repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
sinharrajesh/dbtools
twitter-analysis/botratings.py
1
6404
#!/usr/bin/python # Author: Rajesh Sinha, Karan Narain # Usage: botrating.py useranalys0106.csv Opfilename endingAt startingfrom # useranalysis0106.csv is the supplied file which has prelim user data # opfilename is the name the script will write to # endingAt at which row # starting from which row. # Now we can run this in chunks of 1000 as follows # botrating.py useranalysis0106.csv first1000.csv 1000 1 # botrating.py useranalysis0106.csv second1000.csv 2000 1001 # botrating.py useranalysis0106.csv third1000.csv 3000 2001 # botrating.py useranalysis0106.csv fourth1000.csv 4000 3001 # ... # botrating.py useranalysis0106.csv last1000.csv 10000 9001 # Note it will be useful to redirect the stdout to a file so that in case things go wrong # you still have the output for the records processed which can be manually merged # # botrating.py useranalysis0106.csv first1000.csv 1000 1 > first1000.tmp # do not redirect the stderr # import botometer import logging import random import pandas as pd import sys # Your mashape_key generated when you add botometer api to default app mashape_key = "" # Your twitter account and app keys here consumer_key='' consumer_secret='' access_token_key='' access_token_secret='' #logging level _loggingLevel = logging.INFO ## How much trace def connectToBoto(mashape_key, consumer_key, consumer_secret, access_token_key, access_token_secret): twitter_app_auth = { 'consumer_key': consumer_key, 'consumer_secret': consumer_secret, 'access_token': access_token_key, 'access_token_secret': access_token_secret, } try: bom = botometer.Botometer(mashape_key=mashape_key, **twitter_app_auth) except (KeyboardInterrupt, SystemExit): raise except: logger.error('Unexpected error: %r', sys.exc_info()[0]) logger.error('Exception in connecting to Boto Mashape Gateway or Twitter') return None return bom def openCsvFile(filename, startIndex, endAt): logger.info('Passed params %s %d %d', filename, startIndex, endAt) # Read the input file useranalysis0106.csv or whatever df = pd.read_csv(sys.argv[1]) # Read all rows as for some reasons lambda is not working logger.info('Subsetting the dataframe %r at %d:%d', df.shape, startIndex-1, endAt) df = df[startIndex -1:endAt] # Add the scores related columns to dataframe with default valuesO # If you set anything to 0 you will always get 0 as column gets int # type and all botometer returns are <0 decimals df['ID String'] = '' df['Score-English'] = 0.0 df['Score-Universal'] = 0.0 df['Score-Network'] = 0.0 df['Score-Content'] = 0.0 df['Score-Sentiment'] = 0.0 df['Score-Temporal'] = 0.0 df['Score-Friend'] = 0.0 df['Score-User'] = 0.0 #return the data frame return df def checkBotRatings(df): # Iterate over the dataframe - passing handle to botometer and updating bot scores for i, row in df.iterrows(): name = row['handle'] try: result = bom.check_account(name) except (KeyboardInterrupt, SystemExit): raise except: pass id_str = '' nw = 0 cn = 0 sn = 0 tm = 0 fr = 0 us = 0 sc_en = 0 sc_un = 0 if 'user' in result: if 'id_str' in result['user']: id_str = result['user']['id_str'] nw = result['categories']['network'] cn = result['categories']['content'] sn = result['categories']['sentiment'] tm = result['categories']['temporal'] fr = result['categories']['friend'] us = result['categories']['user'] sc_en = result['scores']['english'] sc_un = result['scores']['universal'] df.set_value(i,'ID String', id_str) df.set_value(i,'Score-English' , sc_en) df.set_value(i,'Score-Universal' , sc_un) df.set_value(i,'Score-Network' , nw) df.set_value(i,'Score-Content' , cn) df.set_value(i,'Score-Sentiment' , sn) df.set_value(i,'Score-Temporal' , tm) df.set_value(i,'Score-Friend' , fr) df.set_value(i,'Score-User' , us) print("%s,%s,%r,%r,%r,%r,%r,%r,%r,%r" %(name, id_str, sc_en, sc_un, nw, cn, sn, tm, fr, us)) sys.stdout.flush() return df def writeToOutputFile(df, opfilename): # write back to a csv file post reordering of columns in the way we want df.reindex(columns=['handle','ID String','Tweet','Retweet','Reply','Total','#tweets','#followers','#friends','Joining Date','n-cubit related %age', 'Score-English', 'Score-Universal', 'Score-Network','Score-Content', 'Score-Sentiment','Score-Temporal','Score-Friend','Score-User']).to_csv(opfilename, index=False) return def checkUsage(*argv): USAGE="botrating.py inputfile opfile endAt rowstostartat" if len(argv) != 5: logger.error("Invalid No of arguments. Usage is %s", USAGE) return (False, None, None, None, None) else: try: inputFile = sys.argv[1] outputFile = sys.argv[2] endAt = int(sys.argv[3]) rowsToStartAt = int(sys.argv[4]) except (KeyboardInterrupt, SystemExit): raise except: logger.error('Unexpected error: %r', sys.exc_info()[0]) logger.error("Invalid arguments. Usage is %s", USAGE) return (False, None, None, None, None) return (True, inputFile, outputFile, endAt, rowsToStartAt) if __name__ == "__main__": logger = logging.getLogger(__name__) logging.basicConfig(level=_loggingLevel) status, inputFile, outputFile, endAt, rowsToStartAt = checkUsage(*sys.argv) if status is False: sys.exit(1) bom = connectToBoto(mashape_key, consumer_key, consumer_secret, access_token_key, access_token_secret) if bom: df = openCsvFile(inputFile, rowsToStartAt, endAt) df1 = checkBotRatings(df) writeToOutputFile(df1, outputFile) sys.exit(0) else: logger.error('Unable to connect to Boto and Twitter') sys.exit(1)
apache-2.0
ljwolf/pysal
pysal/spreg/opt.py
8
2370
import copy def simport(modname): """ Safely import a module without raising an error. Parameters ----------- modname : str module name needed to import Returns -------- tuple of (True, Module) or (False, None) depending on whether the import succeeded. Notes ------ Wrapping this function around an iterative context or a with context would allow the module to be used without necessarily attaching it permanently in the global namespace: >>> for t,mod in simport('pandas'): if t: mod.DataFrame() else: #do alternative behavior here del mod #or don't del, your call instead of: >>> t, mod = simport('pandas') >>> if t: mod.DataFrame() else: #do alternative behavior here The first idiom makes it work kind of a like a with statement. """ try: exec('import {}'.format(modname)) return True, eval(modname) except: return False, None def requires(*args, **kwargs): """ Decorator to wrap functions with extra dependencies: Arguments --------- args : list list of strings containing module to import verbose : bool boolean describing whether to print a warning message on import failure Returns ------- Original function is all arg in args are importable, otherwise returns a function that passes. """ v = kwargs.pop('verbose', True) wanted = copy.deepcopy(args) def inner(function): available = [simport(arg)[0] for arg in args] if all(available): return function else: def passer(*args,**kwargs): if v: missing = [arg for i, arg in enumerate(wanted) if not available[i]] print('missing dependencies: {d}'.format(d=missing)) print('not running {}'.format(function.__name__)) else: pass return passer return inner if __name__ == '__main__': @requires('pandas') def test(): import pandas print('ASDF') @requires('thisisnotarealmodule') def test2(): print('you shouldnt see this') test() test2()
bsd-3-clause
MarkWieczorek/SHTOOLS
examples/python/GlobalSpectralAnalysis/GlobalSpectralAnalysis.py
2
1591
#!/usr/bin/env python3 """ This script tests the different Spherical Harmonics Transforms on the Mars topography data set """ import os import numpy as np import matplotlib.pyplot as plt import pyshtools from pyshtools import spectralanalysis from pyshtools import shio from pyshtools import expand pyshtools.utils.figstyle() # ==== MAIN FUNCTION ==== def main(): example() # ==== PLOT POWER SPECTRA ==== def example(): """ example that plots the power spectrum of Mars topography data """ # --- input data filename --- infile = os.path.join(os.path.dirname(__file__), '../../ExampleDataFiles/MarsTopo719.shape') coeffs, lmax = shio.shread(infile) # --- plot grid --- grid = expand.MakeGridDH(coeffs, csphase=-1) fig_map = plt.figure() plt.imshow(grid) # ---- compute spectrum ---- ls = np.arange(lmax + 1) pspectrum = spectralanalysis.spectrum(coeffs, unit='per_l') pdensity = spectralanalysis.spectrum(coeffs, unit='per_lm') # ---- plot spectrum ---- fig_spectrum, ax = plt.subplots(1, 1) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('degree l') ax.grid(True, which='both') ax.plot(ls[1:], pspectrum[1:], label='power per degree l') ax.plot(ls[1:], pdensity[1:], label='power per degree l and order m') ax.legend() fig_map.savefig('SHRtopography_mars.png') fig_spectrum.savefig('SHRspectrum_mars.png') print('mars topography and spectrum saved') # plt.show() # ==== EXECUTE SCRIPT ==== if __name__ == "__main__": main()
bsd-3-clause
ashhher3/scikit-learn
sklearn/ensemble/__init__.py
44
1228
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
liangz0707/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
kalvdans/scipy
scipy/stats/kde.py
31
18766
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to Scipy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- from __future__ import division, print_function, absolute_import # Standard library imports. import warnings # Scipy imports. from scipy._lib.six import callable, string_types from scipy import linalg, special from scipy.special import logsumexp from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \ ravel, power, atleast_1d, squeeze, sum, transpose import numpy as np from numpy.random import randint, multivariate_normal # Local imports. from . import mvn __all__ = ['gaussian_kde'] class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- evaluate __call__ integrate_gaussian integrate_box_1d integrate_box integrate_kde pdf logpdf resample set_bandwidth covariance_factor Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): ... "Measurement model, return two coupled measurements." ... m1 = np.random.normal(size=n) ... m2 = np.random.normal(scale=0.5, size=n) ... return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None): self.dataset = atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov # This will raise LinAlgError if the new cov matrix is not s.p.d # cho_factor returns (ndarray, bool) where bool is a flag for whether # or not ndarray is upper or lower triangular sum_cov_chol = linalg.cho_factor(sum_cov) diff = self.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies), axis=0) / norm_const / self.n return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.mean(special.ndtr(normalized_high) - special.ndtr(normalized_low)) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance sum_cov_chol = linalg.cho_factor(sum_cov) result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies), axis=0) sqrt_det = np.prod(np.diagonal(sum_cov_chol[0])) norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det result /= norm_const * large.n * small.n return result def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm def scotts_factor(self): return power(self.n, -1./(self.d+4)) def silverman_factor(self): return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`.""" def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> import scipy.stats as stats >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n def pdf(self, x): """ Evaluate the estimated pdf on a provided set of points. Notes ----- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` docstring for more details. """ return self.evaluate(x) def logpdf(self, x): """ Evaluate the log of the estimated pdf on a provided set of points. """ points = atleast_2d(x) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=float) if m >= self.n: # there are more points than data, so loop over data energy = zeros((self.n, m), dtype=float) for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy[i] = sum(diff*tdiff,axis=0) / 2.0 result = logsumexp(-energy, b=1/self._norm_factor, axis=0) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = logsumexp(-energy, b=1/self._norm_factor) return result
bsd-3-clause
q1ang/quant_at
TU_mom.py
2
1729
import matplotlib.pylab as plt import numpy as np import pandas as pd dftu = pd.read_csv('TU.csv') import corr res = [] for lookback in [1, 5, 10, 25, 60, 120, 250]: for holddays in [1, 5, 10, 25, 60, 120, 250]: df_Close_lookback = dftu.Close.shift(lookback) df_Close_holddays = dftu.Close.shift(-holddays) dftu['ret_lag'] = (dftu.Close-df_Close_lookback)/df_Close_lookback dftu['ret_fut'] = (df_Close_holddays-dftu.Close)/dftu.Close dfc = dftu[['ret_lag','ret_fut']].dropna() idx = None if lookback >= holddays: idx = np.array(range(0,len(dfc.ret_lag), holddays)) else: idx = np.array(range(0,len(dfc.ret_lag), lookback)) dfc = dfc.ix[idx] t, x, p = corr.p_corr(dfc.ret_lag, dfc.ret_fut) res.append([lookback, holddays, t, p]) res = pd.DataFrame(res,columns=['geriye bakis','tutma gunu','korelasyon','p degeri']) print res[res['geriye bakis'] >= 25] import dd def report(df,lookback,holddays): longs = df.Close > df.Close.shift(lookback) shorts = df.Close < df.Close.shift(lookback) df['pos'] = 0. for h in range(holddays): long_lag = longs.shift(h).fillna(False) short_lag = shorts.shift(h).fillna(False) df.loc[long_lag,'pos'] += 1 df.loc[short_lag,'pos'] -= 1 ret=(df.pos.shift(1)* (df.Close-df.Close.shift(1)) / df.Close.shift(1)) \ / holddays cumret=np.cumprod(1+ret)-1 print 'APR', ((np.prod(1.+ret))**(252./len(ret)))-1 print 'Sharpe', np.sqrt(252.)*np.mean(ret)/np.std(ret) print 'Dusus Kaliciligi', dd.calculateMaxDD(np.array(cumret)) return cumret cumret=report(dftu,lookback = 250,holddays = 25) plt.plot(cumret) plt.show()
gpl-3.0
chuckgu/Alphabeta
theano/preprocessing_video.py
1
1567
# -*- coding: utf-8 -*- dataset_path='/home/chuckgu/Desktop/project/preprocessing/UCF101/UCF-101-Frames' import csv import numpy as np import cPickle as pkl import glob import os import pandas as pd def main(): data=[] lable=[] index=1 for index,clas in enumerate(sorted(os.listdir(dataset_path))): for directory in sorted(os.listdir(dataset_path+'/'+clas)): os.chdir(dataset_path+'/'+clas+'/'+directory) img=[] for j,ff in enumerate(sorted(glob.glob("*.jpg"))): print ff,index #img.append(img_to_array(load_img(ff))) img.append(dataset_path+'/'+clas+'/'+directory+'/'+ff) if (j+1)%16==0: data.append(img) lable.append(index) img=[] #if index==9: break #data=np.asarray(data) n_samples = len(data) sidx = np.random.permutation(n_samples) n_train = int(np.round(n_samples * 0.2)) train_x = [data[s] for s in sidx[n_train:]] train_y = [lable[s] for s in sidx[n_train:]] test_x = [data[s] for s in sidx[:n_train]] test_y = [lable[s] for s in sidx[:n_train]] currdir = os.getcwd() os.chdir('%s/' % '/home/chuckgu/Desktop/project/Alphabeta/data') print n_samples,max(lable) print 'Saving..' f = open('ucf_data_all.pkl', 'wb') pkl.dump(((train_x,train_y),(test_x,test_y)), f, -1) f.close() return data,lable if __name__ == '__main__': data,label=main() #print len(set(y))
gpl-3.0
bthirion/scikit-learn
examples/model_selection/plot_confusion_matrix.py
63
3231
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import itertools import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target class_names = iris.target_names # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show()
bsd-3-clause
tmeits/pybrain
examples/rl/environments/shipsteer/shipbench_sde.py
26
3454
from __future__ import print_function #!/usr/bin/env python ######################################################################### # Reinforcement Learning with SPE on the ShipSteering Environment # # Requirements: # pybrain (tested on rev. 1195, ship env rev. 1202) # Synopsis: # shipbenchm.py [<True|False> [logfile]] # (first argument is graphics flag) ######################################################################### __author__ = "Martin Felder, Thomas Rueckstiess" __version__ = '$Id$' #--- # default backend GtkAgg does not plot properly on Ubuntu 8.04 import matplotlib matplotlib.use('TkAgg') #--- from pybrain.rl.environments.shipsteer import ShipSteeringEnvironment from pybrain.rl.environments.shipsteer import GoNorthwardTask from pybrain.rl.agents import LearningAgent from pybrain.rl.learners.directsearch.enac import ENAC from pybrain.rl.experiments.episodic import EpisodicExperiment from pybrain.tools.shortcuts import buildNetwork from pybrain.tools.plotting import MultilinePlotter from pylab import figure, ion from scipy import mean import sys if len(sys.argv) > 1: useGraphics = eval(sys.argv[1]) else: useGraphics = False # create task env=ShipSteeringEnvironment() maxsteps = 500 task = GoNorthwardTask(env=env, maxsteps = maxsteps) # task.env.setRenderer( CartPoleRenderer()) # create controller network #net = buildNetwork(task.outdim, 7, task.indim, bias=True, outputbias=False) net = buildNetwork(task.outdim, task.indim, bias=False) #net.initParams(0.0) # create agent learner = ENAC() learner.gd.rprop = True # only relevant for RP learner.gd.deltamin = 0.0001 #agent.learner.gd.deltanull = 0.05 # only relevant for BP learner.gd.alpha = 0.01 learner.gd.momentum = 0.9 agent = LearningAgent(net, learner) agent.actaspg = False # create experiment experiment = EpisodicExperiment(task, agent) # print weights at beginning print(agent.module.params) rewards = [] if useGraphics: figure() ion() pl = MultilinePlotter(autoscale=1.2, xlim=[0, 50], ylim=[0, 1]) pl.setLineStyle(linewidth=2) # queued version # experiment._fillQueue(30) # while True: # experiment._stepQueueLoop() # # rewards.append(mean(agent.history.getSumOverSequences('reward'))) # print agent.module.getParameters(), # print mean(agent.history.getSumOverSequences('reward')) # clf() # plot(rewards) # episodic version x = 0 batch = 30 #number of samples per gradient estimate (was: 20; more here due to stochastic setting) while x<5000: #while True: experiment.doEpisodes(batch) x += batch reward = mean(agent.history.getSumOverSequences('reward'))*task.rewardscale if useGraphics: pl.addData(0,x,reward) print(agent.module.params) print(reward) #if reward > 3: # pass agent.learn() agent.reset() if useGraphics: pl.update() if len(sys.argv) > 2: agent.history.saveToFile(sys.argv[1], protocol=-1, arraysonly=True) if useGraphics: pl.show( popup = True) #To view what the simulation is doing at the moment set the environment with True, go to pybrain/rl/environments/ode/ and start viewer.py (python-openGL musst be installed, see PyBrain documentation) ## performance: ## experiment.doEpisodes(5) * 100 without weave: ## real 2m39.683s ## user 2m33.358s ## sys 0m5.960s ## experiment.doEpisodes(5) * 100 with weave: ##real 2m41.275s ##user 2m35.310s ##sys 0m5.192s ##
bsd-3-clause
spbguru/repo1
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
gpl-3.0
panda0881/pycharmtesting
sentiment_analysis_testing.py
1
9976
from textblob import TextBlob import pandas as pd testwords = ['good is bad, bad is good good', 'hello', 'fucking', 'best', 'beautiful', 'bad', 'wonderful', 'horrible', 'haha', 'ok', 'accaptable', 'jnfjanfjanfja'] testparagraph = """ Google was bound to make it in here somehow. Here are some intern perks at Google: 1. Google pays for flights from anywhere in the world to your office and from your office to anywhere in the world, before and after your internship. (This is standard for most companies) 2. Google gives us free, and in my opinion, luxury housing. Although we share an apartment we three others, it's equipped with a nice TV, a patio, a kitchen with a dishwasher, 2 baths, a washer and dryer, and biweekly cleaning. We also have access to a 24-hour gym, a hot tub, a swimming pool, a games room, and a park. 3. Google buses pick us from corp housing and drop us back to corp housing many times during the day. 4. Google bikes are temporary bikes available in and around Google to use to cycle around campus. You can rent a bike for free. 5. Google has over 20 gourmet cafeterias all over campus with almost all types of cuisine almost everyday. They serve 3 meals on all weekdays, with few exceptions. 6. Everyone is less than 100 feet away from a microkitchen, stuffed with all sorts of snacks, fruits and drinks. They also come with a automatic coffee machine and an espresso machine. If there's something you want in your microkitchen, it can be asked for. 7. Chess tables, board games, pool tables, table tennis tables and swimming pools can be found frequently around campus. You're encouraged to use them, during work. 8. Interns get an hours worth of massage credits and get a professional massage. Massage chairs are scattered around campus in case you want something automatic. 9. Weekly TGIF involves wine, beer, watching Larry and Sergey address the company, possibly asking them questions and more. During work. 10. No work hours. Come and go when you want - just get work done and be present virtually at your meetings. 11. Request any electronic item you might need for use for your entire internship. Usually work related, but includes laptops of choice, headphones, etc. You get to keep some of them. Interns can work on a chromebook, a chrome book pixel or a 15" inch retina MacBook Pro, as of 2013. 12. Dogfood the newest stuff google makes. 13. Attend special internal hackathons to be the first to work on Google's coolest products. 14. Watch the first Loon launch. 15. Need to run errands at work? Borrow a google car and go anywhere you want for any amount of time. 16. The office never closes. Stay all night! 17. Nap pods. Sleep at work, in style. 18. Intern Boat Cruise in the bay. As crazy as they get. 19. Great pay on top of all the free stuff. 20. Heated toilet seats at work. 21. No clothing guidelines (this is the norm at most tech companies). Hair color, tattoos, piercings - it all runs as long as you code. 22. The best internal tools. Can't say much more. 23. Volleyball courts, Soccer fields, and intra company sporting competitions. I'm sure they have more facilities I'm not even aware of. 24. There are 5 or more full fledged high tech gyms at google including outdoor pull up bars and what not. When I say high tech, I mean they count your reps for you. Free gym classes for everything you can imagine. 25. Free classes for random things - from python and C++ to salsa and more. You can take breaks from work to learn something cool. 26. Free Google swag. Interns get a T shirt and a Patagonia backpack and a hoodie. Plus, you get to keep headphones and if you're lucky, more valuable freebies. 27. You get to have a full fledge Hollywood movie featuring Owen Wilson and Vince Vaughn based on how cool your job is, albeit more than slightly exaggerated. You also get free tickets to the red carpet premier a week before release. So what if it's a crappy movie? Unlike Jobs or The Social Network, this is about the interns! It's about you. 28. Getting a full time job at google is very in demand and as a result, very hard. I won't reveal numbers but it is orders if magnitude harder than the most selective college in America. Converting from an internship is much easier, and that extra boost is great to have especially in a market where "Ex-Googler" is a status symbol. 29. Get to meet some legends. Just by being a little pushy and very lucky, you can easily set up meetings with Ken Thompson and Jeff Dean. It's much easier to set up people with lesser known people all around google and just talk about their projects and technology. 30. Last, but not least. The biggest perk of being at google are the people. The interns are extremely smart and passionate but sociable and nice as well. The full timers are amazing too. All companies have great engineers, but at Google you're surrounded by a city of so many of the smartest software engineers shaping the forefront of technology today. The sheer quantity is mesmerizing. They are so well read (in code) and knowledgeable and very helpful. If you make use of it, it's like infinite office hours with a professor who's always at your service! Edit: 31. On-site haircuts two days a week, with professional stylists. 32. On-site laundry if you so please. 33. "Park at Google when you go to concerts at Shoreline. Also, pick up free drinks and snacks at Google at the same time. Sometimes it's nice, after the concert, to play a game of pool or something with your friends while the concertgoers are stuck in traffic." - Iain McClatchie This summer they had artists ranging from John Mayer to Brad Paisley to Wiz Khalifa. 34. If you're lost or need any transport, you can call the GCar or the GShuttle to pick you up if you're anywhere around campus. 187.9k Views · View Upvotes Upvote2.7kDownvoteComments27+ Share Bogdan Cristian Tătăroiu Bogdan Cristian Tătăroiu, Intern at Dropbox, formerly at Twitter and Facebook Updated Aug 15, 2013 · Featured in Forbes · Upvoted by Oliver Emberton, Founder of Silktide and Ryhan Hassan, Interned at Apple, Google. Joining Dropbox. Dropbox has by far the most perks I've seen in any Silicon Valley company. The major event that stood out to me this summer was Parent's Weekend, where they flew out all intern parents down to their San Francisco office, housed them for 2 nights, organised a bunch of talks explaining Dropbox to them, where we stand now, our future products, our vision etc. and basically helped them understand why all of us working here are so excited about what we're doing. It was an awesome family-like experience all round and for me personally it was made even better by the fact that it was my father's first trip to the United States and my mother's second and they finally got to understand why I chose to do what I do and be where I am right now. Other than that: They completely cover your housing - either 2 people in a 2 bedroom apartment or, if you're lucky, 1 person in a 1 bedroom apartment. They have shuttles which pick you up from corporate housing locations and take you back from the office to _anywhere_ in SF. The Tuckshop (our in-house restaurant) literally makes better food than I find in most restaurants I eat in over the weekend in SF. They cover expenses: phone plan, caltrain gopass, muni & bart pass, flights. Giant music room with everything from grand piano to electric guitars and drumset Massages, haircuts, professional ping pong training, on-site gym. No work hours - come and go as you please. We host Hack Week, where the entire company stops what they are normally doing, brings in guests (expenses covered) and works on anything. The quality of the people you work with is incredible. Every once in a while there comes a tech company that becomes a magnet for engineering talent - first it was Google, then it was Facebook, now Dropbox seems to be following in their footsteps. We have an internal joke that if the file syncing business goes bust, we can just turn into a restaurant and t-shirt company and we'll be fine. That's reflected in the amount of swag you get here. Request anything from IT department (we got StarCraft II licences for a hack week AI). 100$ monthly Exec credit Saving the best for last, you can set your own Dropbox space quota for life. The list goes on and on and while some of the perks I mentioned can be found at other companies, if you actually see them first hand, they always have a slight twist which makes them even better. """ blob = TextBlob(testparagraph) # blob = blob.correct() words = list(blob.tags) word_type_list = ['JJ', 'NN', 'NR', 'NT', 'PN', 'AD'] words2 = list() pair_list = list() for i in range(0, len(words)): if words[i][1] in word_type_list: # print(words[i]) words2.append(words[i]) last_noun_position = 0 last_PN_position = 0 for i in range(0, len(words2)): if last_noun_position > last_PN_position: last_position = last_noun_position else: last_position = last_PN_position if words2[i][1] in ['NN', 'NR', 'NT']: for j in range(last_position, i): if words2[j][1] == 'JJ': pair_list.append((words2[j], words2[i])) last_noun_position = i elif words2[i][1] == 'PN': for j in range(last_position, i): if words2[j][1] == 'JJ': pair_list.append((words2[j], words2[last_noun_position])) last_PN_position = i result = dict() for pair in pair_list: if pair[1][0] not in result: result[pair[1][0]] = TextBlob(pair[0][0]).sentiment.polarity else: result[pair[1][0]] += TextBlob(pair[0][0]).sentiment.polarity result = pd.Series(result) result.sort_values(ascending=False, inplace=True) positive_reason = result[:5] negative_reason = result[-5:].sort_values() print('Top five positive reasons: ') print(positive_reason) print('Top five negative reasons: ') print(negative_reason) print('end')
apache-2.0
zzcclp/spark
python/pyspark/pandas/tests/test_categorical.py
14
16649
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype import pyspark.pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils class CategoricalTest(PandasOnSparkTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( { "a": pd.Categorical([1, 2, 3, 1, 2, 3]), "b": pd.Categorical( ["b", "a", "c", "c", "b", "a"], categories=["c", "b", "d", "a"] ), }, ) @property def psdf(self): return ps.from_pandas(self.pdf) @property def df_pair(self): return self.pdf, self.psdf def test_categorical_frame(self): pdf, psdf = self.df_pair self.assert_eq(psdf, pdf) self.assert_eq(psdf.a, pdf.a) self.assert_eq(psdf.b, pdf.b) self.assert_eq(psdf.index, pdf.index) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psdf.sort_values("b"), pdf.sort_values("b")) def test_categorical_series(self): pser = pd.Series([1, 2, 3], dtype="category") psser = ps.Series([1, 2, 3], dtype="category") self.assert_eq(psser, pser) self.assert_eq(psser.cat.categories, pser.cat.categories) self.assert_eq(psser.cat.codes, pser.cat.codes) self.assert_eq(psser.cat.ordered, pser.cat.ordered) def test_astype(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(psser.astype("category"), pser.astype("category")) self.assert_eq( psser.astype(CategoricalDtype(["c", "a", "b"])), pser.astype(CategoricalDtype(["c", "a", "b"])), ) pcser = pser.astype(CategoricalDtype(["c", "a", "b"])) kcser = psser.astype(CategoricalDtype(["c", "a", "b"])) self.assert_eq(kcser.astype("category"), pcser.astype("category")) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( kcser.astype(CategoricalDtype(["b", "c", "a"])), pcser.astype(CategoricalDtype(["b", "c", "a"])), ) else: self.assert_eq( kcser.astype(CategoricalDtype(["b", "c", "a"])), pser.astype(CategoricalDtype(["b", "c", "a"])), ) self.assert_eq(kcser.astype(str), pcser.astype(str)) def test_factorize(self): pser = pd.Series(["a", "b", "c", None], dtype=CategoricalDtype(["c", "a", "d", "b"])) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(kcodes.tolist(), pcodes.tolist()) self.assert_eq(kuniques, puniques) pcodes, puniques = pser.factorize(na_sentinel=-2) kcodes, kuniques = psser.factorize(na_sentinel=-2) self.assert_eq(kcodes.tolist(), pcodes.tolist()) self.assert_eq(kuniques, puniques) def test_frame_apply(self): pdf, psdf = self.df_pair self.assert_eq(psdf.apply(lambda x: x).sort_index(), pdf.apply(lambda x: x).sort_index()) self.assert_eq( psdf.apply(lambda x: x, axis=1).sort_index(), pdf.apply(lambda x: x, axis=1).sort_index(), ) def test_frame_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_apply() pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c"]) def categorize(ser) -> ps.Series[dtype]: return ser.astype(dtype) self.assert_eq( psdf.apply(categorize).sort_values(["a", "b"]).reset_index(drop=True), pdf.apply(categorize).sort_values(["a", "b"]).reset_index(drop=True), ) def test_frame_transform(self): pdf, psdf = self.df_pair self.assert_eq(psdf.transform(lambda x: x), pdf.transform(lambda x: x)) self.assert_eq(psdf.transform(lambda x: x.cat.codes), pdf.transform(lambda x: x.cat.codes)) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.transform(lambda x: x.astype(dtype)).sort_index(), pdf.transform(lambda x: x.astype(dtype)).sort_index(), ) def test_frame_transform_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_transform() pdf, psdf = self.df_pair def codes(pser) -> ps.Series[np.int8]: return pser.cat.codes self.assert_eq(psdf.transform(codes), pdf.transform(codes)) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def to_category(pser) -> ps.Series[dtype]: return pser.astype(dtype) self.assert_eq( psdf.transform(to_category).sort_index(), pdf.transform(to_category).sort_index() ) def test_series_apply(self): pdf, psdf = self.df_pair self.assert_eq( psdf.a.apply(lambda x: x).sort_index(), pdf.a.apply(lambda x: x).sort_index() ) def test_series_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_series_apply() pdf, psdf = self.df_pair ret = psdf.a.dtype def identity(pser) -> ret: return pser self.assert_eq(psdf.a.apply(identity).sort_index(), pdf.a.apply(identity).sort_index()) # TODO: The return type is still category. # def to_str(x) -> str: # return str(x) # # self.assert_eq( # psdf.a.apply(to_str).sort_index(), pdf.a.apply(to_str).sort_index() # ) def test_groupby_apply(self): pdf, psdf = self.df_pair self.assert_eq( psdf.groupby("a").apply(lambda df: df).sort_index(), pdf.groupby("a").apply(lambda df: df).sort_index(), ) self.assert_eq( psdf.groupby("b").apply(lambda df: df[["a"]]).sort_index(), pdf.groupby("b").apply(lambda df: df[["a"]]).sort_index(), ) self.assert_eq( psdf.groupby(["a", "b"]).apply(lambda df: df).sort_index(), pdf.groupby(["a", "b"]).apply(lambda df: df).sort_index(), ) self.assert_eq( psdf.groupby("a").apply(lambda df: df.b.cat.codes).sort_index(), pdf.groupby("a").apply(lambda df: df.b.cat.codes).sort_index(), ) self.assert_eq( psdf.groupby("a")["b"].apply(lambda b: b.cat.codes).sort_index(), pdf.groupby("a")["b"].apply(lambda b: b.cat.codes).sort_index(), ) # TODO: grouping by a categorical type sometimes preserves unused categories. # self.assert_eq( # psdf.groupby("a").apply(len).sort_index(), pdf.groupby("a").apply(len).sort_index(), # ) def test_groupby_apply_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_groupby_apply() pdf, psdf = self.df_pair def identity(df) -> ps.DataFrame[zip(psdf.columns, psdf.dtypes)]: return df self.assert_eq( psdf.groupby("a").apply(identity).sort_values(["a", "b"]).reset_index(drop=True), pdf.groupby("a").apply(identity).sort_values(["a", "b"]).reset_index(drop=True), ) def test_groupby_transform(self): pdf, psdf = self.df_pair self.assert_eq( psdf.groupby("a").transform(lambda x: x).sort_index(), pdf.groupby("a").transform(lambda x: x).sort_index(), ) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.groupby("a").transform(lambda x: x.astype(dtype)).sort_index(), pdf.groupby("a").transform(lambda x: x.astype(dtype)).sort_index(), ) def test_groupby_transform_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_groupby_transform() pdf, psdf = self.df_pair def identity(x) -> ps.Series[psdf.b.dtype]: # type: ignore return x self.assert_eq( psdf.groupby("a").transform(identity).sort_values("b").reset_index(drop=True), pdf.groupby("a").transform(identity).sort_values("b").reset_index(drop=True), ) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def astype(x) -> ps.Series[dtype]: return x.astype(dtype) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( psdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), pdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), ) else: expected = pdf.groupby("a").transform(astype) expected["b"] = dtype.categories.take(expected["b"].cat.codes).astype(dtype) self.assert_eq( psdf.groupby("a").transform(astype).sort_values("b").reset_index(drop=True), expected.sort_values("b").reset_index(drop=True), ) def test_frame_apply_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf.astype(str)).sort_index(), pdf.astype(str).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf.astype(dtype)).sort_index(), pdf.astype(dtype).sort_index(), ) def test_frame_apply_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_apply_batch() pdf, psdf = self.df_pair def to_str(pdf) -> 'ps.DataFrame["a":str, "b":str]': # noqa: F405 return pdf.astype(str) self.assert_eq( psdf.pandas_on_spark.apply_batch(to_str).sort_values(["a", "b"]).reset_index(drop=True), to_str(pdf).sort_values(["a", "b"]).reset_index(drop=True), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) ret = ps.DataFrame["a":dtype, "b":dtype] def to_category(pdf) -> ret: return pdf.astype(dtype) self.assert_eq( psdf.pandas_on_spark.apply_batch(to_category) .sort_values(["a", "b"]) .reset_index(drop=True), to_category(pdf).sort_values(["a", "b"]).reset_index(drop=True), ) def test_frame_transform_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.astype(str)).sort_index(), pdf.astype(str).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b.cat.codes).sort_index(), pdf.b.cat.codes.sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.astype(dtype)).sort_index(), pdf.astype(dtype).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b.astype(dtype)).sort_index(), pdf.b.astype(dtype).sort_index(), ) def test_frame_transform_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_frame_transform_batch() pdf, psdf = self.df_pair def to_str(pdf) -> 'ps.DataFrame["a":str, "b":str]': # noqa: F405 return pdf.astype(str) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_str).sort_index(), to_str(pdf).sort_index(), ) def to_codes(pdf) -> ps.Series[np.int8]: return pdf.b.cat.codes self.assert_eq( psdf.pandas_on_spark.transform_batch(to_codes).sort_index(), to_codes(pdf).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) ret = ps.DataFrame["a":dtype, "b":dtype] def to_category(pdf) -> ret: return pdf.astype(dtype) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf).sort_index(), ) def to_category(pdf) -> ps.Series[dtype]: return pdf.b.astype(dtype) self.assert_eq( psdf.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf).rename().sort_index(), ) def test_series_transform_batch(self): pdf, psdf = self.df_pair self.assert_eq( psdf.a.pandas_on_spark.transform_batch(lambda pser: pser.astype(str)).sort_index(), pdf.a.astype(str).sort_index(), ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(lambda pser: pser.astype(dtype)).sort_index(), pdf.a.astype(dtype).sort_index(), ) def test_series_transform_batch_without_shortcut(self): with ps.option_context("compute.shortcut_limit", 0): self.test_series_transform_batch() pdf, psdf = self.df_pair def to_str(pser) -> ps.Series[str]: return pser.astype(str) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(to_str).sort_index(), to_str(pdf.a).sort_index() ) pdf = pd.DataFrame( {"a": ["a", "b", "c", "a", "b", "c"], "b": ["b", "a", "c", "c", "b", "a"]} ) psdf = ps.from_pandas(pdf) dtype = CategoricalDtype(categories=["a", "b", "c", "d"]) def to_category(pser) -> ps.Series[dtype]: return pser.astype(dtype) self.assert_eq( psdf.a.pandas_on_spark.transform_batch(to_category).sort_index(), to_category(pdf.a).sort_index(), ) if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_categorical import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
andrewruba/YangLab
JPC simulations 2019/Figure 4 - precision/simulation.py
2
14336
# -*- coding: utf-8 -*- """ Created on Thu Apr 20 10:52:38 2017 @author: Andrew Ruba This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import math import random import csv import os from numpy.random import choice import numpy as np from scipy.optimize import curve_fit import time import matplotlib.pyplot as plt from scipy import stats ## below arrays are for saving simulation data for statistical analysis global gausslist gausslist = [] global bimodallist bimodallist = [] global bimodalmean bimodalmean = [] global bimodalsd bimodalsd = [] global bimodalheight bimodalheight = [] global bimodalauc bimodalauc = [] def sim(gui, PTNUM, RADIUS, PREC, ITER, BINSIZE, PERCERROR): def simulation(num_points, radius, dr, ss, mm): def area_fn(X): X = float(X) A = -(dr**2)*np.pi B = dr*2*np.pi return X*B+A def gauss_fn(x, s, m): a = area_fn(m) x = float(x) s = float(s) m = float(m) return a*np.e**(-(x-m)**2.0/(2.0*s**2.0)) def combine(x): s = ss m = mm return (area_fn(x) * gauss_fn(x, s, m)) ##starting with perfect x,y and adding error xydata = [] mm = mm + 0.00001 while len(xydata) < num_points: theta = np.random.random()*360.0 ## precision distribution sampling # ss = choice([3,5,7,9], p=[0.1475,0.2775,0.3075,0.2675]) # ss = choice([4.5,5.5,6.5,7.5,8.5,9.5], p=[0.02,0.05,0.07,0.11,0.2,0.55]) y_prec = np.random.normal(0.0, ss) z_prec = np.random.normal(0.0, ss) xydata.append((mm*np.cos(theta)+y_prec, mm*np.sin(theta)+z_prec)) with open('3d.csv', 'w') as csv_file: writer = csv.writer(csv_file, delimiter=',', lineterminator='\n') writer.writerow(('y','z')) for i in xydata: writer.writerow(i) def gen_matrix(r, d_r): ##'be' is short for bin edges if r%d_r > 0: be = range(0, r+r%d_r, d_r) else: be = range(0, r+d_r, d_r) matrix = [] for i in range(len(be)-1): matrix.append([]) x = 0 for i in range(len(matrix)): for j in range(x): matrix[i].append(0) x += 1 ##generate areas of sections closest to x axis for i in range(len(matrix)): theta = np.arccos(float(be[len(be)-2-i])/float(be[len(be)-1-i])) arc_area = (theta/(2*np.pi)) * np.pi * float(be[len(be)-1-i])**2 tri_area = 0.5 * float(be[len(be)-2-i]) * (np.sin(theta) * float(be[len(be)-1-i])) matrix[i].append(4 * (arc_area - tri_area)) ##skipping factor x = 2 ##generate areas of layers going further out from x axis while len(matrix[0]) < len(matrix): for i in range(len(matrix) - len(matrix[0])): num = 0 for j in range(len(matrix)): for k in range(len(matrix[i]) + 1): if j == i and k < len(matrix[i]): num += matrix[j][k] elif j > i: num += matrix[j][k] theta = np.arccos(float(be[len(be)-1-x-i])/float(be[len(be)-1-i])) arc_area = (theta/(2*np.pi)) * np.pi * float(be[len(be)-1-i])**2 tri_area = 0.5 * float(be[len(be)-1-x-i]) * (np.sin(theta) * float(be[len(be)-1-i])) matrix[i].append(4 * (arc_area - tri_area) - num) x += 1 return matrix def smoothdata(data, r, d_r): """smoothds data with 3 moving window and takes abs value average""" smooth_data = [] r += 1 ##comment out for smoothing smooth_data = [] for i in range(len(data)): smooth_data.append(data[i]) ##adds + and - bins final_smooth_data = [] for i in range(int(r/d_r)): final_smooth_data.append(smooth_data[i] + smooth_data[len(smooth_data)-1-i]) return list(reversed(final_smooth_data)) def deconvolution(hv, be, r, d_r): """hv = hist_values, be = bin_edges""" density = [] matrix = gen_matrix(r, d_r) while len(hv) > len(matrix): hv.pop() while len(matrix) > len(hv): matrix.pop() rev_hv = list(reversed(hv)) x = 0 for i in range(len(rev_hv)): ##calculate how much to subtract from bin density_sub = 0 y = 0 for j in range(x): density_sub += density[y] * matrix[j][i] y += 1 ##calculate final bin value density.append((rev_hv[i] - density_sub) / matrix[i][i]) x += 1 unrev_hv = list(reversed(density)) smooth_data = [] for i in range(len(unrev_hv)): if i == 0 or i == (len(unrev_hv) - 1): smooth_data.append(unrev_hv[i]) else: smooth_data.append(np.average([unrev_hv[i-1], unrev_hv[i], unrev_hv[i+1]])) return unrev_hv, smooth_data, hv def make_hist(data, r, d_r): hist_values, bin_edges = np.histogram(data, bins = 2 * int(r/d_r), range = (-r, r)) new_bin_edges = [] for i in bin_edges: if i >= 0: new_bin_edges.append(i) new_hist_values = smoothdata(hist_values, r, d_r) return new_hist_values, new_bin_edges def csv_read(path): with open(path, 'rb') as csvfile: reader = csv.reader(csvfile, delimiter = ',') holdlist = [] for row in reader: holdlist.append(float(row[1])) return holdlist jkl = [] for y,z in xydata: jkl.append(y) radius = int(np.floor(radius/dr))*dr if num_points == PTNUM + 1: ## decide the proper bin size minbinsize = 2 binsizes = [] binsizesdata = [[] for variable in range(1, int(PREC)+1)] gui.message.set('0% done calculating ideal bin size...') gui.update() for binoptimization in range(10): for binsize in range(1, int(PREC)+1): if binsize >= minbinsize: error = 0 # print ('binsize ' + str(binsize)) jkl = [] mm = mm + 0.00001 while len(jkl) < num_points-1: theta = np.random.random()*360.0 ## precision distribution sampling # ss = choice([3,5,7,9], p=[0.1475,0.2775,0.3075,0.2675]) # ss = choice([4.5,5.5,6.5,7.5,8.5,9.5], p=[0.02,0.05,0.07,0.11,0.2,0.55]) y_prec = np.random.normal(0.0, ss) jkl.append(mm*np.cos(theta)+y_prec) a,b = make_hist(jkl, radius, binsize) final_unsmooth, final_smooth, final_2d = deconvolution(a, b, radius, binsize) holdlist = [] addZero = False for val in list(reversed(final_unsmooth)): if not addZero: if val >= 0.0: holdlist.append(val) else: addZero = True holdlist.append(0.0) else: holdlist.append(0.0) final_unsmooth = list(reversed(holdlist)) ##rescale ideal data matrix = gen_matrix(radius, binsize) newmatrix = [] for i in matrix: newmatrix.append(list(reversed(i))) matrix = list(reversed(newmatrix)) # print (a) # print (final_unsmooth) while len(a) > len(matrix): a.pop() while len(matrix) > len(a): matrix.pop() for ncol in range(len(matrix[0])): binsub = 0.0 for mcol in range(len(matrix)): binsub += float(matrix[mcol][ncol]*final_unsmooth[mcol]) try: if a[ncol] != 0.0: # print (binsub) error += np.square(a[ncol] - binsub) / a[ncol] except: pass popped = a.pop() while popped == 0: popped = a.pop() binsizesdata[binsize-1].append((error, len(a)+1,1-stats.chi2.cdf(error, len(a)+1),binsize)) else: binsizesdata[binsize-1].append((1000000.0,1,0.0,binsize)) gui.message.set(str((binoptimization*10) + 10) + ' % done calculating ideal bin size...') gui.update() finalbinsizes = [] for bintrial in range(len(binsizesdata)): errhold = [] dfhold = [] pvalhold = [] binhold = [] for trial in range(len(binsizesdata[bintrial])): chisq, df, pval, binsize = binsizesdata[bintrial][trial] errhold.append(chisq) dfhold.append(df) pvalhold.append(pval) binhold.append(binsize) chisq = np.average(errhold) df = np.round(np.average(dfhold)) pval = 1-stats.chi2.cdf(chisq,df) binsize = binhold[0] finalbinsizes.append((chisq,df,pval,binsize)) # print (finalbinsizes) for binsizedata in finalbinsizes: chisq, df, pval, binsize = binsizedata if pval >= 0.95: dr = binsize break else: dr = int(PREC) a,b = make_hist(jkl, radius, dr) final = deconvolution(a,b,radius,dr) if num_points != PTNUM + 1: def gauss_fn(x, a, s, m): return a*np.e**(-(x-m)**2.0/(2.0*s**2.0)) def bimodal(x,mu1,sigma1,A1,mu2,sigma2,A2): return gauss_fn(x, A1, sigma1, mu1)+gauss_fn(x, A2, sigma2, mu2) try: guess = [np.max(final[0]), ss, mm] tempbins = list(range(int(dr/2), radius+int(dr/2), dr)) tempdensity = final[0] holdlist = [] addZero = False for val in list(reversed(tempdensity)): if not addZero: if val >= 0.0: holdlist.append(val) else: addZero = True holdlist.append(0.0) else: holdlist.append(0.0) tempdensity = list(reversed(holdlist)) while len(tempdensity) > len(tempbins): tempdensity.pop() while len(tempbins) > len(tempdensity): tempbins.pop() revtempbins = list(np.negative(list(reversed(tempbins)))) revtempdensity = list(reversed(tempdensity)) bins = revtempbins + tempbins density = revtempdensity + tempdensity params, var = curve_fit(gauss_fn, bins, density, p0 = guess) params_gauss = np.abs(params) ## computes 1 SD errors var_gauss = np.sqrt(np.diag(var)) def frange(beg, end, step): f_range = [] while beg < end - (step/2.0): f_range.append(beg) beg += step return f_range guess = [-mm, ss, np.max(final[0]), mm, ss, np.max(final[0])] tempbins = frange(dr/2.0, radius, dr) tempdensity = final[0] holdlist = [] addZero = False for val in list(reversed(tempdensity)): if not addZero: if val >= 0.0: holdlist.append(val) else: addZero = True holdlist.append(0.0) else: holdlist.append(0.0) tempdensity = list(reversed(holdlist)) while len(tempdensity) > len(tempbins): tempdensity.pop() while len(tempbins) > len(tempdensity): tempbins.pop() revtempbins = list(np.negative(list(reversed(tempbins)))) revtempdensity = list(reversed(tempdensity)) bins = revtempbins + tempbins density = revtempdensity + tempdensity params, var = curve_fit(bimodal, bins, density, p0 = guess) params = np.abs(params) ## computes 1 SD errors var = np.sqrt(np.diag(var)) ## average paramters stdev = np.average((params[1], params[4])) mean = np.average((params[0], params[3])) height = np.average((params[2], params[5])) stdev_e = np.average((var[1], var[4])) mean_e = np.average((var[0], var[3])) height_e = np.average((var[2], var[5])) params_bimodal = [height, stdev, mean] var_bimodal = [height_e, stdev_e, mean_e] ## uncomment following for comparing central vs. peripheral peak fitting errors # bimodalmean.append(params_gauss[0]) bimodalmean.append(mean) # bimodalmean.append(tempdensity) bimodalsd.append(stdev) bimodalheight.append(height) auc = 0.0 step = mean - 5.0*stdev while step < mean + 5.0*stdev: auc+=0.01*gauss_fn(step,height,stdev,mean) step += 0.01 bimodalauc.append(auc) # bimodallist.append(var_bimodal[1]) gausslist.append(var_gauss[1]) # if np.sum(var_bimodal) < np.sum(var_gauss): params = params_bimodal var = var_bimodal # else: # params = params_gauss # var = var_gauss except RuntimeError: params = [] var = [] hist_mids = [] for i in range(len(b)-1): hist_mids.append(np.average((b[i],b[i+1]))) norm_values = [] for i in final[0]: norm_values.append(i/np.max(final[0])) return params, var, norm_values, hist_mids, dr else: return dr pt_min = PTNUM pt_max = PTNUM rt_min = RADIUS rt_max = RADIUS prec_min = PREC prec_max = PREC iterations = ITER PREC = float(PREC) one_diff = [] perc_err = PERCERROR*0.01 def roundup(x): val = int(math.ceil(x / 10.0)) * 10 if val >= 30: return val else: return 30 ptlist = range(pt_min, pt_max+100, 100) for pt in ptlist: for rt in range(rt_min, rt_max+1, 1): for prec in range(prec_min, prec_max+1, 1): prec = prec+0.000001 xrng = roundup(2.0*rt + prec*5.0) # DR = simulation(pt+1, xrng, BINSIZE, float(prec), float(rt)) ## uncomment below to manually set bin size DR = PTNUM # print ('ideal bin size: '+ str(DR)) p, v, d, h_m, DR = simulation(1000000, xrng, DR, float(prec), float(rt)) # print (p) a, s, m = p corr = m - float(rt) ##outlier detection _mean = np.mean(bimodalmean) _stdev = np.std(bimodalmean) togui = [] for i in bimodalmean: if i >= _mean-3*_stdev and i <= _mean+3*_stdev: togui.append(i) final_data = [] for i,j in zip(h_m, d): final_data.append((i,j)) final_data.append((-i,j)) final_data.sort() with open('precision_results.csv', 'w') as csv_file: writer = csv.writer(csv_file, delimiter=',', lineterminator='\n') writer.writerow(('bin middle','normalized density')) for i in final_data: writer.writerow(i) return "Output written to precision_results.csv"
gpl-3.0
rahul-c1/scikit-learn
sklearn/metrics/cluster/unsupervised.py
10
8105
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 2 <= n_labels <= n_samples-1: raise ValueError("Number of labels is %d " "but should be more than 2" "and less than n_samples - 1" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhoeutte Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) # nan values are for clusters of size 1, and should be 0 return np.nan_to_num(sil_samples) def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
flightgong/scikit-learn
sklearn/pipeline.py
8
16439
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] # One round of beers on me if someone finds out why the backslash # is needed in the Attributes section so as not to upset sphinx. class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implements fit and transform methods. The final estimator needs only implements fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Parameters ---------- steps: list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... """ # BaseEstimator interface def __init__(self, steps): self.named_steps = dict(steps) names, estimators = zip(*steps) if len(self.named_steps) != len(steps): raise ValueError("Names provided are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(zip(names, estimators)) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps a the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps.copy() for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator.""" Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) def predict_log_proba(self, X): Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform.""" Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt def inverse_transform(self, X): if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score.""" Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
fcbruce/text-classifier
src/svm_train.py
1
1118
#coding=utf-8 # # Author : fcbruce <[email protected]> # # Time : Fri 30 Dec 2016 16:09:39 # # from sklearn import preprocessing as pp from sklearn.model_selection import cross_val_score from sklearn.svm import SVC import numpy as np import sklearn.metrics as skmt import datetime import random import pickle as pkl from config import * from evaluation import calc_overdue_rate train_mat = np.load(train_data) test_mat = np.load(test_data) X_train = train_mat[:, :-1] y_train = train_mat[:, -1] X_test = test_mat[:, :-1] y_test = test_mat[:, -1] scaler = pp.StandardScaler().fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) #clf = SVC(C=10., kernel='rbf', gamma=3e-3, class_weight={1.: 3.95}, random_state=198964, verbose=True, cache_size=512) clf = SVC(C=10., kernel='linear', class_weight={1.: 3.95}, random_state=2017, verbose=True, cache_size=512, probability=True) #clf.fit(X_train, y_train) #f = open(svm_model_path % '20170124', 'wb') #pkl.dump(clf, f, pkl.HIGHEST_PROTOCOL) auc = cross_val_score(clf, X_train, y_train, cv=10, scoring='roc_auc') print auc.mean()
mit
xlhtc007/blaze
blaze/compute/core.py
6
14107
from __future__ import absolute_import, division, print_function import numbers from datetime import date, datetime import toolz from toolz import first, concat, memoize, unique, assoc import itertools from collections import Iterator from ..compatibility import basestring from ..expr import Expr, Field, Symbol, symbol, eval_str from ..dispatch import dispatch __all__ = ['compute', 'compute_up'] base = (numbers.Number, basestring, date, datetime) @dispatch(Expr, object) def pre_compute(leaf, data, scope=None, **kwargs): """ Transform data prior to calling ``compute`` """ return data @dispatch(Expr, object) def post_compute(expr, result, scope=None): """ Effects after the computation is complete """ return result @dispatch(Expr, object) def optimize(expr, data): """ Optimize expression to be computed on data """ return expr @dispatch(object, object) def compute_up(a, b, **kwargs): raise NotImplementedError("Blaze does not know how to compute " "expression of type `%s` on data of type `%s`" % (type(a).__name__, type(b).__name__)) @dispatch(base) def compute_up(a, **kwargs): return a @dispatch((list, tuple)) def compute_up(seq, scope=None, **kwargs): return type(seq)(compute(item, scope or {}, **kwargs) for item in seq) @dispatch(Expr, object) def compute(expr, o, **kwargs): """ Compute against single input Assumes that only one Symbol exists in expression >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> # list(compute(deadbeats, {t: data})) >>> list(compute(deadbeats, data)) ['Bob', 'Charlie'] """ ts = set([x for x in expr._subterms() if isinstance(x, Symbol)]) if len(ts) == 1: return compute(expr, {first(ts): o}, **kwargs) else: raise ValueError("Give compute dictionary input, got %s" % str(o)) @dispatch(object) def compute_down(expr, **kwargs): """ Compute the expression on the entire inputs inputs match up to leaves of the expression """ return expr def issubtype(a, b): """ A custom issubclass """ if issubclass(a, b): return True if issubclass(a, (tuple, list, set)) and issubclass(b, Iterator): return True if issubclass(b, (tuple, list, set)) and issubclass(a, Iterator): return True return False def type_change(old, new): """ Was there a significant type change between old and new data? >>> type_change([1, 2], [3, 4]) False >>> type_change([1, 2], [3, [1,2,3]]) True Some special cases exist, like no type change from list to Iterator >>> type_change([[1, 2]], [iter([1, 2])]) False """ if all(isinstance(x, base) for x in old + new): return False if len(old) != len(new): return True new_types = list(map(type, new)) old_types = list(map(type, old)) return not all(map(issubtype, new_types, old_types)) def top_then_bottom_then_top_again_etc(expr, scope, **kwargs): """ Compute expression against scope Does the following interpreter strategy: 1. Try compute_down on the entire expression 2. Otherwise compute_up from the leaves until we experience a type change (e.g. data changes from dict -> pandas DataFrame) 3. Re-optimize expression and re-pre-compute data 4. Go to step 1 Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i4')]) >>> e = s.amount.sum() + 1 >>> top_then_bottom_then_top_again_etc(e, {s: data}) 601 See Also -------- bottom_up_until_type_break -- uses this for bottom-up traversal top_to_bottom -- older version bottom_up -- older version still """ # 0. Base case: expression is in dict, return associated data if expr in scope: return scope[expr] if not hasattr(expr, '_leaves'): return expr leaf_exprs = list(expr._leaves()) leaf_data = [scope.get(leaf) for leaf in leaf_exprs] # 1. See if we have a direct computation path with compute_down try: return compute_down(expr, *leaf_data, **kwargs) except NotImplementedError: pass # 2. Compute from the bottom until there is a data type change expr2, scope2 = bottom_up_until_type_break(expr, scope, **kwargs) # 3. Re-optimize data and expressions optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) if pre_compute_: scope3 = dict((e, pre_compute_(e, datum, **assoc(kwargs, 'scope', scope2))) for e, datum in scope2.items()) else: scope3 = scope2 if optimize_: try: expr3 = optimize_(expr2, *[scope3[leaf] for leaf in expr2._leaves()]) _d = dict(zip(expr2._leaves(), expr3._leaves())) scope4 = dict((e._subs(_d), d) for e, d in scope3.items()) except NotImplementedError: expr3 = expr2 scope4 = scope3 else: expr3 = expr2 scope4 = scope3 # 4. Repeat if expr.isidentical(expr3): raise NotImplementedError("Don't know how to compute:\n" "expr: %s\n" "data: %s" % (expr3, scope4)) else: return top_then_bottom_then_top_again_etc(expr3, scope4, **kwargs) def top_to_bottom(d, expr, **kwargs): """ Processes an expression top-down then bottom-up """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] if not hasattr(expr, '_leaves'): return expr leaves = list(expr._leaves()) data = [d.get(leaf) for leaf in leaves] # See if we have a direct computation path with compute_down try: return compute_down(expr, *data, **kwargs) except NotImplementedError: pass optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) # Otherwise... # Compute children of this expression if hasattr(expr, '_inputs'): children = [top_to_bottom(d, child, **kwargs) for child in expr._inputs] else: children = [] # Did we experience a data type change? if type_change(data, children): # If so call pre_compute again if pre_compute_: children = [pre_compute_(expr, child, **kwargs) for child in children] # If so call optimize again if optimize_: try: expr = optimize_(expr, *children) except NotImplementedError: pass # Compute this expression given the children return compute_up(expr, *children, scope=d, **kwargs) _names = ('leaf_%d' % i for i in itertools.count(1)) _leaf_cache = dict() _used_tokens = set() def _reset_leaves(): _leaf_cache.clear() _used_tokens.clear() def makeleaf(expr): """ Name of a new leaf replacement for this expression >>> _reset_leaves() >>> t = symbol('t', '{x: int, y: int, z: int}') >>> makeleaf(t) t >>> makeleaf(t.x) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x).isidentical(makeleaf(t.x + 1)) False >>> from blaze import sin, cos >>> x = symbol('x', 'real') >>> makeleaf(cos(x)**2).isidentical(sin(x)**2) False >>> makeleaf(t) is t # makeleaf passes on Symbols True """ name = expr._name or '_' token = None if expr in _leaf_cache: return _leaf_cache[expr] if isinstance(expr, Symbol): # Idempotent on symbols _used_tokens.add((name, expr._token)) return expr if (name, token) in _used_tokens: for token in itertools.count(): if (name, token) not in _used_tokens: break result = symbol(name, expr.dshape, token) _used_tokens.add((name, token)) _leaf_cache[expr] = result return result def data_leaves(expr, scope): return [scope[leaf] for leaf in expr._leaves()] def bottom_up_until_type_break(expr, scope, **kwargs): """ Traverse bottom up until data changes significantly Parameters ---------- expr: Expression Expression to compute scope: dict namespace matching leaves of expression to data Returns ------- expr: Expression New expression with lower subtrees replaced with leaves scope: dict New scope with entries for those leaves Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i8')]) This computation completes without changing type. We get back a leaf symbol and a computational result >>> e = (s.amount + 1).distinct() >>> bottom_up_until_type_break(e, {s: data}) # doctest: +SKIP (amount, {amount: array([101, 201, 301])}) This computation has a type change midstream (``list`` to ``int``), so we stop and get the unfinished computation. >>> e = s.amount.sum() + 1 >>> bottom_up_until_type_break(e, {s: data}) (amount_sum + 1, {amount_sum: 600}) """ # 0. Base case. Return if expression is in scope if expr in scope: leaf = makeleaf(expr) return leaf, {leaf: scope[expr]} inputs = list(unique(expr._inputs)) # 1. Recurse down the tree, calling this function on children # (this is the bottom part of bottom up) exprs, new_scopes = zip(*[bottom_up_until_type_break(i, scope, **kwargs) for i in inputs]) # 2. Form new (much shallower) expression and new (more computed) scope new_scope = toolz.merge(new_scopes) new_expr = expr._subs(dict((i, e) for i, e in zip(inputs, exprs) if not i.isidentical(e))) old_expr_leaves = expr._leaves() old_data_leaves = [scope.get(leaf) for leaf in old_expr_leaves] # 3. If the leaves have changed substantially then stop key = lambda x: str(type(x)) if type_change(sorted(new_scope.values(), key=key), sorted(old_data_leaves, key=key)): return new_expr, new_scope # 4. Otherwise try to do some actual work try: leaf = makeleaf(expr) _data = [new_scope[i] for i in new_expr._inputs] except KeyError: return new_expr, new_scope try: return leaf, {leaf: compute_up(new_expr, *_data, scope=new_scope, **kwargs)} except NotImplementedError: return new_expr, new_scope def bottom_up(d, expr): """ Process an expression from the leaves upwards Parameters ---------- d : dict mapping {Symbol: data} Maps expressions to data elements, likely at the leaves of the tree expr : Expr Expression to compute Helper function for ``compute`` """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] # Compute children of this expression children = ([bottom_up(d, child) for child in expr._inputs] if hasattr(expr, '_inputs') else []) # Compute this expression given the children result = compute_up(expr, *children, scope=d) return result def swap_resources_into_scope(expr, scope): """ Translate interactive expressions into normal abstract expressions Interactive Blaze expressions link to data on their leaves. From the expr/compute perspective, this is a hack. We push the resources onto the scope and return simple unadorned expressions instead. Examples -------- >>> from blaze import Data >>> t = Data([1, 2, 3], dshape='3 * int', name='t') >>> swap_resources_into_scope(t.head(2), {}) (t.head(2), {t: [1, 2, 3]}) >>> expr, scope = _ >>> list(scope.keys())[0]._resources() {} """ resources = expr._resources() symbol_dict = dict((t, symbol(t._name, t.dshape)) for t in resources) resources = dict((symbol_dict[k], v) for k, v in resources.items()) other_scope = dict((k, v) for k, v in scope.items() if k not in symbol_dict) new_scope = toolz.merge(resources, other_scope) expr = expr._subs(symbol_dict) return expr, new_scope @dispatch(Expr, dict) def compute(expr, d, **kwargs): """ Compute expression against data sources >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> list(compute(deadbeats, {t: data})) ['Bob', 'Charlie'] """ _reset_leaves() optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) post_compute_ = kwargs.get('post_compute', post_compute) expr2, d2 = swap_resources_into_scope(expr, d) if pre_compute_: d3 = dict( (e, pre_compute_(e, dat, **kwargs)) for e, dat in d2.items() if e in expr2 ) else: d3 = d2 if optimize_: try: expr3 = optimize_(expr2, *[v for e, v in d3.items() if e in expr2]) _d = dict(zip(expr2._leaves(), expr3._leaves())) d4 = dict((e._subs(_d), d) for e, d in d3.items()) except NotImplementedError: expr3 = expr2 d4 = d3 else: expr3 = expr2 d4 = d3 result = top_then_bottom_then_top_again_etc(expr3, d4, **kwargs) if post_compute_: result = post_compute_(expr3, result, scope=d4) return result @dispatch(Field, dict) def compute_up(expr, data, **kwargs): return data[expr._name]
bsd-3-clause
danche354/Sequence-Labeling
preprocessing/ner-auto-encoder/test_auto_encoder.py
2
2502
from keras.models import load_model import pandas as pd import numpy as np import sys import os # change dir to train file, for environment os.chdir('../../ner/') # add path sys.path.append('../') sys.path.append('../tools') from tools import load_data from tools import prepare epoch = sys.argv[1] test = sys.argv[2] path = './model/word-hash-auto-encoder-128/model_epoch_%s.h5'%epoch model = load_model(path) train_data = load_data.load_ner(dataset='eng.train') dev_data = load_data.load_ner(dataset='eng.testa') test_data = load_data.load_ner(dataset='eng.testb') train_word = [] dev_word = [] test_word = [] # all word [train_word.extend(list(each[0])) for each in train_data] [dev_word.extend(list(each[0])) for each in dev_data] [test_word.extend(list(each[0])) for each in test_data] train_word = [each.strip().lower() for each in train_word] dev_word = [each.strip().lower() for each in dev_word] test_word = [each.strip().lower() for each in test_word] train_word_dict = {} dev_word_dict = {} test_word_dict = {} for each in train_word: if each in train_word_dict: train_word_dict[each] += 1 else: train_word_dict[each] = 1 for each in dev_word: if each in dev_word_dict: dev_word_dict[each] += 1 else: dev_word_dict[each] = 1 for each in test_word: if each in test_word_dict: test_word_dict[each] += 1 else: test_word_dict[each] = 1 train_word = train_word_dict.keys() dev_word = dev_word_dict.keys() test_word = test_word_dict.keys() if test=='dev': word = dev_word[:20] elif test=='test': word = test_word[:20] else: word = train_word[:20] word_hashing = prepare.prepare_auto_encoder(batch=word, task='ner') word_hashing = word_hashing.toarray() output = model.predict_on_batch(word_hashing) while True: number = input('please input word index: ') exist = word[number] print('word is: ' + exist) if exist in train_word_dict: print(' in train: ' + str(train_word_dict[exist]) + ' times.') if exist in dev_word_dict: print(' in dev: ' + str(dev_word_dict[exist]) + ' times.') if exist in test_word_dict: print(' in test: ' + str(test_word_dict[exist]) + ' times.') print('-'*60) ind = [] for i, e in enumerate(word_hashing[number]): if e==1: print(i) ind.append(i) print('word_hasing'+ '-'*60) for i in ind: print(output[number][i]) print('output'+ '-'*60)
mit
openradar/TINT
tint/objects.py
1
8903
""" tint.objects ============ Functions for managing and recording object properties. """ import numpy as np import pandas as pd import pyart from scipy import ndimage from .grid_utils import get_filtered_frame def get_object_center(obj_id, labeled_image): """ Returns index of center pixel of the given object id from labeled image. The center is calculated as the median pixel of the object extent; it is not a true centroid. """ obj_index = np.argwhere(labeled_image == obj_id) center = np.median(obj_index, axis=0).astype('i') return center def get_obj_extent(labeled_image, obj_label): """ Takes in labeled image and finds the radius, area, and center of the given object. """ obj_index = np.argwhere(labeled_image == obj_label) xlength = np.max(obj_index[:, 0]) - np.min(obj_index[:, 0]) + 1 ylength = np.max(obj_index[:, 1]) - np.min(obj_index[:, 1]) + 1 obj_radius = np.max((xlength, ylength))/2 obj_center = np.round(np.median(obj_index, axis=0), 0) obj_area = len(obj_index[:, 0]) obj_extent = {'obj_center': obj_center, 'obj_radius': obj_radius, 'obj_area': obj_area, 'obj_index': obj_index} return obj_extent def init_current_objects(first_frame, second_frame, pairs, counter): """ Returns a dictionary for objects with unique ids and their corresponding ids in frame1 and frame1. This function is called when echoes are detected after a period of no echoes. """ nobj = np.max(first_frame) id1 = np.arange(nobj) + 1 uid = counter.next_uid(count=nobj) id2 = pairs obs_num = np.zeros(nobj, dtype='i') origin = np.array(['-1']*nobj) current_objects = {'id1': id1, 'uid': uid, 'id2': id2, 'obs_num': obs_num, 'origin': origin} current_objects = attach_last_heads(first_frame, second_frame, current_objects) return current_objects, counter def update_current_objects(frame1, frame2, pairs, old_objects, counter): """ Removes dead objects, updates living objects, and assigns new uids to new-born objects. """ nobj = np.max(frame1) id1 = np.arange(nobj) + 1 uid = np.array([], dtype='str') obs_num = np.array([], dtype='i') origin = np.array([], dtype='str') for obj in np.arange(nobj) + 1: if obj in old_objects['id2']: obj_index = old_objects['id2'] == obj uid = np.append(uid, old_objects['uid'][obj_index]) obs_num = np.append(obs_num, old_objects['obs_num'][obj_index] + 1) origin = np.append(origin, old_objects['origin'][obj_index]) else: # obj_orig = get_origin_uid(obj, frame1, old_objects) obj_orig = '-1' origin = np.append(origin, obj_orig) if obj_orig != '-1': uid = np.append(uid, counter.next_cid(obj_orig)) else: uid = np.append(uid, counter.next_uid()) obs_num = np.append(obs_num, 0) id2 = pairs current_objects = {'id1': id1, 'uid': uid, 'id2': id2, 'obs_num': obs_num, 'origin': origin} current_objects = attach_last_heads(frame1, frame2, current_objects) return current_objects, counter def attach_last_heads(frame1, frame2, current_objects): """ Attaches last heading information to current_objects dictionary. """ nobj = len(current_objects['uid']) heads = np.ma.empty((nobj, 2)) for obj in range(nobj): if ((current_objects['id1'][obj] > 0) and (current_objects['id2'][obj] > 0)): center1 = get_object_center(current_objects['id1'][obj], frame1) center2 = get_object_center(current_objects['id2'][obj], frame2) heads[obj, :] = center2 - center1 else: heads[obj, :] = np.ma.array([-999, -999], mask=[True, True]) current_objects['last_heads'] = heads return current_objects def check_isolation(raw, filtered, grid_size, params): """ Returns list of booleans indicating object isolation. Isolated objects are not connected to any other objects by pixels greater than ISO_THRESH, and have at most one peak. """ nobj = np.max(filtered) min_size = params['MIN_SIZE'] / np.prod(grid_size[1:]/1000) iso_filtered = get_filtered_frame(raw, min_size, params['ISO_THRESH']) nobj_iso = np.max(iso_filtered) iso = np.empty(nobj, dtype='bool') for iso_id in np.arange(nobj_iso) + 1: obj_ind = np.where(iso_filtered == iso_id) objects = np.unique(filtered[obj_ind]) objects = objects[objects != 0] if len(objects) == 1 and single_max(obj_ind, raw, params): iso[objects - 1] = True else: iso[objects - 1] = False return iso def single_max(obj_ind, raw, params): """ Returns True if object has at most one peak. """ max_proj = np.max(raw, axis=0) smooth = ndimage.filters.gaussian_filter(max_proj, params['ISO_SMOOTH']) padded = np.pad(smooth, 1, mode='constant') obj_ind = [axis + 1 for axis in obj_ind] # adjust for padding maxima = 0 for pixel in range(len(obj_ind[0])): ind_0 = obj_ind[0][pixel] ind_1 = obj_ind[1][pixel] neighborhood = padded[(ind_0-1):(ind_0+2), (ind_1-1):(ind_1+2)] max_ind = np.unravel_index(neighborhood.argmax(), neighborhood.shape) if max_ind == (1, 1): maxima += 1 if maxima > 1: return False return True def get_object_prop(image1, grid1, field, record, params): """ Returns dictionary of object properties for all objects found in image1. """ id1 = [] center = [] grid_x = [] grid_y = [] area = [] longitude = [] latitude = [] field_max = [] max_height = [] volume = [] nobj = np.max(image1) unit_dim = record.grid_size unit_alt = unit_dim[0]/1000 unit_area = (unit_dim[1]*unit_dim[2])/(1000**2) unit_vol = (unit_dim[0]*unit_dim[1]*unit_dim[2])/(1000**3) raw3D = grid1.fields[field]['data'].data for obj in np.arange(nobj) + 1: obj_index = np.argwhere(image1 == obj) id1.append(obj) # 2D frame stats center.append(np.median(obj_index, axis=0)) this_centroid = np.round(np.mean(obj_index, axis=0), 3) grid_x.append(this_centroid[1]) grid_y.append(this_centroid[0]) area.append(obj_index.shape[0] * unit_area) rounded = np.round(this_centroid).astype('i') cent_met = np.array([grid1.y['data'][rounded[0]], grid1.x['data'][rounded[1]]]) projparams = grid1.get_projparams() lon, lat = pyart.core.transforms.cartesian_to_geographic(cent_met[1], cent_met[0], projparams) longitude.append(np.round(lon[0], 4)) latitude.append(np.round(lat[0], 4)) # raw 3D grid stats obj_slices = [raw3D[:, ind[0], ind[1]] for ind in obj_index] field_max.append(np.max(obj_slices)) filtered_slices = [obj_slice > params['FIELD_THRESH'] for obj_slice in obj_slices] heights = [np.arange(raw3D.shape[0])[ind] for ind in filtered_slices] max_height.append(np.max(np.concatenate(heights)) * unit_alt) volume.append(np.sum(filtered_slices) * unit_vol) # cell isolation isolation = check_isolation(raw3D, image1, record.grid_size, params) objprop = {'id1': id1, 'center': center, 'grid_x': grid_x, 'grid_y': grid_y, 'area': area, 'field_max': field_max, 'max_height': max_height, 'volume': volume, 'lon': longitude, 'lat': latitude, 'isolated': isolation} return objprop def write_tracks(old_tracks, record, current_objects, obj_props): """ Writes all cell information to tracks dataframe. """ print('Writing tracks for scan', record.scan) nobj = len(obj_props['id1']) scan_num = [record.scan] * nobj uid = current_objects['uid'] new_tracks = pd.DataFrame({ 'scan': scan_num, 'uid': uid, 'time': record.time, 'grid_x': obj_props['grid_x'], 'grid_y': obj_props['grid_y'], 'lon': obj_props['lon'], 'lat': obj_props['lat'], 'area': obj_props['area'], 'vol': obj_props['volume'], 'max': obj_props['field_max'], 'max_alt': obj_props['max_height'], 'isolated': obj_props['isolated'] }) new_tracks.set_index(['scan', 'uid'], inplace=True) tracks = old_tracks.append(new_tracks) return tracks
bsd-2-clause
vityurkiv/Ox
modules/porous_flow/doc/tests/relperm.py
13
4564
#!/usr/bin/env python # Script to generate plots used in documentation from test results import numpy as np import matplotlib.pyplot as plt # Analytical form of Corey's relative permeability curve def corey(s, sr, sum_s_r, n): # Effective saturation seff = np.clip((s - sr) / (1.0 - sum_s_r), 0, 1) # Relative permeability is then relperm = np.power(seff, n); return relperm # Analytical form of van Genuchten's relative permeability def vg(s, sr, sls, m): # Effective saturation seff = np.clip((s - sr) / (sls - sr), 0, 1) # The liquid relative permeability is relperm = np.sqrt(seff) * (1 - np.power(1 - np.power(seff, 1.0 / m), m))**2 # Relative permeability is then return relperm # Saturation of phase 0 varies linearly from 0 to 1 s0 = np.linspace(0, 1, 200) ################################################################################ # # Corey relative permeabilities # # Case 1: residual saturation set to 0 for both phases, n = 1 # # Read MOOSE simulation data data = np.genfromtxt('../../tests/relperm/corey1_out_vpp_0001.csv', delimiter = ',', names = True, dtype = None) plt.figure(1) plt.plot(s0, corey(s0, 0, 0, 1), label = 'kr0') plt.plot(data['s0aux'], data['kr0aux'], 'ob', label = 'kr0 (MOOSE)') plt.plot(s0, corey(1 - s0, 0, 0, 1), label = 'kr1') plt.plot(data['s0aux'], data['kr1aux'], 'og', label = 'kr1 (MOOSE)') plt.xlabel('Phase 0 saturation (-)') plt.ylabel('Relative permeability (-)') plt.legend(loc = 'best') plt.title('Corey relative permeability: $S_{0r} = 0, S_{1r} = 0, n = 1$') plt.savefig("corey1_fig.pdf") # Case 2: residual saturation set to 0 for both phases, and n = 2 # # Read MOOSE simulation data data = np.genfromtxt('../../tests/relperm/corey2_out_vpp_0001.csv', delimiter = ',', names = True, dtype = None) plt.figure(2) plt.plot(s0, corey(s0, 0, 0, 2), label = 'kr0') plt.plot(data['s0aux'], data['kr0aux'], 'ob', label = 'kr0 (MOOSE)') plt.plot(s0, corey(1 - s0, 0, 0, 2), label = 'kr1') plt.plot(data['s0aux'], data['kr1aux'], 'og', label = 'kr1 (MOOSE)') plt.xlabel('Phase 0 saturation (-)') plt.ylabel('Relative permeability (-)') plt.legend(loc = 'best') plt.title('Corey relative permeability: $S_{0r} = 0, S_{1r} = 0, n = 2$') plt.savefig("corey2_fig.pdf") # Case 3: residual saturation set to 0.2 for phase 0, 0.3 for phase 1 and n = 2 # # Read MOOSE simulation data data = np.genfromtxt('../../tests/relperm/corey3_out_vpp_0001.csv', delimiter = ',', names = True, dtype = None) plt.figure(3) plt.plot(s0, corey(s0, 0.2, 0.5, 2), label = 'kr0') plt.plot(data['s0aux'], data['kr0aux'], 'ob', label = 'kr0 (MOOSE)') plt.plot(s0, corey(1 - s0, 0.3, 0.5, 2), label = 'kr1') plt.plot(data['s0aux'], data['kr1aux'], 'og', label = 'kr1 (MOOSE)') plt.xlabel('Phase 0 saturation (-)') plt.ylabel('Relative permeability (-)') plt.legend(loc = 'best') plt.title('Corey relative permeability: $S_{0r} = 0, S_{1r} = 0, n = 2$') plt.ylim([-0.01, 1.01]) plt.savefig("corey3_fig.pdf") ################################################################################ # # van Genuchten relative permeabilities # # Case 1: residual saturation set to 0 for both phases, m = 0.5, sls = 1 # # Read MOOSE simulation data data = np.genfromtxt('../../tests/relperm/vangenuchten1_out_vpp_0001.csv', delimiter = ',', names = True, dtype = None) plt.figure(4) plt.plot(s0, vg(s0, 0, 1, 0.5), label = 'kr0') plt.plot(data['s0aux'], data['kr0aux'], 'ob', label = 'kr0 (MOOSE)') plt.plot(s0, corey(1 - s0, 0, 0, 2), label = 'kr1') plt.plot(data['s0aux'], data['kr1aux'], 'og', label = 'kr1 (MOOSE)') plt.xlabel('Phase 0 saturation (-)') plt.ylabel('Relative permeability (-)') plt.legend(loc = 'best') plt.title('van Genuchten relative permeability: $S_{0r} = 0, S_{1r} = 0, m = 0.5$') plt.ylim([-0.01, 1.01]) plt.savefig("vg1_fig.pdf") # Case 2: residual saturation set to 0.25 for phase 0, 0 for phase 1, m = 0.4, sls = 1 # # Read MOOSE simulation data data = np.genfromtxt('../../tests/relperm/vangenuchten2_out_vpp_0001.csv', delimiter = ',', names = True, dtype = None) plt.figure(5) plt.plot(s0, vg(s0, 0.25, 1, 0.4), label = 'kr0') plt.plot(data['s0aux'], data['kr0aux'], 'ob', label = 'kr0 (MOOSE)') plt.plot(s0, corey(1 - s0, 0, 0.25, 2), label = 'kr1') plt.plot(data['s0aux'], data['kr1aux'], 'og', label = 'kr1 (MOOSE)') plt.xlabel('Phase 0 saturation (-)') plt.ylabel('Relative permeability (-)') plt.legend(loc = 'best') plt.title('van Genuchten relative permeability: $S_{0r} = 0.25, S_{1r} = 0, m = 0.4$') plt.ylim([-0.01, 1.01]) plt.savefig("vg2_fig.pdf")
lgpl-2.1
datapythonista/pandas
pandas/tests/generic/test_to_xarray.py
2
4128
import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( Categorical, DataFrame, MultiIndex, Series, date_range, ) import pandas._testing as tm @td.skip_if_no("xarray") class TestDataFrameToXArray: @pytest.fixture def df(self): return DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": Categorical(list("abc")), "g": date_range("20130101", periods=3), "h": date_range("20130101", periods=3, tz="US/Eastern"), } ) def test_to_xarray_index_types(self, index, df): if isinstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") if len(index) == 0: pytest.skip("Test doesn't make sense for empty index") from xarray import Dataset df.index = index[:3] df.index.name = "foo" df.columns.name = "bar" result = df.to_xarray() assert result.dims["foo"] == 3 assert len(result.coords) == 1 assert len(result.data_vars) == 8 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, Dataset) # idempotency # datetimes w/tz are preserved # column names are lost expected = df.copy() expected["f"] = expected["f"].astype(object) expected.columns.name = None tm.assert_frame_equal(result.to_dataframe(), expected) def test_to_xarray_empty(self, df): from xarray import Dataset df.index.name = "foo" result = df[0:0].to_xarray() assert result.dims["foo"] == 0 assert isinstance(result, Dataset) def test_to_xarray_with_multiindex(self, df): from xarray import Dataset # MultiIndex df.index = MultiIndex.from_product([["a"], range(3)], names=["one", "two"]) result = df.to_xarray() assert result.dims["one"] == 1 assert result.dims["two"] == 3 assert len(result.coords) == 2 assert len(result.data_vars) == 8 tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"]) assert isinstance(result, Dataset) result = result.to_dataframe() expected = df.copy() expected["f"] = expected["f"].astype(object) expected.columns.name = None tm.assert_frame_equal(result, expected) @td.skip_if_no("xarray") class TestSeriesToXArray: def test_to_xarray_index_types(self, index): if isinstance(index, MultiIndex): pytest.skip("MultiIndex is tested separately") from xarray import DataArray ser = Series(range(len(index)), index=index, dtype="int64") ser.index.name = "foo" result = ser.to_xarray() repr(result) assert len(result) == len(index) assert len(result.coords) == 1 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, DataArray) # idempotency tm.assert_series_equal(result.to_series(), ser) def test_to_xarray_empty(self): from xarray import DataArray ser = Series([], dtype=object) ser.index.name = "foo" result = ser.to_xarray() assert len(result) == 0 assert len(result.coords) == 1 tm.assert_almost_equal(list(result.coords.keys()), ["foo"]) assert isinstance(result, DataArray) def test_to_xarray_with_multiindex(self): from xarray import DataArray mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"]) ser = Series(range(6), dtype="int64", index=mi) result = ser.to_xarray() assert len(result) == 2 tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"]) assert isinstance(result, DataArray) res = result.to_series() tm.assert_series_equal(res, ser)
bsd-3-clause
alephu5/Soundbyte
environment/lib/python3.3/site-packages/scipy/spatial/tests/test__plotutils.py
71
1463
from __future__ import division, print_function, absolute_import from numpy.testing import dec, assert_, assert_array_equal try: import matplotlib matplotlib.rcParams['backend'] = 'Agg' import matplotlib.pyplot as plt has_matplotlib = True except: has_matplotlib = False from scipy.spatial import \ delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ Delaunay, Voronoi, ConvexHull class TestPlotting: points = [(0,0), (0,1), (1,0), (1,1)] @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_delaunay(self): # Smoke test fig = plt.figure() obj = Delaunay(self.points) s_before = obj.simplices.copy() r = delaunay_plot_2d(obj, ax=fig.gca()) assert_array_equal(obj.simplices, s_before) # shouldn't modify assert_(r is fig) delaunay_plot_2d(obj, ax=fig.gca()) @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_voronoi(self): # Smoke test fig = plt.figure() obj = Voronoi(self.points) r = voronoi_plot_2d(obj, ax=fig.gca()) assert_(r is fig) voronoi_plot_2d(obj) @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_convex_hull(self): # Smoke test fig = plt.figure() tri = ConvexHull(self.points) r = convex_hull_plot_2d(tri, ax=fig.gca()) assert_(r is fig) convex_hull_plot_2d(tri)
gpl-3.0
stephenfloor/extract-transcript-regions
GTF.py
3
2054
#!/usr/bin/env python """ GTF.py Kamil Slowikowski December 24, 2013 Read GFF/GTF files. Works with gzip compressed files and pandas. http://useast.ensembl.org/info/website/upload/gff.html Downloaded by SNF on 12/30/14 from https://gist.github.com/slowkow/8101481 - pandas support removed to minimize package requirements """ from collections import defaultdict import gzip import re GTF_HEADER = ['seqname', 'source', 'feature', 'start', 'end', 'score', 'strand', 'frame'] R_SEMICOLON = re.compile(r'\s*;\s*') R_COMMA = re.compile(r'\s*,\s*') R_KEYVALUE = re.compile(r'(\s+|\s*=\s*)') def lines(filename): """Open an optionally gzipped GTF file and generate a dict for each line. """ fn_open = gzip.open if filename.endswith('.gz') else open with fn_open(filename) as fh: for line in fh: if line.startswith('#'): continue else: yield parse(line) def parse(line): """Parse a single GTF line and return a dict. """ result = {} fields = line.rstrip().split('\t') for i, col in enumerate(GTF_HEADER): result[col] = _get_value(fields[i]) # INFO field consists of "key1=value;key2=value;...". infos = re.split(R_SEMICOLON, fields[8]) for i, info in enumerate(infos, 1): # It should be key="value". try: key, _, value = re.split(R_KEYVALUE, info) # But sometimes it is just "value". except ValueError: key = 'INFO{}'.format(i) value = info # Ignore the field if there is no value. if value: result[key] = _get_value(value) return result def _get_value(value): if not value: return None # Strip double and single quotes. value = value.strip('"\'') # Return a list if the value has a comma. if ',' in value: value = re.split(R_COMMA, value) # These values are equivalent to None. elif value in ['', '.', 'NA']: return None return value
gpl-2.0
chendaniely/google_scholar_citation_network
src/expand_graph.py
1
3717
import pandas as pd import requests from random import randint, random from time import sleep from bs4 import BeautifulSoup import scholar import scrape class GoogleScholarArticleSimple(scrape.CitationResults): def __init__(self): self.citation_url_generic = 'https://scholar.google.com/scholar?start={}&hl=en&as_sdt=2005&sciodt=0,5&cites={}&scipsc=' self.cluster_id = None def set_search_soup(self, first_page=0): search_page_url = current_article.citation_url_generic.format(first_page, self.cluster_id) r = requests.get(search_page_url) self.soup = BeautifulSoup(r.text) return(self) def main(): data = pd.DataFrame() f = open('../results/5556531000720111691.csv.bkup', 'r') for idx, line in enumerate(f): data_values = line.split(',', 2) to_append = pd.DataFrame([data_values]) data = data.append(to_append) f.close() # # for each cluster id # for from_cluster_id in range(data.shape[0])[:1]: # just get the first one, for now\ print(from_cluster_id) cluster_id = data.iloc[from_cluster_id, 0] try: cluster_id = int(cluster_id) except ValueError: continue querier = scholar.ScholarQuerier() settings = scholar.ScholarSettings() query = scholar.SearchScholarQuery() query_cluster = scholar.ClusterScholarQuery(cluster=cluster_id) querier.send_query(query_cluster) # # for each article in search results # for article in querier.articles[:1]: # get first article result, for now article.attrs.get('url_citations')[0] current_article = GoogleScholarArticleSimple() current_article.cluster_id = cluster_id current_article.set_search_soup().set_num_search_results().set_num_search_pages() # gs_r = current_article.soup.find_all("div", class_="gs_r") # # for each search page result of citing article # for page_idx, search_page_number in enumerate(range(current.article.num_search_pages)[:1]): # get first page result for now url = citations_url_generic.format(search_page_number * 10, from_cluster_id) r = requests.get(url) soup = BeautifulSoup(r.text) gs_r = soup.find_all("div", class_="gs_r") # print(len(gs_r)) output_file_path = '../results/01-{}.csv'.format(from_cluster_id) f = open(output_file_path, 'w') f.close() # # for each search result # for citing_article_soup in gs_r: result_article = DanGoogleScholarArticle(soup=citing_article_soup) result_article.parse_title() # print(result_article.title) result_article.parse_cluster_id() # seed_cluster_id = result_article.cluster_id # print(seed_cluster_id) f = open(output_file_path, 'a+') str_to_write = '{}\t|\t{}\t|\t{}\n'.\ format(result_article.cluster_id, cluster_id, citing_article_soup) f.write(str_to_write) f.close() sleep_time = random() * randint(10, 100) print('cluster_id: {}, page: {}, sleeping: {}'.format(from_cluster_id, page_number, sleep_time)) sleep(sleep_time) if __name__ == '__main__': main()
mit
samnashi/howdoflawsgetlonger
model_loader.py
1
33387
from __future__ import print_function import numpy as np from random import shuffle import matplotlib.lines as mlines import matplotlib.pyplot as plt from keras.models import Sequential, Model, load_model from keras.utils import plot_model from keras.layers import Dense, LSTM, GRU, Flatten, Input, Reshape, TimeDistributed, Bidirectional, Dense, Dropout, \ Activation, Flatten, Conv1D, MaxPooling1D, GlobalAveragePooling1D, AveragePooling1D, concatenate, BatchNormalization from keras.initializers import lecun_normal, glorot_normal,orthogonal from keras.regularizers import l1, l1_l2, l2 from keras import metrics from keras.optimizers import adam, rmsprop import pandas as pd import scipy.io as sio from keras.callbacks import CSVLogger, TerminateOnNaN import os import csv import json import scattergro_utils as sg_utils import sklearn.preprocessing from Conv1D_ActivationSearch_BigLoop import pair_generator_1dconv_lstm #this is the stacked one. from Conv1D_LSTM_Ensemble import pair_generator_1dconv_lstm_bagged from LSTM_TimeDist import pair_generator_lstm from sklearn.metrics import mean_squared_error, mean_absolute_error, median_absolute_error, explained_variance_score, \ r2_score, mean_squared_log_error from AuxRegressor import create_model_list,create_testing_set,create_training_set, mape # @@@@@@@@@@@@@@ RELATIVE PATHS @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Base_Path = "./" image_path = "./images/" train_path = "./train/" test_path = "./test/" analysis_path = "./analysis/" models_path = analysis_path + "models_to_load/" results_path = analysis_path + "model_loader_results/" #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ def individual_output_scorer(metrics_list): score_df = pd.DataFrame() #set index return score_df def create_generator(model_type, data, labels, start_at = 0,scaled = True, type_scaler = 'standard_per_batch', gbs = 128, upc = False, gen_pad = 128, lab_dim = 4): if model_type == 'conv_lstm_bagged' and cond_has_dpc == True: # create conv-lstm generator train_generator = pair_generator_1dconv_lstm_bagged(train_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4, generator_pad=GENERATOR_PAD) if model_type == 'normal_lstm' or model_type == 'bidir_LSTM': # create lstm-only generator train_generator = pair_generator_lstm(train_array, label_array, start_at=shuffled_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=False, label_dims=4) if model_type == 'conv': train_generator = pair_generator_1dconv_lstm(train_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4, generator_pad=GENERATOR_PAD) if model_type == 'conv': generator = pair_generator_1dconv_lstm(data=data,labels=labels,start_at=start_at,scaled=scaled,scaler_type=type_scaler, generator_batch_size=gbs, use_precomputed_coeffs = upc, label_dims=lab_dim) return generator # def determine_state(): # return state # # class State: if __name__ == "__main__": ############################## RUNNING PARAMETERS ######################################################################### num_sequence_draws = 10 # how many times the training corpus is sampled. GENERATOR_BATCH_SIZE = 128 GENERATOR_PAD = 128 #for the conv-only and conv-LSTM generator. num_epochs = 3 # individual. like how many times is the net trained on that sequence consecutively finetune = True test_only = False # no training. if finetune is also on, this'll raise an error. scaler_active = True use_precomp_sscaler = False active_scaler_type = 'standard_per_batch' if active_scaler_type != "None": assert (scaler_active != False) # makes sure that if a scaler type is specified, the "scaler active" flag is on (the master switch) base_seq_circumnav_amt = 1.0 # default value, the only one if adaptive circumnav is False adaptive_circumnav = True if adaptive_circumnav == True: aux_circumnav_onset_draw = 3 assert (aux_circumnav_onset_draw < num_sequence_draws) aux_seq_circumnav_amt = 1.5 # only used if adaptive_circumnav is True assert (base_seq_circumnav_amt != None and aux_seq_circumnav_amt != None and aux_circumnav_onset_draw != None) shuffle_training_generator = False shuffle_testing_generator = False #**** save_preds = False save_figs = False ####################################################################################################### # LOAD MODEL AND CHECK metrics_list = ['mae', 'mape', 'mse', 'msle'] train_set_filenames = create_training_set() test_set_filenames = create_testing_set() model_filenames = create_model_list() #TODO: THIS BELOW!!!! for model in model_filenames: identifier_post_training = model raw_base_model = load_model(models_path + model) print("model loaded, ", str(model)) cond_conv = any(isinstance(layer, Conv1D) for layer in raw_base_model.layers) cond_lstm = any(isinstance(layer, LSTM) for layer in raw_base_model.layers) cond_bidir = any(isinstance(layer, Bidirectional) for layer in raw_base_model.layers) cond_has_dpc = any(layer.name == 'dense_post_concat' for layer in raw_base_model.layers) print("is there an LSTM layer?", any(isinstance(layer, LSTM) for layer in raw_base_model.layers)) print("is there dpc?", any(layer.name == 'dense_post_concat' for layer in raw_base_model.layers)) # cond_conv_lstm_bagged = cond_conv == True and cond_lstm == True if cond_lstm == True and cond_conv == True: model_type = 'conv_lstm_bagged' if cond_lstm == True and cond_conv == False: model_type = 'normal_lstm' if cond_lstm == True and cond_conv == False and cond_bidir == True: model_type = 'bidir_lstm' if cond_conv == True and cond_lstm == False: model_type = 'conv' #should be any item in metrics_list not in raw_base_model_metrics. any(metric not in raw_base_model.metrics for metric in metrics_list) cond_mismatched_metrics = any(metric not in raw_base_model.metrics for metric in metrics_list) #cond_not_multioutput = len(raw_base_model.metrics) > if cond_mismatched_metrics == True: #e.g. missing mse, recompile using the existing optimizers. print("mismatched metrics, model's metrics are currently: ",raw_base_model.metrics) existing_optimizer = raw_base_model.optimizer existing_loss = raw_base_model.loss raw_base_model.compile(optimizer = existing_optimizer,loss=existing_loss,metrics=metrics_list) print("model type is: ",model_type, " with metrics: ", raw_base_model.metrics_names) plot_model(raw_base_model, to_file=analysis_path + 'model_' + identifier_post_training + '_' + str(model)[:-4] + '.png', show_shapes=True) ##################################################################################################### weights_file_name = None identifier_post_training = 'f1' #placeholder for weights identifier_pre_training = 'f2' #placeholder, for weights if finetune == False: weights_present_indicator = os.path.isfile( 'Weights_' + str(num_sequence_draws) + identifier_post_training + '.h5') print("Are weights (with the given name to be saved as) already present? {}".format( weights_present_indicator)) else: weights_present_indicator = os.path.isfile('Weights_' + identifier_pre_training + '.h5') print("Are weights (with the given name) to initialize with present? {}".format(weights_present_indicator)) if model is not None: weights_present_indicator = True print("model loaded instead, using: ", str(model)) assert (finetune == False and weights_present_indicator == True) == False #initialize callbacks csv_logger = CSVLogger(filename='./analysis/logtrain' + identifier_post_training + ".csv", append=True) nan_terminator = TerminateOnNaN() active_seq_circumnav_amt = base_seq_circumnav_amt ############ TRAINING SET AND LABEL LOADS INTO MEMORY ################################### for i in range(0, num_sequence_draws): index_to_load = np.random.randint(0, len(train_set_filenames)) # switch to iterations files = train_set_filenames[index_to_load] print("files: {}, draw # {} out of {}".format(files, i,num_sequence_draws)) data_load_path = train_path + '/data/' + files[0] label_load_path = train_path + '/label/' + files[1] train_array = np.load(data_load_path) if train_array.shape[1] != 11: #cut off the 1st column, which is the stepindex just for rigidity train_array = train_array[:, 1:] label_array = np.load(label_load_path) if label_array.shape[1] != 4: #cut off the 1st column, which is the stepindex just for rigidity label_array = label_array[:,1:] #TODO:if shuffle_training_generator == True: nonlinear_part_starting_position = GENERATOR_BATCH_SIZE * ((train_array.shape[0] // GENERATOR_BATCH_SIZE) - 3) shuffled_starting_position = np.random.randint(0, nonlinear_part_starting_position) if shuffle_training_generator == True: active_starting_position = shuffled_starting_position #doesn't start from 0, if the model is still in the 1st phase of training if shuffle_training_generator == False: active_starting_position = 0 #adaptive circumnav governs the training from one generator upon initialization. if adaptive_circumnav == True and i >= aux_circumnav_onset_draw: #overrides the shuffle. active_seq_circumnav_amt = aux_seq_circumnav_amt active_starting_position = 0 if model_type == 'conv_lstm_bagged' and cond_has_dpc == True: #create conv-lstm generator train_generator = pair_generator_1dconv_lstm_bagged(train_array, label_array, start_at=active_starting_position,generator_batch_size=GENERATOR_BATCH_SIZE,use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active,scaler_type=active_scaler_type,label_dims=4,generator_pad=GENERATOR_PAD) # training_hist = raw_base_model.fit_generator(train_generator, # steps_per_epoch=active_seq_circumnav_amt * (train_array.shape[0] // GENERATOR_BATCH_SIZE), # epochs=num_epochs, verbose=2, # callbacks=[csv_logger, nan_terminator]) if model_type == 'normal_lstm' or model_type == 'bidir_LSTM': # create lstm-only generator train_generator = pair_generator_lstm(train_array, label_array, start_at=shuffled_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=False, label_dims=4) # training_hist = raw_base_model.fit_generator(train_generator, epochs=num_epochs, # steps_per_epoch=1 * (train_array.shape[0] // GENERATOR_BATCH_SIZE), # callbacks=[csv_logger, nan_terminator], verbose=2) if model_type == 'conv': train_generator = pair_generator_1dconv_lstm(train_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4, generator_pad=GENERATOR_PAD) # training_hist = raw_base_model.fit_generator(train_generator, steps_per_epoch=active_seq_circumnav_amt * (train_array.shape[0] // GENERATOR_BATCH_SIZE), # epochs=num_epochs, verbose=2, callbacks=[csv_logger, nan_terminator]) training_hist = raw_base_model.fit_generator(train_generator, steps_per_epoch=active_seq_circumnav_amt * (train_array.shape[0] // GENERATOR_BATCH_SIZE), epochs=num_epochs, verbose=2, callbacks=[csv_logger, nan_terminator]) trained_model = raw_base_model if weights_present_indicator == True and finetune == True: print("fine-tuning/partial training session completed.") weights_file_name = 'Weights_' + str(num_sequence_draws) + identifier_post_training + '.h5' #trained_model.save_weights(analysis_path + weights_file_name) trained_model.save(results_path + 'model_' + identifier_post_training + '_' + str(model)[:-3] + '.h5') print("after {} iterations, model weights is saved as {}".format(num_sequence_draws * num_epochs, weights_file_name)) if weights_present_indicator == False and finetune == False: # fresh training print("FRESH training session completed.") weights_file_name = 'Weights_' + str(num_sequence_draws) + identifier_post_training + '.h5' #trained_model.save_weights(weights_file_name) trained_model.save(results_path + 'model_' + identifier_post_training + '_' + str(model)[:-3] + '.h5') print("after {} iterations, model weights is saved as {}".format(num_sequence_draws * num_epochs, weights_file_name)) else: # TESTING ONLY! bypass weights present indicator. weights_file_name = 'Weights_' + str(num_sequence_draws) + identifier_post_training + '.h5' # test_weights_present_indicator print("weights_file_name before the if/else block to determine the test flag is: {}".format( weights_file_name)) if weights_file_name is not None: # means it went through the training loop if os.path.isfile(weights_file_name) == False: print("Weights from training weren't saved as .h5 but is retained in memory.") test_weights_present_indicator = True print("test_weights_present_indicator is {}".format(test_weights_present_indicator)) weights_to_test_with_fname = "weights retained in runtime memory" if os.path.isfile(weights_file_name) == True: test_weights_present_indicator = True print("test weights present indicator based on the presence of {} is {}".format(weights_file_name, test_weights_present_indicator)) weights_to_test_with_fname = weights_file_name model.load_weights(weights_to_test_with_fname, by_name=True) if test_only == True: trained_model = raw_base_model weights_to_test_with_fname = 'Weights_' + identifier_pre_training + '.h5' # hardcode the previous epoch number UP ABOVE weights_file_name = weights_to_test_with_fname # piggybacking the old flag. the one without fname is to refer to post training weights. trained_model.load_weights(weights_to_test_with_fname, by_name=True) test_weights_present_indicator = os.path.isfile(weights_to_test_with_fname) if weights_file_name == None: print( "Warning: check input flags. No training has been done, and testing is about to be performed with weights labeled as POST TRAINING weights") test_weights_present_indicator = os.path.isfile( 'Weights_' + str(num_sequence_draws) + identifier_post_training + '.h5') print( "weights_file_name after the if/else block to determine the test flag is: {}".format(weights_file_name)) if test_weights_present_indicator == True: # the testing part print("TESTING PHASE, with weights {}".format(weights_to_test_with_fname)) # load data multiple times. data_filenames = list(set(os.listdir(test_path + "data"))) # print("before sorting, data_filenames: {}".format(data_filenames)) data_filenames.sort() # print("after sorting, data_filenames: {}".format(data_filenames)) label_filenames = list(set(os.listdir(test_path + "label"))) label_filenames.sort() # print("label_filenames: {}".format(data_filenames)) assert len(data_filenames) == len(label_filenames) combined_test_filenames = zip(data_filenames, label_filenames) # print("before shuffling: {}".format(combined_test_filenames)) shuffle(combined_test_filenames) print("after shuffling: {}".format(combined_test_filenames)) # shuffling works ok. i = 0 # TODO: still only saves single results. score_rows_list = [] score_rows_list_scikit = [] score_rows_list_scikit_raw = [] for files in combined_test_filenames: i = i + 1 data_load_path = test_path + '/data/' + files[0] label_load_path = test_path + '/label/' + files[1] # print("data/label load path: {} \n {}".format(data_load_path,label_load_path)) test_array = np.load(data_load_path) if test_array.shape[1] != 11: # cut off the 1st column, which is the stepindex just for rigidity test_array = test_array[:, 1:] label_array = np.load(label_load_path) if label_array.shape[1] != 4: # cut off the 1st column, which is the stepindex just for rigidity label_array = label_array[:, 1:] # --------COMMENTED OUT BECAUSE OF SCALER IN THE GENERATOR----------------------------------- # test_array = np.reshape(test_array, (1, test_array.shape[0], test_array.shape[1])) # label_array = np.reshape(label_array,(1,label_array.shape[0],label_array.shape[1])) #label doesn't need to be 3D # print("file: {} data/label shape: {}, {}".format(files[0],test_array.shape, label_array.shape)) print("sequence being tested: ",files[0], ", number ", i, "out of ", len(combined_test_filenames)) # print("Metrics: {}".format(model.metrics_names)) # steps per epoch is how many times that generator is called nonlinear_part_starting_position = GENERATOR_BATCH_SIZE * ((test_array.shape[0] // GENERATOR_BATCH_SIZE) - 3) shuffled_starting_position = np.random.randint(0, nonlinear_part_starting_position) if shuffle_testing_generator == True: active_starting_position = shuffled_starting_position # doesn't start from 0, if the model is still in the 1st phase of training if shuffle_testing_generator == False: active_starting_position = 0 #define the test generator parameters. if model_type == 'conv_lstm_bagged' and cond_has_dpc == True: # create conv-lstm generator test_generator = pair_generator_1dconv_lstm_bagged(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type,label_dims=4) if model_type == 'normal_lstm' or model_type == 'bidir_LSTM': # create lstm-only generator test_generator = pair_generator_lstm(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=False, label_dims=4) if model_type == 'conv': test_generator = pair_generator_1dconv_lstm(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4, generator_pad=GENERATOR_PAD) score = trained_model.evaluate_generator(test_generator, steps=(test_array.shape[0] // GENERATOR_BATCH_SIZE), max_queue_size=test_array.shape[0], use_multiprocessing=False) print("scores: {}".format(score)) metrics_check = (metrics_list == trained_model.metrics_names) if metrics_check == False: metrics_list = trained_model.metrics_names row_dict = {} row_dict_scikit = {} #for the scikit-based metrics. row_dict_scikit_raw = {} #for the raw-value scikit-based metrics row_dict['seq_name'] = str(files[0])[:-4] for item in metrics_list: row_dict[str(item)] = score[metrics_list.index(item)] # 'loss' score_rows_list.append(row_dict) #SECOND TIME FOR PREDICTIONS LOGGING. INITIALIZE GENERATORS active_starting_position = 0 #hardcode for the actual predictions logging? if model_type == 'conv_lstm_bagged' and cond_has_dpc == True: # create conv-lstm generator test_generator = pair_generator_1dconv_lstm_bagged(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4) if model_type == 'normal_lstm' or model_type == 'bidir_LSTM': # create lstm-only generator test_generator = pair_generator_lstm(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=False, label_dims=4) if model_type == 'conv': #create conv-only generator test_generator = pair_generator_1dconv_lstm(test_array, label_array, start_at=active_starting_position, generator_batch_size=GENERATOR_BATCH_SIZE, use_precomputed_coeffs=use_precomp_sscaler, scaled=scaler_active, scaler_type=active_scaler_type, label_dims=4, generator_pad=GENERATOR_PAD) prediction_length = (int(1.0 * (GENERATOR_BATCH_SIZE * (label_array.shape[0] // GENERATOR_BATCH_SIZE)))) test_i = 0 # Kindly declare the shape preds_ndims = len(trained_model.output_layers[0].output_shape) #if 3D, this should be 3. [0] because this is the combined output. preds_2d_shape = [prediction_length, 4] preds_3d_shape = [1, prediction_length, 4] if preds_ndims == 3: y_pred = np.zeros(shape = preds_3d_shape) y_truth = np.zeros(shape = preds_3d_shape) if preds_ndims == 2: y_pred = np.zeros(shape=preds_2d_shape) y_truth = np.zeros(shape=preds_2d_shape) while test_i <= prediction_length - GENERATOR_BATCH_SIZE: #TODO: make sure this matches. [0] not necessary for bagged data, necessary for bagged labels. x_test_batch, y_test_batch = test_generator.next() if model_type == 'conv_lstm_bagged': #this has two outputs y_pred[0, test_i:test_i + GENERATOR_BATCH_SIZE, :] = (trained_model.predict_on_batch(x_test_batch))[0] if model_type != 'conv_lstm_bagged': y_pred[0, test_i:test_i + GENERATOR_BATCH_SIZE, :] = trained_model.predict_on_batch(x_test_batch) #needs the entire output. #needs the entire output. if model_type == 'conv_lstm_bagged': #duplicated outputs. pick the first one. y_truth[0, test_i:test_i + GENERATOR_BATCH_SIZE, :] = y_test_batch[0] if model_type != 'conv_lstm_bagged': y_truth[0, test_i:test_i + GENERATOR_BATCH_SIZE, :] = y_test_batch test_i += GENERATOR_BATCH_SIZE # print("array shape {}".format(y_prediction[0,int(0.95*prediction_length), :].shape)) #gotta remove a dimension if the predictions are 3D, otherwise the scikit metrics won't work. if len(y_pred.shape) == 3: y_pred = np.reshape(y_pred, newshape = preds_2d_shape) y_truth = np.reshape(y_truth, newshape = preds_2d_shape) ind_f3 = y_pred.shape[0] - 3 * GENERATOR_BATCH_SIZE row_dict_scikit['seq_name'] = str(files[0])[:-4] row_dict_scikit_raw['seq_name'] = str(files[0])[:-4] row_dict_scikit['mse'] = mean_squared_error(y_true = y_truth, y_pred = y_pred,multioutput = 'uniform_average') row_dict_scikit['mse_f3'] = mean_squared_error(y_true=y_truth[ind_f3:,:], y_pred=y_pred[ind_f3:,:], multioutput='uniform_average') raw_mse = list(mean_squared_error(y_true=y_truth, y_pred=y_pred,multioutput='raw_values')) for flaw in range(0,len(raw_mse)): row_dict_scikit_raw['mse_' + str(flaw)] = raw_mse[flaw] raw_mse_f3 = list(mean_squared_error(y_true=y_truth[ind_f3:,:], y_pred=y_pred[ind_f3:,:],multioutput='raw_values')) for flaw in range(0, len(raw_mse_f3)): row_dict_scikit_raw['mse_f3_' + str(flaw)] = raw_mse_f3[flaw] row_dict_scikit['mae'] = mean_absolute_error(y_true = y_truth, y_pred = y_pred,multioutput = 'uniform_average') row_dict_scikit['mae_f3'] = mean_absolute_error(y_true=y_truth[ind_f3:,:], y_pred=y_pred[ind_f3:,:], multioutput='uniform_average') raw_mae = list(mean_absolute_error(y_true=y_truth, y_pred=y_pred,multioutput='raw_values')) for flaw in range(0,len(raw_mae)): row_dict_scikit_raw['mae_' + str(flaw)] = raw_mae[flaw] raw_mae_f3 = list(mean_absolute_error(y_true=y_truth[ind_f3:,:], y_pred=y_pred[ind_f3:,:],multioutput='raw_values')) for flaw in range(0, len(raw_mae_f3)): row_dict_scikit_raw['mae_f3_' + str(flaw)] = raw_mae_f3[flaw] # row_dict_scikit['msle'] = mean_squared_log_error(y_true=y_truth, y_pred=y_pred, multioutput='uniform_average') # row_dict_scikit['msle_f3'] = mean_squared_log_error(y_true=y_truth[ind_f3:,:], y_pred=y_pred[ind_f3:,:], # multioutput='uniform_average') score_rows_list_scikit.append(row_dict_scikit) score_rows_list_scikit_raw.append(row_dict_scikit_raw) #print('row_dict sk keys: ', row_dict_scikit.keys(), "row dict sk values: ", row_dict_scikit.values()) if save_preds == True: np.save(analysis_path + 'preds/preds_' + identifier_post_training + str(files[0])[:-4] + '.npy', arr=y_pred) # y_prediction_temp = y_truth # y_truth = np.reshape(y_truth, # newshape=(y_prediction_temp.shape[1], y_prediction_temp.shape[2])) # label_truth = label_array[0:y_truth.shape[0], :] # # print (label_truth.shape) # label_truth_temp = label_truth # scaler_output = sklearn.preprocessing.StandardScaler() # TODO: this should use the precomputed coeffs as well... # #scaler_output = set_standalone_scaler_params(scaler_output) # # print("") # label_truth = scaler_output.transform(X=label_truth_temp) # # resample_interval = 16 # label_truth = label_truth[::resample_interval, :] # y_truth = y_truth[::resample_interval, :] score_df = pd.DataFrame(data=score_rows_list, columns=score_rows_list[0].keys()) score_scikit_df = pd.DataFrame(data=score_rows_list_scikit,columns=score_rows_list_scikit[0].keys()) score_scikit_raw_df = pd.DataFrame(data=score_rows_list_scikit_raw,columns=score_rows_list_scikit_raw[0].keys()) if shuffle_testing_generator == False: score_df.to_csv(analysis_path + 'scores_' + model_type + '_' + str(model)[:-3] + '.csv') score_scikit_df.to_csv(analysis_path + 'scores_sk_' + model_type + '_' + str(model)[:-3] + '.csv') score_scikit_raw_df.to_csv(analysis_path + 'scores_sk_raw_' + model_type + '_' + str(model)[:-3] + '.csv') if shuffle_testing_generator == True: score_df.to_csv(analysis_path + 'scores_' + model_type + '_' + str(model)[:-3] + 'shf_test.csv') score_scikit_df.to_csv(analysis_path + 'scores_sk_' + model_type + '_' + str(model)[:-3] + 'shf_test.csv') score_scikit_raw_df.to_csv(analysis_path + 'scores_sk_' + model_type + '_' + str(model)[:-3] + 'shf_test.csv') # print(len(y_prediction)) #move all this junk into the training loop. #TODO check if the API are actually the same. if not, update. #TODO: initialize csvlogger #create conv-only generator # model.compile(loss={'combined_output': 'mape', 'lstm_output': 'mse'}, # optimizer=optimizer_used, metrics=metrics_list)
gpl-3.0
Aufuray/ross-sea-project
app/models/image_nd.py
1
3950
import os import sys import numpy as np from matplotlib import pyplot as plt from tools import data class ImageND(object): SENSOR = None def __init__(self, filename, dimensions=3): if dimensions < 3: print "The image doesn't have the minimum of 3 dimensions" sys.exit(1) self.dimensions = dimensions self.filename = filename self.filepath = os.path.join(data.DATA_DIR, self.filename) self.title = filename[2:15] def __validate(self, image): """ Validate image, check that's n-'dimensions' channel image """ if image is not None and len(image.shape) >= self.dimensions: return True return False def image(self): """ Returns the raw ndarray image :rtype: ndarray """ image = data.mat_file(self.filepath).get(self.SENSOR) if not self.__validate(image): print "Invalid dimensions or sensor {0} isn't in the image".format( self.sensor) sys.exit(1) return np.dstack(image) def nan_percentage(self): nan_count = np.count_nonzero(~np.isnan(self.image())) return (nan_count / self.image().size) * 100 def date(self): return data.parse_date(self.filename) def show(self, colorbar=True): plt.imshow(self.image()) plt.title(self.filename) if colorbar: plt.colorbar() plt.show() # ===================================== # Analysis # ===================================== def rgb(self): """ Return 3-tuple with (r, g, b) """ red = self.channel("red") green = self.channel("green") blue = self.channel("blue") return (red, green, blue) def channel(self, channel=None): """ This function is to be overwritten in by subclass """ return None class IbandImage(ImageND): SENSOR = "ibands" def channel(self, channel=None): """ Returns a specific channel, the options are: - red, green, blue :params: :params channel: string with the specified channel :rType: ndarray """ if channel == 'red': return self.image()[:, :, 0] elif channel == 'green': return self.image()[:, :, 1] elif channel == 'blue': return self.image()[:, :, 2] else: print "Channel requested wasn't red, green or blue" class MbandImage(ImageND): SENSOR = "mbands" def channel(self, channel=None): """ Returns a specific channel, the options are: - red - blue :params: :params channel: string with the specified channel :rType: ndarray """ channel = channel.strip().lower() if channel == 'red': return self.image()[:, :, 2] elif channel == 'green': return self.image()[:, :, 1] elif channel == 'blue': return self.image()[:, :, 0] else: print "Channel requested wasn't red, green or blue" class FcImage(ImageND): SENSOR = "fc" def channel(self, channel=None): """ Returns a specific channel, the options are: - red - blue :params: :params channel: string with the specified channel :rType: ndarray """ channel = channel.strip().lower() if channel == 'red': return self.image()[:, :, 0] elif channel == 'green': return self.image()[:, :, 1] elif channel == 'blue': return self.image()[:, :, 2] else: print "Channel requested wasn't red, green or blue"
mit
mclaughlin6464/pylearn2
pylearn2/utils/image.py
39
18841
""" Utility functions for working with images. """ import logging import numpy as np plt = None axes = None from theano.compat.six.moves import xrange from theano.compat.six import string_types import warnings try: import matplotlib.pyplot as plt import matplotlib.axes except (RuntimeError, ImportError, TypeError) as matplotlib_exception: warnings.warn("Unable to import matplotlib. Some features unavailable. " "Original exception: " + str(matplotlib_exception)) import os try: from PIL import Image except ImportError: Image = None from pylearn2.utils import string_utils as string from pylearn2.utils.exc import reraise_as from tempfile import mkstemp from multiprocessing import Process import subprocess logger = logging.getLogger(__name__) def ensure_Image(): """Makes sure Image has been imported from PIL""" global Image if Image is None: raise RuntimeError("You are trying to use PIL-dependent functionality" " but don't have PIL installed.") def imview(*args, **kwargs): """ A matplotlib-based image viewer command, wrapping `matplotlib.pyplot.imshow` but behaving more sensibly. Parameters ---------- figure : TODO TODO: write parameters section using decorators to inherit the matplotlib docstring Notes ----- Parameters are identical to `matplotlib.pyplot.imshow` but this behaves somewhat differently: * By default, it creates a new figure (unless a `figure` keyword argument is supplied. * It modifies the axes of that figure to use the full frame, without ticks or tick labels. * It turns on `nearest` interpolation by default (i.e., it does not antialias pixel data). This can be overridden with the `interpolation` argument as in `imshow`. All other arguments and keyword arguments are passed on to `imshow`.` """ if 'figure' not in kwargs: f = plt.figure() else: f = kwargs['figure'] new_ax = matplotlib.axes.Axes(f, [0, 0, 1, 1], xticks=[], yticks=[], frame_on=False) f.delaxes(f.gca()) f.add_axes(new_ax) if len(args) < 5 and 'interpolation' not in kwargs: kwargs['interpolation'] = 'nearest' plt.imshow(*args, **kwargs) def imview_async(*args, **kwargs): """ A version of `imview` that forks a separate process and immediately shows the image. Parameters ---------- window_title : str TODO: writeme with decorators to inherit the other imviews' docstrings Notes ----- Supports the `window_title` keyword argument to cope with the title always being 'Figure 1'. Returns the `multiprocessing.Process` handle. """ if 'figure' in kwargs: raise ValueError("passing a figure argument not supported") def fork_image_viewer(): f = plt.figure() kwargs['figure'] = f imview(*args, **kwargs) if 'window_title' in kwargs: f.set_window_title(kwargs['window_title']) plt.show() p = Process(None, fork_image_viewer) p.start() return p def show(image): """ .. todo:: WRITEME Parameters ---------- image : PIL Image object or ndarray If ndarray, integer formats are assumed to use 0-255 and float formats are assumed to use 0-1 """ viewer_command = string.preprocess('${PYLEARN2_VIEWER_COMMAND}') if viewer_command == 'inline': return imview(image) if hasattr(image, '__array__'): # do some shape checking because PIL just raises a tuple indexing error # that doesn't make it very clear what the problem is if len(image.shape) < 2 or len(image.shape) > 3: raise ValueError('image must have either 2 or 3 dimensions but its' ' shape is ' + str(image.shape)) # The below is a temporary workaround that prevents us from crashing # 3rd party image viewers such as eog by writing out overly large # images. # In the long run we should determine if this is a bug in PIL when # producing # such images or a bug in eog and determine a proper fix. # Since this is hopefully just a short term workaround the # constants below are not included in the interface to the # function, so that 3rd party code won't start passing them. max_height = 4096 max_width = 4096 # Display separate warnings for each direction, since it's # common to crop only one. if image.shape[0] > max_height: image = image[0:max_height, :, :] warnings.warn("Cropping image to smaller height to avoid crashing " "the viewer program.") if image.shape[0] > max_width: image = image[:, 0:max_width, :] warnings.warn("Cropping the image to a smaller width to avoid " "crashing the viewer program.") # This ends the workaround if image.dtype == 'int8': image = np.cast['uint8'](image) elif str(image.dtype).startswith('float'): # don't use *=, we don't want to modify the input array image = image * 255. image = np.cast['uint8'](image) # PIL is too stupid to handle single-channel arrays if len(image.shape) == 3 and image.shape[2] == 1: image = image[:, :, 0] try: ensure_Image() image = Image.fromarray(image) except TypeError: reraise_as(TypeError("PIL issued TypeError on ndarray of shape " + str(image.shape) + " and dtype " + str(image.dtype))) # Create a temporary file with the suffix '.png'. fd, name = mkstemp(suffix='.png') os.close(fd) # Note: # Although we can use tempfile.NamedTemporaryFile() to create # a temporary file, the function should be used with care. # # In Python earlier than 2.7, a temporary file created by the # function will be deleted just after the file is closed. # We can re-use the name of the temporary file, but there is an # instant where a file with the name does not exist in the file # system before we re-use the name. This may cause a race # condition. # # In Python 2.7 or later, tempfile.NamedTemporaryFile() has # the 'delete' argument which can control whether a temporary # file will be automatically deleted or not. With the argument, # the above race condition can be avoided. # image.save(name) if os.name == 'nt': subprocess.Popen(viewer_command + ' ' + name + ' && del ' + name, shell=True) else: subprocess.Popen(viewer_command + ' ' + name + ' ; rm ' + name, shell=True) def pil_from_ndarray(ndarray): """ Converts an ndarray to a PIL image. Parameters ---------- ndarray : ndarray An ndarray containing an image. Returns ------- pil : PIL Image A PIL Image containing the image. """ try: if ndarray.dtype == 'float32' or ndarray.dtype == 'float64': assert ndarray.min() >= 0.0 assert ndarray.max() <= 1.0 ndarray = np.cast['uint8'](ndarray * 255) if len(ndarray.shape) == 3 and ndarray.shape[2] == 1: ndarray = ndarray[:, :, 0] ensure_Image() rval = Image.fromarray(ndarray) return rval except Exception as e: logger.exception('original exception: ') logger.exception(e) logger.exception('ndarray.dtype: {0}'.format(ndarray.dtype)) logger.exception('ndarray.shape: {0}'.format(ndarray.shape)) raise assert False def ndarray_from_pil(pil, dtype='uint8'): """ Converts a PIL Image to an ndarray. Parameters ---------- pil : PIL Image An image represented as a PIL Image object dtype : str The dtype of ndarray to create Returns ------- ndarray : ndarray The image as an ndarray. """ rval = np.asarray(pil) if dtype != rval.dtype: rval = np.cast[dtype](rval) if str(dtype).startswith('float'): rval /= 255. if len(rval.shape) == 2: rval = rval.reshape(rval.shape[0], rval.shape[1], 1) return rval def rescale(image, shape): """ Scales image to be no larger than shape. PIL might give you unexpected results beyond that. Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols i = pil_from_ndarray(image) ensure_Image() i.thumbnail([shape[1], shape[0]], Image.ANTIALIAS) rval = ndarray_from_pil(i, dtype=image.dtype) return rval resize = rescale def fit_inside(image, shape): """ Scales image down to fit inside shape preserves proportions of image Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols if image.shape[0] <= shape[0] and image.shape[1] <= shape[1]: return image.copy() row_ratio = float(image.shape[0]) / float(shape[0]) col_ratio = float(image.shape[1]) / float(shape[1]) if row_ratio > col_ratio: target_shape = [shape[0], min(image.shape[1] / row_ratio, shape[1])] else: target_shape = [min(image.shape[0] / col_ratio, shape[0]), shape[1]] assert target_shape[0] <= shape[0] assert target_shape[1] <= shape[1] assert target_shape[0] == shape[0] or target_shape[1] == shape[1] rval = rescale(image, target_shape) return rval def letterbox(image, shape): """ Pads image with black letterboxing to bring image.shape up to shape Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols assert image.shape[0] <= shape[0] assert image.shape[1] <= shape[1] if image.shape[0] == shape[0] and image.shape[1] == shape[1]: return image.copy() rval = np.zeros((shape[0], shape[1], image.shape[2]), dtype=image.dtype) rstart = (shape[0] - image.shape[0]) / 2 cstart = (shape[1] - image.shape[1]) / 2 rend = rstart + image.shape[0] cend = cstart + image.shape[1] rval[rstart:rend, cstart:cend] = image return rval def make_letterboxed_thumbnail(image, shape): """ Scales image down to shape. Preserves proportions of image, introduces black letterboxing if necessary. Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 assert len(shape) == 2 shrunk = fit_inside(image, shape) letterboxed = letterbox(shrunk, shape) return letterboxed def load(filepath, rescale_image=True, dtype='float64'): """ Load an image from a file. Parameters ---------- filepath : str Path to the image file to load rescale_image : bool Default value: True If True, returned images have pixel values in [0, 1]. Otherwise, values are in [0, 255]. dtype: str The dtype to use for the returned value Returns ------- img : numpy ndarray An array containing the image that was in the file. """ assert isinstance(filepath, string_types) if not rescale_image and dtype == 'uint8': ensure_Image() rval = np.asarray(Image.open(filepath)) assert rval.dtype == 'uint8' return rval s = 1.0 if rescale_image: s = 255. try: ensure_Image() rval = Image.open(filepath) except Exception: reraise_as(Exception("Could not open " + filepath)) numpy_rval = np.array(rval) msg = ("Tried to load an image, got an array with %d" " dimensions. Expected 2 or 3." "This may indicate a mildly corrupted image file. Try " "converting it to a different image format with a different " "editor like gimp or imagemagic. Sometimes these programs are " "more robust to minor corruption than PIL and will emit a " "correctly formatted image in the new format.") if numpy_rval.ndim not in [2, 3]: logger.error(dir(rval)) logger.error(rval) logger.error(rval.size) rval.show() raise AssertionError(msg % numpy_rval.ndim) rval = numpy_rval rval = np.cast[dtype](rval) / s if rval.ndim == 2: rval = rval.reshape(rval.shape[0], rval.shape[1], 1) if rval.ndim != 3: raise AssertionError("Something went wrong opening " + filepath + '. Resulting shape is ' + str(rval.shape) + " (it's meant to have 3 dimensions by now)") return rval def save(filepath, ndarray): """ Saves an image to a file. Parameters ---------- filepath : str The path to write the file to. ndarray : ndarray An array containing the image to be saved. """ pil_from_ndarray(ndarray).save(filepath) def scale_to_unit_interval(ndar, eps=1e-8): """ Scales all values in the ndarray ndar to be between 0 and 1 Parameters ---------- ndar : WRITEME eps : WRITEME Returns ------- WRITEME """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), scale_rows_to_unit_interval=True, output_pixel_vals=True): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). Parameters ---------- x : numpy.ndarray 2-d ndarray or 4 tuple of 2-d ndarrays or None for channels, in which every row is a flattened image. shape : 2-tuple of ints The first component is the height of each image, the second component is the width. tile_shape : 2-tuple of ints The number of images to tile in (row, columns) form. scale_rows_to_unit_interval : bool Whether or not the values need to be before being plotted to [0, 1]. output_pixel_vals : bool Whether or not the output should be pixel values (int8) or floats. Returns ------- y : 2d-ndarray The return value has the same dtype as X, and is suitable for viewing as an image with PIL.Image.fromarray. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 # The expression below can be re-written in a more C style as # follows : # # out_shape = [0,0] # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] - # tile_spacing[0] # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] - # tile_spacing[1] out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 # Create an output np ndarray to store the image if output_pixel_vals: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) # colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in xrange(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype dt = out_array.dtype if output_pixel_vals: dt = 'uint8' out_array[:, :, i] = np.zeros(out_shape, dtype=dt) + \ channel_defaults[i] else: # use a recurrent call to compute the channel and store it # in the output out_array[:, :, i] = tile_raster_images( X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output dt = X.dtype if output_pixel_vals: dt = 'uint8' out_array = np.zeros(out_shape, dtype=dt) for tile_row in xrange(tile_shape[0]): for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: this_x = X[tile_row * tile_shape[1] + tile_col] if scale_rows_to_unit_interval: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function this_img = scale_to_unit_interval( this_x.reshape(img_shape)) else: this_img = this_x.reshape(img_shape) # add the slice to the corresponding position in the # output array c = 1 if output_pixel_vals: c = 255 out_array[ tile_row * (H + Hs): tile_row * (H + Hs) + H, tile_col * (W + Ws): tile_col * (W + Ws) + W ] = this_img * c return out_array if __name__ == '__main__': black = np.zeros((50, 50, 3), dtype='uint8') red = black.copy() red[:, :, 0] = 255 green = black.copy() green[:, :, 1] = 255 show(black) show(green) show(red)
bsd-3-clause
FYP-DES5/deepscan-core
util/denoise.py
1
7282
import cv2 # import gdfmm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import sys import numpy as np class EdgeImprover: def __init__(self, voxels, gridsize, minX, minY, maxX, maxY): self.voxels = voxels self.gridsize = gridsize self.mask = np.zeros((3 + maxX - minX, 3 + maxY - minY), dtype=np.uint8) self.offset = (1 - minX, 1 - minY) for k in self.voxels.keys(): self.mask[tuple(np.array(k) + self.offset)] = 255 self.edge = self.mask - cv2.erode(self.mask, cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))) self.toBeDeleted = [] def run(self): it = np.nditer(self.edge, flags=['multi_index']) frequencies = {} while not it.finished: if it[0] != 0: it.iternext() continue point = tuple(np.array(it.multi_index) - self.offset) if point not in self.voxels: it.iternext() continue frequency = len(self.voxels[point]) frequencies[frequency] = 1 + frequencies.get(frequency, 0) it.iternext() modeGridPoints = max(frequencies, key=lambda k: frequencies[k]) it = np.nditer(self.edge, flags=['multi_index']) while not it.finished: if it[0] == 0: it.iternext() continue point = tuple(np.array(it.multi_index) - self.offset) points = self.__getNeighborhoodPoints(self.voxels, *point) centroid, ns = self.__fitPointsToPlanes(points) center = np.array(point, dtype=np.float64) * self.gridsize targetAreaRatio = len(self.voxels[point]) / float(modeGridPoints) xy = self.__calculateBestSample(center, centroid, self.gridsize, targetAreaRatio) new = [self.__genVFromXYNNN(xy[0] - centroid[0], xy[1] - centroid[1], ns) + centroid] print new self.voxels[(point, 'calibrated')] = new self.toBeDeleted.append(point) it.iternext() for x in self.toBeDeleted: del self.voxels[x] @staticmethod def __getNeighborhoodPoints(voxels, x, y): return sum([[] if (i, j) not in voxels else voxels[(i, j)] for i in range(x - 1, x + 2) for j in range(y - 1, y + 2)], []) @staticmethod def __genVFromXYNNN(x, y, ns): v = np.array([x, y, 0, 0, 0]) for i in range(2, 5): n = ns[i - 2] v[i] = -np.dot(v[[0, 1]], n[[0, 1]]) / n[2] return v @staticmethod def __fitPointsToPlanes(points): if type(points) is not np.ndarray: points = np.array(points) centroid = np.average(points, axis=0) pointsRelativeToCentroid = points - centroid timesTable = np.dot(pointsRelativeToCentroid.T, pointsRelativeToCentroid) def getNormal(n): D = np.linalg.det(timesTable[0:2, 0:2]) a = np.linalg.det(timesTable[0:2, (1,n)]) / D b = -np.linalg.det(timesTable[(0,n), 0:2]) / D return np.array([a, b, 1]) return centroid, map(getNormal, range(2, 5)) @staticmethod def __calculateBestSample(center, centroid, gridsize, targetAreaRatio): print center, centroid # const center, const centroid center = np.copy(center) centroid = np.copy(centroid[[0, 1]]) d = center - centroid # if ratio is more than half if targetAreaRatio > 0.5: # equivalent to reversing direction and finding complement d = -d centroid = center - d targetAreaRatio = 1 - targetAreaRatio # if horizontal d if abs(d[0]) > abs(d[1]): # swap x and y of input center[[0, 1]] = center[[1, 0]] centroid[[0, 1]] = centroid[[1, 0]] yx = EdgeImprover.__calculateBestSample(center, centroid, gridsize, targetAreaRatio) # swap x and y of output return yx[[1, 0]] # if centroid is above if d[1] < 0: # reflect y of input center[1] = -center[1] centroid[1] = -centroid[1] x_negY = EdgeImprover.__calculateBestSample(center, centroid, gridsize, targetAreaRatio) # reflect y of output return x_negY * [1, -1] # if centroid is to the right if d[0] < 0: # reflect y of input center[0] = -center[0] centroid[0] = -centroid[0] negX_y = EdgeImprover.__calculateBestSample(center, centroid, gridsize, targetAreaRatio) # reflect y of output return negX_y * [-1, 1] # valid assumption: centroid is between S45W and S, ratio <= 0.5 halfGrid = gridsize / 2.0 # m = dy / dx md = d[1] / d[0] # mx + c = y # c = y - mx cd = center[1] - md * center[0] # `y = h` is a line cutting square in targetAreaRatio h = gridsize * targetAreaRatio + center[1] - halfGrid # `y = mx + c` is a line cutting square in targetAreaRatio # and perpendicular to center - centroid m1 = -(d[0] / d[1]) # mx + c = y # c = y - mx c1 = h - m1 * center[0] # test if `y = mx + c` touches the left and right edge of the square leftY = m1 * (center[0] - halfGrid) + c1 rightY = m1 * (center[0] + halfGrid) + c1 if all(map(lambda y: center[1] - halfGrid < y < center[1] + halfGrid, [leftY, rightY])): # -m1x + y = c1 # -mdx + y = cd # -> [-m1 1; -md 1][x; y] = [c1; cd] return np.linalg.solve([[-m1, 1], [-md, 1]], [c1, cd]) else: # area must be triangular # let base be bt, height be ht # area = bt ht / 2 # md = bt / ht # area = md / 2 * ht^2 # ht = sqrt(2area / md) m2 = m1 # mx + c = y # c = y - mx ht = np.sqrt(2 * targetAreaRatio * gridsize**2 / md) yt = ht + center[1] - halfGrid c2 = yt - m2 * (center[0] - halfGrid) xy = np.linalg.solve([[-m2, 1], [-md, 1]], [c2, cd]) # check if in range if not xy[1] < center[1] - halfGrid: return xy else: # triangle too small, point outside of square # compromise: return closest point on line bt = md * ht xt = bt + center[0] - halfGrid return np.array([xt, center[1] - halfGrid]) def voxelGridFilter(points, tcoords, gridsize=0.01): voxels = {} print len(points) maxX, maxY, minX, minY = -sys.maxint - 1, -sys.maxint - 1, sys.maxint, sys.maxint for i in range(len(points)): n = tuple(map(lambda x: int(round(x / gridsize)),np.copy(points[i]))[0:2]) if n not in voxels: voxels[n] = [] minX, maxX = min(n[0], minX), max(n[0], maxX) minY, maxY = min(n[1], minY), max(n[1], maxY) voxels[n].append(np.hstack((points[i], tcoords[i]))) rp = [np.average(np.array([e[0:3] for e in voxels[n]]), axis=0) for n in voxels] rt = [np.average(np.array([e[3:5] for e in voxels[n]]), axis=0) for n in voxels] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(*([map(lambda p: p[i], points) for i in range(3)]), c='r', s=0.5) ax.scatter(*([map(lambda p: p[i], rp) for i in range(3)]), c='b') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') EdgeImprover(voxels, gridsize, minX, minY, maxX, maxY).run() rp = [np.average(np.array([e[0:3] for e in voxels[n]]), axis=0) for n in voxels] rt = [np.average(np.array([e[3:5] for e in voxels[n]]), axis=0) for n in voxels] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(*([map(lambda p: p[i], points) for i in range(3)]), c='r', s=0.5) ax.scatter(*([map(lambda p: p[i], rp) for i in range(3)]), c='b') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() return rp, rt def inpaint(bgr, depth): pass # def inpaint(bgr, depth): # bgrSmall = cv2.resize(bgr, (depth.shape[1], depth.shape[0])) # rgb = cv2.cvtColor(bgrSmall, cv2.COLOR_BGR2RGB) # # pass by reference # depth[:] = gdfmm.InpaintDepth2(depth, rgb, 1, 1, 2.0, 11)[:]
mit
mengxn/tensorflow
tensorflow/examples/learn/iris_val_based_early_stopping.py
62
2827
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with early stopping.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil from sklearn import datasets from sklearn import metrics from sklearn.cross_validation import train_test_split import tensorflow as tf learn = tf.contrib.learn def clean_folder(folder): """Cleans the given folder if it exists.""" try: shutil.rmtree(folder) except OSError: pass def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=0.2, random_state=42) val_monitor = learn.monitors.ValidationMonitor( x_val, y_val, early_stopping_rounds=200) model_dir = '/tmp/iris_model' clean_folder(model_dir) # classifier with early stopping on training data classifier1 = learn.DNNClassifier( feature_columns=learn.infer_real_valued_columns_from_input(x_train), hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir) classifier1.fit(x=x_train, y=y_train, steps=2000) predictions1 = list(classifier1.predict(x_test, as_iterable=True)) score1 = metrics.accuracy_score(y_test, predictions1) model_dir = '/tmp/iris_model_val' clean_folder(model_dir) # classifier with early stopping on validation data, save frequently for # monitor to pick up new checkpoints. classifier2 = learn.DNNClassifier( feature_columns=learn.infer_real_valued_columns_from_input(x_train), hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir, config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1)) classifier2.fit(x=x_train, y=y_train, steps=2000, monitors=[val_monitor]) predictions2 = list(classifier2.predict(x_test, as_iterable=True)) score2 = metrics.accuracy_score(y_test, predictions2) # In many applications, the score is improved by using early stopping print('score1: ', score1) print('score2: ', score2) print('score2 > score1: ', score2 > score1) if __name__ == '__main__': tf.app.run()
apache-2.0
maheshakya/scikit-learn
sklearn/utils/graph.py
50
6169
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = csgraph.astype(np.float) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
trangnm58/idrec
localization_cnn/model.py
1
2308
from __future__ import division, print_function, unicode_literals import sys import numpy as np import random import matplotlib.pyplot as plt # fix random seed for reproducibility seed = 13 random.seed(seed) np.random.seed(seed) from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D sys.path.insert(0, "..") from utils import Timer from localization_cnn.dataset import Dataset from localization_cnn import model_handler from localization_cnn.constants import ( HEIGHT, WIDTH, PICKLE_DATASET, DATA_NAME, TRAINED_MODELS) def build_model(num_of_class): print("Building the model...") model = Sequential() model.add(Convolution2D( nb_filter=40, nb_row=7, nb_col=7, border_mode='same', input_shape=(HEIGHT, WIDTH, 1), activation='relu' )) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D( nb_filter=40, nb_row=5, nb_col=5, border_mode='same', input_shape=(HEIGHT, WIDTH, 1), activation='relu' )) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_of_class, activation='softmax')) model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) return model def train_model(model, X_train, Y_train, X_val, Y_val, epochs=50): print("Training the model...") # how many examples to look at during each training iteration batch_size = 128 # the training may be slow depending on your computer history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=epochs, validation_data=(X_val, Y_val)) return history if __name__ == "__main__": # deal with dataset timer = Timer() timer.start("Loading data") d = Dataset(PICKLE_DATASET + DATA_NAME) X_train, Y_train = d.get_train_dataset() X_val, Y_val = d.get_val_dataset() timer.stop() num_of_class = Y_train.shape[1] m = build_model(num_of_class) epochs = 20 while True: train_model(m, X_train, Y_train, X_val, Y_val, epochs) epochs = input("More? ") if not epochs: break else: epochs = int(epochs) name = input("Model's name or 'n': ") if name != 'n': model_handler.save_model(m, TRAINED_MODELS + name)
mit
kpolimis/sklearn-forest-ci
forestci/version.py
2
2064
# Format expected by setup.py and doc/source/conf.py: string of form "X.Y.Z" _version_major = 0 _version_minor = 4 _version_micro = '' # use '' for first of series, number for 1 and above _version_extra = 'dev' # _version_extra = '' # Uncomment this for full releases # Construct full version string from these. _ver = [_version_major, _version_minor] if _version_micro: _ver.append(_version_micro) if _version_extra: _ver.append(_version_extra) __version__ = '.'.join(map(str, _ver)) CLASSIFIERS = ["Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Scientific/Engineering"] # Description should be a one-liner: description = "forestci: confidence intervals for scikit-learn " description += "forest algorithms" # Long description will go up on the pypi page long_description = """ sklearn forest ci ================= `forest-confidence-interval` is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects Please read the repository README_ on Github or our documentation_ .. _README: https://github.com/scikit-learn-contrib/forest-confidence-interval/blob/master/README.md .. _documentation: http://contrib.scikit-learn.org/forest-confidence-interval/ """ NAME = "forestci" MAINTAINER = "Ariel Rokem" MAINTAINER_EMAIL = "[email protected]" DESCRIPTION = description LONG_DESCRIPTION = long_description URL = "http://github.com/scikit-learn-contrib/forest-confidence-interval" DOWNLOAD_URL = "" LICENSE = "MIT" AUTHOR = "Ariel Rokem, Bryna Hazelton, Kivan Polimis" AUTHOR_EMAIL = "[email protected]" PLATFORMS = "OS Independent" MAJOR = _version_major MINOR = _version_minor MICRO = _version_micro VERSION = __version__
bsd-3-clause
louispotok/pandas
asv_bench/benchmarks/sparse.py
3
4917
import itertools import numpy as np import scipy.sparse from pandas import (SparseSeries, SparseDataFrame, SparseArray, Series, date_range, MultiIndex) from .pandas_vb_common import setup # noqa def make_array(size, dense_proportion, fill_value, dtype): dense_size = int(size * dense_proportion) arr = np.full(size, fill_value, dtype) indexer = np.random.choice(np.arange(size), dense_size, replace=False) arr[indexer] = np.random.choice(np.arange(100, dtype=dtype), dense_size) return arr class SparseSeriesToFrame(object): goal_time = 0.2 def setup(self): K = 50 N = 50001 rng = date_range('1/1/2000', periods=N, freq='T') self.series = {} for i in range(1, K): data = np.random.randn(N)[:-i] idx = rng[:-i] data[100:] = np.nan self.series[i] = SparseSeries(data, index=idx) def time_series_to_frame(self): SparseDataFrame(self.series) class SparseArrayConstructor(object): goal_time = 0.2 params = ([0.1, 0.01], [0, np.nan], [np.int64, np.float64, np.object]) param_names = ['dense_proportion', 'fill_value', 'dtype'] def setup(self, dense_proportion, fill_value, dtype): N = 10**6 self.array = make_array(N, dense_proportion, fill_value, dtype) def time_sparse_array(self, dense_proportion, fill_value, dtype): SparseArray(self.array, fill_value=fill_value, dtype=dtype) class SparseDataFrameConstructor(object): goal_time = 0.2 def setup(self): N = 1000 self.arr = np.arange(N) self.sparse = scipy.sparse.rand(N, N, 0.005) self.dict = dict(zip(range(N), itertools.repeat([0]))) def time_constructor(self): SparseDataFrame(columns=self.arr, index=self.arr) def time_from_scipy(self): SparseDataFrame(self.sparse) def time_from_dict(self): SparseDataFrame(self.dict) class FromCoo(object): goal_time = 0.2 def setup(self): self.matrix = scipy.sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100)) def time_sparse_series_from_coo(self): SparseSeries.from_coo(self.matrix) class ToCoo(object): goal_time = 0.2 def setup(self): s = Series([np.nan] * 10000) s[0] = 3.0 s[100] = -1.0 s[999] = 12.1 s.index = MultiIndex.from_product([range(10)] * 4) self.ss = s.to_sparse() def time_sparse_series_to_coo(self): self.ss.to_coo(row_levels=[0, 1], column_levels=[2, 3], sort_labels=True) class Arithmetic(object): goal_time = 0.2 params = ([0.1, 0.01], [0, np.nan]) param_names = ['dense_proportion', 'fill_value'] def setup(self, dense_proportion, fill_value): N = 10**6 arr1 = make_array(N, dense_proportion, fill_value, np.int64) self.array1 = SparseArray(arr1, fill_value=fill_value) arr2 = make_array(N, dense_proportion, fill_value, np.int64) self.array2 = SparseArray(arr2, fill_value=fill_value) def time_make_union(self, dense_proportion, fill_value): self.array1.sp_index.make_union(self.array2.sp_index) def time_intersect(self, dense_proportion, fill_value): self.array1.sp_index.intersect(self.array2.sp_index) def time_add(self, dense_proportion, fill_value): self.array1 + self.array2 def time_divide(self, dense_proportion, fill_value): self.array1 / self.array2 class ArithmeticBlock(object): goal_time = 0.2 params = [np.nan, 0] param_names = ['fill_value'] def setup(self, fill_value): N = 10**6 self.arr1 = self.make_block_array(length=N, num_blocks=1000, block_size=10, fill_value=fill_value) self.arr2 = self.make_block_array(length=N, num_blocks=1000, block_size=10, fill_value=fill_value) def make_block_array(self, length, num_blocks, block_size, fill_value): arr = np.full(length, fill_value) indicies = np.random.choice(np.arange(0, length, block_size), num_blocks, replace=False) for ind in indicies: arr[ind:ind + block_size] = np.random.randint(0, 100, block_size) return SparseArray(arr, fill_value=fill_value) def time_make_union(self, fill_value): self.arr1.sp_index.make_union(self.arr2.sp_index) def time_intersect(self, fill_value): self.arr2.sp_index.intersect(self.arr2.sp_index) def time_addition(self, fill_value): self.arr1 + self.arr2 def time_division(self, fill_value): self.arr1 / self.arr2
bsd-3-clause
STREAM3/visisc
docs/visISC_simple_frequency_data_example.py
1
3316
# coding: utf-8 # # visISC Example: Visualizing Anomalous Frequency Data with Classes # In this example, we will show what to do when you are analysing frequency counts of data and you want to identify which part of the data is the reason for a deviation. # In[2]: import pyisc; import visisc; import numpy as np import datetime from scipy.stats import poisson, norm, multivariate_normal get_ipython().magic(u'matplotlib wx') from pylab import plot, figure # <b>First, we create a data set with a set of classes and a set of Poisson distributed frequency counts and then train an anomaly detector:</b> # In[3]: n_classes = 10 n_frequencies = 20 num_of_normal_days = 200 num_of_anomalous_days = 10 data = None days_list = [num_of_normal_days, num_of_anomalous_days] dates = [] for state in [0,1]: num_of_days = days_list[state] for i in range(n_classes): data0 = None for j in range(n_frequencies): if state == 0: po_dist = poisson(int((10+2*(n_classes-i))*(float(j)/n_frequencies/2+0.75))) # from 0.75 to 1.25 else: po_dist = poisson(int((20+2*(n_classes-i))*(float(j)/n_frequencies+0.5))) # from 0.5 to 1.5 tmp = po_dist.rvs(num_of_days) if data0 is None: data0 = tmp else: data0 = np.c_[data0,tmp] tmp = np.c_[ [1] * (num_of_days), data0, [ datetime.date(2015,02,24) + datetime.timedelta(d) for d in np.array(range(num_of_days)) + (0 if state==0 else num_of_normal_days) ], ["Source %i"%i] * (num_of_days) ] if data is None: data = tmp else: data = np.r_[ tmp, data ] # Column index into the data first_frequency_column = 1 period_column = 0 date_column = data.shape[-1]-2 source_column = data.shape[-1]-1 # <b>Next, we create a event data model that describes how our events are connected. In this case, we assume only a flat structure with events</b> # First we create a flat model with a root element where all columns in the data is subelements # In[6]: model = visisc.EventDataModel.flat_model( event_columns=range(first_frequency_column, date_column) ) # Second we transform numpy array to a pyisc data object with a class column and a period column. # The last created data object is also kept in the model. # In[7]: data_object = model.data_object( data, source_column = source_column, class_column = source_column, period_column = period_column, date_column = date_column ) # Then, we create an anomaly detector and fit a onesided poisson distribution for each event column. # The last created and fitted anomaly detector is also kept in the model # In[8]: anomaly_detector = model.fit_anomaly_detector(data_object, poisson_onesided=True) # <b>Finally, we can viualize the event frequency data using the Visualization class. However, due to a bug in the underlying 3D egnine, we have to run the notebook as a script:</b> vis = visisc.EventVisualization(model, 13.8,start_day=209, precompute_cache=True)
bsd-3-clause
tgbugs/pyontutils
pyontutils/ontutils.py
1
37830
#!/usr/bin/env python3 #!/usr/bin/env pypy3 from pyontutils.config import auth __doc__ = f"""Common commands for ontology processes. Also old ontology refactors to run in the root ttl folder. Usage: ontutils set ontology-local-repo <path> ontutils set scigraph-api-key <key> ontutils devconfig [--write] [<field> ...] ontutils parcellation ontutils catalog-extras [options] ontutils iri-commit [options] <repo> ontutils deadlinks [options] <file> ... ontutils scigraph-stress [options] ontutils spell [options] <file> ... ontutils version-iri [options] <file>... ontutils uri-switch [options] <file>... ontutils backend-refactor [options] <file>... ontutils todo [options] <repo> ontutils expand <curie>... Options: -a --scigraph-api=API SciGraph API endpoint [default: {auth.get('scigraph-api')}] -o --output-file=FILE output file -l --git-local=LBASE local git folder [default: {auth.get_path('git-local-base')}] -u --curies=CURIEFILE curie definition file [default: {auth.get_path('curies')}] -e --epoch=EPOCH specify the epoch to use for versionIRI -r --rate=Hz rate in Hz for requests, zero is no limit [default: 20] -t --timeout=SECONDS timeout in seconds for deadlinks requests [default: 5] -f --fetch fetch catalog extras from their remote location -d --debug drop into debugger when finished -v --verbose verbose output -w --write write devconfig file """ import os from glob import glob from time import time, localtime, strftime from random import shuffle from pathlib import Path, PurePath import rdflib import requests import augpathlib as aug from joblib import Parallel, delayed from git.repo import Repo from pyontutils.core import makeGraph, createOntology from pyontutils.utils import noneMembers, anyMembers, Async, deferred, TermColors as tc from pyontutils.ontload import loadall from pyontutils.namespaces import getCuries from pyontutils.namespaces import makePrefixes, definition from pyontutils.closed_namespaces import rdf, rdfs, owl, skos try: import hunspell except ImportError: hunspell = None # common zoneoffset = strftime('%z', localtime()) def do_file(filename, swap, *args): print('START', filename) ng = rdflib.Graph() ng.parse(filename, format='turtle') reps = switchURIs(ng, swap, *args) wg = makeGraph('', graph=ng) wg.filename = filename wg.write() print('END', filename) return reps def switchURIs(g, swap, *args): if len(args) > 1: # FIXME hack! _, fragment_prefixes = args reps = [] prefs = {None} addpg = makeGraph('', graph=g) for t in g: nt, ireps, iprefs = tuple(zip(*swap(t, *args))) if t != nt: g.remove(t) g.add(nt) for rep in ireps: if rep is not None: reps.append(rep) for pref in iprefs: if pref not in prefs: prefs.add(pref) addpg.add_known_namespaces(fragment_prefixes[pref]) return reps class ontologySection: def __init__(self, filename): self.filename = filename with open(self.filename, 'rb') as f: raw = f.read() ontraw, self.rest = raw.split(b'###', 1) self.graph = rdflib.Graph().parse(data=ontraw, format='turtle') def write(self): ontraw_comment = self.graph.serialize(format='nifttl', encoding='utf-8') ontraw, comment = ontraw_comment.split(b'###', 1) with open(self.filename, 'wb') as f: f.write(ontraw) f.write(b'###') f.write(self.rest) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.write() # # utils def catalog_extras(fetch=False): path = Path(auth.get_path('ontology-local-repo'), 'ttl') cat = (path / 'catalog-v001.xml').as_posix() with open((path / '../catalog-extras').as_posix(), 'rt') as ce, open(cat, 'rt') as c: clines = c.readlines() celines = ce.readlines() if clines[-2] != celines[-1]: with open(cat, 'wt') as f: f.writelines(clines[:-1] + celines + clines[-1:]) else: print(tc.blue('INFO:'), 'extras already added to catalog doing nothing') if fetch: print(tc.blue('INFO:'), 'fetching extras') def fetch_and_save(url, loc): resp = requests.get(url) saveloc = (path / loc).as_posix() if resp.ok: with open(saveloc, 'wb') as f: f.write(resp.content) print(tc.blue('INFO:'), f'{url:<60} written to {loc}') else: print(tc.red('WARNING:'), f'failed to fetch {url}') Async()(deferred(fetch_and_save)(url, loc) for line in celines for _, _, _, url, _, loc, _ in (line.split('"'),)) def spell(filenames, debug=False): if hunspell is None: raise ImportError('hunspell is not installed on your system. If you want ' 'to run `ontutils spell` please run pipenv install --dev --skip-lock. ' 'You will need the development libs for hunspell on your system.') spell_objects = (u for r in Parallel(n_jobs=9)(delayed(get_spells)(f) for f in filenames) for u in r) hobj = hunspell.HunSpell('/usr/share/hunspell/en_US.dic', '/usr/share/hunspell/en_US.aff') #nobj = hunspell.HunSpell(os.path.expanduser('~/git/domain_wordlists/neuroscience-en.dic'), '/usr/share/hunspell/en_US.aff') # segfaults without aff :x collect = set() for filename, s, p, o in spell_objects: missed = False no = [] for line in o.split('\n'): nline = [] for tok in line.split(' '): prefix, tok, suffix = tokstrip(tok) #print((prefix, tok, suffix)) if not hobj.spell(tok):# and not nobj.spell(tok): missed = True collect.add(tok) nline.append(prefix + tc.red(tok) + suffix) else: nline.append(prefix + tok + suffix) line = ' '.join(nline) no.append(line) o = '\n'.join(no) if missed: #print(filename, s, o) print('>>>', o) if debug: [print(_) for _ in sorted(collect)] breakpoint() _bads = (',', ';', ':', '"', "'", '(', ')', '[',']','{','}', '.', '-', '/', '\\t', '\\n', '\\', '%', '$', '*', '`', '#', '@', '=', '?', '|', '<', '>', '+', '~') def tokstrip(tok, side=None): front = '' back = '' for bad in _bads: if side is None or True: ftok = tok[1:] if tok.startswith(bad) else tok if ftok != tok: front = front + bad f, tok = tokstrip(ftok, True) front = front + f if side is None or False: btok = tok[:1] if tok.endswith(bad) else tok if btok != tok: back = bad + back tok, b = tokstrip(btok, False) back = b + back if side is None: return front, tok, back elif side: return front, tok else: return tok, back def get_spells(filename): check_spelling = {skos.definition, definition, rdfs.comment} return [(filename, s, p, o) for s, p, o in rdflib.Graph().parse(filename, format='turtle') if p in check_spelling] def scigraph_stress(rate, timeout=5, verbose=False, debug=False, scigraph=auth.get('scigraph-api')): # TODO use the api classes with open((auth.get_path('resources') / 'chebi-subset-ids.txt').as_posix(), 'rt') as f: urls = [os.path.join(scigraph, f'vocabulary/id/{curie.strip()}') for curie in f.readlines()] print(urls) url_blaster(urls, rate, timeout, verbose, debug) def deadlinks(filenames, rate, timeout=5, verbose=False, debug=False): urls = list(set(u for r in Parallel(n_jobs=9)(delayed(furls)(f) for f in filenames) for u in r)) url_blaster(urls, rate, timeout, verbose, debug) def url_blaster(urls, rate, timeout=5, verbose=False, debug=False, method='head', fail=False, negative=False, ok_test=lambda r: r.ok): shuffle(urls) # try to distribute timeout events evenly across workers if verbose: [print(u) for u in sorted(urls)] class Timedout: ok = False def __init__(self, url): self.url = url r_method = getattr(requests, method) def method_timeout(url, _method=r_method): try: return _method(url, timeout=timeout) except (requests.ConnectTimeout, requests.ReadTimeout) as e: print('Timedout:', url, e) return Timedout(url) s = time() collector = [] if debug else None all_ = Async(rate=rate, debug=verbose, collector=collector)(deferred(method_timeout)(url) for url in urls) o = time() not_ok = [_.url for _ in all_ if not ok_test(_)] d = o - s print(f'Actual time: {d} Effective rate: {len(urls) / d}Hz diff: {(len(urls) / d) / rate if rate else 1}') print('Failed:') if not_ok: for nok in not_ok: print(nok) ln = len(not_ok) lt = len(urls) lo = lt - ln msg = f'{ln} urls out of {lt} ({ln / lt * 100:2.2f}%) are not ok. D:' print(msg) # always print to get around joblib issues if negative and fail: if len(not_ok) == len(all_): raise AssertionError('Everything failed!') elif fail: raise AssertionError(f'{msg}\n' + '\n'.join(sorted(not_ok))) else: print(f'OK. All {len(urls)} urls passed! :D') if debug: from matplotlib.pyplot import plot, savefig, figure, show, legend, title from collections import defaultdict def asyncVis(collector): by_thread = defaultdict(lambda: [[], [], [], [], [], [], [], []]) min_ = 0 for thread, job, start, target_stop, stop, time_per_job, p, i, d in sorted(collector): if not min_: min_ = stop by_thread[thread][0].append(job) #by_thread[thread][1].append(start - min_) by_thread[thread][2].append(target_stop - stop) by_thread[thread][3].append(stop - min_) by_thread[thread][4].append(time_per_job) by_thread[thread][5].append(p) by_thread[thread][6].append(i) by_thread[thread][7].append(d) for thread, (job, y1, y2, y3, y4, y5, y6, y7) in by_thread.items(): figure() title(str(thread)) plot(job, [0] * len(job), 'r-') #plot(job, y1, label=f'stop') plot(job, y2, label=f'early by') #plot(job, y3, label=f'stop') #plot(job, y4, label=f'time per job') # now constant... plot(job, y5, label='P') plot(job, y6, label='I') plot(job, y7, label='D') legend() show() asyncVis(collector) breakpoint() def furls(filename): return set(url for t in rdflib.Graph().parse(filename, format='turtle') for url in t if isinstance(url, rdflib.URIRef) and not url.startswith('file://')) def version_iris(*filenames, epoch=None): # TODO make sure that when we add versionIRIs the files we are adding them to are either unmodified or in the index if epoch is None: epoch = int(time()) Parallel(n_jobs=9)(delayed(version_iri)(f, epoch) for f in filenames) def version_iri(filename, epoch): with ontologySection(filename) as ont: add_version_iri(ont.graph, epoch) def make_version_iri_from_iri(iri, epoch): head, tail = iri.split('/', 1) pp = PurePath(tail) vp = (pp.with_suffix('') / 'version' / str(epoch) / pp.stem).with_suffix(pp.suffix) viri = head + str(vp) versionIRI = rdflib.URIRef(viri) return rdflib.URIRef(versionIRI) def add_version_iri(graph, epoch): """ Also remove the previous versionIRI if there was one.""" for ont in graph.subjects(rdf.type, owl.Ontology): for versionIRI in graph.objects(ont, owl.versionIRI): graph.remove((ont, owl.versionIRI, versionIRI)) t = ont, owl.versionIRI, make_version_iri_from_iri(ont, epoch) graph.add(t) def validate_new_version_iris(diffs): # TODO for diff in diffs: diff.diff.split('\n') def make_git_commit_command(git_local, repo_name): # TODO also need to get the epochs for all unchanged files and make sure that the max of those is less than commit_epoch... rp = RepoPath(git_local, repo_name) repo = rp.repo diffs = repo.index.diff(None) + repo.index.diff(repo.head.commit) # not staged + staged; cant use create_patch=True... filenames = [d.a_path for d in diffs if d.change_type == 'M'] print(filenames) #validate_new_version_iris(something) # TODO min_epoch = get_epoch(*filenames) other_filenames = [f for f in repo.git.ls_files().split('\n') if f not in filenames and f.endswith('.ttl')] # search all other existing ttl files to find the maximum existing versionIRI max_old_epoch = get_epoch(*other_filenames, min_=False) print(min_epoch, max_old_epoch) minimum_time_difference_for_new_version = 2 # seconds msg = ('you want a versionIRI less than {minimum_time_difference_for_new_version} ' 'seconds newer than an existing versionIRI, slow down there bud') # timeline ...old-1.|......old-2.|...<min-dt>...|.new-1..|.new-2.. # max_old_epoch min_epoch assert minimum_time_difference_for_new_version <= min_epoch - max_old_epoch, msg commit_epoch = min_epoch # XXX I know I have tested this, but it still seems wrong because the versionIRIs # are all in epoch which *should* be in utc, but maybe the way git works it works out # as expected ?? print(f'git commit --date {commit_epoch}{zoneoffset}') def get_epoch(*filenames, min_=True): """ get the minimum or maximum epoch from ithe versionIRI triples of multiple files """ comp_epoch = None for f in filenames: graph = ontologySection(f).graph for ont in graph.subjects(rdf.type, owl.Ontology): for versionIRI in graph.objects(ont, owl.versionIRI): base, epoch, filename = versionIRI.rsplit('/', 2) epoch = int(epoch) print(epoch) if comp_epoch is None: comp_epoch = epoch elif min_ and epoch < comp_epoch: comp_epoch = epoch elif not min_ and epoch > comp_epoch: comp_epoch = epoch print('min' if min_ else 'max', comp_epoch) if comp_epoch is None: if min_: return 0 else: return 0 # XXX this may cause errors down the line return comp_epoch # # refactors # # uri switch NIFSTDBASE = 'http://uri.neuinfo.org/nif/nifstd/' def uri_switch_values(utility_graph): fragment_prefixes = { 'NIFRID':'NIFRID', 'NIFSTD':'NIFSTD', # no known collisions, mostly for handling ureps 'birnlex_':'BIRNLEX', 'sao':'SAO', 'sao-':'FIXME_SAO', # FIXME 'nif_organ_':'FIXME_NIFORGAN', # single and seems like a mistake for nlx_organ_ 'nifext_':'NIFEXT', #'nifext_5007_', # not a prefix 'nlx_':'NLX', #'nlx_0906_MP_', # not a prefix, sourced from mamalian phenotype ontology and prefixed TODO #'nlx_200905_', # not a prefix 'nlx_anat_':'NLXANAT', 'nlx_cell_':'NLXCELL', 'nlx_chem_':'NLXCHEM', 'nlx_dys_':'NLXDYS', 'nlx_func_':'NLXFUNC', 'nlx_inv_':'NLXINV', 'nlx_mol_':'NLXMOL', 'nlx_neuron_nt_':'NLXNEURNT', 'nlx_organ_':'NLXORG', 'nlx_qual_':'NLXQUAL', 'nlx_res_':'NLXRES', 'nlx_sub_':'FIXME_NLXSUBCELL', # FIXME one off mistake for nlx_subcell? 'nlx_subcell_':'NLXSUB', # NLXSUB?? 'nlx_ubo_':'NLXUBO', 'nlx_uncl_':'NLXUNCL', } uri_replacements = { # Classes 'NIFCELL:Class_6':'NIFSTD:Class_6', 'NIFCHEM:CHEBI_18248':'NIFSTD:CHEBI_18248', 'NIFCHEM:CHEBI_26020':'NIFSTD:CHEBI_26020', 'NIFCHEM:CHEBI_27958':'NIFSTD:CHEBI_27958', 'NIFCHEM:CHEBI_35469':'NIFSTD:CHEBI_35469', 'NIFCHEM:CHEBI_35476':'NIFSTD:CHEBI_35476', 'NIFCHEM:CHEBI_3611':'NIFSTD:CHEBI_3611', 'NIFCHEM:CHEBI_49575':'NIFSTD:CHEBI_49575', 'NIFCHEM:DB00813':'NIFSTD:DB00813', 'NIFCHEM:DB01221':'NIFSTD:DB01221', 'NIFCHEM:DB01544':'NIFSTD:DB01544', 'NIFGA:Class_12':'NIFSTD:Class_12', 'NIFGA:Class_2':'NIFSTD:Class_2', # FIXME this record is not in neurolex 'NIFGA:Class_4':'NIFSTD:Class_4', 'NIFGA:FMAID_7191':'NIFSTD:FMA_7191', # FIXME http://neurolex.org/wiki/FMA:7191 'NIFGA:UBERON_0000349':'NIFSTD:UBERON_0000349', 'NIFGA:UBERON_0001833':'NIFSTD:UBERON_0001833', 'NIFGA:UBERON_0001886':'NIFSTD:UBERON_0001886', 'NIFGA:UBERON_0002102':'NIFSTD:UBERON_0002102', 'NIFINV:OBI_0000470':'NIFSTD:OBI_0000470', 'NIFINV:OBI_0000690':'NIFSTD:OBI_0000690', 'NIFINV:OBI_0000716':'NIFSTD:OBI_0000716', 'NIFMOL:137140':'NIFSTD:137140', 'NIFMOL:137160':'NIFSTD:137160', 'NIFMOL:D002394':'NIFSTD:D002394', 'NIFMOL:D008995':'NIFSTD:D008995', 'NIFMOL:DB00668':'NIFSTD:DB00668', 'NIFMOL:GO_0043256':'NIFSTD:GO_0043256', # FIXME http://neurolex.org/wiki/GO:0043256 'NIFMOL:IMR_0000512':'NIFSTD:IMR_0000512', 'NIFRES:Class_2':'NLX:293', # FIXME note that neurolex still thinks Class_2 goes here... not to NIFGA:Class_2 'NIFSUB:FMA_83604':'NIFSTD:FMA_83604', # FIXME http://neurolex.org/wiki/FMA:83604 'NIFSUB:FMA_83605':'NIFSTD:FMA_83605', # FIXME http://neurolex.org/wiki/FMA:83605 'NIFSUB:FMA_83606':'NIFSTD:FMA_83606', # FIXME http://neurolex.org/wiki/FMA:83606 'NIFUNCL:CHEBI_24848':'NIFSTD:CHEBI_24848', # FIXME not in interlex and not in neurolex_full.csv but in neurolex (joy) 'NIFUNCL:GO_0006954':'NIFSTD:GO_0006954', # FIXME http://neurolex.org/wiki/GO:0006954 } uri_reps_nonstandard = { # nonstandards XXX none of these collide with any other namespace # that we might like to use in the future under NIFSTD:namespace/ # therefore they are being placed directly into NIFSTD and we will # work out the details and redirects later (some intlerlex classes # may need to be created) maybe when we do the backend refactor. # Classes (from backend) 'BIRNANN:_birnlex_limbo_class':'NIFRID:birnlexLimboClass', 'BIRNANN:_birnlex_retired_class':'NIFRID:birnlexRetiredClass', rdflib.URIRef('http://ontology.neuinfo.org/NIF/Backend/DC_Term'):'NIFRID:dctermsClass', rdflib.URIRef('http://ontology.neuinfo.org/NIF/Backend/SKOS_Entity'):'NIFRID:skosClass', rdflib.URIRef('http://ontology.neuinfo.org/NIF/Backend/_backend_class'):'NIFRID:BackendClass', rdflib.URIRef('http://ontology.neuinfo.org/NIF/Backend/oboInOwlClass'):'NIFRID:oboInOwlClass', # NamedIndividuals 'NIFORG:Infraclass':'NIFRID:Infraclass', # only used in annotaiton but all other similar cases show up as named individuals 'NIFORG:first_trimester':'NIFRID:first_trimester', 'NIFORG:second_trimester':'NIFRID:second_trimester', 'NIFORG:third_trimester':'NIFRID:third_trimester', # ObjectProperties not in OBOANN or BIRNANN 'NIFGA:has_lacking_of':'NIFRID:has_lacking_of', 'NIFNEURNT:has_molecular_constituent':'NIFRID:has_molecular_constituent', 'NIFNEURNT:has_neurotransmitter':'NIFRID:has_neurotransmitter', 'NIFNEURNT:molecular_constituent_of':'NIFRID:molecular_constituent_of', 'NIFNEURNT:neurotransmitter_of':'NIFRID:neurotransmitter_of', 'NIFNEURNT:soma_located_in':'NIFRID:soma_located_in', 'NIFNEURNT:soma_location_of':'NIFRID:soma_location_of', # AnnotationProperties not in OBOANN or BIRNANN 'NIFCHEM:hasStreetName':'NIFRID:hasStreetName', 'NIFMOL:hasGenbankAccessionNumber':'NIFRID:hasGenbankAccessionNumber', 'NIFMOL:hasLocusMapPosition':'NIFRID:hasLocusMapPosition', 'NIFMOL:hasSequence':'NIFRID:hasSequence', 'NIFORG:hasCoveringOrganism':'NIFRID:hasCoveringOrganism', 'NIFORG:hasMutationType':'NIFRID:hasMutationType', 'NIFORG:hasTaxonRank':'NIFRID:hasTaxonRank', } utility_graph.add_known_namespaces(*(c for c in fragment_prefixes.values() if 'FIXME' not in c)) ureps = {utility_graph.expand(k):utility_graph.expand(v) for k, v in uri_replacements.items()} ureps.update({utility_graph.check_thing(k):utility_graph.expand(v) for k, v in uri_reps_nonstandard.items()}) return fragment_prefixes, ureps def uri_switch(filenames, get_values): replacement_graph = createOntology('NIF-NIFSTD-mapping', 'NIF* to NIFSTD equivalents', makePrefixes( 'BIRNANN', 'BIRNOBI', 'BIRNOBO', 'NIFANN', 'NIFCELL', 'NIFCHEM', 'NIFDYS', 'NIFFUN', 'NIFGA', 'NIFGG', 'NIFINV', 'NIFMOL', 'NIFMOLINF', 'NIFMOLROLE', 'NIFNCBISLIM', 'NIFNEURBR', 'NIFNEURBR2', 'NIFNEURCIR', 'NIFNEURMC', 'NIFNEURMOR', 'NIFNEURNT', 'NIFORG', 'NIFQUAL', 'NIFRES', 'NIFRET', 'NIFSCID', 'NIFSUB', 'NIFUNCL', 'OBOANN', 'SAOCORE') ) fragment_prefixes, ureps = get_values(replacement_graph) print('Start writing') trips_lists = Parallel(n_jobs=9)(delayed(do_file)(f, swapUriSwitch, ureps, fragment_prefixes) for f in filenames) print('Done writing') [replacement_graph.g.add(t) for trips in trips_lists for t in trips] replacement_graph.write() def swapUriSwitch(trip, ureps, fragment_prefixes): for spo in trip: if not isinstance(spo, rdflib.URIRef): yield spo, None, None continue elif spo in ureps: new_spo = ureps[spo] rep = (new_spo, owl.sameAs, spo) if 'nlx_' in new_spo: pref = 'nlx_' elif '/readable/' in new_spo: pref = 'NIFRID' else: pref = 'NIFSTD' yield new_spo, rep, pref continue elif anyMembers(spo, # backend refactor 'BIRNLex_annotation_properties.owl#', 'OBO_annotation_properties.owl#'): _, suffix = spo.rsplit('#', 1) new_spo = rdflib.URIRef(os.path.join(NIFSTDBASE, 'readable', suffix)) rep = (new_spo, owl.sameAs, spo) pref = 'NIFRID' yield new_spo, rep, pref continue try: uri_pref, fragment = spo.rsplit('#', 1) if '_' in fragment: frag_pref, p_suffix = fragment.split('_', 1) if not p_suffix[0].isdigit(): p, suffix = p_suffix.split('_', 1) frag_pref = frag_pref + '_' + p else: suffix = p_suffix frag_pref_ = frag_pref + '_' if frag_pref_ in fragment_prefixes: if frag_pref_ == 'nlx_sub_': pref = 'nlx_subcell_' elif frag_pref_ == 'nif_organ_': pref = 'nlx_organ_' else: pref = frag_pref_ # come on branch predictor you can do it! elif frag_pref_ == 'nlx_neuron_': # special case rest = 'nt_' suffix = suffix[len(rest):] pref = frag_pref_ + rest else: yield spo, None, None continue elif 'sao' in fragment: suffix = fragment[3:].strip('-') pref = 'sao' else: yield spo, None, None continue new_spo = rdflib.URIRef(NIFSTDBASE + pref + suffix) if new_spo != spo: rep = (new_spo, owl.sameAs, spo) else: rep = None print('Already converted', spo) yield new_spo, rep, pref except ValueError: # there was no # so do not split yield spo, None, None continue # # backend def backend_refactor_values(): uri_reps_lit = { # from https://github.com/information-artifact-ontology/IAO/blob/master/docs/BFO%201.1%20to%202.0%20conversion/mapping.txt 'http://www.ifomis.org/bfo/1.1#Entity':'BFO:0000001', 'BFO1SNAP:Continuant':'BFO:0000002', 'BFO1SNAP:Disposition':'BFO:0000016', 'BFO1SNAP:Function':'BFO:0000034', 'BFO1SNAP:GenericallyDependentContinuant':'BFO:0000031', 'BFO1SNAP:IndependentContinuant':'BFO:0000004', 'BFO1SNAP:MaterialEntity':'BFO:0000040', 'BFO1SNAP:Quality':'BFO:0000019', 'BFO1SNAP:RealizableEntity':'BFO:0000017', 'BFO1SNAP:Role':'BFO:0000023', 'BFO1SNAP:Site':'BFO:0000029', 'BFO1SNAP:SpecificallyDependentContinuant':'BFO:0000020', 'BFO1SPAN:Occurrent':'BFO:0000003', 'BFO1SPAN:ProcessualEntity':'BFO:0000015', 'BFO1SPAN:Process':'BFO:0000015', 'BFO1SNAP:ZeroDimensionalRegion':'BFO:0000018', 'BFO1SNAP:OneDimensionalRegion':'BFO:0000026', 'BFO1SNAP:TwoDimensionalRegion':'BFO:0000009', 'BFO1SNAP:ThreeDimensionalRegion':'BFO:0000028', 'http://purl.org/obo/owl/OBO_REL#bearer_of':'RO:0000053', 'http://purl.org/obo/owl/OBO_REL#inheres_in':'RO:0000052', 'ro:has_part':'BFO:0000051', 'ro:part_of':'BFO:0000050', 'ro:has_participant':'RO:0000057', 'ro:participates_in':'RO:0000056', 'http://purl.obolibrary.org/obo/OBI_0000294':'RO:0000059', 'http://purl.obolibrary.org/obo/OBI_0000297':'RO:0000058', 'http://purl.obolibrary.org/obo/OBI_0000300':'BFO:0000054', 'http://purl.obolibrary.org/obo/OBI_0000308':'BFO:0000055', # more bfo 'BFO1SNAP:SpatialRegion':'BFO:0000006', 'BFO1SNAP:FiatObjectPart':'BFO:0000024', 'BFO1SNAP:ObjectAggregate':'BFO:0000027', 'BFO1SNAP:Object':'BFO:0000030', #'BFO1SNAP:ObjectBoundary' # no direct replacement, only occurs in unused #'BFO1SPAN:ProcessAggregate' # was not replaced, could simply be a process itself?? #'BFO1SNAP:DependentContinuant' # was not replaced # other #'ro:participates_in' # above #'ro:has_participant' # above #'ro:has_part', # above #'ro:part_of', # above #'ro:precedes' # unused and only in inferred #'ro:preceded_by' # unused and only in inferred #'ro:transformation_of' # unused and only in inferred #'ro:transformed_into' # unused and only in inferred 'http://purl.org/obo/owl/obo#inheres_in':'RO:0000052', 'http://purl.obolibrary.org/obo/obo#towards':'RO:0002503', 'http://purl.org/obo/owl/pato#towards':'RO:0002503', 'http://purl.obolibrary.org/obo/pato#inheres_in':'RO:0000052', 'BIRNLEX:17':'RO:0000053', # is_bearer_of 'http://purl.obolibrary.org/obo/pato#towards':'RO:0002503', 'ro:adjacent_to':'RO:0002220', 'ro:derives_from':'RO:0001000', 'ro:derives_into':'RO:0001001', 'ro:agent_in':'RO:0002217', 'ro:has_agent':'RO:0002218', 'ro:contained_in':'RO:0001018', 'ro:contains':'RO:0001019', 'ro:located_in':'RO:0001025', 'ro:location_of':'RO:0001015', 'ro:has_proper_part':'NIFRID:has_proper_part', 'ro:proper_part_of':'NIFRID:proper_part_of', # part of where things are not part of themsevles need to review } ug = makeGraph('', prefixes=makePrefixes('ro', 'RO', 'BIRNLEX', 'NIFRID', 'BFO', 'BFO1SNAP', 'BFO1SPAN')) ureps = {ug.check_thing(k):ug.check_thing(v) for k, v in uri_reps_lit.items()} return ureps def swapBackend(trip, ureps): print(ureps) for spo in trip: if spo in ureps: new_spo = ureps[spo] rep = (new_spo, owl.sameAs, spo) yield new_spo, rep, None else: yield spo, None, None def backend_refactor(filenames, get_values): ureps = get_values() print('Start writing') if len(filenames) == 1: trips_lists = [do_file(f, swapBackend, ureps) for f in filenames] else: trips_lists = Parallel(n_jobs=9)(delayed(do_file)(f, swapBackend, ureps) for f in filenames) print('Done writing') breakpoint() # # graph todo def graph_todo(graph, curie_prefixes, get_values): ug = makeGraph('big-graph', graph=graph) ug.add_known_namespaces('NIFRID') fragment_prefixes, ureps = get_values(ug) #all_uris = sorted(set(_ for t in graph for _ in t if type(_) == rdflib.URIRef)) # this snags a bunch of other URIs #all_uris = sorted(set(_ for _ in graph.subjects() if type(_) != rdflib.BNode)) #all_uris = set(spo for t in graph.subject_predicates() for spo in t if isinstance(spo, rdflib.URIRef)) all_uris = set(spo for t in graph for spo in t if isinstance(spo, rdflib.URIRef)) prefs = set(_.rsplit('#', 1)[0] + '#' if '#' in _ else (_.rsplit('_',1)[0] + '_' if '_' in _ else _.rsplit('/',1)[0] + '/') for _ in all_uris) nots = set(_ for _ in prefs if _ not in curie_prefixes) # TODO sos = set(prefs) - set(nots) all_uris = [u if u not in ureps else ureps[u] for u in all_uris] #to_rep = set(_.rsplit('#', 1)[-1].split('_', 1)[0] for _ in all_uris if 'ontology.neuinfo.org' in _) #to_rep = set(_.rsplit('#', 1)[-1] for _ in all_uris if 'ontology.neuinfo.org' in _) ignore = ( # deprecated and only in as annotations 'NIFGA:birnAnatomy_011', 'NIFGA:birnAnatomy_249', 'NIFORG:birnOrganismTaxon_19', 'NIFORG:birnOrganismTaxon_20', 'NIFORG:birnOrganismTaxon_21', 'NIFORG:birnOrganismTaxon_390', 'NIFORG:birnOrganismTaxon_391', 'NIFORG:birnOrganismTaxon_56', 'NIFORG:birnOrganismTaxon_68', 'NIFINV:birnlexInvestigation_174', 'NIFINV:birnlexInvestigation_199', 'NIFINV:birnlexInvestigation_202', 'NIFINV:birnlexInvestigation_204', ) ignore = tuple(ug.expand(i) for i in ignore) non_normal_identifiers = sorted(u for u in all_uris if 'ontology.neuinfo.org' in u and noneMembers(u, *fragment_prefixes) and not u.endswith('.ttl') and not u.endswith('.owl') and u not in ignore) print(len(prefs)) embed() def main(): from docopt import docopt, parse_defaults args = docopt(__doc__, version='ontutils 0.0.1') defaults = {o.name:o.value if o.argcount else None for o in parse_defaults(__doc__)} verbose = args['--verbose'] debug = args['--debug'] repo_name = args['<repo>'] git_local = os.path.expanduser(args['--git-local']) epoch = args['--epoch'] curies_location = args['--curies'] curies = getCuries(curies_location) curie_prefixes = set(curies.values()) filenames = args['<file>'] filenames.sort(key=lambda f: os.path.getsize(f), reverse=True) # make sure the big boys go first refactor_skip = ('nif.ttl', 'resources.ttl', 'generated/chebislim.ttl', 'unused/ro_bfo_bridge.ttl', 'generated/ncbigeneslim.ttl', 'generated/NIF-NIFSTD-mapping.ttl') rfilenames = [f for f in filenames if f not in refactor_skip] if args['set']: from pyontutils.config import auth uc = auth.user_config def set_uc(var, value): with open(uc._path, 'rt') as f: text = f.read() if '#' in text: msg = f'Comments detected! Not writing config! {uc._path}' raise ValueError(msg) blob = uc.load() # XXX NEVER DUMP A CONFIG THIS YOU _WILL_ KLOBBER IT # BY ACCIDENT AT SOME POINT AND WILL ERASE ANY/ALL COMMENTS # THERE IS NO SAFETY WITH THIS IMPLEMENTATION # USERS SHOULD EDIT THEIR CONFIGS DIRECTLY # except that it makes giving instructions for # setting values a bit more complicated blob['auth-variables'][var] = value uc.dump(blob) if args['ontology-local-repo']: var = 'ontology-local-repo' olr = Path(args['<path>']).expanduser().resolve() olr_string = olr.as_posix() set_uc(var, olr_string) value2 = auth.get_path(var) if not value2.exists(): msg = f'{var} path does not exist! {value2}' print(tc.red('WARNING'), msg) msg = f'{var} path {value2} written to {uc._path}' print(msg) assert olr == value2 elif args['scigraph-api-key']: # FIXME this is a hack on top of orthauth, which will not # # check the secrets path first to make sure it is ok # be implementing programmtic modification of user config # files any time soon, though it might make sense to have a # "machine config path" in addition to auth and user config path = ['scigraph', 'api', 'key'] spath = auth._pathit(uc.get_blob('auth-stores', 'secrets')['path']) if not spath.parent.exists(): spath.parent.mkdir(parents=True) spath.parent.chmod(0o0700) if spath.suffix != '.yaml': msg = f"Can't write secrets file of type {spath.suffix}" args = None raise NotImplementedError(msg) v = None try: s = uc.secrets v = s(*path) except: pass if v is not None: v = None raise ValueError(f'Path already in secrets! {path} in {spath}') # safely append to the secrets file key = args['<key>'] path_key = f'\nscigraph:\n api:\n key: {key}' if not spath.exists(): spath.touch() spath.chmod(0o0600) with open(spath, 'a+') as f: f.write(path_key) # set the config var var = 'scigraph-api-key' value = {'path': ' '.join(path)} set_uc(var, value) # set the path # XXX NOTE yes, it is correct to do this only after secrets succeeds # otherwise it is possible to get into a state where secrets does # not exist but there is a path pointing to it, so load this # ontutils file will fail during import time # test that we got the value we expected value2 = auth.get(var) msg = (f'Key written to secrets. {spath} and path to ' f'key was written to config {uc._path}') print(msg) assert key == value2, 'Key retrieved does not match key set!' elif args['devconfig']: if args['--write']: file = devconfig.write(args['--output-file']) print(f'config written to {file}') elif args['<field>']: for f in args['<field>']: print(getattr(devconfig, f, '')) else: print(devconfig) elif args['catalog-extras']: catalog_extras(args['--fetch']) elif args['version-iri']: version_iris(*filenames, epoch=epoch) elif args['scigraph-stress']: scigraph_stress(int(args['--rate']), int(args['--timeout']), verbose, debug) elif args['deadlinks']: deadlinks(filenames, int(args['--rate']), int(args['--timeout']), verbose, debug) elif args['spell']: spell(filenames, debug) elif args['iri-commit']: make_git_commit_command(git_local, repo_name) elif args['uri-switch']: uri_switch(rfilenames, uri_switch_values) elif args['backend-refactor']: backend_refactor(rfilenames, backend_refactor_values) elif args['todo']: graph = loadall(git_local, repo_name, local=True) graph_todo(graph, curie_prefixes, uri_switch_values) breakpoint() elif args['expand']: curies['NLXWIKI'] = 'http://legacy.neurolex.org/wiki/' for curie in args['<curie>']: prefix, suffix = curie.split(':') print(curies[prefix] + suffix) if __name__ == '__main__': main()
mit
boland1992/seissuite_iran
build/lib/seissuite/spectrum/heatinterpolate.py
8
3048
#!/usr/bin/env python # combining density estimation and delaunay interpolation for confidence-weighted value mapping # Dan Stowell, April 2013 import numpy as np from numpy import random #from math import exp, log from scipy import stats, mgrid, c_, reshape, rot90 import matplotlib.delaunay #import matplotlib.tri as tri import matplotlib.delaunay.interpolate from matplotlib.colors import LogNorm import matplotlib.pyplot as plt import matplotlib.cm as cm #from colorsys import hls_to_rgb import pickle pickle_file = '/storage/ANT/spectral_density/station_pds_maxima/\ S Network 2014/noise_info0_SNetwork2014.pickle' f = open(name=pickle_file, mode='rb') data = pickle.load(f) f.close() ############################# # user settings n = 100 gridsize = 100 fontsize = 'xx-small' ############################# # first generate some random [x,y,z] data -- random locations but closest to the middle, and random z-values # we will add some correlation to the z-values data[:,2] += data[:,1] data[:,2] += data[:,0] # scale the z-values to 0--1 for convenience zmin = np.min(data[:,2]) zmax = np.max(data[:,2]) xmin = np.min(data[:,0]) xmax = np.max(data[:,0]) ymin = np.min(data[:,1]) ymax = np.max(data[:,1]) zmin = np.min(data[:,2]) zmax = np.max(data[:,2]) ################################################## # plot it simply plt.figure() ################################################## # now make a KDE of it and plot that kdeX, kdeY = mgrid[xmin:xmax:gridsize*1j, ymin:ymax:gridsize*1j] positions = c_[kdeX.ravel(), kdeY.ravel()] values = c_[data[:,0], data[:,1]] kernel = stats.kde.gaussian_kde(values.T) kdeZ = reshape(kernel(positions.T).T, kdeX.T.shape) ################################################## # now make a delaunay triangulation of it and plot that tt = matplotlib.delaunay.triangulate.Triangulation(data[:,0], data[:,1]) print xmin, xmax, ymin, ymax print gridsize extrap = tt.nn_extrapolator(data[:,2]) interped = extrap[xmin:xmax:gridsize*1j, ymin:ymax:gridsize*1j] ################################################## # now combine delaunay with KDE colours = np.zeros((gridsize, gridsize, 4)) kdeZmin = np.min(kdeZ) kdeZmax = np.max(kdeZ) confdepth = 0.45 for x in range(gridsize): for y in range(gridsize): conf = (kdeZ[x,y] - kdeZmin) / (kdeZmax - kdeZmin) val = min(1., max(0., interped[x,y])) colour = list(cm.rainbow(val)) # now fade it out to white according to conf for index in [0,1,2]: colour[index] = (colour[index] * conf) + (1.0 * (1. -conf)) colours[x,y,:] = colour #colours[x,y,:] = np.hstack((hls_to_rgb(val, 0.5 + confdepth - (confdepth * conf), 1.0), 1.0)) #colours[x,y,:] = [conf, conf, 1.0-conf, val] print colours plt.imshow(rot90(colours), cmap=cm.rainbow, norm=LogNorm(\ vmin=zmin, vmax=zmax)) plt.title("interpolated & confidence-shaded") plt.ylim([ymin,ymax]) plt.xlim([xmin,xmax]) plt.xticks(fontsize=fontsize) plt.yticks(fontsize=fontsize) ############################################ plt.savefig("plot_heati_simple.svg", format='SVG')
gpl-3.0
reinvantveer/Topology-Learning
model/building_lstm.py
1
7119
""" This script executes the task of estimating the building type, based solely on the geometry for that building. The data for this script can be found at http://hdl.handle.net/10411/GYPPBR. """ import os import socket import sys from datetime import datetime, timedelta from pathlib import Path from time import time from urllib.request import urlretrieve import numpy as np from keras import Input from keras.callbacks import TensorBoard from keras.engine import Model from keras.layers import LSTM, Dense, Bidirectional from keras.optimizers import Adam from keras.preprocessing.sequence import pad_sequences from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split PACKAGE_PARENT = '..' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) from prep.ProgressBar import ProgressBar from topoml_util import geom_scaler from topoml_util.slack_send import notify SCRIPT_VERSION = '2.0.3' SCRIPT_NAME = os.path.basename(__file__) TIMESTAMP = str(datetime.now()).replace(':', '.') SIGNATURE = SCRIPT_NAME + ' ' + SCRIPT_VERSION + ' ' + TIMESTAMP DATA_FOLDER = '../files/buildings/' TRAIN_DATA_FILE = 'buildings_train_v7.npz' TEST_DATA_FILE = 'buildings_test_v7.npz' TRAIN_DATA_URL = 'https://dataverse.nl/api/access/datafile/11381' TEST_DATA_URL = 'https://dataverse.nl/api/access/datafile/11380' SCRIPT_START = time() # Hyperparameters hp = { 'BATCH_SIZE': int(os.getenv('BATCH_SIZE', 512)), 'TRAIN_VALIDATE_SPLIT': float(os.getenv('TRAIN_VALIDATE_SPLIT', 0.1)), 'REPEAT_DEEP_ARCH': int(os.getenv('REPEAT_DEEP_ARCH', 0)), 'LSTM_SIZE': int(os.getenv('LSTM_SIZE', 32)), 'DENSE_SIZE': int(os.getenv('DENSE_SIZE', 32)), 'EPOCHS': int(os.getenv('EPOCHS', 200)), 'LEARNING_RATE': float(os.getenv('LEARNING_RATE', 1e-3)), 'RECURRENT_DROPOUT': float(os.getenv('RECURRENT_DROPOUT', 0.0)), 'GEOM_SCALE': float(os.getenv("GEOM_SCALE", 0)), # If no default or 0: overridden when data is known } OPTIMIZER = Adam(lr=hp['LEARNING_RATE'], clipnorm=1.) # Load training data path = Path(DATA_FOLDER + TRAIN_DATA_FILE) if not path.exists(): print("Retrieving training data from web...") urlretrieve(TRAIN_DATA_URL, DATA_FOLDER + TRAIN_DATA_FILE) train_loaded = np.load(DATA_FOLDER + TRAIN_DATA_FILE) train_geoms = train_loaded['geoms'] train_labels = train_loaded['building_type'] # Determine final test mode or standard if len(sys.argv) > 1 and sys.argv[1] in ['-t', '--test']: print('Training in final test mode') path = Path(DATA_FOLDER + TEST_DATA_FILE) if not path.exists(): print("Retrieving test data from web...") urlretrieve(TEST_DATA_URL, DATA_FOLDER + TEST_DATA_FILE) test_loaded = np.load(DATA_FOLDER + TEST_DATA_FILE) test_geoms = test_loaded['geoms'] test_labels = test_loaded['building_type'] else: print('Training in standard training mode') # Split the training data in random seen/unseen sets train_geoms, test_geoms, train_labels, test_labels = train_test_split(train_geoms, train_labels, test_size=0.1) # Normalize geom_scale = hp['GEOM_SCALE'] or geom_scaler.scale(train_geoms) train_geoms = geom_scaler.transform(train_geoms, geom_scale) test_geoms = geom_scaler.transform(test_geoms, geom_scale) # re-use variance from training # Sort data according to sequence length zipped = zip(train_geoms, train_labels) train_input_sorted = {} train_labels_sorted = {} for geom, label in sorted(zipped, key=lambda x: len(x[0]), reverse=True): # Map types to one-hot vectors # noinspection PyUnresolvedReferences one_hot_label = np.zeros((np.array(train_labels).max() + 1)) one_hot_label[label] = 1 sequence_len = geom.shape[0] smallest_size_subset = sorted(train_input_sorted.keys())[0] if train_input_sorted else None if not smallest_size_subset: # This is the first data point train_input_sorted[sequence_len] = [geom] train_labels_sorted[sequence_len] = [one_hot_label] continue if sequence_len in train_input_sorted: # the entry exists, append train_input_sorted[sequence_len].append(geom) train_labels_sorted[sequence_len].append(one_hot_label) continue # the size subset does not exist yet # append the data to the smallest size subset if it isn't batch-sized yet if len(train_input_sorted[smallest_size_subset]) < hp['BATCH_SIZE']: geom = pad_sequences([geom], smallest_size_subset)[0] # make it the same size as the rest in the subset train_input_sorted[smallest_size_subset].append(geom) train_labels_sorted[smallest_size_subset].append(one_hot_label) else: train_input_sorted[sequence_len] = [geom] train_labels_sorted[sequence_len] = [one_hot_label] # Shape determination geom_vector_len = train_geoms[0].shape[1] output_size = np.array(train_labels).max() + 1 # Build model inputs = Input(shape=(None, geom_vector_len)) model = Bidirectional(LSTM(hp['LSTM_SIZE'], return_sequences=(hp['REPEAT_DEEP_ARCH'] > 0), recurrent_dropout=hp['RECURRENT_DROPOUT']))(inputs) for layer in range(hp['REPEAT_DEEP_ARCH']): is_last_layer = (layer + 1 == hp['REPEAT_DEEP_ARCH']) model = Bidirectional(LSTM(hp['LSTM_SIZE'], return_sequences=(not is_last_layer), recurrent_dropout=hp['RECURRENT_DROPOUT']))(model) model = Dense(output_size, activation='softmax')(model) model = Model(inputs=inputs, outputs=model) model.compile( loss='categorical_crossentropy', metrics=['accuracy'], optimizer=OPTIMIZER), model.summary() # Callbacks pgb = ProgressBar() for epoch in range(hp['EPOCHS']): for sequence_len in sorted(train_input_sorted.keys()): message = 'Epoch {} of {}, sequence length {}'.format(epoch + 1, hp['EPOCHS'], sequence_len) pgb.update_progress(epoch/hp['EPOCHS'], message) inputs = np.array(train_input_sorted[sequence_len]) labels = np.array(train_labels_sorted[sequence_len]) model.fit( x=inputs, y=labels, verbose=0, epochs=epoch + 1, initial_epoch=epoch, batch_size=hp['BATCH_SIZE'], validation_split=hp['TRAIN_VALIDATE_SPLIT'], callbacks=[TensorBoard(log_dir='./tensorboard_log/' + SIGNATURE, write_graph=False)]) # Run on unseen test data print('\n\nRun on test data...') test_preds = [model.predict(np.array([test])) for test in test_geoms] test_preds = [np.argmax(pred) for pred in test_preds] accuracy = accuracy_score(test_labels, test_preds) runtime = time() - SCRIPT_START message = 'on {} completed with accuracy of \n{:f} \nin {} in {} epochs\n'.format( socket.gethostname(), accuracy, timedelta(seconds=runtime), hp['EPOCHS']) for key, value in sorted(hp.items()): message += '{}: {}\t'.format(key, value) notify(SIGNATURE, message) print(SCRIPT_NAME, 'finished successfully with', message)
mit
astroJeff/dart_board
paper/scripts/HMXB_plots.py
1
5798
import numpy as np import pickle import matplotlib matplotlib.use('Agg') import corner import matplotlib.pyplot as plt from matplotlib import font_manager from dart_board import posterior # Fraction of data to ignore frac = 0.99 # Load chains chains = np.load("../data/HMXB_chain.npy") if chains.ndim == 4: chains = chains[0] n_chains, length, n_var = chains.shape chains = chains[:,int(length*frac):,:] n_chains, length, n_var = chains.shape chains = chains.reshape((n_chains*length, n_var)) print(chains.shape) # Load derived MCMC_derived = np.load("../data/HMXB_derived.npy") if MCMC_derived.ndim == 4: MCMC_derived = MCMC_derived[0] n_chains, length, n_var = MCMC_derived.shape MCMC_derived = MCMC_derived[:,int(length*frac):,:] n_chains, length, n_var = MCMC_derived.shape MCMC_derived = MCMC_derived.reshape((n_chains*length, n_var)) print(MCMC_derived.shape) # Get indices of derived data for plots idx_M1 = 0 idx_M2 = 1 idx_a = 2 idx_e = 3 idx_mdot1 = 5 if n_var == 9: idx_k1 = 7 elif n_var == 17: idx_k1 = 15 else: return # Move from ln parameters to parameters in chains chains[:,0] = np.exp(chains[:,0]) chains[:,1] = np.exp(chains[:,1]) chains[:,2] = np.exp(chains[:,2]) chains[:,7] = np.exp(chains[:,7]) # Create a corner plot to show the posterior distribution # fontProperties = {'family':'serif', 'serif':['Times New Roman'], 'weight':'normal', 'size':12} # ticks_font = font_manager.FontProperties(family='Times New Roman', style='normal', \ # weight='normal', stretch='normal', size=10) # plt.rc('font', **fontProperties) # Corner plot labels = [r"$M_{\rm 1, i}\ (M_{\odot})$", r"$M_{\rm 2, i}\ (M_{\odot})$", r"log $a_{\rm i}\ (R_{\odot})$", r"$e_{\rm i}$", r"$v_{\rm k, i}\ ({\rm km}\ {\rm s}^{-1})$", r"$\theta_{\rm k}\ ({\rm rad.})$", r"$\phi_{\rm k}\ ({\rm rad.})$", r"$t_{\rm i}\ ({\rm Myr})$"] # plt_range = ([13.9,13.95], [12,13], [0,4000], [0.7,1], [0,750], [0.0,np.pi], [0.0,np.pi], [15,22]) # plt_range = ([0,25], [0,20], [0,4000], [0.0,1], [0,750], [0.0,np.pi], [0.0,np.pi], [10,60]) plt_range = ([0,40], [0,30], [1,4], [0.0,1], [0,750], [0.0,np.pi], [0.0,np.pi], [0,60]) # Load traditional population synthesis results trad_x_i = np.load("../data/HMXB_trad_chain.npy") length, ndim = trad_x_i.shape trad_likelihood = np.load("../data/HMXB_trad_lnprobability.npy") trad_derived = np.load("../data/HMXB_trad_derived.npy") length, ndim = trad_x_i.shape trad_x_i = trad_x_i[int(length*frac):,:] trad_likelihood = trad_likelihood[int(length*frac):] trad_derived = trad_derived[int(length*frac):,:] # trad_x_i = trad_x_i.reshape((len(trad_likelihood), 14)) # trad_derived = trad_derived.reshape((len(trad_likelihood), 9)) print(trad_x_i.shape) print(trad_derived.shape) # Make the orbital separation distribution in log-scale chains.T[2] = np.log10(chains.T[2]) trad_x_i.T[2] = posterior.P_to_A(trad_x_i.T[0], trad_x_i.T[1], trad_x_i.T[2]) trad_x_i.T[2] = np.log10(trad_x_i.T[2]) # Plot distribution of initial binary parameters fig, ax = plt.subplots(2, 4, figsize=(8,4.5)) for k in range(2): for j in range(4): i = 4*k+j trad_i = i if i == 7: trad_i = 12 ax[k,j].hist(trad_x_i.T[trad_i], range=plt_range[i], bins=30, normed=True, histtype='step', color='C0', label="Traditional") # ax[k,j].hist(trad_x_i.T[trad_i], range=plt_range[i], bins=20, normed=True, weights=trad_likelihood, color='C0', label="Traditional", alpha=0.3) ax[k,j].hist(chains.T[i], range=plt_range[i], bins=30, normed=True, color='k', label='MCMC', alpha=0.3) ax[k,j].set_xlabel(labels[i]) ax[k,j].set_yticklabels([]) ax[0,0].legend(loc=1,prop={'size':6}) ax[1,1].set_xticks([0.0, np.pi/2., np.pi]) ax[1,2].set_xticks([0.0, np.pi/2., np.pi]) ax[1,1].set_xticklabels(["0", r"$\pi$/2", r"$\pi$"]) ax[1,2].set_xticklabels(["0", r"$\pi$/2", r"$\pi$"]) plt.tight_layout() plt.savefig("../figures/HMXB_compare_x_i.pdf") # Plot distribution of final binary parameters fig, ax = plt.subplots(1, 3, figsize=(8,3)) labels = [r"$M_{\rm 1}\ (M_{\odot})$", r"$M_{\rm 2}\ (M_{\odot})$", r"$P_{\rm orb}$"] from dart_board import posterior from scipy import stats trad_Porb = posterior.A_to_P(trad_derived.T[idx_M1], trad_derived.T[idx_M2], trad_derived.T[idx_a]) plt_range = ([1.0,2.5], [0.0,60.0], [0.0,500.0]) # ax[0].hist(trad_derived.T[0], range=plt_range[0], bins=20, normed=True, weights=trad_likelihood, color='C0', alpha=0.3, label='Traditional') # ax[1].hist(trad_derived.T[1], range=plt_range[1], bins=20, normed=True, weights=trad_likelihood, color='C0', alpha=0.3) # ax[2].hist(trad_Porb, range=plt_range[2], bins=20, normed=True, weights=trad_likelihood, color='C0', alpha=0.3) ax[0].hist(trad_derived.T[idx_M1], range=plt_range[0], bins=40, normed=True, histtype='step', color='C0', label='Traditional') ax[1].hist(trad_derived.T[idx_M2], range=plt_range[1], bins=40, normed=True, histtype='step', color='C0') ax[2].hist(trad_Porb, range=plt_range[2], bins=40, normed=True, histtype='step', color='C0') # Plot results from MCMC MCMC_Porb = posterior.A_to_P(MCMC_derived.T[idx_M1], MCMC_derived.T[idx_M2], MCMC_derived.T[idx_a]) ax[0].hist(MCMC_derived.T[idx_M1], range=plt_range[0], bins=40, normed=True, color='k', label='MCMC', alpha=0.3) ax[1].hist(MCMC_derived.T[idx_M2], range=plt_range[1], bins=40, normed=True, color='k', alpha=0.3) ax[2].hist(MCMC_Porb, range=plt_range[2], bins=40, normed=True, color='k', alpha=0.3) for i in range(3): ax[i].set_xlabel(labels[i]) ax[i].set_xlim(plt_range[i]) ax[i].set_yticklabels([]) ax[0].legend(prop={'size':8}) plt.tight_layout() plt.savefig("../figures/HMXB_compare_derived.pdf")
mit
Jimmy-Morzaria/scikit-learn
examples/classification/plot_lda.py
164
2224
""" ==================================================================== Normal and Shrinkage Linear Discriminant Analysis for classification ==================================================================== Shows how shrinkage improves classification. """ from __future__ import division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.lda import LDA n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation def generate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack([X, np.random.randn(n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2 = [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2 = 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LDA(solver='lsqr', shrinkage='auto').fit(X, y) clf2 = LDA(solver='lsqr', shrinkage=None).fit(X, y) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) features_samples_ratio = np.array(n_features_range) / n_train plt.plot(features_samples_ratio, acc_clf1, linewidth=2, label="LDA with shrinkage", color='r') plt.plot(features_samples_ratio, acc_clf2, linewidth=2, label="LDA", color='g') plt.xlabel('n_features / n_samples') plt.ylabel('Classification accuracy') plt.legend(loc=1, prop={'size': 12}) plt.suptitle('LDA vs. shrinkage LDA (1 discriminative feature)') plt.show()
bsd-3-clause
AmberJBlue/aima-python
submissions/Blue/myNN.py
3
3055
from sklearn import datasets from sklearn.neural_network import MLPClassifier import traceback from submissions.Blue import music class DataFrame: data = [] feature_names = [] target = [] target_names = [] musicATRB = DataFrame() musicATRB.data = [] targetData = [] ''' Extract data from the CORGIS Music Library. Most 'hit' songs average 48-52 bars and no more than ~3 minutes (180 seconds)... ''' allSongs = music.get_songs() for song in allSongs: try: length = float(song['song']["duration"]) targetData.append(length) genre = song['artist']['terms'] #String title = song['song']['title'] #String # release = float(song['song']['Release']) musicATRB.data.append([genre, title]) except: traceback.print_exc() musicATRB.feature_names = [ 'Genre', 'Title', 'Release', 'Length', ] musicATRB.target = [] def musicTarget(release): if (length <= 210 ): #if the song is less that 3.5 minutes (210 seconds) long return 1 return 0 for i in targetData: tt = musicTarget(i) musicATRB.target.append(tt) musicATRB.target_names = [ 'Not a hit song', 'Could be a hit song', ] Examples = { 'Music': musicATRB, } ''' Make a customn classifier, ''' mlpc = MLPClassifier( hidden_layer_sizes = (5000,), activation = 'relu', solver='sgd', # 'adam', # alpha = 0.0001, # batch_size='auto', learning_rate = 'adaptive', # 'constant', # power_t = 0.5, max_iter = 1000, # 200, shuffle = False, # random_state = None, # tol = 1e-4, # verbose = False, # warm_start = False, momentum = 0.4, # nesterovs_momentum = True, # early_stopping = False, # validation_fraction = 0.1, # beta_1 = 0.9, beta_2 = 0.999, # epsilon = 1e-8, ) ''' Try scaling the data. ''' musicScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(musicATRB.data) musicScaled.data = scaleGrid(musicATRB.data) musicScaled.feature_names = musicATRB.feature_names musicScaled.target = musicATRB.target musicScaled.target_names = musicATRB.target_names Examples = { 'musicDefault': { 'frame': musicATRB, }, 'MusicSGD': { 'frame': musicATRB, 'mlpc': mlpc }, 'MusicScaled': { 'frame': musicScaled, }, }
mit
Barmaley-exe/scikit-learn
sklearn/datasets/svmlight_format.py
39
15319
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, one_based, comment, query_id): is_sp = int(hasattr(X, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': line_pattern = u("%d") else: line_pattern = u("%.16g") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if query_id is not None: feat = (y[i], query_id[i], s) else: feat = (y[i], s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") y = np.asarray(y) if y.ndim != 1: raise ValueError("expected y of shape (n_samples,), got %r" % (y.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != y.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], y.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, one_based, comment, query_id)
bsd-3-clause
kate-v-stepanova/scilifelab
tests/full/test_production.py
4
21220
import shutil import os import logbook import re import yaml import unittest import pandas as pd import numpy as np try: import drmaa except: pass from ..classes import SciLifeTest from classes import PmFullTest from cement.core import handler from scilifelab.pm.core.production import ProductionController from scilifelab.utils.misc import filtered_walk, opt_to_dict from scilifelab.bcbio.run import find_samples, setup_sample, run_bcbb_command, setup_merged_samples, sample_table, get_vcf_files, validate_sample_directories, _group_samples from scilifelab.bcbio import merge_sample_config LOG = logbook.Logger(__name__) filedir = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) j_doe_00_01 = os.path.abspath(os.path.join(filedir, "data", "production", "J.Doe_00_01")) j_doe_00_04 = os.path.abspath(os.path.join(filedir, "data", "production", "J.Doe_00_04")) j_doe_00_05 = os.path.abspath(os.path.join(filedir, "data", "production", "J.Doe_00_05")) ANALYSIS_TYPE = 'Align_standard_seqcap' GALAXY_CONFIG = os.path.abspath(os.path.join(filedir, "data", "config")) SAMPLES = ['P001_101_index3', 'P001_102_index6'] FLOWCELL = '120924_AC003CCCXX' FINISHED = { 'J.Doe_00_01': {'P001_101_index3': os.path.join(filedir, "data", "production", "J.Doe_00_01", SAMPLES[0], "FINISHED_AND_DELIVERED"), 'P001_102_index6': os.path.join(filedir, "data", "production", "J.Doe_00_01", SAMPLES[1], "FINISHED_AND_DELIVERED")}, 'J.Doe_00_04': {'P001_101_index3': os.path.join(filedir, "data", "production", "J.Doe_00_04", SAMPLES[0], "FINISHED_AND_DELIVERED"), 'P001_102_index6': os.path.join(filedir, "data", "production", "J.Doe_00_04", SAMPLES[1], "FINISHED_AND_DELIVERED")} } REMOVED = { 'J.Doe_00_01': {'P001_101_index3': os.path.join(filedir, "data", "production", "J.Doe_00_01", SAMPLES[0], "FINISHED_AND_REMOVED"), 'P001_102_index6': os.path.join(filedir, "data", "production", "J.Doe_00_01", SAMPLES[1], "FINISHED_AND_REMOVED")}, 'J.Doe_00_04': {'P001_101_index3': os.path.join(filedir, "data", "production", "J.Doe_00_04", SAMPLES[0], "FINISHED_AND_REMOVED"), 'P001_102_index6': os.path.join(filedir, "data", "production", "J.Doe_00_04", SAMPLES[1], "FINISHED_AND_REMOVED")} } class ProductionConsoleTest(PmFullTest): """Class for testing functions without drmaa""" def setUp(self): pass def test_compression_suite(self): """Test various combinations of compression, decompression, cleaning""" self.app = self.make_app(argv = ['production', 'decompress', 'J.Doe_00_01', '--debug', '--force', '--fastq', '-n']) handler.register(ProductionController) self._run_app() l1 = self.app._output_data["stderr"].getvalue() self.app = self.make_app(argv = ['production', 'decompress', 'J.Doe_00_01', '-f', FLOWCELL, '--debug', '--force', '--fastq', '-n']) handler.register(ProductionController) self._run_app() l2 = self.app._output_data["stderr"].getvalue() self.assertTrue(len(l1) > len(l2)) os.chdir(filedir) def test_run(self): """Test various combinations of compression, decompression, cleaning""" self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_01', '--debug', '--force', '--fastq', '-n']) handler.register(ProductionController) self._run_app() l1 = self.app._output_data["stderr"].getvalue() self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_01', '-f', FLOWCELL, '--debug', '--force', '--fastq', '-n']) handler.register(ProductionController) self._run_app() l2 = self.app._output_data["stderr"].getvalue() self.assertTrue(len(l1) > len(l2)) os.chdir(filedir) @unittest.skipIf(not os.getenv("MAILTO"), "not running production test: set $MAILTO environment variable to your mail address to test mailsend") @unittest.skipIf(not os.getenv("DRMAA_LIBRARY_PATH"), "not running production test: no $DRMAA_LIBRARY_PATH") class ProductionTest(PmFullTest): @classmethod def setUpClass(cls): if not os.getcwd() == filedir: os.chdir(filedir) LOG.info("Copy tree {} to {}".format(j_doe_00_01, j_doe_00_04)) if not os.path.exists(j_doe_00_04): shutil.copytree(j_doe_00_01, j_doe_00_04) ## Set P001_102_index6 to use devel partition and require mailto environment variable for test pp = os.path.join(j_doe_00_04, SAMPLES[1], FLOWCELL, "{}-post_process.yaml".format(SAMPLES[1])) with open(pp) as fh: config = yaml.load(fh) platform_args = config["distributed"]["platform_args"].split() platform_args[platform_args.index("-t") + 1] = "00:10:00" if not "--mail-user={}".format(os.getenv("MAILTO")) in platform_args: platform_args.extend(["--mail-user={}".format(os.getenv("MAILTO"))]) if not "--mail-type=ALL" in platform_args: platform_args.extend(["--mail-type=ALL"]) config["distributed"]["platform_args"] = " ".join(platform_args) with open(pp, "w") as fh: fh.write(yaml.safe_dump(config, default_flow_style=False, allow_unicode=True, width=1000)) for k in FINISHED.keys(): for v in FINISHED[k].values(): if os.path.exists(v): os.unlink(v) for v in REMOVED[k].values(): if os.path.exists(v): os.unlink(v) ## FIXME: since we're submitting jobs to drmaa, data will be ## removed before the pipeline has finished. One solution would be ## to run on one of the module production datasets # @classmethod # def tearDownClass(cls): # LOG.info("Removing directory tree {}".format(j_doe_00_04)) # os.chdir(filedir) # shutil.rmtree(j_doe_00_04) def test_production_setup(self): self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_04', '--debug', '--force', '--only_setup', '--restart', '--drmaa'], extensions = ['scilifelab.pm.ext.ext_distributed']) handler.register(ProductionController) self._run_app() os.chdir(filedir) def test_production(self): self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_04', '--debug', '--force', '--amplicon', '--restart']) handler.register(ProductionController) self._run_app() os.chdir(filedir) def test_platform_args(self): """Test the platform arguments for a run""" self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_04', '--debug', '--force', '--amplicon', '--restart', '--sample', SAMPLES[1], '--drmaa'], extensions=['scilifelab.pm.ext.ext_distributed']) handler.register(ProductionController) self._run_app() os.chdir(filedir) def test_batch_submission(self): """Test that adding --batch groups commands into a batch submission""" pp = os.path.join(j_doe_00_04, SAMPLES[1], FLOWCELL, "{}-post_process.yaml".format(SAMPLES[1])) with open(pp) as fh: config = yaml.load(fh) platform_args = config["distributed"]["platform_args"].split() account = platform_args[platform_args.index("-A")+1] self.app = self.make_app(argv = ['production', 'compress', 'J.Doe_00_04', '--debug', '--force', '--jobname', 'batchsubmission', '--drmaa', '--batch', '--partition', 'devel', '--time', '01:00:00', '-A', account], extensions=['scilifelab.pm.ext.ext_distributed']) handler.register(ProductionController) self._run_app() def test_change_platform_args(self): """Test that passing --time actually changes platform arguments. These arguments should have precedence over whatever is written in the config file.""" self.app = self.make_app(argv = ['production', 'run', 'J.Doe_00_04', '--debug', '--force', '--amplicon', '--restart', '--sample', SAMPLES[1], '--drmaa', '--time', '00:01:00', '-n'], extensions=['scilifelab.pm.ext.ext_distributed']) handler.register(ProductionController) self._run_app() os.chdir(filedir) def test_casava_transfer(self): """Test transfer of casava data from production to project""" self.app = self.make_app(argv = ['production', 'transfer', 'J.Doe_00_03', '--debug', '--force', '--quiet'], extensions=[]) handler.register(ProductionController) self._run_app() os.chdir(filedir) j_doe_00_03 = os.path.abspath(os.path.join(filedir, "data", "projects", "j_doe_00_03")) pattern = ".fastq(.gz)?$" def fastq_filter(f): return re.search(pattern, f) != None fastq_files = filtered_walk(j_doe_00_03, fastq_filter) self.assertEqual(len(fastq_files), 2) def test_touch_finished(self): """Test touching finished files""" self.app = self.make_app(argv = ['production', 'touch-finished', 'J.Doe_00_01', '--debug', '--force', '--sample', SAMPLES[0]], extensions=[]) handler.register(ProductionController) self._run_app() self.assertTrue(os.path.exists(FINISHED['J.Doe_00_01'][SAMPLES[0]])) samplefile = os.path.join(filedir, "data", "production", "J.Doe_00_01", "finished_sample.txt") with open(samplefile, "w") as fh: fh.write(SAMPLES[0] + "\n") fh.write(SAMPLES[1] + "\n") self.app = self.make_app(argv = ['production', 'touch-finished', 'J.Doe_00_01', '--debug', '--force', '--sample', samplefile], extensions=[]) handler.register(ProductionController) self._run_app() self.assertTrue(os.path.exists(FINISHED['J.Doe_00_01'][SAMPLES[1]])) ## Make sure rsync fails self.app = self.make_app(argv = ['production', 'touch-finished', 'J.Doe_00_01', '--debug', '--force', '--sample', samplefile], extensions=[]) handler.register(ProductionController) try: self.app.setup() self.app.config.set("runqc", "root", self.app.config.get("runqc", "root").replace("production", "projects")) with self.app.log.log_setup.applicationbound(): self.app.run() self.app.render(self.app._output_data) finally: self.app.close() def test_remove_finished(self): self.app = self.make_app(argv = ['production', 'touch-finished', 'J.Doe_00_04', '--debug', '--force', '--sample', SAMPLES[1]], extensions=[]) handler.register(ProductionController) self._run_app() self.assertTrue(os.path.exists(FINISHED['J.Doe_00_04'][SAMPLES[1]])) ## Remove file, dry self.app = self.make_app(argv = ['production', 'remove-finished', 'J.Doe_00_04', '--debug', '--force', '-n'], extensions=[]) handler.register(ProductionController) self._run_app() class UtilsTest(SciLifeTest): @classmethod def setUpClass(cls): if not os.getcwd() == filedir: os.chdir(filedir) LOG.info("Copy tree {} to {}".format(j_doe_00_01, j_doe_00_05)) if not os.path.exists(j_doe_00_05): shutil.copytree(j_doe_00_01, j_doe_00_05) with open(os.path.join(j_doe_00_05, "samples.txt"), "w") as fh: fh.write("\n\nP001_101_index3\nP001_104_index3") with open(os.path.join(j_doe_00_05, "samples2.txt"), "w") as fh: fh.write("\n\nP001_101_index3-bcbb-config.yaml") @classmethod def tearDownClass(cls): LOG.info("Removing directory tree {}".format(j_doe_00_05)) os.chdir(filedir) shutil.rmtree(j_doe_00_05) def test_find_samples(self): """Test finding samples""" flist = find_samples(j_doe_00_05) self.assertIn(len(flist), [3,4]) flist = find_samples(j_doe_00_05, **{'only_failed':True}) self.assertIn(len(flist), [0,1]) def test_find_samples_from_file(self): """Find samples defined in file with empty lines and erroneous names""" with open(os.path.join(j_doe_00_05, "P001_101_index3-bcbb-config.yaml"), "w") as fh: fh.write("\n") flist = find_samples(j_doe_00_05, sample=os.path.join(j_doe_00_05, "samples.txt")) validate_sample_directories(flist, j_doe_00_05) self.assertEqual(len(flist),2) os.unlink(os.path.join(j_doe_00_05, "P001_101_index3-bcbb-config.yaml")) def test_find_samples_from_file_with_yaml(self): """Find samples defined in file with empty lines and a bcbb-config.yaml file lying directly under root directory""" flist = find_samples(j_doe_00_05, sample=os.path.join(j_doe_00_05, "samples2.txt")) args = [flist, j_doe_00_05] self.assertRaises(Exception, validate_sample_directories, *args) def test_setup_merged_samples(self): """Test setting up merged samples""" flist = find_samples(j_doe_00_05) setup_merged_samples(flist, **{'dry_run':False}) with open(os.path.join(j_doe_00_05, "P001_101_index3", "TOTAL", "P001_101_index3-bcbb-config.yaml")) as fh: conf = yaml.load(fh) self.assertEqual(conf["details"][0]["files"][0], os.path.join(j_doe_00_05, "P001_101_index3", "TOTAL", "P001_101_index3_B002BBBXX_TGACCA_L001_R1_001.fastq.gz")) def test_merge_sample_config(self): """Test merging sample configuration files""" flist = find_samples(j_doe_00_05) fdict = _group_samples(flist) out_d = os.path.join(j_doe_00_05, "P001_101_index3", "TOTAL") if not os.path.exists(out_d): os.makedirs(out_d) newconf = merge_sample_config(fdict["P001_101_index3"].values(), "P001_101_index3", out_d=out_d, dry_run=False) self.assertTrue(os.path.exists(os.path.join(j_doe_00_05, "P001_101_index3", "TOTAL", "P001_101_index3_B002BBBXX_TGACCA_L001_R1_001.fastq.gz" ))) self.assertTrue(os.path.exists(os.path.join(j_doe_00_05, "P001_101_index3", "TOTAL", "P001_101_index3_C003CCCXX_TGACCA_L001_R1_001.fastq.gz" ))) def test_setup_samples(self): """Test setting up samples, changing genome to rn4""" flist = find_samples(j_doe_00_05) for f in flist: setup_sample(f, **{'analysis':'Align_standard_seqcap', 'genome_build':'rn4', 'dry_run':False, 'baits':'rat_baits.interval_list', 'targets':'rat_targets.interval_list', 'num_cores':8, 'distributed':False}) for f in flist: with open(f, "r") as fh: config = yaml.load(fh) if config["details"][0].get("multiplex", None): self.assertEqual(config["details"][0]["multiplex"][0]["genome_build"], "rn4") else: self.assertEqual(config["details"][0]["genome_build"], "rn4") with open(f.replace("-bcbb-config.yaml", "-post_process.yaml")) as fh: config = yaml.load(fh) self.assertEqual(config["custom_algorithms"][ANALYSIS_TYPE]["hybrid_bait"], 'rat_baits.interval_list') self.assertEqual(config["custom_algorithms"][ANALYSIS_TYPE]["hybrid_target"], 'rat_targets.interval_list') self.assertEqual(config["algorithm"]["num_cores"], 8) for f in flist: setup_sample(f, **{'analysis':ANALYSIS_TYPE, 'genome_build':'rn4', 'dry_run':False, 'no_only_run':True, 'google_report':True, 'dry_run':False, 'baits':'rat_baits.interval_list', 'targets':'rat_targets.interval_list', 'amplicon':True, 'num_cores':8, 'distributed':False}) with open(f, "r") as fh: config = yaml.load(fh) if config["details"][0].get("multiplex", None): self.assertEqual(config["details"][0]["multiplex"][0]["genome_build"], "rn4") else: self.assertEqual(config["details"][0]["genome_build"], "rn4") with open(f.replace("-bcbb-config.yaml", "-post_process.yaml")) as fh: config = yaml.load(fh) self.assertEqual(config["algorithm"]["mark_duplicates"], False) self.assertEqual(config["custom_algorithms"][ANALYSIS_TYPE]["mark_duplicates"], False) def test_remove_files(self): """Test removing files""" keep_files = ["-post_process.yaml$", "-post_process.yaml.bak$", "-bcbb-config.yaml$", "-bcbb-config.yaml.bak$", "-bcbb-command.txt$", "-bcbb-command.txt.bak$", "_[0-9]+.fastq$", "_[0-9]+.fastq.gz$", "^[0-9][0-9]_.*.txt$"] pattern = "|".join(keep_files) def remove_filter_fn(f): return re.search(pattern, f) == None flist = find_samples(j_doe_00_05) for f in flist: workdir = os.path.dirname(f) remove_files = filtered_walk(workdir, remove_filter_fn) self.assertNotIn("01_analysis_start.txt", [os.path.basename(x) for x in remove_files]) def test_remove_dirs(self): """Test removing directories before rerunning pipeline""" keep_files = ["-post_process.yaml$", "-post_process.yaml.bak$", "-bcbb-config.yaml$", "-bcbb-config.yaml.bak$", "-bcbb-command.txt$", "-bcbb-command.txt.bak$", "_[0-9]+.fastq$", "_[0-9]+.fastq.gz$"] pattern = "|".join(keep_files) def remove_filter_fn(f): return re.search(pattern, f) == None flist = find_samples(j_doe_00_05) for f in flist: workdir = os.path.dirname(f) remove_dirs = filtered_walk(workdir, remove_filter_fn, get_dirs=True) self.assertIn("fastqc", [os.path.basename(x) for x in remove_dirs]) def test_bcbb_command(self): """Test output from command, changing analysis to amplicon and setting targets and baits""" flist = find_samples(j_doe_00_05) for f in flist: setup_sample(f, **{'analysis':ANALYSIS_TYPE, 'genome_build':'rn4', 'dry_run':False, 'no_only_run':False, 'google_report':False, 'dry_run':False, 'baits':'rat_baits.interval_list', 'targets':'rat_targets.interval_list', 'amplicon':True, 'num_cores':8, 'distributed':False}) with open(f.replace("-bcbb-config.yaml", "-bcbb-command.txt")) as fh: cl = fh.read().split() (cl, platform_args) = run_bcbb_command(f) self.assertIn("automated_initial_analysis.py",cl) setup_sample(f, **{'analysis':ANALYSIS_TYPE, 'genome_build':'rn4', 'dry_run':False, 'no_only_run':False, 'google_report':False, 'dry_run':False, 'baits':'rat_baits.interval_list', 'targets':'rat_targets.interval_list', 'amplicon':True, 'num_cores':8, 'distributed':True}) with open(f.replace("-bcbb-config.yaml", "-bcbb-command.txt")) as fh: cl = fh.read().split() (cl, platform_args) = run_bcbb_command(f) self.assertIn("distributed_nextgen_pipeline.py",cl) def test_global_post_process(self): """Test that when using a "global" post_process, jobname, output, error and output directory are updated. """ flist = find_samples(j_doe_00_05) pp = os.path.join(j_doe_00_01, SAMPLES[1], FLOWCELL, "{}-post_process.yaml".format(SAMPLES[1])) with open(pp) as fh: postprocess = yaml.load(fh) for f in flist: (cl, platform_args) = run_bcbb_command(f, pp) self.assertIn("--error", platform_args) self.assertEqual(platform_args[platform_args.index("--error") + 1], f.replace("-bcbb-config.yaml", "-bcbb.err")) @unittest.skipIf(not os.getenv("DRMAA_LIBRARY_PATH"), "not running UtilsTest.test_platform: no $DRMAA_LIBRARY_PATH") def test_platform_args(self): """Test making platform args and changing them on the fly. """ from scilifelab.pm.ext.ext_distributed import make_job_template_args pp = os.path.join(j_doe_00_05, SAMPLES[1], FLOWCELL, "{}-post_process.yaml".format(SAMPLES[1])) with open(pp) as fh: config = yaml.load(fh) platform_args = config["distributed"]["platform_args"].split() self.assertIn("core", platform_args) pargs = opt_to_dict(platform_args) self.assertEqual("P001_102_index6-bcbb.log", pargs['-o']) kw = {'time':'00:01:00', 'jobname':'test', 'partition':'devel'} pargs = make_job_template_args(pargs, **kw) self.assertEqual("devel", pargs['partition']) nativeSpec = "-t {time} -p {partition} -A {account}".format(**pargs) self.assertEqual("00:01:00", nativeSpec[3:11]) def test_sample_table(self): """Test making a sample table""" flist = find_samples(j_doe_00_01) samples = sample_table(flist) grouped = samples.groupby("sample") self.assertEqual(len(grouped.groups["P001_101_index3"]), 2) self.assertEqual(len(grouped.groups["P001_102_index6"]), 1) def test_summarize_variants(self): """Test summarizing variants""" flist = find_samples(j_doe_00_01) vcf_d = get_vcf_files(flist)
mit
research-team/NEUCOGAR
NEST/visual/cortical_column/scripts/func.py
1
8975
import os import sys import nest import logging import datetime import numpy as np import nest.topology as tp import matplotlib.pyplot as plt from data import * from time import clock from parameters import * times = [] spikegenerators = {} # dict name_part : spikegenerator spikedetectors = {} # dict name_part : spikedetector dictPosition_NeuronID = {} txtResultPath = "" startsimulate = 0 endsimulate = 0 SAVE_PATH = "" SYNAPSES = 0 NEURONS = 0 FORMAT = '%(name)s.%(levelname)s: %(message)s.' logging.basicConfig(format=FORMAT, level=logging.DEBUG) logger = logging.getLogger('function') def build_model(): global NEURONS nest.SetDefaults('iaf_psc_exp', iaf_neuronparams) layerNumberZ = 6 neuronID = 2 for layer in Cortex: columns = layer[area][X_area] rows = layer[area][Y_area] print rows NEURONS += rows * columns for y in range(rows): for x in range(columns): dictPosition_NeuronID[(float(x), float(y), float(layerNumberZ))] = neuronID neuronID += 1 layerNumberZ -= 1 logger.debug("{0} {1} neurons".format(layer[Glu][k_name][:2], rows * columns)) logger.debug("X: {0} ({1}neu x {2}col) \n".format(layer[area][X_area], sum(layer[step]), layer[area][X_area] / sum(layer[step])) + " " * 16 + "Y: {0} ({1}neu x {2}col)".format(layer[area][Y_area], 2, layer[area][Y_area] / 2)) model_3D = tp.CreateLayer({'positions': dictPosition_NeuronID.keys(), 'elements': 'iaf_psc_exp', 'extent': [1000.0, 1000.0, 100.0], 'edge_wrap': False}) # Build another parts for part in Thalamus: part[k_model] = 'iaf_psc_exp' part[k_IDs] = nest.Create(part[k_model], part[k_NN]) NEURONS += part[k_NN] logger.debug("{0} [{1}, {2}] {3} neurons".format(part[k_name], part[k_IDs][0], part[k_IDs][0] + part[k_NN] - 1, part[k_NN])) def marking_column(): layerNumberZ = 6 realLayer = 2 for layer in Cortex: logger.debug("Marking Layer # {0}".format(layerNumberZ)) for Y_border in range(0, layer[area][Y_area], 2): for X_border in range(0, layer[area][X_area], sum(layer[step])): FirstPartNeuronsPositions = list() SecondPartNeuronsPositions = list() ThirdPartNeuronsPositions = list() for X in range(X_border, X_border + layer[step][0], 1): FirstPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border), float(layerNumberZ))]) FirstPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border + 1), float(layerNumberZ))]) if layer[step][1] != 0: for X in range(X_border + layer[step][0], X_border + layer[step][0] + layer[step][1], 1): SecondPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border), float(layerNumberZ))]) SecondPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border + 1), float(layerNumberZ))]) if layer[step][2] != 0: for X in range(X_border + layer[step][0] + layer[step][1], X_border + sum(layer[step]), 1): ThirdPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border), float(layerNumberZ))]) ThirdPartNeuronsPositions.append( dictPosition_NeuronID[(float(X), float(Y_border + 1), float(layerNumberZ))]) layer[0][0] = FirstPartNeuronsPositions layer[1][0] = SecondPartNeuronsPositions layer[2][0] = ThirdPartNeuronsPositions layerNumberZ -= 1 realLayer += 1 def connect(pre, post, syn_type=GABA, weight_coef=1): global SYNAPSES types[syn_type][0]['weight'] = weight_coef * types[syn_type][1] conn_dict = {'rule': 'all_to_all', 'multapses': True} nest.Connect(pre, post, conn_spec=conn_dict, syn_spec=types[syn_type][0]) SYNAPSES += len(pre) * len(post) def connect_generator(part, startTime=1, stopTime=T, rate=250, coef_part=1): name = part[k_name] spikegenerators[name] = nest.Create('poisson_generator', 1, {'rate': float(rate), 'start': float(startTime), 'stop': float(stopTime)}) nest.Connect(spikegenerators[name], part[k_IDs], syn_spec=static_syn, conn_spec={'rule': 'fixed_outdegree', 'outdegree': int(part[k_NN] * coef_part)}) logger.debug("Generator => {0}. Element #{1}".format(name, spikegenerators[name][0])) def connect_detector(part): neurons = part[0] name = part[k_name] number = len(neurons) spikedetectors[name] = nest.Create('spike_detector', params=detector_param) nest.Connect(neurons, spikedetectors[name]) logger.debug("Detector => {0}. Tracing {1} neurons".format(name, number)) def connect_detector_Thalamus(part): name = part[k_name] number = part[k_NN] if part[k_NN] < N_detect else N_detect spikedetectors[name] = nest.Create('spike_detector', params=detector_param) nest.Connect(part[k_IDs][:number], spikedetectors[name]) logger.debug("Detector => {0}. Tracing {1} neurons".format(name, number)) '''Generates string full name of an image''' def f_name_gen(path, name): return "{0}{1}_dopamine_{2}.png".format(path, name, 'noise' if generator_flag else 'static') def simulate(): import psutil import time global startsimulate, endsimulate, SAVE_PATH SAVE_PATH = "results/output-{0}/".format(NEURONS) if not os.path.exists(SAVE_PATH): os.mkdir(SAVE_PATH) begin = 0 nest.PrintNetwork() logger.debug('* * * Simulating') startsimulate = datetime.datetime.now() for t in np.arange(0, T, dt): print "SIMULATING [{0}, {1}]".format(t, t + dt) nest.Simulate(dt) end = clock() times.append("{0:10.1f} {1:8.1f} {2:10.1f} {3:4.1f} {4}\n".format(begin, end - begin, end, t, datetime.datetime.now().time())) begin = end print "COMPLETED {0}%\n".format(t/dt) endsimulate = datetime.datetime.now() logger.debug('* * * Simulation completed successfully') def get_log(startbuild, endbuild): logger.info("Number of neurons : {}".format(NEURONS)) logger.info("Number of synapses : {}".format(SYNAPSES)) logger.info("Building time : {}".format(endbuild - startbuild)) logger.info("Simulation time : {}".format(endsimulate - startsimulate)) logger.info("Noise : {}".format('YES' if generator_flag else 'NO')) def save(GUI): global txtResultPath if GUI: import pylab as pl import nest.raster_plot import nest.voltage_trace logger.debug("Saving IMAGES into {0}".format(SAVE_PATH)) for key in spikedetectors: try: nest.raster_plot.from_device(spikedetectors[key], hist=True) pl.savefig(f_name_gen(SAVE_PATH, "spikes_" + key.lower()), dpi=dpi_n, format='png') pl.close() except Exception: print(" * * * from {0} is NOTHING".format(key)) txtResultPath = SAVE_PATH + 'txt/' logger.debug("Saving TEXT into {0}".format(txtResultPath)) if not os.path.exists(txtResultPath): os.mkdir(txtResultPath) for key in spikedetectors: save_spikes(spikedetectors[key], name=key) with open(txtResultPath + 'timeSimulation.txt', 'w') as f: for item in times: f.write(item) from collections import defaultdict GlobalDICT = {} def save_spikes(detec, name, hist=False): title = "Raster plot from device '%i'" % detec[0] ev = nest.GetStatus(detec, "events")[0] ts = ev["times"] gids = ev["senders"] data = defaultdict(list) if len(ts): with open("{0}@spikes_{1}.txt".format(txtResultPath, name), 'w') as f: f.write("Name: {0}, Title: {1}, Hist: {2}\n".format(name, title, "True" if hist else "False")) for num in range(0, len(ev["times"])): data[round(ts[num], 1)].append(gids[num]) for key in sorted(data.iterkeys()): f.write("{0:>5} : {1:>4} : {2}\n".format(key, len(data[key]), sorted(data[key]))) else: print "Spikes in {0} is NULL".format(name)
gpl-2.0
janusnic/21v-python
unit_20/matplotlib/axes_zoom_effect.py
3
3303
from matplotlib.transforms import Bbox, TransformedBbox, \ blended_transform_factory from mpl_toolkits.axes_grid1.inset_locator import BboxPatch, BboxConnector,\ BboxConnectorPatch def connect_bbox(bbox1, bbox2, loc1a, loc2a, loc1b, loc2b, prop_lines, prop_patches=None): if prop_patches is None: prop_patches = prop_lines.copy() prop_patches["alpha"] = prop_patches.get("alpha", 1)*0.2 c1 = BboxConnector(bbox1, bbox2, loc1=loc1a, loc2=loc2a, **prop_lines) c1.set_clip_on(False) c2 = BboxConnector(bbox1, bbox2, loc1=loc1b, loc2=loc2b, **prop_lines) c2.set_clip_on(False) bbox_patch1 = BboxPatch(bbox1, **prop_patches) bbox_patch2 = BboxPatch(bbox2, **prop_patches) p = BboxConnectorPatch(bbox1, bbox2, # loc1a=3, loc2a=2, loc1b=4, loc2b=1, loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b, **prop_patches) p.set_clip_on(False) return c1, c2, bbox_patch1, bbox_patch2, p def zoom_effect01(ax1, ax2, xmin, xmax, **kwargs): """ ax1 : the main axes ax1 : the zoomed axes (xmin,xmax) : the limits of the colored area in both plot axes. connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will be marked. The keywords parameters will be used ti create patches. """ trans1 = blended_transform_factory(ax1.transData, ax1.transAxes) trans2 = blended_transform_factory(ax2.transData, ax2.transAxes) bbox = Bbox.from_extents(xmin, 0, xmax, 1) mybbox1 = TransformedBbox(bbox, trans1) mybbox2 = TransformedBbox(bbox, trans2) prop_patches = kwargs.copy() prop_patches["ec"] = "none" prop_patches["alpha"] = 0.2 c1, c2, bbox_patch1, bbox_patch2, p = \ connect_bbox(mybbox1, mybbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_patches=prop_patches) ax1.add_patch(bbox_patch1) ax2.add_patch(bbox_patch2) ax2.add_patch(c1) ax2.add_patch(c2) ax2.add_patch(p) return c1, c2, bbox_patch1, bbox_patch2, p def zoom_effect02(ax1, ax2, **kwargs): """ ax1 : the main axes ax1 : the zoomed axes Similar to zoom_effect01. The xmin & xmax will be taken from the ax1.viewLim. """ tt = ax1.transScale + (ax1.transLimits + ax2.transAxes) trans = blended_transform_factory(ax2.transData, tt) mybbox1 = ax1.bbox mybbox2 = TransformedBbox(ax1.viewLim, trans) prop_patches = kwargs.copy() prop_patches["ec"] = "none" prop_patches["alpha"] = 0.2 c1, c2, bbox_patch1, bbox_patch2, p = \ connect_bbox(mybbox1, mybbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_patches=prop_patches) ax1.add_patch(bbox_patch1) ax2.add_patch(bbox_patch2) ax2.add_patch(c1) ax2.add_patch(c2) ax2.add_patch(p) return c1, c2, bbox_patch1, bbox_patch2, p import matplotlib.pyplot as plt plt.figure(1, figsize=(5, 5)) ax1 = plt.subplot(221) ax2 = plt.subplot(212) ax2.set_xlim(0, 1) ax2.set_xlim(0, 5) zoom_effect01(ax1, ax2, 0.2, 0.8) ax1 = plt.subplot(222) ax1.set_xlim(2, 3) ax2.set_xlim(0, 5) zoom_effect02(ax1, ax2) plt.show()
mit
ClimbsRocks/scikit-learn
examples/gaussian_process/plot_gpr_co2.py
131
5705
""" ======================================================== Gaussian process regression (GPR) on Mauna Loa CO2 data. ======================================================== This example is based on Section 5.4.3 of "Gaussian Processes for Machine Learning" [RW2006]. It illustrates an example of complex kernel engineering and hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Observatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time t. The kernel is composed of several terms that are responsible for explaining different properties of the signal: - a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the GP. The specific length-scale and the amplitude are free hyperparameters. - a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this RBF component controls the decay time and is a further free parameter. - smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. According to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel component, probably because it can accommodate several length-scales. - a "noise" term, consisting of an RBF kernel contribution, which shall explain the correlated noise components such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes and the RBF's length scale are further free parameters. Maximizing the log-marginal-likelihood after subtracting the target's mean yields the following kernel with an LML of -83.214:: 34.4**2 * RBF(length_scale=41.8) + 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44, periodicity=1) + 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957) + 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336) Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows also that the model makes very confident predictions until around 2015. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, WhiteKernel, RationalQuadratic, ExpSineSquared from sklearn.datasets import fetch_mldata data = fetch_mldata('mauna-loa-atmospheric-co2').data X = data[:, [1]] y = data[:, 0] # Kernel with parameters given in GPML book k1 = 66.0**2 * RBF(length_scale=67.0) # long term smooth rising trend k2 = 2.4**2 * RBF(length_scale=90.0) \ * ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component # medium term irregularity k3 = 0.66**2 \ * RationalQuadratic(length_scale=1.2, alpha=0.78) k4 = 0.18**2 * RBF(length_scale=0.134) \ + WhiteKernel(noise_level=0.19**2) # noise terms kernel_gpml = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel_gpml, alpha=0, optimizer=None, normalize_y=True) gp.fit(X, y) print("GPML kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) # Kernel with optimized parameters k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend k2 = 2.0**2 * RBF(length_scale=100.0) \ * ExpSineSquared(length_scale=1.0, periodicity=1.0, periodicity_bounds="fixed") # seasonal component # medium term irregularities k3 = 0.5**2 * RationalQuadratic(length_scale=1.0, alpha=1.0) k4 = 0.1**2 * RBF(length_scale=0.1) \ + WhiteKernel(noise_level=0.1**2, noise_level_bounds=(1e-3, np.inf)) # noise terms kernel = k1 + k2 + k3 + k4 gp = GaussianProcessRegressor(kernel=kernel, alpha=0, normalize_y=True) gp.fit(X, y) print("\nLearned kernel: %s" % gp.kernel_) print("Log-marginal-likelihood: %.3f" % gp.log_marginal_likelihood(gp.kernel_.theta)) X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis] y_pred, y_std = gp.predict(X_, return_std=True) # Illustration plt.scatter(X, y, c='k') plt.plot(X_, y_pred) plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std, alpha=0.5, color='k') plt.xlim(X_.min(), X_.max()) plt.xlabel("Year") plt.ylabel(r"CO$_2$ in ppm") plt.title(r"Atmospheric CO$_2$ concentration at Mauna Loa") plt.tight_layout() plt.show()
bsd-3-clause
LevinJ/CodeSamples
python/images/transformation/tranformation.py
1
1917
import cv2 import numpy as np from matplotlib import pyplot as plt print(cv2.__version__) class Transformation: def __init__(self): return def scaling(self): self.img_trans = cv2.resize(self.img,None,fx=2, fy=2) # self.img_trans = cv2.resize(self.img,(500,500)) return def translation(self): rows,cols, _= self.img.shape M = np.float32([[1,0,50],[0,1,50]]) self.img_trans = cv2.warpAffine(self.img, M,(cols,rows)) return def rotation(self): rows,cols, _ = self.img.shape M = cv2.getRotationMatrix2D((cols/2,rows/2),45, 2) self.img_trans = cv2.warpAffine(self.img,M,(cols,rows)) return def affine_trans(self): rows,cols= self.img.shape pts1 = np.float32([[50,50],[200,50],[50,200]]) pts2 = np.float32([[10,100],[200,50],[100,250]]) M = cv2.getAffineTransform(pts1,pts2) self.img_trans = cv2.warpAffine(self.img,M,(cols,rows)) return def perspective_trans(self): rows,cols = self.img.shape pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]]) M = cv2.getPerspectiveTransform(pts1,pts2) self.img_trans = cv2.warpPerspective(self.img,M,(300,300)) return def run(self): img = cv2.imread('../temp/sift_basic_0.jpg', cv2.IMREAD_COLOR) cv2.imshow('image',img) self.img = img # self.scaling() # self.translation() self.rotation() # self.affine_trans() # self.perspective_trans() cv2.imshow('image_scaled',self.img_trans) cv2.waitKey(0) cv2.destroyAllWindows() return if __name__ == "__main__": obj= Transformation() obj.run()
gpl-2.0
kimasx/smapp-toolkit
examples/plot_user_per_day_histogram.py
2
3653
""" Script makes users-per-day histogram going N days back. Usage: python plot_user_per_day_histograms.py -s smapp.politics.fas.nyu.edu -p 27011 -u smapp_readOnly -w SECRETPASSWORD -d USElection2016Hillary --days 10 --output-file hillary.png @jonathanronen 2015/4 """ import pytz import argparse import numpy as np import seaborn as sns import matplotlib.pyplot as plt from collections import defaultdict from datetime import datetime, timedelta from smapp_toolkit.twitter import MongoTweetCollection if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-s', '--server', default='smapp.politics.fas.nyu.edu', help="Mongodb server address ['smapp.politics.fas.nyu.edu]") parser.add_argument('-p', '--port', type=int, default=27011, help='Mongodb server port [27011]') parser.add_argument('-u', '--user', help='Mongodb username [None]') parser.add_argument('-w', '--password', help='Mongodb password [None') parser.add_argument('-d', '--database', help='Mongodb database name [None]') parser.add_argument('--days', default=7, help='How many days to go back [7]') parser.add_argument('--timezone', default='America/New_York', help='Time zone to consider [America/New_York]') parser.add_argument('--output-file', default='histogram.png', help='Output file [histogram.png]') args = parser.parse_args() print("Generating avg tweets/user/day histogram for {}".format(args.database)) TIMEZONE = pytz.timezone(args.timezone) print("Days will be split according to time zone {}".format(args.timezone)) today = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=TIMEZONE) n_days_ago = today - timedelta(days=args.days) print("The period being considered is {} to {}".format( n_days_ago.strftime('%Y-%m-%d'), today.strftime('%Y-%m-%d'))) print("Connecting to database") collection = MongoTweetCollection(args.server, args.port, args.user, args.password, args.database) ntweets = collection.since(n_days_ago).until(today).count() print("Considering {} tweets".format(ntweets)) userids = set() counts = dict() for i in range(args.days): day_counts = defaultdict(lambda: 0) day_start = n_days_ago + i*timedelta(days=1) day_end = n_days_ago + (i+1)*timedelta(days=1) print("Counting for {}".format(day_start.strftime('%Y-%m-%d'))) for tweet in collection.since(day_start).until(day_end): day_counts[tweet['user']['id']] += 1 userids.add(tweet['user']['id']) counts[day_start] = day_counts print("Done getting data from database.") #### AVERAGE TWEETS PER DAY COUNTS (how many users tweeted x times per day on average) user_avg_daily_tweets = { user: np.mean([counts[day][user] for day in counts]) for user in userids } fig = plt.figure(figsize=(10,8)) plt.subplot(212) counts = np.log(user_avg_daily_tweets.values()) bins = np.linspace(0, max(counts), max(counts)*10+1) plt.hist(counts, bins, color='r', alpha=.6) plt.ylabel('Num users') plt.xlabel('log(avg tweets per day)') plt.subplot(211) plt.title('Average number of tweets per day for users\n{}\n {} to {}'.format( args.database, n_days_ago.strftime('%Y-%m-%d'), today.strftime('%Y-%m-%d'))) counts = np.array(user_avg_daily_tweets.values()) bins = np.linspace(0, max(counts), max(counts)+1) plt.hist(counts, bins, color='r', alpha=.6) plt.ylabel('Num users') plt.xlabel('avg tweets per day') plt.tight_layout() plt.savefig(args.output_file) print("Done.")
gpl-2.0
bigdataelephants/scikit-learn
sklearn/feature_extraction/image.py
32
17167
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Parameters =========== img: ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as: np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype: None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ===== For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters =========== n_x: int Dimension in x axis n_y: int Dimension in y axis n_z: int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as: np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype: dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ===== For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Parameters =========== i_h: int The image height i_w: int The image with p_h: int The height of a patch p_w: int The width of a patch max_patches: integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Parameters ---------- arr: ndarray n-dimensional array of which patches are to be extracted patch_shape: integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step: integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches: strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Parameters ---------- image: array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size: tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches: integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state: int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Parameters ---------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size: tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image: array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Parameters ---------- patch_size: tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches: integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state: int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
sharkdata/sharkdata
app_ctdprofiles/ctd_profile_plot.py
1
14823
# -*- coding: utf-8 -*- """ Created on Sun Oct 21 13:19:50 2018 @author: a002028 """ import time import numpy as np import pandas as pd import zipfile # from pprint import pprint from bokeh.models import ( ColumnDataSource, CustomJS, WidgetBox, LinearAxis, Spacer, ) # , LabelSet, Slider from bokeh.layouts import row, column # , layout, widgetbox from bokeh.models.widgets import ( Select, RangeSlider, DataTable, TableColumn, Panel, Tabs, ) from bokeh.plotting import figure, show, output_file # from bokeh.embed import components, file_html # from bokeh.resources import CDN # from bokeh.sampledata.periodic_table import elements # from bokeh.resources import INLINE class ReadZipFile(object): """""" def __init__(self, zipfile_path, filename): self.archive = zipfile.ZipFile(zipfile_path, "r") try: file_path = self.get_filepath(self.archive.namelist(), filename) row_list = self.open_file(file_path) except IOError: raise IOError("{} not found in {}".format(filename, zipfile_path)) self.setup_dataframe(row_list) def setup_dataframe(self, row_list, sep="\t"): """ Creates pd.Series with row_list as input :param row_list: list of rows :param sep: str, splits each row :return: pd.DataFrame """ serie = pd.Series(data=row_list) columns = serie.iloc[0].split(sep) bool_array = serie.index > 0 self._df = pd.DataFrame( serie.iloc[bool_array].str.split(sep).tolist(), columns=columns ) self._df.replace("", np.nan, inplace=True) def get_dataframe(self): """ :return: pd.DataFrame """ return self._df def get_data(self, parameters, astype=np.float): """ :param parameters: list, all parameters to include in return :param astype: set data as this type eg. float, int, str :return: dict or pd.DataFrame """ return self._df.loc[:, parameters].astype(astype) def open_file(self, file_path, comment="//"): """ :param file_path: str, path to file :param comment: str, exclude rows that starts with this comment :return: list, selected rows """ file = self.archive.open(file_path) row_list = [ l.decode("cp1252") for l in file if not l.decode("cp1252").startswith(comment) ] return row_list @staticmethod def get_filepath(path_list, pattern): """ :param path_list: :param pattern: :return: """ for path in path_list: if pattern in path: return path class BaseAxes(object): """""" def __init__(self): self._xaxis = None self._yaxis = None def _convert_yaxis_values(self, y): """ Requires derived classes to override this method """ raise NotImplementedError @property def xaxis(self): """ :return: xaxis """ return self._xaxis @xaxis.setter def xaxis(self, xlabel): """ Setter of xaxis :param xlabel: str """ self._xaxis = LinearAxis(axis_label=xlabel) @property def yaxis(self): """ :return: yaxis """ return self._yaxis @yaxis.setter def yaxis(self, ylabel): """ Setter of yaxis. If ylabel equals depth or pressure (as defined below): execute self._convert_yaxis_values(ylabel) :param ylabel: str """ self._yaxis = LinearAxis(axis_label=ylabel) if "PRES" in ylabel or "DEP" in ylabel: self._convert_yaxis_values(ylabel) class ProfilePlot(BaseAxes): """ Utilizes interactive plotting tools of Bokeh https://bokeh.pydata.org/en/latest/ """ def __init__(self, dataframe, parameters=None, tabs=None): self.df = dataframe self.parameters = parameters self.tabs = tabs self.TOOLS = "reset,hover,pan,wheel_zoom,box_zoom,lasso_select,save" self.TOOLTIPS = [("index", "$index"), ("x-value", "$x"), ("y-value", "$y")] def _set_output_file(self, name): """ Sets plot title and creates html output file :param name: str, name of profile :return: HTML, output file """ self.TITLE = "Profile Plot - " + name if name == "": name = "profile_plot.html" elif not name.endswith(".html"): name = name + ".html" # online, faster output_file(name) # offline, slower # output_file(name, mode='inline') def _convert_yaxis_values(self, ylabel): """ Is activated when y-axis label equals pressure or depth. Why? Because we want value 0 (m or dbar) to start on top of the plot with an increase downwards instead of upwards. Turning all y-axis values negative and than override axis labels, hence values are negative while labels are positive :param ylabel: str, y label and dataframe key """ self._turn_values_negative(ylabel) y_labels = {v: str(abs(v)) for v in range(0, int(min(self.df[ylabel])) * 2, -1)} self.yaxis.major_label_overrides = y_labels def _turn_values_negative(self, ylabel): """ Is activated when y-axis label equals pressure or depth. Turning all y-axis values negative :param ylabel: str, y label and dataframe key """ if "PRES" in ylabel or "DEP" in ylabel: if not any(self.df[ylabel] < 0): self.df[ylabel] = -self.df[ylabel] def _get_source_selecters(self, x=None, y=None, source=None): """ :param x: str, x-axis parameter :param y: str, y-axis parameter :param source: bokeh.models.ColumnDataSource :return: x- and y-axis selecter """ callback = CustomJS( args={"source": source, "xaxis": self.xaxis, "yaxis": self.yaxis}, code=""" //console.log(' changed selected option', cb_obj.value); var data = source.data; data['x'] = data[x_param.value]; data['y'] = data[y_param.value]; xaxis.attributes.axis_label = x_param.value; yaxis.attributes.axis_label = y_param.value; xaxis.change.emit(); yaxis.change.emit(); source.change.emit(); """, ) xaxis_selecter = Select( title="x-axis parameter", value=x, options=self.parameters, callback=callback, width=200, ) callback.args["x_param"] = xaxis_selecter yaxis_selecter = Select( title="y-axis parameter", value=y, options=self.parameters, callback=callback, width=200, ) callback.args["y_param"] = yaxis_selecter return xaxis_selecter, yaxis_selecter def _get_xaxis_slider(self, plot_obj): """ Creates an "x-axis slider" that allows the user to interactively change the boundaries of the axes :param plot_obj: Bokeh plot object :return: x-axis slider """ callback = CustomJS( args={"plot": plot_obj}, code=""" var a = cb_obj.value; plot.x_range.start = a[0]; plot.x_range.end = a[1]; """, ) slider = RangeSlider( start=0, end=50, value=(self.df["x"].min(), self.df["x"].max()), step=1, title="x-axis range slider", width=200, ) slider.js_on_change("value", callback) return slider def _get_data_table(self, source=None): """ Create a data table associated to the plot object :param source: bokeh.models.ColumnDataSource :return: bokeh.models.widgets.DataTable """ columns = [ TableColumn(field="y", title="y-axis data"), TableColumn(field="x", title="x-axis data"), ] return DataTable(source=source, columns=columns, width=200) def circle_plot(self, x=None, y=None, source=None): """ https://bokeh.pydata.org/en/latest/docs/reference/plotting.html#bokeh.plotting.figure.Figure.circle Plot profile using bokeh circle plot :param x: str, dataframe key :param y: str, dataframe key :param source: bokeh.models.sources.ColumnDataSource :return: bokeh.plotting.figure.Figure """ plot = figure( # plot_width=800, # x_axis_location="above", # y_axis_location="right", tools=self.TOOLS, tooltips=self.TOOLTIPS, title=self.TITLE, ) plot.background_fill_color = "#dddddd" plot.grid.grid_line_color = "white" plot.outline_line_width = 1 plot.outline_line_color = "black" plot.axis.visible = False plot.circle("x", "y", source=source, size=12, line_color="lightblue", alpha=0.6) # For setting definitions see @xaxis.setter, class BaseAxis self.xaxis = x # For setting definitions see @yaxis.setter, class BaseAxis self.yaxis = y plot.add_layout(self.xaxis, "below") plot.add_layout(self.yaxis, "left") return plot # p.line(x, y, source=source, color='#A6CEE3') # labels = LabelSet(x=x, y=y, # text=z, # y_offset=8, # text_font_size="8pt", text_color="#555555", # source=source, text_align='center') # p.add_layout(labels) def line_plot(self, x=None, y=None, source=None): """ https://bokeh.pydata.org/en/latest/docs/reference/plotting.html#bokeh.plotting.figure.Figure.line Plot profile using bokeh line plot :param x: str, dataframe key :param y: str, dataframe key :param source: bokeh.models.sources.ColumnDataSource :return: bokeh.plotting.figure.Figure """ plot = figure( plot_width=800, x_axis_location="above", tools=self.TOOLS, tooltips=self.TOOLTIPS, title=self.TITLE, ) plot.background_fill_color = "#dddddd" # plot.xaxis.axis_label = x # plot.yaxis.axis_label = y plot.grid.grid_line_color = "white" plot.line("x", "y", source=source, color="black") # plot.yaxis.major_label_overrides = self.y_labels return plot def plot(self, x=None, y=None, z=None, name=""): """ :param x: str, dataframe key :param y: str, dataframe key :param z: str, dataframe key :param name: str, name of plot :return: Interactive HTML plot """ self._set_output_file(name) self._turn_values_negative(y) self.df["x"] = self.df[x] self.df["y"] = self.df[y] source = ColumnDataSource(self.df) circle_plot = self.circle_plot(x=x, y=y, source=source) line_plot = self.line_plot(x=x, y=y, source=source) xrange_slider = self._get_xaxis_slider(circle_plot) xaxis_selecter, yaxis_selecter = self._get_source_selecters( x=x, y=y, source=source ) data_table = self._get_data_table(source=source) # show(widgetbox(data_table)) # spacer = Spacer(width=100, height=100) widget_list = [yaxis_selecter, xaxis_selecter, xrange_slider, data_table] widgets = WidgetBox(*widget_list) col_1 = column(circle_plot, sizing_mode="scale_width") col_2 = column(widgets, sizing_mode="scale_width") row_1 = row([col_1, col_2], sizing_mode="scale_width") return row_1 # # tab1 = Panel(child=row_1, title="circle")#, sizing_mode='scale_width') # # tab2 = Panel(child=line_plot, title="line")#, sizing_mode='scale_width') # # tabs = Tabs(tabs=[tab1, tab2])#, sizing_mode='scale_width') # # # # # show(tabs) # show(row_1) # # # row_3 = column(spacer, sizing_mode='scale_both') # # show(row([col_1, col_2], sizing_mode='scale_width')) # # show(layout(row([col_1, col_2]))) # # script, div = components((col_1, col_2)) # # show(components([col_1, col_2])) # # show(row(circle_plot, widgets)) #, sizing_mode='stretch_both')) # if __name__ == '__main__': # # # path_zipfile = 'D:\\Utveckling\\Github\\ctdpy\\ctdpy\\exports\\SHARK_CTD_2018_IBT_SMHI.zip' # # path_zipfile = 'D:\\Utveckling\\Github\\ctdpy\\ctdpy\\tests\\etc\\SHARK_CTD_2018_BAS_SMHI.zip' # # # # # profile_name = 'ctd_profile_SBE09_0827_20180120_0910_26_01_0126' # # profile_name = 'ctd_profile_SBE09_1044_20181205_1536_34_01_0154' # # # # path_zipfile = 'D:/arnold/4_sharkdata/sharkdata_ftp/datasets/SHARK_CTDprofile_2018_BAS_SMHI_version_2019-01-15.zip' # profile_name = 'ctd_profile_SBE09_1044_20181205_1536_34_01_0154' # # # # start_time = time.time() # rzip = ReadZipFile(path_zipfile, profile_name) # print("Zipfile loaded--%.3f sec" % (time.time() - start_time)) # # print(rzip._df) # # parameter_list = ['PRES_CTD [dbar]', 'CNDC_CTD [S/m]', 'CNDC2_CTD [S/m]', 'SALT_CTD [psu (PSS-78)]', # 'SALT2_CTD [psu (PSS-78)]', 'TEMP_CTD [°C (ITS-90)]', 'TEMP2_CTD [°C (ITS-90)]', # 'DOXY_CTD [ml/l]', 'DOXY2_CTD [ml/l]', 'PAR_CTD [µE/(cm2 ·sec)]', 'CHLFLUO_CTD [mg/m3]', # 'TURB_CTD [NTU]', 'PHYC_CTD [ppb]'] # # parameter_list = ['PRES_CTD [dbar]','CNDC_CTD [mS/m]','CNDC2_CTD [mS/m]','SALT_CTD [psu]','SALT2_CTD [psu]', # # 'TEMP_CTD [°C]','TEMP2_CTD [°C]','DOXY_CTD [ml/l]','DOXY2_CTD [ml/l]', # # 'PAR_CTD [µE/(cm2 ·sec)]','CHLFLUO_CTD [mg/m3]','TURB_CTD [NTU]','PHYC_CTD [ppb]'] # # start_time = time.time() # data = rzip.get_data(parameter_list) # # print("Data retrieved--%.3f sec" % (time.time() - start_time)) # # data = rzip.get_dataframe() # # print(data) # # start_time = time.time() # profile = ProfilePlot(data, parameters=parameter_list) # profile.plot(x='TEMP_CTD [°C (ITS-90)]', # y='PRES_CTD [dbar]', # z='SALT_CTD [psu (PSS-78)]', # name=profile_name) # print("Data ploted--%.3f sec" % (time.time() - start_time))
mit
rlabbe/filterpy
filterpy/kalman/tests/test_ekf.py
2
2765
# -*- coding: utf-8 -*- """Copyright 2015 Roger R Labbe Jr. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt from math import sqrt import numpy as np from filterpy.kalman import ExtendedKalmanFilter from numpy import array, eye, asarray from filterpy.common import Saver from filterpy.examples import RadarSim from pytest import approx from scipy.spatial.distance import mahalanobis as scipy_mahalanobis DO_PLOT = False def test_ekf(): def H_of(x): """ compute Jacobian of H matrix for state x """ horiz_dist = x[0] altitude = x[2] denom = sqrt(horiz_dist**2 + altitude**2) return array([[horiz_dist/denom, 0., altitude/denom]]) def hx(x): """ takes a state variable and returns the measurement that would correspond to that state. """ return sqrt(x[0]**2 + x[2]**2) dt = 0.05 proccess_error = 0.05 rk = ExtendedKalmanFilter(dim_x=3, dim_z=1) rk.F = eye(3) + array ([[0, 1, 0], [0, 0, 0], [0, 0, 0]])*dt def fx(x, dt): return np.dot(rk.F, x) rk.x = array([-10., 90., 1100.]) rk.R *= 10 rk.Q = array([[0, 0, 0], [0, 1, 0], [0, 0, 1]]) * 0.001 rk.P *= 50 rs = [] xs = [] radar = RadarSim(dt) ps = [] pos = [] s = Saver(rk) for i in range(int(20/dt)): z = radar.get_range(proccess_error) pos.append(radar.pos) rk.update(asarray([z]), H_of, hx, R=hx(rk.x)*proccess_error) ps.append(rk.P) rk.predict() xs.append(rk.x) rs.append(z) s.save() # test mahalanobis a = np.zeros(rk.y.shape) maha = scipy_mahalanobis(a, rk.y, rk.SI) assert rk.mahalanobis == approx(maha) s.to_array() xs = asarray(xs) ps = asarray(ps) rs = asarray(rs) p_pos = ps[:, 0, 0] p_vel = ps[:, 1, 1] p_alt = ps[:, 2, 2] pos = asarray(pos) if DO_PLOT: plt.subplot(311) plt.plot(xs[:, 0]) plt.ylabel('position') plt.subplot(312) plt.plot(xs[:, 1]) plt.ylabel('velocity') plt.subplot(313) #plt.plot(xs[:,2]) #plt.ylabel('altitude') plt.plot(p_pos) plt.plot(-p_pos) plt.plot(xs[:, 0] - pos) if __name__ == '__main__': test_ekf()
mit
simonvh/gimmemotifs
gimmemotifs/db/__init__.py
1
18937
"""Motif databases.""" import glob import os from urllib.request import urlopen, urlretrieve import re import time import tarfile import shutil from tempfile import mkdtemp import zipfile import pandas as pd from gimmemotifs.motif import read_motifs from gimmemotifs.utils import get_jaspar_motif_info DEFAULT_OUT = "data/motif_databases/" class MotifDb(object): """MotifDb base class. Use to get a list of available databases: >>> MotifDb.list_databases() [] """ _dbs = {} name = None date = time.strftime("%Y-%m-%d") @classmethod def create(cls, name): """Create a motif database object based on the db name. Parameters ---------- name : str Name of the provider (eg. JASPAR, HOMER, ...) Returns ------- db : MotifDb instance MotifDb instance. """ try: return cls._dbs[name.lower()]() except KeyError: raise Exception("Unknown motif database") @classmethod def register_db(cls, dbname): """Register method to keep list of dbs.""" def decorator(subclass): """Register as decorator function.""" cls._dbs[dbname] = subclass subclass.name = dbname return subclass return decorator @classmethod def list_databases(self): """List available databases.""" return self._dbs.keys() def __hash__(self): return hash(str(self.__class__)) def create_annotation(self, name, anno): base = os.path.splitext(name)[0] fname = base + ".motif2factors.txt" with open(fname, "w") as f: print("Motif\tFactor\tEvidence\tCurated", file=f) for motif, factors in anno.items(): for factor, status, curated in factors: print("{}\t{}\t{}\t{}".format( motif, factor, status, curated), file=f) register_db = MotifDb.register_db @register_db('jaspar') class JasparMotifDb(MotifDb): """ JASPAR motif database """ URL = "http://jaspar.genereg.net/download/CORE/JASPAR2018_CORE{}_non-redundant_pfms_jaspar.txt" NAME = "JASPAR2018{}.pfm" GROUPS = ["", "vertebrates", "plants", "insects", "nematodes", "fungi", "urochordates"] def download(self, outdir=DEFAULT_OUT): ### JASPAR ### for group in self.GROUPS: if group != "": group = "_" + group outfile = os.path.join(outdir, self.NAME.format(group)) url = self.URL.format(group) with open(outfile, "w") as f: with urlopen(url) as response: for line in response: line = line.decode().strip() if line.startswith(">"): line = "_".join(line.split("\t")[:2]) print(line, file=f) motifs = read_motifs(outfile, fmt="jaspar") with open(outfile, "w") as f: print("# JASPAR2018{} motif database".format(group), file=f) print("# Retrieved from: {}".format(url), file=f) print("# Date: {}".format(self.date), file=f) for motif in motifs: print(motif.to_pwm(), file=f) #if group == "_vertebrates": anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME.format(group)), anno) def annotate_factors(self, motifs): anno = {} for motif in motifs: info = get_jaspar_motif_info(motif.id.split("_")[0]) try: mtype = info["type"] if mtype == "universal protein binding microarray (PBM)": mtype = "PBM" except: mtype = "Unknown" factors = re.sub('\([^)]+\)', '', motif.id.split("_")[1]).split('::') anno[motif.id] = [[f, mtype, "Y"] for f in factors] return anno @register_db('homer') class HomerMotifDb(MotifDb): """ HOMER motif database """ NAME = "HOMER.pfm" URL = "http://homer.ucsd.edu/homer/custom.motifs" def download(self, outdir=DEFAULT_OUT): ### Homer ### pfm_out = os.path.join(outdir, self.NAME) with open(pfm_out, "w") as f: print("# Homer motif database (v4.10)", file=f) print("# Retrieved from: {}".format(self.URL), file=f) print("# Date: {}".format(self.date), file=f) with urlopen(self.URL) as response: for line in response: line = line.decode().strip() if line.startswith(">"): line = "_".join(line.split("\t")[:2]) print(line, file=f) motifs = read_motifs(pfm_out) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} p = re.compile(r'\w+_([\w.-]+)\(([\w,-]+\))') for motif in motifs: name, source, _ = motif.id.split('/') try: m = p.search(name) name_factor = m.group(1).lower() source_factor = source.split("-")[1] for tag in ["gfp", "v5", "biotin", "myc"]: source_factor = source_factor.replace("." + tag, "") if name_factor.replace("-", "") == source_factor.lower(): anno[motif.id] = [[source_factor, "ChIP-seq", "Y"]] else: pass except: pass #anno[motif.id] = factors return anno @register_db('hocomoco') class HocomocoMotifDb(MotifDb): """ HOCOMOCO motif database """ #BASE_URL = "http://hocomoco11.autosome.ru/final_bundle/hocomoco11/core/{0}/mono/" #ANNO_URL = BASE_URL + "HOCOMOCOv11_core_annotation_{0}_mono.tsv" #URL = BASE_URL + "HOCOMOCOv11_core_pcms_{0}_mono.txt" #NAME = "HOCOMOCOv11_{}.pfm" BASE_URL = "http://hocomoco10.autosome.ru/final_bundle/{0}/mono/" ANNO_URL = BASE_URL + "HOCOMOCOv10_annotation_{0}_mono.tsv" URL = BASE_URL + "HOCOMOCOv10_pcms_{0}_mono.txt" NAME = "HOCOMOCOv10_{}.pfm" def download(self, outdir=DEFAULT_OUT): for group in ["HUMAN", "MOUSE"]: outfile = os.path.join(outdir, self.NAME.format(group)) url = self.URL.format(group) with open(outfile, "w") as f: print("# HOCOMOCOv10_{} motif database".format(group), file=f) print("# Retrieved from: {}".format(url), file=f) print("# Date: {}".format(self.date), file=f) with urlopen(url) as response: for line in response: line = line.decode().strip() if line.startswith(">"): line = "_".join(line.split("\t")[:2]) print(line, file=f) motifs = read_motifs(outfile) anno = self.annotate_factors(motifs, self.ANNO_URL.format(group)) self.create_annotation(os.path.join(outdir, self.NAME.format(group)), anno) def annotate_factors(self, motifs, url): anno = {} with urlopen(url) as response: for line in response: vals = line.decode().strip().split("\t") anno[vals[0]] = vals[1] anno = {motif.id:[[anno[motif.id], "ChIP-seq", "Y"]] for motif in motifs} return anno @register_db('encode') class EncodeMotifDb(MotifDb): """ ENCODE motif database Kheradpour and Kellis, 2013, doi:10.1093/nar/gkt1249 """ URL = "http://compbio.mit.edu/encode-motifs/motifs.txt" NAME = "ENCODE.pfm" def download(self, outdir=DEFAULT_OUT): outfile = os.path.join(outdir, self.NAME) with open(outfile, "w") as f: print("# ENCODE motif database", file=f) print("# Retrieved from: {}".format(self.URL), file=f) print("# Date: Dec. 2013", file=f) with urlopen(self.URL) as response: for line in response: line = line.decode().strip() if line.startswith(">"): line = line.replace("\t", " ") print(line, file=f) motifs = read_motifs(outfile) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} for motif in motifs: if "disc" in motif.id: source = motif.id.split(" ")[-1] factor = source.split("_")[0] anno[motif.id] = [[factor, "ChIP-seq", "N"]] elif "jolma" in motif.id: vals = motif.id.split(" ") factor = vals[-1].split("_")[0] anno[motif.id] = [[factor, "HT-SELEX", "N"]] elif "transfac" in motif.id: vals = motif.id.split(" ") factor = vals[-2].split("_")[0] anno[motif.id] = [[f, "TRANSFAC", "Y"] for f in factor.split("::")] elif "jaspar" in motif.id: vals = motif.id.split(" ") jaspar_factor = vals[-1].split("_")[0] factor = vals[-2].split("_")[0] if len(jaspar_factor) > 1 and jaspar_factor[1] == jaspar_factor[1].lower(): factor = factor.capitalize() anno[motif.id] = [[f, "JASPAR", "Y"] for f in factor.split("::")] elif "bulyk" in motif.id: vals = motif.id.split(" ") factor = vals[-2].split("_")[0].capitalize() bulyk_factor = vals[-1].split("_")[0].capitalize() if factor != bulyk_factor and factor.startswith("Znf"): factor = bulyk_factor anno[motif.id] = [[factor, "PBM", "N"]] else: raise ValueError("Don't recognize motif {}".format(motif.id)) return anno @register_db('factorbook') class FactorbookMotifDb(MotifDb): """ Factorbook """ ANNO_URL = "https://genome.cshlp.org/content/suppl/2012/08/22/22.9.1798.DC1/TableS1.xls" NAME = "factorbook.pfm" def download(self, outdir=DEFAULT_OUT): # Factorbook is only supplied in non-redundant form as a supplemental pdf # For now, use the non-redundant version included with GimmeMotifs infile = "data/motif_databases/factorbook.pfm" outfile = os.path.join(outdir, self.NAME) motifs = read_motifs(infile) with open(outfile, "w") as f: for motif in motifs: print(motif.to_pwm(), file=f) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} df = pd.read_excel("https://genome.cshlp.org/content/suppl/2012/08/22/22.9.1798.DC1/TableS1.xls") t = {} for factor,motif_names in df[["HGNC ID", "canonical motif"]].dropna().drop_duplicates().values: for m in motif_names.split(";"): t[m] = t.get(m, []) + [factor] for motif in motifs: name = motif.id.split(".")[0] if name in t: for factor in t[name]: anno[motif.id] = anno.get(motif.id, []) + [[factor, "ChIP-seq", "N"]] return anno @register_db('swissregulon') class SwissregulonMotifDb(MotifDb): """ SwissRegulon """ URL = "http://swissregulon.unibas.ch/data/hg19_f5/hg19_weight_matrices_v2" ANNO_URL = "http://swissregulon.unibas.ch/data/hg19_f5/hg19_mat_TF_associations.txt" #URL = "http://swissregulon.unibas.ch/data/hg19/weight_matrices" #ANNO_URL = "http://swissregulon.unibas.ch/data/hg19/mat_TF_associations.hg" NAME = "SwissRegulon.pfm" def download(self, outdir=DEFAULT_OUT): outfile = os.path.join(outdir, self.NAME) with open(outfile, "w") as f: with urlopen(self.URL) as response: for line in response: line = line.decode().strip() print(line, file=f) motifs = read_motifs(outfile, fmt="transfac") with open(outfile, "w") as f: print("# SwissRegulon motif database (hg19:FANTOM5)", file=f) print("# Retrieved from: {}".format(self.URL), file=f) print("# Date: {}".format(self.date), file=f) for motif in motifs: if len(motif) > 0: print(motif.to_pwm(), file=f) motifs = read_motifs(outfile) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} with urlopen(self.ANNO_URL) as response: for line in response: line = line.decode().strip() #print(line) motif, *factors = line.split("\t") factors = [f.split(":")[2] for f in factors[1:]] for factor in factors: anno[motif] = anno.get(motif, []) + [[factor, "Unknown", "N"]] return anno @register_db('image') class ImageMotifDb(MotifDb): """ IMAGE """ URL = "http://bioinformatik.sdu.dk/solexa/webshare/IMAGE/IMAGE_v1.1.tar.gz" NAME = "IMAGE.pfm" def download(self, outdir=DEFAULT_OUT): tmpdir = mkdtemp() file_tmp = urlretrieve(self.URL, filename=None)[0] tar = tarfile.open(file_tmp) fname = "IMAGE/utils/Collection.motif" members = [tar.getmember(fname)] tar.extractall(tmpdir, members=members) outfile = os.path.join(outdir, self.NAME) motifs = read_motifs(os.path.join(tmpdir,fname)) with open(outfile, "w") as f: print("# IMAGE motif database (v1.1)", file=f) print("# Retrieved from: {}".format(self.URL), file=f) print("# Date: {}".format(self.date), file=f) for motif in motifs: print(motif.to_pwm(), file=f) shutil.rmtree(tmpdir) motifs = read_motifs(outfile) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} tmpdir = mkdtemp() file_tmp = urlretrieve(self.URL, filename=None)[0] tar = tarfile.open(file_tmp) fname = "IMAGE/utils/Genename_Motif.txt" members = [tar.getmember(fname)] tar.extractall(tmpdir, members=members) with open(os.path.join(tmpdir, fname)) as f: for line in f: vals = line.strip().split("\t") if len(vals) == 3: factor, motif, status = vals anno[motif] = anno.get(motif, []) + [[factor, status, "N"]] shutil.rmtree(tmpdir) return anno @register_db('cis-bp') class CisbpMotifDb(MotifDb): """ CIS-BP 1.02 """ VERSION = "1.02" BASE = "http://cisbp.ccbr.utoronto.ca/data/{}/DataFiles/Bulk_downloads/EntireDataset/".format(VERSION) ANNO_URL = BASE + "/TF_Information_all_motifs.txt.zip" URL = BASE + "/PWMs.zip" NAME = "CIS-BP.pfm" def download(self, outdir=DEFAULT_OUT): tmpdir = mkdtemp() file_tmp = urlretrieve(self.URL, filename=None)[0] with zipfile.ZipFile(file_tmp,"r") as zip_ref: zip_ref.extractall(tmpdir) motifs = [] for fname in glob.glob(os.path.join(tmpdir, "pwms/*")): m_id = os.path.splitext(os.path.basename(fname))[0] for m in read_motifs(fname, fmt="transfac"): if len(m) > 0: m.id = m_id motifs.append(m) outfile = os.path.join(outdir, self.NAME) with open(outfile, "w") as f: print("# CIS-BP motif database (v{})".format(self.VERSION), file=f) print("# Retrieved from: {}".format(self.URL), file=f) print("# Date: {}".format(self.date), file=f) for motif in motifs: print(motif.to_pwm(), file=f) shutil.rmtree(tmpdir) motifs = read_motifs(outfile) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME), anno) def annotate_factors(self, motifs): anno = {} df = pd.read_table(self.ANNO_URL) df = df.loc[ df["TF_Species"].isin(["Homo_sapiens", "Mus_musculus"]) & (df["TF_Status"] != "N"), ["Motif_ID", "TF_Name", "MSource_Type", "TF_Status"] ] df["TF_Status"] = df["TF_Status"].str.replace("D", "Y").str.replace("I", "N") df["MSource_Type"] = df["MSource_Type"].str.replace("HocoMoco", "ChIP-seq") df = df.drop_duplicates() df = df.set_index("Motif_ID") df.columns = ["Factor", "Evidence", "Curated"] df = df.loc[df.index.intersection([m.id for m in motifs])].dropna() for m_id,row in df.iterrows(): anno[m_id] = anno.get(m_id, []) + [row] return anno @register_db('rsat') class RsatMotifDb(MotifDb): """ RSAT clustered motifs """ URL= "http://pedagogix-tagc.univ-mrs.fr/rsat/data/published_data/Castro_2016_matrix-clustering/Application_4/{}/cor0.8_Ncor0.65/All_{}_motifs_cluster_root_motifs.tf" NAME = "RSAT_{}.pfm" def download(self, outdir=DEFAULT_OUT): for tax in ["insects", "plants", "vertebrates"]: tax_ = tax if not tax.endswith("es"): tax_ = tax[:-1] url = self.URL.format(tax.capitalize(), tax_) print(url) name = self.NAME.format(tax) file_tmp = urlretrieve(url, filename=None)[0] motifs = read_motifs(file_tmp, fmt="transfac") outfile = os.path.join(outdir, name) with open(outfile, "w") as f: print("# RSAT non-redundant {} motif database".format(tax), file=f) print("# Retrieved from: {}".format(url), file=f) print("# Date: {}".format(self.date), file=f) for motif in motifs: print(motif.to_pwm(), file=f) anno = self.annotate_factors(motifs) self.create_annotation(os.path.join(outdir, self.NAME.format(tax)), anno) def annotate_factors(self, motifs): anno = {} return anno
mit
CurryEleison/elblogreader
urltimetaken.py
1
1530
from AwsElbLogUtil import LogFileList, LogDataFrame, UTC from datetime import datetime import boto3 import pandas as pd def main(): reftime = datetime(2016, 11, 22, 9, 30, 00, 0, UTC()) print reftime s3 = boto3.resource('s3') # Set up to get recent logfiles # loglistgetter = LogFileList(s3res = s3, strictreftime = True) # possible values are: adm, api, mainsites, simplesitecom, userdomains, usermainsites, usersimplesites # recents = loglistgetter.get_recents("mainsites", refdate = reftime) # Set up object to read in the logfiles # framegetter = LogDataFrame(s3res = s3) # Take filenames, download and make into a dataframe # df = framegetter.make_dataframe(recents, lambda l: hasattr(l, 'path') and l.path.startswith('/tpltest')) framegetter = LogDataFrame(s3res = s3) df = framegetter.make_dataframe_fromfolder("~/junk/", lambda l: hasattr(l, 'path') and l.path.startswith('/tpltest')) # print out names and timestamps of recents # printrecentssummary(s3, recents) meantime = df.sort_values(by = 'utctime', ascending=False).head(10)['servertime'].mean() totallines = df.shape print "Mean time of most recent 10 lines was {0} and shape of linelines was {1}".format(meantime, totallines) def printrecentssummary(s3res, s3items): for s3objsummary in s3items: s3obj = s3res.Object(s3objsummary.bucket_name, s3objsummary.key) print "{0.last_modified} {0.key}".format(s3obj) if __name__ == "__main__": main()
mit
PatrickChrist/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
CI-WATER/gsshapy
gsshapy/grid/grid_to_gssha.py
1
55286
# -*- coding: utf-8 -*- # # grid_to_gssha.py # GSSHApy # # Created by Alan D Snow, 2016. # License BSD 3-Clause from builtins import range from datetime import datetime from io import open as io_open import logging import numpy as np from os import mkdir, path, remove, rename import pangaea as pa import pandas as pd from past.builtins import basestring from pytz import utc from shutil import copy import xarray as xr from gazar.grid import ArrayGrid from ..lib import db_tools as dbt log = logging.getLogger(__name__) # ------------------------------------------------------------------------------ # HELPER FUNCTIONS # ------------------------------------------------------------------------------ def update_hmet_card_file(hmet_card_file_path, new_hmet_data_path): """This function updates the paths in the HMET card file to the new location of the HMET data. This is necessary because the file paths are absolute and will need to be updated if moved. Args: hmet_card_file_path(str): Location of the file used for the HMET_ASCII card. new_hmet_data_path(str): Location where the HMET ASCII files are currently. Example:: new_hmet_data_path = "E:\\GSSHA\\new_hmet_directory" hmet_card_file_path = "E:\\GSSHA\\hmet_card_file.txt" update_hmet_card_file(hmet_card_file_path, new_hmet_data_path) """ hmet_card_file_path_temp = "{0}_tmp".format(hmet_card_file_path) try: remove(hmet_card_file_path_temp) except OSError: pass copy(hmet_card_file_path, hmet_card_file_path_temp) with io_open(hmet_card_file_path_temp, 'w', newline='\r\n') as out_hmet_list_file: with open(hmet_card_file_path) as old_hmet_list_file: for date_path in old_hmet_list_file: out_hmet_list_file.write(u"{0}\n".format(path.join(new_hmet_data_path, path.basename(date_path)))) try: remove(hmet_card_file_path) except OSError: pass rename(hmet_card_file_path_temp, hmet_card_file_path) def esat(temp): """ saturation water vapour pressure is expressed with the Teten’s formula http://www.ecmwf.int/sites/default/files/elibrary/2016/16648-part-iv-physical-processes.pdf 7.2.1 (b) eqn. 7.5 esat(T) = a1*exp(a3*((T − T0)/(T − a4))) a1 = 611.21 Pa, a3 = 17.502 and a4 = 32.19 K for saturation over water T0 = 273.16 K note: ignoring saturation over ice & mixed """ return 611.21 * np.exp(17.502 * (temp - 273.16) / (temp - 32.19)) def array_binary_percent(in_array): """Makes a dataset with values greater than zero 100 percent""" in_array[in_array > 0] = 100 return in_array def array_binary_percent_10(in_array): """Makes a dataset with values greater than zero 100/10 percent""" in_array[in_array > 0] = 10 return in_array # ------------------------------------------------------------------------------ # MAIN CLASS # ------------------------------------------------------------------------------ class GRIDtoGSSHA(object): """This class converts the LSM output data to GSSHA formatted input. Attributes: gssha_project_folder(:obj:`str`): Path to the GSSHA project folder gssha_project_file_name(:obj:`str`): Name of the GSSHA elevation grid file. lsm_input_folder_path(:obj:`str`): Path to the input folder for the LSM files. lsm_search_card(:obj:`str`): Glob search pattern for LSM files. Ex. "*.nc". lsm_lat_var(Optional[:obj:`str`]): Name of the latitude variable in the LSM netCDF files. Defaults to 'lat'. lsm_lon_var(Optional[:obj:`str`]): Name of the longitude variable in the LSM netCDF files. Defaults to 'lon'. lsm_time_var(Optional[:obj:`str`]): Name of the time variable in the LSM netCDF files. Defaults to 'time'. lsm_lat_dim(Optional[:obj:`str`]): Name of the latitude dimension in the LSM netCDF files. Defaults to 'lat'. lsm_lon_dim(Optional[:obj:`str`]): Name of the longitude dimension in the LSM netCDF files. Defaults to 'lon'. lsm_time_dim(Optional[:obj:`str`]): Name of the time dimension in the LSM netCDF files. Defaults to 'time'. output_timezone(Optional[:obj:`tzinfo`]): This is the timezone to output the dates for the data. Default is the timezone of your GSSHA model. This option does NOT currently work for NetCDF output. pangaea_loader(Optional[:obj:`str`]): String to define loader used when opening pangaea dataset (Ex. 'hrrr'). Default is None. Example:: from gsshapy.grid import GRIDtoGSSHA g2g = GRIDtoGSSHA(gssha_project_folder='E:/GSSHA', gssha_project_file_name='gssha.prj', lsm_input_folder_path='E:/GSSHA/lsm-data', lsm_search_card="*.nc", ) """ # DEFAULT GSSHA NetCDF Attributes netcdf_attributes = { 'precipitation_rate': # NOTE: LSM INFO # units = "kg m-2 s-1" ; i.e. mm s-1 { 'units': { 'gage': 'mm hr-1', 'ascii': 'mm hr-1', 'netcdf': 'mm hr-1', }, 'units_netcdf': 'mm hr-1', 'standard_name': 'rainfall_flux', 'long_name': 'Rain precipitation rate', 'gssha_name': 'precipitation', 'hmet_name': 'Prcp', 'conversion_factor': { 'gage': 3600, 'ascii': 3600, 'netcdf': 3600, }, }, 'precipitation_acc': # NOTE: LSM INFO # assumes units = "kg m-2" ; i.e. mm # checks for units: "m" { 'units': { 'gage': 'mm hr-1', 'ascii': 'mm hr-1', 'netcdf': 'mm hr-1', }, 'units_netcdf': 'mm hr-1', 'standard_name': 'rainfall_flux', 'long_name': 'Rain precipitation rate', 'gssha_name': 'precipitation', 'hmet_name': 'Prcp', 'conversion_factor': { 'gage': 1, 'ascii': 1, 'netcdf': 1, }, }, 'precipitation_inc': # NOTE: LSM INFO # assumes units = "kg m-2" ; i.e. mm # checks for units: "m" { 'units': { 'gage': 'mm hr-1', 'ascii': 'mm hr-1', 'netcdf': 'mm hr-1', }, 'units_netcdf': 'mm hr-1', 'standard_name': 'rainfall_flux', 'long_name': 'Rain precipitation rate', 'gssha_name': 'precipitation', 'hmet_name': 'Prcp', 'conversion_factor': { 'gage': 1, 'ascii': 1, 'netcdf': 1, }, }, 'pressure': # NOTE: LSM INFO # units = "Pa" ; { 'units': { 'ascii': 'in. Hg', 'netcdf': 'mb', }, 'standard_name': 'surface_air_pressure', 'long_name': 'Pressure', 'gssha_name': 'pressure', 'hmet_name': 'Pres', 'conversion_factor': { 'ascii': 0.000295299830714, 'netcdf': 0.01, }, }, 'pressure_hg': { 'units': { 'ascii': 'in. Hg', 'netcdf': 'mb', }, 'standard_name': 'surface_air_pressure', 'long_name': 'Pressure', 'gssha_name': 'pressure', 'hmet_name': 'Pres', 'conversion_factor': { 'ascii': 1, 'netcdf': 33.863886667, }, }, 'relative_humidity': # NOTE: LSM Usually Specific Humidity # units = "kg kg-1" ; # standard_name = "specific_humidity" ; # long_name = "Specific humidity" ; { 'units': { 'ascii': '%', 'netcdf': '%', }, 'standard_name': 'relative_humidity', 'long_name': 'Relative humidity', 'gssha_name': 'relative_humidity', 'hmet_name': 'RlHm', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'relative_humidity_dew': # NOTE: ECMWF provides dew point temperature { 'units': { 'ascii': '%', 'netcdf': '%', }, 'standard_name': 'relative_humidity', 'long_name': 'Relative humidity', 'gssha_name': 'relative_humidity', 'hmet_name': 'RlHm', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'swe': # Snow Water Eqivalent (SWE) # units = "kg m-2", i.e. "mm" # NOT IN HMET, USED FOR INITIALIZATION # INIT_SWE_DEPTH # http://www.gsshawiki.com/Snow_Card_Inputs_-_Optional { 'units': { 'grid': 'm', }, 'standard_name': 'snow_water_eqivalent', 'long_name': 'Snow Water Eqivalent', 'gssha_name': 'snow_water_eqivalent', 'conversion_factor': { 'grid': 0.001, }, }, 'wind_speed': # NOTE: LSM # units = "m s-1" ; { 'units': { 'ascii': 'kts', 'netcdf': 'kts', }, 'standard_name': 'wind_speed', 'long_name': 'Wind speed', 'gssha_name': 'wind_speed', 'hmet_name': 'WndS', 'conversion_factor': { 'ascii': 1.94, 'netcdf': 1.94, }, }, 'wind_speed_kmd': # NOTE: LSM # units = "km/day" ; { 'units': { 'ascii': 'kts', 'netcdf': 'kts', }, 'standard_name': 'wind_speed', 'long_name': 'Wind speed', 'gssha_name': 'wind_speed', 'hmet_name': 'WndS', 'conversion_factor': { 'ascii': 0.0224537037, 'netcdf': 0.0224537037, }, }, 'wind_speed_kts': { 'units': { 'ascii': 'kts', 'netcdf': 'kts', }, 'standard_name': 'wind_speed', 'long_name': 'Wind speed', 'gssha_name': 'wind_speed', 'hmet_name': 'WndS', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'temperature': # NOTE: LSM # units = "K" ; { 'units': { 'ascii': 'F', 'netcdf': 'C', }, 'standard_name': 'air_temperature', 'long_name': 'Temperature', 'gssha_name': 'temperature', 'hmet_name': 'Temp', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, 'conversion_function': { 'ascii': lambda temp_kelvin: temp_kelvin * 9.0 / 5.0 - 459.67, 'netcdf': lambda temp_celcius: temp_celcius - 273.15, }, }, 'temperature_f': { 'units': { 'ascii': 'F', 'netcdf': 'C', }, 'standard_name': 'air_temperature', 'long_name': 'Temperature', 'gssha_name': 'temperature', 'hmet_name': 'Temp', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, 'conversion_function': { 'ascii': lambda temp_farenheight: temp_farenheight, 'netcdf': lambda temp_farenheight: (temp_farenheight - 32) * 5.0 / 9.0, }, }, 'direct_radiation': # DIRECT/BEAM/SOLAR RADIATION # NOTE: LSM # WRF: global_radiation * (1-DIFFUSIVE_FRACTION) # units = "W m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_direct_downward_shortwave_flux', 'long_name': 'Direct short wave radiation flux', 'gssha_name': 'direct_radiation', 'hmet_name': 'Drad', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'direct_radiation_j': # DIRECT/BEAM/SOLAR RADIATION # NOTE: LSM # units = "J m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_direct_downward_shortwave_flux', 'long_name': 'Direct short wave radiation flux', 'gssha_name': 'direct_radiation', 'hmet_name': 'Drad', 'conversion_factor': { 'ascii': 1 / 3600.0, 'netcdf': 1 / 3600.0, }, }, 'diffusive_radiation': # DIFFUSIVE RADIATION # NOTE: LSM # WRF: global_radiation * DIFFUSIVE_FRACTION # units = "W m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_diffusive_downward_shortwave_flux', 'long_name': 'Diffusive short wave radiation flux', 'gssha_name': 'diffusive_radiation', 'hmet_name': 'Grad', # 6.1 GSSHA CODE INCORRECTLY SAYS IT IS GRAD 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'diffusive_radiation_j': # DIFFUSIVE RADIATION # NOTE: LSM # ERA5: global_radiation - diffusive_radiation # units = "J m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_diffusive_downward_shortwave_flux', 'long_name': 'Diffusive short wave radiation flux', 'gssha_name': 'diffusive_radiation', 'hmet_name': 'Grad', # 6.1 GSSHA CODE INCORRECTLY SAYS IT IS GRAD 'conversion_factor': { 'ascii': 1 / 3600.0, 'netcdf': 1 / 3600.0, }, }, 'direct_radiation_cc': # DIRECT/BEAM/SOLAR RADIATION # NOTE: LSM # DIFFUSIVE_FRACTION = cloud_cover_pc/100 # WRF: global_radiation * (1-DIFFUSIVE_FRACTION) # units = "W m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_direct_downward_shortwave_flux', 'long_name': 'Direct short wave radiation flux', 'gssha_name': 'direct_radiation', 'hmet_name': 'Drad', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'diffusive_radiation_cc': # DIFFUSIVE RADIATION # NOTE: LSM # DIFFUSIVE_FRACTION = cloud_cover_pc/100 # WRF: global_radiation * DIFFUSIVE_FRACTION # units = "W m-2" ; { 'units': { 'ascii': 'W hr m-2', 'netcdf': 'W hr m-2', }, 'standard_name': 'surface_diffusive_downward_shortwave_flux', 'long_name': 'Diffusive short wave radiation flux', 'gssha_name': 'diffusive_radiation', 'hmet_name': 'Grad', # 6.1 GSSHA CODE INCORRECTLY SAYS IT IS GRAD 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, }, 'cloud_cover': # NOTE: LSM # Between 0-1 (0=No Clouds; 1=Clouds) ; { 'units': { 'ascii': '%', 'netcdf': '%/10', }, 'standard_name': 'cloud_cover_fraction', 'long_name': 'Cloud cover fraction', 'gssha_name': 'cloud_cover', 'hmet_name': 'Clod', 'conversion_factor': { 'ascii': 100, 'netcdf': 10, }, 'calc_4d_method': 'max', 'calc_4d_dim': 'bottom_top', }, 'cloud_cover_pc': # NOTE: LSM # Between 0-100 (0=No Clouds; 100=Full Clouds) ; { 'units': { 'ascii': '%', 'netcdf': '%/10', }, 'standard_name': 'cloud_cover_fraction', 'long_name': 'Cloud cover fraction', 'gssha_name': 'cloud_cover', 'hmet_name': 'Clod', 'conversion_factor': { 'ascii': 1, 'netcdf': 0.1, }, 'calc_4d_method': 'max', 'calc_4d_dim': 'bottom_top', }, 'cloud_cover_bin': # NOTE: LSM # (0=No Clouds; 0>Clouds) ; { 'units': { 'ascii': '%', 'netcdf': '%/10', }, 'standard_name': 'cloud_cover_fraction', 'long_name': 'Cloud cover fraction', 'gssha_name': 'cloud_cover', 'hmet_name': 'Clod', 'conversion_factor': { 'ascii': 1, 'netcdf': 1, }, 'conversion_function': { 'ascii': array_binary_percent, 'netcdf': array_binary_percent_10, }, 'calc_4d_method': 'max', 'calc_4d_dim': 'bottom_top', }, } def __init__(self, gssha_project_folder, gssha_project_file_name, lsm_input_folder_path, lsm_search_card, lsm_lat_var='lat', lsm_lon_var='lon', lsm_time_var='time', lsm_lat_dim='lat', lsm_lon_dim='lon', lsm_time_dim='time', output_timezone=None, pangaea_loader=None, ): """ Initializer function for the GRIDtoGSSHA class """ self.gssha_project_folder = gssha_project_folder self.gssha_project_file_name = gssha_project_file_name self.lsm_input_folder_path = lsm_input_folder_path self.lsm_search_card = lsm_search_card self.lsm_lat_var = lsm_lat_var self.lsm_lon_var = lsm_lon_var self.lsm_time_var = lsm_time_var self.lsm_lat_dim = lsm_lat_dim self.lsm_lon_dim = lsm_lon_dim self.lsm_time_dim = lsm_time_dim self.output_timezone = output_timezone self.pangaea_loader = pangaea_loader self._xd = None # load in GSSHA model files project_manager, db_sessionmaker = \ dbt.get_project_session(path.splitext(self.gssha_project_file_name)[0], self.gssha_project_folder) db_session = db_sessionmaker() project_manager.read(directory=self.gssha_project_folder, filename=self.gssha_project_file_name, session=db_session) self.gssha_grid = project_manager.getGrid() if self.output_timezone is None: self.output_timezone = project_manager.timezone db_session.close() # load in modeling extent self._load_modeling_extent() @property def xd(self): """get xarray dataset file handle to LSM files""" if self._xd is None: path_to_lsm_files = path.join(self.lsm_input_folder_path, self.lsm_search_card) self._xd = pa.open_mfdataset(path_to_lsm_files, lat_var=self.lsm_lat_var, lon_var=self.lsm_lon_var, time_var=self.lsm_time_var, lat_dim=self.lsm_lat_dim, lon_dim=self.lsm_lon_dim, time_dim=self.lsm_time_dim, loader=self.pangaea_loader) self.lsm_time_dim = 'time' self.lsm_time_var = 'time' return self._xd def _set_subset_indices(self, y_min, y_max, x_min, x_max): """ load subset based on extent """ y_coords, x_coords = self.xd.lsm.coords dx = self.xd.lsm.dx dy = self.xd.lsm.dy lsm_y_indices_from_y, lsm_x_indices_from_y = \ np.where((y_coords >= (y_min - 2*dy)) & (y_coords <= (y_max + 2*dy))) lsm_y_indices_from_x, lsm_x_indices_from_x = \ np.where((x_coords >= (x_min - 2*dx)) & (x_coords <= (x_max + 2*dx))) lsm_y_indices = np.intersect1d(lsm_y_indices_from_y, lsm_y_indices_from_x) lsm_x_indices = np.intersect1d(lsm_x_indices_from_y, lsm_x_indices_from_x) self.xslice = slice(np.amin(lsm_x_indices), np.amax(lsm_x_indices)+1) self.yslice = slice(np.amin(lsm_y_indices), np.amax(lsm_y_indices)+1) def _load_modeling_extent(self): """ # Get extent from GSSHA Grid in LSM coordinates # Determine range within LSM Grid """ #### # STEP 1: Get extent from GSSHA Grid in LSM coordinates #### # reproject GSSHA grid and get bounds min_x, max_x, min_y, max_y = self.gssha_grid.bounds(as_projection=self.xd.lsm.projection) # set subset indices self._set_subset_indices(min_y, max_y, min_x, max_x) def _time_to_string(self, dt, conversion_string="%Y %m %d %H %M"): """ This converts a UTC time integer to a string """ if self.output_timezone is not None: dt = dt.replace(tzinfo=utc) \ .astimezone(self.output_timezone) return dt.strftime(conversion_string) def _load_lsm_data(self, data_var, conversion_factor=1, calc_4d_method=None, calc_4d_dim=None, time_step=None): """ This extracts the LSM data from a folder of netcdf files """ data = self.xd.lsm.getvar(data_var, yslice=self.yslice, xslice=self.xslice, calc_4d_method=calc_4d_method, calc_4d_dim=calc_4d_dim) if isinstance(time_step, datetime): data = data.loc[{self.lsm_time_dim: [pd.to_datetime(time_step)]}] elif time_step is not None: data = data[{self.lsm_time_dim: [time_step]}] data = data.fillna(0) data.values *= conversion_factor return data def _load_converted_gssha_data_from_lsm(self, gssha_var, lsm_var, load_type, time_step=None): """ This function loads data from LSM and converts to GSSHA format """ if 'radiation' in gssha_var: conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] if gssha_var.startswith('direct_radiation') and not isinstance(lsm_var, basestring): # direct_radiation = (1-DIFFUSIVE_FRACION)*global_radiation global_radiation_var, diffusive_fraction_var = lsm_var global_radiation = self._load_lsm_data(global_radiation_var, conversion_factor) diffusive_fraction = self._load_lsm_data(diffusive_fraction_var) if gssha_var.endswith("cc"): diffusive_fraction /= 100.0 self.data = ((1-diffusive_fraction)*global_radiation) elif gssha_var.startswith('diffusive_radiation') and not isinstance(lsm_var, basestring): # diffusive_radiation = DIFFUSIVE_FRACION*global_radiation global_radiation_var, diffusive_fraction_var = lsm_var global_radiation = self._load_lsm_data(global_radiation_var, conversion_factor) diffusive_fraction = self._load_lsm_data(diffusive_fraction_var) if gssha_var.endswith("cc"): diffusive_fraction /= 100 self.data = (diffusive_fraction*global_radiation) elif isinstance(lsm_var, basestring): self.data = self._load_lsm_data(lsm_var, self.netcdf_attributes[gssha_var]['conversion_factor'][load_type]) else: raise ValueError("Invalid LSM variable ({0}) for GSSHA variable {1}".format(lsm_var, gssha_var)) elif gssha_var == 'relative_humidity' and not isinstance(lsm_var, str): ##CONVERSION ASSUMPTIONS: ##1) These equations are for liquid water and are less accurate below 0 deg C ##2) Not adjusting the pressure for the fact that the temperature ## and moisture measurements are given at 2 m AGL. ##Neither of these should have a significant impact on RH values ##given the uncertainty in the model values themselves. specific_humidity_var, pressure_var, temperature_var = lsm_var specific_humidity = self._load_lsm_data(specific_humidity_var) pressure = self._load_lsm_data(pressure_var) temperature = self._load_lsm_data(temperature_var) ##To compute the relative humidity at 2m, ##given T, Q (water vapor mixing ratio) at 2 m and PSFC (surface pressure): ##Es(saturation vapor pressure in Pa) ##Qs(saturation mixing ratio)=(0.622*es)/(PSFC-es) ##RH = 100*Q/Qs es = esat(temperature) self.data = 100 * specific_humidity/((0.622*es)/(pressure-es)) elif gssha_var == 'relative_humidity_dew': # https://software.ecmwf.int/wiki/display/CKB/Do+ERA+datasets+contain+parameters+for+near-surface+humidity # temperature in Kelvin # RH = 100 * es(Td)/es(T) dew_point_temp_var, temperature_var = lsm_var dew_point_temp = self._load_lsm_data(dew_point_temp_var) temperature = self._load_lsm_data(temperature_var) self.data = 100 * esat(dew_point_temp)/esat(temperature) elif gssha_var == 'wind_speed' and not isinstance(lsm_var, str): # WRF: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables u_vector_var, v_vector_var = lsm_var conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] u_vector = self._load_lsm_data(u_vector_var, conversion_factor) v_vector = self._load_lsm_data(v_vector_var, conversion_factor) self.data = (np.sqrt(u_vector ** 2 + v_vector ** 2)) elif 'precipitation' in gssha_var and not isinstance(lsm_var, str): # WRF: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables rain_c_var, rain_nc_var = lsm_var conversion_factor = self.netcdf_attributes[gssha_var]['conversion_factor'][load_type] rain_c = self._load_lsm_data(rain_c_var, conversion_factor) rain_nc = self._load_lsm_data(rain_nc_var, conversion_factor) self.data = rain_c + rain_nc else: self.data = self._load_lsm_data(lsm_var, self.netcdf_attributes[gssha_var]['conversion_factor'][load_type], self.netcdf_attributes[gssha_var].get('calc_4d_method'), self.netcdf_attributes[gssha_var].get('calc_4d_dim'), time_step=time_step) conversion_function = self.netcdf_attributes[gssha_var].get('conversion_function') if conversion_function: self.data.values = self.netcdf_attributes[gssha_var]['conversion_function'][load_type](self.data.values) if 'precipitation' in gssha_var: # NOTE: Precipitation is converted from mm/s to mm/hr # with the conversion factor when it is a rate. if 'units' in self.data.attrs: if self.data.attrs['units'] == 'm': # convert from m to mm self.data.values *= 1000 if load_type == 'ascii' or load_type == 'netcdf': # CONVERT TO INCREMENTAL if gssha_var == 'precipitation_acc': self.data.values = np.lib.pad(self.data.diff(self.lsm_time_dim).values, ((1, 0), (0, 0), (0, 0)), 'constant', constant_values=0) # CONVERT PRECIP TO RADAR (mm/hr) IN FILE if gssha_var == 'precipitation_inc' or gssha_var == 'precipitation_acc': # convert from mm to mm/hr time_step_hours = np.diff(self.xd[self.lsm_time_var].values)[0]/np.timedelta64(1, 'h') self.data.values /= time_step_hours # convert to dataset gssha_data_var_name = self.netcdf_attributes[gssha_var]['gssha_name'] self.data = self.data.to_dataset(name=gssha_data_var_name) self.data = self.data.rename( { self.lsm_lon_dim: 'x', self.lsm_lat_dim: 'y', self.lsm_lon_var: 'lon', self.lsm_lat_var: 'lat' } ) self.data.attrs = {'proj4': self.xd.lsm.projection.ExportToProj4()} self.data[gssha_data_var_name].attrs = { 'standard_name': self.netcdf_attributes[gssha_var]['standard_name'], 'long_name': self.netcdf_attributes[gssha_var]['long_name'], 'units': self.netcdf_attributes[gssha_var]['units'][load_type], } def _check_lsm_input(self, data_var_map_array): """ This function checks the input var map array to ensure the required input variables exist """ REQUIRED_HMET_VAR_LIST = ['Prcp', 'Pres', 'Temp', 'Clod', 'RlHm', 'Drad', 'Grad', 'WndS'] # make sure all required variables exist given_hmet_var_list = [] for gssha_data_var, lsm_data_var in data_var_map_array: gssha_data_hmet_name = self.netcdf_attributes[gssha_data_var]['hmet_name'] if gssha_data_hmet_name in given_hmet_var_list: raise ValueError("Duplicate parameter for HMET variable {0}" .format(gssha_data_hmet_name)) else: given_hmet_var_list.append(gssha_data_hmet_name) for REQUIRED_HMET_VAR in REQUIRED_HMET_VAR_LIST: if REQUIRED_HMET_VAR not in given_hmet_var_list: raise ValueError("ERROR: HMET param is required to continue " "{0} ...".format(REQUIRED_HMET_VAR)) def _resample_data(self, gssha_var): """ This function resamples the data to match the GSSHA grid IN TESTING MODE """ self.data = self.data.lsm.resample(gssha_var, self.gssha_grid) @staticmethod def _get_calc_function(gssha_data_var): """ This retrives the calc function to convert to hourly data for the various HMET parameters """ calc_function = 'mean' if gssha_data_var == 'precipitation_inc' or \ gssha_data_var == 'precipitation_acc': # acc computed as inc previously calc_function = 'sum' return calc_function def _convert_data_to_hourly(self, gssha_data_var): """ This function converts the data to hourly data and then puts it into the data_np_array USED WHEN GENERATING HMET DATA ONLY """ time_step_hours = np.diff(self.data.time)[0]/np.timedelta64(1, 'h') calc_function = self._get_calc_function(gssha_data_var) resampled_data = None if time_step_hours < 1: resampled_data = self.data.resample('1H', dim='time', how=calc_function, keep_attrs=True) elif time_step_hours > 1: resampled_data = self.data.resample('1H', dim='time', keep_attrs=True) for time_idx in range(self.data.dims['time']): if time_idx+1 < self.data.dims['time']: # interpolate between time steps start_time = self.data.time[time_idx].values end_time = self.data.time[time_idx+1].values slope_timeslice = slice(str(start_time), str(end_time)) slice_size = resampled_data.sel(time=slope_timeslice).dims['time'] - 1 first_timestep = resampled_data.sel(time=str(start_time))[gssha_data_var] slope = (resampled_data.sel(time=str(end_time))[gssha_data_var] - first_timestep)/float(slice_size) data_timeslice = slice(str(start_time+np.timedelta64(1, 'm')), str(end_time-np.timedelta64(1, 'm'))) data_subset = resampled_data.sel(time=data_timeslice) for xidx in range(data_subset.dims['time']): data_subset[gssha_data_var][xidx] = first_timestep + slope * (xidx+1) else: # just continue to repeat the timestep start_time = self.data.time[time_idx].values end_time = resampled_data.time[-1].values if end_time > start_time: first_timestep = resampled_data.sel(time=str(start_time))[gssha_data_var] data_timeslice = slice(str(start_time), str(end_time)) data_subset = resampled_data.sel(time=data_timeslice) slice_size = 1 if calc_function == "mean": slice_size = data_subset.dims['time'] for xidx in range(data_subset.dims['time']): data_subset[gssha_data_var][xidx] = first_timestep/float(slice_size) if resampled_data is not None: # make sure coordinates copied if self.data.lsm.x_var not in resampled_data.coords: resampled_data.coords[self.data.lsm.x_var] = self.data.coords[self.data.lsm.x_var] if self.data.lsm.y_var not in resampled_data.coords: resampled_data.coords[self.data.lsm.y_var] = self.data.coords[self.data.lsm.y_var] self.data = resampled_data def lsm_var_to_grid(self, out_grid_file, lsm_data_var, gssha_convert_var, time_step=0, ascii_format='grass'): """This function takes array data and writes out a GSSHA ascii grid. Parameters: out_grid_file(str): Location of ASCII file to generate. lsm_data_var(str or list): This is the variable name for precipitation in the LSM files. gssha_convert_var(str): This is the name of the variable used in GRIDtoGSSHA to convert data with. time_step(Optional[int, datetime]): Time step in file to export data from. Default is the initial time step. ascii_format(Optional[str]): Default is 'grass' for GRASS ASCII. If you want Arc ASCII, use 'arc'. GRIDtoGSSHA Example: .. code:: python from gsshapy.grid import GRIDtoGSSHA # STEP 1: Initialize class g2g = GRIDtoGSSHA(gssha_project_folder='/path/to/gssha_project', gssha_project_file_name='gssha_project.prj', lsm_input_folder_path='/path/to/wrf-data', lsm_search_card='*.nc', lsm_lat_var='XLAT', lsm_lon_var='XLONG', lsm_time_var='Times', lsm_lat_dim='south_north', lsm_lon_dim='west_east', lsm_time_dim='Time', ) # STEP 2: Generate init snow grid (from LSM) # NOTE: Card is INIT_SWE_DEPTH g2g.lsm_var_to_grid(out_grid_file="E:/GSSHA/swe_grid.asc", lsm_data_var='SWE_inst', gssha_convert_var='swe') """ self._load_converted_gssha_data_from_lsm(gssha_convert_var, lsm_data_var, 'grid', time_step) gssha_data_var_name = self.netcdf_attributes[gssha_convert_var]['gssha_name'] self.data = self.data.lsm.to_projection(gssha_data_var_name, projection=self.gssha_grid.projection) self._resample_data(gssha_data_var_name) arr_grid = ArrayGrid(in_array=self.data[gssha_data_var_name].values, wkt_projection=self.data.lsm.projection.ExportToWkt(), geotransform=self.data.lsm.geotransform) if ascii_format.strip().lower() == 'grass': arr_grid.to_grass_ascii(out_grid_file) elif ascii_format.strip().lower() == 'arc': arr_grid.to_arc_ascii(out_grid_file) else: raise ValueError("Invalid argument for 'ascii_format'. Only 'grass' or 'arc' allowed.") def lsm_precip_to_gssha_precip_gage(self, out_gage_file, lsm_data_var, precip_type="RADAR"): """This function takes array data and writes out a GSSHA precip gage file. See: http://www.gsshawiki.com/Precipitation:Spatially_and_Temporally_Varied_Precipitation .. note:: GSSHA CARDS: * PRECIP_FILE card with path to gage file * RAIN_INV_DISTANCE or RAIN_THIESSEN Parameters: out_gage_file(str): Location of gage file to generate. lsm_data_var(str or list): This is the variable name for precipitation in the LSM files. If there is a string, it assumes a single variable. If it is a list, then it assumes the first element is the variable name for RAINC and the second is for RAINNC (see: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables). precip_type(Optional[str]): This tells if the data is the ACCUM, RADAR, or GAGES data type. Default is 'RADAR'. GRIDtoGSSHA Example: .. code:: python from gsshapy.grid import GRIDtoGSSHA #STEP 1: Initialize class g2g = GRIDtoGSSHA(gssha_project_folder='/path/to/gssha_project', gssha_project_file_name='gssha_project.prj', lsm_input_folder_path='/path/to/wrf-data', lsm_search_card='*.nc', lsm_lat_var='XLAT', lsm_lon_var='XLONG', lsm_time_var='Times', lsm_lat_dim='south_north', lsm_lon_dim='west_east', lsm_time_dim='Time', ) #STEP 2: Generate GAGE data (from WRF) g2g.lsm_precip_to_gssha_precip_gage(out_gage_file="E:/GSSHA/wrf_gage_1.gag", lsm_data_var=['RAINC', 'RAINNC'], precip_type='ACCUM') HRRRtoGSSHA Example: .. code:: python from gsshapy.grid import HRRRtoGSSHA #STEP 1: Initialize class h2g = HRRRtoGSSHA( #YOUR INIT PARAMETERS HERE ) #STEP 2: Generate GAGE data g2g.lsm_precip_to_gssha_precip_gage(out_gage_file="E:/GSSHA/hrrr_gage_1.gag", lsm_data_var='prate', precip_type='RADAR') """ VALID_TYPES = ["ACCUM", "RADAR", "GAGES"] #NOTE: "RATES" currently not supported if precip_type not in VALID_TYPES: raise ValueError("ERROR: {0} is not a valid type. Valid types include: {1}".format(type, VALID_TYPES)) gssha_precip_type = "precipitation_inc" if precip_type == "ACCUM": gssha_precip_type = "precipitation_acc" elif precip_type == "RADAR": gssha_precip_type = "precipitation_rate" self._load_converted_gssha_data_from_lsm(gssha_precip_type, lsm_data_var, 'gage') gssha_data_var_name = self.netcdf_attributes[gssha_precip_type]['gssha_name'] self.data = self.data.lsm.to_projection(gssha_data_var_name, projection=self.gssha_grid.projection) #LOOP THROUGH TIME with io_open(out_gage_file, 'w') as gage_file: if self.data.dims['time']>1: gage_file.write(u"EVENT \"Event of {0} to {1}\"\n".format(self._time_to_string(self.data.lsm.datetime[0]), self._time_to_string(self.data.lsm.datetime[-1]))) else: gage_file.write(u"EVENT \"Event of {0}\"\n".format(self._time_to_string(self.data.lsm.datetime[0]))) gage_file.write(u"NRPDS {0}\n".format(self.data.dims['time'])) gage_file.write(u"NRGAG {0}\n".format(self.data.dims['x']*self.data.dims['y'])) y_coords, x_coords = self.data.lsm.coords for y_idx in range(self.data.dims['y']): for x_idx in range(self.data.dims['x']): coord_idx = y_idx*self.data.dims['x'] + x_idx gage_file.write(u"COORD {0} {1} \"center of pixel #{2}\"\n".format(x_coords[y_idx, x_idx], y_coords[y_idx, x_idx], coord_idx)) for time_idx in range(self.data.dims['time']): date_str = self._time_to_string(self.data.lsm.datetime[time_idx]) data_str = " ".join(self.data[gssha_data_var_name][time_idx].values.ravel().astype(str)) gage_file.write(u"{0} {1} {2}\n".format(precip_type, date_str, data_str)) def _write_hmet_card_file(self, hmet_card_file_path, main_output_folder): """ This function writes the HMET_ASCII card file with ASCII file list for input to GSSHA """ with io_open(hmet_card_file_path, 'w') as out_hmet_list_file: for hour_time in self.data.lsm.datetime: date_str = self._time_to_string(hour_time, "%Y%m%d%H") out_hmet_list_file.write(u"{0}\n".format(path.join(main_output_folder, date_str))) def lsm_data_to_arc_ascii(self, data_var_map_array, main_output_folder=""): """Writes extracted data to Arc ASCII file format into folder to be read in by GSSHA. Also generates the HMET_ASCII card file for GSSHA in the folder named 'hmet_file_list.txt'. .. warning:: For GSSHA 6 Versions, for GSSHA 7 or greater, use lsm_data_to_subset_netcdf. .. note:: GSSHA CARDS: * HMET_ASCII pointing to the hmet_file_list.txt * LONG_TERM (see: http://www.gsshawiki.com/Long-term_Simulations:Global_parameters) Parameters: data_var_map_array(list): Array to map the variables in the LSM file to the matching required GSSHA data. main_output_folder(Optional[str]): This is the path to place the generated ASCII files. If not included, it defaults to os.path.join(self.gssha_project_folder, "hmet_ascii_data"). GRIDtoGSSHA Example: .. code:: python from gsshapy.grid import GRIDtoGSSHA #STEP 1: Initialize class g2g = GRIDtoGSSHA(gssha_project_folder='/path/to/gssha_project', gssha_project_file_name='gssha_project.prj', lsm_input_folder_path='/path/to/wrf-data', lsm_search_card='*.nc', lsm_lat_var='XLAT', lsm_lon_var='XLONG', lsm_time_var='Times', lsm_lat_dim='south_north', lsm_lon_dim='west_east', lsm_time_dim='Time', ) #STEP 2: Generate ASCII DATA #SEE: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables #EXAMPLE DATA ARRAY 1: WRF GRID DATA BASED data_var_map_array = [ ['precipitation_acc', ['RAINC', 'RAINNC']], ['pressure', 'PSFC'], ['relative_humidity', ['Q2', 'PSFC', 'T2']], #MUST BE IN ORDER: ['SPECIFIC HUMIDITY', 'PRESSURE', 'TEMPERATURE'] ['wind_speed', ['U10', 'V10']], #['U_VELOCITY', 'V_VELOCITY'] ['direct_radiation', ['SWDOWN', 'DIFFUSE_FRAC']], #MUST BE IN ORDER: ['GLOBAL RADIATION', 'DIFFUSIVE FRACTION'] ['diffusive_radiation', ['SWDOWN', 'DIFFUSE_FRAC']], #MUST BE IN ORDER: ['GLOBAL RADIATION', 'DIFFUSIVE FRACTION'] ['temperature', 'T2'], ['cloud_cover' , 'CLDFRA'], #'CLOUD_FRACTION' ] g2g.lsm_data_to_arc_ascii(data_var_map_array) HRRRtoGSSHA Example: .. code:: python from gsshapy.grid import HRRRtoGSSHA #STEP 1: Initialize class h2g = HRRRtoGSSHA( #YOUR INIT PARAMETERS HERE ) #STEP 2: Generate ASCII DATA #EXAMPLE DATA ARRAY 1: HRRR GRID DATA BASED data_var_map_array = [ ['precipitation_rate', 'prate'], ['pressure', 'sp'], ['relative_humidity', '2r'], ['wind_speed', ['10u', '10v']], ['direct_radiation_cc', ['dswrf', 'tcc']], ['diffusive_radiation_cc', ['dswrf', 'tcc']], ['temperature', 't'], ['cloud_cover_pc' , 'tcc'], ] h2g.lsm_data_to_arc_ascii(data_var_map_array) """ self._check_lsm_input(data_var_map_array) if not main_output_folder: main_output_folder = path.join(self.gssha_project_folder, "hmet_ascii_data") try: mkdir(main_output_folder) except OSError: pass log.info("Outputting HMET data to {0}".format(main_output_folder)) #PART 2: DATA for data_var_map in data_var_map_array: gssha_data_var, lsm_data_var = data_var_map gssha_data_hmet_name = self.netcdf_attributes[gssha_data_var]['hmet_name'] gssha_data_var_name = self.netcdf_attributes[gssha_data_var]['gssha_name'] self._load_converted_gssha_data_from_lsm(gssha_data_var, lsm_data_var, 'ascii') self._convert_data_to_hourly(gssha_data_var_name) self.data = self.data.lsm.to_projection(gssha_data_var_name, projection=self.gssha_grid.projection) for time_idx in range(self.data.dims['time']): arr_grid = ArrayGrid(in_array=self.data[gssha_data_var_name][time_idx].values, wkt_projection=self.data.lsm.projection.ExportToWkt(), geotransform=self.data.lsm.geotransform, nodata_value=-9999) date_str = self._time_to_string(self.data.lsm.datetime[time_idx], "%Y%m%d%H") ascii_file_path = path.join(main_output_folder, "{0}_{1}.asc".format(date_str, gssha_data_hmet_name)) arr_grid.to_arc_ascii(ascii_file_path) #PART 3: HMET_ASCII card input file with ASCII file list hmet_card_file_path = path.join(main_output_folder, 'hmet_file_list.txt') self._write_hmet_card_file(hmet_card_file_path, main_output_folder) def lsm_data_to_subset_netcdf(self, netcdf_file_path, data_var_map_array, resample_method=None): """Writes extracted data to the NetCDF file format .. todo:: NetCDF output data time is always in UTC time. Need to convert to local timezone for GSSHA. .. warning:: The NetCDF GSSHA file is only supported in GSSHA 7 or greater. .. note:: GSSHA CARDS: * HMET_NETCDF pointing to the netcdf_file_path * LONG_TERM (see: http://www.gsshawiki.com/Long-term_Simulations:Global_parameters) Parameters: netcdf_file_path(string): Path to output the NetCDF file for GSSHA. data_var_map_array(list): Array to map the variables in the LSM file to the matching required GSSHA data. resample_method(Optional[gdalconst]): Resample input method to match hmet data to GSSHA grid for NetCDF output. Default is None. GRIDtoGSSHA Example: .. code:: python from gsshapy.grid import GRIDtoGSSHA #STEP 1: Initialize class g2g = GRIDtoGSSHA(gssha_project_folder='/path/to/gssha_project', gssha_project_file_name='gssha_project.prj', lsm_input_folder_path='/path/to/wrf-data', lsm_search_card='*.nc', lsm_lat_var='XLAT', lsm_lon_var='XLONG', lsm_time_var='Times', lsm_lat_dim='south_north', lsm_lon_dim='west_east', lsm_time_dim='Time', ) #STEP 2: Generate NetCDF DATA #EXAMPLE DATA ARRAY 1: WRF GRID DATA BASED #SEE: http://www.meteo.unican.es/wiki/cordexwrf/OutputVariables data_var_map_array = [ ['precipitation_acc', ['RAINC', 'RAINNC']], ['pressure', 'PSFC'], ['relative_humidity', ['Q2', 'PSFC', 'T2']], #MUST BE IN ORDER: ['SPECIFIC HUMIDITY', 'PRESSURE', 'TEMPERATURE'] ['wind_speed', ['U10', 'V10']], #['U_VELOCITY', 'V_VELOCITY'] ['direct_radiation', ['SWDOWN', 'DIFFUSE_FRAC']], #MUST BE IN ORDER: ['GLOBAL RADIATION', 'DIFFUSIVE FRACTION'] ['diffusive_radiation', ['SWDOWN', 'DIFFUSE_FRAC']], #MUST BE IN ORDER: ['GLOBAL RADIATION', 'DIFFUSIVE FRACTION'] ['temperature', 'T2'], ['cloud_cover' , 'CLDFRA'], #'CLOUD_FRACTION' ] g2g.lsm_data_to_subset_netcdf("E/GSSHA/gssha_wrf_data.nc", data_var_map_array) HRRRtoGSSHA Example: .. code:: python from gsshapy.grid import HRRRtoGSSHA #STEP 1: Initialize class h2g = HRRRtoGSSHA( #YOUR INIT PARAMETERS HERE ) #STEP 2: Generate NetCDF DATA #EXAMPLE DATA ARRAY 2: HRRR GRID DATA BASED data_var_map_array = [ ['precipitation_rate', 'prate'], ['pressure', 'sp'], ['relative_humidity', '2r'], ['wind_speed', ['10u', '10v']], ['direct_radiation_cc', ['dswrf', 'tcc']], ['diffusive_radiation_cc', ['dswrf', 'tcc']], ['temperature', 't'], ['cloud_cover_pc' , 'tcc'], ] h2g.lsm_data_to_subset_netcdf("E:/GSSHA/gssha_wrf_data.nc", data_var_map_array) """ self._check_lsm_input(data_var_map_array) output_datasets = [] #DATA for gssha_var, lsm_var in data_var_map_array: if gssha_var in self.netcdf_attributes: self._load_converted_gssha_data_from_lsm(gssha_var, lsm_var, 'netcdf') #previously just added data, but needs to be hourly gssha_data_var_name = self.netcdf_attributes[gssha_var]['gssha_name'] self._convert_data_to_hourly(gssha_data_var_name) if resample_method: self._resample_data(gssha_data_var_name) else: self.data = self.data.lsm.to_projection(gssha_data_var_name, projection=self.gssha_grid.projection) output_datasets.append(self.data) else: raise ValueError("Invalid GSSHA variable name: {0} ...".format(gssha_var)) output_dataset = xr.merge(output_datasets) #add global attributes output_dataset.attrs['Convention'] = 'CF-1.6' output_dataset.attrs['title'] = 'GSSHA LSM Input' output_dataset.attrs['history'] = 'date_created: {0}'.format(datetime.utcnow()) output_dataset.attrs['proj4'] = self.data.attrs['proj4'] output_dataset.attrs['geotransform'] = self.data.attrs['geotransform'] output_dataset.to_netcdf(netcdf_file_path)
bsd-3-clause
Clyde-fare/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <[email protected]> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
ndingwall/scikit-learn
benchmarks/bench_glm.py
31
1478
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model if __name__ == '__main__': import matplotlib.pyplot as plt n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = (datetime.now() - start).total_seconds() start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = (datetime.now() - start).total_seconds() start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = (datetime.now() - start).total_seconds() plt.figure('scikit-learn GLM benchmark results') plt.xlabel('Dimensions') plt.ylabel('Time (s)') plt.plot(dimensions, time_ridge, color='r') plt.plot(dimensions, time_ols, color='g') plt.plot(dimensions, time_lasso, color='b') plt.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') plt.axis('tight') plt.show()
bsd-3-clause
Berreman4x4/Berreman4x4
examples/TIR.py
1
1940
#!/usr/bin/python # encoding: utf-8 # Berreman4x4 example # Author: O. Castany # Total Internal Reflection # Glass / Air import numpy, Berreman4x4 from Berreman4x4 import c, pi from numpy import exp, cos, arcsin, real, sqrt import matplotlib.pyplot as pyplot print("\n*** Glass / Air ***\n") ############################################################################ # Structure definition # Refractive indices n_f = 1.5 n_b = 1.0 # Materials: glass = Berreman4x4.IsotropicNonDispersiveMaterial(n_f) air = Berreman4x4.IsotropicNonDispersiveMaterial(n_b) # Layer and half-spaces: front = Berreman4x4.IsotropicHalfSpace(glass) back = Berreman4x4.IsotropicHalfSpace(air) # Structure: s = Berreman4x4.Structure(front, [], back) # Wavelength and wavenumber: lbda = 1e-6 k0 = 2*pi/lbda # Variation of incidence angle Phi_list = numpy.linspace(0, pi/2*0.999) Kx = front.get_Kx_from_Phi(Phi_list) ############################################################################ # Calculation with Berreman4x4 data = Berreman4x4.DataList([s.evaluate(kx,k0) for kx in Kx]) R_p = data.get('R_pp') R_s = data.get('R_ss') T_p = data.get('T_pp') T_s = data.get('T_ss') ############################################################################ # Plotting fig = pyplot.figure(figsize=(12., 6.)) pyplot.rcParams['axes.prop_cycle'] = pyplot.cycler('color', 'bgrcbg') ax = fig.add_axes([0.1, 0.1, 0.7, 0.8]) y = numpy.vstack((R_s,R_p)).T legend = ("R_s","R_p") # lines = ax.plot(Kx, y) lines = ax.plot(Phi_list*180/pi, y) ax.legend(lines, legend, loc='upper left', bbox_to_anchor=(1.05, 1), borderaxespad=0.) ax.set_title("FTIR: Glass / Air") ax.set_xlabel(u"Angle of incidence (°)") ax.set_ylabel(r"Reflexion coefficients $R$") ax.set_ylim(top=1.05) try: __IPYTHON__ # Are we using ipython? pyplot.ion() # Turn on interactive mode except NameError: pass # s.drawStructure() pyplot.show()
gpl-3.0
KT12/keepintouch
accesslinkedin.py
1
2248
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ # Credentials stored in .env file in same folder import linkedin import requests import oauth2 as oauth from urllib.parse import urlparse from dotenv import load_dotenv import os from xml.etree import ElementTree import xmltodict import json from pandas.io.json import json_normalize print('Rember to use the correct directory for your machine') os.chdir('repos/keepint') # Load LinkedIn credentials load_dotenv('.env') KEY = os.environ.get('CLIENT_ID') SECRET = os.environ.get('CLIENT_SECRET') URI = 'http%3A%2F%2Fwww.honda.com.br' AUTH_URL = 'https://www.linkedin.com/oauth/v2/authorization?response_type=code&client_id=' + \ KEY + '&redirect_uri=' + URI + '&state=987654321&scope=r_basicprofile' # Code originally from URI CODE = os.environ.get('ACCESS_CODE') URL = 'https://www.linkedin.com/oauth/v2/accessToken?grant_type=authorization_code&code=' + CODE + \ '&redirect_uri=' + URI + '&client_id=' + KEY + '&client_secret=' + SECRET # Token originally from LinkedIn JSON TOKEN = os.environ.get('ACCESS_TOKEN') XML_URL = "https://api.linkedin.com/v1/people/~:(id,first-name,last-name,headline,picture-url,industry,summary,specialties,positions:(id,title,summary,start-date,end-date,is-current,company:(id,name,type,size,industry,ticker)),educations:(id,school-name,field-of-study,start-date,end-date,degree,activities,notes),associations,interests,num-recommenders,date-of-birth,publications:(id,title,publisher:(name),authors:(id,name),date,url,summary),patents:(id,title,summary,number,status:(id,name),office:(name),inventors:(id,name),date,url),languages:(id,language:(name),proficiency:(level,name)),skills:(id,skill:(name)),certifications:(id,name,authority:(name),number,start-date,end-date),courses:(id,name,number),recommendations-received:(id,recommendation-type,recommendation-text,recommender),honors-awards,three-current-positions,three-past-positions,volunteer)?oauth2_access_token=" + TOKEN XML_response = requests.get(XML_URL) tree = ElementTree.fromstring(XML_response.content) XML_data = xmltodict.parse(XML_response.content) person_df = json_normalize(XML_data) idx = person_df.T.index.values person_df.to_csv('person_data.csv')
mit
pombredanne/bokeh
examples/charts/server/interactive_excel.py
6
3202
import xlwings as xw import pandas as pd from pandas.util.testing import assert_frame_equal from bokeh.client import push_session from bokeh.charts import Line, Bar from bokeh.charts.operations import blend from bokeh.models import Paragraph from bokeh.io import curdoc, hplot, vplot wb = xw.Workbook() # Creates a connection with a new workbook # write example data to notebook xw.Range('A1').value = pd.DataFrame( { 'Italy':[3016.17,3114.73, 3128.31, 3137.38, 3089.51, 3016.32, 2942.62, 2735.05, 2813.51], 'Japan':[4004.67, 3963.47, 4089.39, 4073.75, 4068.52, 4031.99, 3880.45, 3700.22, 3883.046557], 'Brazil':[1084.48, 1075.76, 1092.31, 1096.13, 1140.61, 1158.39, 1186.27, 1240.22, 1297.91], 'USA':[8056.55, 7825.18, 7838.52, 7788.32, 7875.28, 7840.53, 7691.69, 7749.23, 7481.02], 'year':[2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008], }) # read back to make sure we have same data format.. data = xw.Range('A1').table.value energy_per_capita = pd.DataFrame(data[1:], columns=data[0]) countries = ['Brazil', 'Italy', 'USA', 'Japan'] def create_line(data): """ Convenience function to create a new line chart with the right args """ return Line(data, x='year', y=countries, legend=True, width=1400, height=300, ylabel='Energy use per capita', palette=['purple', 'green', 'blue', 'pink']) def create_bar(data): op = blend(*countries, labels_name='countries', name='energy') return Bar(data, label='year', values=op, color='countries', group='countries', width=1400, height=600, ylabel='Energy use per capita', palette=['purple', 'green', 'blue', 'pink'], legend=True) def data_changed(old): """ Returns a new dataframe if data has changed on the excel workbook """ data = xw.Range('A1').table.value df = pd.DataFrame(data[1:], columns=data[0]) try: assert_frame_equal(df, old) return None except AssertionError: return df # open a session to keep our local document in sync with server session = push_session(curdoc()) def update(): global layout global energy_per_capita new_df = data_changed(energy_per_capita) if new_df is not None: energy_per_capita = new_df plots_box.children[0] = create_line(energy_per_capita) plots_box.children[1] = create_bar(energy_per_capita) line = create_line(energy_per_capita) bar = create_bar(energy_per_capita) desc1 = Paragraph(text=""" This example shows live integration between bokeh server and Excel using XLWings.""") desc2 = Paragraph(text=""" *** YOU MUST HAVE EXCEL and XLWINGS INSTALLED ON YOUR MACHINE FOR IT TO WORK *** """) desc3 = Paragraph(text=""" It opens this plots window and an excel spreadsheet instance with the values being plotted. When user changes the values on the excel spreadsheet the plots will be updated accordingly. It's not required to save the spreadsheet for the plots to update. """) plots_box = hplot(line, bar) layout = vplot(desc1, desc2, desc3, plots_box) curdoc().add_root(layout) curdoc().add_periodic_callback(update, 500) session.show() # open the document in a browser session.loop_until_closed() # run forever
bsd-3-clause
marcocaccin/scikit-learn
examples/classification/plot_classification_probability.py
242
2624
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial' )} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
bmcfee/gordon
gordon/io/features.py
1
11661
# Copyright (C) 2010 Ron Weiss # # This file is part of Gordon. # # Gordon is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Gordon is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Gordon. If not, see <http://www.gnu.org/licenses/>. """Utility functions for managing gordon features.""" import itertools import os import warnings import matplotlib.pyplot as plt import numpy as np import tables warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) class CachedFeatureFile(object): """Interface to an HDF5 file containing cached features. Features are indexed using a gordon FeatureExtractor object and an optional set of keyword arguments. """ def __init__(self, filename, mode='r'): self.filename = filename self.open(mode) def open(self, mode='r'): self.h5file = tables.openFile(self.filename, mode=mode) def close(self): self.h5file.close() # The contents of the file are organized using a tree structure of # the form: "/FeatureExtractorID#/kwargs" # # This allows a single file to store the output of multiple # feature extractors (on a single track), using any number of # different settings. kwargs is a string representing the # arguments passed in to Track.feature('name', **kwargs), i.e. a # specific configuration of the feature extractor. @staticmethod def _args_to_string(kwargs): if kwargs: s = ''.join('%s%s' % (k,v) for k,v in sorted(kwargs.iteritems())) else: s = 'None' return s @staticmethod def _get_hdf5_path(feature_extractor, kwargs): groupname = 'FeatureExtractor%d' % feature_extractor.id arrayname = CachedFeatureFile._args_to_string(kwargs) return groupname, arrayname def has_features(self, feature_extractor, kwargs=None): """Check if the file contains a set of features. Return True if the file contains features extracted using the given FeatureExtractor object with the given kwargs.""" groupname, arrayname = self._get_hdf5_path(feature_extractor, kwargs) try: group = self.h5file.getNode(self.h5file.root, groupname) array = self.h5file.getNode(group, arrayname) # Sanity check. assert array.attrs.feature_extractor_id == feature_extractor.id assert array.attrs.kwargs == kwargs return True except tables.NoSuchNodeError: try: # Check if the cached feature is a tuple. group = self.h5file.getNode(self.h5file.root, groupname) array = self.h5file.getNode(group, '%s[0]' % arrayname) return True except tables.NoSuchNodeError: return False def get_features(self, feature_extractor, kwargs=None): """Read cached features from this file. Depending on the output of feature_extractor.extract_features, this will return either a numpy array or a tuple of numpy arrays. Raises tables.NoSuchNodeError if the file doesn't contain features corresponding to (feature_extractor, kwargs). """ groupname, arrayname = self._get_hdf5_path(feature_extractor, kwargs) group = self.h5file.getNode(self.h5file.root, groupname) try: features = self._read_features_array(group, arrayname, feature_extractor, kwargs) except tables.NoSuchNodeError: # The FeatureExtractor must have returned a tuple instead # of a single array. features = self._read_features_tuple(group, arrayname, feature_extractor, kwargs) return features def _read_features_array(self, group, arrayname, feature_extractor, kwargs): array = self.h5file.getNode(group, arrayname) # Sanity check. assert array.attrs.feature_extractor_id == feature_extractor.id assert array.attrs.kwargs == kwargs # Copy the array into memory so we don't have to keep the h5 # file around longer than necessary. return np.array(array) def _read_features_tuple(self, group, arrayname, feature_extractor, kwargs): arrays = [] for n in itertools.count(): curr_arrayname = '%s[%d]' % (arrayname, n) try: arrays.append(self._read_features_array( group, curr_arrayname, feature_extractor, kwargs)) except tables.NoSuchNodeError: if arrays: break else: raise return tuple(arrays) def list_all_features(self): """Return a list of all features contained in this file. Each entry of the feature list contains a tuple of the form: ('name', FeatureExtractor.name, 'kwarg1', val1, 'kwarg2', val2, ...) I.e. the keyword arguments passed to Track.features() to compute the corresponding features. """ features_list = [] for group in self.h5file.iterNodes(self.h5file.root): for array in self.h5file.iterNodes(group): keylist = ['name', array.attrs.feature_extractor_name] for k,v in array.attrs.kwargs.iteritems(): keylist.append(k) keylist.append(v) features_list.append(tuple(keylist)) return features_list def get_all_features(self): """Return a dictionary of all features contained in this file. The dictionary is keyed using a tuple of the form: ('name', FeatureExtractor.name, 'kwarg1', val1, 'kwarg2', val2, ...) I.e. the key corresponds to the keyword arguments passed to Track.features() to compute the corresponding features. """ features_dict = {} for group in self.h5file.iterNodes(self.h5file.root): for array in self.h5file.iterNodes(group): keylist = ['name', array.attrs.feature_extractor_name] for k,v in array.attrs.kwargs.iteritems(): keylist.append(k) keylist.append(v) key = tuple(keylist) try: if not key in features_dict: features_dict[key] = np.copy(array) else: # Feature must be a tuple. if not isinstance(features_dict[key], tuple): features_dict[key] = (features_dict[key],) feature_list = list(features_dict[key]) feature_list.append(np.copy(array)) features_dict[key] = tuple(feature_list) except TypeError: # This will happen if the cached feature includes # a dict in it's keyword arguments, since dicts # are not hashable. warnings.warn('Ignoring cached feature, name=%s, kwargs=%s' % (array.attrs.feature_extractor_name, array.attrs.kwargs.iteritems())) return features_dict def set_features(self, feature_extractor, features, kwargs=None): """Write the given features to this file. features must be a numpy array or tuple of numpy arrays. """ groupname, arrayname = self._get_hdf5_path(feature_extractor, kwargs) try: group = self.h5file.getNode(self.h5file.root, groupname) except tables.NoSuchNodeError: group = self.h5file.createGroup(self.h5file.root, groupname, str(feature_extractor.name)) if isinstance(features, tuple): for n,x in enumerate(features): curr_arrayname = '%s[%d]' % (arrayname, n) self._write_features_array(group, curr_arrayname, x, feature_extractor, kwargs, isTuple=True) else: self._write_features_array(group, arrayname, features, feature_extractor, kwargs) def _write_features_array(self, group, arrayname, array, feature_extractor, kwargs, isTuple=False): # Should we use createCArray for compression? array = self.h5file.createArray(group, arrayname, np.asarray(array)) array.attrs.feature_extractor_id = feature_extractor.id array.attrs.feature_extractor_name = str(feature_extractor.name) array.attrs.kwargs = kwargs array.attrs.isTuple = isTuple def del_features(self, feature_extractor, kwargs=None): """Delete cached features from this file. Raises tables.NoSuchNodeError if the file doesn't contain features corresponding to (feature_extractor, kwargs). """ groupname, arrayname = self._get_hdf5_path(feature_extractor, kwargs) try: group = self.h5file.getNode(self.h5file.root, groupname) self.h5file.removeNode(group, arrayname) except tables.NoSuchNodeError: # Check if the cached feature is a tuple. try: deleted_an_array = False group = self.h5file.getNode(self.h5file.root, groupname) for n in itertools.count(): self.h5file.removeNode(group, '%s[%d]' % (arrayname, n)) deleted_an_array = True except: if not deleted_an_array: raise def del_all_features(self, feature_extractor=None): """Delete all cached features from this file. If feature_extractor is specified, only delete features corresponding to that FeatureExtractor. """ if feature_extractor: groupname, arrayname = self._get_hdf5_path(feature_extractor, None) self.h5file.removeNode(self.h5file.root, groupname, recursive=True) else: for group in self.h5file.iterNodes(self.h5file.root): self.h5file.removeNode(group, recursive=True) def plot_features(feats): """Default feature plotting function.""" if isinstance(feats, tuple): feats = feats[0] COLORBAR_WIDTH = 0.035 COLORBAR_PAD = 0.015 if feats.ndim == 2: plt.imshow(feats.T, origin='lower', interpolation='nearest', aspect='auto') plt.colorbar(fraction=COLORBAR_WIDTH, pad=COLORBAR_PAD) else: plt.plot(feats) # Compensate for colorbar axes in case this figure also # contains some images. axes = plt.gca() bounds = axes.get_position().bounds axes.set_position((bounds[0], bounds[1], bounds[2] * (1 - COLORBAR_WIDTH - COLORBAR_PAD), bounds[3])) plt.gca().set_xlim((0, len(feats)-1))
gpl-3.0
steffengraber/nest-simulator
pynest/examples/glif_cond_neuron.py
14
9655
# -*- coding: utf-8 -*- # # glif_cond_neuron.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Conductance-based generalized leaky integrate and fire (GLIF) neuron example ---------------------------------------------------------------------------- Simple example of how to use the ``glif_cond`` neuron model for five different levels of GLIF neurons. Four stimulation paradigms are illustrated for the GLIF model with externally applied current and spikes impinging Voltage traces, injecting current traces, threshold traces, synaptic conductance traces and spikes are shown. KEYWORDS: glif_cond """ ############################################################################## # First, we import all necessary modules to simulate, analyze and plot this # example. import nest import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ############################################################################## # We initialize the nest and set the simulation resolution. nest.ResetKernel() resolution = 0.05 nest.SetKernelStatus({"resolution": resolution}) ############################################################################### # We create the five levels of GLIF model to be tested, i.e., # ``lif``, ``lif_r``, ``lif_asc``, ``lif_r_asc``, ``lif_r_asc_a``. # For each level of GLIF model, we create a ``glif_cond`` node. The node is # created by setting relative model mechanism parameters. Other neuron # parameters are set as default. The five ``glif_cond`` node handles are # combined as a list. Note that the default number of synaptic ports # is two for spike inputs. One port is excitation receptor with time # constant being 0.2 ms and reversal potential being 0.0 mV. The other port is # inhibition receptor with time constant being 2.0 ms and -85.0 mV. # Note that users can set as many synaptic ports as needed for ``glif_cond`` # by setting array parameters ``tau_syn`` and ``E_rev`` of the model. n_lif = nest.Create("glif_cond", params={"spike_dependent_threshold": False, "after_spike_currents": False, "adapting_threshold": False}) n_lif_r = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": False, "adapting_threshold": False}) n_lif_asc = nest.Create("glif_cond", params={"spike_dependent_threshold": False, "after_spike_currents": True, "adapting_threshold": False}) n_lif_r_asc = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": True, "adapting_threshold": False}) n_lif_r_asc_a = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": True, "adapting_threshold": True}) neurons = n_lif + n_lif_r + n_lif_asc + n_lif_r_asc + n_lif_r_asc_a ############################################################################### # For the stimulation input to the glif_cond neurons, we create one excitation # spike generator and one inhibition spike generator, each of which generates # three spikes; we also create one step current generator and a Poisson # generator, a parrot neuron(to be paired with the Poisson generator). # The three different injections are spread to three different time periods, # i.e., 0 ms ~ 200 ms, 200 ms ~ 500 ms, 600 ms ~ 900 ms. # Configuration of the current generator includes the definition of the start # and stop times and the amplitude of the injected current. Configuration of # the Poisson generator includes the definition of the start and stop times and # the rate of the injected spike train. espikes = nest.Create("spike_generator", params={"spike_times": [10., 100., 150.], "spike_weights": [20.]*3}) ispikes = nest.Create("spike_generator", params={"spike_times": [15., 99., 150.], "spike_weights": [-20.]*3}) cg = nest.Create("step_current_generator", params={"amplitude_values": [400., ], "amplitude_times": [200., ], "start": 200., "stop": 500.}) pg = nest.Create("poisson_generator", params={"rate": 15000., "start": 600., "stop": 900.}) pn = nest.Create("parrot_neuron") ############################################################################### # The generators are then connected to the neurons. Specification of # the ``receptor_type`` uniquely defines the target receptor. # We connect current generator to receptor 0, the excitation spike generator # and the Poisson generator (via parrot neuron) to receptor 1, and the # inhibition spike generator to receptor 2 of the GLIF neurons. # Note that Poisson generator is connected to parrot neuron to transit the # spikes to the glif_cond neuron. nest.Connect(cg, neurons, syn_spec={"delay": resolution}) nest.Connect(espikes, neurons, syn_spec={"delay": resolution, "receptor_type": 1}) nest.Connect(ispikes, neurons, syn_spec={"delay": resolution, "receptor_type": 2}) nest.Connect(pg, pn, syn_spec={"delay": resolution}) nest.Connect(pn, neurons, syn_spec={"delay": resolution, "receptor_type": 1}) ############################################################################### # A ``multimeter`` is created and connected to the neurons. The parameters # specified for the multimeter include the list of quantities that should be # recorded and the time interval at which quantities are measured. mm = nest.Create("multimeter", params={"interval": resolution, "record_from": ["V_m", "I", "g_1", "g_2", "threshold", "threshold_spike", "threshold_voltage", "ASCurrents_sum"]}) nest.Connect(mm, neurons) ############################################################################### # A ``spike_recorder`` is created and connected to the neurons record the # spikes generated by the glif_cond neurons. sr = nest.Create("spike_recorder") nest.Connect(neurons, sr) ############################################################################### # Run the simulation for 1000 ms and retrieve recorded data from # the multimeter and spike recorder. nest.Simulate(1000.) data = mm.events senders = data["senders"] spike_data = sr.events spike_senders = spike_data["senders"] spikes = spike_data["times"] ############################################################################### # We plot the time traces of the membrane potential (in blue) and # the overall threshold (in green), and the spikes (as red dots) in one panel; # the spike component of threshold (in yellow) and the voltage component of # threshold (in black) in another panel; the injected currents (in strong blue), # the sum of after spike currents (in cyan) in the third panel; and the synaptic # conductances of the two receptors (in blue and orange) in responding to the # spike inputs to the neurons in the fourth panel. We plot all these four # panels for each level of GLIF model in a separated figure. glif_models = ["lif", "lif_r", "lif_asc", "lif_r_asc", "lif_r_asc_a"] for i in range(len(glif_models)): glif_model = glif_models[i] node_id = neurons[i].global_id plt.figure(glif_model) gs = gridspec.GridSpec(4, 1, height_ratios=[2, 1, 1, 1]) t = data["times"][senders == 1] ax1 = plt.subplot(gs[0]) plt.plot(t, data["V_m"][senders == node_id], "b") plt.plot(t, data["threshold"][senders == node_id], "g--") plt.plot(spikes[spike_senders == node_id], [max(data["threshold"][senders == node_id]) * 0.95] * len(spikes[spike_senders == node_id]), "r.") plt.legend(["V_m", "threshold", "spike"]) plt.ylabel("V (mV)") plt.title("Simulation of glif_cond neuron of " + glif_model) ax2 = plt.subplot(gs[1]) plt.plot(t, data["threshold_spike"][senders == node_id], "y") plt.plot(t, data["threshold_voltage"][senders == node_id], "k--") plt.legend(["threshold_spike", "threshold_voltage"]) plt.ylabel("V (mV)") ax3 = plt.subplot(gs[2]) plt.plot(t, data["I"][senders == node_id], "--") plt.plot(t, data["ASCurrents_sum"][senders == node_id], "c-.") plt.legend(["I_e", "ASCurrents_sum", "I_syn"]) plt.ylabel("I (pA)") plt.xlabel("t (ms)") ax4 = plt.subplot(gs[3]) plt.plot(t, data["g_1"][senders == node_id], "-") plt.plot(t, data["g_2"][senders == node_id], "--") plt.legend(["G_1", "G_2"]) plt.ylabel("G (nS)") plt.xlabel("t (ms)") plt.show()
gpl-2.0
Nathx/think_stats
code/hinc_soln.py
67
4296
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import hinc import thinkplot import thinkstats2 """This file contains a solution to an exercise in Think Stats: The distributions of wealth and income are sometimes modeled using lognormal and Pareto distributions. To see which is better, let's look at some data. The Current Population Survey (CPS) is joint effort of the Bureau of Labor Statistics and the Census Bureau to study income and related variables. Data collected in 2013 is available from http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm. I downloaded hinc06.xls, which is an Excel spreadsheet with information about household income, and converted it to hinc06.csv, a CSV file you will find in the repository for this book. You will also find hinc.py, which reads the CSV file. Extract the distribution of incomes from this dataset. Are any of the analytic distributions in this chapter a good model of the data? A solution to this exercise is in hinc_soln.py. My solution generates three figures: 1) The CDF of income on a linear scale. 2) The CCDF on a log-log scale along with a Pareto model intended to match the tail behavior. 3) The CDF on a log-x scale along with a lognormal model chose to match the median and inter-quartile range. My conclusions based on these figures are: 1) The Pareto model is probably a reasonable choice for the top 10-20% of incomes. 2) The lognormal model captures the shape of the distribution better, but the data deviate substantially from the model. With different choices for sigma, you could match the upper or lower tail, but not both at the same time. In summary I would say that neither model captures the whole distribution, so you might have to 1) look for another analytic model, 2) choose one that captures the part of the distribution that is most relevent, or 3) avoid using an analytic model altogether. """ class SmoothCdf(thinkstats2.Cdf): """Represents a CDF based on calculated quantiles. """ def Render(self): """Because this CDF was not computed from a sample, it should not be rendered as a step function. """ return self.xs, self.ps def Prob(self, x): """Compute CDF(x), interpolating between known values. """ return np.interp(x, self.xs, self.ps) def Value(self, p): """Compute inverse CDF(x), interpolating between probabilities. """ return np.interp(p, self.ps, self.xs) def MakeFigures(df): """Plots the CDF of income in several forms. """ xs, ps = df.income.values, df.ps.values cdf = SmoothCdf(xs, ps, label='data') cdf_log = SmoothCdf(np.log10(xs), ps, label='data') # linear plot thinkplot.Cdf(cdf) thinkplot.Save(root='hinc_linear', xlabel='household income', ylabel='CDF') # pareto plot # for the model I chose parameters by hand to fit the tail xs, ys = thinkstats2.RenderParetoCdf(xmin=55000, alpha=2.5, low=0, high=250000) thinkplot.Plot(xs, 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf, complement=True) thinkplot.Save(root='hinc_pareto', xlabel='log10 household income', ylabel='CCDF', xscale='log', yscale='log') # lognormal plot # for the model I estimate mu and sigma using # percentile-based statistics median = cdf_log.Percentile(50) iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25) std = iqr / 1.349 # choose std to match the upper tail std = 0.35 print(median, std) xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Save(root='hinc_normal', xlabel='log10 household income', ylabel='CDF') def main(): df = hinc.ReadData() MakeFigures(df) if __name__ == "__main__": main()
gpl-3.0
jreback/pandas
pandas/tests/extension/json/test_json.py
1
10657
import collections import operator import pytest import pandas as pd import pandas._testing as tm from pandas.tests.extension import base from .array import JSONArray, JSONDtype, make_data @pytest.fixture def dtype(): return JSONDtype() @pytest.fixture def data(): """Length-100 PeriodArray for semantics test.""" data = make_data() # Why the while loop? NumPy is unable to construct an ndarray from # equal-length ndarrays. Many of our operations involve coercing the # EA to an ndarray of objects. To avoid random test failures, we ensure # that our data is coercible to an ndarray. Several tests deal with only # the first two elements, so that's what we'll check. while len(data[0]) == len(data[1]): data = make_data() return JSONArray(data) @pytest.fixture def data_missing(): """Length 2 array with [NA, Valid]""" return JSONArray([{}, {"a": 10}]) @pytest.fixture def data_for_sorting(): return JSONArray([{"b": 1}, {"c": 4}, {"a": 2, "c": 3}]) @pytest.fixture def data_missing_for_sorting(): return JSONArray([{"b": 1}, {}, {"a": 4}]) @pytest.fixture def na_value(dtype): return dtype.na_value @pytest.fixture def na_cmp(): return operator.eq @pytest.fixture def data_for_grouping(): return JSONArray( [ {"b": 1}, {"b": 1}, {}, {}, {"a": 0, "c": 2}, {"a": 0, "c": 2}, {"b": 1}, {"c": 2}, ] ) class BaseJSON: # NumPy doesn't handle an array of equal-length UserDicts. # The default assert_series_equal eventually does a # Series.values, which raises. We work around it by # converting the UserDicts to dicts. @classmethod def assert_series_equal(cls, left, right, *args, **kwargs): if left.dtype.name == "json": assert left.dtype == right.dtype left = pd.Series( JSONArray(left.values.astype(object)), index=left.index, name=left.name ) right = pd.Series( JSONArray(right.values.astype(object)), index=right.index, name=right.name, ) tm.assert_series_equal(left, right, *args, **kwargs) @classmethod def assert_frame_equal(cls, left, right, *args, **kwargs): obj_type = kwargs.get("obj", "DataFrame") tm.assert_index_equal( left.columns, right.columns, exact=kwargs.get("check_column_type", "equiv"), check_names=kwargs.get("check_names", True), check_exact=kwargs.get("check_exact", False), check_categorical=kwargs.get("check_categorical", True), obj=f"{obj_type}.columns", ) jsons = (left.dtypes == "json").index for col in jsons: cls.assert_series_equal(left[col], right[col], *args, **kwargs) left = left.drop(columns=jsons) right = right.drop(columns=jsons) tm.assert_frame_equal(left, right, *args, **kwargs) class TestDtype(BaseJSON, base.BaseDtypeTests): pass class TestInterface(BaseJSON, base.BaseInterfaceTests): def test_custom_asserts(self): # This would always trigger the KeyError from trying to put # an array of equal-length UserDicts inside an ndarray. data = JSONArray( [ collections.UserDict({"a": 1}), collections.UserDict({"b": 2}), collections.UserDict({"c": 3}), ] ) a = pd.Series(data) self.assert_series_equal(a, a) self.assert_frame_equal(a.to_frame(), a.to_frame()) b = pd.Series(data.take([0, 0, 1])) msg = r"ExtensionArray are different" with pytest.raises(AssertionError, match=msg): self.assert_series_equal(a, b) with pytest.raises(AssertionError, match=msg): self.assert_frame_equal(a.to_frame(), b.to_frame()) @pytest.mark.xfail( reason="comparison method not implemented for JSONArray (GH-37867)" ) def test_contains(self, data): # GH-37867 super().test_contains(data) class TestConstructors(BaseJSON, base.BaseConstructorsTests): @pytest.mark.skip(reason="not implemented constructor from dtype") def test_from_dtype(self, data): # construct from our dtype & string dtype pass @pytest.mark.xfail(reason="RecursionError, GH-33900") def test_series_constructor_no_data_with_index(self, dtype, na_value): # RecursionError: maximum recursion depth exceeded in comparison super().test_series_constructor_no_data_with_index(dtype, na_value) @pytest.mark.xfail(reason="RecursionError, GH-33900") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): # RecursionError: maximum recursion depth exceeded in comparison super().test_series_constructor_scalar_na_with_index(dtype, na_value) @pytest.mark.xfail(reason="collection as scalar, GH-33901") def test_series_constructor_scalar_with_index(self, data, dtype): # TypeError: All values must be of type <class 'collections.abc.Mapping'> super().test_series_constructor_scalar_with_index(data, dtype) class TestReshaping(BaseJSON, base.BaseReshapingTests): @pytest.mark.skip(reason="Different definitions of NA") def test_stack(self): """ The test does .astype(object).stack(). If we happen to have any missing values in `data`, then we'll end up with different rows since we consider `{}` NA, but `.astype(object)` doesn't. """ @pytest.mark.xfail(reason="dict for NA") def test_unstack(self, data, index): # The base test has NaN for the expected NA value. # this matches otherwise return super().test_unstack(data, index) class TestGetitem(BaseJSON, base.BaseGetitemTests): pass class TestMissing(BaseJSON, base.BaseMissingTests): @pytest.mark.skip(reason="Setting a dict as a scalar") def test_fillna_series(self): """We treat dictionaries as a mapping in fillna, not a scalar.""" @pytest.mark.skip(reason="Setting a dict as a scalar") def test_fillna_frame(self): """We treat dictionaries as a mapping in fillna, not a scalar.""" unhashable = pytest.mark.skip(reason="Unhashable") class TestReduce(base.BaseNoReduceTests): pass class TestMethods(BaseJSON, base.BaseMethodsTests): @unhashable def test_value_counts(self, all_data, dropna): pass @unhashable def test_value_counts_with_normalize(self, data): pass @unhashable def test_sort_values_frame(self): # TODO (EA.factorize): see if _values_for_factorize allows this. pass def test_argsort(self, data_for_sorting): super().test_argsort(data_for_sorting) def test_argsort_missing(self, data_missing_for_sorting): super().test_argsort_missing(data_missing_for_sorting) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values(self, data_for_sorting, ascending, sort_by_key): super().test_sort_values(data_for_sorting, ascending, sort_by_key) @pytest.mark.parametrize("ascending", [True, False]) def test_sort_values_missing( self, data_missing_for_sorting, ascending, sort_by_key ): super().test_sort_values_missing( data_missing_for_sorting, ascending, sort_by_key ) @pytest.mark.skip(reason="combine for JSONArray not supported") def test_combine_le(self, data_repeated): pass @pytest.mark.skip(reason="combine for JSONArray not supported") def test_combine_add(self, data_repeated): pass @pytest.mark.skip(reason="combine for JSONArray not supported") def test_combine_first(self, data): pass @unhashable def test_hash_pandas_object_works(self, data, kind): super().test_hash_pandas_object_works(data, kind) @pytest.mark.skip(reason="broadcasting error") def test_where_series(self, data, na_value): # Fails with # *** ValueError: operands could not be broadcast together # with shapes (4,) (4,) (0,) super().test_where_series(data, na_value) @pytest.mark.skip(reason="Can't compare dicts.") def test_searchsorted(self, data_for_sorting): super().test_searchsorted(data_for_sorting) @pytest.mark.skip(reason="Can't compare dicts.") def test_equals(self, data, na_value, as_series): pass class TestCasting(BaseJSON, base.BaseCastingTests): @pytest.mark.skip(reason="failing on np.array(self, dtype=str)") def test_astype_str(self): """This currently fails in NumPy on np.array(self, dtype=str) with *** ValueError: setting an array element with a sequence """ # We intentionally don't run base.BaseSetitemTests because pandas' # internals has trouble setting sequences of values into scalar positions. class TestGroupby(BaseJSON, base.BaseGroupbyTests): @unhashable def test_groupby_extension_transform(self): """ This currently fails in Series.name.setter, since the name must be hashable, but the value is a dictionary. I think this is what we want, i.e. `.name` should be the original values, and not the values for factorization. """ @unhashable def test_groupby_extension_apply(self): """ This fails in Index._do_unique_check with > hash(val) E TypeError: unhashable type: 'UserDict' with I suspect that once we support Index[ExtensionArray], we'll be able to dispatch unique. """ @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): super().test_groupby_extension_agg(as_index, data_for_grouping) class TestArithmeticOps(BaseJSON, base.BaseArithmeticOpsTests): def test_error(self, data, all_arithmetic_operators): pass def test_add_series_with_extension_array(self, data): ser = pd.Series(data) with pytest.raises(TypeError, match="unsupported"): ser + data def test_divmod_series_array(self): # GH 23287 # skipping because it is not implemented pass def _check_divmod_op(self, s, op, other, exc=NotImplementedError): return super()._check_divmod_op(s, op, other, exc=TypeError) class TestComparisonOps(BaseJSON, base.BaseComparisonOpsTests): pass class TestPrinting(BaseJSON, base.BasePrintingTests): pass
bsd-3-clause
jreback/pandas
pandas/tests/reductions/test_stat_reductions.py
2
9559
""" Tests for statistical reductions of 2nd moment or higher: var, skew, kurt, ... """ import inspect import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray class TestDatetimeLikeStatReductions: @pytest.mark.parametrize("box", [Series, pd.Index, DatetimeArray]) def test_dt64_mean(self, tz_naive_fixture, box): tz = tz_naive_fixture dti = pd.date_range("2001-01-01", periods=11, tz=tz) # shuffle so that we are not just working with monotone-increasing dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6]) dtarr = dti._data obj = box(dtarr) assert obj.mean() == pd.Timestamp("2001-01-06", tz=tz) assert obj.mean(skipna=False) == pd.Timestamp("2001-01-06", tz=tz) # dtarr[-2] will be the first date 2001-01-1 dtarr[-2] = pd.NaT obj = box(dtarr) assert obj.mean() == pd.Timestamp("2001-01-06 07:12:00", tz=tz) assert obj.mean(skipna=False) is pd.NaT @pytest.mark.parametrize("box", [Series, pd.Index, PeriodArray]) def test_period_mean(self, box): # GH#24757 dti = pd.date_range("2001-01-01", periods=11) # shuffle so that we are not just working with monotone-increasing dti = dti.take([4, 1, 3, 10, 9, 7, 8, 5, 0, 2, 6]) # use hourly frequency to avoid rounding errors in expected results # TODO: flesh this out with different frequencies parr = dti._data.to_period("H") obj = box(parr) with pytest.raises(TypeError, match="ambiguous"): obj.mean() with pytest.raises(TypeError, match="ambiguous"): obj.mean(skipna=True) # parr[-2] will be the first date 2001-01-1 parr[-2] = pd.NaT with pytest.raises(TypeError, match="ambiguous"): obj.mean() with pytest.raises(TypeError, match="ambiguous"): obj.mean(skipna=True) @pytest.mark.parametrize("box", [Series, pd.Index, TimedeltaArray]) def test_td64_mean(self, box): tdi = pd.TimedeltaIndex([0, 3, -2, -7, 1, 2, -1, 3, 5, -2, 4], unit="D") tdarr = tdi._data obj = box(tdarr) result = obj.mean() expected = np.array(tdarr).mean() assert result == expected tdarr[0] = pd.NaT assert obj.mean(skipna=False) is pd.NaT result2 = obj.mean(skipna=True) assert result2 == tdi[1:].mean() # exact equality fails by 1 nanosecond assert result2.round("us") == (result * 11.0 / 10).round("us") class TestSeriesStatReductions: # Note: the name TestSeriesStatReductions indicates these tests # were moved from a series-specific test file, _not_ that these tests are # intended long-term to be series-specific def _check_stat_op( self, name, alternate, string_series_, check_objects=False, check_allna=False ): with pd.option_context("use_bottleneck", False): f = getattr(Series, name) # add some NaNs string_series_[5:15] = np.NaN # mean, idxmax, idxmin, min, and max are valid for dates if name not in ["max", "min", "mean", "median", "std"]: ds = Series(pd.date_range("1/1/2001", periods=10)) msg = f"'DatetimeArray' does not implement reduction '{name}'" with pytest.raises(TypeError, match=msg): f(ds) # skipna or no assert pd.notna(f(string_series_)) assert pd.isna(f(string_series_, skipna=False)) # check the result is correct nona = string_series_.dropna() tm.assert_almost_equal(f(nona), alternate(nona.values)) tm.assert_almost_equal(f(string_series_), alternate(nona.values)) allna = string_series_ * np.nan if check_allna: assert np.isnan(f(allna)) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # GH#2888 items = [0] items.extend(range(2 ** 40, 2 ** 40 + 1000)) s = Series(items, dtype="int64") tm.assert_almost_equal(float(f(s)), float(alternate(s.values))) # check date range if check_objects: s = Series(pd.bdate_range("1/1/2000", periods=10)) res = f(s) exp = alternate(s) assert res == exp # check on string data if name not in ["sum", "min", "max"]: with pytest.raises(TypeError, match=None): f(Series(list("abc"))) # Invalid axis. msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): f(string_series_, axis=1) # Unimplemented numeric_only parameter. if "numeric_only" in inspect.getfullargspec(f).args: with pytest.raises(NotImplementedError, match=name): f(string_series_, numeric_only=True) def test_sum(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("sum", np.sum, string_series, check_allna=False) def test_mean(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("mean", np.mean, string_series) def test_median(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("median", np.median, string_series) # test with integers, test failure int_ts = Series(np.ones(10, dtype=int), index=range(10)) tm.assert_almost_equal(np.median(int_ts), int_ts.median()) def test_prod(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("prod", np.prod, string_series) def test_min(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("min", np.min, string_series, check_objects=True) def test_max(self): string_series = tm.makeStringSeries().rename("series") self._check_stat_op("max", np.max, string_series, check_objects=True) def test_var_std(self): string_series = tm.makeStringSeries().rename("series") datetime_series = tm.makeTimeSeries().rename("ts") alt = lambda x: np.std(x, ddof=1) self._check_stat_op("std", alt, string_series) alt = lambda x: np.var(x, ddof=1) self._check_stat_op("var", alt, string_series) result = datetime_series.std(ddof=4) expected = np.std(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) result = datetime_series.var(ddof=4) expected = np.var(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.var(ddof=1) assert pd.isna(result) result = s.std(ddof=1) assert pd.isna(result) def test_sem(self): string_series = tm.makeStringSeries().rename("series") datetime_series = tm.makeTimeSeries().rename("ts") alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op("sem", alt, string_series) result = datetime_series.sem(ddof=4) expected = np.std(datetime_series.values, ddof=4) / np.sqrt( len(datetime_series.values) ) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.sem(ddof=1) assert pd.isna(result) @td.skip_if_no_scipy def test_skew(self): from scipy.stats import skew string_series = tm.makeStringSeries().rename("series") alt = lambda x: skew(x, bias=False) self._check_stat_op("skew", alt, string_series) # test corner cases, skew() returns NaN unless there's at least 3 # values min_N = 3 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: assert np.isnan(s.skew()) assert np.isnan(df.skew()).all() else: assert 0 == s.skew() assert (df.skew() == 0).all() @td.skip_if_no_scipy def test_kurt(self): from scipy.stats import kurtosis string_series = tm.makeStringSeries().rename("series") alt = lambda x: kurtosis(x, bias=False) self._check_stat_op("kurt", alt, string_series) index = pd.MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) s = Series(np.random.randn(6), index=index) tm.assert_almost_equal(s.kurt(), s.kurt(level=0)["bar"]) # test corner cases, kurt() returns NaN unless there's at least 4 # values min_N = 4 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: assert np.isnan(s.kurt()) assert np.isnan(df.kurt()).all() else: assert 0 == s.kurt() assert (df.kurt() == 0).all()
bsd-3-clause
aydevosotros/tradingMachine
DataManager.py
1
1627
# # Copyright (c) 2015 by Antonio Molina García-Retamero. All Rights Reserved. # import requests import datetime import csv import numpy as np import matplotlib.pyplot as plt class DataManager(object): """docstring for DataManager""" def __init__(self, arg): super(DataManager, self).__init__() self.arg = arg @staticmethod def getQuotesYahoo(symbol): url = "http://real-chart.finance.yahoo.com/table.csv?s={0}&a=00&b=1&c=2000&d={1}&e={2}&f={3}&g=d&ignore=.csv".format(symbol, datetime.datetime.now().month-1, datetime.datetime.now().day, datetime.datetime.now().year) print(url) r = requests.get(url) content = r.text rows = content.split("\n")[1:-1] data = [[float(value) for value in row.split(',')[1:]] for row in rows] dates = [x[0] for x in rows] return [dates, data[::-1]] @staticmethod def byWiningDayTagging(quotes): tags = [] for quote in quotes: if quote[3] - quote[0] > 0: tags.append(1) else: tags.append(-1) return tags if __name__ == '__main__': # data = DataManager.getQuotesYahoo("FB") data = DataManager.getQuotesYahoo("MSF") dates = data[0] data = data[1] print(len(data)) fig = plt.figure() plt.plot([x[5] for x in data]) # plt.show() print(DataManager.byWiningDayTagging(data)) #Notes ## http://finance.yahoo.com/q/hp?s=FB&a=00&b=1&c=2008&d=06&e=31&f=2015&g=d&z=66&y=792 ## http://real-chart.finance.yahoo.com/table.csv?s=FB&a=00&b=1&c=2008&d=06&e=31&f=2015&g=d&ignore=.csv
gpl-2.0
fyffyt/scikit-learn
sklearn/decomposition/nmf.py
100
19059
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted, check_non_negative def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") random_state = check_random_state(random_state) U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' rng = check_random_state(self.random_state) if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_, random_state=rng) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a', random_state=rng) elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar', random_state=rng) elif init == "random": W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
sonnyhu/scikit-learn
examples/neighbors/plot_species_kde.py
39
4039
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.org/basemap>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = -9999 + np.zeros(land_mask.shape[0]) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
bsd-3-clause
akhilpm/Masters-Project
autoencoder/mnistencode.py
1
8878
''' Sparse Autoencoder Author: Akhil P M Courtesy: UFLDL stanford, Siddharth Agarwal mail: [email protected] ''' import numpy as np import time import math import scipy import scipy.io import matplotlib.pyplot as plt import scipy.optimize import sys from sklearn.datasets.mldata import fetch_mldata from sklearn.cross_validation import StratifiedShuffleSplit from sklearn import preprocessing import matplotlib.gridspec as gridspec no_of_func_calls = 1 verbosity_level = 0 class SparseAutoencoder(object): def __init__(self, input_size, hidden_size, lambdaa, rho, beta): """ initialize the parameters of the Autoencoder""" self.input_size = input_size #no of input units self.hidden_size = hidden_size #no of hidden units self.lambdaa = lambdaa #network weight regularization factor self.rho = rho # desired average activation of hidden units self.beta = beta # weight of sparsity penalty term #limits used to unroll theta into weights and biases self.limit0 = 0 self.limit1 = hidden_size * input_size self.limit2 = 2 * hidden_size * input_size self.limit3 = 2 * hidden_size * input_size + hidden_size self.limit4 = 2 * hidden_size * input_size + hidden_size + input_size #initialize biase and weights rand = np.random.RandomState(23455) r = math.sqrt(6)/math.sqrt(input_size + hidden_size + 1) W1 = np.asarray(rand.uniform(low=-r, high=r, size=(hidden_size, input_size))) W2 = np.asarray(rand.uniform(low=-r, high=r, size=(input_size, hidden_size))) b1 = np.zeros((hidden_size,1)) b2 = np.zeros((input_size,1)) #unroll all parameters into a single vector for optimization self.theta = np.concatenate((W1.flatten(), W2.flatten(), b1.flatten(), b2.flatten())) print('======Autoencoder initialized===========') def sparse_autoencoder_cost(self,theta,trainX): '''computes the cost in an iteration''' global verbosity_level #m = no of attributes, n= no of datapoints m,n = trainX.shape total_cost=0.0 """extract weights and biases from theta""" W1 = theta[self.limit0 : self.limit1].reshape(self.hidden_size, self.input_size) W2 = theta[self.limit1 : self.limit2].reshape(self.input_size, self.hidden_size) b1 = theta[self.limit2 : self.limit3].reshape(self.hidden_size,1) b2 = theta[self.limit3 : self.limit4].reshape(self.input_size,1) """perform a forward pass""" act_hidden_layer = sigmoid(np.dot(W1, trainX) + b1) act_output_layer = sigmoid(np.dot(W2, act_hidden_layer) + b2) if verbosity_level == 2: print('activations of hidden and output layers computed') """estimate avg activation of hidden units""" rho_avg = np.sum(act_hidden_layer, axis=1)/n diff = act_output_layer-trainX sum_of_squares_error = 0.5 * np.sum(np.square(diff))/n weight_deacay = 0.5 * self.lambdaa * (np.sum(np.square(W1)) + np.sum(np.square(W2))) KL_divergence = self.beta * np.sum(self.rho * np.log(self.rho/rho_avg) + (1-self.rho) * np.log((1-self.rho)/(1-rho_avg))) total_cost = sum_of_squares_error + weight_deacay + KL_divergence """compute error in hidden layer and output layer""" delta3 = np.multiply(diff, np.multiply(act_output_layer, 1-act_output_layer)) KL_div_grad = self.beta*(-(self.rho/rho_avg) + ((1-self.rho)/(1-rho_avg))) delta2 = np.multiply(np.dot(np.transpose(W2),delta3) + np.transpose(np.matrix(KL_div_grad)), np.multiply(act_hidden_layer,1-act_hidden_layer)) """compute the gradient""" W1_grad = np.dot(delta2, np.transpose(trainX)) W2_grad = np.dot(delta3, np.transpose(act_hidden_layer)) b1_grad = np.sum(delta2, axis=1) b2_grad = np.sum(delta3, axis=1) W1_grad = W1_grad/n + self.lambdaa*W1 W2_grad = W2_grad/n + self.lambdaa*W2 b1_grad = b1_grad/n b2_grad = b2_grad/n W1_grad = np.array(W1_grad) W2_grad = np.array(W2_grad) b1_grad = np.array(b1_grad) b2_grad = np.array(b2_grad) """unroll the gradients into a single vector""" theta_grad = np.concatenate((W1_grad.flatten(), W2_grad.flatten(), b1_grad.flatten(), b2_grad.flatten())) if verbosity_level >= 1: print('grad J(theta) computed') return [total_cost,theta_grad] def sigmoid(x): return (1/(1 + np.exp(-x))) def normalizeDataset(dataset): """ Remove mean of dataset """ dataset = dataset - np.mean(dataset) """ Truncate to +/-3 standard deviations and scale to -1 to 1 """ std_dev = 3 * np.std(dataset) dataset = np.maximum(np.minimum(dataset, std_dev), -std_dev) / std_dev """ Rescale from [-1, 1] to [0.1, 0.9] """ dataset = (dataset + 1) * 0.4 + 0.1 return dataset def load_dataset(num_patches, patch_size): '''utility function to load data set''' global verbosity_level print('======loading dataset=======\n') mnist = fetch_mldata('MNIST original') sss = StratifiedShuffleSplit(mnist.target, 1, test_size=0.1, train_size=20000, random_state=0) for train_index, test_index in sss: trainX, testX = mnist.data[train_index], mnist.data[test_index] trainY, testY = mnist.target[train_index], mnist.target[test_index] no_of_images = trainX.shape[0] """ the dataset is originally read as dictionary, convert it to an array. the resulting array is of shape[512,512,10]. no of images=10 image size = 512*512(gray scale) """ #dataset is of shape [64*10,000] dataset = np.zeros((patch_size*patch_size, num_patches)) """Randomly sample images""" rand = np.random.RandomState(23455) image_number = rand.randint(no_of_images, size = num_patches) for i in xrange(num_patches): """"get the patch indices """ index3 = image_number[i] """"extract patch from original image""" dataset[:,i] = trainX[index3] if verbosity_level==2: print('=========patches extracted========\n') """normalize the dataset(min max feature scaling is used)""" #transpose 'dataset' to form attributes as columns of the matrix, since scaling #is to be done featurewise if verbosity_level==2: print('***********scaling features to [0.1, 0.9] range***********\n') #dataset = normalizeDataset(dataset) dataset = dataset / 255.0 #dataset = np.transpose(dataset) # newsize = 10,000*64 #min_max_scaler = preprocessing.MinMaxScaler() #dataset = min_max_scaler.fit_transform(dataset) #dataset = np.transpose(dataset) #transpose to 64*10,000 print('======loading dataset : completed ========\n') return dataset def visualizeW1(opt_W1, input_patch_size, hidden_patch_size): """ Add the weights as a matrix of images """ figure, axes = plt.subplots(nrows = hidden_patch_size, ncols = hidden_patch_size) #plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.1, hspace=0.1) index = 0 for axis in axes.flat: """ Add row of weights as an image to the plot """ image = axis.imshow(opt_W1[index, :].reshape(input_patch_size, input_patch_size), cmap = plt.cm.gray, interpolation = 'nearest') axis.set_frame_on(False) axis.set_axis_off() index += 1 """ Show the obtained plot """ plt.show() def execute_sparse_autoencoder(level): '''main function''' """set values for the parameters of Autoencoder""" start_time = time.time() input_patch_size = 28 #size of sampled image patches hidden_patch_size = 14 #size of representative image patches rho = .01 # sparsity parameter(desired avg activation of hidden units) num_patches = 10000 #no of training patches lambdaa = 0.01 #weight decay parameter beta = 0.1 # weight of the sparsity penalty term max_iterations = 400 #maximum iterations for optimization global verbosity_level #set the verbosity level verbosity_level = level error = 0.0 input_size = input_patch_size * input_patch_size hidden_size = hidden_patch_size * hidden_patch_size """load the dataset and preprocess it""" data_train = load_dataset(num_patches, input_patch_size) """initialize the Autoencoder""" encoder = SparseAutoencoder(input_size, hidden_size, lambdaa, rho, beta) """do gradient checking to verify the correctness of implenentation""" #error = scipy.optimize.check_grad(func, gradient, encoder.theta, encoder, data_train) #print('error in gradient : %f\n' %(error)) if error < 0.001: print('++++++++++++++gradient checking passed+++++++++++') else: sys.exit('***********gradient checking failed***********') """do the optimization using L-BFGS algoritm""" opt_solution = scipy.optimize.minimize(encoder.sparse_autoencoder_cost, encoder.theta, args=(data_train,), method='L-BFGS-B', jac=True, options={'maxiter': max_iterations, 'disp' : True}) print('optimization success : %r\n' %(opt_solution.success)) opt_theta = opt_solution.x opt_W1 = opt_theta[encoder.limit0 : encoder.limit1].reshape(hidden_size,input_size) print('execution time : %f' %(time.time() -start_time)) """visualize W1""" visualizeW1(opt_W1, input_patch_size, hidden_patch_size) if __name__ == '__main__': execute_sparse_autoencoder(0)
mit
dmires/ThinkStats2
code/scatter.py
69
4281
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import sys import numpy as np import math import brfss import thinkplot import thinkstats2 def GetHeightWeight(df, hjitter=0.0, wjitter=0.0): """Get sequences of height and weight. df: DataFrame with htm3 and wtkg2 hjitter: float magnitude of random noise added to heights wjitter: float magnitude of random noise added to weights returns: tuple of sequences (heights, weights) """ heights = df.htm3 if hjitter: heights = thinkstats2.Jitter(heights, hjitter) weights = df.wtkg2 if wjitter: weights = thinkstats2.Jitter(weights, wjitter) return heights, weights def ScatterPlot(heights, weights, alpha=1.0): """Make a scatter plot and save it. heights: sequence of float weights: sequence of float alpha: float """ thinkplot.Scatter(heights, weights, alpha=alpha) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def HexBin(heights, weights, bins=None): """Make a hexbin plot and save it. heights: sequence of float weights: sequence of float bins: 'log' or None for linear """ thinkplot.HexBin(heights, weights, bins=bins) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def MakeFigures(df): """Make scatterplots. """ sample = thinkstats2.SampleRows(df, 5000) # simple scatter plot thinkplot.PrePlot(cols=2) heights, weights = GetHeightWeight(sample) ScatterPlot(heights, weights) # scatter plot with jitter thinkplot.SubPlot(2) heights, weights = GetHeightWeight(sample, hjitter=1.3, wjitter=0.5) ScatterPlot(heights, weights) thinkplot.Save(root='scatter1') # with jitter and transparency thinkplot.PrePlot(cols=2) ScatterPlot(heights, weights, alpha=0.1) # hexbin plot thinkplot.SubPlot(2) heights, weights = GetHeightWeight(df, hjitter=1.3, wjitter=0.5) HexBin(heights, weights) thinkplot.Save(root='scatter2') def BinnedPercentiles(df): """Bin the data by height and plot percentiles of weight for eachbin. df: DataFrame """ cdf = thinkstats2.Cdf(df.htm3) print('Fraction between 140 and 200 cm', cdf[200] - cdf[140]) bins = np.arange(135, 210, 5) indices = np.digitize(df.htm3, bins) groups = df.groupby(indices) heights = [group.htm3.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(heights, weights, label=label) thinkplot.Save(root='scatter3', xlabel='height (cm)', ylabel='weight (kg)') def Correlations(df): print('pandas cov', df.htm3.cov(df.wtkg2)) #print('NumPy cov', np.cov(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Cov', thinkstats2.Cov(df.htm3, df.wtkg2)) print() print('pandas corr', df.htm3.corr(df.wtkg2)) #print('NumPy corrcoef', np.corrcoef(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Corr', thinkstats2.Corr(df.htm3, df.wtkg2)) print() print('pandas corr spearman', df.htm3.corr(df.wtkg2, method='spearman')) print('thinkstats2 SpearmanCorr', thinkstats2.SpearmanCorr(df.htm3, df.wtkg2)) print('thinkstats2 SpearmanCorr log wtkg3', thinkstats2.SpearmanCorr(df.htm3, np.log(df.wtkg2))) print() print('thinkstats2 Corr log wtkg3', thinkstats2.Corr(df.htm3, np.log(df.wtkg2))) print() def main(script): thinkstats2.RandomSeed(17) df = brfss.ReadBrfss(nrows=None) df = df.dropna(subset=['htm3', 'wtkg2']) Correlations(df) return MakeFigures(df) BinnedPercentiles(df) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/matplotlib/tests/test_backend_ps.py
10
2166
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import io import re import six import matplotlib import matplotlib.pyplot as plt from matplotlib.testing.decorators import cleanup, knownfailureif needs_ghostscript = knownfailureif( matplotlib.checkdep_ghostscript()[0] is None, "This test needs a ghostscript installation") needs_tex = knownfailureif( not matplotlib.checkdep_tex(), "This test needs a TeX installation") def _test_savefig_to_stringio(format='ps'): buffers = [ six.moves.StringIO(), io.StringIO(), io.BytesIO()] plt.figure() plt.plot([0, 1], [0, 1]) plt.title("Déjà vu") for buffer in buffers: plt.savefig(buffer, format=format) values = [x.getvalue() for x in buffers] if six.PY3: values = [ values[0].encode('ascii'), values[1].encode('ascii'), values[2]] # Remove comments from the output. This includes things that # could change from run to run, such as the time. values = [re.sub(b'%%.*?\n', b'', x) for x in values] assert values[0] == values[1] assert values[1] == values[2].replace(b'\r\n', b'\n') for buffer in buffers: buffer.close() @cleanup def test_savefig_to_stringio(): _test_savefig_to_stringio() @cleanup @needs_ghostscript def test_savefig_to_stringio_with_distiller(): matplotlib.rcParams['ps.usedistiller'] = 'ghostscript' _test_savefig_to_stringio() @cleanup @needs_tex def test_savefig_to_stringio_with_usetex(): matplotlib.rcParams['text.latex.unicode'] = True matplotlib.rcParams['text.usetex'] = True _test_savefig_to_stringio() @cleanup def test_savefig_to_stringio_eps(): _test_savefig_to_stringio(format='eps') @cleanup @needs_tex def test_savefig_to_stringio_with_usetex_eps(): matplotlib.rcParams['text.latex.unicode'] = True matplotlib.rcParams['text.usetex'] = True _test_savefig_to_stringio(format='eps') if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
gpl-2.0
nrhine1/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
meco-group/omg-tools
omgtools/problems/globalplanner.py
1
25921
# This file is part of OMG-tools. # # OMG-tools -- Optimal Motion Generation-tools # Copyright (C) 2016 Ruben Van Parys & Tim Mercy, KU Leuven. # All rights reserved. # # OMG-tools is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA from __future__ import print_function from ..basics.shape import Rectangle, Square, Circle import time from matplotlib import pyplot as plt import numpy as np class GlobalPlanner(object): def __init__(self, environment): pass def get_path(self, environment, curr_state, goal_state): # Implement this in the child classes pass def move_point_to_grid(x,y): # move a point in world coordinates to the closest grid point pass class QuadmapPlanner(GlobalPlanner): # global planner using a quadmap def __init__(self,environment): GlobalPlanner.__init__(self, environment) raise NotImplementedError('Please implement this method!') def get_path(self, environment, curr_state, goal_state): raise NotImplementedError('Please implement this method!') class AStarPlanner(GlobalPlanner): # global planner using the A*-algorithm def __init__(self, environment, n_cells, start, goal, options={}): if isinstance(environment.room[0]['shape'], (Rectangle, Square)): grid_width = environment.room[0]['shape'].width grid_height = environment.room[0]['shape'].height if 'position' in environment.room[0]: grid_position = environment.room[0]['position'] else: grid_position = [0, 0] else: raise RuntimeError('Environment has invalid room shape, only Rectangle or Square is supported') # check if vehicle size needs to be taken into account while searching a global path if 'veh_size' in options: if not isinstance(options['veh_size'], list): options['veh_size'] = [options['veh_size']] if len(options['veh_size']) == 1: self.veh_size = 2*[options['veh_size']] else: self.veh_size = options['veh_size'] else: # must consist of an offset in x- and y-direction self.veh_size = [0.,0.] # make grid if ((grid_width == grid_height) and (n_cells[0] == n_cells[1])): self.grid = SquareGrid(size=grid_width, position=grid_position, n_cells=n_cells, offset=self.veh_size) else: self.grid = Grid(width=grid_width, height=grid_height, position=grid_position, n_cells=n_cells, offset=self.veh_size) # occupy grid cells based on environment blocked = self.grid.get_occupied_cells(environment) self.grid.block(blocked) # only grid points are reachable so move start and goal for global planner self.start = self.grid.move_to_gridpoint(start) self.goal = self.grid.move_to_gridpoint(goal) # calculate diagonal moving cost for grid theta = np.arctan(float(self.grid.cell_height)/self.grid.cell_width) self.diag_cost = self.grid.cell_width / np.cos(theta) def set_start(self, start): self.start = start def set_goal(self, goal): self.goal = goal def calculate_g_cost(self, node): if node.parent is not None: # get movement direction from parent to node x,y = node.pos par_x, par_y = node.parent.pos if x == par_x and y == par_y: raise ValueError('Parent and node have the same position, something is wrong!') if x != par_x and y == par_y: # horizontal movement g_cost = self.grid.cell_width elif x == par_x and y != par_y: # verical movement g_cost = self.grid.cell_height elif x != par_x and y != par_y: # diagonal movement g_cost = self.diag_cost g_cost += node.parent.g_cost return g_cost def calculate_h_cost(self, node): # h_cost is determined by horizontal and vertical distance from current node to goal node # this is called the Manhattan way of determining the h cost h_cost_x = abs(self.goal[0] - node.pos[0])*self.grid.cell_width h_cost_y = abs(self.goal[1] - node.pos[1])*self.grid.cell_height h_cost = h_cost_x + h_cost_y return h_cost def calculate_f_cost(self, node): return node.g_cost + node.h_cost def get_lowest_f_cost_node(self): # find the cheapest node to go to cost = np.inf cheapest_node = None for node in self.open_list: if node.f_cost < cost: cost = node.f_cost cheapest_node = node return cheapest_node def remove_from_open_list(self, node): for n in self.open_list: if n == node: self.open_list.remove(n) break def create_node(self, point, parent=None): # creates a node on the location of point return Node(point, parent) def get_path(self, start=None, goal=None): # main function of the A* algorithm t1 = time.time() if start is not None: # only grid points are reachable self.start = self.grid.move_to_gridpoint(start) if goal is not None: self.goal = self.grid.move_to_gridpoint(goal) # initialize A*-algorithm self.current_node = self.create_node(self.start) self.open_list = [] self.closed_list = [self.current_node] while self.current_node.pos != self.goal: # get positions of current node neighbours neighbors = self.grid.get_neighbors(self.current_node.pos) if not neighbors: raise RuntimeError('The current node has no free neighbors! ' + 'Consider using more grid points.') for point in neighbors: # suppose that the gridpoint is not yet seen new_point = True for n in self.closed_list: if point == n.pos: # point is already in closed list new_point = False break for n in self.open_list: if point == n.pos: # point is already in open list dummy_node = Node(point, parent=self.current_node) new_g_cost = self.calculate_g_cost(dummy_node) if new_g_cost <= n.g_cost: n.parent = self.current_node n.g_cost = new_g_cost n.h_cost = self.calculate_h_cost(n) n.f_cost = self.calculate_f_cost(n) new_point = False break if new_point: # make a node for the point new_node = self.create_node(point) new_node.parent = self.current_node new_node.g_cost = self.calculate_g_cost(new_node) new_node.h_cost = self.calculate_h_cost(new_node) new_node.f_cost = self.calculate_f_cost(new_node) self.open_list.append(new_node) self.current_node = self.get_lowest_f_cost_node() self.remove_from_open_list(self.current_node) self.closed_list.append(self.current_node) if not self.open_list: # current node is not the goal, and open list is empty # check if there are neigbors left which you can reach and are not yet visited neighbors = self.grid.get_neighbors(self.current_node.pos) closed_list_pos = [] for node in self.closed_list: closed_list_pos.append(node.pos) if not neighbors or all([item in closed_list_pos for item in neighbors]): # there are no neighbors which are accessible or they are all in the closed list, # meaning that no path could be found raise RuntimeError('There is no path from the desired start to the desired end node! ' + 'Consider using more grid points.') t2 = time.time() print('Elapsed time to find a global path: ', t2-t1) # convert a set of nodes to a set of positions path = self.closed_list_to_path() nodes_pos = [] for node in path: nodes_pos.append(node.pos) nodes_pos.reverse() # convert node positions (indices) to waypoint positions (physical values) path = self.convert_node_to_waypoint(nodes_pos) return path def closed_list_to_path(self): # convert closed list to a list of nodes, by moving over the parent of each node current_node = self.closed_list[-1] path = [current_node] while current_node != self.closed_list[0]: next_node = current_node.parent path.append(next_node) current_node = next_node return path def convert_node_to_waypoint(self, nodes): # convert position of node (i.e. an index in a grid) to a physical position [m] waypoints = [] if not isinstance (nodes[0], list): # make something like [[0,1]] nodes = [nodes] for node in nodes: waypoint = [0,0] waypoint[0] = self.grid.position[0] - self.grid.width*0.5 + self.grid.cell_width*0.5 + node[0]*self.grid.cell_width waypoint[1] = self.grid.position[1] - self.grid.height*0.5 + self.grid.cell_height*0.5 + node[1]*self.grid.cell_height waypoints.append(waypoint) return waypoints def plot_path(self, path): # plot the computed path posx = [] posy = [] for waypoint in path: posx.append(waypoint[0]) posy.append(waypoint[1]) plt.plot(posx,posy) plt.show() class Node(object): def __init__(self, position, parent=None): self.pos = position # index of the point in the grid self.parent = parent # how did you end up in this node self.f_cost = 0 self.g_cost = 0 self.h_cost = 0 def get_parent(self): return self.parent def get_pos(self): return self.pos def get_g_cost(self): return self.g_cost def get_h_cost(self): return self.h_cost def get_f_cost(self): return self.f_cost class Grid(object): # based on: http://www.redblobgames.com/pathfinding/a-star/implementation.html def __init__(self, width, height, position, n_cells, offset=[0.,0.]): self.occupied = [] # initialize grid as empty self.width = width self.height = height self.position = position self.n_cells = n_cells # number of cells in horizontal and vertical direction self.cell_width = self.width*1./self.n_cells[0] self.cell_height = self.height*1./self.n_cells[1] self.offset = offset # blows up obstacles, e.g. to take the vehicle size into account in the grid def in_bounds(self, point): x, y = point # cell number starts counting at 0, until n_cells-1 return 0 <= x < self.n_cells[0] and 0 <= y < self.n_cells[1] def block(self, points): # block cells given by indices/position in grid if len(points) == 2 and isinstance(points[0], int): points = [points] for point in points: if self.in_bounds(point): # only add points which are in the bounds self.occupied.append(point) def free(self, point): # check if a gridpoint is free # i.e.: not occupied and in bounds free = False if ((not point in self.occupied) and (self.in_bounds(point))): free = True return free def is_accessible(self, point1, point2): # Check if you can reach point2 from point1. Diagonal movement along # an edge of an occupied point is not allowed # graphical illustration: # 1----2----3 # | | | # 4----x----6 # | | | # 7----8----9 # if x represents an occupied point, then moving from e.g. 8 to 6 is not possible accessible = True # only possible to be free but not accessible if diagonal movement if (point1[0] != point2[0] and point1[1] != point2[1]): # if diagonal movement accessible may be False accessible = False # diagonal up right if (point1[0] + 1 == point2[0] and point1[1] + 1 == point2[1]): if (self.free([point1[0], point1[1] + 1]) and self.free([point1[0] + 1, point1[1]])): accessible = True # diagonal up left elif (point1[0] - 1 == point2[0] and point1[1] + 1 == point2[1]): if (self.free([point1[0], point1[1] + 1]) and self.free([point1[0] - 1,point1[1]])): accessible = True # diagonal down right elif (point1[0] + 1 == point2[0] and point1[1] - 1 == point2[1]): if (self.free([point1[0], point1[1] - 1]) and self.free([point1[0] + 1,point1[1]])): accessible = True # diagonal down left elif (point1[0] - 1 == point2[0] and point1[1] - 1 == point2[1]): if (self.free([point1[0], point1[1] - self.cell_height]) and self.free([point1[0] - 1,point1[1]])): accessible = True return accessible def move_to_gridpoint(self, point): # snap a certain point to the nearest unoccupied grid point # i.e. you go from [m] to a certain index in the grid # determine distance of point to all surrounding grid points # find the amount of cell widths/heights which fits in the point # this is the closest gridpoint moved_point = [0, 0] # remove offset, i.e. substract the bottom left gridpoint moved_point[0] = point[0] - (self.position[0] - 0.5*self.width + 0.5*self.cell_width) moved_point[1] = point[1] - (self.position[1] - 0.5*self.height + 0.5*self.cell_height) # determine how many times point fits in cell dimensions, this gives the indices in the grid # lowest possible index is zero moved_point[0] = max(0, int(round(float(moved_point[0])/self.cell_width))) moved_point[1] = max(0, int(round(float(moved_point[1])/self.cell_height))) if not self.in_bounds(moved_point): # if point still not in bounds, its index is too high # index of last cell is self.n_cells-1, assign this to moved_point moved_point[0] = min(moved_point[0], self.n_cells[0]-1) moved_point[1] = min(moved_point[1], self.n_cells[1]-1) if moved_point in self.occupied: # closest grid point is occupied, check all neighbours of this point points_to_check = [[moved_point[0]+1, moved_point[1]], [moved_point[0]-1, moved_point[1]], [moved_point[0], moved_point[1]+1], [moved_point[0], moved_point[1]-1], [moved_point[0]+1, moved_point[1]+1], [moved_point[0]+1, moved_point[1]-1], [moved_point[0]-1, moved_point[1]+1], [moved_point[0]-1, moved_point[1]-1]] # remove inaccessible points from points_to_check points_to_check = list(filter(self.in_bounds, points_to_check)) points_to_check = list(filter(self.free, points_to_check)) # select closest point which is not occupied if points_to_check is not None: # worst case: only a diagonally placed cell is available # --> distance to it is sqrt(cell_width**2+cell_height**2) # use an upper bound on this to avoid taking sqrt a lot to # initialize d_min d_min = 2*max(self.cell_height, self.cell_width) for p in points_to_check: distance = self.distance_between_cells(p, moved_point) if distance < d_min: d_min = distance moved_point = p # convert position of moved_point to indices return moved_point def distance_between_cells(self, cell1, cell2): if cell1 == cell2: return 0 elif cell1[0] == cell2[0]: return self.cell_height elif cell1[1] == cell2[1]: return self.cell_width else: return np.sqrt(self.cell_width**2 + self.cell_height**2) def get_neighbors(self, point): # get all the accessible neighbouring cells of a certain point x, y = point results = [[x+1, y], [x-1, y], [x, y+1],[x, y-1], [x-1, y+1], [x+1, y+1], [x-1, y-1], [x+1, y-1]] results = list(filter(self.in_bounds, results)) results = list(filter(self.free, results)) results = [x for x in results if self.is_accessible(point, x)] return results def get_occupied_cells(self, environment): # blank out the grid points which are occupied by a certain obstacle occupied_cells = [] cells = [] centers_x = np.arange(self.position[0]-self.width*0.5 + 0.5*self.cell_width, self.position[0]+self.width*0.5 + 0.5*self.cell_width,self.cell_width) centers_y = np.arange(self.position[1]-self.height*0.5 + 0.5*self.cell_height, self.position[1]+self.height*0.5 + 0.5*self.cell_height, self.cell_height) i, j = 0, 0 for x in centers_x: for y in centers_y: cells.append({'pos': [x,y], 'index': [i, j]}) j += 1 i += 1 j = 0 for obstacle in environment.obstacles: # only look at stationary obstacles if ((not 'trajectories' in obstacle.simulation) or (not 'velocity' in obstacle.simulation['trajectories']) or (all(vel == [0.]*obstacle.n_dim for vel in obstacle.simulation['trajectories']['velocity']['values']))): pos = obstacle.signals['position'][:,-1] if isinstance(obstacle.shape, (Rectangle, Square)): vertices = [] vertex_x = obstacle.shape.vertices[0] vertex_y = obstacle.shape.vertices[1] for k in range(len(vertex_x)): if vertex_x[k] == min(vertex_x): # take into account offset to avoid waypoints which are so close # to obstacles that they are not reachable v_x = vertex_x[k] + pos[0] - self.offset[0] else: # take into account offset to avoid waypoints which are so close # to obstacles that they are not reachable v_x = vertex_x[k] + pos[0] + self.offset[0] if vertex_y[k] == min(vertex_y): v_y = vertex_y[k] + pos[1] - self.offset[1] else: v_y = vertex_y[k] + pos[1] + self.offset[1] vertices.append([v_x, v_y]) if isinstance(obstacle.shape, Circle): r = obstacle.shape.radius # approximate circle by a square and add these vertices # take into account offset, e.g. to avoid waypoints which # are closer to obstacles than the vehicle can reach vertices = [[pos[0] + r + self.offset[0], pos[1] + r + self.offset[1]], [pos[0] + r + self.offset[0], pos[1] - r - self.offset[1]], [pos[0] - r - self.offset[0], pos[1] + r + self.offset[1]], [pos[0] - r - self.offset[0], pos[1] - r - self.offset[1]]] vertices = np.array(vertices) vertices = np.round(vertices, 4) # rounding off vertex positions, for easier comparison below occ_cells = [] for cell in cells: blocked = False # boolean to indicate if cell is blocked # calculate cell vertices cell_vertices = [] cell_vertices.append([cell['pos'][0] - 0.5*self.cell_width, cell['pos'][1] - 0.5*self.cell_height]) cell_vertices.append([cell['pos'][0] + 0.5*self.cell_width, cell['pos'][1] - 0.5*self.cell_height]) cell_vertices.append([cell['pos'][0] - 0.5*self.cell_width, cell['pos'][1] + 0.5*self.cell_height]) cell_vertices.append([cell['pos'][0] + 0.5*self.cell_width, cell['pos'][1] + 0.5*self.cell_height]) cell_vertices = np.array(cell_vertices) # cell center is inside the convex hull of the vertices of an obstacle if (min(vertices[:,0]) < cell['pos'][0] < max(vertices[:,0]) and min(vertices[:,1]) < cell['pos'][1] < max(vertices[:,1])): occ_cells.append(cell) else: # check if any of the cell vertices are inside the convex hull of the obstacle vertices for cell_v in cell_vertices: if (min(vertices[:,0]) < cell_v[0] < max(vertices[:,0]) and min(vertices[:,1]) < cell_v[1] < max(vertices[:,1])): # avoid adding the same cell multiple times if cell not in occ_cells: occ_cells.append(cell) blocked = True # cell is blocked, go to next cell break # check if any of the obstacle vertices are inside the convex hull of the cell vertices if not blocked: # cell was not detected as blocked yet for v in vertices: if (min(cell_vertices[:,0]) < v[0] < max(cell_vertices[:,0]) and min(cell_vertices[:,1]) < v[1] < max(cell_vertices[:,1])): # avoid adding the same cell multiple times if cell not in occ_cells: occ_cells.append(cell) break # one obstacle vertex is inside the cell, go to next cell # if cell is found to be occupied, remove it, i.e. don't check again for next obstacle for cell in occ_cells: cells.remove(cell) # add cells which are occupied by the obstacle to the collection of occupied cells occupied_cells.extend(occ_cells) # only return the indices of the occupied cells occ_cells = [] for cell in occupied_cells: occ_cells.append(cell['index']) return occ_cells def draw(self): # draw the grid plt.figure() #plot centers centers_x = np.arange(self.position[0]-self.width*0.5 + 0.5*self.cell_width, self.position[0]+self.width*0.5 + 0.5*self.cell_width,self.cell_width) centers_y = np.arange(self.position[1]-self.height*0.5 + 0.5*self.cell_height, self.position[1]+self.height*0.5 + 0.5*self.cell_height, self.cell_height) i, j = 0, 0 for x in centers_x: for y in centers_y: if [i,j] not in self.occupied: plt.plot(x,y,'ro') j += 1 i += 1 j = 0 #plot grid lines x_bottom = self.position[0] - 0.5*self.width x_top = self.position[0] + 0.5*self.width y_bottom = self.position[1] - 0.5*self.height y_top = self.position[1] + 0.5*self.height # make int because number of lines can only be an integer for k in range(int(self.width/self.cell_width)+1): x_point = x_bottom + k*self.cell_width plt.plot([x_point,x_point], [y_bottom,y_top], 'r-') for k in range(int(self.height/self.cell_height)+1): y_point = y_bottom + k*self.cell_height plt.plot([x_bottom,x_top], [y_point,y_point], 'r-') plt.draw() class SquareGrid(Grid): # special case of a normal Grid, width = height def __init__(self, size, position, n_cells, offset=[0.,0.]): # make a general grid, with square cell Grid.__init__(self, size, size, position, n_cells, offset)
lgpl-3.0
benfred/implicit
benchmarks/benchmark_als.py
1
5976
""" test script to verify the CG method works, and time it versus cholesky """ from __future__ import print_function import argparse import json import logging from collections import defaultdict import matplotlib.pyplot as plt import scipy.io import seaborn from implicit._als import calculate_loss from implicit.als import AlternatingLeastSquares from implicit.nearest_neighbours import bm25_weight try: import implicit.gpu # noqa has_cuda = True except ImportError: has_cuda = False def benchmark_accuracy(plays): output = defaultdict(list) def store_loss(model, name): def inner(iteration, elapsed): loss = calculate_loss(plays, model.item_factors, model.user_factors, 0) print("model %s iteration %i loss %.5f" % (name, iteration, loss)) output[name].append(loss) return inner for steps in [2, 3, 4]: model = AlternatingLeastSquares( factors=100, use_native=True, use_cg=True, regularization=0, iterations=25 ) model.cg_steps = steps model.fit_callback = store_loss(model, "cg%i" % steps) model.fit(plays) if has_cuda: model = AlternatingLeastSquares( factors=100, use_native=True, use_gpu=True, regularization=0, iterations=25 ) model.fit_callback = store_loss(model, "gpu") model.use_gpu = True model.fit(plays) model = AlternatingLeastSquares( factors=100, use_native=True, use_cg=False, regularization=0, iterations=25 ) model.fit_callback = store_loss(model, "cholesky") model.fit(plays) return output def benchmark_times(plays, iterations=3): times = defaultdict(lambda: defaultdict(list)) def store_time(model, name): def inner(iteration, elapsed): print(name, model.factors, iteration, elapsed) times[name][model.factors].append(elapsed) return inner output = defaultdict(list) for factors in range(32, 257, 32): for steps in [2, 3, 4]: model = AlternatingLeastSquares( factors=factors, use_native=True, use_cg=True, regularization=0, iterations=iterations, ) model.fit_callback = store_time(model, "cg%i" % steps) model.cg_steps = steps model.fit(plays) model = AlternatingLeastSquares( factors=factors, use_native=True, use_cg=False, regularization=0, iterations=iterations ) model.fit_callback = store_time(model, "cholesky") model.fit(plays) if has_cuda: model = AlternatingLeastSquares( factors=factors, use_native=True, use_gpu=True, regularization=0, iterations=iterations, ) model.fit_callback = store_time(model, "gpu") model.fit(plays) # take the min time for the output output["factors"].append(factors) for name, stats in times.items(): output[name].append(min(stats[factors])) return output LABELS = { "cg2": "CG (2 Steps/Iteration)", "cg3": "CG (3 Steps/Iteration)", "cg4": "CG (4 Steps/Iteration)", "gpu": "GPU", "cholesky": "Cholesky", } COLOURS = { "cg2": "#2ca02c", "cg3": "#ff7f0e", "cg4": "#c5b0d5", "gpu": "#1f77b4", "cholesky": "#d62728", } def generate_speed_graph( data, filename="als_speed.png", keys=["gpu", "cg2", "cg3", "cholesky"], labels=None, colours=None, ): labels = labels or {} colours = colours or {} seaborn.set() fig, ax = plt.subplots() factors = data["factors"] for key in keys: ax.plot( factors, data[key], color=colours.get(key, COLOURS.get(key)), marker="o", markersize=6 ) ax.text(factors[-1] + 5, data[key][-1], labels.get(key, LABELS[key]), fontsize=10) ax.set_ylabel("Seconds per Iteration") ax.set_xlabel("Factors") plt.savefig(filename, bbox_inches="tight", dpi=300) def generate_loss_graph(data, filename="als_speed.png", keys=["gpu", "cg2", "cg3", "cholesky"]): seaborn.set() fig, ax = plt.subplots() iterations = range(1, len(data["cholesky"]) + 1) for key in keys: ax.plot(iterations, data[key], color=COLOURS[key], marker="o", markersize=6) ax.text(iterations[-1] + 1, data[key][-1], LABELS[key], fontsize=10) ax.set_ylabel("Mean Squared Error") ax.set_xlabel("Iteration") plt.savefig(filename, bbox_inches="tight", dpi=300) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Benchmark CG version against Cholesky", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--input", type=str, required=True, dest="inputfile", help="dataset file in matrix market format", ) parser.add_argument("--graph", help="generates graphs", action="store_true") parser.add_argument("--loss", help="test training loss", action="store_true") parser.add_argument("--speed", help="test training speed", action="store_true") args = parser.parse_args() if not (args.speed or args.loss): print("must specify at least one of --speed or --loss") parser.print_help() else: plays = bm25_weight(scipy.io.mmread(args.inputfile)).tocsr() logging.basicConfig(level=logging.DEBUG) if args.loss: acc = benchmark_accuracy(plays) json.dump(acc, open("als_accuracy.json", "w")) if args.graph: generate_loss_graph(acc, "als_accuracy.png") if args.speed: speed = benchmark_times(plays) json.dump(speed, open("als_speed.json", "w")) if args.graph: generate_speed_graph(speed, "als_speed.png")
mit
nkeim/runtrackpy
runtrackpy/run.py
1
10463
"""Manage tracking of many movies in parallel.""" # Copyright 2013 Nathan C. Keim # #This program is free software; you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation; either version 3 of the License, or (at #your option) any later version. # #This program is distributed in the hope that it will be useful, but #WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU #General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program; if not, see <http://www.gnu.org/licenses>. import os, json, time, datetime import pandas from util import DirBase, readSingleCfg from .statusboard import format_td def _runtracking(mov, cfg, progress=False): """Decide parameters for tracking and then run track2disk(). 'cfg' is a dict that can contain tracking parameters in the 'quickparams' entry; otherwise, they are loaded from disk. To be run in a parallel worker. Expects to find the track2disk() function in runtrackpy.track """ from runtrackpy.track import track2disk, get_window with mov(): # Read parameters if cfg.get('quickparams') is not None: params = cfg['quickparams'] else: params = readSingleCfg(cfg['paramsfilename']) # Find image files if cfg.get('frames_pattern') is not None: framefiles = mov.p.glob(cfg['frames_pattern']) else: try: framefiles = mov.framesRecord().filename.tolist() except AttributeError: raise RuntimeError('Automatic image filenames not available. Specify "frames_pattern"') # Choose frames if cfg.get('selectframes') is not None: selectframes = cfg['selectframes'] else: window = get_window() lastframe = window['lastframe'] if lastframe == -1: lastframe = len(framefiles) selectframes = range(window['firstframe'], lastframe + 1) track2disk(framefiles, cfg['tracksfilename'], params, selectframes=selectframes, statusfile=cfg['statusfilename'], progress=progress) return mov.p class TrackingRunner(object): """User interface for parallel tracking in IPython. Basic idea: run a specified function (default _runtracking()) in a parallel worker for each movie directory given, and monitor status of the tracking jobs. 'movie_dirs' is a list of directory names. 'load_balanced_view' is an IPython parallel processing view. If not specified, you can use only the run() method below. 'tracksfilename' is the destination tracks file in each movie directory. By convention it has the extension ".h5". Any needed subdirectories will be created. 'quickparams' lets you pass a dictionary of tracking parameters. If you do not specify it, the tracking parameters are loaded from the file "trackpy.ini" in each movie directory. See the "track" module for details of what parameters are required. 'frames_pattern' uses glob-style wildcards to specify image files, e.g. "Frame_*.png" 'paramsfilename' is the name of the .ini file in each directory where parameters are stored (ignored if 'quickparams' was given). 'statusfilename' and 'tracking_function' are not user-serviceable. An instance can be constructed with 'from_objects()' if you would like to pass your own instances of util.DirBase() or some work-alike class. """ # FIXME: Restructure so that self.movies is a collection of task objects. # This would let options like 'quickparams' be set on a per-task basis. def __init__(self, movie_dirs, load_balanced_view=None, tracksfilename='bigtracks.h5', quickparams=None, frames_pattern=None, paramsfilename='trackpy.ini', statusfilename='trackingstatus.json', tracking_function=_runtracking): """If quickparams == None, use 'trackpy.ini' in each directory. If frames_pattern == None, tries to obtain the file list from the author's own custom movie class. """ self.movies = [DirBase(d) for d in movie_dirs] self.tracksfilename = tracksfilename self.statusfilename = statusfilename self.paramsfilename = paramsfilename self.frames_pattern = frames_pattern self.quickparams = quickparams self.tracking_function = tracking_function self.parallel_results = [] self.parallel_results_mostrecent = {} self.load_balanced_view = load_balanced_view @classmethod def from_objects(cls, objlist, *args, **kw): """Initializes a TrackingRunner from a list of DirBase-like objects""" r = cls([], *args, **kw) r.movies = objlist return r def _prepare_run_config(self, mov): cfg = dict(quickparams=self.quickparams, tracksfilename=self.tracksfilename, statusfilename=self.statusfilename, paramsfilename=self.paramsfilename, frames_pattern=self.frames_pattern) return mov, cfg def submit(self, movie_index, clear_output=False): """Submit (or resubmit) a job to the load-balanced view. 'movie_index' references what you see from status_board(). If 'clear_output', delete the output and status files. """ mov = self.movies[movie_index] if clear_output: outputfile = mov.p / self.tracksfilename if outputfile.exists(): outputfile.unlink() statusfile = mov.p / self.statusfilename if statusfile.exists(): statusfile.unlink() pres = self.load_balanced_view.apply(self.tracking_function, *self._prepare_run_config(mov)) self.parallel_results.append((movie_index, pres)) self.parallel_results_mostrecent[movie_index] = pres return pres def start(self, clear_output=False): """Start jobs for all movies on an IPython load-balanced cluster view. If 'clear_output', delete the output and status files. """ for i in range(len(self.movies)): self.submit(i, clear_output=clear_output) def abort(self, movie_index): """Cancel job. 'movie_index' references what you see from status_board(). """ return self.parallel_results_mostrecent[movie_index].abort() def run(self, movie_index, clear_output=False, progress=False): """Run job in the current process (not parallel). If 'progress', display status updates.""" mov = self.movies[movie_index] with mov(): if clear_output: outputfile = mov.p / self.tracksfilename if outputfile.exists(): outputfile.unlink() statusfile = mov.p / self.statusfilename if statusfile.exists(): statusfile.unlink() return self.tracking_function(*self._prepare_run_config(mov), progress=progress) def display_outputs(self): from IPython.parallel import TimeoutError for i in range(len(self.movies)): print 'Movie index {}'.format(i) try: print self.parallel_results_mostrecent[i].display_outputs() except TimeoutError: pass def read_statuses(self): """Returns DataFrame of all status info""" info = [] for mov in self.movies: sfn = mov.p / self.statusfilename try: sf = open(sfn, 'r') sfinfo = json.load(sf) since_update = datetime.timedelta(0, time.time() - os.path.getmtime(sfn)) sfinfo['since_update'] = format_td(since_update) except IOError: sfinfo = {'working_dir': os.path.dirname(os.path.abspath(sfn)), 'status': 'waiting'} since_update = None if (mov.p / self.tracksfilename).exists(): sfinfo['output'] = 'yes' else: sfinfo['output'] = '' if sfinfo['status'] != 'done': if since_update is not None: # heartbeat timeout is 10x frame interval, or 5 minutes, # whichever is greater. heartbeat_timeout = max(float(sfinfo.get('seconds_per_frame', 0)) * 10, 300) if since_update.total_seconds() > heartbeat_timeout: sfinfo['status'] = 'DEAD' else: # If there is a tracks file but no status file, act confused. if sfinfo['output']: sfinfo['status'] = '??' else: # If there's no tracks file, assume the status is from an old run if not sfinfo['output']: sfinfo['status'] = 'waiting' info.append(sfinfo) return pandas.DataFrame(info) def status_board(self): """Presents status info for a list of filenames. Returns a DataFrame, which should display nicely. """ df = self.read_statuses().rename(columns={'seconds_per_frame': 'secs_per_frame'}) columns = ['working_dir', 'process_id', 'totalframes', 'mr_frame', 'secs_per_frame', 'elapsed_time', 'time_left', 'status', 'output', 'since_update'] for cn in columns: if cn not in df: df[cn] = '' return df[columns] def watch(self, interval=5): """Regularly updated status board.""" import IPython.display try: while True: sb = self.status_board() IPython.display.clear_output() IPython.display.display_html(sb.to_html(na_rep=''), raw=True) time.sleep(interval) except KeyboardInterrupt: IPython.display.clear_output() IPython.display.display_html(sb.to_html(na_rep=''), raw=True) print 'Last update: ' + datetime.datetime.now().strftime('%c') return
gpl-3.0
hunter-cameron/Bioinformatics
python/isolate_download_manager.py
1
39133
import argparse import sys import os import pandas import getpass import shutil import tarfile import logging import subprocess from Bio import SeqIO from mypyli import utilities from mypyli.jgi_interface import JGIInterface, JGIOrganism logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) class MissingDataError(ValueError): """ Exception to raise when trying to get the path for data that isn't present. """ pass class JGIDownloadError(Exception): """ Blanket error to use when JGI download fails for any reason""" pass class DataReport(object): """ Custom data type to store info about data""" def __init__(self): self.found_ids = [] self.missing_ids = [] self.extra_ids = [] self.invalid_files = [] self.duplicates = [] def __str__(self): return "\n".join([ "Data Report:", " Found ids: " + str(self.found_ids), " Missing ids: " + str(self.missing_ids), " Extra ids: " + str(self.extra_ids), " Invalid files: " + str(self.invalid_files), " Duplicates: " + str(self.duplicates) ]) def merge(cls, rep1, rep2): """ Merges two reports and returns the merged version. """ merged = cls() # I could do this merge in a for loop by accessing the internal dict # however, I think its frowned upon to mess with the internals merged.found_ids = rep1.found_ids + rep2.found_ids merged.missing_ids = rep1.missing_ids + rep2.missing_ids merged.extra_ids = rep1.extra_ids + rep2.extra_ids class DataType(object): """ DataType with associated paths and files """ def __init__(self, name): self.name = name self.files = {} def __str__(self): return "DataType {}".format(self.name) def update(self): """ Updates the files dict for whether or not each file exists """ for path in self.files: self.files[path] = os.path.exists(path) def add_data_file(self, path): """ Adds a file to the datatype Prefix is a full path to the file """ if path in self.files: LOG.warning("Refusing to add duplicate data path '{}' to {}".format(path, str(self))) return else: self.files[path] = False def get_missing(self): """ Returns a list of missing files """ return [file for file in self.files if not self.files[file]] def get_data_paths(self): """ Returns a list of data paths """ return list(self.files.keys()) @property def present(self): """ Property that is True if all the data exists and false otherwise """ self.update() for type_exists_bool in self.files.values(): if not type_exists_bool: return False else: return True class Isolate(object): """ Representation of an isolate complete with methods to check for existing data and download more. A major advantage (problem?) of this class is that is reports all failed data download attempts as warnings. This is great for interactive use but if you are trying to collect failed downloads using a program, it may be a little more difficult. I could add an option to suppress errors and the warning would be logged if errors are suppressed, otherwise the error raised? """ DTYPES = ["bundle", "gbk", "genome", "blast_db", "genes", "ko", "cog", "pfam", "tigrfam", "interpro"] def __init__(self, taxon_oid, name=None): """ Taxon_oid is required for online lookups. Name is what you want to name member files as. Defaults to taxon_oid. """ self.taxon_oid = taxon_oid # the name attrib will be what datafiles are named if name: self.name = name else: self.name = taxon_oid # data fields self.datatypes = {} self.metadata = {} # additional data fields for/from the database self.database_data = {} # stores a JGIOrganism to manage online data access self.organism = None def __str__(self): return "Isolate: {}".format(self.name) def get_data_paths(self, dtype): """ Returns a list of the filepath(s) for a particular datatype""" return self.datatypes[dtype].get_data_paths() def make_organism(self, interface): """ Creates a JGIOrganism object from the supplied interface """ self.organism = JGIOrganism(interface, taxon_oid=self.taxon_oid, prefix=self.taxon_oid) # methods for looking for data files def add_datatype(self, dtype, pre_suf): """ Adds a DataType object to the datatypes attribute datatype - a string name for the datatype pre_suf - a tuple or list of tuples with a prefix (full directory path) and suffix (extension) for each data file to put in the datatype """ try: datatype = self.datatypes[dtype] except KeyError: datatype = DataType(dtype) # convert pre_suf to a list is it isn't already if isinstance(pre_suf, tuple): pre_suf = [pre_suf] for tup in pre_suf: prefix, suffix = tup # add a forward slash to the path if necessary if not prefix.endswith("/"): prefix += "/" # get the full path using the isolate name data_path = prefix + self.name + suffix datatype.add_data_file(data_path) self.datatypes[dtype] = datatype def get_missing(self): """ Returns a dict with missing datatypes as keys and lists of missing files as values """ missing_data = {} for datatype in self.datatypes.values(): if not datatype.present: missing_data[datatype.name] = datatype.get_missing() return missing_data # methods for adding new data def update_metadata(self, overwrite=False): """ Looks up metadata from JGI and stores it as an attribute """ if self.metadata: if overwrite: LOG.warning("Overwriting metadata for {}".format(str(self))) else: LOG.warning("Metadata already present for {}. Skipping lookup. Specify overwrite=True to force.".format(str(self))) return try: self.metadata = self.organism.get_metadata() except Exception as e: LOG.warning("Could not download metadata for {}.\n\t{}".format(str(self), str(e))) def update_data(self, dtype=None, overwrite=False): """ Tries to get data according to the dtype; if dtype is none, tries to get all missing data """ if dtype is None: if overwrite: dtype = self.datatypes.keys() else: dtype = self.get_missing().keys() else: if isinstance(dtype, str): dtype = [dtype] # ## make sure the input dtypes are ok # filtered_dtype = [] for d in dtype: # check if valid datatypes if not d in self.datatypes: LOG.warning("Datatype '{}' does not exist for {}. Omitting.".format(d, str(self))) continue # check if data is already present elif self.datatypes[d].present: if not overwrite: LOG.warning("Datatype '{}' is already present for {}. Omitting. Specify 'overwrite=True' to overwrite.".format(d, str(self))) continue filtered_dtype.append(d) dtype = filtered_dtype # ## Start getting the data # # try to get the bundle first if "bundle" in dtype: try: self._download_from_jgi("bundle") except (AttributeError, JGIDownloadError) as e: LOG.warning("Could not download 'bundle' for {}.\n\t{}".format(str(self), str(e))) # data to get from bundle if "genome" in dtype: try: self._extract_from_bundle("genome") except (MissingDataError, IOError) as e: LOG.warning("Could not extract 'genome' from 'bundle' for {}.\n\t{}".format(str(self), str(e))) # data to download from JGI for d in ["gbk", "ko", "cog", "pfam", "tigrfam", "interpro"]: if d in dtype: try: self._download_from_jgi(d) except (AttributeError, JGIDownloadError) as e: LOG.warning("Could not download '{}' for {}.\n\t{}".format(d, str(self), str(e))) # data I need to derrive from other files if "genes" in dtype: try: self._gbk2faa() except MissingDataError as e: LOG.warning("Cannot process 'genes' for {}.\n\t".format(str(self), str(e))) if "blast_db" in dtype: try: self._make_blast_db() except (MissingDataError, RuntimeError) as e: LOG.warning("Cannot 'makeblastdb' for {}.\n\t{}".format(str(self), str(e))) def _download_from_jgi(self, dtype): """ Downloads a datatype for a given organism """ # download what we can from JGI, should be try-excepted # this doesn't try to change the name of the resultant file # need to delete .tar.gz after done LOG.debug("Trying to download {} from jgi for {}...".format(dtype, str(self))) if dtype == "bundle": try: self.organism.download_data(("IMG Data", ".*.(tar.gz)$")) except Exception as e: raise JGIDownloadError("Download failed with error message:\n\t{}".format(str(e))) tar = tarfile.open(self.taxon_oid + ".tar.gz", 'r:gz') # we need the directory before the bundle dir to extract into # this command joins the path with the parent dir (..) and then resolves an abs path extract_dir = os.path.abspath(os.path.join(self.get_data_paths("bundle")[0], os.path.pardir)) tar.extractall(path=extract_dir) os.remove(self.taxon_oid + ".tar.gz") # download from IMG if dtype in ['gbk', 'ko', 'cog', 'pfam', 'tigrfam', 'interpro']: try: self.organism.download_data(dtype) except Exception as e: raise JGIDownloadError("Download failed with error message:\n\t{}".format(str(e))) # move the downloaded file to the proper location shutil.move(self.taxon_oid + "." + self.organism.IMG_DATA_SUF[dtype], self.get_data_paths(dtype)[0]) def _extract_from_bundle(self, dtype): """ Tries to extract a data type from the bundle. Excepts FileNotFoundError if bundle doesn't exist or doesn't have the file """ # this is a hash that maps dtypes to filenames in the bundle # I need to give the user more control over this without digging through the code dtype_to_bundle = { "genome": self.taxon_oid + ".fna", } LOG.debug("Trying to extract {} from bundle for {}...".format(dtype, str(self))) # check if the bundle is available if self.datatypes["bundle"].present: bundle_path = self.get_data_paths("bundle")[0] else: raise MissingDataError("Cannot extract data from bundle; bundle has not been downloaded.") # look for the file for file in os.listdir(bundle_path): if file == dtype_to_bundle[dtype]: src = bundle_path + "/" + file dest = self.get_data_paths(dtype)[0] LOG.info("Copying {} to\t{}".format(src, dest)) try: shutil.copy(src, dest) break except Exception as e: raise IOError("Copying {} to {} failed. {}".format(src, dest, str(e))) else: raise MissingDataError("Filename {} not found in bundle.".format(dtype_to_bundle[dtype])) def _make_blast_db(self): """ Makes a blast database using the makeblastdb system command""" LOG.debug("Trying to makeblastdb for {}...".format(str(self))) # check if the genome is available if self.datatypes["genome"].present: fasta = self.get_data_paths("genome")[0] else: raise MissingDataError("'genome' data required for making blast database.") # get the prefix prefix = self.get_data_paths("blast_db")[0].rsplit(".", 1)[0] status = subprocess.call(["makeblastdb", "-dbtype", "nucl", "-in", fasta, "-out", prefix]) if status: raise RuntimeError("makeblastdb command failed; make sure it is on $PATH") else: LOG.info("BLAST database successfully created!") def _gbk2faa(self): LOG.debug("Trying to extract genes for {}...".format(str(self))) # check if the gbk is available if self.datatypes["gbk"].present: gbk = self.get_data_paths("gbk")[0] else: raise MissingDataError("'genome' data required for making blast database.") # get the path for the output genes = self.get_data_paths("genes")[0] utilities.gbk2faa(gbk, genes) @property def organism(self): if self._organism is None: raise AttributeError("No JGIOrganism has been created for: {}".format(str(self))) else: return self._organism @organism.setter def organism(self, value): self._organism = value class IsolateManager(object): """ Manages data files for isolates and keeps an up to date database of which files are downloaded. """ DATA_DIRS = ["bundle", "gbk", "genome", "blast_db", "genes", "ko", "cog", "pfam", "tigrfam", "interpro"] DATA_EXT = { "bundle": "/", "gbk": ".gbk", "genome": ".fna", "genes": ".genes.faa", "ko": ".ko.txt", "cog": ".cog.txt", "pfam": ".pfam.txt", "tigrfam": ".tigrfam.txt", "interpro": ".interpro.txt", "blast_db": ".fna.nin" # this is special becuase it is actually just a prefix } EXT_TO_DTYPE = { "/": "bundle", "gbk": "gbk", "fna": "genome", "genes.faa": "genes", "ko.txt": "ko", "cog.txt": "cog", "pfam.txt": "pfam", "tigrfam.txt": "tigrfam", "interpro.txt": "interpro", "fna.nin": "blast_db", "fna.nhr": "blast_db", "fna.nsq": "blast_db", } DEFAULT_DATABASE = "isolate_database" def __init__(self, dtype_and_ext, database_path="", base_dir=os.getcwd(), mkdir=False): """ Argument dtype_and_ext is required and is a list of tuples of (dtype, extension) I'm requiring it in init because I want all the isolates to be initialized with the same data """ self.base_dir = base_dir self.database_path = database_path self.dtype_and_ext = dtype_and_ext # container to hold Isolate objects self.isolates = {} # option about whether or not to force the creation of data directories self.mkdir = mkdir # stores a connection with JGI self.jgi_interface = None # check for default path and read that db if present, otherwise, prepare to write new one if not self.database_path: self.database_path = base_dir + "/" + self.DEFAULT_DATABASE if os.path.isfile(self.database_path): self.read_database() else: self.create_database() if mkdir: # make the base dir if not os.path.isdir(base_dir): os.mkdir(base_dir) for data_dir in self.DATA_DIRS: full_path = base_dir + "/" + data_dir if not os.path.isdir(full_path): os.mkdir(full_path) ####################### ## Isolate based methods # def create_database(self, mkdir=False): """ Sets up interface to use a new database """ LOG.info("Creating new database '{}'".format(self.database_path)) def read_database(self, taxon_oid_field="taxon_oid"): """ Reads a database into Isolate Objects """ LOG.info("Reading database: {}...".format(self.database_path)) df = pandas.read_csv(self.database_path, sep="\t") df = df.where((pandas.notnull(df)), None) #df.fillna("NA", inplace=True) # check if the taxon_oid field in in the database if taxon_oid_field in df.columns: # loop through all the entries in the database and make a dict of the values for row in df.index: database_dict = {} for col in df.columns: database_dict[col] = df.loc[row, col] isolate = self.add_isolate(str(database_dict[taxon_oid_field])) isolate.database_data = database_dict def get_missing(self): """ Returns a dict of missing files across all isolates """ all_data_paths = [] missing_dict = {} for isolate in self.isolates.values(): isolate_missing = isolate.get_missing() for dtype in isolate_missing: try: missing_dict[dtype].append(isolate.name) except KeyError: missing_dict[dtype] = [isolate.name] return missing_dict def _make_organisms(self): for isolate in self.isolates.values(): isolate.make_organism(self.jgi_interface) def update_data(self, dtype=None, overwrite=False): for isolate in self.isolates.values(): isolate.update_data(dtype, overwrite) def update_metadata(self, overwrite=False): for isolate in self.isolates.values(): isolate.update_metadata(overwrite) def build_database(self, dtype_to_database, database_to_database, metadata_to_database, order=None, replace=False): """ Draws on multiple data sources to generate a database. Accepts 3 dicts to add fields to the database: dtype_to_database - allows the user to rename dtypes to whatever they want database_to_database - convert keys read in from previous database to field in this database metadata_to_database - convery keys from metadata to a database field Also accepts an order array for column names where the col names should be the set of all the values in the 3 dicts. Database is build using dtype first, then database, then metadata. Only empty fields will be filled. This allows the metadata to be populated from the original database rather than having to look it up each time. To force metadata fields to replace existing fields, specify replace=True. returns a pandas DataFrame """ # begin building dict for database db_dict = {} for index, isolate in self.isolates.items(): db_dict[index] = {} # add data status - will either be True or False for k, dk in dtype_to_database.items(): try: db_dict[index][dk] = isolate.datatypes[k].present except KeyError: LOG.warning("{} didn't have '{}' as a listed datatype.".format(str(isolate), k)) db_dict[index][dk] = False # add data from a previous database -- these should just be manual entry data fields for k, dk in database_to_database.items(): try: db_dict[index][dk] = isolate.database_data[k] except KeyError: LOG.warning("{} didn't have '{}' as a database key.".format(str(isolate), k)) db_dict[index][dk] = None # add metadata - will either be a string or None for k, dk in metadata_to_database.items(): # skip if the key is already present and not empty and replace isn't specified if dk in db_dict[index]: if db_dict[index][dk] is not None and not replace: continue try: db_dict[index][dk] = isolate.metadata[k] except KeyError: LOG.warning("{} didn't have '{}' as a metadata key.".format(str(isolate), k)) db_dict[index][dk] = None # coerce dict to a DataFrame df = pandas.DataFrame.from_dict(db_dict, orient="index") # sort the dataframe by the order array if order: # check for columns in order not in df; this is an error for item in order: if item not in df.columns: raise ValueError("Column '{}' is present in the order array but not the dataframe.".format(item)) # check for columns in df not in order; this is a warning for item in df.columns.tolist(): if item not in order: LOG.warning("Column '{}' is present in the df but not in the order array, it will not be in the sorted dataframe.".format(item)) # return then ordered df df = df[order] return df else: return df def add_isolate(self, taxon_oid): """ Adds an isolate to the dict of isolates this manager manages. Returns the isolate for further modification. """ if taxon_oid not in self.isolates: isolate = Isolate(taxon_oid) # add all the data types for data_tup in self.dtype_and_ext: prefix = self.base_dir + "/" + data_tup[0] isolate.add_datatype(data_tup[0], (prefix, data_tup[1])) # add the connection to JGI if there is one if self.jgi_interface: isolate.make_organism(self.jgi_interface) self.isolates[taxon_oid] = isolate return isolate else: LOG.warning("Isolate '{}' already in isolate list. Refusing to add duplicate.".format(taxon_oid)) def connect_to_JGI(self, **kwargs): """ Creates a JGIInterface and logs in. Valid kwargs are: username -> JGI username password -> JGI password force_overwrite -> boolean for overwriting existing files resume -> boolean for skipping existing files newest_only -> boolean for downloading the newest file only when name conflicts occur """ # set kwarg defaults kwarg_values = { "username": "", "password": "", "force_overwrite": False, "resume": False, "newest_only": False } for key, value in kwargs.items(): try: kwarg_values[key] = value except KeyError: raise ValueError("'{}' is not a valid kwarg.".format(key)) if not kwarg_values["username"]: kwarg_values["username"] = input("JGI username (email): ") if not kwarg_values ["password"]: kwarg_values["password"] = getpass.getpass("JGI Password for {}: ".format(kwarg_values["username"])) self.jgi_interface = JGIInterface(username=kwarg_values["username"], password=kwarg_values["password"], force_overwrite=kwarg_values["force_overwrite"], resume=kwarg_values["resume"], newest_only=kwarg_values["newest_only"] ) self._make_organisms() def check_for_new_isolates(self, projects): """ Checks for new isolates in a list of specfied projects. Returns a dict of isolates not in database taxon_oid -> Isolate to allow easy lookup of metadata to determine if the isolate should be added. """ # get all the taxon_oids from all the projects taxon_oids = set() for project in projects: tids = self.jgi_interface.get_taxon_oids_for_proposal(project) taxon_oids.update(tids) # check for new ones new_tids = {} for taxon_oid in taxon_oids: if taxon_oid not in self.isolates: isolate = Isolate(taxon_oid, name=taxon_oid) isolate.make_organism(self.jgi_interface) new_tids[taxon_oid] = isolate return new_tids def make_all_blast_db(self): """ Concatenates all genomic fastas and makes a blast database out of that. """ # ## Concatenate genomic fastas and prepend name to each header # LOG.info("Concatenating all files...") tmp_fasta_name = "all_isolates.fna" with open(tmp_fasta_name, "w") as OUT: for isolate in self.isolates.values(): if isolate.datatypes["genome"].present: # read the fasta file with open(isolate.get_data_paths("genome")[0], "r") as IN: LOG.debug(" Adding file from {}...".format(str(isolate))) for record in SeqIO.parse(IN, "fasta"): # change the header record.id = isolate.name + "_" + record.id # set description to id to avoid double printing record.description = record.id SeqIO.write(record, OUT, "fasta") # ## Make a mock isolate to access the mkblastdb method # all = Isolate(None, "all_isolates") all.add_datatype("genome", (self.base_dir + "/", ".fna")) all.add_datatype("blast_db", [tup for tup in self.dtype_and_ext if tup[0] == "blast_db"]) all.update_data("blast_db", overwrite=True) # remove temporary fasta os.remove(tmp_fasta_name) @staticmethod def help(): """ Displays the help message. """ print(""" Isolate Download Manager initialized as 'manager'. Other notable variables: dtype_to_database -> dict mapping datatypes to field names for tabular output metadata_to_database -> dict mapping metadata keys (on IMG organism summary) to field names database_to_database -> dict mapping fields in a previous database to field names in this db field_order -> list that contains the order of all the fields from the 3 dicts above projects -> list of the projects the isolates are currently from You might want to: - Add an isolate -> manager.add_isolate(taxon_oid) - See missing files -> manager.get_missing() - Connect to JGI -> manager.connect_to_JGI() - Get missing data for all isolates -> manager.update_data() - Get a specific data type -> manager.update_data("gbk") - Get metadata for all isolates -> manager.update_metadata() - Get a tabular representation of the isolates -> df = manager.build_database(dtype_to_database, database_to_database, metadata_to_database, field_order) - Print the tabular representation -> write_database(df, filename) - Check for new isolates in existing projects (doesn't add them to database) -> manager.check_for_new_isolates(projects) - Display this message again -> manager.help() """) def write_database(df, filename): """ Writes a pandas DataFrame to the specified filename. """ df.to_csv(path_or_buf=filename, sep="\t", na_rep='NA', header=True, index=True, index_label="taxon_oid") class UserInterface(object): """ Class for a user interface to this program. This is kept for educational purposes only. The method for using this script now is to run it in Ipython. """ STATES = { "main": [ "Welcome to the Isolate Manager", "==============================", "0. Exit", "1. Update Database", "2. Write Database", "3. Add Isolate" ], "AddIsolate": [ "Add Isolate from:", "=================", "0. Back", "1. JGI Taxon OID", ], "GetData": [ "Get Data", "========", "0. Main Menu", "1. Get all", "2. Get local" ] } RESPONSES = { "main": [ "Action:Exit", "Action:UpdateDB", "Action:WriteDB", "State:AddIsolate" ], "AddIsolate": [ "State:main", "Action:AddTaxonId", ], "GetData": [ "State:main", "Action:GetDataAll", "Action:GetDataLocal" ] } def __init__(self, manager): self.manager = manager self.running = True self.current_state = "main" def display(self): """ Main loop of the user interface """ while self.running: print(end="\n\n") for prompt in self.STATES[self.current_state]: print(prompt) print() response = input("Please enter your selection: ") self.handle_response(response) return self.manager def handle_response(self, response): # make sure response is an integer try: response = int(response) except ValueError: # switch to interactive mode if response == "i": self.running = False return print("Error: response must be an integer") return # make sure response is in the list of keys try: action = self.RESPONSES[self.current_state][response] except IndexError: print("Error: response must be in the set: " + " ".join([str(i) for i in range(len(self.RESPONSES[self.current_state]))])) return # handle the response res_type, command = action.split(":") if res_type == "State": self.current_state = command elif res_type == "Action": # main commands if command == "Exit": print("Goodbye.") sys.exit() elif command == "UpdateDB": self.update_db() elif command == "WriteDB": self.write_db() # add isolate commands elif command == "AddTaxonId": self.add_isolate_taxon_oid() elif command == "AddProjId": self.add_isolate_proj_id() elif command == "AddUniqueId": self.add_isolate_unique_id() # get data commands elif command == "GetDataAll": self.get_data("all") elif command == "GetDataLocal": self.get_data("local") def update_db(self): print() self.manager.update_database() print() print("Database updated.") self.current_state = "GetData" def write_db(self): path = input("Please type the path to write the database (default=" + self.manager.database_path + ").\n") if not path: path = self.manager.database_path self.manager.write_database(path) print("Database written to: {}".format(path)) def add_isolate_taxon_oid(self): isolate = input("Type the JGI taxonomy id: ") if len(isolate) != 10: print("JGI taxonomy ids have 10 digits. Refusing to accept this entry because it does not have 10 characters.") return else: self.manager.add_isolate(isolate) print("Isolate {} successfully added.".format(isolate)) def get_data(self, style): if style == "all": self.current_state == "main" username = input("JGI username (email): ") password = getpass.getpass("JGI Password: ") jgi_interface = JGIInterface(username=username, password=password, newest_only=True) self.manager.get_data(jgi_interface) elif style == "local": self.manager.get_data() def get_ids_from_file(ids_f): ids = [] with open(ids_f, 'r') as IN: for line in IN: ids.append(line.rstrip()) return ids if __name__ == "__main__": parser = argparse.ArgumentParser(description="Provides an interactive interface for managing/downloading a JGI/IMG based database. The ideal way to use this is by invoking this script using ipython.") parser.add_argument("-db", "-database", help="a database mapping Taxon id to types of data on file. will be created if blank", default="") parser.add_argument("-dir", "-base_dir", help="the base isolates directory", default=os.getcwd()); parser.add_argument("-mkdir", help="make data directories if they don't exist", action="store_true") parser.add_argument("-ids", help="list of ids (or a file with a list) to check, this is optional if there is an established database", nargs="*") args = parser.parse_args() args.dir = os.path.abspath(args.dir) # make a list of datatype and file extensions # this can be tailored to look for less data dtype_and_ext = [ ("bundle", "/"), ("gbk", ".gbk"), ("genome", ".fna"), ("genes", ".genes.faa"), ("ko", ".ko.txt"), ("cog", ".cog.txt"), ("pfam", ".pfam.txt"), ("tigrfam", ".tigrfam.txt"), ("interpro", ".interpro.txt"), ("blast_db", ".fna.nin"), ("blast_db", ".fna.nhr"), ("blast_db", ".fna.nsq") ] # options to use when making a database field_order = [ "freezer_id", "organism_name", "project", "sequencing_center", "type", "status", "gram_staining", "lineage", "bundle", "gbk", "genome", "genes", "ko", "cog", "pfam", "tigrfam", "interpro", "blast_db" ] database_to_database = { "freezer_id": "freezer_id", "organism_name": "organism_name", "sequencing_center": "sequencing_center", "type": "type", "project": "project", "gram_staining": "gram_staining", "status": "status", "lineage": "lineage" } metadata_to_database = { "Organism Name": "organism_name", "Sequencing Center": "sequencing_center", "Culture Type": "type", "Study Name (Proposal Name)": "project", "Gram Staining": "gram_staining", "Lineage": "lineage", "Sequencing Status": "status" } # add all datatypes dtype_to_database = {d[0]: d[0] for d in dtype_and_ext} # set up the manager manager = IsolateManager(dtype_and_ext, args.db, args.dir, args.mkdir) field_map = { "Organism Name": "organism_name", "Sequencing Center:": "sequencing_center", "Culture Type": "type", "Study Name (Proposal Name)": "project", "Gram Staining": "gram", } # current projects projects = { 'Burkholderia Environmental Isolates', 'Plant associated metagenomes--Microbial community diversity and host control of community assembly across model and emerging plant ecological genomics systems.', 'Rhizosphere Grand Challenge Isolate Sequencing' } # load in any new isolates if args.ids is not None: for arg in args.ids: if os.path.isfile(arg): ids = get_ids_from_file(arg) for id in ids: manager.add_isolate(id) else: for id in args.ids: manager.add_isolate(id) print(""" Isolate Download Manager initialized as 'manager'. Other notable variables: dtype_to_database -> dict mapping datatypes to field names for tabular output metadata_to_database -> dict mapping metadata keys (on IMG organism summary) to field names database_to_database -> dict mapping fields in a previous database to field names in this db field_order -> list that contains the order of all the fields from the 3 dicts above projects -> set of the current projects known to include relevant isolates You might want to: - Add an isolate -> manager.add_isolate(taxon_oid) - See missing files -> manager.get_missing() - Connect to JGI -> manager.connect_to_JGI() - Get missing data for all isolates -> manager.update_data() - Get a specific data type -> manager.update_data("gbk") - Get metadata for all isolates -> manager.update_metadata() - Get a tabular representation of the isolates -> manager.build_database(dtype_to_database, database_to_database, metadata_to_database, field_order) """) #manager.make_organisms(jgi_interface) sys.exit() ui = UserInterface(manager) manager = ui.display() #manager.update_database()
mit
Zhenxingzhang/AnalyticsVidhya
BigMartSales/DataMunging.py
1
4657
import pandas as pd import numpy as np from scipy.stats import mode # Read files: train = pd.read_csv("Data/Train_UWu5bXk.csv") test = pd.read_csv("Data/Test_u94Q5KV.csv") # Combine test and train into one file train['source']='train' test['source']='test' data = pd.concat([train, test],ignore_index=True) print train.shape, test.shape, data.shape # Check missing values: print data.apply(lambda x: sum(x.isnull())) # Number of unique values in each: print data.apply(lambda x: len(x.unique())) # Determine the average weight per item: item_avg_weight = data.pivot_table(values='Item_Weight', index='Item_Identifier') # Get a boolean variable specifying missing Item_Weight values miss_bool = data['Item_Weight'].isnull() # Impute data and check #missing values before and after imputation to confirm print 'Orignal #missing: %d'% sum(miss_bool) data.loc[miss_bool,'Item_Weight'] = data.loc[miss_bool,'Item_Identifier'].apply(lambda x: item_avg_weight[x]) print 'Final #missing: %d'% sum(data['Item_Weight'].isnull()) #Determing the mode for each outlet_size_mode = data.pivot_table(values='Outlet_Size', columns='Outlet_Type',aggfunc=(lambda x:mode(x).mode[0]) ) print 'Mode for each Outlet_Type:' print outlet_size_mode exit(0) # Get a boolean variable specifying missing Item_Weight values miss_bool = data['Outlet_Size'].isnull() # Impute data and check #missing values before and after imputation to confirm print '\nOrignal #missing: %d'% sum(miss_bool) data.loc[miss_bool,'Outlet_Size'] = data.loc[miss_bool,'Outlet_Type'].apply(lambda x: outlet_size_mode[x]) print sum(data['Outlet_Size'].isnull()) #Feature Engineering #Check the mean sales by type: data.pivot_table(values='Item_Outlet_Sales',index='Outlet_Type') #Determine average visibility of a product visibility_avg = data.pivot_table(values='Item_Visibility', index='Item_Identifier') #Impute 0 values with mean visibility of that product: miss_bool = (data['Item_Visibility'] == 0) print 'Number of 0 values initially: %d'%sum(miss_bool) data.loc[miss_bool,'Item_Visibility'] = data.loc[miss_bool,'Item_Identifier'].apply(lambda x: visibility_avg[x]) print 'Number of 0 values after modification: %d'%sum(data['Item_Visibility'] == 0) #Determine another variable with means ratio data['Item_Visibility_MeanRatio'] = data.apply(lambda x: x['Item_Visibility']/visibility_avg[x['Item_Identifier']], axis=1) print data['Item_Visibility_MeanRatio'].describe() #Item type combine: data['Item_Identifier'].value_counts() data['Item_Type_Combined'] = data['Item_Identifier'].apply(lambda x: x[0:2]) data['Item_Type_Combined'] = data['Item_Type_Combined'].map({'FD':'Food', 'NC':'Non-Consumable', 'DR':'Drinks'}) data['Item_Type_Combined'].value_counts() #Years: data['Outlet_Years'] = 2013 - data['Outlet_Establishment_Year'] data['Outlet_Years'].describe() #Change categories of low fat: print 'Original Categories:' print data['Item_Fat_Content'].value_counts() print '\nModified Categories:' data['Item_Fat_Content'] = data['Item_Fat_Content'].replace({'LF':'Low Fat', 'reg':'Regular', 'low fat':'Low Fat'}) print data['Item_Fat_Content'].value_counts() #Mark non-consumables as separate category in low_fat: data.loc[data['Item_Type_Combined']=="Non-Consumable",'Item_Fat_Content'] = "Non-Edible" data['Item_Fat_Content'].value_counts() #Import library: from sklearn.preprocessing import LabelEncoder le = LabelEncoder() #New variable for outlet data['Outlet'] = le.fit_transform(data['Outlet_Identifier']) var_mod = ['Item_Fat_Content','Outlet_Location_Type','Outlet_Size','Item_Type_Combined','Outlet_Type','Outlet'] le = LabelEncoder() for i in var_mod: data[i] = le.fit_transform(data[i]) #One Hot Coding: data = pd.get_dummies(data, columns=['Item_Fat_Content','Outlet_Location_Type','Outlet_Size','Outlet_Type', 'Item_Type_Combined','Outlet']) # Exporting Data #Drop the columns which have been converted to different types: data.drop(['Item_Type','Outlet_Establishment_Year'],axis=1,inplace=True) #Divide into test and train: train = data.loc[data['source']=="train"] test = data.loc[data['source']=="test"] #Drop unnecessary columns: test.drop(['Item_Outlet_Sales','source'],axis=1,inplace=True) train.drop(['source'],axis=1,inplace=True) #Export files as modified versions: train.to_csv("Data/train_modified.csv",index=False) test.to_csv("Data/test_modified.csv",index=False)
apache-2.0
sinall/ShiPanE-Python-SDK
strategyease_sdk/guorn/client.py
1
2995
# -*- coding: utf-8 -*- import time import pandas as pd import requests from strategyease_sdk.base_quant_client import BaseQuantClient from strategyease_sdk.models import * class GuornClient(BaseQuantClient): BASE_URL = 'https://guorn.com' def __init__(self, **kwargs): super(GuornClient, self).__init__('Guorn') self._session = requests.Session() self._username = kwargs.get('username', None) self._password = kwargs.get('password', None) self._sid = kwargs.get('sid', None) self._timeout = kwargs.pop('timeout', (5.0, 10.0)) def login(self): self._session.headers = { 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.8', 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.100 Safari/537.36', 'Referer': '{}'.format(self.BASE_URL), 'X-Requested-With': 'XMLHttpRequest', 'Origin': self.BASE_URL, 'Content-Type': 'application/json; charset=UTF-8', } self._session.get(self.BASE_URL, timeout=self._timeout) response = self._session.post('{}/user/login'.format(self.BASE_URL), json={ 'account': self._username, 'passwd': self._password, 'keep_login': 'true' }, timeout=self._timeout) self._session.headers.update({ 'cookie': response.headers['Set-Cookie'] }) super(GuornClient, self).login() def query_portfolio(self): response = self._session.get('{}/stock/instruction'.format(self.BASE_URL), params={ 'fmt': 'json', 'amount': 1000000, 'sid': self._sid, '_': time.time() }, timeout=self._timeout) instruction = response.json() status = instruction['status'] data = instruction['data'] if status == 'failed': if isinstance(data, str): raise Exception(data) raise Exception("获取调仓指令数据失败") df = pd.DataFrame() sheet_data = instruction['data']['sheet_data'] if sheet_data is not None: for row in sheet_data['row']: df[row['name']] = pd.Series(row['data'][1]) meas_data = sheet_data['meas_data'] for index, col in enumerate(sheet_data['col']): df[col['name']] = pd.Series(meas_data[index]) portfolio = Portfolio(total_value=1.0) for index, row in df.iterrows(): security = row.get(u'股票代码') or row.get(u'基金代码') value = row[u'目标仓位'] price = row[u'参考价'] amount = value / price position = Position(security, price, amount, amount) portfolio.add_position(position) portfolio.rebalance() return portfolio
mit
ZenDevelopmentSystems/scikit-learn
sklearn/linear_model/passive_aggressive.py
97
10879
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None): BaseSGDClassifier.__init__(self, penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False): BaseSGDRegressor.__init__(self, penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
zhenxu66/scipy2015-blaze-bokeh
viz2.py
12
4846
# -*- coding: utf-8 -*- import math from collections import OrderedDict import numpy as np import pandas as pd import netCDF4 from bokeh.plotting import figure, show, output_notebook from bokeh.models import DatetimeTickFormatter, ColumnDataSource, HoverTool, Plot, Range1d from bokeh.palettes import RdBu11 from bokeh.models.glyphs import Text, Rect import utils.world_countries as wc from utils.colormap import RGBAColorMapper colormap = RGBAColorMapper(-6, 6, RdBu11) def get_slice(t, year, month): i = (year - 1850)*12 + month - 1 return colormap.color(t[i, :, :]) def climate_map(): data = netCDF4.Dataset('data/Land_and_Ocean_LatLong1.nc') t = data.variables['temperature'] image = get_slice(t, 1950, 1) world_countries = wc.data.copy() worldmap = pd.DataFrame.from_dict(world_countries, orient='index') # Create your plot p = figure(width=900, height=500, x_axis_type=None, y_axis_type=None, x_range=[-180,180], y_range=[-90,90], toolbar_location="left") p.image_rgba( image=[image], x=[-180], y=[-90], dw=[360], dh=[180], name='image' ) p.patches(xs=worldmap['lons'], ys=worldmap['lats'], fill_color="white", fill_alpha=0, line_color="black", line_width=0.5) return p def legend(): # Set ranges xdr = Range1d(0, 100) ydr = Range1d(0, 500) # Create plot plot = Plot( x_range=xdr, y_range=ydr, title="", plot_width=100, plot_height=500, min_border=0, toolbar_location=None, outline_line_color="#FFFFFF", ) # For each color in your palette, add a Rect glyph to the plot with the appropriate properties palette = RdBu11 width = 40 for i, color in enumerate(palette): rect = Rect( x=40, y=(width * (i + 1)), width=width, height=40, fill_color=color, line_color='black' ) plot.add_glyph(rect) # Add text labels and add them to the plot minimum = Text(x=50, y=0, text=['-6 ºC']) plot.add_glyph(minimum) maximum = Text(x=50, y=460, text=['6 ºC']) plot.add_glyph(maximum) return plot def timeseries(): # Get data df = pd.read_csv('data/Land_Ocean_Monthly_Anomaly_Average.csv') df['datetime'] = pd.to_datetime(df['datetime']) df = df[['anomaly','datetime']] df['moving_average'] = pd.rolling_mean(df['anomaly'], 12) df = df.fillna(0) # List all the tools that you want in your plot separated by comas, all in one string. TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave" # New figure t = figure(x_axis_type = "datetime", width=1000, height=200,tools=TOOLS) # Data processing # The hover tools doesn't render datetime appropriately. We'll need a string. # We just want dates, remove time f = lambda x: str(x)[:7] df["datetime_s"]=df[["datetime"]].applymap(f) source = ColumnDataSource(df) # Create plot t.line('datetime', 'anomaly', color='lightgrey', legend='anom', source=source) t.line('datetime', 'moving_average', color='red', legend='avg', source=source, name="mva") # Style xformatter = DatetimeTickFormatter(formats=dict(months=["%b %Y"], years=["%Y"])) t.xaxis[0].formatter = xformatter t.xaxis.major_label_orientation = math.pi/4 t.yaxis.axis_label = 'Anomaly(ºC)' t.legend.orientation = "bottom_right" t.grid.grid_line_alpha=0.2 t.toolbar_location=None # Style hover tool hover = t.select(dict(type=HoverTool)) hover.tooltips = """ <div> <span style="font-size: 15px;">Anomaly</span> <span style="font-size: 17px; color: red;">@anomaly</span> </div> <div> <span style="font-size: 15px;">Month</span> <span style="font-size: 10px; color: grey;">@datetime_s</span> </div> """ hover.renderers = t.select("mva") # Show plot #show(t) return t # Add title def title(): # Data year = 1850 month = 1 years = [str(x) for x in np.arange(1850, 2015, 1)] months = [str(x) for x in np.arange(1, 13, 1)] months_str = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] month_str = months_str[month-1] title = figure(width=1200, height=100, x_range=(0, 1200), y_range=(0, 100), toolbar_location=None, x_axis_type=None, y_axis_type=None, outline_line_color="#FFFFFF", tools="", min_border=0) title.text(x=500, y=5, text=[month_str], text_font_size='36pt', text_color='black', name="month", text_font="Georgia") title.text(x=350, y=5, text=[str(year)], text_font_size='36pt', text_color='black', name="year",text_font="Georgia") return title
mit
rethore/FUSED-Wake
fusedwake/WindFarm.py
1
7962
"""An offshore wind farm model @moduleauthor:: Juan P. Murcia <[email protected]> """ import numpy as np MATPLOTLIB = True try: import matplotlib.pyplot as plt except Exception as e: MATPLOTLIB = False print("WARNING: Matplotlib isn't installed correctly:", e) from .WindTurbine import WindTurbineDICT from windIO.Plant import WTLayout class WindTurbineList(list): """A simple list class that can also act as a single element when needed. Accessing one of the attribute of this list will get the first element of the list attributes. Note ---- We assume here that if a model call this intense as if it's one wind turbine, the user has been clever enough to pass as input a wind farm with identical turbines. """ def __getattr__(self, key): #TODO: make some checks to catch possible bugs when the turbines are not similar. return getattr(self.__getitem__(0), key) def names(self): return [getattr(w, 'name') for w in self] class WindFarm(object): def __init__(self, name=None, yml=None, coordFile=None, WT=None): """Initializes a WindFarm object. The initialization can be done using a `windIO` yml file or using a coodFile + WindTurbine instance. Parameters ---------- name: str, optional WindFarm name yml: str, optional A WindIO `yml` file containing the description of the farm coordFile: str, optional Wind Farm layout coordinates text file. WindTurbine: WindTurbine, optional WindTurbine object (only one type per WindFarm) """ if (coordFile): coordArray = np.loadtxt(coordFile) self.pos = coordArray.T # np.array(2 x nWT) self.nWT = self.pos.shape[1] self.WT = WindTurbineList([WT for i in range(self.nWT)]) if name: self.name = name else: self.name = 'Unknown wind farm' elif (yml): self.wf = WTLayout(yml) self.pos = self.wf.positions.T self.nWT = self.pos.shape[1] self.WT = WindTurbineList([WindTurbineDICT(wt, self.wf[wt['turbine_type']]) for wt in self.wf.wt_list]) self.name = self.wf.name # We generate a wind turbine list # XYZ position of the rotors self.xyz = np.vstack([self.pos, self.H]) # Vector from iWT to jWT: self.vectWTtoWT[:,i,j] [3, nWT, nWT] self.vectWTtoWT = np.swapaxes([self.xyz - np.repeat(np.atleast_2d(self.xyz[:, i]).T, self.nWT, axis=1) for i in range(self.nWT)], 0, 1) def rep_str(self): return "%s has %s %s wind turbines, with a total capacity of %4.1f MW"%( self.name, self.nWT, self.WT.turbine_type, sum(self.rated_power)/1E3) def __repr__(self): sep = "-------------------------------------------------------------" return '\n'.join([sep, self.rep_str(), sep]) def _repr_html_(self): sep = "<br>" return '\n'.join([sep, self.rep_str(), sep]) def turbineDistance(self, wd): """Computes the WT to WT distance in flow coordinates ranks the most of most upstream turbines Parameters ---------- wd: float Wind direction in degrees Returns ------- distFlowCoord: Vector from iWT to jWT: self.vectWTtoWT[:,i,j] idWT: ndarray(int) turbine index array """ angle = np.radians(270.-wd) ROT = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) distFlowCoord = np.einsum('ij,jkl->ikl', ROT, self.vectWTtoWT[:2, :, :]) nDownstream = [(distFlowCoord[0, i, :] < 0).sum() for i in range(self.nWT)] ID0 = np.argsort(nDownstream) return distFlowCoord, nDownstream, ID0 def toFlowCoord(self, wd, vect): """Rotates a 2xN np.array to flow coordinates Parameters ---------- wd: float Wind direction in degrees vect: ndarray Vector or Matrix 2xN Returns ------- vect: ndarray Vector or Matrix 2xN """ angle = np.radians(270.-wd) ROT = np.array([[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) return np.dot(ROT, vect) def get_T2T_gl_coord(self): """ Function to calculated the turbine to turbine distances in the global coordinate system. (slower than version 2). Parameters ---------- wt_layout GenericWindFarmTurbineLayout (FusedWind) Returns ------- x_g x component of distance between Tj and Ti := x_g[i,j] y_g y component of distance between Tj and Ti := y_g[i,j] z_g z component of distance between Tj and Ti := z_g[i,j] """ # Compute the turbine to turbine vector in global coordinates x_g = np.zeros([self.nWT, self.nWT]) y_g = np.zeros([self.nWT, self.nWT]) z_g = np.zeros([self.nWT, self.nWT]) for i in range(self.nWT): for j in range(self.nWT): x_g[i,j] = self.xyz[0,j] - self.xyz[0,i] y_g[i,j] = self.xyz[1,j] - self.xyz[1,i] z_g[i,j] = self.xyz[2,j] - self.xyz[2,i] return x_g,y_g,z_g def get_T2T_gl_coord2(self): """ Function to calculated the turbine to turbine distances in the global coordinate system. (faster). Parameters ---------- wt_layout GenericWindFarmTurbineLayout (FusedWind) Returns ------- x_g x component of distance between Tj and Ti := x_g[i,j] y_g y component of distance between Tj and Ti := y_g[i,j] z_g z component of distance between Tj and Ti := z_g[i,j] """ x_g, y_g, z_g = self.vectWTtoWT return x_g, y_g, z_g def plot(self, WT_num=False): """ # TODO """ if MATPLOTLIB: x = (self.pos[0, :] - min(self.pos[0, :])) / (2. * self.WT.R) y = (self.pos[1, :] - min(self.pos[1, :])) / (2. * self.WT.R) fig, ax = plt.subplots() ax.scatter(x, y, c='black') if WT_num: for i in range(0, self.nWT): ax.annotate(i, (x[i], y[i])) elif not WT_num: print('No annotation of turbines') ax.set_xlabel('x/D [-]') ax.set_ylabel('y/D [-]') ax.axis('equal') ax.set_title(self.name) return fig, ax def plot_order(self, wd): """ # TODO """ if MATPLOTLIB: x = (self.pos[0, :] - min(self.pos[0, :])) / 1000 y = (self.pos[1, :] - min(self.pos[1, :])) / 1000 dist, nDownstream, idWT = self.turbineDistance(wd) fig, ax = plt.subplots() ax.scatter(x, y, c='black') for i in range(0, self.nWT): ax.annotate(int(idWT[i]), (x[i], y[i])) ax.set_xlabel('x [km]') ax.set_ylabel('y [km]') ax.set_title(self.name+' Wind direction '+str(wd)) return fig, ax def __getattr__(self, key): """Give access to a list of the properties of the turbine Parameters ---------- key: str The parameter to return Returns ------- parameters: list The parameter list of the turbines Example ------- > wf = WindFarm(name='farm_name', yml=filename) > wf.rotor_diameter [80.0, 80.0, 80.0, 80.0, 80.0, ..., 80.0] """ # Detect the edge case if key is 'WT' if not key in ['WT', 'nWT']: return [getattr(wt, key) for wt in self.WT]
agpl-3.0
drusk/pml
pml/utils/pandas_util.py
1
3729
# Copyright (C) 2012 David Rusk # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Utility functions for working with pandas datatypes, i.e. DataFrames and Series. @author: drusk """ def find(series, search_for): """ Retrieves the indices of a pandas Series which have a specified value. Args: series: pandas.Series The series to search and retrieve indices from. search_for: Either a single value to search for, or a list of several values to search for. If it is a list, then if an index has any of the specified values it will be included. Returns: indices: pandas.Index The indices which held one of the specified values. Example 1, search for single value: series = pd.Series(["hostile", "friendly", "friendly", "neutral"], index=["wolf", "cat", "dog", "mouse"]) indices = find(series, "friendly") assert_that(indices, contains("cat", "dog") Example 2, search for multiple values: series = pd.Series(["hostile", "friendly", "friendly", "neutral"], index=["wolf", "cat", "dog", "mouse"]) indices = find(series, ["friendly", "neutral"]) assert_that(indices, contains("cat", "dog", "mouse") """ # Convert values to search for to a list if they aren't values = [search_for] if type(search_for) is not list else search_for overall_matches = None for value in values: matches = (series == value) if overall_matches is None: overall_matches = matches else: overall_matches |= matches return series.index[overall_matches] def are_dataframes_equal(dataframe1, dataframe2): """ Compares two pandas DataFrame objects to see if they are equal. Args: dataframe1: pandas.DataFrame dataframe2: pandas.DataFrame Returns: True if the DataFrames are identically-labeled and all elements are the same. False otherwise. """ try: # reduce 2d boolean array down to a single answer return (dataframe1 == dataframe2).all().all() except Exception: # pandas throws: # "Exception: Can only compare identically-labeled DataFrame objects" return False def is_series_numeric(series): """ Checks if the series data type is numeric. Args: series: pd.Series The series whose data type will be checked. Returns: True if the series is numeric, i.e. values are some form of int or float. """ dtype_name = series.dtype.name return dtype_name.startswith("int") or dtype_name.startswith("float")
mit
ElDeveloper/scikit-learn
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
UnitedThruAction/Data
Tools/CachingGeocoder.py
1
2690
"""A very simple implementation of a caching geocoder using the Google Maps (community-supported) Web Services Geocoding API. Input: 1. Pandas dataframe containing a column named 'address_string' 2. Google Maps API key. See https://goo.gl/XSBqid Output: Geopandas geodataframe containing a geometry column, made up of points in CRS 84 coordinates. A very simple, append-only cache is implemented in a CSV on the local disk. @author [email protected] @date 2017-09-04 """ import sys import googlemaps import json import pandas as pd import geopandas as gpd from tqdm import tqdm from shapely.geometry import Point from shapely.geometry import mapping, shape def create_geodf(df, api_key): # Populate cache try: geolog = pd.read_csv('geolocation_log.csv', header=None, error_bad_lines=False, names=['address_string', 'point_json'], quotechar="'") geolog.drop_duplicates(inplace=True) cache = {} for index, row in geolog.iterrows(): cache[row.address_string] = shape(json.loads(row.point_json)) print "Loaded " + str(len(cache)) + " into cache" except IOError: cache = {} print "No log found, continuing with empty cache" sys.stdout.flush() sys.stderr.flush() # Now iterate through gmaps = googlemaps.Client(key=api_key) log = open('geolocation_log.csv', 'a+') cache_hits, cache_misses = 0, 0 geometry_col = [] for index, row in tqdm(df.iterrows(), total=len(df)): point = None if row.address_string: if row.address_string in cache: point = cache[row.address_string] cache_hits += 1 else: geocode_result = gmaps.geocode(row.address_string) cache_misses += 1 if geocode_result: point = Point(geocode_result[0]['geometry']['location']['lng'], geocode_result[0]['geometry']['location']['lat']) try: log.write("".join(["'", row.address_string, "','", json.dumps(mapping(point)), "'\n"])) except TypeError: print "Error writing to log, continuing" cache[row.address_string] = point geometry_col.append(point) log.close() sys.stdout.flush() sys.stderr.flush() print str(cache_hits) + " cache hits, " + str(cache_misses) + " cache misses" return gpd.GeoDataFrame( df, crs={ 'init': 'epsg:4326'}, geometry=geometry_col)
apache-2.0
subodhchhabra/airflow
airflow/contrib/hooks/bigquery_hook.py
3
66015
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import time from builtins import range from past.builtins import basestring from airflow import AirflowException from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from airflow.utils.log.logging_mixin import LoggingMixin from apiclient.discovery import HttpError, build from googleapiclient import errors from pandas_gbq.gbq import \ _check_google_client_version as gbq_check_google_client_version from pandas_gbq import read_gbq from pandas_gbq.gbq import \ _test_google_api_imports as gbq_test_google_api_imports from pandas_gbq.gbq import GbqConnector class BigQueryHook(GoogleCloudBaseHook, DbApiHook, LoggingMixin): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None, use_legacy_sql=True): super(BigQueryHook, self).__init__( gcp_conn_id=bigquery_conn_id, delegate_to=delegate_to) self.use_legacy_sql = use_legacy_sql def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection( service=service, project_id=project, use_legacy_sql=self.use_legacy_sql) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build( 'bigquery', 'v2', http=http_authorized, cache_discovery=False) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, sql, parameters=None, dialect=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param sql: The BigQuery SQL to execute. :type sql: string :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL defaults to use `self.use_legacy_sql` if not specified :type dialect: string in {'legacy', 'standard'} """ if dialect is None: dialect = 'legacy' if self.use_legacy_sql else 'standard' return read_gbq(sql, project_id=self._get_field('project'), dialect=dialect, verbose=False) def table_exists(self, project_id, dataset_id, table_id): """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: string :param dataset_id: The name of the dataset in which to look for the table. :type dataset_id: string :param table_id: The name of the table to check the existence of. :type table_id: string """ service = self.get_service() try: service.tables().get( projectId=project_id, datasetId=dataset_id, tableId=table_id).execute() return True except errors.HttpError as e: if e.resp['status'] == '404': return False raise class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False, dialect='legacy'): super(BigQueryPandasConnector, self).__init__(project_id) gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id, use_legacy_sql=True): self.service = service self.project_id = project_id self.use_legacy_sql = use_legacy_sql self.running_job_id = None def create_empty_table(self, project_id, dataset_id, table_id, schema_fields=None, time_partitioning={}, labels=None ): """ Creates a new, empty table in the dataset. :param project_id: The project to create the table into. :type project_id: str :param dataset_id: The dataset to create the table into. :type dataset_id: str :param table_id: The Name of the table to be created. :type table_id: str :param schema_fields: If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict **Example**: :: schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :type schema_fields: list :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning :type time_partitioning: dict :return: """ project_id = project_id if project_id is not None else self.project_id table_resource = { 'tableReference': { 'tableId': table_id } } if schema_fields: table_resource['schema'] = {'fields': schema_fields} if time_partitioning: table_resource['timePartitioning'] = time_partitioning if labels: table_resource['labels'] = labels self.log.info('Creating Table %s:%s.%s', project_id, dataset_id, table_id) try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute() self.log.info('Table created successfully: %s:%s.%s', project_id, dataset_id, table_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def create_external_table(self, external_project_dataset_table, schema_fields, source_uris, source_format='CSV', autodetect=False, compression='NONE', ignore_unknown_values=False, max_bad_records=0, skip_leading_rows=0, field_delimiter=',', quote_character=None, allow_quoted_newlines=False, allow_jagged_rows=False, src_fmt_configs={}, labels=None ): """ Creates a new external table in the dataset with the data in Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource for more details about these parameters. :param external_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table name to create external table. If <project> is not included, project will be the project defined in the connection json. :type external_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param autodetect: Try to detect schema and format options automatically. Any option specified explicitly will be honored. :type autodetect: bool :param compression: [Optional] The compression type of the data source. Possible values include GZIP and NONE. The default value is NONE. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. :type compression: string :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param labels: a dictionary containing labels for the table, passed to BigQuery :type labels: dict """ project_id, dataset_id, external_table_id = \ _split_tablename(table_input=external_project_dataset_table, default_project_id=self.project_id, var_name='external_project_dataset_table') # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.sourceFormat source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) compression = compression.upper() allowed_compressions = ['NONE', 'GZIP'] if compression not in allowed_compressions: raise ValueError("{0} is not a valid compression format. " "Please use one of the following types: {1}" .format(compression, allowed_compressions)) table_resource = { 'externalDataConfiguration': { 'autodetect': autodetect, 'sourceFormat': source_format, 'sourceUris': source_uris, 'compression': compression, 'ignoreUnknownValues': ignore_unknown_values }, 'tableReference': { 'projectId': project_id, 'datasetId': dataset_id, 'tableId': external_table_id, } } if schema_fields: table_resource['externalDataConfiguration'].update({ 'schema': { 'fields': schema_fields } }) self.log.info('Creating external table: %s', external_project_dataset_table) if max_bad_records: table_resource['externalDataConfiguration']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'quote_character' not in src_fmt_configs: src_fmt_configs['quote'] = quote_character if 'allowQuotedNewlines' not in src_fmt_configs: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines if 'allowJaggedRows' not in src_fmt_configs: src_fmt_configs['allowJaggedRows'] = allow_jagged_rows src_fmt_to_param_mapping = { 'CSV': 'csvOptions', 'GOOGLE_SHEETS': 'googleSheetsOptions' } src_fmt_to_configs_mapping = { 'csvOptions': [ 'allowJaggedRows', 'allowQuotedNewlines', 'fieldDelimiter', 'skipLeadingRows', 'quote' ], 'googleSheetsOptions': ['skipLeadingRows'] } if source_format in src_fmt_to_param_mapping.keys(): valid_configs = src_fmt_to_configs_mapping[ src_fmt_to_param_mapping[source_format] ] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } table_resource['externalDataConfiguration'][src_fmt_to_param_mapping[ source_format]] = src_fmt_configs if labels: table_resource['labels'] = labels try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource ).execute() self.log.info('External table created successfully: %s', external_project_dataset_table) except HttpError as err: raise Exception( 'BigQuery job failed. Error was: {}'.format(err.content) ) def run_query(self, bql=None, sql=None, destination_dataset_table=False, write_disposition='WRITE_EMPTY', allow_large_results=False, flatten_results=False, udf_config=False, use_legacy_sql=None, maximum_billing_tier=None, maximum_bytes_billed=None, create_disposition='CREATE_IF_NEEDED', query_params=None, labels=None, schema_update_options=(), priority='INTERACTIVE', time_partitioning={}): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: (Deprecated. Use `sql` parameter instead) The BigQuery SQL to execute. :type bql: string :param sql: The BigQuery SQL to execute. :type sql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :type destination_dataset_table: string :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: string :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param flatten_results: If true and query uses legacy SQL dialect, flattens all nested and repeated fields in the query results. ``allowLargeResults`` must be true if this is set to false. For standard SQL queries, this flag is ignored and results are never flattened. :type flatten_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). If `None`, defaults to `self.use_legacy_sql`. :type use_legacy_sql: boolean :type udf_config: list :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: integer :param maximum_bytes_billed: Limits the bytes billed for this job. Queries that will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified, this will be set to your project default. :type maximum_bytes_billed: float :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: string :param query_params a dictionary containing query parameter types and values, passed to BigQuery :type query_params: dict :param labels a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the query job. :type schema_update_options: tuple :param priority: Specifies a priority for the query. Possible values include INTERACTIVE and BATCH. The default value is INTERACTIVE. :type priority: string :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. Note that 'field' is not available in conjunction with dataset.table$partition. :type time_partitioning: dict """ # TODO remove `bql` in Airflow 2.0 - Jira: [AIRFLOW-2513] sql = bql if sql is None else sql if bql: import warnings warnings.warn('Deprecated parameter `bql` used in ' '`BigQueryBaseCursor.run_query` ' 'Use `sql` parameter instead to pass the sql to be ' 'executed. `bql` parameter is deprecated and ' 'will be removed in a future version of ' 'Airflow.', category=DeprecationWarning) if sql is None: raise TypeError('`BigQueryBaseCursor.run_query` missing 1 required ' 'positional argument: `sql`') # BigQuery also allows you to define how you want a table's schema to change # as a side effect of a query job # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset( set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options)) if use_legacy_sql is None: use_legacy_sql = self.use_legacy_sql configuration = { 'query': { 'query': sql, 'useLegacySql': use_legacy_sql, 'maximumBillingTier': maximum_billing_tier, 'maximumBytesBilled': maximum_bytes_billed, 'priority': priority } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'flattenResults': flatten_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) if query_params: if self.use_legacy_sql: raise ValueError("Query paramaters are not allowed when using " "legacy SQL") else: configuration['query']['queryParameters'] = query_params if labels: configuration['labels'] = labels time_partitioning = _cleanse_time_partitioning( destination_dataset_table, time_partitioning ) if time_partitioning: configuration['query'].update({ 'timePartitioning': time_partitioning }) if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options)) configuration['query'][ 'schemaUpdateOptions'] = schema_update_options return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True, labels=None): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean :param labels: a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if labels: configuration['labels'] = labels if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED', labels=None): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param labels a dictionary containing labels for the job/query, passed to BigQuery :type labels: dict """ source_project_dataset_tables = ([ source_project_dataset_tables ] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } if labels: configuration['labels'] = labels return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=',', max_bad_records=0, quote_character=None, ignore_unknown_values=False, allow_quoted_newlines=False, allow_jagged_rows=False, schema_update_options=(), src_fmt_configs={}, time_partitioning={}): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. If a partition is specified the operator will automatically append the data, create a new partition or create a new DAY partitioned table. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the load job. :type schema_update_options: tuple :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. Note that 'field' is not available in conjunction with dataset.table$partition. :type time_partitioning: dict """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset( set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options)) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, 'ignoreUnknownValues': ignore_unknown_values } } time_partitioning = _cleanse_time_partitioning( destination_project_dataset_table, time_partitioning ) if time_partitioning: configuration['load'].update({ 'timePartitioning': time_partitioning }) if schema_fields: configuration['load']['schema'] = {'fields': schema_fields} if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options)) configuration['load'][ 'schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'ignoreUnknownValues' not in src_fmt_configs: src_fmt_configs['ignoreUnknownValues'] = ignore_unknown_values if quote_character is not None: src_fmt_configs['quote'] = quote_character if allow_quoted_newlines: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines src_fmt_to_configs_mapping = { 'CSV': [ 'allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote' ], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'PARQUET': ['autodetect', 'ignoreUnknownValues'], 'AVRO': [], } valid_configs = src_fmt_to_configs_mapping[source_format] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = {'configuration': configuration} # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() self.running_job_id = query_reply['jobReference']['jobId'] # Wait for query to finish. keep_polling_job = True while (keep_polling_job): try: job = jobs.get( projectId=self.project_id, jobId=self.running_job_id).execute() if (job['status']['state'] == 'DONE'): keep_polling_job = False # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'. format(job['status']['errorResult'], job)) else: self.log.info('Waiting for job to complete : %s, %s', self.project_id, self.running_job_id) time.sleep(5) except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error, waiting for job to complete: %s', err.resp.status, self.running_job_id) time.sleep(5) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return self.running_job_id def poll_job_complete(self, job_id): jobs = self.service.jobs() try: job = jobs.get(projectId=self.project_id, jobId=job_id).execute() if (job['status']['state'] == 'DONE'): return True except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error while polling job with id %s', err.resp.status, job_id) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return False def cancel_query(self): """ Cancel all started queries that have not yet completed """ jobs = self.service.jobs() if (self.running_job_id and not self.poll_job_complete(self.running_job_id)): self.log.info('Attempting to cancel job : %s, %s', self.project_id, self.running_job_id) jobs.cancel( projectId=self.project_id, jobId=self.running_job_id).execute() else: self.log.info('No running BigQuery jobs to cancel.') return # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while (polling_attempts < max_polling_attempts and not job_complete): polling_attempts = polling_attempts + 1 job_complete = self.poll_job_complete(self.running_job_id) if (job_complete): self.log.info('Job successfully canceled: %s, %s', self.project_id, self.running_job_id) elif (polling_attempts == max_polling_attempts): self.log.info( "Stopping polling due to timeout. Job with id %s " "has not completed cancel and may or may not finish.", self.running_job_id) else: self.log.info('Waiting for canceled job with id %s to finish.', self.running_job_id) time.sleep(5) def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, selected_fields=None, page_token=None, start_index=None): """ Get the data of a given dataset.table and optionally with selected columns. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if selected_fields: optional_params['selectedFields'] = selected_fields if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return (self.service.tabledata().list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params).execute()) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() self.log.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception('Table deletion failed. Table does not exist.') else: self.log.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list( projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update self.log.info('Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update( projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert self.log.info('Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project=None, view_project=None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get( projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource[ 'access'] if 'access' in source_dataset_resource else [] view_access = { 'view': { 'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table } } # check to see if the view we want to add already exists. if view_access not in access: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch( projectId=source_project, datasetId=source_dataset, body={ 'access': access }).execute() else: # if view is already in access, do nothing. self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource def delete_dataset(self, project_id, dataset_id ): """ Delete a dataset of Big query in your project. :param project_id: The name of the project where we have the dataset . :type project_id: str :param dataset_id: The dataset to be delete. :type dataset_id: str :return: """ project_id = project_id if project_id is not None else self.project_id self.log.info('Deleting from project: %s Dataset:%s', project_id, dataset_id) try: self.service.datasets().delete( projectId=project_id, datasetId=dataset_id).execute() self.log.info('Dataset deleted successfully: In project %s Dataset %s', project_id, dataset_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id, use_legacy_sql=True): super(BigQueryCursor, self).__init__( service=service, project_id=project_id, use_legacy_sql=use_legacy_sql) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ sql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(sql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param seq_of_parameters: List of dictionary parameters to substitute into the query. :type seq_of_parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = (self.service.jobs().getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token).execute()) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER': return int(string_field) elif bq_type == 'FLOAT' or bq_type == 'TIMESTAMP': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) if table_input.count('.') + table_input.count(':') > 3: raise Exception(('{var}Use either : or . to specify project ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(('{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ("{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception( ('{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}').format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: log = LoggingMixin().log log.info('Project not included in {var}: {input}; ' 'using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id def _cleanse_time_partitioning(destination_dataset_table, time_partitioning_in): # if it is a partitioned table ($ is in the table name) add partition load option time_partitioning_out = {} if destination_dataset_table and '$' in destination_dataset_table: assert not time_partitioning_in.get('field'), ( "Cannot specify field partition and partition name " "(dataset.table$partition) at the same time" ) time_partitioning_out['type'] = 'DAY' time_partitioning_out.update(time_partitioning_in) return time_partitioning_out
apache-2.0
Tong-Chen/scikit-learn
sklearn/linear_model/coordinate_descent.py
1
52883
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings import itertools import operator from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data from ..utils import array2d, atleast2d_or_csc from ..cross_validation import _check_cv as check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : bool Fit or not an intercept normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if Xy is None: X = atleast2d_or_csc(X, copy=(copy_X and fit_intercept and not sparse.isspmatrix(X))) if not sparse.isspmatrix(X): # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) n_samples = X.shape[0] else: n_samples = len(y) alpha_max = np.abs(Xy).max() / (n_samples * l1_ratio) alphas = np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] return alphas def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=None, normalize=None, copy_X=True, coef_init=None, verbose=False, return_models=False, **params): """Compute Lasso path with coordinate descent The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept. WARNING : will be deprecated in 0.16 normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. WARNING : will be deprecated in 0.16 copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity return_models : boolean, optional, default True If ``True``, the function will return list of models. Setting it to ``False`` will change the function output returning the values of the alphas and the coefficients along the path. Returning the model list will be removed in version 0.16. params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- models : a list of models along the regularization path (Is returned if ``return_models`` is set ``True`` (default). alphas : array, shape: [n_alphas + 1] The alphas along the path where models are computed. (Is returned, along with ``coefs``, when ``return_models`` is set to ``False``) coefs : shape (n_features, n_alphas + 1) Coefficients along the path. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). dual_gaps : shape (n_alphas + 1) The dual gaps and the end of the optimization for each alpha. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Deprecation Notice: Setting ``return_models`` to ``False`` will make the Lasso Path return an output in the style used by :func:`lars_path`. This will be become the norm as of version 0.16. Leaving ``return_models`` set to `True` will let the function return a list of models as before. Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5], ... fit_intercept=False) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, coef_init=coef_init, verbose=verbose, return_models=return_models, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, coef_init=None, verbose=False, return_models=False, **params): """Compute Elastic-Net path with coordinate descent The Elastic Net optimization function is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. fit_intercept : bool Fit or not an intercept. WARNING : will be deprecated in 0.16 normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. WARNING : will be deprecated in 0.16 copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity return_models : boolean, optional, default False If ``True``, the function will return list of models. Setting it to ``False`` will change the function output returning the values of the alphas and the coefficients along the path. Returning the model list will be removed in version 0.16. params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- models : a list of models along the regularization path (Is returned if ``return_models`` is set ``True`` (default). alphas : array, shape: [n_alphas + 1] The alphas along the path where models are computed. (Is returned, along with ``coefs``, when ``return_models`` is set to ``False``) coefs : shape (n_features, n_alphas + 1) Coefficients along the path. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). dual_gaps : shape (n_alphas + 1) The dual gaps and the end of the optimization for each alpha. (Is returned, along with ``alphas``, when ``return_models`` is set to ``False``). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. Deprecation Notice: Setting ``return_models`` to ``False`` will make the Lasso Path return an output in the style used by :func:`lars_path`. This will be become the norm as of version 0.15. Leaving ``return_models`` set to `True` will let the function return a list of models as before. See also -------- ElasticNet ElasticNetCV """ if return_models: warnings.warn("Use enet_path(return_models=False), as it returns the" " coefficients and alphas instead of just a list of" " models as previously `lasso_path`/`enet_path` did." " `return_models` will eventually be removed in 0.16," " after which, returning alphas and coefs" " will become the norm.", DeprecationWarning, stacklevel=2) if normalize is True: warnings.warn("normalize param will be removed in 0.16." " Intercept fitting and feature normalization will be" " done in estimators.", DeprecationWarning, stacklevel=2) else: normalize = False if fit_intercept is True or fit_intercept is None: warnings.warn("fit_intercept param will be removed in 0.16." " Intercept fitting and feature normalization will be" " done in estimators.", DeprecationWarning, stacklevel=2) if fit_intercept is None: fit_intercept = True X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=copy_X and fit_intercept) n_samples, n_features = X.shape if sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.ones(n_features) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy=False) n_samples = X.shape[0] if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) if coef_init is None: coef_ = np.zeros(n_features, dtype=np.float64) else: coef_ = coef_init models = [] coefs = np.empty((n_features, n_alphas), dtype=np.float64) dual_gaps = np.empty(n_alphas) tol = params.get('tol', 1e-4) positive = params.get('positive', False) max_iter = params.get('max_iter', 1000) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if sparse.isspmatrix(X): coef_, dual_gap_, eps_ = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, positive) else: coef_, dual_gap_, eps_ = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, positive) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations') coefs[:, i] = coef_ dual_gaps[i] = dual_gap_ if return_models: model = ElasticNet( alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept if sparse.isspmatrix(X) else False, precompute=precompute) model.coef_ = coefs[:, i] model.dual_gap_ = dual_gaps[-1] if fit_intercept and not sparse.isspmatrix(X): model.fit_intercept = True model._set_intercept(X_mean, y_mean, X_std) models.append(model) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_models: return models else: return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear Model trained with L1 and L2 prior as regularizer Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept: bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations copy_X : boolean, optional, default False If ``True``, X will be copied; else, it may be overwritten. tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive: bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape = (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) # From now on X can be touched inplace y = np.asarray(y, dtype=np.float64) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, coef_init=coef_[k], max_iter=self.max_iter) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape = (n_samples,) The predicted decision function """ if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self).decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter: int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. Attributes ---------- ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``sparse_coef_`` : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute='auto', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute='auto', copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype: a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] precompute = path_params['precompute'] X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) # del path_params['precompute'] path_params = path_params.copy() path_params['fit_intercept'] = False path_params['normalize'] = False path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = atleast2d_or_csc(X_train, dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y[train], **path_params) del X_train if normalize: nonzeros = np.flatnonzero(X_std) coefs[nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean - np.dot(X_mean, coefs) residues = safe_sparse_dot(X_test, coefs) - y_test[:, np.newaxis] residues += intercepts[np.newaxis, :] this_mses = (residues ** 2).mean(axis=0) return this_mses, l1_ratio class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ # Dealing right with copy_X is important in the following: # multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = atleast2d_or_csc(X, copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = atleast2d_or_csc(X, dtype=np.float64, order='F', copy=copy_X) copy_X = False y = np.asarray(y, dtype=np.float64) if y.ndim > 1: raise ValueError("For multi-task outputs, fit the linear model " "per output/task") if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas if alphas is None: mean_l1_ratio = 1. if hasattr(self, 'l1_ratio'): mean_l1_ratio = np.mean(self.l1_ratio) alphas = _alpha_grid(X, y, l1_ratio=mean_l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X) n_alphas = len(alphas) path_params.update({'alphas': alphas, 'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf all_mse_paths = list() # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds for l1_ratio, mse_alphas in itertools.groupby( Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_path_residuals)( X, y, train, test, self.path, path_params, l1_ratio=l1_ratio, X_order='F', dtype=np.float64) for l1_ratio in l1_ratios for train, test in folds ), operator.itemgetter(1)): mse_alphas = [m[0] for m in mse_alphas] mse_alphas = np.array(mse_alphas) mse = np.mean(mse_alphas, axis=0) i_best_alpha = np.argmin(mse) this_best_mse = mse[i_best_alpha] all_mse_paths.append(mse_alphas.T) if this_best_mse < best_mse: best_alpha = alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha self.alphas_ = np.asarray(alphas) self.mse_path_ = np.squeeze(all_mse_paths) # Refit the model with the parameters selected model = ElasticNet() common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.fit(X, y) self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: int, optional The maximum number of iterations tol: float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity Attributes ---------- ``alpha_`` : float The amount of penalization chosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) ``intercept_`` : float | array, shape = (n_targets,) independent term in decision function. ``mse_path_`` : array, shape = (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha ``alphas_`` : numpy array The grid of alphas used for fitting Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) n_jobs = 1 def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer amount of verbosity n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. Attributes ---------- ``alpha_`` : float The amount of penalization chosen by cross validation ``l1_ratio_`` : float The compromise between l1 and l2 penalization chosen by cross validation ``coef_`` : array, shape = (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), ``intercept_`` : float | array, shape = (n_targets, n_features) Independent term in the decision function. ``mse_path_`` : array, shape = (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``intercept_`` : array, shape = (n_tasks,) Independent term in decision function. ``coef_`` : array, shape = (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X: ndarray, shape = (n_samples, n_features) Data y: ndarray, shape = (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = array2d(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) squeeze_me = False if y.ndim == 1: squeeze_me = True y = y[:, np.newaxis] n_samples, n_features = X.shape _, n_tasks = y.shape X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory self.coef_, self.dual_gap_, self.eps_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol) self._set_intercept(X_mean, y_mean, X_std) # Make sure that the coef_ have the same shape as the given 'y', # to predict with the same shape if squeeze_me: self.coef_ = self.coef_.squeeze() if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- ``coef_`` : array, shape = (n_tasks, n_features) parameter vector (W in the cost function formula) ``intercept_`` : array, shape = (n_tasks,) independent term in decision function. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0
bsd-3-clause
ahoyosid/scikit-learn
sklearn/manifold/isomap.py
36
7119
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
jereze/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
69
8605
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[np.newaxis, 1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[np.newaxis, 1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample[np.newaxis, :]) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
mihail911/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gtkcairo.py
69
2207
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print 'backend_gtkcairo.%s()' % fn_name() FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTKCairo(thisFig) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.ctx = pixmap.cairo_create() self.ctx.save() # restore, save - when call new_gc() else: def set_pixmap (self, pixmap): self.ctx = cairo.gtk.gdk_cairo_create (pixmap) self.ctx.save() # restore, save - when call new_gc() class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig)
gpl-3.0
IssamLaradji/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
pysofe/pysofe
pysofe/visualization.py
1
22194
""" Provides some visualization capabilities. """ # IMPORTS try: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm except ImportError as err: # Could not import pyplot # ... do some stuff here raise err # DEBUGGING from IPython import embed as IPS import numpy as np import pysofe from pysofe import utils def show(obj, *args, **kwargs): """ Wrapper function for the visualization of various pysofe objects. Parameters ---------- obj The pysofe object to visualize """ # select appropriate visualizer and call its `show()` method if isinstance(obj, pysofe.elements.base.Element): V = ElementVisualizer() V.show(element=obj, **kwargs) elif isinstance(obj, pysofe.meshes.mesh.Mesh): V = MeshVisualizer() V.show(obj, *args, **kwargs) elif isinstance(obj, pysofe.quadrature.gaussian.GaussQuadSimp): V = QuadRuleVisualizer() V.show(obj, *args, **kwargs) elif isinstance(obj, pysofe.spaces.space.FESpace): V = FESpaceVisualizer() V.show(obj, *args, **kwargs) elif isinstance(obj, pysofe.spaces.functions.FEFunction): V = FunctionVisualizer() V.show(obj, **kwargs) else: raise NotImplementedError() class Visualizer(object): """ Base class for all visualizers. """ def plot(self, *args, **kwargs): fig, axes = self._plot(*args, **kwargs) return fig, axes def _plot(self, *args, **kwargs): raise NotImplementedError() def show(self, *args, **kwargs): fig, axes = self.plot(*args, **kwargs) fig.show() class MeshVisualizer(Visualizer): """ Visualizes the :py:class:`pysofe.meshes.Mesh` class. """ def _plot(self, mesh, *args, **kwargs): fontsize = kwargs.get('fontsize', 9) fig = plt.figure() ax = fig.add_subplot(111) if mesh.dimension == 1: nodes = mesh.nodes[:,0] zeros = np.zeros_like(nodes) ax.plot(nodes, zeros, '-o') elif mesh.dimension == 2: cols = range(3) ax.triplot(mesh.nodes[:,0], mesh.nodes[:,1], np.asarray(mesh.cells[:,cols] - 1)) else: raise NotImplementedError() # zoom out to make outer faces visible xlim = list(ax.get_xlim()); ylim = list(ax.get_ylim()) xlim[0] -= 0.1; xlim[1] += 0.1 ylim[0] -= 0.1; ylim[1] += 0.1 ax.set_xlim(xlim) ax.set_ylim(ylim) show_all = ('all' in args) # nodes if 'nodes' in args or show_all: for i in xrange(mesh.nodes.shape[0]): if mesh.dimension == 1: ax.text(x=mesh.nodes[i,0], y=0., s=i+1, color='red', fontsize=fontsize) elif mesh.dimension == 2: ax.text(x=mesh.nodes[i,0], y=mesh.nodes[i,1], s=i+1, color='red', fontsize=fontsize) else: raise NotImplementedError() # edges if 'edges' in args or show_all: edges = mesh.edges bary = 0.5 * mesh.nodes[edges - 1,:].sum(axis=1) for i in xrange(edges.shape[0]): if mesh.dimension == 1: ax.text(x=bary[i,0], y=0, s=i+1, color='green', fontsize=fontsize) elif mesh.dimension == 2: ax.text(x=bary[i,0], y=bary[i,1], s=i+1, color='green', fontsize=fontsize) # elements if mesh.dimension > 1 and ('cells' in args or show_all): cells = mesh.cells bary = mesh.nodes[cells - 1,:].sum(axis=1) / 3. for i in xrange(cells.shape[0]): ax.text(x=bary[i,0], y=bary[i,1], s=i+1, color='blue', fontsize=fontsize) if 'local vertices' in args: cells = mesh.cells cell_nodes = mesh.nodes.take(cells - 1, axis=0) bary = cell_nodes.sum(axis=1) / 3. nE = cells.shape[0] # calculate positions where to put the local vertex numbers local_1 = cell_nodes[:,0] + 0.4 * (bary - cell_nodes[:,0]) local_2 = cell_nodes[:,1] + 0.4 * (bary - cell_nodes[:,1]) local_3 = cell_nodes[:,2] + 0.4 * (bary - cell_nodes[:,2]) for i in xrange(nE): ax.text(x=local_1[i,0], y=local_1[i,1], s=1, color='red', fontsize=fontsize) ax.text(x=local_2[i,0], y=local_2[i,1], s=2, color='red', fontsize=fontsize) ax.text(x=local_3[i,0], y=local_3[i,1], s=3, color='red', fontsize=fontsize) return fig, ax class ElementVisualizer(Visualizer): """ Visualizes :py:class:`pysofe.elements.base.Element` classes. """ def _plot(self, element, **kwargs): """ Plots the basis function or their derivatives of the given element. Parameters ---------- element : pysofe.base.Element The finite element of which to plot the basis functions codim : int The codimension of the entity for which to plot the respective basis functions d : int The derivation order indices : array_like Specify certain basis function to show resolution : int Resolution of the grid points for the plot typ : str The plotting type ('surface' or 'scatter') shadow : bool Whether to plot a shadow of the surface """ # get arguments dim = kwargs.get('dim', element.dimension) d = kwargs.get('d', 0) indices = kwargs.get('indices', None) resolution = kwargs.get('resolution', 10*np.ceil(np.log(element.order+1))) typ = kwargs.get('typ', 'surface') shadow = kwargs.get('shadow', False) layout = kwargs.get('layout', None) if d != 0: raise NotImplementedError() if element.dimension > 2: raise NotImplementedError() codim = element.dimension - dim if element.dimension == 1: project = None elif element.dimension == 2: if codim == 0: project = '3d' elif codim == 1: project = None # create grid points at which to evaluate the basis functions ls = np.linspace(0., 1., num=resolution) if element.dimension == 1: points = ls elif element.dimension == 2: if codim == 0: X,Y = np.meshgrid(ls, ls) XY = np.vstack([np.hstack(X), np.hstack(Y)]) points = XY.compress(XY.sum(axis=0) <= 1., axis=1) elif codim == 1: points = ls # evaluate all basis function at all points basis = element.eval_basis(points, deriv=d) # nB x nP if indices is not None: assert hasattr(indices, '__iter__') indices = np.asarray(indices, dtype=int) - 1 assert indices.min() >= 0 basis = basis.take(indices, axis=0) else: indices = np.arange(np.size(basis, axis=0)) # create a subplot for each basis function nB = np.size(basis, axis=0) fig = plt.figure() if layout is None: nB_2 = int(0.5*(nB+1)) for i in xrange(1, nB_2+1): if codim == 0: fig.add_subplot(nB_2,2,2*i-1, projection=project) if 2*i <= nB: fig.add_subplot(nB_2,2,2*i, projection=project) elif codim == 1: fig.add_subplot(nB_2,2,2*i-1, projection=project) if 2*i <= nB: fig.add_subplot(nB_2,2,2*i, projection=project) else: assert 1 <= len(layout) <= 2 if len(layout) == 1: layout = (1,layout[0]) assert np.multiply(*layout) >= nB for j in xrange(nB): if codim == 0: fig.add_subplot(layout[0], layout[1], j+1, projection=project) elif codim == 1: fig.add_subplot(layout[0], layout[1], j+1, projection=project) if element.dimension == 1: for i in xrange(nB): fig.axes[i].plot(points.ravel(), basis[i].ravel()) #fig.axes[i].set_title(r"$\varphi_{{ {} }}$".format(i+1), fontsize=32) fig.axes[i].set_title(r"$\varphi_{{ {} }}$".format(indices[i]+1), fontsize=32) elif element.dimension == 2: if codim == 0: for i in xrange(nB): if typ == 'scatter': fig.axes[i].scatter(points[0], points[1], basis[i]) elif typ == 'surface': fig.axes[i].plot_trisurf(points[0], points[1], basis[i], cmap=cm.jet, linewidth=0., antialiased=False) if shadow: c = fig.axes[i].tricontourf(points[0], points[1], basis[i], zdir='z', offset=0., colors='gray') fig.axes[i].autoscale_view(True,True,True) #fig.axes[i].set_title(r"$\varphi_{{ {} }}$".format(i+1), fontsize=32) fig.axes[i].set_title(r"$\varphi_{{ {} }}$".format(indices[i]+1), fontsize=32) elif codim == 1: for i in xrange(nB): fig.axes[i].plot(points.ravel(), basis[i].ravel()) #fig.axes[i].set_title(r"$\psi_{{ {} }}$".format(i+1), fontsize=32) fig.axes[i].set_title(r"$\psi_{{ {} }}$".format(indices[i]+1), fontsize=32) return fig, fig.axes class FunctionVisualizer(Visualizer): ''' Base class for visualizing functions. ''' def _plot(self, fnc, **kwargs): ''' Plots the function. Parameters ---------- ... ''' self.fnc = fnc if fnc.fe_space.mesh.dimension == 1: mode = '1dplot' elif fnc.fe_space.mesh.dimension == 2: mode = kwargs.get('mode', 'trisurface') else: raise NotImplementedError() # get visualization data #---------------------------------------------------- points, values, cells = self._get_visualizetion_data(mode, **kwargs) # set up figure and axes #---------------------------------------------------- # get number of plots n_values = values.shape[0] layout = kwargs.get('layout', None) if layout is None: if n_values == 1: nrows = 1 ncols = 1 elif 1 < n_values < 9: nrows = int(np.ceil(n_values/2.)) ncols = 2 else: nrows = int(np.ceil(n_values/3.)) ncols = 3 else: nrows, ncols = layout # create figure and subplots (if neccessary) fig = kwargs.get('fig', None) axes = kwargs.get('ax', None) if axes is None: if mode in ('trisurface', 'surface', 'wireframe'): subplot_kw = {'projection' : '3d'} else: subplot_kw = {} fig, axes = plt.subplots(nrows, ncols, squeeze=False, subplot_kw=subplot_kw) else: axes = np.atleast_2d(axes) assert axes.ndim == 2 assert nrows <= axes.shape[0] assert ncols <= axes.shape[1] # called plotting routine specified by `mode` #---------------------------------------------------- if mode == '1dplot': axes[0,0].plot(points[0], values[0]) elif mode == 'trisurface': self._plot_trisurf(axes=axes, X=points[0], Y=points[1], triangles=cells, Z=values, **kwargs) elif mode in ('tripcolor', 'heatmap'): self._plot_tripcolor(axes=axes, X=points[0], Y=points[1], triangles=cells, Z=values, **kwargs) return fig, axes def _get_visualizetion_data(self, mode, **kwargs): if mode in ('1dplot',): local_points = np.linspace(0., 1., 10)[None,:] points = self.fnc.fe_space.mesh.ref_map.eval(local_points) _, I = np.unique(points.flat, return_index=True) points = points.ravel().take(I)[None,:] values = self.fnc(points=local_points, deriv=0).ravel().take(I) values = np.atleast_2d(values) cells = np.arange(points.size, dtype='int').repeat(2)[1:-1].reshape((-1,2)) return points, values, cells elif mode in ('trisurface', 'tripcolor', 'heatmap'): # get points, values and triangles for the plot return self._get_triangulation_data(**kwargs) else: msg = "Invalid visualization mode for functions! ({})" raise ValueError(msg.format(mode)) def _get_triangulation_data(self, **kwargs): # generate local points for the function evaluation n_sub_grid = kwargs.get('n_sub_grid', self.fnc.order + 1) local_points = utils.lagrange_nodes(dimension=2, order=n_sub_grid) # project them to their global counterparts order = 'C' points = self.fnc.fe_space.mesh.ref_map.eval(points=local_points, deriv=0) points = np.vstack([points[:,:,0].ravel(order=order), points[:,:,1].ravel(order=order)]) # get unique points indices _, I = utils.unique_rows(points.T, return_index=True) points = points.take(I, axis=1) # evaluate the function w.r.t the unique points d = kwargs.get('d', 0) if 0: if isinstance(self.fnc, pysofe.spaces.functions.FEFunction): eval_local = kwargs.get('eval_local', True) if eval_local: values = self.fnc(points=local_points, d=d, local=True) else: values = self.fnc(points=points, d=d, local=False) elif isinstance(self.fnc, pysofe.spaces.functions.MeshFunction): values = self.fnc(points=points, d=d) else: fnc_args = kwargs.get('fnc_args', dict()) if kwargs.get('eval_local', True): values = self.fnc(points=local_points, deriv=d, **fnc_args) else: values = self.fnc(points=points, d=d, local=False, **fnc_args) if d == 0: values = values.ravel(order=order).take(I, axis=0) elif d == 1: values = np.asarray([values.take(i, axis=-1).ravel(order=order).take(I, axis=0) for i in xrange(values.shape[-1])]) else: raise ValueError('Invalid derivation order for visualization! ({})'.format(d)) # get cells corresponding to the unique points from scipy.spatial import Delaunay cells = Delaunay(points.T).simplices values = np.atleast_2d(values) return points, values, cells def _plot_trisurf(self, axes, X, Y, triangles, Z, **kwargs): ''' Wrapper for the :py:meth:`plot_trisurf` method of the :py:class:`Axes3D` class. Parameters ---------- X, Y : array_like 1D arrays of the triangulation node coordinates triangles : array_like Connectivity array of the triangulation Z : array_like 1D array of the values at the triangulation nodes ''' # set default values cmap = kwargs.get('cmap', cm.jet) # get layout n_values = Z.shape[0] nrows, ncols = axes.shape # iterate over axes and plot for i in xrange(nrows): for j in xrange(ncols): if i * ncols + j < n_values: # call mpl_toolkit's plot_trisurf axes[i,j].plot_trisurf(X, Y, triangles, Z[i * ncols + j], shade=True, cmap=cmap, linewidth=0., antialiased=False) def _plot_tripcolor(self, axes, X, Y, triangles, Z, **kwargs): ''' Wrapper for the :py:meth:`pyplot.tripcolor` method. Parameters ---------- X, Y : array_like 1D arrays of the triangulation node coordinates triangles : array_like Connectivity array of the triangulation Z : array_like 1D array of the values at the triangulation nodes ''' # set default values shading = kwargs.get('shading', 'flat') cmap = kwargs.get('cmap', cm.jet) axis_off = kwargs.get('axis_off', True) # get layout n_values = Z.shape[0] nrows, ncols = axes.shape # iterate over axes and plot for i in xrange(nrows): for j in xrange(ncols): if i * ncols + j < n_values: # call matplotlib.pyplot's tripcolor axes[i,j].tripcolor(X, Y, triangles, Z[i * ncols + j], shading=shading, cmap=cmap) if axis_off: # don't show axis axes[i,j].set_axis_off() class QuadRuleVisualizer(Visualizer): """ Visualizes the numerical integration scheme by plotting the quadrature points. """ def _plot(self, quad_rule, *args, **kwargs): assert isinstance(quad_rule, pysofe.quadrature.gaussian.GaussQuadSimp) # get entity dimension for which to plot points dim = kwargs.get('d', quad_rule.dimension) if not dim in (1, 2): msg = "Visualization not supported for this dimension, yet ({})" raise ValueError(msg.format(dim)) # get quadrature points points = quad_rule.points[dim] # check if mesh is given mesh = kwargs.get('mesh', None) if mesh is not None and isinstance(mesh, pysofe.meshes.mesh.Mesh): # is so, plot points on whole mesh V = MeshVisualizer() fig, axes = V.plot(mesh) # transfer local points to global ponts on the mesh points = np.vstack(mesh.ref_map.eval(points)).T axes.plot(points[0], points[1], 'r.') else: # if not, plot points on reference domain # set up figure and axes fig = plt.figure() axes = fig.add_subplot(111) if dim == 1: nodes = np.array([[0.], [1.]]) cells = np.array([[1, 2]]) axes.plot(nodes[:,0], np.zeros_like(nodes[:,0])) axes.plot(points[0], np.zeros_like(points[0]), 'r.') elif dim == 2: nodes = np.array([[0., 0.], [1., 0.], [0., 1.]]) cells = np.array([[1, 2, 3]]) axes.triplot(nodes[:,0], nodes[:,1], cells-1) axes.plot(points[0], points[1], 'r.') # zoom out to make outer faces visible xlim = list(axes.get_xlim()); ylim = list(axes.get_ylim()) xlim[0] -= 0.1; xlim[1] += 0.1 ylim[0] -= 0.1; ylim[1] += 0.1 axes.set_xlim(xlim) axes.set_ylim(ylim) return fig, axes class FESpaceVisualizer(Visualizer): """ Visualizes the finite element space by plotting its degrees of freedom. """ def _plot(self, fe_space, *args, **kwargs): fontsize = kwargs.get('fontsize', 9) # first plot the mesh mesh = fe_space.mesh V = MeshVisualizer() fig, axes = V.plot(mesh) # get number of entities for each topological dimension n_entities = mesh.topology.n_entities dof_tuple = fe_space.element.dof_tuple n_dof_per_dim = np.asarray(n_entities) * dof_tuple dofs = np.arange(fe_space.n_dof) + 1 entity_dofs = [zip(*(arr.reshape((dof_tuple[i], -1)))) for i, arr in enumerate(np.split(dofs, n_dof_per_dim.cumsum()[:-1]))] # plot dofs for each topological dimension # nodes for i in xrange(mesh.nodes.shape[0]): if mesh.dimension == 1: axes.text(x=mesh.nodes[i,0], y=0., s=entity_dofs[0][i], color='red', fontsize=fontsize) elif mesh.dimension == 2: axes.text(x=mesh.nodes[i,0], y=mesh.nodes[i,1], s=entity_dofs[0][i], color='red', fontsize=fontsize) else: raise NotImplementedError() # edges edges = mesh.edges bary = 0.5 * mesh.nodes[edges - 1,:].sum(axis=1) for i in xrange(edges.shape[0]): if mesh.dimension == 1: axes.text(x=bary[i,0], y=0, s=entity_dofs[1][i], color='red', fontsize=fontsize) elif mesh.dimension == 2: axes.text(x=bary[i,0], y=bary[i,1], s=entity_dofs[1][i], color='red', fontsize=fontsize) # elements if mesh.dimension > 1: cells = mesh.cells bary = mesh.nodes[cells - 1,:].sum(axis=1) / 3. for i in xrange(cells.shape[0]): axes.text(x=bary[i,0], y=bary[i,1], s=entity_dofs[2][i], color='red', fontsize=fontsize) return fig, axes
bsd-3-clause
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
gpl-2.0
JackKelly/neuralnilm_prototype
scripts/e284.py
2
4751
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import scaled_cost, mdn_nll from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 500 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television' # 'dish washer', # ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, # max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2013-07-01"), seq_length=512, output_one_appliance=True, boolean_targets=False, train_buildings=[1], validation_buildings=[1], # skip_probability=0.7, n_seq_per_batch=16, # subsample_target=4, include_diff=False, clip_appliance_power=True, target_is_prediction=False, standardise_input=True, standardise_targets=True, input_padding=0, lag=0, reshape_target_to_2D=True # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=lambda x, t: mdn_nll(x, t).mean(), updates_func=momentum, learning_rate=1e-3, learning_rate_changes_by_iteration={ 100: 5e-04, 500: 1e-04, 1000: 5e-05, 2000: 1e-05, 3000: 5e-06, 4000: 1e-06, 10000: 5e-07, 50000: 1e-07 }, plotter=MDNPlotter ) def exp_a(name): global source source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': RecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': RecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': MixtureDensityLayer, 'num_units': source.n_outputs, 'num_components': 1 } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=5000) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
vipints/oqtans
oqtans_tools/EasySVM/0.3.3/scripts/plots.py
2
10115
############################################################################################# # # # This class is part of the MLB-Galaxy package, adding some sequence analysis # # functionality to PSU's Galaxy framework. # # Copyright (C) 2008 Cheng Soon Ong <[email protected]> # # Copyright (C) 2008 Gunnar Raetsch <[email protected]> # # Copyright (C) 2007 Sebastian J. Schultheiss <[email protected]> # # # # This program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation; either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program; if not, see http://www.gnu.org/licenses # # or write to the Free Software Foundation, Inc., 51 Franklin Street, # # Fifth Floor, Boston, MA 02110-1301 USA # # # ############################################################################################# # # # Original Author: Sebastian J. Schultheiss, version 0.77 # # Please add a notice of any modifications here: # # Gunnar Raetsch: rewrote code for training on sequences to be read from files # # Cheng Soon Ong: Added code for educational toolbox # # Gunnar Raetsch: Added code for PRC curve # # # ############################################################################################# import sys import random import numpy import warnings import shutil from shogun.Features import Labels from shogun.Evaluation import * def plotroc(output, LTE, draw_random=False, figure_fname="", roc_label='ROC'): import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(8,8)) fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; output_a = numpy.array(output) output_m = numpy.zeros((1,len(output_a))) ; for i in range(len(output_a)): output_m[0][i]=output_a[i] ; LTE_a = numpy.array(LTE) idx = numpy.lexsort(output_m) ; hits = numpy.zeros(len(output_a)) ; false_alarms = numpy.zeros(len(output_a)) ; LTEidxp=numpy.zeros(len(output_a)) ; LTEidxn=numpy.zeros(len(output_a)) ; nump=0 ; numn=0 ; for i in range(len(output_a)): LTEidxp[i] = (LTE_a[idx[i]]>0) LTEidxn[i] = (LTE_a[idx[i]]<0) if LTE_a[i]>0: nump+=1 if LTE_a[i]<0: numn+=1 csLTEidxp=numpy.cumsum(LTEidxp) csLTEidxn=numpy.cumsum(LTEidxn) for i in range(len(output_a)): hits[i]=1 - csLTEidxp[i]/nump false_alarms[i]=1-csLTEidxn[i]/numn pylab.plot(false_alarms, hits, 'b-', label=roc_label) pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) #points=pm.get_ROC() #points=numpy.array(points).T # for pylab.plot #pylab.plot(points[0], points[1], 'b-', label=roc_label) if draw_random: pylab.plot([0, 1], [0, 1], 'r-', label='random guessing') pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('1 - specificity (false positive rate)',size=10) pylab.ylabel('sensitivity (true positive rate)',size=10) pylab.legend(loc='lower right', prop = matplotlib.font_manager.FontProperties('tiny')) if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auROC=pm.get_auROC() return auROC ; def plotprc(output, LTE, figure_fname="", prc_label='PRC'): import pylab import matplotlib pylab.figure(2,dpi=150,figsize=(8,8)) pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points=pm.get_PRC() points=numpy.array(points).T # for pylab.plot pylab.plot(points[0], points[1], 'b-', label=prc_label) pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('sensitivity (true positive rate)',size=10) pylab.ylabel('precision (1 - false discovery rate)',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auPRC=pm.get_auPRC() return auPRC ; def plotcloud(cloud, figure_fname="", label='cloud'): import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(8,8)) pos = [] neg = [] for i in xrange(len(cloud)): if cloud[i][0]==1: pos.append(cloud[i][1:]) elif cloud[i][0]==-1: neg.append(cloud[i][1:]) fontdict=dict(family="cursive",weight="bold",size=10,y=1.05) ; pylab.title(label, fontdict) points=numpy.array(pos).T # for pylab.plot pylab.plot(points[0], points[1], 'b+', label='positive') points=numpy.array(neg).T # for pylab.plot pylab.plot(points[0], points[1], 'rx', label='negative') #pylab.axis([0, 1, 0, 1]) #ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) #pylab.xticks(ticks,size=10) #pylab.yticks(ticks,size=10) pylab.xlabel('dimension 1',size=10) pylab.ylabel('dimension 2',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) def plot_poims(poimfilename, poim, max_poim, diff_poim, poim_totalmass, poimdegree, max_len): """Plot a summary of the information in poims""" import pylab import matplotlib pylab.figure(3, dpi=150, figsize=(8,10)) # summary figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; pylab.subplot(3,2,1) pylab.title('Total POIM Mass', fontdict) pylab.plot(poim_totalmass) ; pylab.ylabel('weight mass', size=5) pylab.subplot(3,2,3) pylab.title('POIMs', fontdict) pylab.pcolor(max_poim, shading='flat') ; pylab.subplot(3,2,5) pylab.title('Differential POIMs', fontdict) pylab.pcolor(diff_poim, shading='flat') ; for plot in [3, 5]: pylab.subplot(3,2,plot) ticks=numpy.arange(1., poimdegree+1, 1, dtype=numpy.float64) ticks_str = [] for i in xrange(0, poimdegree): ticks_str.append("%i" % (i+1)) ticks[i] = i + 0.5 pylab.yticks(ticks, ticks_str) pylab.ylabel('degree', size=5) # per k-mer figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.04) ; # 1-mers pylab.subplot(3,2,2) pylab.title('1-mer Positional Importance', fontdict) pylab.pcolor(poim[0], shading='flat') ; ticks_str = ['A', 'C', 'G', 'T'] ticks = [0.5, 1.5, 2.5, 3.5] pylab.yticks(ticks, ticks_str, size=5) pylab.axis([0, max_len, 0, 4]) # 2-mers pylab.subplot(3,2,4) pylab.title('2-mer Positional Importance', fontdict) pylab.pcolor(poim[1], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: ticks_str.append(l1+l2) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 16]) # 3-mers pylab.subplot(3,2,6) pylab.title('3-mer Positional Importance', fontdict) pylab.pcolor(poim[2], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: for l3 in ['A', 'C', 'G', 'T']: if numpy.mod(i,4)==0: ticks_str.append(l1+l2+l3) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 64]) # x-axis on last two figures for plot in [5, 6]: pylab.subplot(3,2,plot) pylab.xlabel('sequence position', size=5) # finishing up for plot in xrange(0,6): pylab.subplot(3,2,plot+1) pylab.xticks(fontsize=5) for plot in [1,3,5]: pylab.subplot(3,2,plot) pylab.yticks(fontsize=5) pylab.subplots_adjust(hspace=0.35) ; # write to file warnings.filterwarnings('ignore','Could not match*') pylab.savefig('/tmp/temppylabfig.png') shutil.move('/tmp/temppylabfig.png',poimfilename)
bsd-3-clause
mmagnus/EvoClustRNA
benchmark/evox_collect_data.py
2
4012
#!/usr/bin/env python # -*- coding: utf-8 -*- """ example: [mm] evo$ ./evox_collect_data.py -p ade """ from __future__ import print_function import argparse import os import glob import pandas def get_parser(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-d', "--dryrun", action="store_true", help="dry run", default=False) #parser.add_argument('-p', '--path', help="", default='') parser.add_argument('paths', nargs='*', help="", default='') parser.add_argument('-c', '--case', help="only one case, for test") parser.add_argument("-v", "--verbose", action="store_true", help="be verbose") return parser def exe(cmd, dryrun): print(cmd) if not dryrun: os.system(cmd) def main(dryrun, paths, case): root = os.getcwd() print(paths) for path in paths: print(path) if path in ['ade', 'gmp', 'rp06', 'rp13', 'rp14', 'rp17', 'thf', 'tpp', 'trna']: pass else: continue if path: os.chdir(path + '/evox/') # jump inside evox cases = glob.glob('*') # ade / evox / <type> rmsd_motif = None rmsds = None infs = None rmsd_motif = pandas.DataFrame() for c in cases: # simulation! # mode only for a specific case if case: # only if this is used if c != case: print('!!! skip ' + c + '!!!') continue if os.path.isdir(c): print('------------------------------') print (' inside %s' % c) os.chdir(c) # go inside a folder print(os.getcwd()) # add column pdb case # collect motif rmsd fn = 'RMSD_motif.csv' print(fn) try: df = pandas.read_csv(fn, index_col=None) except: ## placeholder_fn = "/home/magnus/work/evo/rmsd_motif_fake.csv" ## print('Insert placeholder') ## df = pandas.read_csv(placeholder_fn, index_col=None) os.chdir(root + '/' + path + '/evox/') continue # skip df['pdb'] = path df['group_name'] = c print('fn', fn) print('df', df) rmsd_motif = rmsd_motif.append(df) print(rmsd_motif) ## try: ## rmsd_motif.append(df) # append to the df ## print(rmsd_motif) ## except AttributeError: ## rmsd_motif = df ## # add column pdb case ## # collect motif rmsd ## df = pandas.read_csv('rmsds.csv') ## df['group_name'] = case ## df['pdb'] = path ## if not rmsds: ## rmsds = df ## else: ## rmsds.append(df) # append to the df ## # add column pdb case ## # collect motif rmsd ## df = pandas.read_csv('inf.csv') ## df['group_name'] = case ## df['pdb'] = path ## if not infs: ## infs = df ## else: ## infs.append(df) # append to the df os.chdir(root + '/' + path + '/evox/') # root + '/' + case) # path + '/evox/') # root) print(rmsd_motif) #print(rmsds) #print(infs) os.chdir(root) rmsd_motif.to_csv(path + '_rmsd_motf.csv', index=False) #rmsds.to_csv('rmsds.csv', index=False) #infs.to_csv('infs.csv', index=False) if __name__ == '__main__': parser = get_parser() args = parser.parse_args() main(args.dryrun, args.paths, args.case)
gpl-3.0
guschmue/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
79
2464
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.numpy_io import numpy_input_fn from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import pandas_input_fn from tensorflow.contrib.learn.python.learn.learn_io.generator_io import generator_input_fn
apache-2.0
AnasGhrab/scikit-learn
sklearn/linear_model/randomized_l1.py
95
23365
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], y_numeric=True) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
RobertABT/heightmap
build/matplotlib/examples/axes_grid/demo_curvelinear_grid2.py
15
1839
import numpy as np #from matplotlib.path import Path import matplotlib.pyplot as plt from mpl_toolkits.axes_grid.grid_helper_curvelinear import GridHelperCurveLinear from mpl_toolkits.axes_grid.axislines import Subplot import mpl_toolkits.axes_grid.angle_helper as angle_helper def curvelinear_test1(fig): """ grid for custom transform. """ def tr(x, y): sgn = np.sign(x) x, y = np.abs(np.asarray(x)), np.asarray(y) return sgn*x**.5, y def inv_tr(x,y): sgn = np.sign(x) x, y = np.asarray(x), np.asarray(y) return sgn*x**2, y extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = None, lat_cycle = None, lon_minmax = None, #(0, np.inf), lat_minmax = None, ) grid_helper = GridHelperCurveLinear((tr, inv_tr), extreme_finder=extreme_finder) ax1 = Subplot(fig, 111, grid_helper=grid_helper) # ax1 will have a ticks and gridlines defined by the given # transform (+ transData of the Axes). Note that the transform of # the Axes itself (i.e., transData) is not affected by the given # transform. fig.add_subplot(ax1) ax1.imshow(np.arange(25).reshape(5,5), vmax = 50, cmap=plt.cm.gray_r, interpolation="nearest", origin="lower") # tick density grid_helper.grid_finder.grid_locator1._nbins = 6 grid_helper.grid_finder.grid_locator2._nbins = 6 if 1: fig = plt.figure(1, figsize=(7, 4)) fig.clf() curvelinear_test1(fig) plt.show()
mit
abhishekgahlot/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause