work as expected' o.vR(5.,vo=220.) # Cyl. rad. velocity at time 5. in km/s assert numpy.fabs(o.vR(5.,vo=220.)-45.202530965094553) < 10.**-3., 'Orbit method does not work as expected' o.ra(1.), o.dec(1.) # RA and Dec at t=1. (default settings) # 5/12/2016: test weakened, because improved galcen<->heliocen # transformation has changed these, but still close assert numpy.fabs(o.ra(1.)-numpy.array([ 288.19277])) < 10.**-1., 'Orbit method does not work as expected' assert numpy.fabs(o.dec(1.)-numpy.array([ 18.98069155])) < 10.**-1., 'Orbit method does not work as expected' o.jr(type='adiabatic'), o.jz() # R/z actions (ad. approx.) assert numpy.fabs(o.jr(type='adiabatic')-0.05285302231137586) < 10.**-3., 'Orbit method does not work as expected' assert numpy.fabs(o.jz()-0.006637988850751242) < 10.**-3., 'Orbit method does not work as expected' # Rad. period w/ Staeckel approximation w/ focal length 0.5, o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.) # in Gyr assert numpy.fabs(o.Tr(type='staeckel',delta=0.5,ro=8.,vo=220.)-0.1039467864018446) < 10.**-3., 'Orbit method does not work as expected' o.plot(d1='R',d2='z') # Plot the orbit in (R,z) o.plot3d() # Plot the orbit in 3D, w/ default [x,y,z] return None def test_orbsetup(): from galpy.orbit import Orbit o= Orbit([25.,10.,2.,5.,-2.,50.],radec=True,ro=8., vo=220.,solarmotion=[-11.1,25.,7.25]) return None def test_surfacesection(): #Preliminary code import numpy from galpy.potential import MWPotential2014 from galpy.potential import evaluatePotentials as evalPot from galpy.orbit import Orbit E, Lz= -1.25, 0.6 o1= Orbit([0.8,0.,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.)),0.]) ts= numpy.linspace(0.,100.,2001) o1.integrate(ts,MWPotential2014) o2= Orbit([0.8,0.3,Lz/0.8,0.,numpy.sqrt(2.*(E-evalPot(MWPotential2014,0.8,0.)-(Lz/0.8)**2./2.-0.3**2./2.)),0.]) o2.integrate(ts,MWPotential2014) def surface_section(Rs,zs,vRs): # Find points where the orbit crosses z from - to + shiftzs= numpy.roll(zs,-1) indx= (zs[:-1] < 0.)*(shiftzs[:-1] > 0.) return (Rs[:-1][indx],vRs[:-1][indx]) # Calculate and plot the surface of section ts= numpy.linspace(0.,1000.,20001) # long integration o1.integrate(ts,MWPotential2014) o2.integrate(ts,MWPotential2014) sect1Rs,sect1vRs=surface_section(o1.R(ts),o1.z(ts),o1.vR(ts)) sect2Rs,sect2vRs=surface_section(o2.R(ts),o2.z(ts),o2.vR(ts)) from matplotlib.pyplot import plot, xlim, ylim plot(sect1Rs,sect1vRs,'bo',mec='none') xlim(0.3,1.); ylim(-0.69,0.69) plot(sect2Rs,sect2vRs,'yo',mec='none') return None def test_adinvariance(): from galpy.potential import IsochronePotential from galpy.orbit import Orbit from galpy.actionAngle import actionAngleIsochrone # Initialize two different IsochronePotentials ip1= IsochronePotential(normalize=1.,b=1.) ip2= IsochronePotential(normalize=0.5,b=1.) # Use TimeInterpPotential to interpolate smoothly tip= TimeInterpPotential(ip1,ip2,dt=100.,tform=50.) # Integrate: 1) Orbit in the first isochrone potential o1= Orbit([1.,0.1,1.1,0.0,0.1,0.]) ts= numpy.linspace(0.,50.,1001) o1.integrate(ts,tip) o1.plot(d1='x',d2='y',xrange=[-1.6,1.6],yrange=[-1.6,1.6], color='b') # 2) Orbit in the transition o2= o1(ts[-1]) # Last time step => initial time step ts2= numpy.linspace(50.,150.,1001) o2.integrate(ts2,tip) o2.plot(d1='x',d2='y',overplot=True,color='g') # 3) Orbit in the second isochrone potential o3= o2(ts2[-1]) ts3= numpy.linspace(150.,200.,1001) o3.integrate(ts3,tip) o3.plot(d1='x',d2='y',overplot=True,color='r') # Now we calculate energy, maximum height, and mean radius print(o1.E(pot=ip1), (o1.rperi()+o1.rap())/2, o1.zmax()) assert numpy.fabs(o1.E(pot=ip1)+2.79921356237) < 10.**-4., 'Energy in the adiabatic invariance test is different' assert numpy.fabs((o1.rperi()+o1.rap())/2-1.07854158141) < 10.**-4., 'mean radius in the adiabatic invariance test is different' assert numpy.fabs(o1.zmax()-0.106331362938) < 10.**-4., 'zmax in the adiabatic invariance test is different' print(o3.E(pot=ip2), (o3.rperi()+o3.rap())/2, o3.zmax()) assert numpy.fabs(o3.E(pot=ip2)+1.19677002624) < 10.**-4., 'Energy in the adiabatic invariance test is different' assert numpy.fabs((o3.rperi()+o3.rap())/2-1.39962036137) < 10.**-4., 'mean radius in the adiabatic invariance test is different' assert numpy.fabs(o3.zmax()-0.138364269321) < 10.**-4., 'zmax in the adiabatic invariance test is different' # The orbit has clearly moved to larger radii, # the actions are however conserved from beginning to end aAI1= actionAngleIsochrone(ip=ip1); print(aAI1(o1)) js= aAI1(o1) assert numpy.fabs(js[0]-numpy.array([ 0.00773779])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[1]-numpy.array([ 1.1])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[2]-numpy.array([ 0.0045361])) < 10.**-4., 'action in the adiabatic invariance test is different' aAI2= actionAngleIsochrone(ip=ip2); print(aAI2(o3)) js= aAI2(o3) assert numpy.fabs(js[0]-numpy.array([ 0.00773812])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[1]-numpy.array([ 1.1])) < 10.**-4., 'action in the adiabatic invariance test is different' assert numpy.fabs(js[2]-numpy.array([ 0.0045361])) < 10.**-4., 'action in the adiabatic invariance test is different' return None def test_diskdf(): from galpy.df import dehnendf # Init. dehnendf w/ flat rot., hr=1/3, hs=1, and sr(1)=0.2 df= dehnendf(beta=0.,profileParams=(1./3.,1.0,0.2)) # Same, w/ correction factors to scale profiles dfc= dehnendf(beta=0.,profileParams=(1./3.,1.0,0.2), correct=True,niter=20) if True: # Log. diff. between scale and DF surf. dens. numpy.log(df.surfacemass(0.5)/df.targetSurfacemass(0.5)) assert numpy.fabs(numpy.log(df.surfacemass(0.5)/df.targetSurfacemass(0.5))+0.056954077791649592) < 10.**-4., 'diskdf does not behave as expected' # Same for corrected DF numpy.log(dfc.surfacemass(0.5)/dfc.targetSurfacemass(0.5)) assert numpy.fabs(numpy.log(dfc.surfacemass(0.5)/dfc.targetSurfacemass(0.5))+4.1440377205802041e-06) < 10.**-4., 'diskdf does not behave as expected' # Log. diff between scale and DF sr numpy.log(df.sigmaR2(0.5)/df.targetSigma2(0.5)) assert numpy.fabs(numpy.log(df.sigmaR2(0.5)/df.targetSigma2(0.5))+0.12786083001363127) < 10.**-4., 'diskdf does not behave as expected' # Same for corrected DF numpy.log(dfc.sigmaR2(0.5)/dfc.targetSigma2(0.5)) assert numpy.fabs(numpy.log(dfc.sigmaR2(0.5)/dfc.targetSigma2(0.5))+6.8065001252214986e-06) < 10.**-4., 'diskdf does not behave as expected' # Evaluate DF w/ R,vR,vT df(numpy.array([0.9,0.1,0.8])) assert numpy.fabs(df(numpy.array([0.9,0.1,0.8]))-numpy.array(0.1740247246180417)) < 10.**-4., 'diskdf does not behave as expected' # Evaluate corrected DF w/ Orbit instance from galpy.orbit import Orbit dfc(Orbit([0.9,0.1,0.8])) assert numpy.fabs(dfc(Orbit([0.9,0.1,0.8]))-numpy.array(0.16834863725552207)) < 10.**-4., 'diskdf does not behave as expected' # Calculate the mean velocities df.meanvR(0.9), df.meanvT(0.9) assert numpy.fabs(df.meanvR(0.9)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.meanvT(0.9)-0.91144428051168291) < 10.**-4., 'diskdf does not behave as expected' # Calculate the velocity dispersions numpy.sqrt(dfc.sigmaR2(0.9)), numpy.sqrt(dfc.sigmaT2(0.9)) assert numpy.fabs(numpy.sqrt(dfc.sigmaR2(0.9))-0.22103383792719539) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(numpy.sqrt(dfc.sigmaT2(0.9))-0.17613725303902811) < 10.**-4., 'diskdf does not behave as expected' # Calculate the skew of the velocity distribution df.skewvR(0.9), df.skewvT(0.9) assert numpy.fabs(df.skewvR(0.9)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.skewvT(0.9)+0.47331638366025863) < 10.**-4., 'diskdf does not behave as expected' # Calculate the kurtosis of the velocity distribution df.kurtosisvR(0.9), df.kurtosisvT(0.9) assert numpy.fabs(df.kurtosisvR(0.9)+0.13561300880237059) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(df.kurtosisvT(0.9)-0.12612702099300721) < 10.**-4., 'diskdf does not behave as expected' # Calculate a higher-order moment of the velocity DF df.vmomentsurfacemass(1.,6.,2.)/df.surfacemass(1.) assert numpy.fabs(df.vmomentsurfacemass(1.,6.,2.)/df.surfacemass(1.)-0.00048953492205559054) < 10.**-4., 'diskdf does not behave as expected' # Calculate the Oort functions dfc.oortA(1.), dfc.oortB(1.), dfc.oortC(1.), dfc.oortK(1.) assert numpy.fabs(dfc.oortA(1.)-0.40958989067012197) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortB(1.)+0.49396172114486514) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortC(1.)) < 10.**-4., 'diskdf does not behave as expected' assert numpy.fabs(dfc.oortK(1.)) < 10.**-4., 'diskdf does not behave as expected' # Sample Orbits from the DF, returns list of Orbits numpy.random.seed(1) os= dfc.sample(n=100,returnOrbit=True,nphi=1) # check that these have the right mean radius = 2hr=2/3 rs= numpy.array([o.R() for o in os]) assert numpy.fabs(numpy.mean(rs)-2./3.) < 0.1 # Sample vR and vT at given R, check their mean vrvt= dfc.sampleVRVT(0.7,n=500,target=True); vt= vrvt[:,1] assert numpy.fabs(numpy.mean(vrvt[:,0])) < 0.05 assert numpy.fabs(numpy.mean(vt)-dfc.meanvT(0.7)) < 0.01 # Sample Orbits along a given line-of-sight os= dfc.sampleLOS(45.,n=1000) return None def test_oort(): from galpy.df import dehnendf df= dehnendf(beta=0.,correct=True,niter=20, profileParams=(1./3.,1.,0.1)) va= 1.-df.meanvT(1.) # asymmetric drift A= df.oortA(1.) B= df.oortB(1.) return None def test_qdf(): from galpy.df import quasiisothermaldf from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleStaeckel # Setup actionAngle instance for action calcs aAS= actionAngleStaeckel(pot=MWPotential2014,delta=0.45, c=True) # Quasi-iso df w/ hr=1/3, hsr/z=1, sr(1)=0.2, sz(1)=0.1 df= quasiisothermaldf(1./3.,0.2,0.1,1.,1.,aA=aAS, pot=MWPotential2014) # Evaluate DF w/ R,vR,vT,z,vz df(0.9,0.1,0.8,0.05,0.02) assert numpy.fabs(df(0.9,0.1,0.8,0.05,0.02)-numpy.array([ 123.57158928])) < 10.**-4., 'qdf does not behave as expected' # Evaluate DF w/ Orbit instance, return ln from galpy.orbit import Orbit df(Orbit([0.9,0.1,0.8,0.05,0.02]),log=True) assert numpy.fabs(df(Orbit([0.9,0.1,0.8,0.05,0.02]),log=True)-numpy.array([ 4.81682066])) < 10.**-4., 'qdf does not behave as expected' # Evaluate DF marginalized over vz df.pvRvT(0.1,0.9,0.9,0.05) assert numpy.fabs(df.pvRvT(0.1,0.9,0.9,0.05)-2.*23.273310451852243) < 10.**-4., 'qdf does not behave as expected' #NOTE: The pvRvT() function has changed with respect to the version used in Bovy (2015). # As of January 2018, a prefactor of 2 has been added (=nsigma/2 with default nsigma=4), # to account for the correct Gauss-Legendre integration normalization. # Evaluate DF marginalized over vR,vT df.pvz(0.02,0.9,0.05) assert numpy.fabs(df.pvz(0.02,0.9,0.05)-50.949586235238172) < 10.**-4., 'qdf does not behave as expected' # Calculate the density df.density(0.9,0.05) assert numpy.fabs(df.density(0.9,0.05)-12.73725936526167) < 10.**-4., 'qdf does not behave as expected' # Estimate the DF's actual density scale length at z=0 df.estimate_hr(0.9,0.) assert numpy.fabs(df.estimate_hr(0.9,0.)-0.322420336223) < 10.**-2., 'qdf does not behave as expected' # Estimate the DF's actual surface-density scale length df.estimate_hr(0.9,None) assert numpy.fabs(df.estimate_hr(0.9,None)-0.38059909132766462) < 10.**-4., 'qdf does not behave as expected' # Estimate the DF's density scale height df.estimate_hz(0.9,0.02) assert numpy.fabs(df.estimate_hz(0.9,0.02)-0.064836202345657207) < 10.**-4., 'qdf does not behave as expected' # Calculate the mean velocities df.meanvR(0.9,0.05), df.meanvT(0.9,0.05), df.meanvz(0.9,0.05) assert numpy.fabs(df.meanvR(0.9,0.05)-3.8432265354618213e-18) < 10.**-4., 'qdf does not behave as expected' assert numpy.fabs(df.meanvT(0.9,0.05)-0.90840425173325279) < 10.**-4., 'qdf does not behave as expected' assert numpy.fabs(df.meanvz(0.9,0.05)+4.3579787517991084e-19) < 10.**-4., 'qdf does not behave as expected' # Calculate the velocity dispersions from numpy import sqrt sqrt(df.sigmaR2(0.9,0.05)), sqrt(df.sigmaz2(0.9,0.05)) assert numpy.fabs(sqrt(df.sigmaR2(0.9,0.05))-0.22695537077102387) < 10.**-4., 'qdf does not behave as expected' assert numpy.fabs(sqrt(df.sigmaz2(0.9,0.05))-0.094215523962105044) < 10.**-4., 'qdf does not behave as expected' # Calculate the tilt of the velocity ellipsoid # 2017/10-28: CHANGED bc tilt now returns angle in rad, no longer in deg df.tilt(0.9,0.05) assert numpy.fabs(df.tilt(0.9,0.05)-2.5166061974413765/180.*numpy.pi) < 10.**-4., 'qdf does not behave as expected' # Calculate a higher-order moment of the velocity DF df.vmomentdensity(0.9,0.05,6.,2.,2.,gl=True) assert numpy.fabs(df.vmomentdensity(0.9,0.05,6.,2.,2.,gl=True)-0.0001591100892366438) < 10.**-4., 'qdf does not behave as expected' # Sample velocities at given R,z, check mean numpy.random.seed(1) vs= df.sampleV(0.9,0.05,n=500); mvt= numpy.mean(vs[:,1]) assert numpy.fabs(numpy.mean(vs[:,0])) < 0.05 # vR assert numpy.fabs(mvt-df.meanvT(0.9,0.05)) < 0.01 #vT assert numpy.fabs(numpy.mean(vs[:,2])) < 0.05 # vz return None def test_coords(): from galpy.util import coords ra, dec, dist= 161., 50., 8.5 pmra, pmdec, vlos= -6.8, -10., -115. # Convert to Galactic and then to rect. Galactic ll, bb= coords.radec_to_lb(ra,dec,degree=True) pmll, pmbb= coords.pmrapmdec_to_pmllpmbb(pmra,pmdec,ra,dec,degree=True) X,Y,Z= coords.lbd_to_XYZ(ll,bb,dist,degree=True) vX,vY,vZ= coords.vrpmllpmbb_to_vxvyvz(vlos,pmll,pmbb,X,Y,Z,XYZ=True) # Convert to cylindrical Galactocentric # Assuming Sun's distance to GC is (8,0.025) in (R,z) R,phi,z= coords.XYZ_to_galcencyl(X,Y,Z,Xsun=8.,Zsun=0.025) vR,vT,vz= coords.vxvyvz_to_galcencyl(vX,vY,vZ,R,phi,Z,vsun=[-10.1,244.,6.7],galcen=True) # 5/12/2016: test weakened, because improved galcen<->heliocen # transformation has changed these, but still close print(R,phi,z,vR,vT,vz) assert numpy.fabs(R-12.51328515156942) < 10.**-1., 'Coordinate transformation has changed' assert numpy.fabs(phi-0.12177409073433249) < 10.**-1., 'Coordinate transformation has changed' assert numpy.fabs(z-7.1241282354856228) < 10.**-1., 'Coordinate transformation has changed' assert numpy.fabs(vR-78.961682923035966) < 10.**-1., 'Coordinate transformation has changed' assert numpy.fabs(vT+241.49247772351964) < 10.**-1., 'Coordinate transformation has changed' assert numpy.fabs(vz+102.83965442188689) < 10.**-1., 'Coordinate transformation has changed' return None
bsd-3-clause
epfl-lts2/pygsp
pygsp/graphs/nngraphs/grid2dimgpatches.py
1
1461
# -*- coding: utf-8 -*- # prevent circular import in Python < 3.5 from pygsp.graphs import Graph, Grid2d, ImgPatches class Grid2dImgPatches(Graph): r"""Union of a patch graph with a 2D grid graph. Parameters ---------- img : array Input image. aggregate: callable, optional Function to aggregate the weights ``Wp`` of the patch graph and the ``Wg`` of the grid graph. Default is ``lambda Wp, Wg: Wp + Wg``. kwargs : dict Parameters passed to :class:`ImgPatches`. See Also -------- ImgPatches Grid2d Examples -------- >>> import matplotlib.pyplot as plt >>> from skimage import data, img_as_float >>> img = img_as_float(data.camera()[::64, ::64]) >>> G = graphs.Grid2dImgPatches(img) >>> fig, axes = plt.subplots(1, 2) >>> _ = axes[0].spy(G.W, markersize=2) >>> _ = G.plot(ax=axes[1]) """ def __init__(self, img, aggregate=lambda Wp, Wg: Wp + Wg, **kwargs): self.Gg = Grid2d(img.shape[0], img.shape[1]) self.Gp = ImgPatches(img, **kwargs) W = aggregate(self.Gp.W, self.Gg.W) super(Grid2dImgPatches, self).__init__(W, coords=self.Gg.coords, plotting=self.Gg.plotting) def _get_extra_repr(self): attrs = self.Gg._get_extra_repr() attrs.update(self.Gp._get_extra_repr()) return attrs
bsd-3-clause
jreback/pandas
pandas/tests/util/test_assert_almost_equal.py
2
12536
import numpy as np import pytest from pandas import DataFrame, Index, Series, Timestamp import pandas._testing as tm def _assert_almost_equal_both(a, b, **kwargs): """ Check that two objects are approximately equal. This check is performed commutatively. Parameters ---------- a : object The first object to compare. b : object The second object to compare. **kwargs The arguments passed to `tm.assert_almost_equal`. """ tm.assert_almost_equal(a, b, **kwargs) tm.assert_almost_equal(b, a, **kwargs) def _assert_not_almost_equal(a, b, **kwargs): """ Check that two objects are not approximately equal. Parameters ---------- a : object The first object to compare. b : object The second object to compare. **kwargs The arguments passed to `tm.assert_almost_equal`. """ try: tm.assert_almost_equal(a, b, **kwargs) msg = f"{a} and {b} were approximately equal when they shouldn't have been" pytest.fail(msg=msg) except AssertionError: pass def _assert_not_almost_equal_both(a, b, **kwargs): """ Check that two objects are not approximately equal. This check is performed commutatively. Parameters ---------- a : object The first object to compare. b : object The second object to compare. **kwargs The arguments passed to `tm.assert_almost_equal`. """ _assert_not_almost_equal(a, b, **kwargs) _assert_not_almost_equal(b, a, **kwargs) @pytest.mark.parametrize( "a,b,check_less_precise", [(1.1, 1.1, False), (1.1, 1.100001, True), (1.1, 1.1001, 2)], ) def test_assert_almost_equal_deprecated(a, b, check_less_precise): # GH#30562 with tm.assert_produces_warning(FutureWarning): _assert_almost_equal_both(a, b, check_less_precise=check_less_precise) @pytest.mark.parametrize( "a,b", [ (1.1, 1.1), (1.1, 1.100001), (np.int16(1), 1.000001), (np.float64(1.1), 1.1), (np.uint32(5), 5), ], ) def test_assert_almost_equal_numbers(a, b): _assert_almost_equal_both(a, b) @pytest.mark.parametrize( "a,b", [ (1.1, 1), (1.1, True), (1, 2), (1.0001, np.int16(1)), # The following two examples are not "almost equal" due to tol. (0.1, 0.1001), (0.0011, 0.0012), ], ) def test_assert_not_almost_equal_numbers(a, b): _assert_not_almost_equal_both(a, b) @pytest.mark.parametrize( "a,b", [ (1.1, 1.1), (1.1, 1.100001), (1.1, 1.1001), (0.000001, 0.000005), (1000.0, 1000.0005), # Testing this example, as per #13357 (0.000011, 0.000012), ], ) def test_assert_almost_equal_numbers_atol(a, b): # Equivalent to the deprecated check_less_precise=True _assert_almost_equal_both(a, b, rtol=0.5e-3, atol=0.5e-3) @pytest.mark.parametrize("a,b", [(1.1, 1.11), (0.1, 0.101), (0.000011, 0.001012)]) def test_assert_not_almost_equal_numbers_atol(a, b): _assert_not_almost_equal_both(a, b, atol=1e-3) @pytest.mark.parametrize( "a,b", [ (1.1, 1.1), (1.1, 1.100001), (1.1, 1.1001), (1000.0, 1000.0005), (1.1, 1.11), (0.1, 0.101), ], ) def test_assert_almost_equal_numbers_rtol(a, b): _assert_almost_equal_both(a, b, rtol=0.05) @pytest.mark.parametrize("a,b", [(0.000011, 0.000012), (0.000001, 0.000005)]) def test_assert_not_almost_equal_numbers_rtol(a, b): _assert_not_almost_equal_both(a, b, rtol=0.05) @pytest.mark.parametrize( "a,b,rtol", [ (1.00001, 1.00005, 0.001), (-0.908356 + 0.2j, -0.908358 + 0.2j, 1e-3), (0.1 + 1.009j, 0.1 + 1.006j, 0.1), (0.1001 + 2.0j, 0.1 + 2.001j, 0.01), ], ) def test_assert_almost_equal_complex_numbers(a, b, rtol): _assert_almost_equal_both(a, b, rtol=rtol) _assert_almost_equal_both(np.complex64(a), np.complex64(b), rtol=rtol) _assert_almost_equal_both(np.complex128(a), np.complex128(b), rtol=rtol) @pytest.mark.parametrize( "a,b,rtol", [ (0.58310768, 0.58330768, 1e-7), (-0.908 + 0.2j, -0.978 + 0.2j, 0.001), (0.1 + 1j, 0.1 + 2j, 0.01), (-0.132 + 1.001j, -0.132 + 1.005j, 1e-5), (0.58310768j, 0.58330768j, 1e-9), ], ) def test_assert_not_almost_equal_complex_numbers(a, b, rtol): _assert_not_almost_equal_both(a, b, rtol=rtol) _assert_not_almost_equal_both(np.complex64(a), np.complex64(b), rtol=rtol) _assert_not_almost_equal_both(np.complex128(a), np.complex128(b), rtol=rtol) @pytest.mark.parametrize("a,b", [(0, 0), (0, 0.0), (0, np.float64(0)), (0.00000001, 0)]) def test_assert_almost_equal_numbers_with_zeros(a, b): _assert_almost_equal_both(a, b) @pytest.mark.parametrize("a,b", [(0.001, 0), (1, 0)]) def test_assert_not_almost_equal_numbers_with_zeros(a, b): _assert_not_almost_equal_both(a, b) @pytest.mark.parametrize("a,b", [(1, "abc"), (1, [1]), (1, object())]) def test_assert_not_almost_equal_numbers_with_mixed(a, b): _assert_not_almost_equal_both(a, b) @pytest.mark.parametrize( "left_dtype", ["M8[ns]", "m8[ns]", "float64", "int64", "object"] ) @pytest.mark.parametrize( "right_dtype", ["M8[ns]", "m8[ns]", "float64", "int64", "object"] ) def test_assert_almost_equal_edge_case_ndarrays(left_dtype, right_dtype): # Empty compare. _assert_almost_equal_both( np.array([], dtype=left_dtype), np.array([], dtype=right_dtype), check_dtype=False, ) def test_assert_almost_equal_dicts(): _assert_almost_equal_both({"a": 1, "b": 2}, {"a": 1, "b": 2}) @pytest.mark.parametrize( "a,b", [ ({"a": 1, "b": 2}, {"a": 1, "b": 3}), ({"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 3}), ({"a": 1}, 1), ({"a": 1}, "abc"), ({"a": 1}, [1]), ], ) def test_assert_not_almost_equal_dicts(a, b): _assert_not_almost_equal_both(a, b) @pytest.mark.parametrize("val", [1, 2]) def test_assert_almost_equal_dict_like_object(val): dict_val = 1 real_dict = {"a": val} class DictLikeObj: def keys(self): return ("a",) def __getitem__(self, item): if item == "a": return dict_val func = ( _assert_almost_equal_both if val == dict_val else _assert_not_almost_equal_both ) func(real_dict, DictLikeObj(), check_dtype=False) def test_assert_almost_equal_strings(): _assert_almost_equal_both("abc", "abc") @pytest.mark.parametrize( "a,b", [("abc", "abcd"), ("abc", "abd"), ("abc", 1), ("abc", [1])] ) def test_assert_not_almost_equal_strings(a, b): _assert_not_almost_equal_both(a, b) @pytest.mark.parametrize( "a,b", [([1, 2, 3], [1, 2, 3]), (np.array([1, 2, 3]), np.array([1, 2, 3]))] ) def test_assert_almost_equal_iterables(a, b): _assert_almost_equal_both(a, b) @pytest.mark.parametrize( "a,b", [ # Class is different. (np.array([1, 2, 3]), [1, 2, 3]), # Dtype is different. (np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0])), # Can't compare generators. (iter([1, 2, 3]), [1, 2, 3]), ([1, 2, 3], [1, 2, 4]), ([1, 2, 3], [1, 2, 3, 4]), ([1, 2, 3], 1), ], ) def test_assert_not_almost_equal_iterables(a, b): _assert_not_almost_equal(a, b) def test_assert_almost_equal_null(): _assert_almost_equal_both(None, None) @pytest.mark.parametrize("a,b", [(None, np.NaN), (None, 0), (np.NaN, 0)]) def test_assert_not_almost_equal_null(a, b): _assert_not_almost_equal(a, b) @pytest.mark.parametrize( "a,b", [ (np.inf, np.inf), (np.inf, float("inf")), (np.array([np.inf, np.nan, -np.inf]), np.array([np.inf, np.nan, -np.inf])), ( np.array([np.inf, None, -np.inf], dtype=np.object_), np.array([np.inf, np.nan, -np.inf], dtype=np.object_), ), ], ) def test_assert_almost_equal_inf(a, b): _assert_almost_equal_both(a, b) def test_assert_not_almost_equal_inf(): _assert_not_almost_equal_both(np.inf, 0) @pytest.mark.parametrize( "a,b", [ (Index([1.0, 1.1]), Index([1.0, 1.100001])), (Series([1.0, 1.1]), Series([1.0, 1.100001])), (np.array([1.1, 2.000001]), np.array([1.1, 2.0])), (DataFrame({"a": [1.0, 1.1]}), DataFrame({"a": [1.0, 1.100001]})), ], ) def test_assert_almost_equal_pandas(a, b): _assert_almost_equal_both(a, b) def test_assert_almost_equal_object(): a = [Timestamp("2011-01-01"), Timestamp("2011-01-01")] b = [Timestamp("2011-01-01"), Timestamp("2011-01-01")] _assert_almost_equal_both(a, b) def test_assert_almost_equal_value_mismatch(): msg = "expected 2\\.00000 but got 1\\.00000, with rtol=1e-05, atol=1e-08" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(1, 2) @pytest.mark.parametrize( "a,b,klass1,klass2", [(np.array([1]), 1, "ndarray", "int"), (1, np.array([1]), "int", "ndarray")], ) def test_assert_almost_equal_class_mismatch(a, b, klass1, klass2): msg = f"""numpy array are different numpy array classes are different \\[left\\]: {klass1} \\[right\\]: {klass2}""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(a, b) def test_assert_almost_equal_value_mismatch1(): msg = """numpy array are different numpy array values are different \\(66\\.66667 %\\) \\[left\\]: \\[nan, 2\\.0, 3\\.0\\] \\[right\\]: \\[1\\.0, nan, 3\\.0\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(np.array([np.nan, 2, 3]), np.array([1, np.nan, 3])) def test_assert_almost_equal_value_mismatch2(): msg = """numpy array are different numpy array values are different \\(50\\.0 %\\) \\[left\\]: \\[1, 2\\] \\[right\\]: \\[1, 3\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(np.array([1, 2]), np.array([1, 3])) def test_assert_almost_equal_value_mismatch3(): msg = """numpy array are different numpy array values are different \\(16\\.66667 %\\) \\[left\\]: \\[\\[1, 2\\], \\[3, 4\\], \\[5, 6\\]\\] \\[right\\]: \\[\\[1, 3\\], \\[3, 4\\], \\[5, 6\\]\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal( np.array([[1, 2], [3, 4], [5, 6]]), np.array([[1, 3], [3, 4], [5, 6]]) ) def test_assert_almost_equal_value_mismatch4(): msg = """numpy array are different numpy array values are different \\(25\\.0 %\\) \\[left\\]: \\[\\[1, 2\\], \\[3, 4\\]\\] \\[right\\]: \\[\\[1, 3\\], \\[3, 4\\]\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(np.array([[1, 2], [3, 4]]), np.array([[1, 3], [3, 4]])) def test_assert_almost_equal_shape_mismatch_override(): msg = """Index are different Index shapes are different \\[left\\]: \\(2L*,\\) \\[right\\]: \\(3L*,\\)""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(np.array([1, 2]), np.array([3, 4, 5]), obj="Index") def test_assert_almost_equal_unicode(): # see gh-20503 msg = """numpy array are different numpy array values are different \\(33\\.33333 %\\) \\[left\\]: \\[á, à, ä\\] \\[right\\]: \\[á, à, å\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(np.array(["á", "à", "ä"]), np.array(["á", "à", "å"])) def test_assert_almost_equal_timestamp(): a = np.array([Timestamp("2011-01-01"), Timestamp("2011-01-01")]) b = np.array([Timestamp("2011-01-01"), Timestamp("2011-01-02")]) msg = """numpy array are different numpy array values are different \\(50\\.0 %\\) \\[left\\]: \\[2011-01-01 00:00:00, 2011-01-01 00:00:00\\] \\[right\\]: \\[2011-01-01 00:00:00, 2011-01-02 00:00:00\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal(a, b) def test_assert_almost_equal_iterable_length_mismatch(): msg = """Iterable are different Iterable length are different \\[left\\]: 2 \\[right\\]: 3""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal([1, 2], [3, 4, 5]) def test_assert_almost_equal_iterable_values_mismatch(): msg = """Iterable are different Iterable values are different \\(50\\.0 %\\) \\[left\\]: \\[1, 2\\] \\[right\\]: \\[1, 3\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_almost_equal([1, 2], [1, 3])
bsd-3-clause
berkeley-stat159/project-alpha
final/image_scripts/tsa_plots.py
1
3616
""" This is a script that does some time series analysis on a single voxel for subject 1. It relies heavily on the statsmodels module, and since there aren't really any built-in functions at this time, there is no corresponding file in the functions or tests directories. If writing additional functions becomes necessary, I will implement and test them as needed. """ from __future__ import absolute_import, division, print_function import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib.lines as mlines import statsmodels.api as sm from statsmodels.graphics.api import qqplot import nibabel as nib # Relative path to subject 1 data pathtodata = "../../data/ds009/sub001/" # Path to directory to save images. location_of_images="../../images/" # Load in the image for Subject 1. img = nib.load(pathtodata+"BOLD/task001_run001/bold.nii.gz") data = img.get_data() data = data[...,6:] # Knock off the first 6 observations. # Pull out a single voxel. voxel = data[41, 47, 2] plt.plot(voxel) plt.close() # Sort of a curve = nonconstant mean. # Variance also seems to be funky toward the ends. plt.hist(voxel) plt.close() # Long right tail. qqplot(voxel, line='q') plt.close() # More-or-less normal, with deviations at tails. # Box-Cox method to find best power transformation. bc = stats.boxcox(voxel) bc[1] # Lambda pretty close to 0, so try log transformation. print("Log transforming data.") # Log transform the data. lvoxel = np.log(voxel) plt.plot(lvoxel) plt.close() plt.hist(lvoxel) plt.close() qqplot(lvoxel, line='q') plt.close() # Plots look pretty similar, but skewness has been eliminated. # Try looking at the first difference. diff1 = lvoxel[:-1]-lvoxel[1:] plt.plot(diff1) plt.close() # Mean looks like it could be constant. plt.hist(diff1) plt.close() qqplot(diff1, line='q') plt.close() # QQplot still shows some deviations from normality at tails. print("Using first difference to gain approximate stationarity.") # Assume that the first difference is approximately normal. # Autocorrelation plot. First lag is significant. sm.graphics.tsa.plot_acf(diff1, lags=20) plt.close() # Partial autocorrelation plot. Dies down slowly. sm.graphics.tsa.plot_pacf(diff1, lags=20) plt.close() # Might be an IMA(1, 1) # Or, since autocorrelation also doesn't quite die out, could be an # ARIMA model with p>0 and q>0. # Let's look at different ARMA models. res = sm.tsa.arma_order_select_ic(diff1, ic=['aic', 'bic']) res # Both AIC and BIC suggest ARIMA(1,1,1). # Fit an ARIMA(1,1,1). arima111 = sm.tsa.ARIMA(lvoxel, (1,1,1)).fit(disp=0) arima111.params # Fitted values look reasonable compared to first difference. plt.plot(diff1) plt.plot(arima111.resid) plt.close() # Residuals look normally distributed. qqplot(arima111.resid, line='q') plt.close() # Autocorrelation and partial autocorrelation plots look fine. sm.graphics.tsa.plot_acf(arima111.resid, lags=20) plt.close() sm.graphics.tsa.plot_pacf(arima111.resid, lags=20) plt.close() # Use first half of the observations to predict the second half. print("Suggested model is ARIMA(1,1,1).") preds = arima111.predict(start=len(diff1)//2+1) times = range(1,len(diff1)+1) plt.plot(times[len(diff1)//2:], diff1[len(diff1)//2:], 'b') plt.plot(times[len(diff1)//2:], preds, 'r') hand_obs = mlines.Line2D([], [], color="b", label="Observed") hand_fore = mlines.Line2D([], [], color="r", label="Forecast") plt.legend(handles=[hand_obs, hand_fore]) plt.title('Second Half of Observations') plt.xlabel('Time') plt.ylabel('Hemoglobin Response') plt.savefig(location_of_images+"ts-preds.png")
bsd-3-clause
zaxtax/scikit-learn
examples/linear_model/plot_sparse_recovery.py
27
7466
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.exceptions import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause
classicboyir/BuildingMachineLearningSystemsWithPython
ch04/build_lda.py
22
2443
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function try: import nltk.corpus except ImportError: print("nltk not found") print("please install it") raise from scipy.spatial import distance import numpy as np from gensim import corpora, models import sklearn.datasets import nltk.stem from collections import defaultdict english_stemmer = nltk.stem.SnowballStemmer('english') stopwords = set(nltk.corpus.stopwords.words('english')) stopwords.update(['from:', 'subject:', 'writes:', 'writes']) class DirectText(corpora.textcorpus.TextCorpus): def get_texts(self): return self.input def __len__(self): return len(self.input) try: dataset = sklearn.datasets.load_mlcomp("20news-18828", "train", mlcomp_root='./data') except: print("Newsgroup data not found.") print("Please download from http://mlcomp.org/datasets/379") print("And expand the zip into the subdirectory data/") print() print() raise otexts = dataset.data texts = dataset.data texts = [t.decode('utf-8', 'ignore') for t in texts] texts = [t.split() for t in texts] texts = [map(lambda w: w.lower(), t) for t in texts] texts = [filter(lambda s: not len(set("+-.?!()>@012345689") & set(s)), t) for t in texts] texts = [filter(lambda s: (len(s) > 3) and (s not in stopwords), t) for t in texts] texts = [map(english_stemmer.stem, t) for t in texts] usage = defaultdict(int) for t in texts: for w in set(t): usage[w] += 1 limit = len(texts) / 10 too_common = [w for w in usage if usage[w] > limit] too_common = set(too_common) texts = [filter(lambda s: s not in too_common, t) for t in texts] corpus = DirectText(texts) dictionary = corpus.dictionary try: dictionary['computer'] except: pass model = models.ldamodel.LdaModel( corpus, num_topics=100, id2word=dictionary.id2token) thetas = np.zeros((len(texts), 100)) for i, c in enumerate(corpus): for ti, v in model[c]: thetas[i, ti] += v distances = distance.squareform(distance.pdist(thetas)) large = distances.max() + 1 for i in range(len(distances)): distances[i, i] = large print(otexts[1]) print() print() print() print(otexts[distances[1].argmin()])
mit
michaelbramwell/sms-tools
software/transformations_interface/hpsMorph_function.py
24
7354
# function for doing a morph between two sounds using the hpsModel import numpy as np import matplotlib.pyplot as plt from scipy.signal import get_window import sys, os sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../transformations/')) import hpsModel as HPS import hpsTransformations as HPST import harmonicTransformations as HT import utilFunctions as UF def analysis(inputFile1='../../sounds/violin-B3.wav', window1='blackman', M1=1001, N1=1024, t1=-100, minSineDur1=0.05, nH=60, minf01=200, maxf01=300, f0et1=10, harmDevSlope1=0.01, stocf=0.1, inputFile2='../../sounds/soprano-E4.wav', window2='blackman', M2=901, N2=1024, t2=-100, minSineDur2=0.05, minf02=250, maxf02=500, f0et2=10, harmDevSlope2=0.01): """ Analyze two sounds with the harmonic plus stochastic model inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size N: fft size (power of two, bigger or equal than M) t: magnitude threshold of spectral peaks minSineDur: minimum duration of sinusoidal tracks nH: maximum number of harmonics minf0: minimum fundamental frequency in sound maxf0: maximum fundamental frequency in sound f0et: maximum error accepted in f0 detection algorithm harmDevSlope: allowed deviation of harmonic tracks, higher harmonics have higher allowed deviation stocf: decimation factor used for the stochastic approximation returns inputFile: input file name; fs: sampling rate of input file, hfreq, hmag: harmonic frequencies, magnitude; stocEnv: stochastic residual """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # read input sounds (fs1, x1) = UF.wavread(inputFile1) (fs2, x2) = UF.wavread(inputFile2) # compute analysis windows w1 = get_window(window1, M1) w2 = get_window(window2, M2) # compute the harmonic plus stochastic models hfreq1, hmag1, hphase1, stocEnv1 = HPS.hpsModelAnal(x1, fs1, w1, N1, H, t1, nH, minf01, maxf01, f0et1, harmDevSlope1, minSineDur1, Ns, stocf) hfreq2, hmag2, hphase2, stocEnv2 = HPS.hpsModelAnal(x2, fs2, w2, N2, H, t2, nH, minf02, maxf02, f0et2, harmDevSlope2, minSineDur2, Ns, stocf) # create figure to plot plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 15000.0 # plot spectrogram stochastic component of sound 1 plt.subplot(2,1,1) numFrames = int(stocEnv1[:,0].size) sizeEnv = int(stocEnv1[0,:].size) frmTime = H*np.arange(numFrames)/float(fs1) binFreq = (.5*fs1)*np.arange(sizeEnv*maxplotfreq/(.5*fs1))/sizeEnv plt.pcolormesh(frmTime, binFreq, np.transpose(stocEnv1[:,:sizeEnv*maxplotfreq/(.5*fs1)+1])) plt.autoscale(tight=True) # plot harmonic on top of stochastic spectrogram of sound 1 if (hfreq1.shape[1] > 0): harms = np.copy(hfreq1) harms = harms*np.less(harms,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs1) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.autoscale(tight=True) plt.title('harmonics + stochastic spectrogram of sound 1') # plot spectrogram stochastic component of sound 2 plt.subplot(2,1,2) numFrames = int(stocEnv2[:,0].size) sizeEnv = int(stocEnv2[0,:].size) frmTime = H*np.arange(numFrames)/float(fs2) binFreq = (.5*fs2)*np.arange(sizeEnv*maxplotfreq/(.5*fs2))/sizeEnv plt.pcolormesh(frmTime, binFreq, np.transpose(stocEnv2[:,:sizeEnv*maxplotfreq/(.5*fs2)+1])) plt.autoscale(tight=True) # plot harmonic on top of stochastic spectrogram of sound 2 if (hfreq2.shape[1] > 0): harms = np.copy(hfreq2) harms = harms*np.less(harms,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs2) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.autoscale(tight=True) plt.title('harmonics + stochastic spectrogram of sound 2') plt.tight_layout() plt.show(block=False) return inputFile1, fs1, hfreq1, hmag1, stocEnv1, inputFile2, hfreq2, hmag2, stocEnv2 def transformation_synthesis(inputFile1, fs, hfreq1, hmag1, stocEnv1, inputFile2, hfreq2, hmag2, stocEnv2, hfreqIntp = np.array([0, 0, .1, 0, .9, 1, 1, 1]), hmagIntp = np.array([0, 0, .1, 0, .9, 1, 1, 1]), stocIntp = np.array([0, 0, .1, 0, .9, 1, 1, 1])): """ Transform the analysis values returned by the analysis function and synthesize the sound inputFile1: name of input file 1 fs: sampling rate of input file 1 hfreq1, hmag1, stocEnv1: hps representation of sound 1 inputFile2: name of input file 2 hfreq2, hmag2, stocEnv2: hps representation of sound 2 hfreqIntp: interpolation factor between the harmonic frequencies of the two sounds, 0 is sound 1 and 1 is sound 2 (time,value pairs) hmagIntp: interpolation factor between the harmonic magnitudes of the two sounds, 0 is sound 1 and 1 is sound 2 (time,value pairs) stocIntp: interpolation factor between the stochastic representation of the two sounds, 0 is sound 1 and 1 is sound 2 (time,value pairs) """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # morph the two sounds yhfreq, yhmag, ystocEnv = HPST.hpsMorph(hfreq1, hmag1, stocEnv1, hfreq2, hmag2, stocEnv2, hfreqIntp, hmagIntp, stocIntp) # synthesis y, yh, yst = HPS.hpsModelSynth(yhfreq, yhmag, np.array([]), ystocEnv, Ns, H, fs) # write output sound outputFile = 'output_sounds/' + os.path.basename(inputFile1)[:-4] + '_hpsMorph.wav' UF.wavwrite(y, fs, outputFile) # create figure to plot plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 15000.0 # plot spectrogram of transformed stochastic compoment plt.subplot(2,1,1) numFrames = int(ystocEnv[:,0].size) sizeEnv = int(ystocEnv[0,:].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = (.5*fs)*np.arange(sizeEnv*maxplotfreq/(.5*fs))/sizeEnv plt.pcolormesh(frmTime, binFreq, np.transpose(ystocEnv[:,:sizeEnv*maxplotfreq/(.5*fs)+1])) plt.autoscale(tight=True) # plot transformed harmonic on top of stochastic spectrogram if (yhfreq.shape[1] > 0): harms = np.copy(yhfreq) harms = harms*np.less(harms,maxplotfreq) harms[harms==0] = np.nan numFrames = int(harms[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.plot(frmTime, harms, color='k', ms=3, alpha=1) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.autoscale(tight=True) plt.title('harmonics + stochastic spectrogram') # plot the output sound plt.subplot(2,1,2) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": # analysis inputFile1, fs1, hfreq1, hmag1, stocEnv1, inputFile2, hfreq2, hmag2, stocEnv2 = analysis() # transformation and synthesis transformation_synthesis (inputFile1, fs1, hfreq1, hmag1, stocEnv1, inputFile2, hfreq2, hmag2, stocEnv2) plt.show()
agpl-3.0
moyomot/text_classification
data_helpers.py
1
12962
import re import string import numpy as np import pandas as pd from gensim.models import KeyedVectors from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from logs import logger WORD2VEC_PATH = 'dataset/embedding/GoogleNews-vectors-negative300.bin' def clean_str(text): text = re.sub(r"[^A-Za-z0-9^,!?.\/'+-=]", " ", text) text = re.sub(r"what's", "what is ", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"i'm", "i am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r",", " ", text) text = re.sub(r"\.", " ", text) text = re.sub(r"!", " ! ", text) text = re.sub(r"n\'t", " n\'t", text) text = re.sub(r"\(", " ", text) text = re.sub(r"\)", " ", text) text = re.sub(r"\?", " \? ", text) text = re.sub(r"\/", " ", text) text = re.sub(r"\^", " ^ ", text) text = re.sub(r"\+", " + ", text) text = re.sub(r"\-", " - ", text) text = re.sub(r"\=", " = ", text) text = re.sub(r"'", " ", text) text = re.sub(r"#", " ", text) text = re.sub(r":", " : ", text) text = re.sub(r"\0s", "0", text) text = re.sub(r"\s{2,}", " ", text) return text.strip().lower() class DataSet: @classmethod def load_word2vec(cls): try: word2vec = KeyedVectors.load_word2vec_format(WORD2VEC_PATH, binary=True) except Exception as e: raise e return word2vec def load(self, column_names): with open(self.TRAIN_PATH, "r") as file: self.df_train = pd.read_csv(file, names=column_names, header=None) with open(self.TEST_PATH, "r") as file: self.df_test = pd.read_csv(file, names=column_names, header=None) def tfidf_transformer(self): count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(self.X_train) tfidf_transformer = TfidfTransformer() self.X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) self.y_train_labels = self.y_train logger.info('train text size is {size}'.format(size=len(self.X_train))) logger.info('train label size is {size}'.format(size=len(self.y_train_labels))) X_test_counts = count_vect.transform(self.X_test) self.X_test_tfidf = tfidf_transformer.fit_transform(X_test_counts) self.y_test_labels = self.y_test logger.info('test text size is {size}'.format(size=len(self.X_test))) logger.info('test label size is {size}'.format(size=len(self.y_test_labels))) def embedding_transfomer(self): tokenizer = Tokenizer(num_words=self.MAX_NB_WORDS) tokenizer.fit_on_texts(self.X_train + self.X_test) X_train_sequences = tokenizer.texts_to_sequences(self.X_train) X_test_sequences = tokenizer.texts_to_sequences(self.X_test) self.X_train = pad_sequences(X_train_sequences, maxlen=self.MAX_SEQUENCE_LENGTH) self.X_test = pad_sequences(X_test_sequences, maxlen=self.MAX_SEQUENCE_LENGTH) self.y_train = to_categorical(np.asarray(self.y_train)) self.y_test = to_categorical(np.asarray(self.y_test)) word2vec = DataSet.load_word2vec() self.word_index = tokenizer.word_index embedding_matrix = np.zeros((len(self.word_index), self.EMBEDDING_DIM)) for word, i in self.word_index.items(): if word in word2vec.vocab: embedding_matrix[i] = word2vec.word_vec(word) self.embedding_matrix = embedding_matrix class AgNews(DataSet): TRAIN_PATH = 'dataset/ag_news_csv/train.csv' TEST_PATH = 'dataset/ag_news_csv/test.csv' COLUMN_NAMES = ['category_id', 'title', 'description'] def __init__(self): self.MAX_NB_WORDS = 200000 self.EMBEDDING_DIM = 300 self.MAX_SEQUENCE_LENGTH = 1000 def create_embedding_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.title + self.df_train.description) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.title + self.df_test.description) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.category_size = len(self.df_test.groupby('category_id')) self.embedding_transfomer() def create_character_level_dataset(self): chars = list(string.ascii_lowercase + string.digits + string.punctuation) + ['\n'] vocab = {char: id for id, char in enumerate(chars)} vocab2vec = {} for char, id in vocab.items(): x = np.zeros(len(vocab), dtype=np.int) x[id] = 1 vocab2vec[char] = x self.load(self.COLUMN_NAMES) X_train = list(self.df_train.title + self.df_train.description) X_train = [clean_str(text) for text in X_train] X_train = [list(x.replace(' ', '')[:200]) for x in X_train] X_train = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_train]) self.X_train = np.array([[vocab2vec[char] for char in text] for text in X_train]) logger.info(self.X_train.shape) self.y_train = np.array(self.df_train.category_id-1) X_test = list(self.df_test.title + self.df_test.description) X_test = [clean_str(text) for text in X_test] X_test = [list(x.replace(' ', '')[:200]) for x in X_test] X_test = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_test]) self.X_test = np.array([[vocab2vec[char] for char in text] for text in X_test]) logger.info(self.X_test.shape) self.y_test = np.array(self.df_test.category_id-1) self.category_size = len(self.df_test.groupby('category_id')) self.y_train = to_categorical(np.asarray(self.y_train)) self.y_test = to_categorical(np.asarray(self.y_test)) def create_tfidf_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.title + self.df_train.description) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.title + self.df_test.description) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.tfidf_transformer() class YahooAnswers(DataSet): TRAIN_PATH = 'dataset/yahoo_answers_csv/train.csv' TEST_PATH = 'dataset/yahoo_answers_csv/test.csv' COLUMN_NAMES = ['category_id', 'title', 'question', 'answer'] def __init__(self): self.MAX_NB_WORDS = 1200000 self.EMBEDDING_DIM = 300 self.MAX_SEQUENCE_LENGTH = 2000 def create_embedding_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.title.fillna(" ") + self.df_train.question.fillna(" ") + self.df_train.answer.fillna(" ")) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.title.fillna(" ") + self.df_test.question.fillna(" ") + self.df_test.answer.fillna(" ")) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.category_size = len(self.df_test.groupby('category_id')) self.embedding_transfomer() def create_tfidf_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.title.fillna(" ") + self.df_train.question.fillna(" ") + self.df_train.answer.fillna(" ")) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.title.fillna(" ") + self.df_test.question.fillna(" ") + self.df_test.answer.fillna(" ")) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.tfidf_transformer() def create_character_level_dataset(self): chars = list(string.ascii_lowercase + string.digits + string.punctuation) + ['\n'] vocab = {char: id for id, char in enumerate(chars)} vocab2vec = {} for char, id in vocab.items(): x = np.zeros(len(vocab), dtype=np.int) x[id] = 1 vocab2vec[char] = x self.load(self.COLUMN_NAMES) X_train = list( self.df_train.title.fillna(" ") + self.df_train.question.fillna(" ") + self.df_train.answer.fillna(" ")) X_train = [clean_str(text) for text in X_train] X_train = [list(x.replace(' ', '')[:200]) for x in X_train] X_train = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_train]) self.X_train = np.array([[vocab2vec[char] for char in text] for text in X_train]) logger.info(self.X_train.shape) self.y_train = np.array(self.df_train.category_id - 1) X_test = list( self.df_test.title.fillna(" ") + self.df_test.question.fillna(" ") + self.df_test.answer.fillna(" ")) X_test = [clean_str(text) for text in X_test] X_test = [list(x.replace(' ', '')[:200]) for x in X_test] X_test = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_test]) self.X_test = np.array([[vocab2vec[char] for char in text] for text in X_test]) logger.info(self.X_test.shape) self.y_test = np.array(self.df_test.category_id - 1) self.category_size = len(self.df_test.groupby('category_id')) class YelpReviewPolarity(DataSet): TRAIN_PATH = 'dataset/yelp_review_polarity_csv/train.csv' TEST_PATH = 'dataset/yelp_review_polarity_csv/test.csv' COLUMN_NAMES = ['category_id', 'description'] def __init__(self): self.MAX_NB_WORDS = 600000 self.EMBEDDING_DIM = 300 self.MAX_SEQUENCE_LENGTH = 2000 def create_embedding_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.description.fillna(" ")) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.description.fillna(" ")) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.category_size = len(self.df_test.groupby('category_id')) self.embedding_transfomer() def create_tfidf_dataset(self): self.load(self.COLUMN_NAMES) self.X_train = list(self.df_train.description.fillna(" ")) self.X_train = [clean_str(text) for text in self.X_train] self.y_train = list(self.df_train.category_id-1) self.X_test = list(self.df_test.description.fillna(" ")) self.X_test = [clean_str(text) for text in self.X_test] self.y_test = list(self.df_test.category_id-1) self.tfidf_transformer() def create_character_level_dataset(self): chars = list(string.ascii_lowercase + string.digits + string.punctuation) + ['\n'] vocab = {char: id for id, char in enumerate(chars)} vocab2vec = {} for char, id in vocab.items(): x = np.zeros(len(vocab), dtype=np.int) x[id] = 1 vocab2vec[char] = x self.load(self.COLUMN_NAMES) X_train = list(self.df_train.description) X_train = [clean_str(text) for text in X_train] X_train = [list(x.replace(' ', '')[:200]) for x in X_train] X_train = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_train]) self.X_train = np.array([[vocab2vec[char] for char in text] for text in X_train]) logger.info(self.X_train.shape) self.y_train = np.array(self.df_train.category_id - 1) X_test = list(self.df_test.description) X_test = [clean_str(text) for text in X_test] X_test = [list(x.replace(' ', '')[:200]) for x in X_test] X_test = np.array([x if len(x) == 200 else x + (['#'] * (200 - len(x))) for x in X_test]) self.X_test = np.array([[vocab2vec[char] for char in text] for text in X_test]) logger.info(self.X_test.shape) self.y_test = np.array(self.df_test.category_id - 1) self.category_size = len(self.df_test.groupby('category_id')) self.y_train = to_categorical(np.asarray(self.y_train)) self.y_test = to_categorical(np.asarray(self.y_test))
mit
KhaledSharif/quantopian-ensemble-methods
one-classifier.py
1
9032
import talib from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraTreesClassifier import numpy as np import pandas def initialize(context): set_symbol_lookup_date('2012-01-01') # Parameters to be changed context.model = ExtraTreesClassifier(n_estimators=300) context.lookback = 14 context.history_range = 1000 context.beta_coefficient = 0.0 context.percentage_change = 0.025 context.maximum_leverage = 2.0 context.number_of_stocks = 150 context.maximum_pe_ratio = 8 context.maximum_market_cap = 0.1e9 context.starting_probability = 0.5 # End of parameters schedule_function(create_model, date_rules.month_start(), time_rules.market_open()) schedule_function(rebalance, date_rules.month_start(), time_rules.market_open()) schedule_function(trade, date_rules.every_day(), time_rules.market_open()) context.algorithm_returns = [] context.longs = [] context.shorts = [] context.training_stocks = symbols('SPY') context.trading_stocks = [] context.beta = 1.0 context.beta_list = [] context.completed = False def before_trading_start(context): if context.completed: return fundamental_df = get_fundamentals(query(fundamentals.valuation.market_cap) .filter(fundamentals.company_reference.primary_exchange_id == 'NAS' or fundamentals.company_reference.primary_exchange_id == 'NYSE') .filter(fundamentals.valuation_ratios.pe_ratio < context.maximum_pe_ratio) .filter(fundamentals.valuation.market_cap < context.maximum_market_cap) .order_by(fundamentals.valuation.market_cap.desc()) .limit(context.number_of_stocks)) update_universe(fundamental_df.columns.values) context.trading_stocks = [stock for stock in fundamental_df] context.completed = True def create_model(context, data): X = [] Y = [] for S in context.training_stocks: recent_prices = history(context.history_range, '1d', 'price')[S].values recent_lows = history(context.history_range, '1d', 'low')[S].values recent_highs = history(context.history_range, '1d', 'high')[S].values recent_closes = history(context.history_range, '1d', 'close_price')[S].values atr = talib.ATR(recent_highs, recent_lows, recent_closes, timeperiod=14) prev_close = np.roll(recent_closes, 2) upside_signal = (recent_prices - (prev_close + atr)).tolist() downside_signal = (prev_close - (recent_prices + atr)).tolist() price_changes = np.diff(recent_prices).tolist() upper, middle, lower = talib.BBANDS(recent_prices,timeperiod=10,nbdevup=2,nbdevdn=2,matype=1) upper = upper.tolist() middle = middle.tolist() lower = lower.tolist() for i in range(15, context.history_range-context.lookback-1): Z = price_changes[i:i+context.lookback] + upside_signal[i:i+context.lookback] + downside_signal[i:i+context.lookback] +\ upper[i:i+context.lookback] + middle[i:i+context.lookback] + lower[i:i+context.lookback] if (np.any(np.isnan(Z)) or not np.all(np.isfinite(Z))): continue X.append(Z) if abs(price_changes[i+context.lookback]) > abs(price_changes[i]*(1+context.percentage_change)): if price_changes[i+context.lookback] > 0: Y.append(+1) else: Y.append(-1) else: Y.append(0) context.model.fit(X, Y) def rebalance(context, data): context.completed = False def trade(context, data): if (context.account.leverage > context.maximum_leverage): return if not context.model: return for stock in context.trading_stocks: if stock not in data: context.trading_stocks.remove(stock) for stock in context.trading_stocks: if stock.security_end_date < get_datetime(): context.trading_stocks.remove(stock) if stock in security_lists.leveraged_etf_list: context.trading_stocks.remove(stock) for one_stock in context.trading_stocks: if get_open_orders(one_stock): continue recent_prices = history(context.lookback+30, '1d', 'price')[one_stock].values recent_lows = history(context.lookback+30, '1d', 'low')[one_stock].values recent_highs = history(context.lookback+30, '1d', 'high')[one_stock].values recent_closes = history(context.lookback+30, '1d', 'close_price')[one_stock].values if (np.any(np.isnan(recent_prices)) or not np.all(np.isfinite(recent_prices))): continue if (np.any(np.isnan(recent_lows)) or not np.all(np.isfinite(recent_lows))): continue if (np.any(np.isnan(recent_highs)) or not np.all(np.isfinite(recent_highs))): continue if (np.any(np.isnan(recent_closes)) or not np.all(np.isfinite(recent_closes))): continue atr = talib.ATR(recent_highs, recent_lows, recent_closes, timeperiod=14) prev_close = np.roll(recent_closes, 2) upside_signal = (recent_prices - (prev_close + atr)).tolist() downside_signal = (prev_close - (recent_prices + atr)).tolist() price_changes = np.diff(recent_prices).tolist() upper, middle, lower = talib.BBANDS(recent_prices,timeperiod=10,nbdevup=2,nbdevdn=2,matype=1) upper = upper.tolist() middle = middle.tolist() lower = lower.tolist() L = context.lookback Z = price_changes[-L:] + upside_signal[-L:] + downside_signal[-L:] + upper[-L:] + middle[-L:] + lower[-L:] if (np.any(np.isnan(Z)) or not np.all(np.isfinite(Z))): continue prediction = context.model.predict(Z) predict_proba = context.model.predict_proba(Z) probability = predict_proba[0][prediction+1] p_desired = context.starting_probability + 0.1*context.portfolio.returns if probability > p_desired: if prediction > 0: if one_stock in context.shorts: order_target_percent(one_stock, 0) context.shorts.remove(one_stock) elif not one_stock in context.longs: context.longs.append(one_stock) elif prediction < 0: if one_stock in context.longs: order_target_percent(one_stock, 0) context.longs.remove(one_stock) elif not one_stock in context.shorts: context.shorts.append(one_stock) else: order_target_percent(one_stock, 0) if one_stock in context.longs: context.longs.remove(one_stock) elif one_stock in context.shorts: context.shorts.remove(one_stock) if get_open_orders(): return for one_stock in context.longs: if not one_stock in context.trading_stocks: context.longs.remove(one_stock) else: order_target_percent(one_stock, context.maximum_leverage/(len(context.longs)+len(context.shorts))) for one_stock in context.shorts: if not one_stock in context.trading_stocks: context.shorts.remove(one_stock) else: order_target_percent(one_stock, (-1.0)*context.maximum_leverage/(len(context.longs)+len(context.shorts))) order_target_percent(symbol('SPY'), (-1.0)*context.maximum_leverage*(context.beta*context.beta_coefficient)) def estimateBeta(priceY,priceX): algorithm_returns = priceY benchmark_returns = (priceX/np.roll(priceX,1)-1).dropna().values if len(algorithm_returns) <> len(benchmark_returns): minlen = min(len(algorithm_returns), len(benchmark_returns)) if minlen > 2: algorithm_returns = algorithm_returns[-minlen:] benchmark_returns = benchmark_returns[-minlen:] else: return 1.00 returns_matrix = np.vstack([algorithm_returns, benchmark_returns]) C = np.cov(returns_matrix, ddof=1) algorithm_covariance = C[0][1] benchmark_variance = C[1][1] beta = algorithm_covariance / benchmark_variance return beta def handle_data(context, data): record(cash = context.portfolio.cash/(1000000)) record(lev = context.account.leverage) context.algorithm_returns.append(context.portfolio.returns) if len(context.algorithm_returns) > 30: recent_prices = history(len(context.algorithm_returns), '1d', 'price')[symbol('SPY')] context.beta_list.append(estimateBeta(pandas.Series(context.algorithm_returns[-30:]), recent_prices)) if len(context.beta_list) > 7: context.beta_list.pop(0) context.beta = np.mean(context.beta_list) record(Beta=context.beta)
mit
xiaoxiamii/scikit-learn
sklearn/feature_selection/tests/test_base.py
143
3670
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause