repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
RabadanLab/MITKats
Modules/Biophotonics/python/iMC/scripts/ipcai_to_caffe/script_create_lmdb_database.py
6
1647
import os import pandas as pd import lmdb import caffe from regression.preprocessing import preprocess def create_lmdb(path_to_simulation_results, lmdb_name): df = pd.read_csv(path_to_simulation_results, header=[0, 1]) X, y = preprocess(df, snr=10.) y = y.values * 1000 # We need to prepare the database for the size. We'll set it 10 times # greater than what we theoretically need. There is little drawback to # setting this too big. If you still run into problem after raising # this, you might want to try saving fewer entries in a single # transaction. map_size = X.nbytes * 10 env = lmdb.open(lmdb_name, map_size=map_size) with env.begin(write=True) as txn: # txn is a Transaction object for i in range(X.shape[0]): datum = caffe.proto.caffe_pb2.Datum() datum.channels = X.shape[1] datum.height = 1 datum.width = 1 datum.data = X[i].tobytes() # or .tostring() if numpy < 1.9 datum.label = int(y[i]) str_id = '{:08}'.format(i) # The encode is only essential in Python 3 txn.put(str_id.encode('ascii'), datum.SerializeToString()) data_root = "/media/wirkert/data/Data/2016_02_02_IPCAI/results/intermediate" TRAIN_IMAGES = os.path.join(data_root, "ipcai_revision_colon_mean_scattering_train_all_spectrocam.txt") TEST_IMAGES = os.path.join(data_root, "ipcai_revision_colon_mean_scattering_test_all_spectrocam.txt") create_lmdb(TRAIN_IMAGES, "ipcai_train_lmdb") create_lmdb(TEST_IMAGES, "ipcai_test_lmdb")
bsd-3-clause
maciejkula/scipy
scipy/spatial/tests/test__plotutils.py
71
1463
from __future__ import division, print_function, absolute_import from numpy.testing import dec, assert_, assert_array_equal try: import matplotlib matplotlib.rcParams['backend'] = 'Agg' import matplotlib.pyplot as plt has_matplotlib = True except: has_matplotlib = False from scipy.spatial import \ delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ Delaunay, Voronoi, ConvexHull class TestPlotting: points = [(0,0), (0,1), (1,0), (1,1)] @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_delaunay(self): # Smoke test fig = plt.figure() obj = Delaunay(self.points) s_before = obj.simplices.copy() r = delaunay_plot_2d(obj, ax=fig.gca()) assert_array_equal(obj.simplices, s_before) # shouldn't modify assert_(r is fig) delaunay_plot_2d(obj, ax=fig.gca()) @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_voronoi(self): # Smoke test fig = plt.figure() obj = Voronoi(self.points) r = voronoi_plot_2d(obj, ax=fig.gca()) assert_(r is fig) voronoi_plot_2d(obj) @dec.skipif(not has_matplotlib, "Matplotlib not available") def test_convex_hull(self): # Smoke test fig = plt.figure() tri = ConvexHull(self.points) r = convex_hull_plot_2d(tri, ax=fig.gca()) assert_(r is fig) convex_hull_plot_2d(tri)
bsd-3-clause
sketchytechky/zipline
zipline/examples/dual_moving_average.py
10
4332
#!/usr/bin/env python # # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ from zipline.api import order_target, record, symbol, history, add_history def initialize(context): # Register 2 histories that track daily prices, # one with a 100 window and one with a 300 day window add_history(100, '1d', 'price') add_history(300, '1d', 'price') context.sym = symbol('AAPL') context.i = 0 def handle_data(context, data): # Skip first 300 days to get full windows context.i += 1 if context.i < 300: return # Compute averages # history() has to be called with the same params # from above and returns a pandas dataframe. short_mavg = history(100, '1d', 'price').mean() long_mavg = history(300, '1d', 'price').mean() # Trading logic if short_mavg[context.sym] > long_mavg[context.sym]: # order_target orders as many shares as needed to # achieve the desired number of shares. order_target(context.sym, 100) elif short_mavg[context.sym] < long_mavg[context.sym]: order_target(context.sym, 0) # Save values for later inspection record(AAPL=data[context.sym].price, short_mavg=short_mavg[context.sym], long_mavg=long_mavg[context.sym]) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel('Portfolio value (USD)') ax2 = fig.add_subplot(212) ax2.set_ylabel('Price (USD)') # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if ('AAPL' in results and 'short_mavg' in results and 'long_mavg' in results): results['AAPL'].plot(ax=ax2) results[['short_mavg', 'long_mavg']].plot(ax=ax2) trans = results.ix[[t != [] for t in results.transactions]] buys = trans.ix[[t[0]['amount'] > 0 for t in trans.transactions]] sells = trans.ix[ [t[0]['amount'] < 0 for t in trans.transactions]] ax2.plot(buys.index, results.short_mavg.ix[buys.index], '^', markersize=10, color='m') ax2.plot(sells.index, results.short_mavg.ix[sells.index], 'v', markersize=10, color='k') plt.legend(loc=0) else: msg = 'AAPL, short_mavg & long_mavg data not captured using record().' ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() # Note: this if-block should be removed if running # this algorithm on quantopian.com if __name__ == '__main__': from datetime import datetime import pytz from zipline.algorithm import TradingAlgorithm from zipline.utils.factory import load_from_yahoo # Set the simulation start and end dates. start = datetime(2011, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2013, 1, 1, 0, 0, 0, 0, pytz.utc) # Load price data from yahoo. data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) # Create and run the algorithm. algo = TradingAlgorithm(initialize=initialize, handle_data=handle_data, identifiers=['AAPL']) results = algo.run(data) # Plot the portfolio and asset data. analyze(results=results)
apache-2.0
Akshay0724/scikit-learn
examples/tree/plot_unveil_tree_structure.py
13
4839
""" ========================================= Understanding the decision tree structure ========================================= The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example, we show how to retrieve: - the binary tree structure; - the depth of each node and whether or not it's a leaf; - the nodes that were reached by a sample using the ``decision_path`` method; - the leaf that was reached by a sample using the apply method; - the rules that were used to predict a sample; - the decision path shared by a group of samples. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) estimator.fit(X_train, y_train) # The decision estimator has an attribute called tree_ which stores the entire # tree structure and allows access to low level attributes. The binary tree # tree_ is represented as a number of parallel arrays. The i-th element of each # array holds information about the node `i`. Node 0 is the tree's root. NOTE: # Some of the arrays only apply to either leaves or split nodes, resp. In this # case the values of nodes of the other type are arbitrary! # # Among those arrays, we have: # - left_child, id of the left child of the node # - right_child, id of the right child of the node # - feature, feature used for splitting the node # - threshold, threshold value at the node # # Using those arrays, we can parse the tree structure: n_nodes = estimator.tree_.node_count children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # The tree structure can be traversed to compute various properties such # as the depth of each node and whether or not it is a leaf. node_depth = np.zeros(shape=n_nodes, dtype=np.int64) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 # If we have a test node if (children_left[node_id] != children_right[node_id]): stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaves[node_id] = True print("The binary tree structure has %s nodes and has " "the following tree structure:" % n_nodes) for i in range(n_nodes): if is_leaves[i]: print("%snode=%s leaf node." % (node_depth[i] * "\t", i)) else: print("%snode=%s test node: go to node %s if X[:, %s] <= %s else to " "node %s." % (node_depth[i] * "\t", i, children_left[i], feature[i], threshold[i], children_right[i], )) print() # First let's retrieve the decision path of each sample. The decision_path # method allows to retrieve the node indicator functions. A non zero element of # indicator matrix at the position (i, j) indicates that the sample i goes # through the node j. node_indicator = estimator.decision_path(X_test) # Similarly, we can also have the leaves ids reached by each sample. leave_id = estimator.apply(X_test) # Now, it's possible to get the tests that were used to predict a sample or # a group of samples. First, let's make it for the sample. sample_id = 0 node_index = node_indicator.indices[node_indicator.indptr[sample_id]: node_indicator.indptr[sample_id + 1]] print('Rules used to predict sample %s: ' % sample_id) for node_id in node_index: if leave_id[sample_id] != node_id: continue if (X_test[sample_id, feature[node_id]] <= threshold[node_id]): threshold_sign = "<=" else: threshold_sign = ">" print("decision id node %s : (X[%s, %s] (= %s) %s %s)" % (node_id, sample_id, feature[node_id], X_test[i, feature[node_id]], threshold_sign, threshold[node_id])) # For a group of samples, we have the following common node. sample_ids = [0, 1] common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)) common_node_id = np.arange(n_nodes)[common_nodes] print("\nThe following samples %s share the node %s in the tree" % (sample_ids, common_node_id)) print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/mpl_examples/pylab_examples/quadmesh_demo.py
14
1111
#!/usr/bin/env python """ pcolormesh uses a QuadMesh, a faster generalization of pcolor, but with some restrictions. This demo illustrates a bug in quadmesh with masked data. """ import numpy as np from matplotlib.pyplot import figure, show, savefig from matplotlib import cm, colors from numpy import ma n = 12 x = np.linspace(-1.5,1.5,n) y = np.linspace(-1.5,1.5,n*2) X,Y = np.meshgrid(x,y); Qx = np.cos(Y) - np.cos(X) Qz = np.sin(Y) + np.sin(X) Qx = (Qx + 1.1) Z = np.sqrt(X**2 + Y**2)/5; Z = (Z - Z.min()) / (Z.max() - Z.min()) # The color array can include masked values: Zm = ma.masked_where(np.fabs(Qz) < 0.5*np.amax(Qz), Z) fig = figure() ax = fig.add_subplot(121) ax.set_axis_bgcolor("#bdb76b") ax.pcolormesh(Qx,Qz,Z, shading='gouraud') ax.set_title('Without masked values') ax = fig.add_subplot(122) ax.set_axis_bgcolor("#bdb76b") # You can control the color of the masked region: #cmap = cm.jet #cmap.set_bad('r', 1.0) #ax.pcolormesh(Qx,Qz,Zm, cmap=cmap) # Or use the default, which is transparent: col = ax.pcolormesh(Qx,Qz,Zm,shading='gouraud') ax.set_title('With masked values') show()
gpl-2.0
fspaolo/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
8
7418
""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespectively of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import pylab as pl from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = pl.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) pl.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) pl.loglog(n_samples_range, min_n_components, color=color) pl.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") pl.xlabel("Number of observations to eps-embed") pl.ylabel("Minimum number of dimensions") pl.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") pl.show() # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = pl.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) pl.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) pl.semilogy(eps_range, min_n_components, color=color) pl.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") pl.xlabel("Distortion eps") pl.ylabel("Minimum number of dimensions") pl.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") pl.show() # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] pl.figure() pl.hexbin(dists, projected_dists, gridsize=100) pl.xlabel("Pairwise squared distances in original space") pl.ylabel("Pairwise squared distances in projected space") pl.title("Pairwise distances distribution for n_components=%d" % n_components) cb = pl.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) pl.figure() pl.hist(rates, bins=50, normed=True, range=(0., 2.)) pl.xlabel("Squared distances rate: projected / original") pl.ylabel("Distribution of samples pairs") pl.title("Histogram of pairwise distance rates for n_components=%d" % n_components) pl.show() # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region
bsd-3-clause
canfar/cadcstats
condor/condor_parser.py
1
13380
import sys import csv import re if "-pre" in sys.argv: preOS = True elif "-post" in sys.argv: preOS = False else: print("missing OpenStack flag (-pre/-post) ...") sys.exit(0) csvOutput = True if "-csv" in sys.argv else False jsonOutput = True if "-json" in sys.argv else False if not (csvOutput or jsonOutput): print("at least specify one type of output, -csv or -json ...") sys.exit(0) try: log = sys.argv[sys.argv.index("-f") + 1] try: f = open(log, "r") f.close() except FileNotFoundError: print("the input file specified by -f cannot be found ...") sys.exit(0) except ValueError: print("missing input flag -f ...") sys.exit(0) except IndexError: print("no file specified by -f ...") sys.exit(0) # list of fields that need no manipulation implicit = [ "JobStatus", "CommittedTime", # duration of the job including suspension "CommittedSuspensionTime", # suspension time of the job "CumulativeSlotTime", # core seconds "NumJobStarts", "RequestCpus", "JobStartDate", "VMName", # only available preOS "RemoveReason", "CompletionDate" ] explicit = ["QDate", "Project", "Owner", "VMInstanceType", "VMInstanceName", "VMSpec.CPU", "VMSpec.RAM", "VMSpec.DISK", "RequestMemory", "RequestDisk", "MemoryUsage", "DiskUsage", "ClusterId", "ProcId"] # the table mapping VM uuid to specifications VM = { # VM_ID RAM(MB) DISK(GB) SCRATCH(GB) CPU "083093b3-ffc1-464e-a453-cefce795021b":[ 6144 , 0 , 0 , 4 ], "0eb207f9-4575-4bd2-a430-1ed50e821d05":[ 61440 , 20 , 186 , 8 ], "2cb70964-721d-47ff-badb-b702898b6fc2":[ 12288 , 0 , 0 , 8 ], "2e33b8b5-d8d1-4fd8-913c-990f34a89002":[ 7680 , 20 , 31 , 2 ], "2ff7463c-dda9-4687-8b7a-80ad3303fd41":[ 3072 , 0 , 0 , 2 ], "327fa6c5-4ec8-432d-9607-cd7f40252320":[ 92160 , 20 , 186 , 8 ], "39e8550a-c2cf-4094-93c0-fb70b35b6a6c":[ 1536 , 0 , 0 , 1 ], "4998f4d2-b664-4d9d-8e0d-2071f3e44b10":[ 30720 , 20 , 83 , 4 ], "4f61f147-353c-4a24-892b-f95a1a523ef6":[ 7680 , 20 , 30 , 1 ], "5c86b033-a1d0-4b6a-b1c9-4a57ad84d594":[ 30720 , 20 , 380 , 8 ], "6164f230-4859-4bf5-8f5b-fc450d8a8fb0":[ 15360 , 20 , 80 , 2 ], "64a90d5f-71fc-4644-bc64-f8d907249e35":[ 61440 , 20 , 780 , 16 ], "69174301-2d70-4bc1-9061-66b2eaff5d07":[ 15360 , 20 , 180 , 4 ], "7c7fdfc0-57e6-49e9-bbde-37add33e1681":[ 61440 , 20 , 380 , 8 ], "88e57477-b6a5-412e-85e0-69ff48ceb45c":[ 46080 , 20 , 180 , 4 ], "91407374-25de-4c0a-bd76-c0bdaecf47eb":[ 122880 , 20 , 392 , 16 ], "9493fdd3-3100-440d-a9a1-020d93701ed2":[ 15360 , 20 , 83 , 4 ], "aa8ca469-e939-40ba-964d-28bfd1c61480":[ 15360 , 20 , 31 , 2 ], "ac5155b2-87c8-42ed-9b56-edd00b3880cc":[ 122880 , 20 , 780 , 16 ], "b64b981a-e832-47e9-903f-fb98cff0579b":[ 61440 , 20 , 392 , 16 ], "bcb3eb5a-8485-4520-b06c-cb5a58bb482f":[ 30720 , 0 , 0 , 8 ], "c94c95cc-6641-475b-b044-98b24a22dcaa":[ 7680 , 20 , 80 , 2 ], "d2d56ca5-511b-4a4b-89eb-1d6f06ee58b1":[ 30720 , 20 , 186 , 8 ], "da751037-da00-4eff-bca1-0d21dafaa347":[ 46080 , 20 , 83 , 4 ], "de70f75f-83a0-43ce-8ac6-be3837359a0a":[ 30720 , 20 , 180 , 4 ], "df94e28a-8983-4b4a-baa8-ffb824591c23":[ 92160 , 20 , 380 , 8 ], # more "13efd2a1-2fd8-48c4-822f-ce9bdc0e0004":[122880 , 20 , 780 , 16 ], "23090fc1-bdf7-433e-9804-a7ec3d11de08":[15360 , 20 , 80 , 2 ], "5112ed51-d263-4cc7-8b0f-7ef4782f783c":[46080 , 20 , 180 , 4 ], "6c1ed3eb-6341-470e-92b7-5142014e7c5e":[7680 , 20 , 80 , 2 ], "72009191-d893-4a07-871c-7f6e50b4e110":[61440 , 20 , 380 , 8 ], "8061864c-722b-4f79-83af-91c3a835bd48":[15360 , 20 , 180 , 4 ], "848b71a2-ae6b-4fcf-bba4-b7b0fccff5cf":[6144 , 0 , 0 , 8 ], "8953676d-def7-4290-b239-4a14311fbb69":[30720 , 20 , 380 , 8 ], "a55036b9-f40c-4781-a293-789647c063d7":[92160 , 20 , 380 , 8 ], "d816ae8b-ab7d-403d-ae5f-f457b775903d":[184320 , 20 , 780 , 16 ], "f9f6fbd7-a0af-4604-8911-041ea6cbbbe4":[768 , 0 , 0 , 1 ], # same table but aliases "c16.med":[122880,20,780,16], "c2.med":[15360,20,80,2], "p8-12gb":[12288,0,0,8], "c4.hi":[46080,20,180,4], "c2.low":[7680,20,80,2], "c8.med":[61440,20,380,8], "c4.low":[15360,20,180,4], "p8-6gb":[6144,0,0,8], "c8.low":[30720,20,380,8], "c8.hi":[92160,20,380,8], "c16.hi":[184320,20,780,16], "p1-0.75gb-tobedeleted":[768,0,0,1], # more, from CC, scratch or disk space is missing so I put 0 as disk space "126e8ef0-b816-43ed-bd5f-b1d4e16fdda0":[7680 , 0 , 80 , 2 ], "34ed4d1a-e7d5-4c74-8fdd-3db36c4bcbdb":[245760 , 0 , 1500 , 16 ], "4100db19-f4c9-4ac8-8fed-1fd4c0a282e5":[196608 , 0 , 1000 , 12 ], "5ea7bc52-ce75-4501-9978-fad52608809d":[122880 , 0 , 750 , 8 ], "8e3133f4-dc5a-4fdf-9858-39e099027253":[32768 , 0 , 0 , 16 ], "9431e310-432a-4edb-9604-d7d2d5aef0f7":[196608 , 0 , 1100 , 12 ], "9cabf7e3-1f74-463c-ab38-d46e7f92d616":[184320 , 0 , 780 , 16 ], "d67eccfe-042b-4f86-a2fc-92398ebc811b":[7680 , 0 , 30 , 1 ] } ownerProj = { "jkavelaars":"UVic_KBOs", "mtb55":"UVic_KBOs", "sgwyn":"moproc", "durand":"HST-RW", "sfabbro":"ots", "ptsws":"ots", "chenc":"ots", "fraserw":"UVic_KBOs", "lff":"ngvs", "pashartic":"ngvs", "gwyn":"moproc", "glass0":"UVic_KBOs", "patcote":"ngvs", "lauren":"ngvs", "jjk":"UVic_KBOs", "yingyu":"ngvs", "rpike":"UVic_KBOs", "nickball":"cadc", "woodleka":"pandas", "cadctest":"cadc", "markbooth":"debris", "MarkBooth":"debris", "goliaths":"cadc", "dschade":"cadc", "pritchetsupernovae":"ots", "ryan":"CANFAROps", "jroediger":"ngvs", "cshankm":"UVic_KBOs", "fabbros":"ots", "jouellet":"cadc", "jonathansick":"androphot", "shaimaaali":"shaimaaali", "ShaimaaAli":"shaimaaali", "johnq":"ngvs", "helenkirk":"jcmt", "canfradm":"CANFAR", "clare":"ots", "taylorm":"UVic_KBOs", "nhill":"cadc", "canfrops":"CANFAROps", "laurenm":"ngvs", "nick":"cadc", "layth":"ngvs", "jpveran":"aot", "jpv":"aot", "caread966":"ngvs", "nvulic":"nvulic", "kwoodley":"pandas", "sanaz":"cfhtlens", "cadcauthtest1":"cadc", "dcolombo":"mwsynthesis", "fpierfed":"HST-RW", "echapin":"scuba2", "jenkinsd":"cadc", "brendam":"debris", "russell":"cadc", "trystynb":"ngvs", "davids":"cadc", "scott":"scuba2", "streeto":"streeto", "matthews":"debris", "jrseti":"seti", "bsibthorpe":"debris", "gerryharp":"seti", "hguy":"canarie", "majorb":"cadc", "samlawler":"debris", "cadcsw":"cadc", "canfar":"CANFAR", "markb":"debris" } ownerDup = { "gwyn":"sgwyn", "ssgwyn":"sgwyn", "jjk":"jkavelaars", "fabbros":"sfabbro" } with open(log, "r", encoding='utf-8') as fin: # entire output file output = [] # each line out = [] # used to calc mem usage # -1 is to be handled by logstash residentSetSize = 0 diskUsg = 0 imgSize = 0 stDate, endDate = 0, 0 # used for early logs where VMInstanceType is not defined # where the spec of vm is written in three separate fields vmCPUCores, vmMem, vmStorage = 0, 0, 0 # for preOS logs it is possible that RequestMemory is not available in Requirements # i.e.: Requirements = (VMType =?= "nimbus_test" && Arch == "INTEL" && Memory >= 2048 && Cpus >= 1) # ==> RequestMemory = 2048 # -vs- # Requirements = (Arch == "INTEL") && (OpSys == "LINUX") && (Disk >= DiskUsage) && (((Memory * 1024) >= ImageSize) # ==> RequestMemory unknown # then RequestMemory is assumed to be VMMem findReqMem = False # for preOS we might not be able to find the project name in VMLoc field # then proj name = owner #findProj = False # if it is year 2014. 2014 is different: even tho it is preOS but MemoryUsage is calculated by postOS method yr2014 = False # preOS, Project is traslate through ownerProj dictionary owner = '' # a set to dissolve timestamp conflicts # ts = set() content = fin.readlines() for i, line in enumerate(content): t = line.strip().split(" = ", 1) # if the current line is not "*** offset ...." if not re.match("\*\*\*", t[0]) : if any( t[0] == x for x in implicit): pass # convert QDate into millisecond and add 1 ms to avoid collision elif t[0] == "QDate": t[1] = int(t[1])# * 1000 #k = 1 #tmp = t[1] #while tmp in ts: # tmp = t[1] + k # k += 1 #ts.add(tmp) # in ms: 2014-1-1 00:00:00 2015-1-1 00:00:00 if t[1] >= 1388534400 and t[1] < 1420070400: yr2014 = True t[1] = str(t[1]) # elif t[0] == "RemoveReason": # t[1] = '"' + t[1] + '"' elif t[0] == "LastRemoteHost": t[0] = "VMInstanceName" elif t[0] == "Owner": owner = t[1][1:-1] if owner in ownerDup: owner = owner.replace(owner, ownerDup[owner]) t[1] = '"' + owner + '"' elif t[0] == "VMCPUCores": vmCPUCores = int(t[1].replace('"', '')) continue elif t[0] == "VMMem": if re.search("G", t[1]): vmMem = int(t[1].replace('"', '').replace("G","")) * 1024 else: vmMem = int(t[1].replace('"', '').replace("G","")) continue elif t[0] == "VMStorage": vmStorage = int(t[1].replace('"', '').replace("G","")) continue # from Requirements grab: # RequestMemory, if available (preOS) # Project:VMName (postOS) elif t[0] == "Requirements": if preOS: try: out.append('"RequestMemory":%s' % re.search("Memory\ \>\=\ (\d+)\ \&{2}\ Cpus", t[1]).group(1)) findReqMem = True except AttributeError: pass else: r = re.search("VMType\ \=\?\=\ \"(.+)\:([^\"]+)?\"", t[1]) # there are cases in history.20160304T220132 history.20150627T031409 history.20150704T171253, that we can't find Proj:VMNam in Requirements, and I will not catch this exception. if r: out.append( '"Project":"%s"' % r.group(1).replace("canfar-", "") ) out.append( '"VMName":"%s"' % r.group(2) ) else: print("Can't find Proj:VMNam at line %i" % i) continue # # grab Project from VMLoc, preOS # elif t[0] == "VMLoc" and preOS: # try: # t[1] = '"' + re.search("vospace\/([^\/]+)\/", t[1]).group(1) + '"' # t[0] = "Project" # findProj = True # except AttributeError: # continue # from "VMInstanceType" grab the vm flavor, and translate into VMSpecs elif t[0] == "VMInstanceType" and not preOS: spcKey = "" try: spcKey = re.search('\:(.*)\"', t[1]).group(1) if spcKey == "5c1ed3eb-6341-470e-92b7-5142014e7c5e" or spcKey == "12345678-6341-470e-92b7-5142014e7c5e": pass out.append('"VMSpec.RAM":%i' % VM[spcKey][0]) out.append('"VMSpec.DISK":%i' % (VM[spcKey][1] + VM[spcKey][2])) out.append('"VMSpec.CPU":%i' % VM[spcKey][3]) except KeyError: out.append('"VMSpec.RAM":%i' % 0) out.append('"VMSpec.DISK":%i' % 0) out.append('"VMSpec.CPU":%i' % 0) t[1] = '"' + spcKey + '"' elif t[0] == "ResidentSetSize": residentSetSize = int(t[1]) continue # convert to mb elif t[0] == "DiskUsage": diskUsg = int(t[1]) / 1000 t[1] = str(diskUsg) # convert to mb elif t[0] == "ImageSize": imgSize = int(t[1]) continue else: continue out.append( "\"" + t[0].strip() + "\":" + t[1] ) else: r = re.search("ClusterId\ \=\ (\d+)\ ProcId\ \=\ (\d+)", line) try: out.append('"ClusterId":%s' % r.group(1)) out.append('"ProcId":%s' % r.group(2)) except AttributeError: out.append('"ClusterId":-1') out.append('"ProcId":-1') if preOS:# and not yr2014: try: out.append('"Project":"%s"' % ownerProj[owner]) except KeyError: out.append('"Project":""') out.append('"VMSpec.RAM":%i' % vmMem) out.append('"VMSpec.DISK":%i' % vmStorage) out.append('"VMSpec.CPU":%i' % vmCPUCores) if not yr2014: out.append('"MemoryUsage":%.3f' % (imgSize / 1000)) if not findReqMem: out.append('"RequestMemory":%i' % vmMem) #if not findProj: # out.append('"Project":%s' % owner) else: # for 2014, MemoryUsage = ( residentSetSize + 1023 ) / 1024 memoUsg = 0 if residentSetSize == 0 else (( residentSetSize + 1023 ) / 1024) out.append('"MemoryUsage":%.3f' % memoUsg) # for 2014, RequestMemory = MemoryUsage if MemoryUsage!=Null else ( ImageSize + 1023 ) / 1024 out.append('"RequestMemory":%.3f' % ((0 if imgSize == 0 else (imgSize + 1023) / 1024) if memoUsg == 0 else memoUsg)) # yr 2014 and postOS, fairly straightforward else: # for postOS, MemoryUsage = ( residentSetSize + 1023 ) / 1024 memoUsg = 0 if residentSetSize == 0 else (( residentSetSize + 1023 ) / 1024) out.append('"MemoryUsage":%.3f' % memoUsg) # for postOS, RequestMemory = MemoryUsage if MemoryUsage!=Null else ( ImageSize + 1023 ) / 1024 out.append('"RequestMemory":%.3f' % ((0 if imgSize == 0 else (imgSize + 1023) / 1024) if memoUsg == 0 else memoUsg)) # for all years, RequestDisk = DiskUsage out.append('"RequestDisk":%.3f' % diskUsg) # if the job finishes, compute the duration # merge to ES JSON # change if want to merge into other format output.append("{" + ",".join(out) + "}\n") # reset all the vars rmRsn, owner = [""] * 2 out = [] #[findReqMem, findProj, yr2014, findRmRsn] = [False] * 4 [findReqMem, yr2014, findRmRsn] = [False] * 3 [residentSetSize, diskUsg, imgSize, vmCPUCores, vmMem, vmStorage, stDate, endDate] = [0] * 8 if jsonOutput: with open(log+".json","w") as fout: for out in output: fout.write('%s' % out) if csvOutput: with open(log+".csv","w") as fout: colName = explicit + implicit w = csv.DictWriter(fout, fieldnames = colName) w.writeheader() for line in output: w.writerow(eval(line))
mit
adamcandy/qgis-plugins-meshing
dev/old/contouring/bathymetry_metric.py
3
26872
#!/usr/bin/env python ########################################################################## # # Generation of boundary representation from arbitrary geophysical # fields and initialisation for anisotropic, unstructured meshing. # # Copyright (C) 2011-2013 Dr Adam S. Candy, [email protected] # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ########################################################################## import sys import shutil import math from Scientific.IO import NetCDF import matplotlib matplotlib.use('Agg') from pylab import contour #import matplotlib #matplotlib._cntr.Cntr #from matplotlib import contour #matplotlib.use('Agg') from numpy import zeros, array, append #contour = matplotlib.pyplot.contour # TODO # Calculate area in right projection # Add region selection function # Ensure all islands selected # Identify Open boundaries differently # Export command line to geo file # If nearby, down't clode with parallel def printv(text): if (arguments.verbose): print text gmsh_comment(text) def printvv(text): if (arguments.debug): print text def gmsh_comment(comment): output.write( '// ' + comment + '\n') def expand_boxes(region, boxes): def error(): print 'Error in argument for -b.' sys.exit(1) def build_function(function, requireand, axis, comparison, number): if (len(number) > 0): function = '%s%s(%s %s %s)' % (function, requireand, axis, comparison, number) requireand = ' and ' return [function, requireand] #re.sub(pattern, repl, string, #((latitude >= -89.0) and (latitude <=-65.0) and (longitude >= -64.0) and (longitude <= -20.0))' if (len(boxes) > 0): function = '' requireor = '' for box in boxes: longlat = box.split(',') if (len(longlat) != 2): error() long = longlat[0].split(':') lat = longlat[1].split(':') if ((len(long) != 2) and (len(lat) != 2)): error() function_box = '' requireand = '' if (len(long) == 2): [function_box, requireand] = build_function(function_box, requireand, 'longitude', '>=', long[0]) [function_box, requireand] = build_function(function_box, requireand, 'longitude', '<=', long[1]) if (len(lat) == 2): [function_box, requireand] = build_function(function_box, requireand, 'latitude', '>=', lat[0]) [function_box, requireand] = build_function(function_box, requireand, 'latitude', '<=', lat[1]) if (len(function_box) > 0): function = '%s%s(%s)' % (function, requireor, function_box) requireor = ' or ' if (len(function) > 0): if (region is not 'True'): region = '((%s) and (%s))' % (region, function) else: region = function return region def usage(): print ''' -n filename | Input netCDF file -f filename | Output Gmsh file -p path1 (path2).. | Specify paths to include -r function | Function specifying region of interest -b box1 (box2).. | Boxes with regions of interest -a minarea | Minimum area of islands -dx dist | Distance of steps when drawing parallels and meridians (currently in degrees - need to project) -no | Do not include open boundaries -lat latitude | Latitude to extent open domain to -s scenario | Select scenario (in development) -g | Generate bathymetry .pos file (in development) -go filename | Output bathymetry .pos file (in development) -v | Verbose -vv | Very verbose (debugging) -q | Quiet -h | Help ------------------------------------------------------------ Example usage: Include only the main Antarctic mass (path 1), and only parts which lie below 60S rtopo_mask_to_stereographic.py -r 'latitude <= -60.0' -p 1 Filchner-Ronne extended out to the 65S parallel rtopo_mask_to_stereographic.py -no -b -85.0:-20.0,-89.0:-75.0 -64.0:-30.0,-89.0:-70.0 -30.0:-20.0,-89.0:-75.0 -lat '-65.0' Antarctica, everything below the 60S parallel, coarse approximation to open boundary rtopo_mask_to_stereographic.py -dx 2 -r 'latitude <= -60' Small region close to the Filcher-Ronne ice shelf rtopo_mask_to_stereographic.py -no -b -85.0:-20.0,-89.0:-75.0 -64.0:-30.0,-89.0:-70.0 -30.0:-20.0,-89.0:-75.0 -p 1 -r 'latitude <= -83' Amundsen Sea rtopo_mask_to_stereographic.py -no -b -130.0:-85.0,-85.0:-60.0 -lat -64.0 Small islands, single out, or group with -p 312, 314 79 - an island on 90W 68S ''' sys.exit(0) #def scenario(name): # filcher_ronne = argument argv = sys.argv[1:] dx_default = 0.1 class arguments: input = '/d/dataset/rtopo/RTopo105b_50S.nc' #output = './stereographic_projection.geo' output = './shorelines.geo' boundaries = [] region = 'True' box = [] minarea = 0 dx = dx_default bathymetrydatagenerate = True bathymetrydataoutput = './bathymetry.pos' extendtolatitude = None open = True verbose = True debug = False call = ' '.join(argv) while (len(argv) > 0): argument = argv.pop(0).rstrip() if (argument == '-h'): usage() elif (argument == '-s'): arguments.scenario = str(argv.pop(0).rstrip()); arguments=scenario(arguments.scenario) elif (argument == '-n'): arguments.input = argv.pop(0).rstrip() elif (argument == '-f'): arguments.output = argv.pop(0).rstrip() elif (argument == '-r'): arguments.region = argv.pop(0).rstrip() elif (argument == '-dx'): arguments.dx = float(argv.pop(0).rstrip()) elif (argument == '-lat'): arguments.extendtolatitude = float(argv.pop(0).rstrip()) elif (argument == '-a'): arguments.minarea = float(argv.pop(0).rstrip()) elif (argument == '-no'): arguments.open = False elif (argument == '-g'): arguments.bathymetrydatagenerate = True elif (argument == '-go'): arguments.bathymetrydataoutput = argv.pop(0).rstrip() elif (argument == '-v'): arguments.verbose = True elif (argument == '-vv'): arguments.verbose = True; arguments.debug = True; elif (argument == '-q'): arguments.verbose = False elif (argument == '-p'): while ((len(argv) > 0) and (argv[0][0] != '-')): arguments.boundaries.append(int(argv.pop(0).rstrip())) elif (argument == '-b'): while ((len(argv) > 0) and ((argv[0][0] != '-') or ( (argv[0][0] == '-') and (argv[0][1].isdigit()) ))): arguments.box.append(argv.pop(0).rstrip()) arguments.region = expand_boxes(arguments.region, arguments.box) #source = file(arguments.input,'r') output = file(arguments.output,'w') gmsh_comment('Arguments:' + arguments.call) printv('Source netCDF located at ' + arguments.input) printv('Output to ' + arguments.output) if (len(arguments.boundaries) > 0): printv('Boundaries restricted to ' + str(arguments.boundaries)) if (arguments.region is not 'True'): printv('Region defined by ' + str(arguments.region)) if (arguments.dx != dx_default): printv('Open contours closed with a line formed by points spaced %g degrees apart' % (arguments.dx)) if (arguments.extendtolatitude is not None): printv('Extending region to meet parallel on latitude ' + str(arguments.extendtolatitude)) gmsh_comment('') def gmsh_header(): earth_radius = 6.37101e+06 return ''' IP = newp; IL = newl; ILL = newll; IS = news; IFI = newf; Point ( IP + 0 ) = { 0, 0, 0 }; Point ( IP + 1 ) = { 0, 0, %(earth_radius)g }; PolarSphere ( IS + 0 ) = { IP, IP + 1 }; ''' % { 'earth_radius': earth_radius } def gmsh_footer(loopstart, loopend): output.write( ''' Field [ IFI + 0 ] = Attractor; Field [ IFI + 0 ].NodesList = { IP + %(loopstart)i : IP + %(loopend)i }; ''' % { 'loopstart':loopstart, 'loopend':loopend } ) def gmsh_remove_projection_points(): output.write( ''' Delete { Point{1}; } Delete { Point{2}; } ''' ) def gmsh_format_point(index, loc, z): accuracy = '.8' format = 'Point ( IP + %%i ) = { %%%(dp)sf, %%%(dp)sf, %%%(dp)sf };\n' % { 'dp': accuracy } output.write(format % (index, loc[0], loc[1], z)) #return "Point ( IP + %i ) = { %f, %f, %f }\n" % (index, x, y, z) def project(location): longitude = location[0] latitude = location[1] cos = math.cos sin = math.sin #pi = math.pi #longitude_rad2 = longitude * ( pi / 180 ) #latitude_rad2 = latitude * ( pi / 180 ) longitude_rad = math.radians(- longitude - 90) latitude_rad = math.radians(latitude) # Changed sign in x formulae - need to check x = sin( longitude_rad ) * cos( latitude_rad ) / ( 1 + sin( latitude_rad ) ); y = cos( longitude_rad ) * cos( latitude_rad ) / ( 1 + sin( latitude_rad ) ); return [ x, y ] def read_rtopo(filename): file = NetCDF.NetCDFFile(filename, 'r') #variableNames = fileN.variables.keys() lon = file.variables['lon'][:] lat = file.variables['lat'][:] field = file.variables['amask'][:, :] # % 2 # 0 ocean 1 # 1 ice 0 # 2 shelf 1 # 3 rock 0 field = field % 2 paths = contour(lon,lat,field,levels=[0.5]).collections[0].get_paths() return paths def area_enclosed(p): return 0.5 * abs(sum(x0*y1 - x1*y0 for ((x0, y0), (x1, y1)) in segments(p))) def segments(p): return zip(p, p[1:] + [p[0]]) def check_point_required(region, location): # make all definitions of the math module available to the function globals=math.__dict__ globals['longitude'] = location[0] globals['latitude'] = location[1] return eval(region, globals) def array_to_gmsh_points(num, index, location, minarea, region, dx, latitude_max): gmsh_comment('Ice-Land mass number %s' % (num)) count = 0 pointnumber = len(location[:,0]) valid = [False]*pointnumber validnumber = 0 loopstart = None loopend = None flag = 0 #location[:, 0] = - location[:, 0] - 90.0 for point in range(pointnumber): longitude = location[point, 0] latitude = location[point, 1] if ( check_point_required(region, location[point, :]) ): valid[point] = True validnumber += 1 if (flag == 0): loopstart = point flag = 1 elif (flag == 1): loopend = point #print latitude, valid[point] if (loopend is None): printvv('Path %i skipped (no points found in region)' % ( num )) gmsh_comment(' Skipped (no points found in region)\n') return index closelast=False if (compare_points(location[loopstart,:], location[loopend,:], dx)): # Remove duplicate line at end # Note loopend no longer valid valid[loopend] = False validnumber -= 1 closelast=True validlocation = zeros( (validnumber, 2) ) close = [False]*validnumber count = 0 closingrequired = False closingrequirednumber = 0 for point in range(pointnumber): if (valid[point]): validlocation[count,:] = location[point,:] if ((closingrequired) and (count > 0)): if (compare_points(validlocation[count-1,:], validlocation[count,:], dx)): closingrequired = False close[count] = closingrequired count += 1 closingrequired = False else: if (not closingrequired): closingrequired = True closingrequirednumber += 1 if (closelast): close[-1] = True closingrequirednumber += 1 if (closingrequirednumber == 0): closingtext = '' elif (closingrequirednumber == 1): closingtext = ' (required closing in %i part of the path)' % (closingrequirednumber) else: closingtext = ' (required closing in %i parts of the path)' % (closingrequirednumber) area = area_enclosed(validlocation) if (area < minarea): printvv('Path %i skipped (area too small)' % ( num )) gmsh_comment(' Skipped (area too small)\n') return index printv('Path %i points %i/%i area %g%s' % ( num, validnumber, pointnumber, area_enclosed(validlocation), closingtext )) # if (closingrequired and closewithparallel): # latitude_max = None # index_start = index + 1 # for point in range(validnumber - 1): # longitude = validlocation[point,0] # latitude = validlocation[point,1] # index += 1 # loc = project(longitude, latitude) # output.write( gmsh_format_point(index, loc, 0) ) # if (latitude_max is None): # latitude_max = latitude # else: # latitude_max = max(latitude_max, latitude) # draw_parallel(index, index_start, [ validlocation[point,0], max(latitude_max, validlocation[point,1]) ], [ validlocation[0,0], max(latitude_max, validlocation[0,1]) ], points=200) # index += 200 # # index += 1 # output.write( gmsh_format_point(index, project(validlocation[0,0], validlocation[0,1]), 0) ) # # else: if (close[0]): close[-1] = close[0] index.start = index.point + 1 loopstartpoint = index.start for point in range(validnumber): #longitude = validlocation[point,0] #latitude = validlocation[point,1] if ((close[point]) and (point == validnumber - 1) and (not (compare_points(validlocation[point], validlocation[0], dx)))): gmsh_comment('**** END ' + str(point) + '/' + str(validnumber-1) + str(close[point])) index = gmsh_loop(index, loopstartpoint, False, False) index = draw_parallel_explicit(validlocation[point], validlocation[0], index, latitude_max, dx) index = gmsh_loop(index, loopstartpoint, True, True) gmsh_comment('**** END end of loop ' + str(closelast) + str(point) + '/' + str(validnumber-1) + str(close[point])) elif ((close[point]) and (point > 0) and (not (compare_points(validlocation[point], validlocation[0], dx)))): gmsh_comment('**** NOT END ' + str(point) + '/' + str(validnumber-1) + str(close[point])) gmsh_comment(str(validlocation[point,:]) + str(validlocation[point,:])) index = gmsh_loop(index, loopstartpoint, False, False) index = draw_parallel_explicit(validlocation[point - 1], validlocation[point], index, latitude_max, dx) index = gmsh_loop(index, loopstartpoint, False, True) gmsh_comment('**** NOT END end of loop ' + str(point) + '/' + str(validnumber-1) + str(close[point])) else: index.point += 1 gmsh_format_point(index.point, project(validlocation[point,:]), 0) index.contournodes.append(index.point) index = gmsh_loop(index, loopstartpoint, (closelast and (point == validnumber - 1)), False) return index #LoopStart1 = IP + 20; #LoopEnd1 = IP + 3157; #BSpline ( IL + 1 ) = { IP + 20 : IP + 3157 }; #Line Loop( ILL + 10 ) = { IL + 1 }; # #LoopStart1 = IP + 3157; #LoopEnd1 = IP + 3231; #BSpline ( IL + 2 ) = { IP + 3157 : IP + 3231, IP + 20 }; #Line Loop( ILL + 20 ) = { IL + 2 }; def gmsh_loop(index, loopstartpoint, last, open): if (index.point <= index.start): return index #pointstart = indexstart #pointend = index.point #loopnumber = index.loop if (last): closure = ', IP + %(pointstart)i' % { 'pointstart':loopstartpoint } else: closure = '' if (open): index.open.append(index.path) type = 'open' else: index.contour.append(index.path) type = 'contour' index.pathsinloop.append(index.path) #//Line Loop( ILL + %(loopnumber)i ) = { IL + %(loopnumber)i }; #// Identified as a %(type)s path output.write( '''LoopStart%(loopnumber)i = IP + %(pointstart)i; LoopEnd%(loopnumber)i = IP + %(pointend)i; BSpline ( IL + %(loopnumber)i ) = { IP + %(pointstart)i : IP + %(pointend)i%(loopstartpoint)s }; Physical Line( IL + %(loopnumber)i ) = { IL + %(loopnumber)i }; ''' % { 'pointstart':index.start, 'pointend':index.point, 'loopnumber':index.path, 'loopstartpoint':closure, 'type':type } ) if (last): output.write( '''Line Loop( ILL + %(loop)i ) = { %(loopnumbers)s }; ''' % { 'loop':index.loop , 'loopnumbers':list_to_comma_separated(index.pathsinloop, prefix = 'IL + ') } ) index.loops.append(index.loop) index.loop += 1 index.pathsinloop = [] index.path +=1 index.start = index.point return index def output_boundaries(index, filename, paths=None, minarea=0, region='True', dx=0.1, latitude_max=None): pathall = read_rtopo(filename) printv('Paths found: ' + str(len(pathall))) output.write( gmsh_header() ) splinenumber = 0 indexbase = 1 index.point = indexbase if ((paths is not None) and (len(paths) > 0)): pathids=paths else: pathids=range(len(pathall)+1)[1:] for num in pathids: xy=pathall[num-1].vertices #print xy index = array_to_gmsh_points(num, index, xy, minarea, region, dx, latitude_max) #for i in range(-85, 0, 5): # indexend += 1 # output.write( gmsh_format_point(indexend, project(0, i), 0) ) #for i in range(-85, 0, 5): # indexend += 1 # output.write( gmsh_format_point(indexend, project(45, i), 0) ) gmsh_remove_projection_points() return index def define_point(name, location): # location [long, lat] output.write(''' //Point %(name)s is located at, %(longitude).2f deg, %(latitude).2f deg. Point_%(name)s_longitude_rad = (%(longitude)f + (00/60))*(Pi/180); Point_%(name)s_latitude_rad = (%(latitude)f + (00/60))*(Pi/180); Point_%(name)s_stereographic_y = Cos(Point_%(name)s_longitude_rad)*Cos(Point_%(name)s_latitude_rad) / ( 1 + Sin(Point_%(name)s_latitude_rad) ); Point_%(name)s_stereographic_x = Cos(Point_%(name)s_latitude_rad) *Sin(Point_%(name)s_longitude_rad) / ( 1 + Sin(Point_%(name)s_latitude_rad) ); ''' % { 'name':name, 'longitude':location[0], 'latitude':location[1] } ) def draw_parallel(startn, endn, start, end, points=200): startp = project(start) endp = project(end) output.write(''' pointsOnParallel = %(points)i; parallelSectionStartingX = %(start_x)g; parallelSectionStartingY = %(start_y)g; firstPointOnParallel = IP + %(start_n)i; parallelSectionEndingX = %(end_x)g; parallelSectionEndingY = %(end_y)g; lastPointOnParallel = IP + %(end_n)i; newParallelID = IL + 10100; Call DrawParallel; ''' % { 'start_x':startp[0], 'start_y':startp[1], 'end_x':endp[0], 'end_y':endp[1], 'start_n':startn, 'end_n':endn, 'points':points }) def compare_points(a, b, dx): tolerance = dx * 0.6 if ( not (abs(a[1] - b[1]) < tolerance) ): #gmsh_comment('lat differ') return False elif (abs(a[0] - b[0]) < tolerance): #gmsh_comment('long same') return True elif ((abs(abs(a[0]) - 180) < tolerance) and (abs(abs(b[0]) - 180) < tolerance)): #gmsh_comment('long +/-180') return True else: #gmsh_comment('not same %g %g' % (abs(abs(a[0]) - 180), abs(abs(b[0]) - 180) ) ) return False def draw_parallel_explicit(start, end, index, latitude_max, dx): #print start, end, index.point # Note start is actual start - 1 if (latitude_max is None): latitude_max = max(start[1], end[1]) else: latitude_max = max(latitude_max, start[1], end[1]) current = start tolerance = dx * 0.6 gmsh_comment( 'Closing path with parallels and merdians, from (%.8f, %.8f) to (%.8f, %.8f)' % ( start[0], start[1], end[0], end[1] ) ) if (compare_points(current, end, dx)): gmsh_comment('Points already close enough, no need to draw parallels and meridians after all') return index gmsh_comment('Drawing meridian to max latitude index %s at %f.2, %f.2 (to match %f.2)' % (index.point, current[0], current[1], latitude_max)) while (current[1] != latitude_max): if (current[1] < latitude_max): current[1] = current[1] + dx else: current[1] = current[1] - dx if (abs(current[1] - latitude_max) < tolerance): current[1] = latitude_max if (compare_points(current, end, dx)): return index index.point += 1 printvv('Drawing meridian to max latitude index %s at %f.2, %f.2 (to match %f.2)' % (index.point, current[0], current[1], latitude_max)) loc = project(current) gmsh_format_point(index.point, loc, 0.0) gmsh_comment('Drawing parallel index %s at %f.2 (to match %f.2), %f.2' % (index.point, current[0], end[0], current[1])) while (current[0] != end[0]): if (current[0] < end[0]): current[0] = current[0] + dx else: current[0] = current[0] - dx if (abs(current[0] - end[0]) < tolerance): current[0] = end[0] if (compare_points(current, end, dx)): return index index.point += 1 printvv('Drawing parallel index %s at %f.2 (to match %f.2), %f.2' % (index.point, current[0], end[0], current[1])) loc = project(current) gmsh_format_point(index.point, loc, 0.0) gmsh_comment('Drawing meridian to end index %s at %f.2, %f.2 (to match %f.2)' % (index.point, current[0], current[1], end[1])) while (current[1] != end[1]): if (current[1] < end[1]): current[1] = current[1] + dx else: current[1] = current[1] - dx if (abs(current[1] - end[1]) < tolerance): current[1] = end[1] if (compare_points(current, end, dx)): return index index.point += 1 printvv('Drawing meridian to end index %s at %f.2, %f.2 (to match %f.2)' % (index.point, current[0], current[1], end[1])) loc = project(current) gmsh_format_point(index.point, loc, 0.0) gmsh_comment( 'Closed path with parallels and merdians, from (%.8f, %.8f) to (%.8f, %.8f)' % ( start[0], start[1], end[0], end[1] ) ) return index def list_to_comma_separated(numbers, prefix='', add=0): requirecomma = False string = '' for number in numbers: if (requirecomma): string += ', ' else: requirecomma = True string += prefix string += str(number + add) return string def list_to_space_separated(numbers, prefix='', add=0): requirespace = False string = '' for number in numbers: if (requirespace): string += ' ' else: requirespace = True string += prefix string += str(number + add) return string def output_open_boundaries(index, boundary, dx): parallel = -50.0 index.start = index.point + 1 loopstartpoint = index.start index = draw_parallel_explicit([ -1.0, parallel], [ 179.0, parallel], index, None, dx) index = draw_parallel_explicit([-179.0, parallel], [ 1.0, parallel], index, None, dx) index = gmsh_loop(index, loopstartpoint, True, True) return index def output_surfaces(index, boundary): printv('Open boundaries (id %i): %s' % (boundary.open, list_to_space_separated(index.open, add=1))) printv('Closed boundaries (id %i): %s' % (boundary.contour, list_to_space_separated(index.contour, add=1))) boundary_list = list_to_comma_separated(index.contour + index.open) #//Line Loop( ILL + %(loopnumber)i ) = { %(boundary_list)s }; #//Plane Surface( %(surface)i ) = { ILL + %(loopnumber)i }; output.write(''' Plane Surface( %(surface)i ) = { %(boundary_list)s }; ''' % { 'loopnumber':index.path, 'surface':boundary.surface + 1, 'boundary_list':list_to_comma_separated(index.loops, prefix = 'ILL + ') } ) def acc_array(): acc = array([[ 1.0, -53.0 ], [ 10.0, -53.0 ], [ 20.0, -52.0 ], [ 30.0, -56.0 ], [ 40.0, -60.0 ], [ 50.0, -63.0 ], [ 60.0, -64.0 ], [ 70.0, -65.0 ], [ 80.0, -67.0 ], [ 90.0, -60.0 ], [ 100.0, -58.0 ], [ 110.0, -62.0 ], [ 120.0, -63.0 ], [ 130.0, -65.0 ], [ 140.0, -65.0 ], [ 150.0, -64.0 ], [ 160.0, -61.0 ], [ 170.0, -64.0 ], [ 179.0, -65.0 ], [-179.0, -65.0 ], [-170.0, -64.0 ], [-160.0, -62.0 ], [-150.0, -66.0 ], [-140.0, -58.0 ], [-130.0, -60.0 ], [-120.0, -65.0 ], [-110.0, -66.0 ], [-100.0, -70.0 ], [ -90.0, -70.0 ], [ -80.0, -77.0 ], [ -70.0, -72.0 ], [ -60.0, -60.0 ], [ -50.0, -57.0 ], [ -40.0, -51.0 ], [ -30.0, -50.0 ], [ -20.0, -60.0 ], [ -10.0, -56.0 ], [ -1.0, -53.0 ]]) return acc def draw_acc_old(index, boundary, dx): acc = acc_array() gmsh_comment('ACC') index.start = index.point + 1 loopstartpoint = index.start for i in range(len(acc[:,0])): index.point += 1 location = project(acc[i,:]) gmsh_format_point(index.point, location, 0.0) for i in range(len(acc[:,0])): a = index.start + i b = a + 1 if (a == index.point): b = index.start output.write('Line(%i) = {%i,%i};\n' % (i + 100000, a, b )) output.write('Line Loop(999999) = { %i : %i};\n' % ( index.start, index.point )) return index def draw_acc(index, boundary, dx): acc = acc_array() acc1 = acc[0:18,:] acc2 = acc[19:,:] print acc1 print acc2 gmsh_comment('ACC') index.start = index.point + 1 loopstartpoint = index.start for i in range(len(acc1[:,0])): index.point += 1 location = project(acc1[i,:]) gmsh_format_point(index.point, location, 0.0) index = gmsh_loop(index, loopstartpoint, False, True) #index.start = index.point + 1 #loopstartpoint = index.start for i in range(len(acc2[:,0])): index.point += 1 location = project(acc2[i,:]) gmsh_format_point(index.point, location, 0.0) index = gmsh_loop(index, loopstartpoint, True, True) return index def output_fields(index,boundary): if (index.contour is not None): output.write(''' Printf("Assigning characteristic mesh sizes..."); Field[ IFI + 1] = Attractor; Field[ IFI + 1].EdgesList = { 999999, %(boundary_list)s }; Field [ IFI + 1 ].NNodesByEdge = 5e4; Field[ IFI + 2] = Threshold; Field[ IFI + 2].DistMax = 2e6; Field[ IFI + 2].DistMin = 3e4; Field[ IFI + 2].IField = IFI + 1; Field[ IFI + 2].LcMin = 5e4; Field[ IFI + 2].LcMax = 2e5; Background Field = IFI + 2; // Dont extent the elements sizes from the boundary inside the domain Mesh.CharacteristicLengthExtendFromBoundary = 0; //Set some options for better png output General.Color.Background = {255,255,255}; General.Color.BackgroundGradient = {255,255,255}; General.Color.Foreground = Black; Mesh.Color.Lines = {0,0,0}; General.Trackball = 0 ; General.RotationX = 180; General.RotationY = 0; General.RotationZ = 270; ''' % { 'boundary_list':list_to_comma_separated(index.contour, prefix = 'IL + ') } ) if (arguments.bathymetrydatagenerate): printv('Generating bathymetry data file '+arguments.bathymetrydataoutput) sys.exit() index = output_boundaries(index, filename=arguments.input, paths=arguments.boundaries, minarea=arguments.minarea, region=arguments.region, dx=arguments.dx, latitude_max=arguments.extendtolatitude) if (arguments.open): index = output_open_boundaries(index, boundary, arguments.dx) output_surfaces(index, boundary) index = draw_acc(index, boundary, arguments.dx) output_fields(index,boundary) if (len(index.skipped) > 0): printv('Skipped (because no point on the boundary appeared in the required region, or area enclosed by the boundary was too small):\n'+' '.join(index.skipped)) output.close()
lgpl-2.1
d-gold/data_utils3
bin/join.py
1
3858
#!/usr/bin/env python # encoding: utf-8 # pylint: disable=W0141, C0103 import textwrap import pandas as p from fn import F from lib.parse_args import add_common_arguments from lib.d3_io import load_datasets, save_datasets def get_argument_settings(): """@todo: Docstring for get_argument_settings. :returns: @todo """ description = textwrap.dedent(""" Joins two delimited files by common keys. """) epilog = textwrap.dedent(""" Examples: """) m_overrides = [] parser = add_common_arguments(m_overrides, description=description, epilog=epilog) parser.add_argument('--on', dest='on', default=None, required=False, nargs='+', help="Common fields to join on") parser.add_argument('--left-on', dest='left_on', default=None, required=False, nargs='+', help="Join fields for left side (only two tables allowed)") parser.add_argument('--right-on', dest='right_on', default=None, required=False, nargs='+', help="Join fields for right side (only two tables allowed)") parser.add_argument('--how', dest='how', default='inner', required=False, choices=('left', 'right', 'outer', 'inner'), help="How to join") return parser def main(): """@todo: Docstring for main. :returns: @todo """ def load_csv(delimiter, filename): """@todo: Docstring for load_csv. :filename: @todo :returns: @todo """ return (type(filename) is file and p.read_csv(filename, sep=delimiter)) or \ (filename.endswith('.gz') and p.read_csv(filename, sep=delimiter, compression='gz')) or \ (filename.endswith('.bz2') and p.read_csv(filename, sep=delimiter, compression='bz2')) or \ p.read_csv(filename, sep=delimiter) def merge_data(on, dataset_1, dataset_2, how): """@todo: Docstring for merge_data. :dataset_1: @todo :dataset_2: @todo :returns: @todo """ return p.merge(dataset_1, dataset_2, on=on, how=how) def normal_join(input_files, on): data = map(F(load_datasets, delimiter), input_files) transformed = reduce(lambda x, y: merge_data(on, x, y, how), data) return transformed def mismatched_join(input_files, left_on, right_on, how): data = map(F(load_datasets, delimiter), input_files[0:2]) transformed = p.merge(data[0], data[1], left_on = left_on, right_on = right_on, how=how) return transformed parser = get_argument_settings() args = parser.parse_args() input_files = args.input_files if len(input_files) < 2: print "At least two files are required to join" return on = args.on left_on = args.left_on right_on = args.right_on delimiter = args.delimiter how = args.how if on: transformed = normal_join(input_files, on, how) else: transformed = mismatched_join(input_files, left_on, right_on, how) # data = map(F(load_datasets, delimiter), input_files) # transformed = reduce(lambda x, y: merge_data(on, x, y), data) result = save_datasets([transformed], args.output_file, delimiter=delimiter) return result if __name__ == '__main__': main()
mit
bhermansyah/DRR-datacenter
geodb/radarchart.py
1
2091
# # from matplotlib.ticker import FormatStrFormatter # import numpy as np # import pylab as pl # import matplotlib.pyplot as plt import StringIO import base64 from graphos.renderers.base import BaseChart import pygal from pygal.style import Style # from matplotlib.path import Path # from matplotlib.spines import Spine # from matplotlib.projections.polar import PolarAxes # from matplotlib.projections import register_projection class BaseMatplotlibChart(BaseChart): def get_template(self): return "radar.html" def get_serieses(self): data_only = self.get_data()[1:] return data_only def get_xlabels(self): response = [] for i in self.get_serieses(): response.append(i[0]) return response def get_opt_data(self, index): response = [] for i in self.get_data()[1:]: response.append(i[index]) return response class RadarChart(BaseMatplotlibChart): def get_image(self): custom_style = Style( background='#ffffff', plot_background='#ffffff', # foreground='#53E89B', # foreground_strong='#53A0E8', # foreground_subtle='#630C0D', # opacity='.6', # opacity_hover='.9', # transition='400ms ease-in', colors=('rgb(255, 0, 0)', 'rgb(18, 5, 240)', 'rgb(255, 153, 0)', 'rgb(16, 150, 24)')) radar_chart = pygal.Radar(legend_at_bottom=True,width=450,height=450,style=custom_style,show_legend=False) radar_chart.title = self.get_options()['title'] radar_chart.x_labels = self.get_xlabels() for i in self.get_options()['col-included']: radar_chart.add(i['name'], self.get_opt_data(i['col-no']), fill=i['fill'], show_dots=False, stroke_style={'width': 3, 'linecap': 'round', 'linejoin': 'round'}) # radar_chart.add('Dead', self.get_opt_data(2), fill=True, show_dots=False) # radar_chart.add('Violent', self.get_opt_data(3), fill=True, show_dots=False) # radar_chart.add('Injured', self.get_opt_data(4), fill=False, show_dots=False) return radar_chart.render_data_uri(human_readable=True) # return radar_chart
gpl-3.0
sinhrks/seaborn
seaborn/axisgrid.py
20
66716
from __future__ import division from itertools import product from distutils.version import LooseVersion import warnings from textwrap import dedent import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from six import string_types from . import utils from .palettes import color_palette class Grid(object): """Base class for grids of subplots.""" _margin_titles = False _legend_out = True def set(self, **kwargs): """Set attributes on each subplot Axes.""" for ax in self.axes.flat: ax.set(**kwargs) return self def savefig(self, *args, **kwargs): """Save the figure.""" kwargs = kwargs.copy() kwargs.setdefault("bbox_inches", "tight") self.fig.savefig(*args, **kwargs) def add_legend(self, legend_data=None, title=None, label_order=None, **kwargs): """Draw a legend, maybe placing it outside axes and resizing the figure. Parameters ---------- legend_data : dict, optional Dictionary mapping label names to matplotlib artist handles. The default reads from ``self._legend_data``. title : string, optional Title for the legend. The default reads from ``self._hue_var``. label_order : list of labels, optional The order that the legend entries should appear in. The default reads from ``self.hue_names`` or sorts the keys in ``legend_data``. kwargs : key, value pairings Other keyword arguments are passed to the underlying legend methods on the Figure or Axes object. Returns ------- self : Grid instance Returns self for easy chaining. """ # Find the data for the legend legend_data = self._legend_data if legend_data is None else legend_data if label_order is None: if self.hue_names is None: label_order = np.sort(list(legend_data.keys())) else: label_order = list(map(str, self.hue_names)) blank_handle = mpl.patches.Patch(alpha=0, linewidth=0) handles = [legend_data.get(l, blank_handle) for l in label_order] title = self._hue_var if title is None else title try: title_size = mpl.rcParams["axes.labelsize"] * .85 except TypeError: # labelsize is something like "large" title_size = mpl.rcParams["axes.labelsize"] # Set default legend kwargs kwargs.setdefault("scatterpoints", 1) if self._legend_out: # Draw a full-figure legend outside the grid figlegend = self.fig.legend(handles, label_order, "center right", **kwargs) self._legend = figlegend figlegend.set_title(title) # Set the title size a roundabout way to maintain # compatability with matplotlib 1.1 prop = mpl.font_manager.FontProperties(size=title_size) figlegend._legend_title_box._text.set_font_properties(prop) # Draw the plot to set the bounding boxes correctly plt.draw() # Calculate and set the new width of the figure so the legend fits legend_width = figlegend.get_window_extent().width / self.fig.dpi figure_width = self.fig.get_figwidth() self.fig.set_figwidth(figure_width + legend_width) # Draw the plot again to get the new transformations plt.draw() # Now calculate how much space we need on the right side legend_width = figlegend.get_window_extent().width / self.fig.dpi space_needed = legend_width / (figure_width + legend_width) margin = .04 if self._margin_titles else .01 self._space_needed = margin + space_needed right = 1 - self._space_needed # Place the subplot axes to give space for the legend self.fig.subplots_adjust(right=right) else: # Draw a legend in the first axis ax = self.axes.flat[0] leg = ax.legend(handles, label_order, loc="best", **kwargs) leg.set_title(title) # Set the title size a roundabout way to maintain # compatability with matplotlib 1.1 prop = mpl.font_manager.FontProperties(size=title_size) leg._legend_title_box._text.set_font_properties(prop) return self def _clean_axis(self, ax): """Turn off axis labels and legend.""" ax.set_xlabel("") ax.set_ylabel("") ax.legend_ = None return self def _update_legend_data(self, ax): """Extract the legend data from an axes object and save it.""" handles, labels = ax.get_legend_handles_labels() data = {l: h for h, l in zip(handles, labels)} self._legend_data.update(data) def _get_palette(self, data, hue, hue_order, palette): """Get a list of colors for the hue variable.""" if hue is None: palette = color_palette(n_colors=1) else: hue_names = utils.categorical_order(data[hue], hue_order) n_colors = len(hue_names) # By default use either the current color palette or HUSL if palette is None: current_palette = mpl.rcParams["axes.color_cycle"] if n_colors > len(current_palette): colors = color_palette("husl", n_colors) else: colors = color_palette(n_colors=n_colors) # Allow for palette to map from hue variable names elif isinstance(palette, dict): color_names = [palette[h] for h in hue_names] colors = color_palette(color_names, n_colors) # Otherwise act as if we just got a list of colors else: colors = color_palette(palette, n_colors) palette = color_palette(colors, n_colors) return palette _facet_docs = dict( data=dedent("""\ data : DataFrame Tidy ("long-form") dataframe where each column is a variable and each row is an observation.\ """), col_wrap=dedent("""\ col_wrap : int, optional "Wrap" the column variable at this width, so that the column facets span multiple rows. Incompatible with a ``row`` facet.\ """), share_xy=dedent("""\ share_{x,y} : bool, optional If true, the facets will share y axes across columns and/or x axes across rows.\ """), size=dedent("""\ size : scalar, optional Height (in inches) of each facet. See also: ``aspect``.\ """), aspect=dedent("""\ aspect : scalar, optional Aspect ratio of each facet, so that ``aspect * size`` gives the width of each facet in inches.\ """), palette=dedent("""\ palette : seaborn color palette or dict, optional Colors to use for the different levels of the ``hue`` variable. Should be something that can be interpreted by :func:`color_palette`, or a dictionary mapping hue levels to matplotlib colors.\ """), legend_out=dedent("""\ legend_out : bool, optional If ``True``, the figure size will be extended, and the legend will be drawn outside the plot on the center right.\ """), margin_titles=dedent("""\ margin_titles : bool, optional If ``True``, the titles for the row variable are drawn to the right of the last column. This option is experimental and may not work in all cases.\ """), ) class FacetGrid(Grid): """Subplot grid for plotting conditional relationships.""" def __init__(self, data, row=None, col=None, hue=None, col_wrap=None, sharex=True, sharey=True, size=3, aspect=1, palette=None, row_order=None, col_order=None, hue_order=None, hue_kws=None, dropna=True, legend_out=True, despine=True, margin_titles=False, xlim=None, ylim=None, subplot_kws=None, gridspec_kws=None): MPL_GRIDSPEC_VERSION = LooseVersion('1.4') OLD_MPL = LooseVersion(mpl.__version__) < MPL_GRIDSPEC_VERSION # Determine the hue facet layer information hue_var = hue if hue is None: hue_names = None else: hue_names = utils.categorical_order(data[hue], hue_order) colors = self._get_palette(data, hue, hue_order, palette) # Set up the lists of names for the row and column facet variables if row is None: row_names = [] else: row_names = utils.categorical_order(data[row], row_order) if col is None: col_names = [] else: col_names = utils.categorical_order(data[col], col_order) # Additional dict of kwarg -> list of values for mapping the hue var hue_kws = hue_kws if hue_kws is not None else {} # Make a boolean mask that is True anywhere there is an NA # value in one of the faceting variables, but only if dropna is True none_na = np.zeros(len(data), np.bool) if dropna: row_na = none_na if row is None else data[row].isnull() col_na = none_na if col is None else data[col].isnull() hue_na = none_na if hue is None else data[hue].isnull() not_na = ~(row_na | col_na | hue_na) else: not_na = ~none_na # Compute the grid shape ncol = 1 if col is None else len(col_names) nrow = 1 if row is None else len(row_names) self._n_facets = ncol * nrow self._col_wrap = col_wrap if col_wrap is not None: if row is not None: err = "Cannot use `row` and `col_wrap` together." raise ValueError(err) ncol = col_wrap nrow = int(np.ceil(len(data[col].unique()) / col_wrap)) self._ncol = ncol self._nrow = nrow # Calculate the base figure size # This can get stretched later by a legend figsize = (ncol * size * aspect, nrow * size) # Validate some inputs if col_wrap is not None: margin_titles = False # Build the subplot keyword dictionary subplot_kws = {} if subplot_kws is None else subplot_kws.copy() gridspec_kws = {} if gridspec_kws is None else gridspec_kws.copy() if xlim is not None: subplot_kws["xlim"] = xlim if ylim is not None: subplot_kws["ylim"] = ylim # Initialize the subplot grid if col_wrap is None: kwargs = dict(figsize=figsize, squeeze=False, sharex=sharex, sharey=sharey, subplot_kw=subplot_kws, gridspec_kw=gridspec_kws) if OLD_MPL: _ = kwargs.pop('gridspec_kw', None) if gridspec_kws: msg = "gridspec module only available in mpl >= {}" warnings.warn(msg.format(MPL_GRIDSPEC_VERSION)) fig, axes = plt.subplots(nrow, ncol, **kwargs) self.axes = axes else: # If wrapping the col variable we need to make the grid ourselves if gridspec_kws: warnings.warn("`gridspec_kws` ignored when using `col_wrap`") n_axes = len(col_names) fig = plt.figure(figsize=figsize) axes = np.empty(n_axes, object) axes[0] = fig.add_subplot(nrow, ncol, 1, **subplot_kws) if sharex: subplot_kws["sharex"] = axes[0] if sharey: subplot_kws["sharey"] = axes[0] for i in range(1, n_axes): axes[i] = fig.add_subplot(nrow, ncol, i + 1, **subplot_kws) self.axes = axes # Now we turn off labels on the inner axes if sharex: for ax in self._not_bottom_axes: for label in ax.get_xticklabels(): label.set_visible(False) ax.xaxis.offsetText.set_visible(False) if sharey: for ax in self._not_left_axes: for label in ax.get_yticklabels(): label.set_visible(False) ax.yaxis.offsetText.set_visible(False) # Set up the class attributes # --------------------------- # First the public API self.data = data self.fig = fig self.axes = axes self.row_names = row_names self.col_names = col_names self.hue_names = hue_names self.hue_kws = hue_kws # Next the private variables self._nrow = nrow self._row_var = row self._ncol = ncol self._col_var = col self._margin_titles = margin_titles self._col_wrap = col_wrap self._hue_var = hue_var self._colors = colors self._legend_out = legend_out self._legend = None self._legend_data = {} self._x_var = None self._y_var = None self._dropna = dropna self._not_na = not_na # Make the axes look good fig.tight_layout() if despine: self.despine() __init__.__doc__ = dedent("""\ Initialize the matplotlib figure and FacetGrid object. The :class:`FacetGrid` is an object that links a Pandas DataFrame to a matplotlib figure with a particular structure. In particular, :class:`FacetGrid` is used to draw plots with multiple Axes where each Axes shows the same relationship conditioned on different levels of some variable. It's possible to condition on up to three variables by assigning variables to the rows and columns of the grid and using different colors for the plot elements. The general approach to plotting here is called "small multiples", where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one ore more other variables is often called a "trellis plot". The basic workflow is to initialize the :class:`FacetGrid` object with the dataset and the variables that are used to structure the grid. Then one or more plotting functions can be applied to each subset by calling :meth:`FacetGrid.map` or :meth:`FacetGrid.map_dataframe`. Finally, the plot can be tweaked with other methods to do things like change the axis labels, use different ticks, or add a legend. See the detailed code examples below for more information. Parameters ---------- {data} row, col, hue : strings Variables that define subsets of the data, which will be drawn on separate facets in the grid. See the ``*_order`` parameters to control the order of levels of this variable. {col_wrap} {share_xy} {size} {aspect} {palette} {{row,col,hue}}_order : lists, optional Order for the levels of the faceting variables. By default, this will be the order that the levels appear in ``data`` or, if the variables are pandas categoricals, the category order. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). {legend_out} despine : boolean, optional Remove the top and right spines from the plots. {margin_titles} {{x, y}}lim: tuples, optional Limits for each of the axes on each facet (only relevant when share{{x, y}} is True. subplot_kws : dict, optional Dictionary of keyword arguments passed to matplotlib subplot(s) methods. gridspec_kws : dict, optional Dictionary of keyword arguments passed to matplotlib's ``gridspec`` module (via ``plt.subplots``). Requires matplotlib >= 1.4 and is ignored if ``col_wrap`` is not ``None``. See Also -------- PairGrid : Subplot grid for plotting pairwise relationships. lmplot : Combine a regression plot and a :class:`FacetGrid`. factorplot : Combine a categorical plot and a :class:`FacetGrid`. Examples -------- Initialize a 2x2 grid of facets using the tips dataset: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(style="ticks", color_codes=True) >>> tips = sns.load_dataset("tips") >>> g = sns.FacetGrid(tips, col="time", row="smoker") Draw a univariate plot on each facet: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.hist, "total_bill") (Note that it's not necessary to re-catch the returned variable; it's the same object, but doing so in the examples makes dealing with the doctests somewhat less annoying). Pass additional keyword arguments to the mapped function: .. plot:: :context: close-figs >>> import numpy as np >>> bins = np.arange(0, 65, 5) >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.hist, "total_bill", bins=bins, color="r") Plot a bivariate function on each facet: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", row="smoker") >>> g = g.map(plt.scatter, "total_bill", "tip", edgecolor="w") Assign one of the variables to the color of the plot elements: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", hue="smoker") >>> g = (g.map(plt.scatter, "total_bill", "tip", edgecolor="w") ... .add_legend()) Change the size and aspect ratio of each facet: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="day", size=4, aspect=.5) >>> g = g.map(sns.boxplot, "time", "total_bill") Specify the order for plot elements: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", col_order=["Yes", "No"]) >>> g = g.map(plt.hist, "total_bill", bins=bins, color="m") Use a different color palette: .. plot:: :context: close-figs >>> kws = dict(s=50, linewidth=.5, edgecolor="w") >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette="Set1", ... hue_order=["Dinner", "Lunch"]) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) Use a dictionary mapping hue levels to colors: .. plot:: :context: close-figs >>> pal = dict(Lunch="seagreen", Dinner="gray") >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal, ... hue_order=["Dinner", "Lunch"]) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) Additionally use a different marker for the hue levels: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal, ... hue_order=["Dinner", "Lunch"], ... hue_kws=dict(marker=["^", "v"])) >>> g = (g.map(plt.scatter, "total_bill", "tip", **kws) ... .add_legend()) "Wrap" a column variable with many levels into the rows: .. plot:: :context: close-figs >>> attend = sns.load_dataset("attention") >>> g = sns.FacetGrid(attend, col="subject", col_wrap=5, ... size=1.5, ylim=(0, 10)) >>> g = g.map(sns.pointplot, "solutions", "score", scale=.7) Define a custom bivariate function to map onto the grid: .. plot:: :context: close-figs >>> from scipy import stats >>> def qqplot(x, y, **kwargs): ... _, xr = stats.probplot(x, fit=False) ... _, yr = stats.probplot(y, fit=False) ... plt.scatter(xr, yr, **kwargs) >>> g = sns.FacetGrid(tips, col="smoker", hue="sex") >>> g = (g.map(qqplot, "total_bill", "tip", **kws) ... .add_legend()) Define a custom function that uses a ``DataFrame`` object and accepts column names as positional variables: .. plot:: :context: close-figs >>> import pandas as pd >>> df = pd.DataFrame( ... data=np.random.randn(90, 4), ... columns=pd.Series(list("ABCD"), name="walk"), ... index=pd.date_range("Jan 1", "March 31", name="date")) >>> df = df.cumsum(axis=0).stack().reset_index(name="val") >>> def dateplot(x, y, **kwargs): ... ax = plt.gca() ... data = kwargs.pop("data") ... data.plot(x=x, y=y, ax=ax, grid=False, **kwargs) >>> g = sns.FacetGrid(df, col="walk", col_wrap=2, size=3.5) >>> g = g.map_dataframe(dateplot, "date", "val") Use different axes labels after plotting: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex") >>> g = (g.map(plt.scatter, "total_bill", "tip", color="g", **kws) ... .set_axis_labels("Total bill (US Dollars)", "Tip")) Set other attributes that are shared across the facetes: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex") >>> g = (g.map(plt.scatter, "total_bill", "tip", color="r", **kws) ... .set(xlim=(0, 60), ylim=(0, 12), ... xticks=[10, 30, 50], yticks=[2, 6, 10])) Use a different template for the facet titles: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips.sort("size"), col="size", col_wrap=3) >>> g = (g.map(plt.hist, "tip", bins=np.arange(0, 13), color="c") ... .set_titles("{{col_name}} diners")) Tighten the facets: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="smoker", row="sex", ... margin_titles=True) >>> g = (g.map(plt.scatter, "total_bill", "tip", color="m", **kws) ... .set(xlim=(0, 60), ylim=(0, 12), ... xticks=[10, 30, 50], yticks=[2, 6, 10]) ... .fig.subplots_adjust(wspace=.05, hspace=.05)) """).format(**_facet_docs) def facet_data(self): """Generator for name indices and data subsets for each facet. Yields ------ (i, j, k), data_ijk : tuple of ints, DataFrame The ints provide an index into the {row, col, hue}_names attribute, and the dataframe contains a subset of the full data corresponding to each facet. The generator yields subsets that correspond with the self.axes.flat iterator, or self.axes[i, j] when `col_wrap` is None. """ data = self.data # Construct masks for the row variable if self._nrow == 1 or self._col_wrap is not None: row_masks = [np.repeat(True, len(self.data))] else: row_masks = [data[self._row_var] == n for n in self.row_names] # Construct masks for the column variable if self._ncol == 1: col_masks = [np.repeat(True, len(self.data))] else: col_masks = [data[self._col_var] == n for n in self.col_names] # Construct masks for the hue variable if len(self._colors) == 1: hue_masks = [np.repeat(True, len(self.data))] else: hue_masks = [data[self._hue_var] == n for n in self.hue_names] # Here is the main generator loop for (i, row), (j, col), (k, hue) in product(enumerate(row_masks), enumerate(col_masks), enumerate(hue_masks)): data_ijk = data[row & col & hue & self._not_na] yield (i, j, k), data_ijk def map(self, func, *args, **kwargs): """Apply a plotting function to each facet's subset of the data. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. It must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. args : strings Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : object Returns self. """ # If color was a keyword argument, grab it here kw_color = kwargs.pop("color", None) # Iterate over the data subsets for (row_i, col_j, hue_k), data_ijk in self.facet_data(): # If this subset is null, move on if not data_ijk.values.tolist(): continue # Get the current axis ax = self.facet_axis(row_i, col_j) # Decide what color to plot with kwargs["color"] = self._facet_color(hue_k, kw_color) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[hue_k] # Insert a label in the keyword arguments for the legend if self._hue_var is not None: kwargs["label"] = str(self.hue_names[hue_k]) # Get the actual data we are going to plot with plot_data = data_ijk[list(args)] if self._dropna: plot_data = plot_data.dropna() plot_args = [v for k, v in plot_data.iteritems()] # Some matplotlib functions don't handle pandas objects correctly if func.__module__ is not None: if func.__module__.startswith("matplotlib"): plot_args = [v.values for v in plot_args] # Draw the plot self._facet_plot(func, ax, plot_args, kwargs) # Finalize the annotations and layout self._finalize_grid(args[:2]) return self def map_dataframe(self, func, *args, **kwargs): """Like `map` but passes args as strings and inserts data in kwargs. This method is suitable for plotting with functions that accept a long-form DataFrame as a `data` keyword argument and access the data in that DataFrame using string variable names. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. Unlike the `map` method, a function used here must "understand" Pandas objects. It also must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. args : strings Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : object Returns self. """ # If color was a keyword argument, grab it here kw_color = kwargs.pop("color", None) # Iterate over the data subsets for (row_i, col_j, hue_k), data_ijk in self.facet_data(): # If this subset is null, move on if not data_ijk.values.tolist(): continue # Get the current axis ax = self.facet_axis(row_i, col_j) # Decide what color to plot with kwargs["color"] = self._facet_color(hue_k, kw_color) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[hue_k] # Insert a label in the keyword arguments for the legend if self._hue_var is not None: kwargs["label"] = self.hue_names[hue_k] # Stick the facet dataframe into the kwargs if self._dropna: data_ijk = data_ijk.dropna() kwargs["data"] = data_ijk # Draw the plot self._facet_plot(func, ax, args, kwargs) # Finalize the annotations and layout self._finalize_grid(args[:2]) return self def _facet_color(self, hue_index, kw_color): color = self._colors[hue_index] if kw_color is not None: return kw_color elif color is not None: return color def _facet_plot(self, func, ax, plot_args, plot_kwargs): # Draw the plot func(*plot_args, **plot_kwargs) # Sort out the supporting information self._update_legend_data(ax) self._clean_axis(ax) def _finalize_grid(self, axlabels): """Finalize the annotations and layout.""" self.set_axis_labels(*axlabels) self.set_titles() self.fig.tight_layout() def facet_axis(self, row_i, col_j): """Make the axis identified by these indices active and return it.""" # Calculate the actual indices of the axes to plot on if self._col_wrap is not None: ax = self.axes.flat[col_j] else: ax = self.axes[row_i, col_j] # Get a reference to the axes object we want, and make it active plt.sca(ax) return ax def despine(self, **kwargs): """Remove axis spines from the facets.""" utils.despine(self.fig, **kwargs) return self def set_axis_labels(self, x_var=None, y_var=None): """Set axis labels on the left column and bottom row of the grid.""" if x_var is not None: self._x_var = x_var self.set_xlabels(x_var) if y_var is not None: self._y_var = y_var self.set_ylabels(y_var) return self def set_xlabels(self, label=None, **kwargs): """Label the x axis on the bottom row of the grid.""" if label is None: label = self._x_var for ax in self._bottom_axes: ax.set_xlabel(label, **kwargs) return self def set_ylabels(self, label=None, **kwargs): """Label the y axis on the left column of the grid.""" if label is None: label = self._y_var for ax in self._left_axes: ax.set_ylabel(label, **kwargs) return self def set_xticklabels(self, labels=None, step=None, **kwargs): """Set x axis tick labels on the bottom row of the grid.""" for ax in self._bottom_axes: if labels is None: labels = [l.get_text() for l in ax.get_xticklabels()] if step is not None: xticks = ax.get_xticks()[::step] labels = labels[::step] ax.set_xticks(xticks) ax.set_xticklabels(labels, **kwargs) return self def set_yticklabels(self, labels=None, **kwargs): """Set y axis tick labels on the left column of the grid.""" for ax in self._left_axes: if labels is None: labels = [l.get_text() for l in ax.get_yticklabels()] ax.set_yticklabels(labels, **kwargs) return self def set_titles(self, template=None, row_template=None, col_template=None, **kwargs): """Draw titles either above each facet or on the grid margins. Parameters ---------- template : string Template for all titles with the formatting keys {col_var} and {col_name} (if using a `col` faceting variable) and/or {row_var} and {row_name} (if using a `row` faceting variable). row_template: Template for the row variable when titles are drawn on the grid margins. Must have {row_var} and {row_name} formatting keys. col_template: Template for the row variable when titles are drawn on the grid margins. Must have {col_var} and {col_name} formatting keys. Returns ------- self: object Returns self. """ args = dict(row_var=self._row_var, col_var=self._col_var) kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"]) # Establish default templates if row_template is None: row_template = "{row_var} = {row_name}" if col_template is None: col_template = "{col_var} = {col_name}" if template is None: if self._row_var is None: template = col_template elif self._col_var is None: template = row_template else: template = " | ".join([row_template, col_template]) if self._margin_titles: if self.row_names is not None: # Draw the row titles on the right edge of the grid for i, row_name in enumerate(self.row_names): ax = self.axes[i, -1] args.update(dict(row_name=row_name)) title = row_template.format(**args) bgcolor = self.fig.get_facecolor() ax.annotate(title, xy=(1.02, .5), xycoords="axes fraction", rotation=270, ha="left", va="center", backgroundcolor=bgcolor, **kwargs) if self.col_names is not None: # Draw the column titles as normal titles for j, col_name in enumerate(self.col_names): args.update(dict(col_name=col_name)) title = col_template.format(**args) self.axes[0, j].set_title(title, **kwargs) return self # Otherwise title each facet with all the necessary information if (self._row_var is not None) and (self._col_var is not None): for i, row_name in enumerate(self.row_names): for j, col_name in enumerate(self.col_names): args.update(dict(row_name=row_name, col_name=col_name)) title = template.format(**args) self.axes[i, j].set_title(title, **kwargs) elif self.row_names is not None and len(self.row_names): for i, row_name in enumerate(self.row_names): args.update(dict(row_name=row_name)) title = template.format(**args) self.axes[i, 0].set_title(title, **kwargs) elif self.col_names is not None and len(self.col_names): for i, col_name in enumerate(self.col_names): args.update(dict(col_name=col_name)) title = template.format(**args) # Index the flat array so col_wrap works self.axes.flat[i].set_title(title, **kwargs) return self @property def ax(self): """Easy access to single axes.""" if self.axes.shape == (1, 1): return self.axes[0, 0] else: raise AttributeError @property def _inner_axes(self): """Return a flat array of the inner axes.""" if self._col_wrap is None: return self.axes[:-1, 1:].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i % self._ncol and i < (self._ncol * (self._nrow - 1)) and i < (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat @property def _left_axes(self): """Return a flat array of the left column of axes.""" if self._col_wrap is None: return self.axes[:, 0].flat else: axes = [] for i, ax in enumerate(self.axes): if not i % self._ncol: axes.append(ax) return np.array(axes, object).flat @property def _not_left_axes(self): """Return a flat array of axes that aren't on the left column.""" if self._col_wrap is None: return self.axes[:, 1:].flat else: axes = [] for i, ax in enumerate(self.axes): if i % self._ncol: axes.append(ax) return np.array(axes, object).flat @property def _bottom_axes(self): """Return a flat array of the bottom row of axes.""" if self._col_wrap is None: return self.axes[-1, :].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i >= (self._ncol * (self._nrow - 1)) or i >= (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat @property def _not_bottom_axes(self): """Return a flat array of axes that aren't on the bottom row.""" if self._col_wrap is None: return self.axes[:-1, :].flat else: axes = [] n_empty = self._nrow * self._ncol - self._n_facets for i, ax in enumerate(self.axes): append = (i < (self._ncol * (self._nrow - 1)) and i < (self._ncol * (self._nrow - 1) - n_empty)) if append: axes.append(ax) return np.array(axes, object).flat class PairGrid(Grid): """Subplot grid for plotting pairwise relationships in a dataset.""" def __init__(self, data, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None, x_vars=None, y_vars=None, diag_sharey=True, size=2.5, aspect=1, despine=True, dropna=True): """Initialize the plot figure and PairGrid object. Parameters ---------- data : DataFrame Tidy (long-form) dataframe where each column is a variable and each row is an observation. hue : string (variable name), optional Variable in ``data`` to map plot aspects to different colors. hue_order : list of strings Order for the levels of the hue variable in the palette palette : dict or seaborn color palette Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the ``hue`` variable. hue_kws : dictionary of param -> list of values mapping Other keyword arguments to insert into the plotting call to let other plot attributes vary across levels of the hue variable (e.g. the markers in a scatterplot). vars : list of variable names, optional Variables within ``data`` to use, otherwise use every column with a numeric datatype. {x, y}_vars : lists of variable names, optional Variables within ``data`` to use separately for the rows and columns of the figure; i.e. to make a non-square plot. size : scalar, optional Height (in inches) of each facet. aspect : scalar, optional Aspect * size gives the width (in inches) of each facet. despine : boolean, optional Remove the top and right spines from the plots. dropna : boolean, optional Drop missing values from the data before plotting. See Also -------- pairplot : Easily drawing common uses of :class:`PairGrid`. FacetGrid : Subplot grid for plotting conditional relationships. Examples -------- Draw a scatterplot for each pairwise relationship: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> import seaborn as sns; sns.set() >>> iris = sns.load_dataset("iris") >>> g = sns.PairGrid(iris) >>> g = g.map(plt.scatter) Show a univariate distribution on the diagonal: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_diag(plt.hist) >>> g = g.map_offdiag(plt.scatter) (It's not actually necessary to catch the return value every time, as it is the same object, but it makes it easier to deal with the doctests). Color the points using a categorical variable: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, hue="species") >>> g = g.map(plt.scatter) >>> g = g.add_legend() Plot a subset of variables .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, vars=["sepal_length", "sepal_width"]) >>> g = g.map(plt.scatter) Pass additional keyword arguments to the functions .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_diag(plt.hist, edgecolor="w") >>> g = g.map_offdiag(plt.scatter, edgecolor="w", s=40) Use different variables for the rows and columns: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, ... x_vars=["sepal_length", "sepal_width"], ... y_vars=["petal_length", "petal_width"]) >>> g = g.map(plt.scatter) Use different functions on the upper and lower triangles: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris) >>> g = g.map_upper(plt.scatter) >>> g = g.map_lower(sns.kdeplot, cmap="Blues_d") >>> g = g.map_diag(sns.kdeplot, lw=3, legend=False) Use different colors and markers for each categorical level: .. plot:: :context: close-figs >>> g = sns.PairGrid(iris, hue="species", palette="Set2", ... hue_kws={"marker": ["o", "s", "D"]}) >>> g = g.map(plt.scatter, linewidths=1, edgecolor="w", s=40) >>> g = g.add_legend() """ # Sort out the variables that define the grid if vars is not None: x_vars = list(vars) y_vars = list(vars) elif (x_vars is not None) or (y_vars is not None): if (x_vars is None) or (y_vars is None): raise ValueError("Must specify `x_vars` and `y_vars`") else: numeric_cols = self._find_numeric_cols(data) x_vars = numeric_cols y_vars = numeric_cols if np.isscalar(x_vars): x_vars = [x_vars] if np.isscalar(y_vars): y_vars = [y_vars] self.x_vars = list(x_vars) self.y_vars = list(y_vars) self.square_grid = self.x_vars == self.y_vars # Create the figure and the array of subplots figsize = len(x_vars) * size * aspect, len(y_vars) * size fig, axes = plt.subplots(len(y_vars), len(x_vars), figsize=figsize, sharex="col", sharey="row", squeeze=False) self.fig = fig self.axes = axes self.data = data # Save what we are going to do with the diagonal self.diag_sharey = diag_sharey self.diag_axes = None # Label the axes self._add_axis_labels() # Sort out the hue variable self._hue_var = hue if hue is None: self.hue_names = ["_nolegend_"] self.hue_vals = pd.Series(["_nolegend_"] * len(data), index=data.index) else: hue_names = utils.categorical_order(data[hue], hue_order) if dropna: # Filter NA from the list of unique hue names hue_names = list(filter(pd.notnull, hue_names)) self.hue_names = hue_names self.hue_vals = data[hue] # Additional dict of kwarg -> list of values for mapping the hue var self.hue_kws = hue_kws if hue_kws is not None else {} self.palette = self._get_palette(data, hue, hue_order, palette) self._legend_data = {} # Make the plot look nice if despine: utils.despine(fig=fig) fig.tight_layout() def map(self, func, **kwargs): """Plot with the same function in every subplot. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, y_var in enumerate(self.y_vars): for j, x_var in enumerate(self.x_vars): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color self._add_axis_labels() return self def map_diag(self, func, **kwargs): """Plot with a univariate function on each diagonal subplot. Parameters ---------- func : callable plotting function Must take an x array as a positional arguments and draw onto the "currently active" matplotlib Axes. There is a special case when using a ``hue`` variable and ``plt.hist``; the histogram will be plotted with stacked bars. """ # Add special diagonal axes for the univariate plot if self.square_grid and self.diag_axes is None: diag_axes = [] for i, (var, ax) in enumerate(zip(self.x_vars, np.diag(self.axes))): if i and self.diag_sharey: diag_ax = ax._make_twin_axes(sharex=ax, sharey=diag_axes[0], frameon=False) else: diag_ax = ax._make_twin_axes(sharex=ax, frameon=False) diag_ax.set_axis_off() diag_axes.append(diag_ax) self.diag_axes = np.array(diag_axes, np.object) # Plot on each of the diagonal axes for i, var in enumerate(self.x_vars): ax = self.diag_axes[i] hue_grouped = self.data[var].groupby(self.hue_vals) # Special-case plt.hist with stacked bars if func is plt.hist: plt.sca(ax) vals = [] for label in self.hue_names: # Attempt to get data for this level, allowing for empty try: vals.append(np.asarray(hue_grouped.get_group(label))) except KeyError: vals.append(np.array([])) func(vals, color=self.palette, histtype="barstacked", **kwargs) else: for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = np.array([]) plt.sca(ax) func(data_k, label=label_k, color=self.palette[k], **kwargs) self._clean_axis(ax) self._add_axis_labels() return self def map_lower(self, func, **kwargs): """Plot with a bivariate function on the lower diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, j in zip(*np.tril_indices_from(self.axes, -1)): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) x_var = self.x_vars[j] y_var = self.y_vars[i] # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color self._add_axis_labels() return self def map_upper(self, func, **kwargs): """Plot with a bivariate function on the upper diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ kw_color = kwargs.pop("color", None) for i, j in zip(*np.triu_indices_from(self.axes, 1)): hue_grouped = self.data.groupby(self.hue_vals) for k, label_k in enumerate(self.hue_names): # Attempt to get data for this level, allowing for empty try: data_k = hue_grouped.get_group(label_k) except KeyError: data_k = pd.DataFrame(columns=self.data.columns, dtype=np.float) ax = self.axes[i, j] plt.sca(ax) x_var = self.x_vars[j] y_var = self.y_vars[i] # Insert the other hue aesthetics if appropriate for kw, val_list in self.hue_kws.items(): kwargs[kw] = val_list[k] color = self.palette[k] if kw_color is None else kw_color func(data_k[x_var], data_k[y_var], label=label_k, color=color, **kwargs) self._clean_axis(ax) self._update_legend_data(ax) if kw_color is not None: kwargs["color"] = kw_color return self def map_offdiag(self, func, **kwargs): """Plot with a bivariate function on the off-diagonal subplots. Parameters ---------- func : callable plotting function Must take x, y arrays as positional arguments and draw onto the "currently active" matplotlib Axes. """ self.map_lower(func, **kwargs) self.map_upper(func, **kwargs) return self def _add_axis_labels(self): """Add labels to the left and bottom Axes.""" for ax, label in zip(self.axes[-1, :], self.x_vars): ax.set_xlabel(label) for ax, label in zip(self.axes[:, 0], self.y_vars): ax.set_ylabel(label) def _find_numeric_cols(self, data): """Find which variables in a DataFrame are numeric.""" # This can't be the best way to do this, but I do not # know what the best way might be, so this seems ok numeric_cols = [] for col in data: try: data[col].astype(np.float) numeric_cols.append(col) except (ValueError, TypeError): pass return numeric_cols class JointGrid(object): """Grid for drawing a bivariate plot with marginal univariate plots.""" def __init__(self, x, y, data=None, size=6, ratio=5, space=.2, dropna=True, xlim=None, ylim=None): """Set up the grid of subplots. Parameters ---------- x, y : strings or vectors Data or names of variables in ``data``. data : DataFrame, optional DataFrame when ``x`` and ``y`` are variable names. size : numeric Size of each side of the figure in inches (it will be square). ratio : numeric Ratio of joint axes size to marginal axes height. space : numeric, optional Space between the joint and marginal axes dropna : bool, optional If True, remove observations that are missing from `x` and `y`. {x, y}lim : two-tuples, optional Axis limits to set before plotting. See Also -------- jointplot : High-level interface for drawing bivariate plots with several different default plot kinds. Examples -------- Initialize the figure but don't draw any plots onto it: .. plot:: :context: close-figs >>> import seaborn as sns; sns.set(style="ticks", color_codes=True) >>> tips = sns.load_dataset("tips") >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) Add plots using default parameters: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot(sns.regplot, sns.distplot) Draw the join and marginal plots separately, which allows finer-level control other parameters: .. plot:: :context: close-figs >>> import matplotlib.pyplot as plt >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, color=".5", edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color=".5") Draw the two marginal plots separately: .. plot:: :context: close-figs >>> import numpy as np >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, color="m", edgecolor="white") >>> _ = g.ax_marg_x.hist(tips["total_bill"], color="b", alpha=.6, ... bins=np.arange(0, 60, 5)) >>> _ = g.ax_marg_y.hist(tips["tip"], color="r", alpha=.6, ... orientation="horizontal", ... bins=np.arange(0, 12, 1)) Add an annotation with a statistic summarizing the bivariate relationship: .. plot:: :context: close-figs >>> from scipy import stats >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, ... color="g", s=40, edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color="g") >>> g = g.annotate(stats.pearsonr) Use a custom function and formatting for the annotation .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips) >>> g = g.plot_joint(plt.scatter, ... color="g", s=40, edgecolor="white") >>> g = g.plot_marginals(sns.distplot, kde=False, color="g") >>> rsquare = lambda a, b: stats.pearsonr(a, b)[0] ** 2 >>> g = g.annotate(rsquare, template="{stat}: {val:.2f}", ... stat="$R^2$", loc="upper left", fontsize=12) Remove the space between the joint and marginal axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, space=0) >>> g = g.plot_joint(sns.kdeplot, cmap="Blues_d") >>> g = g.plot_marginals(sns.kdeplot, shade=True) Draw a smaller plot with relatively larger marginal axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, ... size=5, ratio=2) >>> g = g.plot_joint(sns.kdeplot, cmap="Reds_d") >>> g = g.plot_marginals(sns.kdeplot, color="r", shade=True) Set limits on the axes: .. plot:: :context: close-figs >>> g = sns.JointGrid(x="total_bill", y="tip", data=tips, ... xlim=(0, 50), ylim=(0, 8)) >>> g = g.plot_joint(sns.kdeplot, cmap="Purples_d") >>> g = g.plot_marginals(sns.kdeplot, color="m", shade=True) """ # Set up the subplot grid f = plt.figure(figsize=(size, size)) gs = plt.GridSpec(ratio + 1, ratio + 1) ax_joint = f.add_subplot(gs[1:, :-1]) ax_marg_x = f.add_subplot(gs[0, :-1], sharex=ax_joint) ax_marg_y = f.add_subplot(gs[1:, -1], sharey=ax_joint) self.fig = f self.ax_joint = ax_joint self.ax_marg_x = ax_marg_x self.ax_marg_y = ax_marg_y # Turn off tick visibility for the measure axis on the marginal plots plt.setp(ax_marg_x.get_xticklabels(), visible=False) plt.setp(ax_marg_y.get_yticklabels(), visible=False) # Turn off the ticks on the density axis for the marginal plots plt.setp(ax_marg_x.yaxis.get_majorticklines(), visible=False) plt.setp(ax_marg_x.yaxis.get_minorticklines(), visible=False) plt.setp(ax_marg_y.xaxis.get_majorticklines(), visible=False) plt.setp(ax_marg_y.xaxis.get_minorticklines(), visible=False) plt.setp(ax_marg_x.get_yticklabels(), visible=False) plt.setp(ax_marg_y.get_xticklabels(), visible=False) ax_marg_x.yaxis.grid(False) ax_marg_y.xaxis.grid(False) # Possibly extract the variables from a DataFrame if data is not None: if x in data: x = data[x] if y in data: y = data[y] # Possibly drop NA if dropna: not_na = pd.notnull(x) & pd.notnull(y) x = x[not_na] y = y[not_na] # Find the names of the variables if hasattr(x, "name"): xlabel = x.name ax_joint.set_xlabel(xlabel) if hasattr(y, "name"): ylabel = y.name ax_joint.set_ylabel(ylabel) # Convert the x and y data to arrays for plotting self.x = np.asarray(x) self.y = np.asarray(y) if xlim is not None: ax_joint.set_xlim(xlim) if ylim is not None: ax_joint.set_ylim(ylim) # Make the grid look nice utils.despine(f) utils.despine(ax=ax_marg_x, left=True) utils.despine(ax=ax_marg_y, bottom=True) f.tight_layout() f.subplots_adjust(hspace=space, wspace=space) def plot(self, joint_func, marginal_func, annot_func=None): """Shortcut to draw the full plot. Use `plot_joint` and `plot_marginals` directly for more control. Parameters ---------- joint_func, marginal_func: callables Functions to draw the bivariate and univariate plots. Returns ------- self : JointGrid instance Returns `self`. """ self.plot_marginals(marginal_func) self.plot_joint(joint_func) if annot_func is not None: self.annotate(annot_func) return self def plot_joint(self, func, **kwargs): """Draw a bivariate plot of `x` and `y`. Parameters ---------- func : plotting callable This must take two 1d arrays of data as the first two positional arguments, and it must plot on the "current" axes. kwargs : key, value mappings Keyword argument are passed to the plotting function. Returns ------- self : JointGrid instance Returns `self`. """ plt.sca(self.ax_joint) func(self.x, self.y, **kwargs) return self def plot_marginals(self, func, **kwargs): """Draw univariate plots for `x` and `y` separately. Parameters ---------- func : plotting callable This must take a 1d array of data as the first positional argument, it must plot on the "current" axes, and it must accept a "vertical" keyword argument to orient the measure dimension of the plot vertically. kwargs : key, value mappings Keyword argument are passed to the plotting function. Returns ------- self : JointGrid instance Returns `self`. """ kwargs["vertical"] = False plt.sca(self.ax_marg_x) func(self.x, **kwargs) kwargs["vertical"] = True plt.sca(self.ax_marg_y) func(self.y, **kwargs) return self def annotate(self, func, template=None, stat=None, loc="best", **kwargs): """Annotate the plot with a statistic about the relationship. Parameters ---------- func : callable Statistical function that maps the x, y vectors either to (val, p) or to val. template : string format template, optional The template must have the format keys "stat" and "val"; if `func` returns a p value, it should also have the key "p". stat : string, optional Name to use for the statistic in the annotation, by default it uses the name of `func`. loc : string or int, optional Matplotlib legend location code; used to place the annotation. kwargs : key, value mappings Other keyword arguments are passed to `ax.legend`, which formats the annotation. Returns ------- self : JointGrid instance. Returns `self`. """ default_template = "{stat} = {val:.2g}; p = {p:.2g}" # Call the function and determine the form of the return value(s) out = func(self.x, self.y) try: val, p = out except TypeError: val, p = out, None default_template, _ = default_template.split(";") # Set the default template if template is None: template = default_template # Default to name of the function if stat is None: stat = func.__name__ # Format the annotation if p is None: annotation = template.format(stat=stat, val=val) else: annotation = template.format(stat=stat, val=val, p=p) # Draw an invisible plot and use the legend to draw the annotation # This is a bit of a hack, but `loc=best` works nicely and is not # easily abstracted. phantom, = self.ax_joint.plot(self.x, self.y, linestyle="", alpha=0) self.ax_joint.legend([phantom], [annotation], loc=loc, **kwargs) phantom.remove() return self def set_axis_labels(self, xlabel="", ylabel="", **kwargs): """Set the axis labels on the bivariate axes. Parameters ---------- xlabel, ylabel : strings Label names for the x and y variables. kwargs : key, value mappings Other keyword arguments are passed to the set_xlabel or set_ylabel. Returns ------- self : JointGrid instance returns `self` """ self.ax_joint.set_xlabel(xlabel, **kwargs) self.ax_joint.set_ylabel(ylabel, **kwargs) return self def savefig(self, *args, **kwargs): """Wrap figure.savefig defaulting to tight bounding box.""" kwargs.setdefault("bbox_inches", "tight") self.fig.savefig(*args, **kwargs)
bsd-3-clause
sinhrks/scikit-learn
examples/gaussian_process/plot_gpr_noisy.py
104
3778
""" ============================================================= Gaussian process regression (GPR) with noise-level estimation ============================================================= This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML. The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the data by noise. The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important to repeat the optimization several times for different initializations. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel rng = np.random.RandomState(0) X = rng.uniform(0, 5, 20)[:, np.newaxis] y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0]) # First run plt.figure(0) kernel = 1.0 * RBF(length_scale=100.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Second run plt.figure(1) kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e+1)) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0).fit(X, y) X_ = np.linspace(0, 5, 100) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)), y_mean + np.sqrt(np.diag(y_cov)), alpha=0.5, color='k') plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s" % (kernel, gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta))) plt.tight_layout() # Plot LML landscape plt.figure(2) theta0 = np.logspace(-2, 3, 49) theta1 = np.logspace(-2, 0, 50) Theta0, Theta1 = np.meshgrid(theta0, theta1) LML = [[gp.log_marginal_likelihood(np.log([0.36, Theta0[i, j], Theta1[i, j]])) for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])] LML = np.array(LML).T vmin, vmax = (-LML).min(), (-LML).max() vmax = 50 plt.contour(Theta0, Theta1, -LML, levels=np.logspace(np.log10(vmin), np.log10(vmax), 50), norm=LogNorm(vmin=vmin, vmax=vmax)) plt.colorbar() plt.xscale("log") plt.yscale("log") plt.xlabel("Length-scale") plt.ylabel("Noise-level") plt.title("Log-marginal-likelihood") plt.tight_layout() plt.show()
bsd-3-clause
lo-co/atm-py
build/lib/atmPy/atmos/atmosphere_standards.py
3
2597
# -*- coding: utf-8 -*- """ This module contains atmospheric constands and standards. @author: Hagen """ import numpy as np import pandas as pd from scipy.interpolate import interp1d def standard_atmosphere(value, quantity='altitude', standard='international', return_standard=False): """Returns pressure, temperature, and/or altitude as a function of pressure, or altitude for the standard international atmosphere Arguments --------- value: float or ndarray. Depending on the keyword "quantity" this is: - altitude in meters. - pressure in mbar. quantity: 'altitude' or 'pressure'. quantaty of the argument value. standard: 'US' or 'international'. defines which standard is used. return_standard: bool, optional. if True argument "value" and "quantity" are ignored and a pandas dataTable with the standard is returned. Returns ------- tuple of two floats or two ndarrays depending on type of h: First quantaty the tuple is pressure in mbar or altitude in meter, second is temperatur in Kelvin. """ if standard == 'international': alt = np.array([-610, 11000, 20000, 32000, 47000, 51000, 71000, 84852]).astype(float) pressure = np.array([108900, 22632, 5474.9, 868.02, 110.91, 66.939, 3.9564, 0.3734]) / 100. tmp = np.array([19, -56.5, -56.5, -44.5, -2.5, -2.5, -58.5, -86.28]) + 273.15 elif standard == 'US': alt = np.array([0, 11000, 20000, 32000, 47000, 51000, 71000]).astype(float) pressure = np.array([101325, 22632.1, 5474.89, 868.019, 110.906, 66.9389, 3.95642]) / 100. tmp = np.array([288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65]) else: raise TypeError('No standard with the name "%s" is defined' % standard) if return_standard: return pd.DataFrame(np.array([alt, pressure, tmp]).transpose(), columns=['Altitude_meter', 'Pressure_mbar', 'Temperature_K']) if quantity == 'altitude': pressure_int = interp1d(alt, np.log(pressure), kind='cubic') press_n = np.exp(pressure_int(value)) out = press_n elif quantity == 'pressure': alt_int = interp1d(np.log(pressure), alt, kind='cubic') alt_n = alt_int(np.log(value)) out = alt_n value = alt_n else: raise TypeError('Quantity "$s$" is not an option' % quantity) tmp_int = interp1d(alt, tmp, kind='linear') tmp_n = tmp_int(value) return out, tmp_n
mit
bthirion/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
the13fools/Bokeh_Examples
plotting/file/burtin.py
3
4722
import numpy as np import pandas as pd from bokeh.plotting import * from six.moves import cStringIO as StringIO from math import log, sqrt from collections import OrderedDict antibiotics = """ bacteria, penicillin, streptomycin, neomycin, gram Mycobacterium tuberculosis, 800, 5, 2, negative Salmonella schottmuelleri, 10, 0.8, 0.09, negative Proteus vulgaris, 3, 0.1, 0.1, negative Klebsiella pneumoniae, 850, 1.2, 1, negative Brucella abortus, 1, 2, 0.02, negative Pseudomonas aeruginosa, 850, 2, 0.4, negative Escherichia coli, 100, 0.4, 0.1, negative Salmonella (Eberthella) typhosa, 1, 0.4, 0.008, negative Aerobacter aerogenes, 870, 1, 1.6, negative Brucella antracis, 0.001, 0.01, 0.007, positive Streptococcus fecalis, 1, 1, 0.1, positive Staphylococcus aureus, 0.03, 0.03, 0.001, positive Staphylococcus albus, 0.007, 0.1, 0.001, positive Streptococcus hemolyticus, 0.001, 14, 10, positive Streptococcus viridans, 0.005, 10, 40, positive Diplococcus pneumoniae, 0.005, 11, 10, positive """ drug_color = OrderedDict([ ("Penicillin", "#0d3362"), ("Streptomycin", "#c64737"), ("Neomycin", "black" ), ]) gram_color = { "positive" : "#aeaeb8", "negative" : "#e69584", } df = pd.read_csv(StringIO(antibiotics), skiprows=1, skipinitialspace=True) width = 800 height = 800 inner_radius = 90 outer_radius = 300 - 10 minr = sqrt(log(.001 * 1E4)) maxr = sqrt(log(1000 * 1E4)) a = (outer_radius - inner_radius) / (minr - maxr) b = inner_radius - a * maxr def rad(mic): return a * np.sqrt(np.log(mic * 1E4)) + b big_angle = 2.0 * np.pi / (len(df) + 1) small_angle = big_angle / 7 output_file("burtin.html", title="burtin.py example") hold() x = np.zeros(len(df)) y = np.zeros(len(df)) figure(plot_width=width, plot_height=height, title="", tools="pan,wheel_zoom,box_zoom,reset,previewsave", x_axis_type=None, y_axis_type=None, x_range=[-420, 420], y_range=[-420, 420], min_border=0, outline_line_color=None, background_fill="#f0e1d2", border_fill="#f0e1d2") line(x+1, y+1, alpha=0) # annular wedges angles = np.pi/2 - big_angle/2 - df.index*big_angle colors = [gram_color[gram] for gram in df.gram] annular_wedge( x, y, inner_radius, outer_radius, -big_angle+angles, angles, color=colors, ) # small wedges annular_wedge( x, y, inner_radius, rad(df.penicillin), -big_angle+angles + 5*small_angle, -big_angle+angles+6*small_angle, color=drug_color['Penicillin'], ) annular_wedge( x, y, inner_radius, rad(df.streptomycin), -big_angle+angles + 3*small_angle, -big_angle+angles+4*small_angle, color=drug_color['Streptomycin'], ) annular_wedge( x, y, inner_radius, rad(df.neomycin), -big_angle+angles + 1*small_angle, -big_angle+angles+2*small_angle, color=drug_color['Neomycin'], ) # circular axes and lables labels = np.power(10.0, np.arange(-3, 4)) radii = a * np.sqrt(np.log(labels * 1E4)) + b circle(x, y, radius=radii, fill_color=None, line_color="white") text(x[:-1], radii[:-1], [str(r) for r in labels[:-1]], angle=0, text_font_size="8pt", text_align="center", text_baseline="middle") # radial axes annular_wedge( x, y, inner_radius-10, outer_radius+10, -big_angle+angles, -big_angle+angles, color="black", ) # bacteria labels xr = radii[0]*np.cos(np.array(-big_angle/2 + angles)) yr = radii[0]*np.sin(np.array(-big_angle/2 + angles)) label_angle=np.array(-big_angle/2+angles) label_angle[label_angle < -np.pi/2] += np.pi # easier to read labels on the left side text(xr, yr, df.bacteria, angle=label_angle, text_font_size="9pt", text_align="center", text_baseline="middle") # OK, these hand drawn legends are pretty clunky, will be improved in future release circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5) text([-30, -30], [-370, -390], text=["Gram-" + x for x in gram_color.keys()], angle=0, text_font_size="7pt", text_align="left", text_baseline="middle") rect([-40, -40, -40], [18, 0, -18], width=30, height=13, color=list(drug_color.values())) text([-15, -15, -15], [18, 0, -18], text=list(drug_color.keys()), angle=0, text_font_size="9pt", text_align="left", text_baseline="middle") xgrid().grid_line_color = None ygrid().grid_line_color = None show()
bsd-3-clause
cdek11/PLS
PLS_Algorithm_Optimized.py
2
5817
# coding: utf-8 # In[2]: # Code to implement the optimized version of the PLS Algorithm import pandas as pd import numpy as np import numba from numba import jit @jit def mean_center_scale(dataframe): '''Scale dataframe by subtracting mean and dividing by standard deviation''' dataframe = dataframe - dataframe.mean() dataframe = dataframe/dataframe.std() return dataframe @jit def y_pred(Y_pred, i,b_dictionary,t_hat_dictionary,q_new_dictionary): '''Find prediction for Y based on the number of components in this iteration''' for j in range(1,i+1): Y_pred = Y_pred + (b_dictionary[j]*t_hat_dictionary[j]).dot(q_new_dictionary[j].T) return Y_pred @jit def rmse(i,Y_true, Y_pred, response_std, RMSE_dictionary): '''Find training RMSE''' RMSE = np.sqrt(sum((Y_true - Y_pred)**2)/Y_true.shape[0]) RMSE_scaled = RMSE * response_std RMSE_dictionary[i] = RMSE_scaled return RMSE_dictionary @jit def core_pls(i,Y, X, q_new_dictionary, b_dictionary, t_hat_dictionary) : '''Core PLS algorithm''' #Here we have one variable in the Y block so q = 1 #and omit steps 5-8 q = 1 #For the X block, u = Y u = Y #random y column from Y #Step 1 w_old = np.dot(u.T,X)/np.dot(u.T,u) #Step 2 w_new = w_old/np.linalg.norm(w_old) #Step 3 t = np.dot(X,w_new.T)/np.dot(w_new,w_new.T) #Step 4 #For the Y block can be omitted if Y only has one variable q_old = np.dot(t.T,Y)/np.dot(t.T,t) #Step 5 q_new = q_old/np.linalg.norm(q_old) #Step 6 q_new_dictionary[i] = q_new u = np.dot(Y,q_new.T)/np.dot(q_new,q_new.T) #Step 7 #Step 8: Check convergence #Calculate the X loadings and rescale the scores and weights accordingly p = np.dot(t.T,X)/np.dot(t.T,t) #Step 9 p_new = p.T/np.linalg.norm(p.T) #Step 10 t_new = t/np.linalg.norm(p.T) #Step 11 w_new = w_old/np.linalg.norm(p) #Step 12 #Find the regression coefficient for b for th inner relation b = np.dot(u.T,t_new)/np.dot(t.T,t) #Step 13 b_dictionary[i] = b #Calculation of the residuals E_h = X - np.dot(t_new,p_new.T) F_h = Y - b.dot(t_new.T).T.dot(q) #WORKS BUT IS THIS RIGHT? #Set outer relation for the X block #Xres_dictionary[i] = E_h #MAYBE REMOVE X = E_h #Set the mixed relation for the Y block #Yres_dictionary[i] = F_h 3MAYBE REMOVE Y = F_h #Find estimated t hat t_hat = np.dot(E_h,w_new.T) t_hat_dictionary[i] = t_hat E_h = E_h - np.dot(t_hat,p_new.T) return X,Y, u, w_new, q_new, t_new, p_new, q_new_dictionary, t_hat_dictionary, b_dictionary,E_h, F_h def pls_optimized(path, path_test, predictors, response): '''Function that takes a dataframe and runs partial least squares on numeric predictors for a numeric response. Returns the residuals of the predictor (X block), response (Y block), and traininig RMSE''' ###TRAINING DATA combined = predictors #Load data data = pd.DataFrame.from_csv(path) combined.append(response) data = data[combined] response_std = data[response].std() #Subtract the mean and scale each column data = mean_center_scale(data) #Separate in to design matrix (X block) and response column vector (Y block) predictors.pop() X = data[predictors].as_matrix() Y = data[[response]].as_matrix() Y_true = Y #For prediction #Get rank of matrix rank = np.linalg.matrix_rank(X) u = Y #set initial u as Y Xres_dictionary = {} Yres_dictionary = {} q_new_dictionary ={} b_dictionary = {} t_hat_dictionary = {} t_hat_train_dictionary = {} t_hat_test_dictionary = {} RMSE_dictionary = {} RMSE_test_dictionary = {} ###TEST DATA #Load data data_test = pd.DataFrame.from_csv(path_test) combined.append(response) data_test = data_test[combined] response_std_test = data_test[response].std() #Subtract the mean and scale each column data_test = mean_center_scale(data_test) #Separate in to design matrix (X block) and response column vector (Y block) predictors.pop() X_test = data[predictors].as_matrix() Y_test = data[[response]].as_matrix() Y_true_test = Y_test #For prediction #Get rank of matrix rank_test = np.linalg.matrix_rank(X_test) #Iterate through each component for i in range(1,(rank+1)): Y_pred = np.zeros((Y_true.shape[0],1)) Y_pred_test = np.zeros((Y_true_test.shape[0],1)) #Core algo X,Y, u, w_new, q_new, t_new, p_new, q_new_dictionary, t_hat_dictionary, b_dictionary,E_h, F_h = core_pls(i,Y, X, q_new_dictionary, b_dictionary, t_hat_dictionary) #NEW Sum over different compenents for g in range(1,i+1): t_hat_train = np.dot(E_h,w_new.T) t_hat_train_dictionary[g] = t_hat_train E_h = E_h - np.dot(t_hat_train, p_new.T) Y_pred = y_pred(Y_pred, g,b_dictionary,t_hat_dictionary,q_new_dictionary) #Find training RMSE RMSE_dictionary = rmse(i,Y_true, Y_pred, response_std, RMSE_dictionary) #Set initial E_h as X_test data E_h_test = X_test #Sum over different compenents for k in range(1,i+1): t_hat_test = np.dot(E_h_test,w_new.T) t_hat_test_dictionary[k] = t_hat_test E_h_test = E_h_test - np.dot(t_hat_test, p_new.T) Y_pred_test = y_pred(Y_pred_test, k,b_dictionary,t_hat_test_dictionary,q_new_dictionary) #Find test RMSE RMSE_test_dictionary = rmse(i,Y_true_test, Y_pred_test, response_std_test, RMSE_test_dictionary) return RMSE_dictionary, RMSE_test_dictionary
mit
lukeshingles/artistools
artistools/writebollightcurvedata.py
1
3110
#!/usr/bin/env python3 import artistools as at import artistools.spectra from pathlib import Path import numpy as np import pandas as pd from astropy import units as u def get_bol_lc_from_spec(modelpath): res_specdata = at.spectra.read_specpol_res(modelpath) # print(res_specdata) timearray = res_specdata[0].columns.values[1:] times = [time for time in timearray if 5 < float(time) < 80] lightcurvedata = {'time': times} for angle in range(len(res_specdata)): bol_luminosity = [] for timestep, time in enumerate(timearray): time = float(time) if 5 < time < 80: spectrum = at.spectra.get_res_spectrum(modelpath, timestep, timestep, angle=angle, res_specdata=res_specdata) integrated_flux = np.trapz(spectrum['f_lambda'], spectrum['lambda_angstroms']) integrated_luminosity = integrated_flux * 4 * np.pi * np.power(u.Mpc.to('cm'), 2) bol_luminosity.append(integrated_luminosity) lightcurvedata[f'angle={angle}'] = np.log10(bol_luminosity) lightcurvedataframe = pd.DataFrame(lightcurvedata) lightcurvedataframe = lightcurvedataframe.replace([np.inf, -np.inf], 0) print(lightcurvedataframe) return lightcurvedataframe def get_bol_lc_from_lightcurveout(modelpath): lcdata = pd.read_csv(modelpath / "light_curve_res.out", delim_whitespace=True, header=None, names=['time', 'lum', 'lum_cmf']) lcdataframes = at.gather_res_data(lcdata, index_of_repeated_value=0) times = lcdataframes[0]['time'] lightcurvedata = {'time': times} for angle in range(len(lcdataframes)): lcdata = lcdataframes[angle] bol_luminosity = np.array(lcdata['lum']) * 3.826e33 # Luminosity in erg/s lightcurvedata[f'angle={angle}'] = np.log10(bol_luminosity) lightcurvedataframe = pd.DataFrame(lightcurvedata) lightcurvedataframe = lightcurvedataframe.replace([np.inf, -np.inf], 0) print(lightcurvedataframe) return lightcurvedataframe # modelnames = ['M08_03', 'M08_05', 'M08_10', 'M09_03', 'M09_05', 'M09_10', # 'M10_02_end55', 'M10_03', 'M10_05', 'M10_10', 'M11_05_1'] modelnames = ['M2a'] for modelname in modelnames: # modelpath = Path("/Users/ccollins/harddrive4TB/parameterstudy") / Path(modelname) modelpath = Path("/Users/ccollins/harddrive4TB/Gronow2020") / Path(modelname) outfilepath = Path("/Users/ccollins/Desktop/bollightcurvedata") # lightcurvedataframe = get_bol_lc_from_spec(modelpath) lightcurvedataframe = get_bol_lc_from_lightcurveout(modelpath) lightcurvedataframe.to_csv(outfilepath / f"bol_lightcurvedata_{modelname}.txt", sep=' ', index=False, header=False) with open(outfilepath / f"bol_lightcurvedata_{modelname}.txt", 'r+') as f: # add comment to start of file content = f.read() f.seek(0, 0) f.write("# 1st col is time in days. Next columns are log10(luminosity) for each model viewing angle".rstrip('\r\n') + '\n' + content) print("done")
mit
wkal/brain4k
setup.py
2
1067
from distutils.core import setup from setuptools import find_packages setup( name = 'brain4k', packages = find_packages(), include_package_data = True, version = '0.1', description = 'A framework for machine learning pipelines', author = 'Robert Kyle', author_email = '[email protected]', url = 'https://github.com/shuggiefisher/brain4k', download_url = 'https://github.com/shuggiefisher/brain4k/tarball/0.1', keywords = ['machine', 'learning', 'pipeline', 'deep', 'neural', 'network'], classifiers = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], install_requires = ['numpy', 'pandas', 'h5py', 'jinja2'], entry_points = { 'console_scripts': ['brain4k = brain4k.brain4k:run'], }, )
apache-2.0
wlamond/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
leggitta/mne-python
doc/conf.py
7
9408
# -*- coding: utf-8 -*- # # MNE documentation build configuration file, created by # sphinx-quickstart on Fri Jun 11 10:45:48 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import os.path as op from datetime import date import sphinxgallery import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curdir = op.dirname(__file__) sys.path.append(op.abspath(op.join(curdir, '..', 'mne'))) sys.path.append(op.abspath(op.join(curdir, 'sphinxext'))) import mne # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. import numpy_ext.numpydoc extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'numpy_ext.numpydoc', # 'sphinx.ext.intersphinx', # 'flow_diagram', 'sphinxgallery.gen_gallery'] autosummary_generate = True autodoc_default_flags = ['inherited-members'] # extensions = ['sphinx.ext.autodoc', # 'sphinx.ext.doctest', # 'sphinx.ext.todo', # 'sphinx.ext.pngmath', # 'sphinx.ext.inheritance_diagram', # 'numpydoc', # 'ipython_console_highlighting', # 'only_directives'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'MNE' copyright = u'2012-%s, MNE Developers' % date.today().year # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = mne.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = ['config_doc.rst'] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] exclude_patterns = ['source/generated'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['mne.'] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'navbar_title': ' ', 'source_link_position': "footer", 'bootswatch_theme': "flatly", 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [("Tutorials", "tutorials"), ("Gallery", "auto_examples/index"), ("Manual", "manual/index"), ("API", "python_reference"), ("FAQ", "faq"), ("Cite", "cite"), ], } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "_static/mne_logo_small.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', '_images', sphinxgallery.glr_path_static()] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # variables to pass to HTML templating engine build_dev_html = bool(int(os.environ.get('BUILD_DEV_HTML', False))) html_context = {'use_google_analytics': True, 'use_twitter': True, 'use_media_buttons': True, 'build_dev_html': build_dev_html} # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'mne-doc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ # ('index', 'MNE.tex', u'MNE Manual', # u'MNE Contributors', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "_static/logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. latex_use_parts = True # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. latex_use_modindex = True trim_doctests_flags = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} sphinxgallery_conf = { 'examples_dirs' : ['../examples', '../tutorials'], 'gallery_dirs' : ['auto_examples', 'auto_tutorials'], 'doc_module': ('sphinxgallery', 'numpy'), 'reference_url': { 'mne': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.9.1', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'mayavi': 'http://docs.enthought.com/mayavi/mayavi'}, 'find_mayavi_figures': True, 'default_thumb_file': '_static/mne_helmet.png', }
bsd-3-clause
datapythonista/pandas
pandas/io/common.py
3
31255
"""Common IO api utilities""" from __future__ import annotations import bz2 import codecs from collections import abc import dataclasses import gzip from io import ( BufferedIOBase, BytesIO, RawIOBase, StringIO, TextIOWrapper, ) import mmap import os from typing import ( IO, Any, AnyStr, Mapping, cast, ) from urllib.parse import ( urljoin, urlparse as parse_url, uses_netloc, uses_params, uses_relative, ) import warnings import zipfile from pandas._typing import ( Buffer, CompressionDict, CompressionOptions, FileOrBuffer, FilePathOrBuffer, StorageOptions, ) from pandas.compat import ( get_lzma_file, import_lzma, ) from pandas.compat._optional import import_optional_dependency from pandas.core.dtypes.common import is_file_like lzma = import_lzma() _VALID_URLS = set(uses_relative + uses_netloc + uses_params) _VALID_URLS.discard("") @dataclasses.dataclass class IOArgs: """ Return value of io/common.py:_get_filepath_or_buffer. Note (copy&past from io/parsers): filepath_or_buffer can be Union[FilePathOrBuffer, s3fs.S3File, gcsfs.GCSFile] though mypy handling of conditional imports is difficult. See https://github.com/python/mypy/issues/1297 """ filepath_or_buffer: FileOrBuffer encoding: str mode: str compression: CompressionDict should_close: bool = False @dataclasses.dataclass class IOHandles: """ Return value of io/common.py:get_handle Can be used as a context manager. This is used to easily close created buffers and to handle corner cases when TextIOWrapper is inserted. handle: The file handle to be used. created_handles: All file handles that are created by get_handle is_wrapped: Whether a TextIOWrapper needs to be detached. """ handle: Buffer compression: CompressionDict created_handles: list[Buffer] = dataclasses.field(default_factory=list) is_wrapped: bool = False is_mmap: bool = False def close(self) -> None: """ Close all created buffers. Note: If a TextIOWrapper was inserted, it is flushed and detached to avoid closing the potentially user-created buffer. """ if self.is_wrapped: assert isinstance(self.handle, TextIOWrapper) self.handle.flush() self.handle.detach() self.created_handles.remove(self.handle) try: for handle in self.created_handles: handle.close() except (OSError, ValueError): pass self.created_handles = [] self.is_wrapped = False def __enter__(self) -> IOHandles: return self def __exit__(self, *args: Any) -> None: self.close() def is_url(url) -> bool: """ Check to see if a URL has a valid protocol. Parameters ---------- url : str or unicode Returns ------- isurl : bool If `url` has a valid protocol return True otherwise False. """ if not isinstance(url, str): return False return parse_url(url).scheme in _VALID_URLS def _expand_user(filepath_or_buffer: FileOrBuffer[AnyStr]) -> FileOrBuffer[AnyStr]: """ Return the argument with an initial component of ~ or ~user replaced by that user's home directory. Parameters ---------- filepath_or_buffer : object to be converted if possible Returns ------- expanded_filepath_or_buffer : an expanded filepath or the input if not expandable """ if isinstance(filepath_or_buffer, str): return os.path.expanduser(filepath_or_buffer) return filepath_or_buffer def validate_header_arg(header) -> None: if isinstance(header, bool): raise TypeError( "Passing a bool to header is invalid. Use header=None for no header or " "header=int or list-like of ints to specify " "the row(s) making up the column names" ) def stringify_path( filepath_or_buffer: FilePathOrBuffer[AnyStr], convert_file_like: bool = False, ) -> FileOrBuffer[AnyStr]: """ Attempt to convert a path-like object to a string. Parameters ---------- filepath_or_buffer : object to be converted Returns ------- str_filepath_or_buffer : maybe a string version of the object Notes ----- Objects supporting the fspath protocol (python 3.6+) are coerced according to its __fspath__ method. Any other object is passed through unchanged, which includes bytes, strings, buffers, or anything else that's not even path-like. """ if not convert_file_like and is_file_like(filepath_or_buffer): # GH 38125: some fsspec objects implement os.PathLike but have already opened a # file. This prevents opening the file a second time. infer_compression calls # this function with convert_file_like=True to infer the compression. return cast(FileOrBuffer[AnyStr], filepath_or_buffer) if isinstance(filepath_or_buffer, os.PathLike): filepath_or_buffer = filepath_or_buffer.__fspath__() return _expand_user(filepath_or_buffer) def urlopen(*args, **kwargs): """ Lazy-import wrapper for stdlib urlopen, as that imports a big chunk of the stdlib. """ import urllib.request return urllib.request.urlopen(*args, **kwargs) def is_fsspec_url(url: FilePathOrBuffer) -> bool: """ Returns true if the given URL looks like something fsspec can handle """ return ( isinstance(url, str) and "://" in url and not url.startswith(("http://", "https://")) ) def _get_filepath_or_buffer( filepath_or_buffer: FilePathOrBuffer, encoding: str = "utf-8", compression: CompressionOptions = None, mode: str = "r", storage_options: StorageOptions = None, ) -> IOArgs: """ If the filepath_or_buffer is a url, translate and return the buffer. Otherwise passthrough. Parameters ---------- filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path), or buffer compression : {{'gzip', 'bz2', 'zip', 'xz', None}}, optional encoding : the encoding to use to decode bytes, default is 'utf-8' mode : str, optional storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values .. versionadded:: 1.2.0 ..versionchange:: 1.2.0 Returns the dataclass IOArgs. """ filepath_or_buffer = stringify_path(filepath_or_buffer) # handle compression dict compression_method, compression = get_compression_method(compression) compression_method = infer_compression(filepath_or_buffer, compression_method) # GH21227 internal compression is not used for non-binary handles. if compression_method and hasattr(filepath_or_buffer, "write") and "b" not in mode: warnings.warn( "compression has no effect when passing a non-binary object as input.", RuntimeWarning, stacklevel=2, ) compression_method = None compression = dict(compression, method=compression_method) # uniform encoding names if encoding is not None: encoding = encoding.replace("_", "-").lower() # bz2 and xz do not write the byte order mark for utf-16 and utf-32 # print a warning when writing such files if ( "w" in mode and compression_method in ["bz2", "xz"] and encoding in ["utf-16", "utf-32"] ): warnings.warn( f"{compression} will not write the byte order mark for {encoding}", UnicodeWarning, ) # Use binary mode when converting path-like objects to file-like objects (fsspec) # except when text mode is explicitly requested. The original mode is returned if # fsspec is not used. fsspec_mode = mode if "t" not in fsspec_mode and "b" not in fsspec_mode: fsspec_mode += "b" if isinstance(filepath_or_buffer, str) and is_url(filepath_or_buffer): # TODO: fsspec can also handle HTTP via requests, but leaving this # unchanged. using fsspec appears to break the ability to infer if the # server responded with gzipped data storage_options = storage_options or {} # waiting until now for importing to match intended lazy logic of # urlopen function defined elsewhere in this module import urllib.request # assuming storage_options is to be interpreted as headers req_info = urllib.request.Request(filepath_or_buffer, headers=storage_options) with urlopen(req_info) as req: content_encoding = req.headers.get("Content-Encoding", None) if content_encoding == "gzip": # Override compression based on Content-Encoding header compression = {"method": "gzip"} reader = BytesIO(req.read()) return IOArgs( filepath_or_buffer=reader, encoding=encoding, compression=compression, should_close=True, mode=fsspec_mode, ) if is_fsspec_url(filepath_or_buffer): assert isinstance( filepath_or_buffer, str ) # just to appease mypy for this branch # two special-case s3-like protocols; these have special meaning in Hadoop, # but are equivalent to just "s3" from fsspec's point of view # cc #11071 if filepath_or_buffer.startswith("s3a://"): filepath_or_buffer = filepath_or_buffer.replace("s3a://", "s3://") if filepath_or_buffer.startswith("s3n://"): filepath_or_buffer = filepath_or_buffer.replace("s3n://", "s3://") fsspec = import_optional_dependency("fsspec") # If botocore is installed we fallback to reading with anon=True # to allow reads from public buckets err_types_to_retry_with_anon: list[Any] = [] try: import_optional_dependency("botocore") from botocore.exceptions import ( ClientError, NoCredentialsError, ) err_types_to_retry_with_anon = [ ClientError, NoCredentialsError, PermissionError, ] except ImportError: pass try: file_obj = fsspec.open( filepath_or_buffer, mode=fsspec_mode, **(storage_options or {}) ).open() # GH 34626 Reads from Public Buckets without Credentials needs anon=True except tuple(err_types_to_retry_with_anon): if storage_options is None: storage_options = {"anon": True} else: # don't mutate user input. storage_options = dict(storage_options) storage_options["anon"] = True file_obj = fsspec.open( filepath_or_buffer, mode=fsspec_mode, **(storage_options or {}) ).open() return IOArgs( filepath_or_buffer=file_obj, encoding=encoding, compression=compression, should_close=True, mode=fsspec_mode, ) elif storage_options: raise ValueError( "storage_options passed with file object or non-fsspec file path" ) if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)): return IOArgs( filepath_or_buffer=_expand_user(filepath_or_buffer), encoding=encoding, compression=compression, should_close=False, mode=mode, ) if not is_file_like(filepath_or_buffer): msg = f"Invalid file path or buffer object type: {type(filepath_or_buffer)}" raise ValueError(msg) return IOArgs( filepath_or_buffer=filepath_or_buffer, encoding=encoding, compression=compression, should_close=False, mode=mode, ) def file_path_to_url(path: str) -> str: """ converts an absolute native path to a FILE URL. Parameters ---------- path : a path in native format Returns ------- a valid FILE URL """ # lazify expensive import (~30ms) from urllib.request import pathname2url return urljoin("file:", pathname2url(path)) _compression_to_extension = {"gzip": ".gz", "bz2": ".bz2", "zip": ".zip", "xz": ".xz"} def get_compression_method( compression: CompressionOptions, ) -> tuple[str | None, CompressionDict]: """ Simplifies a compression argument to a compression method string and a mapping containing additional arguments. Parameters ---------- compression : str or mapping If string, specifies the compression method. If mapping, value at key 'method' specifies compression method. Returns ------- tuple of ({compression method}, Optional[str] {compression arguments}, Dict[str, Any]) Raises ------ ValueError on mapping missing 'method' key """ compression_method: str | None if isinstance(compression, Mapping): compression_args = dict(compression) try: compression_method = compression_args.pop("method") except KeyError as err: raise ValueError("If mapping, compression must have key 'method'") from err else: compression_args = {} compression_method = compression return compression_method, compression_args def infer_compression( filepath_or_buffer: FilePathOrBuffer, compression: str | None ) -> str | None: """ Get the compression method for filepath_or_buffer. If compression='infer', the inferred compression method is returned. Otherwise, the input compression method is returned unchanged, unless it's invalid, in which case an error is raised. Parameters ---------- filepath_or_buffer : str or file handle File path or object. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). Returns ------- string or None Raises ------ ValueError on invalid compression specified. """ if compression is None: return None # Infer compression if compression == "infer": # Convert all path types (e.g. pathlib.Path) to strings filepath_or_buffer = stringify_path(filepath_or_buffer, convert_file_like=True) if not isinstance(filepath_or_buffer, str): # Cannot infer compression of a buffer, assume no compression return None # Infer compression from the filename/URL extension for compression, extension in _compression_to_extension.items(): if filepath_or_buffer.lower().endswith(extension): return compression return None # Compression has been specified. Check that it's valid if compression in _compression_to_extension: return compression # https://github.com/python/mypy/issues/5492 # Unsupported operand types for + ("List[Optional[str]]" and "List[str]") valid = ["infer", None] + sorted( _compression_to_extension ) # type: ignore[operator] msg = ( f"Unrecognized compression type: {compression}\n" f"Valid compression types are {valid}" ) raise ValueError(msg) def get_handle( path_or_buf: FilePathOrBuffer, mode: str, encoding: str | None = None, compression: CompressionOptions = None, memory_map: bool = False, is_text: bool = True, errors: str | None = None, storage_options: StorageOptions = None, ) -> IOHandles: """ Get file handle for given path/buffer and mode. Parameters ---------- path_or_buf : str or file handle File path or object. mode : str Mode to open path_or_buf with. encoding : str or None Encoding to use. compression : str or dict, default None If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {'zip', 'gzip', 'bz2'}, or inferred as one of the above, other entries passed as additional compression options. .. versionchanged:: 1.0.0 May now be a dict with key 'method' as compression mode and other keys as compression options if compression mode is 'zip'. .. versionchanged:: 1.1.0 Passing compression options as keys in dict is now supported for compression modes 'gzip' and 'bz2' as well as 'zip'. memory_map : bool, default False See parsers._parser_params for more information. is_text : bool, default True Whether the type of the content passed to the file/buffer is string or bytes. This is not the same as `"b" not in mode`. If a string content is passed to a binary file/buffer, a wrapper is inserted. errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. storage_options: StorageOptions = None Passed to _get_filepath_or_buffer .. versionchanged:: 1.2.0 Returns the dataclass IOHandles """ # Windows does not default to utf-8. Set to utf-8 for a consistent behavior encoding = encoding or "utf-8" # read_csv does not know whether the buffer is opened in binary/text mode if _is_binary_mode(path_or_buf, mode) and "b" not in mode: mode += "b" # valdiate errors if isinstance(errors, str): errors = errors.lower() if errors not in ( None, "strict", "ignore", "replace", "xmlcharrefreplace", "backslashreplace", "namereplace", "surrogateescape", "surrogatepass", ): raise ValueError( f"Invalid value for `encoding_errors` ({errors}). Please see " + "https://docs.python.org/3/library/codecs.html#error-handlers " + "for valid values." ) # open URLs ioargs = _get_filepath_or_buffer( path_or_buf, encoding=encoding, compression=compression, mode=mode, storage_options=storage_options, ) handle = ioargs.filepath_or_buffer handles: list[Buffer] # memory mapping needs to be the first step handle, memory_map, handles = _maybe_memory_map( handle, memory_map, ioargs.encoding, ioargs.mode, errors, ioargs.compression["method"] not in _compression_to_extension, ) is_path = isinstance(handle, str) compression_args = dict(ioargs.compression) compression = compression_args.pop("method") if compression: # compression libraries do not like an explicit text-mode ioargs.mode = ioargs.mode.replace("t", "") # GZ Compression if compression == "gzip": if is_path: assert isinstance(handle, str) handle = gzip.GzipFile( filename=handle, mode=ioargs.mode, **compression_args, ) else: handle = gzip.GzipFile( # error: Argument "fileobj" to "GzipFile" has incompatible type # "Union[str, Union[IO[Any], RawIOBase, BufferedIOBase, TextIOBase, # TextIOWrapper, mmap]]"; expected "Optional[IO[bytes]]" fileobj=handle, # type: ignore[arg-type] mode=ioargs.mode, **compression_args, ) # BZ Compression elif compression == "bz2": handle = bz2.BZ2File( # Argument 1 to "BZ2File" has incompatible type "Union[str, # Union[IO[Any], RawIOBase, BufferedIOBase, TextIOBase, TextIOWrapper, # mmap]]"; expected "Union[Union[str, bytes, _PathLike[str], # _PathLike[bytes]], IO[bytes]]" handle, # type: ignore[arg-type] mode=ioargs.mode, **compression_args, ) # ZIP Compression elif compression == "zip": handle = _BytesZipFile(handle, ioargs.mode, **compression_args) if handle.mode == "r": handles.append(handle) zip_names = handle.namelist() if len(zip_names) == 1: handle = handle.open(zip_names.pop()) elif len(zip_names) == 0: raise ValueError(f"Zero files found in ZIP file {path_or_buf}") else: raise ValueError( "Multiple files found in ZIP file. " f"Only one file per ZIP: {zip_names}" ) # XZ Compression elif compression == "xz": handle = get_lzma_file(lzma)(handle, ioargs.mode) # Unrecognized Compression else: msg = f"Unrecognized compression type: {compression}" raise ValueError(msg) assert not isinstance(handle, str) handles.append(handle) elif isinstance(handle, str): # Check whether the filename is to be opened in binary mode. # Binary mode does not support 'encoding' and 'newline'. if ioargs.encoding and "b" not in ioargs.mode: # Encoding handle = open( handle, ioargs.mode, encoding=ioargs.encoding, errors=errors, newline="", ) else: # Binary mode handle = open(handle, ioargs.mode) handles.append(handle) # Convert BytesIO or file objects passed with an encoding is_wrapped = False if is_text and (compression or _is_binary_mode(handle, ioargs.mode)): handle = TextIOWrapper( # error: Argument 1 to "TextIOWrapper" has incompatible type # "Union[IO[bytes], IO[Any], RawIOBase, BufferedIOBase, TextIOBase, mmap]"; # expected "IO[bytes]" handle, # type: ignore[arg-type] encoding=ioargs.encoding, errors=errors, newline="", ) handles.append(handle) # only marked as wrapped when the caller provided a handle is_wrapped = not ( isinstance(ioargs.filepath_or_buffer, str) or ioargs.should_close ) handles.reverse() # close the most recently added buffer first if ioargs.should_close: assert not isinstance(ioargs.filepath_or_buffer, str) handles.append(ioargs.filepath_or_buffer) assert not isinstance(handle, str) return IOHandles( handle=handle, created_handles=handles, is_wrapped=is_wrapped, is_mmap=memory_map, compression=ioargs.compression, ) # error: Definition of "__exit__" in base class "ZipFile" is incompatible with # definition in base class "BytesIO" [misc] # error: Definition of "__enter__" in base class "ZipFile" is incompatible with # definition in base class "BytesIO" [misc] # error: Definition of "__enter__" in base class "ZipFile" is incompatible with # definition in base class "BinaryIO" [misc] # error: Definition of "__enter__" in base class "ZipFile" is incompatible with # definition in base class "IO" [misc] # error: Definition of "read" in base class "ZipFile" is incompatible with # definition in base class "BytesIO" [misc] # error: Definition of "read" in base class "ZipFile" is incompatible with # definition in base class "IO" [misc] class _BytesZipFile(zipfile.ZipFile, BytesIO): # type: ignore[misc] """ Wrapper for standard library class ZipFile and allow the returned file-like handle to accept byte strings via `write` method. BytesIO provides attributes of file-like object and ZipFile.writestr writes bytes strings into a member of the archive. """ # GH 17778 def __init__( self, file: FilePathOrBuffer, mode: str, archive_name: str | None = None, **kwargs, ): mode = mode.replace("b", "") self.archive_name = archive_name self.multiple_write_buffer: StringIO | BytesIO | None = None kwargs_zip: dict[str, Any] = {"compression": zipfile.ZIP_DEFLATED} kwargs_zip.update(kwargs) # error: Argument 1 to "__init__" of "ZipFile" has incompatible type # "Union[_PathLike[str], Union[str, Union[IO[Any], RawIOBase, BufferedIOBase, # TextIOBase, TextIOWrapper, mmap]]]"; expected "Union[Union[str, # _PathLike[str]], IO[bytes]]" super().__init__(file, mode, **kwargs_zip) # type: ignore[arg-type] def write(self, data): # buffer multiple write calls, write on flush if self.multiple_write_buffer is None: self.multiple_write_buffer = ( BytesIO() if isinstance(data, bytes) else StringIO() ) self.multiple_write_buffer.write(data) def flush(self) -> None: # write to actual handle and close write buffer if self.multiple_write_buffer is None or self.multiple_write_buffer.closed: return # ZipFile needs a non-empty string archive_name = self.archive_name or self.filename or "zip" with self.multiple_write_buffer: super().writestr(archive_name, self.multiple_write_buffer.getvalue()) def close(self): self.flush() super().close() @property def closed(self): return self.fp is None class _MMapWrapper(abc.Iterator): """ Wrapper for the Python's mmap class so that it can be properly read in by Python's csv.reader class. Parameters ---------- f : file object File object to be mapped onto memory. Must support the 'fileno' method or have an equivalent attribute """ def __init__( self, f: IO, encoding: str = "utf-8", errors: str = "strict", decode: bool = True, ): self.encoding = encoding self.errors = errors self.decoder = codecs.getincrementaldecoder(encoding)(errors=errors) self.decode = decode self.attributes = {} for attribute in ("seekable", "readable", "writeable"): if not hasattr(f, attribute): continue self.attributes[attribute] = getattr(f, attribute)() self.mmap = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) def __getattr__(self, name: str): if name in self.attributes: return lambda: self.attributes[name] return getattr(self.mmap, name) def __iter__(self) -> _MMapWrapper: return self def read(self, size: int = -1) -> str | bytes: # CSV c-engine uses read instead of iterating content: bytes = self.mmap.read(size) if self.decode: # memory mapping is applied before compression. Encoding should # be applied to the de-compressed data. return content.decode(self.encoding, errors=self.errors) return content def __next__(self) -> str: newbytes = self.mmap.readline() # readline returns bytes, not str, but Python's CSV reader # expects str, so convert the output to str before continuing newline = self.decoder.decode(newbytes) # mmap doesn't raise if reading past the allocated # data but instead returns an empty string, so raise # if that is returned if newline == "": raise StopIteration # IncrementalDecoder seems to push newline to the next line return newline.lstrip("\n") def _maybe_memory_map( handle: FileOrBuffer, memory_map: bool, encoding: str, mode: str, errors: str | None, decode: bool, ) -> tuple[FileOrBuffer, bool, list[Buffer]]: """Try to memory map file/buffer.""" handles: list[Buffer] = [] memory_map &= hasattr(handle, "fileno") or isinstance(handle, str) if not memory_map: return handle, memory_map, handles # need to open the file first if isinstance(handle, str): if encoding and "b" not in mode: # Encoding handle = open(handle, mode, encoding=encoding, errors=errors, newline="") else: # Binary mode handle = open(handle, mode) handles.append(handle) try: # error: Argument 1 to "_MMapWrapper" has incompatible type "Union[IO[Any], # RawIOBase, BufferedIOBase, TextIOBase, mmap]"; expected "IO[Any]" wrapped = cast( mmap.mmap, _MMapWrapper(handle, encoding, errors, decode), # type: ignore[arg-type] ) handle.close() handles.remove(handle) handles.append(wrapped) handle = wrapped except Exception: # we catch any errors that may have occurred # because that is consistent with the lower-level # functionality of the C engine (pd.read_csv), so # leave the file handler as is then memory_map = False return handle, memory_map, handles def file_exists(filepath_or_buffer: FilePathOrBuffer) -> bool: """Test whether file exists.""" exists = False filepath_or_buffer = stringify_path(filepath_or_buffer) if not isinstance(filepath_or_buffer, str): return exists try: exists = os.path.exists(filepath_or_buffer) # gh-5874: if the filepath is too long will raise here except (TypeError, ValueError): pass return exists def _is_binary_mode(handle: FilePathOrBuffer, mode: str) -> bool: """Whether the handle is opened in binary mode""" # specified by user if "t" in mode or "b" in mode: return "b" in mode # classes that expect string but have 'b' in mode text_classes = (codecs.StreamWriter, codecs.StreamReader, codecs.StreamReaderWriter) if issubclass(type(handle), text_classes): return False # classes that expect bytes binary_classes = (BufferedIOBase, RawIOBase) return isinstance(handle, binary_classes) or "b" in getattr(handle, "mode", mode)
bsd-3-clause
Midafi/scikit-image
doc/examples/plot_holes_and_peaks.py
3
2626
""" =============================== Filling holes and finding peaks =============================== In this example, we fill holes (i.e. isolated, dark spots) in an image using morphological reconstruction by erosion. Erosion expands the minimal values of the seed image until it encounters a mask image. Thus, the seed image and mask image represent the maximum and minimum possible values of the reconstructed image. We start with an image containing both peaks and holes: """ import matplotlib.pyplot as plt from skimage import data from skimage.exposure import rescale_intensity image = data.moon() # Rescale image intensity so that we can see dim features. image = rescale_intensity(image, in_range=(50, 200)) # convenience function for plotting images def imshow(image, title, **kwargs): fig, ax = plt.subplots(figsize=(5, 4)) ax.imshow(image, **kwargs) ax.axis('off') ax.set_title(title) imshow(image, 'Original image') """ .. image:: PLOT2RST.current_figure Now we need to create the seed image, where the minima represent the starting points for erosion. To fill holes, we initialize the seed image to the maximum value of the original image. Along the borders, however, we use the original values of the image. These border pixels will be the starting points for the erosion process. We then limit the erosion by setting the mask to the values of the original image. """ import numpy as np from skimage.morphology import reconstruction seed = np.copy(image) seed[1:-1, 1:-1] = image.max() mask = image filled = reconstruction(seed, mask, method='erosion') imshow(filled, 'after filling holes', vmin=image.min(), vmax=image.max()) """ .. image:: PLOT2RST.current_figure As shown above, eroding inward from the edges removes holes, since (by definition) holes are surrounded by pixels of brighter value. Finally, we can isolate the dark regions by subtracting the reconstructed image from the original image. """ imshow(image - filled, 'holes') # plt.title('holes') """ .. image:: PLOT2RST.current_figure Alternatively, we can find bright spots in an image using morphological reconstruction by dilation. Dilation is the inverse of erosion and expands the *maximal* values of the seed image until it encounters a mask image. Since this is an inverse operation, we initialize the seed image to the minimum image intensity instead of the maximum. The remainder of the process is the same. """ seed = np.copy(image) seed[1:-1, 1:-1] = image.min() rec = reconstruction(seed, mask, method='dilation') imshow(image - rec, 'peaks') plt.show() """ .. image:: PLOT2RST.current_figure """
bsd-3-clause
zfrenchee/pandas
pandas/compat/pickle_compat.py
1
5787
""" Support pre-0.12 series pickle compatibility. """ import sys import pandas # noqa import copy import pickle as pkl from pandas import compat, Index from pandas.compat import u, string_types # noqa def load_reduce(self): stack = self.stack args = stack.pop() func = stack[-1] if len(args) and type(args[0]) is type: n = args[0].__name__ # noqa try: stack[-1] = func(*args) return except Exception as e: # If we have a deprecated function, # try to replace and try again. msg = '_reconstruct: First argument must be a sub-type of ndarray' if msg in str(e): try: cls = args[0] stack[-1] = object.__new__(cls) return except: pass # try to re-encode the arguments if getattr(self, 'encoding', None) is not None: args = tuple([arg.encode(self.encoding) if isinstance(arg, string_types) else arg for arg in args]) try: stack[-1] = func(*args) return except: pass # unknown exception, re-raise if getattr(self, 'is_verbose', None): print(sys.exc_info()) print(func, args) raise # If classes are moved, provide compat here. _class_locations_map = { # 15477 ('pandas.core.base', 'FrozenNDArray'): ('pandas.core.indexes.frozen', 'FrozenNDArray'), ('pandas.core.base', 'FrozenList'): ('pandas.core.indexes.frozen', 'FrozenList'), # 10890 ('pandas.core.series', 'TimeSeries'): ('pandas.core.series', 'Series'), ('pandas.sparse.series', 'SparseTimeSeries'): ('pandas.core.sparse.series', 'SparseSeries'), # 12588, extensions moving ('pandas._sparse', 'BlockIndex'): ('pandas._libs.sparse', 'BlockIndex'), ('pandas.tslib', 'Timestamp'): ('pandas._libs.tslib', 'Timestamp'), # 18543 moving period ('pandas._period', 'Period'): ('pandas._libs.tslibs.period', 'Period'), ('pandas._libs.period', 'Period'): ('pandas._libs.tslibs.period', 'Period'), # 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype ('pandas.tslib', '__nat_unpickle'): ('pandas._libs.tslibs.nattype', '__nat_unpickle'), ('pandas._libs.tslib', '__nat_unpickle'): ('pandas._libs.tslibs.nattype', '__nat_unpickle'), # 15998 top-level dirs moving ('pandas.sparse.array', 'SparseArray'): ('pandas.core.sparse.array', 'SparseArray'), ('pandas.sparse.series', 'SparseSeries'): ('pandas.core.sparse.series', 'SparseSeries'), ('pandas.sparse.frame', 'SparseDataFrame'): ('pandas.core.sparse.frame', 'SparseDataFrame'), ('pandas.indexes.base', '_new_Index'): ('pandas.core.indexes.base', '_new_Index'), ('pandas.indexes.base', 'Index'): ('pandas.core.indexes.base', 'Index'), ('pandas.indexes.numeric', 'Int64Index'): ('pandas.core.indexes.numeric', 'Int64Index'), ('pandas.indexes.range', 'RangeIndex'): ('pandas.core.indexes.range', 'RangeIndex'), ('pandas.indexes.multi', 'MultiIndex'): ('pandas.core.indexes.multi', 'MultiIndex'), ('pandas.tseries.index', '_new_DatetimeIndex'): ('pandas.core.indexes.datetimes', '_new_DatetimeIndex'), ('pandas.tseries.index', 'DatetimeIndex'): ('pandas.core.indexes.datetimes', 'DatetimeIndex'), ('pandas.tseries.period', 'PeriodIndex'): ('pandas.core.indexes.period', 'PeriodIndex') } # our Unpickler sub-class to override methods and some dispatcher # functions for compat if compat.PY3: class Unpickler(pkl._Unpickler): def find_class(self, module, name): # override superclass key = (module, name) module, name = _class_locations_map.get(key, key) return super(Unpickler, self).find_class(module, name) else: class Unpickler(pkl.Unpickler): def find_class(self, module, name): # override superclass key = (module, name) module, name = _class_locations_map.get(key, key) __import__(module) mod = sys.modules[module] klass = getattr(mod, name) return klass Unpickler.dispatch = copy.copy(Unpickler.dispatch) Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce def load_newobj(self): args = self.stack.pop() cls = self.stack[-1] # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args) self.stack[-1] = obj Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj def load_newobj_ex(self): kwargs = self.stack.pop() args = self.stack.pop() cls = self.stack.pop() # compat if issubclass(cls, Index): obj = object.__new__(cls) else: obj = cls.__new__(cls, *args, **kwargs) self.append(obj) try: Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex except: pass def load(fh, encoding=None, compat=False, is_verbose=False): """load a pickle, with a provided encoding if compat is True: fake the old class hierarchy if it works, then return the new type objects Parameters ---------- fh: a filelike object encoding: an optional encoding compat: provide Series compatibility mode, boolean, default False is_verbose: show exception output """ try: fh.seek(0) if encoding is not None: up = Unpickler(fh, encoding=encoding) else: up = Unpickler(fh) up.is_verbose = is_verbose return up.load() except: raise
bsd-3-clause
zorroblue/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
16
12486
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". However, note that this transformer will only do a binary one-hot encoding when feature values are of type string. If categorical features are represented as numeric values such as int, the DictVectorizer can be followed by OneHotEncoder to complete binary one-hot encoding. Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator : string, optional Separator string used when constructing new features for one-hot coding. sparse : boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort : boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = np.frombuffer(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
dweinstein/androguard
elsim/elsim/elsim.py
37
16175
# This file is part of Elsim # # Copyright (C) 2012, Anthony Desnos <desnos at t0t0.fr> # All rights reserved. # # Elsim is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Elsim is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Elsim. If not, see <http://www.gnu.org/licenses/>. import logging ELSIM_VERSION = 0.2 log_elsim = logging.getLogger("elsim") console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) log_elsim.addHandler(console_handler) log_runtime = logging.getLogger("elsim.runtime") # logs at runtime log_interactive = logging.getLogger("elsim.interactive") # logs in interactive functions log_loading = logging.getLogger("elsim.loading") # logs when loading def set_debug(): log_elsim.setLevel( logging.DEBUG ) def get_debug(): return log_elsim.getEffectiveLevel() == logging.DEBUG def warning(x): log_runtime.warning(x) def error(x): log_runtime.error(x) raise() def debug(x): log_runtime.debug(x) from similarity.similarity import * FILTER_ELEMENT_METH = "FILTER_ELEMENT_METH" FILTER_CHECKSUM_METH = "FILTER_CHECKSUM_METH" # function to checksum an element FILTER_SIM_METH = "FILTER_SIM_METH" # function to calculate the similarity between two elements FILTER_SORT_METH = "FILTER_SORT_METH" # function to sort all similar elements FILTER_SORT_VALUE = "FILTER_SORT_VALUE" # value which used in the sort method to eliminate not interesting comparisons FILTER_SKIPPED_METH = "FILTER_SKIPPED_METH" # object to skip elements FILTER_SIM_VALUE_METH = "FILTER_SIM_VALUE_METH" # function to modify values of the similarity BASE = "base" ELEMENTS = "elements" HASHSUM = "hashsum" SIMILAR_ELEMENTS = "similar_elements" HASHSUM_SIMILAR_ELEMENTS = "hash_similar_elements" NEW_ELEMENTS = "newelements" HASHSUM_NEW_ELEMENTS = "hash_new_elements" DELETED_ELEMENTS = "deletedelements" IDENTICAL_ELEMENTS = "identicalelements" INTERNAL_IDENTICAL_ELEMENTS = "internal identical elements" SKIPPED_ELEMENTS = "skippedelements" SIMILARITY_ELEMENTS = "similarity_elements" SIMILARITY_SORT_ELEMENTS = "similarity_sort_elements" class ElsimNeighbors(object): def __init__(self, x, ys): import numpy as np from sklearn.neighbors import NearestNeighbors #print x, ys CI = np.array( [x.checksum.get_signature_entropy(), x.checksum.get_entropy()] ) #print CI, x.get_info() #print for i in ys: CI = np.vstack( (CI, [i.checksum.get_signature_entropy(), i.checksum.get_entropy()]) ) #idx = 0 #for i in np.array(CI)[1:]: # print idx+1, i, ys[idx].get_info() # idx += 1 self.neigh = NearestNeighbors(2, 0.4) self.neigh.fit(np.array(CI)) #print self.neigh.kneighbors( CI[0], len(CI) ) self.CI = CI self.ys = ys def cmp_elements(self): z = self.neigh.kneighbors( self.CI[0], 5 ) l = [] cmp_values = z[0][0] cmp_elements = z[1][0] idx = 1 for i in cmp_elements[1:]: #if cmp_values[idx] > 1.0: # break #print i, cmp_values[idx], self.ys[ i - 1 ].get_info() l.append( self.ys[ i - 1 ] ) idx += 1 return l def split_elements(el, els): e1 = {} for i in els: e1[ i ] = el.get_associated_element( i ) return e1 #### # elements : entropy raw, hash, signature # # set elements : hash # hash table elements : hash --> element class Elsim(object): def __init__(self, e1, e2, F, T=None, C=None, libnative=True, libpath="elsim/elsim/similarity/libsimilarity/libsimilarity.so"): self.e1 = e1 self.e2 = e2 self.F = F self.compressor = SNAPPY_COMPRESS set_debug() if T != None: self.F[ FILTER_SORT_VALUE ] = T if isinstance(libnative, str): libpath = libnative libnative = True self.sim = SIMILARITY( libpath, libnative ) if C != None: if C in H_COMPRESSOR: self.compressor = H_COMPRESSOR[ C ] self.sim.set_compress_type( self.compressor ) else: self.sim.set_compress_type( self.compressor ) self.filters = {} self._init_filters() self._init_index_elements() self._init_similarity() self._init_sort_elements() self._init_new_elements() def _init_filters(self): self.filters = {} self.filters[ BASE ] = {} self.filters[ BASE ].update( self.F ) self.filters[ ELEMENTS ] = {} self.filters[ HASHSUM ] = {} self.filters[ IDENTICAL_ELEMENTS ] = set() self.filters[ SIMILAR_ELEMENTS ] = [] self.filters[ HASHSUM_SIMILAR_ELEMENTS ] = [] self.filters[ NEW_ELEMENTS ] = set() self.filters[ HASHSUM_NEW_ELEMENTS ] = [] self.filters[ DELETED_ELEMENTS ] = [] self.filters[ SKIPPED_ELEMENTS ] = [] self.filters[ ELEMENTS ][ self.e1 ] = [] self.filters[ HASHSUM ][ self.e1 ] = [] self.filters[ ELEMENTS ][ self.e2 ] = [] self.filters[ HASHSUM ][ self.e2 ] = [] self.filters[ SIMILARITY_ELEMENTS ] = {} self.filters[ SIMILARITY_SORT_ELEMENTS ] = {} self.set_els = {} self.ref_set_els = {} self.ref_set_ident = {} def _init_index_elements(self): self.__init_index_elements( self.e1, 1 ) self.__init_index_elements( self.e2 ) def __init_index_elements(self, ce, init=0): self.set_els[ ce ] = set() self.ref_set_els[ ce ] = {} self.ref_set_ident[ce] = {} for ae in ce.get_elements(): e = self.filters[BASE][FILTER_ELEMENT_METH]( ae, ce ) if self.filters[BASE][FILTER_SKIPPED_METH].skip( e ): self.filters[ SKIPPED_ELEMENTS ].append( e ) continue self.filters[ ELEMENTS ][ ce ].append( e ) fm = self.filters[ BASE ][ FILTER_CHECKSUM_METH ]( e, self.sim ) e.set_checksum( fm ) sha256 = e.getsha256() self.filters[ HASHSUM ][ ce ].append( sha256 ) if sha256 not in self.set_els[ ce ]: self.set_els[ ce ].add( sha256 ) self.ref_set_els[ ce ][ sha256 ] = e self.ref_set_ident[ce][sha256] = [] self.ref_set_ident[ce][sha256].append(e) def _init_similarity(self): intersection_elements = self.set_els[ self.e2 ].intersection( self.set_els[ self.e1 ] ) difference_elements = self.set_els[ self.e2 ].difference( intersection_elements ) self.filters[IDENTICAL_ELEMENTS].update([ self.ref_set_els[ self.e1 ][ i ] for i in intersection_elements ]) available_e2_elements = [ self.ref_set_els[ self.e2 ][ i ] for i in difference_elements ] # Check if some elements in the first file has been modified for j in self.filters[ELEMENTS][self.e1]: self.filters[ SIMILARITY_ELEMENTS ][ j ] = {} #debug("SIM FOR %s" % (j.get_info())) if j.getsha256() not in self.filters[HASHSUM][self.e2]: #eln = ElsimNeighbors( j, available_e2_elements ) #for k in eln.cmp_elements(): for k in available_e2_elements: #debug("%s" % k.get_info()) self.filters[SIMILARITY_ELEMENTS][ j ][ k ] = self.filters[BASE][FILTER_SIM_METH]( self.sim, j, k ) if j.getsha256() not in self.filters[HASHSUM_SIMILAR_ELEMENTS]: self.filters[SIMILAR_ELEMENTS].append(j) self.filters[HASHSUM_SIMILAR_ELEMENTS].append( j.getsha256() ) def _init_sort_elements(self): deleted_elements = [] for j in self.filters[SIMILAR_ELEMENTS]: #debug("SORT FOR %s" % (j.get_info())) sort_h = self.filters[BASE][FILTER_SORT_METH]( j, self.filters[SIMILARITY_ELEMENTS][ j ], self.filters[BASE][FILTER_SORT_VALUE] ) self.filters[SIMILARITY_SORT_ELEMENTS][ j ] = set( i[0] for i in sort_h ) ret = True if sort_h == []: ret = False if ret == False: deleted_elements.append( j ) for j in deleted_elements: self.filters[ DELETED_ELEMENTS ].append( j ) self.filters[ SIMILAR_ELEMENTS ].remove( j ) def __checksort(self, x, y): return y in self.filters[SIMILARITY_SORT_ELEMENTS][ x ] def _init_new_elements(self): # Check if some elements in the second file are totally new ! for j in self.filters[ELEMENTS][self.e2]: # new elements can't be in similar elements if j not in self.filters[SIMILAR_ELEMENTS]: # new elements hashes can't be in first file if j.getsha256() not in self.filters[HASHSUM][self.e1]: ok = True # new elements can't be compared to another one for diff_element in self.filters[SIMILAR_ELEMENTS]: if self.__checksort( diff_element, j ): ok = False break if ok: if j.getsha256() not in self.filters[HASHSUM_NEW_ELEMENTS]: self.filters[NEW_ELEMENTS].add( j ) self.filters[HASHSUM_NEW_ELEMENTS].append( j.getsha256() ) def get_similar_elements(self): """ Return the similar elements @rtype : a list of elements """ return self.get_elem( SIMILAR_ELEMENTS ) def get_new_elements(self): """ Return the new elements @rtype : a list of elements """ return self.get_elem( NEW_ELEMENTS ) def get_deleted_elements(self): """ Return the deleted elements @rtype : a list of elements """ return self.get_elem( DELETED_ELEMENTS ) def get_internal_identical_elements(self, ce): """ Return the internal identical elements @rtype : a list of elements """ return self.get_elem( INTERNAL_IDENTICAL_ELEMENTS ) def get_identical_elements(self): """ Return the identical elements @rtype : a list of elements """ return self.get_elem( IDENTICAL_ELEMENTS ) def get_skipped_elements(self): return self.get_elem( SKIPPED_ELEMENTS ) def get_elem(self, attr): return [ x for x in self.filters[attr] ] def show_element(self, i, details=True): print "\t", i.get_info() if details: if i.getsha256() == None: pass elif i.getsha256() in self.ref_set_els[self.e2]: if len(self.ref_set_ident[self.e2][i.getsha256()]) > 1: for ident in self.ref_set_ident[self.e2][i.getsha256()]: print "\t\t-->", ident.get_info() else: print "\t\t-->", self.ref_set_els[self.e2][ i.getsha256() ].get_info() else: for j in self.filters[ SIMILARITY_SORT_ELEMENTS ][ i ]: print "\t\t-->", j.get_info(), self.filters[ SIMILARITY_ELEMENTS ][ i ][ j ] def get_element_info(self, i): l = [] if i.getsha256() == None: pass elif i.getsha256() in self.ref_set_els[self.e2]: l.append( [ i, self.ref_set_els[self.e2][ i.getsha256() ] ] ) else: for j in self.filters[ SIMILARITY_SORT_ELEMENTS ][ i ]: l.append( [i, j, self.filters[ SIMILARITY_ELEMENTS ][ i ][ j ] ] ) return l def get_associated_element(self, i): return list(self.filters[ SIMILARITY_SORT_ELEMENTS ][ i ])[0] def get_similarity_value(self, new=True): values = [] self.sim.set_compress_type( BZ2_COMPRESS ) for j in self.filters[SIMILAR_ELEMENTS]: k = self.get_associated_element( j ) value = self.filters[BASE][FILTER_SIM_METH]( self.sim, j, k ) # filter value value = self.filters[BASE][FILTER_SIM_VALUE_METH]( value ) values.append( value ) values.extend( [ self.filters[BASE][FILTER_SIM_VALUE_METH]( 0.0 ) for i in self.filters[IDENTICAL_ELEMENTS] ] ) if new == True: values.extend( [ self.filters[BASE][FILTER_SIM_VALUE_METH]( 1.0 ) for i in self.filters[NEW_ELEMENTS] ] ) else: values.extend( [ self.filters[BASE][FILTER_SIM_VALUE_METH]( 1.0 ) for i in self.filters[DELETED_ELEMENTS] ] ) self.sim.set_compress_type( self.compressor ) similarity_value = 0.0 for i in values: similarity_value += (1.0 - i) if len(values) == 0: return 0.0 return (similarity_value/len(values)) * 100 def show(self): print "Elements:" print "\t IDENTICAL:\t", len(self.get_identical_elements()) print "\t SIMILAR: \t", len(self.get_similar_elements()) print "\t NEW:\t\t", len(self.get_new_elements()) print "\t DELETED:\t", len(self.get_deleted_elements()) print "\t SKIPPED:\t", len(self.get_skipped_elements()) #self.sim.show() ADDED_ELEMENTS = "added elements" DELETED_ELEMENTS = "deleted elements" LINK_ELEMENTS = "link elements" DIFF = "diff" class Eldiff(object): def __init__(self, elsim, F): self.elsim = elsim self.F = F self._init_filters() self._init_diff() def _init_filters(self): self.filters = {} self.filters[ BASE ] = {} self.filters[ BASE ].update( self.F ) self.filters[ ELEMENTS ] = {} self.filters[ ADDED_ELEMENTS ] = {} self.filters[ DELETED_ELEMENTS ] = {} self.filters[ LINK_ELEMENTS ] = {} def _init_diff(self): for i, j in self.elsim.get_elements(): self.filters[ ADDED_ELEMENTS ][ j ] = [] self.filters[ DELETED_ELEMENTS ][ i ] = [] x = self.filters[ BASE ][ DIFF ]( i, j ) self.filters[ ADDED_ELEMENTS ][ j ].extend( x.get_added_elements() ) self.filters[ DELETED_ELEMENTS ][ i ].extend( x.get_deleted_elements() ) self.filters[ LINK_ELEMENTS ][ j ] = i #self.filters[ LINK_ELEMENTS ][ i ] = j def show(self): for bb in self.filters[ LINK_ELEMENTS ] : #print "la" print bb.get_info(), self.filters[ LINK_ELEMENTS ][ bb ].get_info() print "Added Elements(%d)" % (len(self.filters[ ADDED_ELEMENTS ][ bb ])) for i in self.filters[ ADDED_ELEMENTS ][ bb ]: print "\t", i.show() print "Deleted Elements(%d)" % (len(self.filters[ DELETED_ELEMENTS ][ self.filters[ LINK_ELEMENTS ][ bb ] ])) for i in self.filters[ DELETED_ELEMENTS ][ self.filters[ LINK_ELEMENTS ][ bb ] ]: print "\t", i.show() print def get_added_elements(self): return self.filters[ ADDED_ELEMENTS ] def get_deleted_elements(self): return self.filters[ DELETED_ELEMENTS ]
apache-2.0
sdss/marvin
python/marvin/utils/general/general.py
1
64754
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: Brian Cherinka, José Sánchez-Gallego, and Brett Andrews # @Date: 2017-11-01 # @Filename: general.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) # # @Last modified by: José Sánchez-Gallego ([email protected]) # @Last modified time: 2019-08-29 15:58:00 from __future__ import absolute_import, division, print_function import collections import contextlib import inspect import os import re import sys import warnings from builtins import range from collections import OrderedDict from functools import wraps from pkg_resources import parse_version import matplotlib.pyplot as plt import numpy as np import PIL from astropy import table, wcs from astropy.units.quantity import Quantity from brain.core.exceptions import BrainError from flask_jwt_extended import get_jwt_identity from scipy.interpolate import griddata import marvin from marvin import log from marvin.core.exceptions import MarvinError, MarvinUserWarning try: from sdss_access import Access, AccessError except ImportError: Access = None try: from sdss_access.path import Path except ImportError: Path = None try: import pympler.summary import pympler.muppy import psutil except ImportError: pympler = None psutil = None # General utilities __all__ = ('convertCoords', 'parseIdentifier', 'mangaid2plateifu', 'findClosestVector', 'getWCSFromPng', 'convertImgCoords', 'getSpaxelXY', 'downloadList', 'getSpaxel', 'get_drpall_row', 'getDefaultMapPath', 'getDapRedux', 'get_nsa_data', '_check_file_parameters', 'invalidArgs', 'missingArgs', 'getRequiredArgs', 'getKeywordArgs', 'isCallableWithArgs', 'map_bins_to_column', '_sort_dir', 'get_drpall_path', 'get_dapall_path', 'temp_setattr', 'map_dapall', 'turn_off_ion', 'memory_usage', 'validate_jwt', 'target_status', 'target_is_observed', 'target_is_mastar', 'get_plates', 'get_manga_image', 'check_versions', 'get_drpall_table', 'get_dapall_table', 'get_drpall_file', 'get_dapall_file') drpTable = {} dapTable = {} def validate_jwt(f): ''' Decorator to validate a JWT and User ''' @wraps(f) def wrapper(*args, **kwargs): current_user = get_jwt_identity() if not current_user: raise MarvinError('Invalid user from API token!') else: marvin.config.access = 'collab' return f(*args, **kwargs) return wrapper def getSpaxel(cube=True, maps=True, modelcube=True, x=None, y=None, ra=None, dec=None, xyorig=None, **kwargs): """Returns the |spaxel| matching certain coordinates. The coordinates of the spaxel to return can be input as ``x, y`` pixels relative to``xyorig`` in the cube, or as ``ra, dec`` celestial coordinates. This function is intended to be called by :func:`~marvin.tools.cube.Cube.getSpaxel` or :func:`~marvin.tools.maps.Maps.getSpaxel`, and provides shared code for both of them. Parameters: cube (:class:`~marvin.tools.cube.Cube` or None or bool) A :class:`~marvin.tools.cube.Cube` object with the DRP cube data from which the spaxel spectrum will be extracted. If None, the |spaxel| object(s) returned won't contain spectral information. maps (:class:`~marvin.tools.maps.Maps` or None or bool) As ``cube`` but for the :class:`~marvin.tools.maps.Maps` object representing the DAP maps entity. If None, the |spaxel| will be returned without DAP information. modelcube (:class:`~marvin.tools.modelcube.ModelCube` or None or bool) As ``cube`` but for the :class:`~marvin.tools.modelcube.ModelCube` object representing the DAP modelcube entity. If None, the |spaxel| will be returned without model information. x,y (int or array): The spaxel coordinates relative to ``xyorig``. If ``x`` is an array of coordinates, the size of ``x`` must much that of ``y``. ra,dec (float or array): The coordinates of the spaxel to return. The closest spaxel to those coordinates will be returned. If ``ra`` is an array of coordinates, the size of ``ra`` must much that of ``dec``. xyorig ({'center', 'lower'}): The reference point from which ``x`` and ``y`` are measured. Valid values are ``'center'``, for the centre of the spatial dimensions of the cube, or ``'lower'`` for the lower-left corner. This keyword is ignored if ``ra`` and ``dec`` are defined. ``xyorig`` defaults to ``marvin.config.xyorig.`` kwargs (dict): Arguments to be passed to `~marvin.tools.spaxel.SpaxelBase`. Returns: spaxels (list): The |spaxel| objects for this cube/maps corresponding to the input coordinates. The length of the list is equal to the number of input coordinates. .. |spaxel| replace:: :class:`~marvin.tools.spaxel.Spaxel` """ # TODO: for now let's put these imports here, but we should fix the # circular imports soon. import marvin.tools.cube import marvin.tools.maps import marvin.tools.modelcube import marvin.tools.spaxel # Checks that the cube and maps data are correct assert cube or maps or modelcube, \ 'Either cube, maps, or modelcube needs to be specified.' assert isinstance(cube, (marvin.tools.cube.Cube, bool)), \ 'cube is not an instance of Cube or a boolean' assert isinstance(maps, (marvin.tools.maps.Maps, bool)), \ 'maps is not an instance of Maps or a boolean' assert isinstance(modelcube, (marvin.tools.modelcube.ModelCube, bool)), \ 'modelcube is not an instance of ModelCube or a boolean' # Checks that we have the correct set of inputs. if x is not None or y is not None: assert ra is None and dec is None, 'Either use (x, y) or (ra, dec)' assert x is not None and y is not None, 'Specify both x and y' inputMode = 'pix' isScalar = np.isscalar(x) x = np.atleast_1d(x) y = np.atleast_1d(y) coords = np.array([x, y], np.float).T elif ra is not None or dec is not None: assert x is None and y is None, 'Either use (x, y) or (ra, dec)' assert ra is not None and dec is not None, 'Specify both ra and dec' inputMode = 'sky' isScalar = np.isscalar(ra) ra = np.atleast_1d(ra) dec = np.atleast_1d(dec) coords = np.array([ra, dec], np.float).T else: raise ValueError('You need to specify either (x, y) or (ra, dec)') if not xyorig: xyorig = marvin.config.xyorig if isinstance(maps, marvin.tools.maps.Maps): ww = maps.wcs if inputMode == 'sky' else None cube_shape = maps._shape elif isinstance(cube, marvin.tools.cube.Cube): ww = cube.wcs if inputMode == 'sky' else None cube_shape = cube._shape elif isinstance(modelcube, marvin.tools.modelcube.ModelCube): ww = modelcube.wcs if inputMode == 'sky' else None cube_shape = modelcube._shape iCube, jCube = zip(convertCoords(coords, wcs=ww, shape=cube_shape, mode=inputMode, xyorig=xyorig).T) _spaxels = [] for ii in range(len(iCube[0])): _spaxels.append( marvin.tools.spaxel.Spaxel(jCube[0][ii], iCube[0][ii], cube=cube, maps=maps, modelcube=modelcube, **kwargs)) if len(_spaxels) == 1 and isScalar: return _spaxels[0] else: return _spaxels def convertCoords(coords, mode='sky', wcs=None, xyorig='center', shape=None): """Convert input coordinates to array indices. Converts input positions in x, y or RA, Dec coordinates to array indices (in Numpy style) or spaxel extraction. In case of pixel coordinates, the origin of reference (either the center of the cube or the lower left corner) can be specified via ``xyorig``. If ``shape`` is defined (mandatory for ``mode='pix'``, optional for ``mode='sky'``) and one or more of the resulting indices are outside the size of the input shape, an error is raised. This functions is mostly intended for internal use. Parameters: coords (array): The input coordinates, as an array of shape Nx2. mode ({'sky', 'pix'}: The type of input coordinates, either `'sky'` for celestial coordinates (in the format defined in the WCS header information), or `'pix'` for pixel coordinates. wcs (None or ``astropy.wcs.WCS`` object): If ``mode='sky'``, the WCS solution from which the cube coordinates can be derived. xyorig (str): If ``mode='pix'``, the reference point from which the coordinates are measured. Valid values are ``'center'``, for the centre of the spatial dimensions of the cube, or ``'lower'`` for the lower-left corner. shape (None or array): If ``mode='pix'``, the shape of the spatial dimensions of the cube, so that the central position can be calculated. Returns: result (Numpy array): An array with the same shape as ``coords``, containing the cube index positions for the input coordinates, in Numpy style (i.e., the first element being the row and the second the column). """ coords = np.atleast_2d(coords) assert coords.shape[1] == 2, 'coordinates must be an array Nx2' if mode == 'sky': assert wcs, 'if mode==sky, wcs must be defined.' coordsSpec = np.ones((coords.shape[0], 3), np.float32) coordsSpec[:, :-1] = coords cubeCoords = wcs.wcs_world2pix(coordsSpec, 0) cubeCoords = np.fliplr(np.array(np.round(cubeCoords[:, :-1]), np.int)) elif mode in ['pix', 'pixel']: assert xyorig, 'if mode==pix, xyorig must be defined.' x = coords[:, 0] y = coords[:, 1] assert shape is not None, 'if mode==pix, shape must be defined.' shape = np.atleast_1d(shape) if xyorig == 'center': yMid, xMid = shape / 2. xCube = np.round(xMid + x) yCube = np.round(yMid + y) elif xyorig == 'lower': xCube = np.round(x) yCube = np.round(y) else: raise ValueError('xyorig must be center or lower.') cubeCoords = np.array([yCube, xCube], np.int).T else: raise ValueError('mode must be pix or sky.') if shape is not None: if ((cubeCoords < 0).any() or (cubeCoords[:, 0] > (shape[0] - 1)).any() or (cubeCoords[:, 1] > (shape[1] - 1)).any()): raise MarvinError('some indices are out of limits.' '``xyorig`` is currently set to "{0}". ' 'Try setting ``xyorig`` to "{1}".' .format(xyorig, 'center' if xyorig == 'lower' else 'lower')) return cubeCoords def mangaid2plateifu(mangaid, mode='auto', drpall=None, drpver=None): """Return the plate-ifu for a certain mangaid. Uses either the DB or the drpall file to determine the plate-ifu for a mangaid. If more than one plate-ifu are available for a certain ifu, and ``mode='drpall'``, the one with the higher SN2 (calculated as the sum of redSN2 and blueSN2) will be used. If ``mode='db'``, the most recent one will be used. Parameters: mangaid (str): The mangaid for which the plate-ifu will be returned. mode ({'auto', 'drpall', 'db', 'remote'}): If `'drpall'` or ``'db'``, the drpall file or the local database, respectively, will be used. If ``'remote'``, a request to the API will be issued. If ``'auto'``, the local modes will be tried before the remote mode. drpall (str or None): The path to the drpall file to use. If None, the file in ``config.drpall`` will be used. drpver (str or None): The DRP version to use. If None, the one in ``config.drpver`` will be used. If ``drpall`` is defined, this value is ignored. Returns: plateifu (str): The plate-ifu string for the input ``mangaid``. """ from marvin import config, marvindb from marvin.api.api import Interaction # The modes and order over which the auto mode will loop. autoModes = ['db', 'drpall', 'remote'] assert mode in autoModes + ['auto'], 'mode={0} is not valid'.format(mode) config_drpver, __ = config.lookUpVersions() drpver = drpver if drpver else config_drpver drpall = drpall if drpall else config._getDrpAllPath(drpver=drpver) if mode == 'drpall': # Get the drpall table from cache or fresh drpall_table = get_drpall_table(drpver=drpver, drpall=drpall) mangaids = np.array([mm.strip() for mm in drpall_table['mangaid']]) plateifus = drpall_table[np.where(mangaids == mangaid)] if len(plateifus) > 1: warnings.warn('more than one plate-ifu found for mangaid={0}. ' 'Using the one with the highest SN2.'.format(mangaid), MarvinUserWarning) plateifus = plateifus[ [np.argmax(plateifus['bluesn2'] + plateifus['redsn2'])]] if len(plateifus) == 0: raise ValueError('no plate-ifus found for mangaid={0}'.format(mangaid)) return plateifus['plateifu'][0] elif mode == 'db': if not marvindb.isdbconnected: raise MarvinError('no DB connection found') if not drpver: raise MarvinError('drpver not set.') cubes = marvindb.session.query(marvindb.datadb.Cube).join( marvindb.datadb.PipelineInfo, marvindb.datadb.PipelineVersion).filter( marvindb.datadb.Cube.mangaid == mangaid, marvindb.datadb.PipelineVersion.version == drpver).use_cache().all() if len(cubes) == 0: raise ValueError('no plate-ifus found for mangaid={0}'.format(mangaid)) elif len(cubes) > 1: warnings.warn('more than one plate-ifu found for mangaid={0}. ' 'Using a the one with the higest SN2'.format(mangaid), MarvinUserWarning) total_sn2 = [float(cube.header['BLUESN2']) + float(cube.header['REDSN2']) for cube in cubes] cube = cubes[np.argmax(total_sn2)] else: cube = cubes[0] return '{0}-{1}'.format(cube.plate, cube.ifu.name) elif mode == 'remote': try: url = marvin.config.urlmap['api']['mangaid2plateifu']['url'] response = Interaction(url.format(mangaid=mangaid)) except MarvinError as e: raise MarvinError('API call to mangaid2plateifu failed: {0}'.format(e)) else: plateifu = response.getData(astype=str) if not plateifu: if 'error' in response.results and response.results['error']: raise MarvinError(response.results['error']) else: raise MarvinError('API call to mangaid2plateifu failed with error unknown.') return plateifu elif mode == 'auto': for mm in autoModes: try: plateifu = mangaid2plateifu(mangaid, mode=mm, drpver=drpver, drpall=drpall) return plateifu except: continue raise MarvinError( 'mangaid2plateifu was not able to find a plate-ifu for ' 'mangaid={0} either local or remotely.'.format(mangaid)) def findClosestVector(point, arr_shape=None, pixel_shape=None, xyorig=None): """Find the closest array coordinates from pixel coordinates. Find the closest vector of array coordinates (x, y) from an input vector of pixel coordinates (x, y). Parameters: point : tuple Original point of interest in pixel units, order of (x,y) arr_shape : tuple Shape of data array in (x,y) order pixel_shape : tuple Shape of image in pixels in (x,y) order xyorig : str Indicates the origin point of coordinates. Set to "relative" switches to an array coordinate system relative to galaxy center. Default is absolute array coordinates (x=0, y=0) = upper left corner Returns: minind : tuple A tuple of array coordinates in x, y order """ # set as numpy arrays arr_shape = np.array(arr_shape, dtype=int) pixel_shape = np.array(pixel_shape, dtype=int) # compute midpoints xmid, ymid = arr_shape / 2 xpixmid, ypixmid = pixel_shape / 2 # default absolute array coordinates xcoords = np.array([0, arr_shape[0]], dtype=int) ycoords = np.array([0, arr_shape[1]], dtype=int) # split x,y coords and pixel coords x1, x2 = xcoords y1, y2 = ycoords xpix, ypix = pixel_shape # build interpolates between array coordinates and pixel coordinates points = [[x1, y1], [x1, y2], [xmid, ymid], [x2, y1], [x2, y2]] values = [[0, ypix], [0, 0], [xpixmid, ypixmid], [xpix, ypix], [xpix, 0]] # full image # values = [[xpixmid-xmid, ypixmid+ymid], [xpixmid-xmid, ypixmid-ymid], [xpixmid, ypixmid], [xpixmid+xmid, ypixmid+ymid], [xpixmid+xmid, ypixmid-ymid]] # pixels based on arr_shape #values = [[xpixmid-x2, ypixmid+y2], [xpixmid-x2, ypixmid-y2], [xpixmid, ypixmid], [xpixmid+x2, ypixmid+y2], [xpixmid+x2, ypixmid-y2]] # pixels based on arr_shape # make 2d array of array indices in absolute or (our) relative coordindates arrinds = np.mgrid[x1:x2, y1:y2].swapaxes(0, 2).swapaxes(0, 1) # interpolate a new 2d pixel coordinate array final = griddata(points, values, arrinds) # find minimum array vector closest to input coordinate point diff = np.abs(point - final) prod = diff[:, :, 0] * diff[:, :, 1] minind = np.unravel_index(prod.argmin(), arr_shape) # toggle relative array coordinates if xyorig in ['relative', 'center']: minind = np.array(minind, dtype=int) xmin = minind[0] - xmid ymin = ymid - minind[1] minind = (xmin, ymin) return minind def getWCSFromPng(filename=None, image=None): """Extract any WCS info from the metadata of a PNG image. Extracts the WCS metadata info from the PNG optical image of the galaxy using PIL (Python Imaging Library). Converts it to an Astropy WCS object. Parameters: image (object): An existing PIL image object filename (str): The full path to the image Returns: pngwcs (WCS): an Astropy WCS object """ assert any([image, filename]), 'Must provide either a PIL image object, or the full image filepath' pngwcs = None if filename and not image: try: image = PIL.Image.open(filename) except Exception as e: raise MarvinError('Cannot open image {0}: {1}'.format(filename, e)) else: # Close the image image.close() # get metadata meta = image.info if image else None # parse the image metadata mywcs = {} if meta and 'WCSAXES' in meta.keys(): for key, val in meta.items(): try: val = float(val) except Exception as e: pass mywcs.update({key: val}) tmp = mywcs.pop('WCSAXES') # Construct Astropy WCS if mywcs: pngwcs = wcs.WCS(mywcs) return pngwcs def convertImgCoords(coords, image, to_pix=None, to_radec=None): """Transform the WCS info in an image. Convert image pixel coordinates to RA/Dec based on PNG image metadata or vice_versa Parameters: coords (tuple): The input coordindates to transform image (str): The full path to the image to_pix (bool): Set to convert to pixel coordinates to_radec (bool): Set to convert to RA/Dec coordinates Returns: newcoords (tuple): Tuple of either (x, y) pixel coordinates or (RA, Dec) coordinates """ try: wcs = getWCSFromPng(image) except Exception as e: raise MarvinError('Cannot get wcs info from image {0}: {1}'.format(image, e)) if to_radec: try: newcoords = wcs.all_pix2world([coords], 1)[0] except AttributeError as e: raise MarvinError('Cannot convert coords to RA/Dec. No wcs! {0}'.format(e)) if to_pix: try: newcoords = wcs.all_world2pix([coords], 1)[0] except AttributeError as e: raise MarvinError('Cannot convert coords to image pixels. No wcs! {0}'.format(e)) return newcoords def parseIdentifier(galid): """Determine if a string input is a plate, plateifu, or manga-id. Parses a string object id and determines whether it is a plate ID, a plate-IFU, or MaNGA-ID designation. Parameters: galid (str): The string of an id name to parse Returns: idtype (str): String indicating either plate, plateifu, mangaid, or None """ galid = str(galid) hasdash = '-' in galid if hasdash: galidsplit = galid.split('-') if int(galidsplit[0]) > 6500: idtype = 'plateifu' else: idtype = 'mangaid' else: # check for plate if galid.isdigit(): if len(galid) > 3: idtype = 'plate' else: idtype = None else: idtype = None return idtype def getSpaxelXY(cube, plateifu, x, y): """Get a spaxel from a cube in the DB. This function is mostly intended for internal use. Parameters: cube (SQLAlchemy object): The SQLAlchemy object representing the cube from which to extract the spaxel. plateifu (str): The corresponding plateifu of ``cube``. x,y (int): The coordinates of the spaxel in the database. Returns: spaxel (SQLAlchemy object): The SQLAlchemy spaxel with coordinates ``(x, y)``. """ import sqlalchemy mdb = marvin.marvindb try: spaxel = mdb.session.query(mdb.datadb.Spaxel).filter_by(cube=cube, x=x, y=y).use_cache().one() except sqlalchemy.orm.exc.NoResultFound as e: raise MarvinError('Could not retrieve spaxel for plate-ifu {0} at position {1},{2}: No Results Found: {3}'.format(plateifu, x, y, e)) except Exception as e: raise MarvinError('Could not retrieve cube for plate-ifu {0} at position {1},{2}: Unknown exception: {3}'.format(plateifu, x, y, e)) return spaxel def getDapRedux(release=None): """Retrieve SAS url link to the DAP redux directory. Parameters: release (str): The release version of the data to download. Defaults to Marvin config.release. Returns: dapredux (str): The full redux path to the DAP MAPS """ if not Path: raise MarvinError('sdss_access is not installed') else: # is_public = 'DR' in release # path_release = release.lower() if is_public else None sdss_path = Path(release=release) release = release or marvin.config.release drpver, dapver = marvin.config.lookUpVersions(release=release) ## hack a url version of MANGA_SPECTRO_ANALYSIS #dapdefault = sdss_path.dir('mangadefault', drpver=drpver, dapver=dapver, plate=None, ifu=None) #dappath = dapdefault.rsplit('/', 2)[0] dappath = os.path.join(os.getenv("MANGA_SPECTRO_ANALYSIS"), drpver, dapver) dapredux = sdss_path.url('', full=dappath) return dapredux def getDefaultMapPath(**kwargs): """Retrieve the default Maps path. Uses sdss_access Path to generate a url download link to the default MAPS file for a given MPL. Parameters: release (str): The release version of the data to download. Defaults to Marvin config.release. plate (int): The plate id ifu (int): The ifu number mode (str): The bintype of the default file to grab, i.e. MAPS or LOGCUBE. Defaults to MAPS daptype (str): The daptype of the default map to grab. Defaults to SPX-GAU-MILESHC Returns: maplink (str): The sas url to download the default maps file """ # Get kwargs release = kwargs.get('release', marvin.config.release) drpver, dapver = marvin.config.lookUpVersions(release=release) plate = kwargs.get('plate', None) ifu = kwargs.get('ifu', None) daptype = kwargs.get('daptype', 'SPX-GAU-MILESHC') mode = kwargs.get('mode', 'MAPS') assert mode in ['MAPS', 'LOGCUBE'], 'mode can either be MAPS or LOGCUBE' # get sdss_access Path if not Path: raise MarvinError('sdss_access is not installed') else: # is_public = 'DR' in release # path_release = release.lower() if is_public else None sdss_path = Path(release=release) # get the sdss_path name by MPL # TODO: this is likely to break in future MPL/DRs. Just a heads up. if '4' in release: name = 'mangadefault' else: name = 'mangadap' # construct the url link to default maps file maplink = sdss_path.url(name, drpver=drpver, dapver=dapver, mpl=release, plate=plate, ifu=ifu, daptype=daptype, mode=mode) return maplink def downloadList(inputlist, dltype='cube', **kwargs): """Download a list of MaNGA objects. Uses sdss_access to download a list of objects via rsync. Places them in your local sas path mimicing the Utah SAS. i.e. $SAS_BASE_DIR/mangawork/manga/spectro/redux Can download cubes, rss files, maps, modelcubes, mastar cubes, png images, default maps, or the entire plate directory. dltype=`dap` is a special keyword that downloads all DAP files. It sets binmode and daptype to '*' Parameters: inputlist (list): Required. A list of objects to download. Must be a list of plate IDs, plate-IFUs, or manga-ids dltype ({'cube', 'maps', 'modelcube', 'dap', image', 'rss', 'mastar', 'default', 'plate'}): Indicated type of object to download. Can be any of plate, cube, image, mastar, rss, map, modelcube, or default (default map). If not specified, the dltype defaults to cube. release (str): The MPL/DR version of the data to download. Defaults to Marvin config.release. bintype (str): The bin type of the DAP maps to download. Defaults to * binmode (str): The bin mode of the DAP maps to download. Defaults to * n (int): The plan id number [1-12] of the DAP maps to download. Defaults to * daptype (str): The daptype of the default map to grab. Defaults to * dir3d (str): The directory where the images are located. Either 'stack' or 'mastar'. Defaults to * verbose (bool): Turns on verbosity during rsync limit (int): A limit to the number of items to download test (bool): If True, tests the download path construction but does not download Returns: If test=True, returns the list of full filepaths that will be downloaded """ assert isinstance(inputlist, (list, np.ndarray)), 'inputlist must be a list or numpy array' # Get some possible keywords # Necessary rsync variables: # drpver, plate, ifu, dir3d, [mpl, dapver, bintype, n, mode] verbose = kwargs.get('verbose', None) as_url = kwargs.get('as_url', None) release = kwargs.get('release', marvin.config.release) drpver, dapver = marvin.config.lookUpVersions(release=release) bintype = kwargs.get('bintype', '*') binmode = kwargs.get('binmode', None) daptype = kwargs.get('daptype', '*') dir3d = kwargs.get('dir3d', '*') n = kwargs.get('n', '*') limit = kwargs.get('limit', None) test = kwargs.get('test', None) wave = 'LOG' # check for sdss_access if not Access: raise MarvinError('sdss_access not installed.') # Assert correct dltype dltype = 'cube' if not dltype else dltype assert dltype in ['plate', 'cube', 'mastar', 'modelcube', 'dap', 'rss', 'maps', 'image', 'default'], ('dltype must be one of plate, cube, mastar, ' 'image, rss, maps, modelcube, dap, default') assert binmode in [None, '*', 'MAPS', 'LOGCUBE'], 'binmode can only be *, MAPS or LOGCUBE' # Assert correct dir3d if dir3d != '*': assert dir3d in ['stack', 'mastar'], 'dir3d must be either stack or mastar' # Parse and retrieve the input type and the download type idtype = parseIdentifier(inputlist[0]) if not idtype: raise MarvinError('Input list must be a list of plates, plate-ifus, or mangaids') # Set download type if dltype == 'cube': name = 'mangacube' elif dltype == 'rss': name = 'mangarss' elif dltype == 'default': name = 'mangadefault' elif dltype == 'plate': name = 'mangaplate' elif dltype == 'maps': # needs to change to include DR if '4' in release: name = 'mangamap' else: name = 'mangadap' binmode = 'MAPS' elif dltype == 'modelcube': name = 'mangadap' binmode = 'LOGCUBE' elif dltype == 'dap': name = 'mangadap' binmode = '*' daptype = '*' elif dltype == 'mastar': name = 'mangamastar' elif dltype == 'image': name = 'mangaimage' # create rsync rsync_access = Access(label='marvin_download', verbose=verbose, release=release) rsync_access.remote() # Add objects for item in inputlist: if idtype == 'mangaid': try: plateifu = mangaid2plateifu(item) except MarvinError: plateifu = None else: plateid, ifu = plateifu.split('-') elif idtype == 'plateifu': plateid, ifu = item.split('-') elif idtype == 'plate': plateid = item ifu = '*' rsync_access.add(name, plate=plateid, drpver=drpver, ifu=ifu, dapver=dapver, dir3d=dir3d, mpl=release, bintype=bintype, n=n, mode=binmode, daptype=daptype, wave=wave) # set the stream try: rsync_access.set_stream() except AccessError as e: raise MarvinError('Error with sdss_access rsync.set_stream. AccessError: {0}'.format(e)) # get the list and download listofitems = rsync_access.get_urls() if as_url else rsync_access.get_paths() # print download location item = listofitems[0] if listofitems else None if item: ver = dapver if dapver in item else drpver dlpath = item[:item.rfind(ver) + len(ver)] if verbose: print('Target download directory: {0}'.format(dlpath)) if test: return listofitems else: rsync_access.commit(limit=limit) def _get_summary_file(name, summary_path=None, drpver=None, dapver=None): ''' Check for/download the drpall or dapall file Checks for existence of a local summary file for the current release set. If not found, uses sdss_access to download it. Parameters: name (str): The name of the summary file. Either drpall or dapall summary_path (str): The local path to either the drpall or dapall file drpver (str): The DRP version dapver (str): The DAP version ''' assert name in ['drpall', 'dapall'], 'name must be either drpall or dapall' from marvin import config # # check for public release # is_public = 'DR' in config.release # release = config.release.lower() if is_public else None # get drpver and dapver config_drpver, config_dapver = config.lookUpVersions(config.release) drpver = drpver if drpver else config_drpver dapver = dapver if dapver else config_dapver if name == 'drpall' and not summary_path: summary_path = get_drpall_path(drpver) elif name == 'dapall' and not summary_path: summary_path = get_dapall_path(drpver, dapver) if not os.path.isfile(summary_path): warnings.warn('{0} file not found. Downloading it.'.format(name), MarvinUserWarning) rsync = Access(label='get_summary_file', release=config.release) rsync.remote() rsync.add(name, drpver=drpver, dapver=dapver) try: rsync.set_stream() except Exception as e: raise MarvinError('Could not download the {4} file with sdss_access: ' '{0}\nTry manually downloading it for version ({1},{2}) and ' 'placing it {3}'.format(e, drpver, dapver, summary_path, name)) else: rsync.commit() def get_drpall_file(drpver=None, drpall=None): ''' Check for/download the drpall file Checks for existence of a local drpall file for the current release set. If not found, uses sdss_access to download it. Parameters: drpver (str): The DRP version drpall (str): The local path to either the drpall file ''' _get_summary_file('drpall', summary_path=drpall, drpver=drpver) def get_dapall_file(drpver=None, dapver=None, dapall=None): ''' Check for/download the dapall file Checks for existence of a local dapall file for the current release set. If not found, uses sdss_access to download it. Parameters: drpver (str): The DRP version dapver (str): The DAP version dapall (str): The local path to either the dapall file ''' _get_summary_file('dapall', summary_path=dapall, drpver=drpver, dapver=dapver) def get_drpall_row(plateifu, drpver=None, drpall=None): """Returns a dictionary from drpall matching the plateifu.""" # get the drpall table drpall_table = get_drpall_table(drpver=drpver, drpall=drpall, hdu='MANGA') in_table = plateifu in drpall_table['plateifu'] # check the mastar extension if not in_table: drpall_table = get_drpall_table(drpver=drpver, drpall=drpall, hdu='MASTAR') in_table = plateifu in drpall_table['plateifu'] if not in_table: raise ValueError('No results found for {0} in drpall table'.format(plateifu)) row = drpall_table[drpall_table['plateifu'] == plateifu] return row[0] def _db_row_to_dict(row, remove_columns=False): """Converts a DB object to a dictionary.""" from sqlalchemy.inspection import inspect as sa_inspect from sqlalchemy.ext.hybrid import hybrid_property row_dict = collections.OrderedDict() columns = row.__table__.columns.keys() mapper = sa_inspect(row.__class__) for key, item in mapper.all_orm_descriptors.items(): if isinstance(item, hybrid_property): columns.append(key) for col in columns: if remove_columns and col in remove_columns: continue row_dict[col] = getattr(row, col) return row_dict def get_nsa_data(mangaid, source='nsa', mode='auto', drpver=None, drpall=None): """Returns a dictionary of NSA data from the DB or from the drpall file. Parameters: mangaid (str): The mangaid of the target for which the NSA information will be returned. source ({'nsa', 'drpall'}): The data source. If ``source='nsa'``, the full NSA catalogue from the DB will be used. If ``source='drpall'``, the subset of NSA columns included in the drpall file will be returned. mode ({'auto', 'local', 'remote'}): See :ref:`mode-decision-tree`. drpver (str or None): The version of the DRP to use, if ``source='drpall'``. If ``None``, uses the version set by ``marvin.config.release``. drpall (str or None): A path to the drpall file to use if ``source='drpall'``. If not defined, the default drpall file matching ``drpver`` will be used. Returns: nsa_data (dict): A dictionary containing the columns and values from the NSA catalogue for ``mangaid``. """ from marvin import config, marvindb from .structs import DotableCaseInsensitive valid_modes = ['auto', 'local', 'remote'] assert mode in valid_modes, 'mode must be one of {0}'.format(valid_modes) valid_sources = ['nsa', 'drpall'] assert source in valid_sources, 'source must be one of {0}'.format(valid_sources) log.debug('get_nsa_data: getting NSA data for mangaid=%r with source=%r, mode=%r', mangaid, source, mode) if mode == 'auto': log.debug('get_nsa_data: running auto mode mode.') try: nsa_data = get_nsa_data(mangaid, mode='local', source=source, drpver=drpver, drpall=drpall) return nsa_data except MarvinError as ee: log.debug('get_nsa_data: local mode failed with error %s', str(ee)) try: nsa_data = get_nsa_data(mangaid, mode='remote', source=source, drpver=drpver, drpall=drpall) return nsa_data except MarvinError as ee: raise MarvinError('get_nsa_data: failed to get NSA data for mangaid=%r in ' 'auto mode with with error: %s', mangaid, str(ee)) elif mode == 'local': if source == 'nsa': if config.db is not None: session = marvindb.session sampledb = marvindb.sampledb nsa_row = session.query(sampledb.NSA).join(sampledb.MangaTargetToNSA, sampledb.MangaTarget).filter( sampledb.MangaTarget.mangaid == mangaid).use_cache().all() if len(nsa_row) == 1: return DotableCaseInsensitive( _db_row_to_dict(nsa_row[0], remove_columns=['pk', 'catalogue_pk'])) elif len(nsa_row) > 1: warnings.warn('get_nsa_data: multiple NSA rows found for mangaid={0}. ' 'Using the first one.'.format(mangaid), MarvinUserWarning) return DotableCaseInsensitive( _db_row_to_dict(nsa_row[0], remove_columns=['pk', 'catalogue_pk'])) elif len(nsa_row) == 0: raise MarvinError('get_nsa_data: cannot find NSA row for mangaid={0}' .format(mangaid)) else: raise MarvinError('get_nsa_data: cannot find a valid DB connection.') elif source == 'drpall': plateifu = mangaid2plateifu(mangaid, drpver=drpver, drpall=drpall, mode='drpall') log.debug('get_nsa_data: found plateifu=%r for mangaid=%r', plateifu, mangaid) drpall_row = get_drpall_row(plateifu, drpall=drpall, drpver=drpver) nsa_data = collections.OrderedDict() for col in drpall_row.colnames: if col.startswith('nsa_'): value = drpall_row[col] if isinstance(value, np.ndarray): value = value.tolist() else: # In Astropy 2 the value would be an array of size 1 # but in Astropy 3 value is already an scalar and asscalar fails. try: value = np.asscalar(value) except AttributeError: pass nsa_data[col[4:]] = value return DotableCaseInsensitive(nsa_data) elif mode == 'remote': from marvin.api.api import Interaction try: if source == 'nsa': request_name = 'nsa_full' else: request_name = 'nsa_drpall' url = marvin.config.urlmap['api'][request_name]['url'] response = Interaction(url.format(mangaid=mangaid)) except MarvinError as ee: raise MarvinError('API call to {0} failed: {1}'.format(request_name, str(ee))) else: if response.results['status'] == 1: return DotableCaseInsensitive(collections.OrderedDict(response.getData())) else: raise MarvinError('get_nsa_data: %s', response['error']) def _check_file_parameters(obj1, obj2): for param in ['plateifu', 'mangaid', 'plate', '_release', 'drpver', 'dapver']: assert_msg = ('{0} is different between {1} {2}:\n {1}.{0}: {3} {2}.{0}:{4}' .format(param, obj1.__repr__, obj2.__repr__, getattr(obj1, param), getattr(obj2, param))) assert getattr(obj1, param) == getattr(obj2, param), assert_msg def add_doc(value): """Wrap method to programatically add docstring.""" def _doc(func): func.__doc__ = value return func return _doc def use_inspect(func): ''' Inspect a function of arguments and keywords. Inspects a function or class method. Uses a different inspect for Python 2 vs 3 Only tested to work with args and defaults. varargs (variable arguments) and varkw (keyword arguments) seem to always be empty. Parameters: func (func): The function or method to inspect Returns: A tuple of arguments, variable arguments, keywords, and default values ''' pyver = sys.version_info.major if pyver == 2: args, varargs, varkw, defaults = inspect.getargspec(func) elif pyver == 3: sig = inspect.signature(func) args = [] defaults = [] varargs = varkw = None for par in sig.parameters.values(): # most parameters seem to be of this kind if par.kind == par.POSITIONAL_OR_KEYWORD: args.append(par.name) # parameters with default of inspect empty are required if par.default != inspect._empty: defaults.append(par.default) return args, varargs, varkw, defaults def getRequiredArgs(func): ''' Gets the required arguments from a function or method Uses this difference between arguments and defaults to indicate required versus optional arguments Parameters: func (func): The function or method to inspect Returns: A list of required arguments Example: >>> import matplotlib.pyplot as plt >>> getRequiredArgs(plt.scatter) >>> ['x', 'y'] ''' args, varargs, varkw, defaults = use_inspect(func) if defaults: args = args[:-len(defaults)] return args def getKeywordArgs(func): ''' Gets the keyword arguments from a function or method Parameters: func (func): The function or method to inspect Returns: A list of keyword arguments Example: >>> import matplotlib.pyplot as plt >>> getKeywordArgs(plt.scatter) >>> ['edgecolors', 'c', 'vmin', 'linewidths', 'marker', 's', 'cmap', >>> 'verts', 'vmax', 'alpha', 'hold', 'data', 'norm'] ''' args, varargs, varkw, defaults = use_inspect(func) req_args = getRequiredArgs(func) opt_args = list(set(args) - set(req_args)) return opt_args def missingArgs(func, argdict, arg_type='args'): ''' Return missing arguments from an input dictionary Parameters: func (func): The function or method to inspect argdict (dict): The argument dictionary to test against arg_type (str): The type of arguments to test. Either (args|kwargs|req|opt). Default is required. Returns: A list of missing arguments Example: >>> import matplotlib.pyplot as plt >>> testdict = {'edgecolors': 'black', 'c': 'r', 'xlim': 5, 'xlabel': 9, 'ylabel': 'y', 'ylim': 6} >>> # test for missing required args >>> missginArgs(plt.scatter, testdict) >>> {'x', 'y'} >>> # test for missing optional args >>> missingArgs(plt.scatter, testdict, arg_type='opt') >>> ['vmin', 'linewidths', 'marker', 's', 'cmap', 'verts', 'vmax', 'alpha', 'hold', 'data', 'norm'] ''' assert arg_type in ['args', 'req', 'kwargs', 'opt'], 'arg_type must be one of (args|req|kwargs|opt)' if arg_type in ['args', 'req']: return set(getRequiredArgs(func)).difference(argdict) elif arg_type in ['kwargs', 'opt']: return set(getKeywordArgs(func)).difference(argdict) def invalidArgs(func, argdict): ''' Return invalid arguments from an input dictionary Parameters: func (func): The function or method to inspect argdict (dict): The argument dictionary to test against Returns: A list of invalid arguments Example: >>> import matplotlib.pyplot as plt >>> testdict = {'edgecolors': 'black', 'c': 'r', 'xlim': 5, 'xlabel': 9, 'ylabel': 'y', 'ylim': 6} >>> # test for invalid args >>> invalidArgs(plt.scatter, testdict) >>> {'xlabel', 'xlim', 'ylabel', 'ylim'} ''' args, varargs, varkw, defaults = use_inspect(func) return set(argdict) - set(args) def isCallableWithArgs(func, argdict, arg_type='opt', strict=False): ''' Test if the function is callable with the an input dictionary Parameters: func (func): The function or method to inspect argdict (dict): The argument dictionary to test against arg_type (str): The type of arguments to test. Either (args|kwargs|req|opt). Default is required. strict (bool): If True, validates input dictionary against both missing and invalid keyword arguments. Default is False Returns: Boolean indicating whether the function is callable Example: >>> import matplotlib.pyplot as plt >>> testdict = {'edgecolors': 'black', 'c': 'r', 'xlim': 5, 'xlabel': 9, 'ylabel': 'y', 'ylim': 6} >>> # test for invalid args >>> isCallableWithArgs(plt.scatter, testdict) >>> False ''' if strict: return not missingArgs(func, argdict, arg_type=arg_type) and not invalidArgs(func, argdict) else: return not invalidArgs(func, argdict) def map_bins_to_column(column, indices): ''' Maps a dictionary of array indices to column data Takes a given data column and a dictionary of indices (see the indices key from output of the histgram data in :meth:`marvin.utils.plot.scatter.hist`), and produces a dictionary with the data values from column mapped in individual bins. Parameters: column (list): A column of data indices (dict): A dictionary of providing a list of array indices belonging to each bin in a histogram. Returns: A dictionary containing, for each binid, a list of column data in that bin. Example: >>> >>> # provide a list of data in each bin of an output histogram >>> x = np.random.random(10)*10 >>> hdata = hist(x, bins=3, return_fig=False) >>> inds = hdata['indices'] >>> pmap = map_bins_to_column(x, inds) >>> OrderedDict([(1, >>> [2.5092488009906235, >>> 1.7494530589363955, >>> 2.5070840461208754, >>> 2.188355400587354, >>> 2.6987990403658992, >>> 1.6023553861428441]), >>> (3, [7.9214280403215875, 7.488908995456573, 7.190598204420587]), >>> (4, [8.533028236560906])]) ''' assert isinstance(indices, dict) is True, 'indices must be a dictionary of binids' assert len(column) == sum(map(len, indices.values())), 'input column and indices values must have same len' coldict = OrderedDict() colarr = np.array(column) for key, val in indices.items(): coldict[key] = colarr[val].tolist() return coldict def _sort_dir(instance, class_): """Sort `dir()` to return child class attributes and members first. Return the attributes and members of the child class, so that ipython tab completion lists those first. Parameters: instance: Instance of `class_` (usually self). class_: Class of `instance`. Returns: list: Child class attributes and members. """ members_array = list(zip(*inspect.getmembers(np.ndarray)))[0] members_quantity = list(zip(*inspect.getmembers(Quantity)))[0] members_parents = members_array + members_quantity return_list = [it[0] for it in inspect.getmembers(class_) if it[0] not in members_parents] return_list += vars(instance).keys() return_list += ['value'] return return_list def _get_summary_path(name, drpver, dapver=None): ''' Return the path for either the DRP or DAP summary file Parameters: name (str): The name of the summary file, either drpall or dapall drpver (str): The DRP version dapver (str): The DAP version ''' assert name in ['drpall', 'dapall'], 'name must be either drpall or dapall' release = marvin.config.lookUpRelease(drpver) # is_public = 'DR' in release # path_release = release.lower() if is_public else None path = Path(release=release) all_path = path.full(name, drpver=drpver, dapver=dapver) return all_path def get_drpall_path(drpver): """Returns the path to the DRPall file for ``(drpver, dapver)``.""" drpall_path = _get_summary_path('drpall', drpver=drpver) return drpall_path def get_dapall_path(drpver, dapver): """Returns the path to the DAPall file for ``(drpver, dapver)``.""" dapall_path = _get_summary_path('dapall', drpver, dapver) return dapall_path @contextlib.contextmanager def turn_off_ion(show_plot=True): ''' Turns off the Matplotlib plt interactive mode Context manager to temporarily disable the interactive Matplotlib plotting functionality. Useful for only returning Figure and Axes objects Parameters: show_plot (bool): If True, turns off the plotting Example: >>> >>> with turn_off_ion(show_plot=False): >>> do_some_stuff >>> ''' plt_was_interactive = plt.isinteractive() if not show_plot and plt_was_interactive: plt.ioff() fignum_init = plt.get_fignums() yield plt if show_plot: plt.ioff() plt.show() else: for ii in plt.get_fignums(): if ii not in fignum_init: plt.close(ii) # Restores original ion() status if plt_was_interactive and not plt.isinteractive(): plt.ion() @contextlib.contextmanager def temp_setattr(ob, attrs, new_values): """ Temporarily set attributed on an object Temporarily set an attribute on an object for the duration of the context manager. Parameters: ob (object): A class instance to set attributes on attrs (str|list): A list of attribute names to replace new_values (list): A list of new values to set as new attribute. If new_values is None, all attributes in attrs will be set to None. Example: >>> c = Cube(plateifu='8485-1901') >>> print('before', c.mangaid) >>> with temp_setattr(c, 'mangaid', None): >>> # do stuff >>> print('new', c.mangaid) >>> print('after' c.mangaid) >>> >>> # Output >>> before '1-209232' >>> new None >>> after '1-209232' >>> """ # set up intial inputs attrs = attrs if isinstance(attrs, list) else [attrs] if new_values: new_values = new_values if isinstance(new_values, list) else [new_values] else: new_values = [new_values] * len(attrs) assert len(attrs) == len(new_values), 'attrs and new_values must have the same length' replaced = [] old_values = [] # grab the old values for i, attr in enumerate(attrs): new_value = new_values[i] replace = False old_value = None if hasattr(ob, attr): try: if attr in ob.__dict__: replace = True except AttributeError: if attr in ob.__slots__: replace = True if replace: old_value = getattr(ob, attr) replaced.append(replace) old_values.append(old_value) setattr(ob, attr, new_value) # yield yield replaced, old_values # replace the old values for i, attr in enumerate(attrs): if not replaced[i]: delattr(ob, attr) else: setattr(ob, attr, old_values[i]) def map_dapall(header, row): ''' Retrieves a dictionary of DAPall db column names For a given row in the DAPall file, returns a dictionary of corresponding DAPall database columns names with the appropriate values. Parameters: header (Astropy header): The primary header of the DAPall file row (recarray): A row of the DAPall binary table data Returns: A dictionary with db column names as keys and row data as values Example: >>> hdu = fits.open('dapall-v2_3_1-2.1.1.fits') >>> header = hdu[0].header >>> row = hdu[1].data[0] >>> dbdict = map_dapall(header, row) ''' # get names from header emline_schannels = [] emline_gchannels = [] specindex_channels = [] for key, val in header.items(): if 'ELS' in key: emline_schannels.append(val.lower().replace('-', '_').replace('.', '_')) elif 'ELG' in key: emline_gchannels.append(val.lower().replace('-', '_').replace('.', '_')) elif re.search('SPI([0-9])', key): specindex_channels.append(val.lower().replace('-', '_').replace('.', '_')) # File column names names = row.array.names dbdict = {} for col in names: name = col.lower() shape = row[col].shape if hasattr(row[col], 'shape') else () array = '' values = row[col] if len(shape) > 0: channels = shape[0] for i in range(channels): channame = emline_schannels[i] if 'emline_s' in name else \ emline_gchannels[i] if 'emline_g' in name else \ specindex_channels[i] if 'specindex' in name else i + 1 colname = '{0}_{1}'.format(name, channame) dbdict[colname] = values[i] else: dbdict[name] = values return dbdict def get_virtual_memory_usage_kb(): """ The process's current virtual memory size in Kb, as a float. Returns: A float of the virtual memory usage """ assert psutil is not None, 'the psutil python package is required to run this function' return float(psutil.Process().memory_info().vms) / 1024.0 def memory_usage(where): """ Print out a basic summary of memory usage. Parameters: where (str): A string description of where in the code you are summarizing memory usage """ assert pympler is not None, 'the pympler python package is required to run this function' mem_summary = pympler.summary.summarize(pympler.muppy.get_objects()) print("Memory summary: {0}".format(where)) pympler.summary.print_(mem_summary, limit=2) print("VM: {0:.2f}Mb".format(get_virtual_memory_usage_kb() / 1024.0)) def target_status(mangaid, mode='auto', source='nsa', drpall=None, drpver=None): ''' Check the status of a MaNGA target Given a mangaid, checks the status of a target. Will check if target exists in the NSA catalog (i.e. is a proper target) and checks if target has a corresponding plate-IFU designation (i.e. has been observed). Returns a string status indicating if a target has been observed, has not yet been observed, or is not a valid MaNGA target. Parameters: mangaid (str): The mangaid of the target to check for observed status mode ({'auto', 'drpall', 'db', 'remote', 'local'}): See mode in :func:`mangaid2plateifu` and :func:`get_nsa_data`. source ({'nsa', 'drpall'}): The NSA catalog data source. See source in :func:`get_nsa_data`. drpall (str or None): The drpall file to use. See drpall in :func:`mangaid2plateifu` and :func:`get_nsa_data`. drpver (str or None): The DRP version to use. See drpver in :func:`mangaid2plateifu` and :func:`get_nsa_data`. Returns: A status of "observed", "not yet observed", or "not valid target" ''' # check for plateifu - target has been observed try: plateifu = mangaid2plateifu(mangaid, mode=mode, drpver=drpver, drpall=drpall) except (MarvinError, BrainError) as e: plateifu = None # check if target in NSA catalog - proper manga target try: nsa = get_nsa_data(mangaid, source=source, mode=mode, drpver=drpver, drpall=drpall) except (MarvinError, BrainError) as e: nsa = None # return observed boolean if plateifu and nsa: status = 'observed' elif not plateifu and nsa: status = 'not yet observed' elif not plateifu and not nsa: status = 'not valid target' return status def target_is_observed(mangaid, mode='auto', source='nsa', drpall=None, drpver=None): ''' Check if a MaNGA target has been observed or not See :func:`target_status` for full documentation. Returns: True if the target has been observed. ''' # check the target status status = target_status(mangaid, source=source, mode=mode, drpver=drpver, drpall=drpall) return status == 'observed' def target_is_mastar(plateifu, drpver=None, drpall=None): ''' Check if a target is bright-time MaStar target Uses the local drpall file to check if a plateifu is a MaStar target Parameters: plateifu (str): The plateifu of the target drpver (str): The drpver version to check against drpall (str): The drpall file path Returns: True if it is ''' row = get_drpall_row(plateifu, drpver=drpver, drpall=drpall) return row['srvymode'] == 'APOGEE lead' def get_drpall_table(drpver=None, drpall=None, hdu='MANGA'): ''' Gets the drpall table Gets the drpall table either from cache or loads it. For releases of MPL-8 and up, galaxies are in the MANGA extension, and mastar targets are in the MASTAR extension, specified with the hdu keyword. For MPLs 1-7, there is only one data extension, which is read. Parameters: drpver (str): The DRP release version to load. Defaults to current marvin release drpall (str): The full path to the drpall table. Defaults to current marvin release. hdu (str): The name of the HDU to read in. Default is 'MANGA' Returns: An Astropy Table ''' from marvin import config assert hdu.lower() in ['manga', 'mastar'], 'hdu can either be MANGA or MASTAR' hdu = hdu.upper() # get the drpall file get_drpall_file(drpall=drpall, drpver=drpver) # Loads the drpall table if it was not cached from a previous session. config_drpver, __ = config.lookUpVersions() drpver = drpver if drpver else config_drpver # check for drpver if drpver not in drpTable: drpTable[drpver] = {} # check for hdu hduext = hdu if check_versions(drpver, 'v2_5_3') else 'MANGA' if hdu not in drpTable[drpver]: drpall = drpall if drpall else get_drpall_path(drpver=drpver) data = {hduext: table.Table.read(drpall, hdu=hduext)} drpTable[drpver].update(data) drpall_table = drpTable[drpver][hduext] return drpall_table def get_dapall_table(drpver=None, dapver=None, dapall=None): ''' Gets the dapall table Gets the dapall table either from cache or loads it. For releases of MPL-6 and up. Parameters: drpver (str): The DRP release version to load. Defaults to current marvin release dapall (str): The full path to the dapall table. Defaults to current marvin release. Returns: An Astropy Table ''' from marvin import config # get the dapall file get_dapall_file(dapall=dapall, drpver=drpver, dapver=dapver) # Loads the dapall table if it was not cached from a previous session. config_drpver, config_dapver = config.lookUpVersions(config.release) drpver = drpver if drpver else config_drpver dapver = dapver if dapver else config_dapver # check for dapver if dapver not in dapTable: dapall = dapall if dapall else get_dapall_path(drpver=drpver, dapver=dapver) data = table.Table.read(dapall, hdu=1) dapTable[dapver] = data dapall_table = dapTable[dapver] return dapall_table def get_plates(drpver=None, drpall=None, release=None): ''' Get a list of unique plates from the drpall file Parameters: drpver (str): The DRP release version to load. Defaults to current marvin release drpall (str): The full path to the drpall table. Defaults to current marvin release. release (str): The marvin release Returns: A list of plate ids ''' assert not all([drpver, release]), 'Cannot set both drpver and release ' if release: drpver, __ = marvin.config.lookUpVersions(release) drpall_table = get_drpall_table(drpver=drpver, drpall=drpall) plates = list(set(drpall_table['plate'])) return plates def check_versions(version1, version2): ''' Compate two version ids against each other Checks if version1 is greater than or equal to version2. Parameters: version1 (str): The version to check version2 (str): The version to check against Returns: A boolean indicating if version1 is >= version2 ''' return parse_version(version1) >= parse_version(version2) def get_manga_image(cube=None, drpver=None, plate=None, ifu=None, dir3d=None, local=None, public=None): ''' Get a MaNGA IFU optical PNG image Parameters: cube (Cube): A Marvin Cube instance drpver (str): The drpver version plate (str|int): The plate id ifu (str|int): An IFU designation dir3d (str): The directory for 3d data, either 'stack' or 'mastar' local (bool): If True, return the local file path to the image public (bool): If True, use only DR releases Returns: A url to an IFU MaNGA image ''' # check inputs drpver = cube._drpver if cube else drpver plate = cube.plate if cube else plate ifu = cube.ifu if cube else ifu dir3d = cube.dir3d if cube else dir3d assert all([drpver, plate, ifu]), 'drpver, plate, and ifu must be specified' # create the sdss Path release = cube.release if cube else marvin.config.lookUpRelease(drpver, public_only=public) path = Path(release=release) dir3d = dir3d if dir3d else 'stack' assert dir3d in ['stack', 'mastar'], 'dir3d can only be stack or mastar' if local: img = path.full('mangaimage', drpver=drpver, plate=plate, ifu=ifu, dir3d=dir3d) else: img = path.url('mangaimage', drpver=drpver, plate=plate, ifu=ifu, dir3d=dir3d) return img
bsd-3-clause
cdawei/digbeta
dchen/music/src/models/PCMLC.py
2
12894
import sys import time import numpy as np from sklearn.base import BaseEstimator from scipy.sparse import issparse, isspmatrix_coo from lbfgs import LBFGS, LBFGSError # pip install pylbfgs from joblib import Parallel, delayed VERBOSE = 1 N_JOBS = 3 def risk_pclassification(W, b, X, Y, P, Q, p=1): """ Empirical risk of p-classification loss for multilabel classification Input: - W: current weight matrix, K by D - b: current bias - X: feature matrix, N x D - Y: positive label matrix, N x K - p: constant for p-classification push loss - loss_type: valid assignment is 'example' or 'label' - 'example': compute a loss for each example, by the #positive or #negative labels per example - 'label' : compute a loss for each label, by the #positive or #negative examples per label Output: - risk: empirical risk - db : gradient of bias term - dW : gradients of weights """ assert p > 0 assert Y.dtype == np.bool assert isspmatrix_coo(Y) # scipy.sparse.coo_matrix type N, D = X.shape K = Y.shape[1] assert W.shape == (K, D) # shape = (N, 1) if loss_type == 'example' else (1, K) assert P.shape == Q.shape if P.shape[0] == 1: assert P.shape[1] == K else: assert P.shape == (N, 1) T1 = np.dot(X, W.T) + b T1p = np.zeros((N, K), dtype=np.float) T1p[Y.row, Y.col] = T1[Y.row, Y.col] T1n = T1 - T1p T2 = np.exp(-T1p) T2p = np.zeros((N, K), dtype=np.float) T2p[Y.row, Y.col] = T2[Y.row, Y.col] T2 = T2p * P T3 = np.exp(p * T1n) T3[Y.row, Y.col] = 0 T3 = T3 * Q risk = np.sum(T2 + T3 / p) T4 = T3 - T2 db = np.sum(T4) dW = np.dot(T4.T, X) if np.isnan(risk) or np.isinf(risk): sys.stderr('risk_pclassification(): risk is NaN or inf!\n') sys.exit(0) return risk, db, dW class DataHelper: """ SciPy sparse matrix slicing is slow, as stated here: https://stackoverflow.com/questions/42127046/fast-slicing-and-multiplication-of-scipy-sparse-csr-matrix Profiling confirms this inefficient slicing. This iterator aims to do slicing only once and cache the results. """ def __init__(self, Y, ax=0, batch_size=256): assert ax in [0, 1] assert issparse(Y) self.init = False self.ax = ax self.starts = [] self.ends = [] self.Ys = [] self.Ps = [] self.Qs = [] num = Y.shape[self.ax] bs = num if batch_size > num else batch_size self.n_batches = int((num-1) / bs) + 1 Y = Y.tocsr() if self.ax == 0 else Y.tocsc() for nb in range(self.n_batches): ix_start = nb * bs ix_end = min((nb + 1) * bs, num) Yi = Y[ix_start:ix_end, :] if self.ax == 0 else Y[:, ix_start:ix_end] numPos = Yi.sum(axis=1-self.ax).A.reshape(-1) numNeg = Yi.shape[1-self.ax] - numPos nz_pix = np.nonzero(numPos)[0] # taking care of zeros nz_nix = np.nonzero(numNeg)[0] P = np.zeros_like(numPos, dtype=np.float) Q = np.zeros_like(numNeg, dtype=np.float) P[nz_pix] = 1. / numPos[nz_pix] # P = 1 / numPos Q[nz_nix] = 1. / numNeg[nz_nix] # Q = 1 / numNeg shape = (len(P), 1) if self.ax == 0 else (1, len(P)) self.starts.append(ix_start) self.ends.append(ix_end) self.Ys.append(Yi.tocoo()) self.Ps.append(P.reshape(shape)) self.Qs.append(Q.reshape(shape)) self.init = True def get_data(self): assert self.init is True return self.starts, self.ends, self.Ys, self.Ps, self.Qs def accumulate_risk_label(Wt, bt, X, Y, p, data_helper): assert data_helper is not None assert data_helper.ax == 1 assert Wt.shape == (Y.shape[1], X.shape[1]) starts, ends, Ys, Ps, Qs = data_helper.get_data() num = len(Ys) results = Parallel(n_jobs=N_JOBS)(delayed(risk_pclassification) (Wt[starts[i]:ends[i], :], bt, X, Ys[i], Ps[i], Qs[i], p=p) for i in range(num)) denom = Y.shape[1] risk = 0. db = 0. dW_slices = [] for t in results: risk += t[0] / denom db += t[1] / denom dW_slices.append(t[2] / denom) dW = np.vstack(dW_slices) return risk, db, dW def accumulate_risk_example(Wt, bt, X, Y, p, data_helper): assert data_helper is not None assert data_helper.ax == 0 assert Wt.shape == (Y.shape[1], X.shape[1]) starts, ends, Ys, Ps, Qs = data_helper.get_data() denom = Y.shape[0] risk = 0. db = 0. dW = np.zeros_like(Wt) num = len(Ys) bs = 8 n_batches = int((num-1) / bs) + 1 indices = np.arange(num) for nb in range(n_batches): ixs = nb * bs ixe = min((nb + 1) * bs, num) ix = indices[ixs:ixe] res = Parallel(n_jobs=N_JOBS)(delayed(risk_pclassification) (Wt, bt, X[starts[i]:ends[i], :], Ys[i], Ps[i], Qs[i], p) for i in ix) assert len(res) <= bs for t in res: assert len(t) == 3 risk += t[0] / denom db += t[1] / denom dW += t[2] / denom return risk, db, dW # def accumulate_risk(Wt, bt, X, Y, p, loss, data_helper, verbose=0): # assert loss in ['example', 'label'] # assert data_helper is not None # assert Wt.shape == (Y.shape[1], X.shape[1]) # ax = 0 if loss == 'example' else 1 # assert data_helper.ax == ax # risk = 0. # db = 0. # dW = np.zeros_like(Wt) # nb = 0 # for ix_start, ix_end, Yi, Pi, Qi in zip(*(data_helper.get_data())): # nb += 1 # if verbose > 2: # sys.stdout.write('\r%d / %d' % (nb, data_helper.n_batches)) # sys.stdout.flush() # Xi = X[ix_start:ix_end, :] if ax == 0 else X # Wb = Wt if ax == 0 else Wt[ix_start:ix_end, :] # riski, dbi, dWi = risk_pclassification(Wb, bt, Xi, Yi, Pi, Qi, p=p, loss_type=loss) # assert dWi.shape == Wb.shape # denom = Y.shape[ax] # risk += riski / denom # db += dbi / denom # if ax == 0: # dW += dWi / denom # else: # dW[ix_start:ix_end, :] = dWi / denom # if verbose > 2: # print() # return risk, db, dW def multitask_regulariser(Wt, bt, cliques): assert cliques is not None denom = 0. cost_mt = 0. dW_mt = np.zeros_like(Wt) for clq in cliques: npl = len(clq) if npl < 2: continue denom += npl * (npl - 1) M = -1 * np.ones((npl, npl), dtype=np.float) np.fill_diagonal(M, npl-1) Wu = Wt[clq, :] cost_mt += np.multiply(M, np.dot(Wu, Wu.T)).sum() dW_mt[clq, :] = np.dot(M, Wu) # assume one playlist belongs to only one user cost_mt /= denom dW_mt = dW_mt * 2. / denom return cost_mt, dW_mt def objective(w, dw, X, Y, C1=1, C2=1, C3=1, p=1, loss_type='example', cliques=None, data_helper_example=None, data_helper_label=None, fnpy=None): """ - w : np.ndarray, current weights - dw: np.ndarray, OUTPUT array for gradients of w - cliques: a list of arrays, each array is the indices of playlists of the same user. To require the parameters of label_i and label_j be similar by regularising their diff if entry (i,j) is 1 (i.e. belong to the same user). """ assert loss_type in ['example', 'label', 'both'] assert C1 > 0 assert C2 > 0 assert C3 > 0 assert p > 0 t0 = time.time() N, D = X.shape K = Y.shape[1] assert w.shape[0] == K * D + 1 b = w[0] W = w[1:].reshape(K, D) if loss_type == 'both': risk1, db1, dW1 = accumulate_risk_label(W, b, X, Y, p, data_helper=data_helper_label) risk2, db2, dW2 = accumulate_risk_example(W, b, X, Y, p, data_helper=data_helper_example) risk = risk1 + C2 * risk2 db = db1 + C2 * db2 dW = dW1 + C2 * dW2 elif loss_type == 'label': risk, db, dW = accumulate_risk_label(W, b, X, Y, p, data_helper=data_helper_label) else: risk, db, dW = accumulate_risk_example(W, b, X, Y, p, data_helper=data_helper_example) J = risk + np.dot(W.ravel(), W.ravel()) * 0.5 / C1 dW += W / C1 if cliques is not None: cost_mt, dW_mt = multitask_regulariser(W, b, cliques) J += cost_mt / C3 dW += dW_mt / C3 dw[:] = np.r_[db, dW.ravel()] # in-place assignment if VERBOSE > 0: print('Eval f, g: %.1f seconds used.' % (time.time() - t0)) return J def progress(x, g, f_x, xnorm, gnorm, step, k, ls, *args): """ Report optimization progress. progress: callable(x, g, fx, xnorm, gnorm, step, k, num_eval, *args) If not None, called at each iteration after the call to f with the current values of x, g and f(x), the L2 norms of x and g, the line search step, the iteration number, the number of evaluations at this iteration and args. """ print('Iter {:3d}: f = {:15.9f}, |g| = {:15.9f}, {}'.format(k, f_x, gnorm, time.strftime('%Y-%m-%d %H:%M:%S'))) # save intermediate weights fnpy = args[-1] if fnpy is not None and k > 20 and k % 10 == 0: try: print(fnpy) np.save(fnpy, x, allow_pickle=False) except (OSError, IOError, ValueError): sys.stderr.write('Save weights to .npy file failed\n') class PCMLC(BaseEstimator): """All methods are necessary for a scikit-learn estimator""" def __init__(self, C1=1, C2=1, C3=1, p=1, loss_type='example'): """Initialisation""" assert C1 > 0 assert C2 > 0 assert C3 > 0 assert p > 0 assert loss_type in ['example', 'label', 'both'], \ 'Valid assignment for "loss_type" are: "example", "label", "both".' self.C1 = C1 self.C2 = C2 self.C3 = C3 self.p = p self.loss_type = loss_type self.trained = False def fit(self, X_train, Y_train, user_playlist_indices=None, batch_size=256, verbose=0, w0=None, fnpy=None): assert X_train.shape[0] == Y_train.shape[0] N, D = X_train.shape K = Y_train.shape[1] VERBOSE = verbose # set verbose output, use a global variable in this case if VERBOSE > 0: t0 = time.time() if w0 is None: if fnpy is not None: try: w0 = np.load(fnpy, allow_pickle=False) assert w0.shape[0] == K * D + 1 print('Restore from %s' % fnpy) except (IOError, ValueError): w0 = np.zeros(K * D + 1) else: assert w0.shape[0] == K * D + 1 data_helper_example = None if self.loss_type == 'label' else DataHelper(Y_train, ax=0, batch_size=batch_size) data_helper_label = None if self.loss_type == 'example' else DataHelper(Y_train, ax=1, batch_size=batch_size) try: # f: callable(x, g, *args) # LBFGS().minimize(f, x0, progress=progress, args=args) optim = LBFGS() optim.linesearch = 'wolfe' res = optim.minimize(objective, w0, progress, args=(X_train, Y_train, self.C1, self.C2, self.C3, self.p, self.loss_type, user_playlist_indices, data_helper_example, data_helper_label, fnpy)) self.b = res[0] self.W = res[1:].reshape(K, D) self.trained = True except (LBFGSError, MemoryError) as err: self.trained = False sys.stderr.write('LBFGS failed: {0}\n'.format(err)) sys.stderr.flush() if VERBOSE > 0: print('Training finished in %.1f seconds' % (time.time() - t0)) def decision_function(self, X_test): """Make predictions (score is a real number)""" assert self.trained is True, "Cannot make prediction before training" return np.dot(X_test, self.W.T) + self.b # log of prediction score def predict(self, X_test): return self.decision_function(X_test) # """Make predictions (score is boolean)""" # preds = sigmoid(self.decision_function(X_test)) # return preds >= Threshold # inherit from BaseEstimator instead of re-implement # def get_params(self, deep = True): # def set_params(self, **params):
gpl-3.0
xzh86/scikit-learn
sklearn/ensemble/gradient_boosting.py
126
65552
"""Gradient Boosted Regression Trees This module contains methods for fitting gradient boosted regression trees for both classification and regression. The module structure is the following: - The ``BaseGradientBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ in the concrete ``LossFunction`` used. - ``GradientBoostingClassifier`` implements gradient boosting for classification problems. - ``GradientBoostingRegressor`` implements gradient boosting for regression problems. """ # Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti, # Arnaud Joly # License: BSD 3 clause from __future__ import print_function from __future__ import division from abc import ABCMeta, abstractmethod from time import time import numbers import numpy as np from scipy import stats from .base import BaseEnsemble from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..utils import check_random_state, check_array, check_X_y, column_or_1d from ..utils import check_consistent_length, deprecated from ..utils.extmath import logsumexp from ..utils.fixes import expit, bincount from ..utils.stats import _weighted_percentile from ..utils.validation import check_is_fitted, NotFittedError from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..tree.tree import DecisionTreeRegressor from ..tree._tree import DTYPE, TREE_LEAF from ..tree._tree import PresortBestSplitter from ..tree._tree import FriedmanMSE from ._gradient_boosting import predict_stages from ._gradient_boosting import predict_stage from ._gradient_boosting import _random_sample_mask class QuantileEstimator(BaseEstimator): """An estimator predicting the alpha-quantile of the training targets.""" def __init__(self, alpha=0.9): if not 0 < alpha < 1.0: raise ValueError("`alpha` must be in (0, 1.0) but was %r" % alpha) self.alpha = alpha def fit(self, X, y, sample_weight=None): if sample_weight is None: self.quantile = stats.scoreatpercentile(y, self.alpha * 100.0) else: self.quantile = _weighted_percentile(y, sample_weight, self.alpha * 100.0) def predict(self, X): check_is_fitted(self, 'quantile') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.quantile) return y class MeanEstimator(BaseEstimator): """An estimator predicting the mean of the training targets.""" def fit(self, X, y, sample_weight=None): if sample_weight is None: self.mean = np.mean(y) else: self.mean = np.average(y, weights=sample_weight) def predict(self, X): check_is_fitted(self, 'mean') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.mean) return y class LogOddsEstimator(BaseEstimator): """An estimator predicting the log odds ratio.""" scale = 1.0 def fit(self, X, y, sample_weight=None): # pre-cond: pos, neg are encoded as 1, 0 if sample_weight is None: pos = np.sum(y) neg = y.shape[0] - pos else: pos = np.sum(sample_weight * y) neg = np.sum(sample_weight * (1 - y)) if neg == 0 or pos == 0: raise ValueError('y contains non binary labels.') self.prior = self.scale * np.log(pos / neg) def predict(self, X): check_is_fitted(self, 'prior') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.prior) return y class ScaledLogOddsEstimator(LogOddsEstimator): """Log odds ratio scaled by 0.5 -- for exponential loss. """ scale = 0.5 class PriorProbabilityEstimator(BaseEstimator): """An estimator predicting the probability of each class in the training data. """ def fit(self, X, y, sample_weight=None): if sample_weight is None: sample_weight = np.ones_like(y, dtype=np.float64) class_counts = bincount(y, weights=sample_weight) self.priors = class_counts / class_counts.sum() def predict(self, X): check_is_fitted(self, 'priors') y = np.empty((X.shape[0], self.priors.shape[0]), dtype=np.float64) y[:] = self.priors return y class ZeroEstimator(BaseEstimator): """An estimator that simply predicts zero. """ def fit(self, X, y, sample_weight=None): if np.issubdtype(y.dtype, int): # classification self.n_classes = np.unique(y).shape[0] if self.n_classes == 2: self.n_classes = 1 else: # regression self.n_classes = 1 def predict(self, X): check_is_fitted(self, 'n_classes') y = np.empty((X.shape[0], self.n_classes), dtype=np.float64) y.fill(0.0) return y class LossFunction(six.with_metaclass(ABCMeta, object)): """Abstract base class for various loss functions. Attributes ---------- K : int The number of regression trees to be induced; 1 for regression and binary classification; ``n_classes`` for multi-class classification. """ is_multi_class = False def __init__(self, n_classes): self.K = n_classes def init_estimator(self): """Default ``init`` estimator for loss function. """ raise NotImplementedError() @abstractmethod def __call__(self, y, pred, sample_weight=None): """Compute the loss of prediction ``pred`` and ``y``. """ @abstractmethod def negative_gradient(self, y, y_pred, **kargs): """Compute the negative gradient. Parameters --------- y : np.ndarray, shape=(n,) The target labels. y_pred : np.ndarray, shape=(n,): The predictions. """ def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Update the terminal regions (=leaves) of the given tree and updates the current predictions of the model. Traverses tree and invokes template method `_update_terminal_region`. Parameters ---------- tree : tree.Tree The tree object. X : ndarray, shape=(n, m) The data array. y : ndarray, shape=(n,) The target labels. residual : ndarray, shape=(n,) The residuals (usually the negative gradient). y_pred : ndarray, shape=(n,) The predictions. sample_weight : ndarray, shape=(n,) The weight of each sample. sample_mask : ndarray, shape=(n,) The sample mask to be used. learning_rate : float, default=0.1 learning rate shrinks the contribution of each tree by ``learning_rate``. k : int, default 0 The index of the estimator being updated. """ # compute leaf for each sample in ``X``. terminal_regions = tree.apply(X) # mask all which are not in sample mask. masked_terminal_regions = terminal_regions.copy() masked_terminal_regions[~sample_mask] = -1 # update each leaf (= perform line search) for leaf in np.where(tree.children_left == TREE_LEAF)[0]: self._update_terminal_region(tree, masked_terminal_regions, leaf, X, y, residual, y_pred[:, k], sample_weight) # update predictions (both in-bag and out-of-bag) y_pred[:, k] += (learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0)) @abstractmethod def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Template method for updating terminal regions (=leaves). """ class RegressionLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for regression loss functions. """ def __init__(self, n_classes): if n_classes != 1: raise ValueError("``n_classes`` must be 1 for regression but " "was %r" % n_classes) super(RegressionLossFunction, self).__init__(n_classes) class LeastSquaresError(RegressionLossFunction): """Loss function for least squares (LS) estimation. Terminal regions need not to be updated for least squares. """ def init_estimator(self): return MeanEstimator() def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.mean((y - pred.ravel()) ** 2.0) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * ((y - pred.ravel()) ** 2.0))) def negative_gradient(self, y, pred, **kargs): return y - pred.ravel() def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Least squares does not need to update terminal regions. But it has to update the predictions. """ # update predictions y_pred[:, k] += learning_rate * tree.predict(X).ravel() def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): pass class LeastAbsoluteError(RegressionLossFunction): """Loss function for least absolute deviation (LAD) regression. """ def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.abs(y - pred.ravel()).mean() else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.abs(y - pred.ravel()))) def negative_gradient(self, y, pred, **kargs): """1.0 if y - pred > 0.0 else -1.0""" pred = pred.ravel() return 2.0 * (y - pred > 0.0) - 1.0 def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """LAD updates terminal regions to median estimates. """ terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) diff = y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0) tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight, percentile=50) class HuberLossFunction(RegressionLossFunction): """Huber loss function for robust regression. M-Regression proposed in Friedman 2001. References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. """ def __init__(self, n_classes, alpha=0.9): super(HuberLossFunction, self).__init__(n_classes) self.alpha = alpha self.gamma = None def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred gamma = self.gamma if gamma is None: if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma if sample_weight is None: sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / y.shape[0] else: sq_loss = np.sum(0.5 * sample_weight[gamma_mask] * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * sample_weight[~gamma_mask] * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / sample_weight.sum() return loss def negative_gradient(self, y, pred, sample_weight=None, **kargs): pred = pred.ravel() diff = y - pred if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma residual = np.zeros((y.shape[0],), dtype=np.float64) residual[gamma_mask] = diff[gamma_mask] residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask]) self.gamma = gamma return residual def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) gamma = self.gamma diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) median = _weighted_percentile(diff, sample_weight, percentile=50) diff_minus_median = diff - median tree.value[leaf, 0] = median + np.mean( np.sign(diff_minus_median) * np.minimum(np.abs(diff_minus_median), gamma)) class QuantileLossFunction(RegressionLossFunction): """Loss function for quantile regression. Quantile regression allows to estimate the percentiles of the conditional distribution of the target. """ def __init__(self, n_classes, alpha=0.9): super(QuantileLossFunction, self).__init__(n_classes) assert 0 < alpha < 1.0 self.alpha = alpha self.percentile = alpha * 100.0 def init_estimator(self): return QuantileEstimator(self.alpha) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred alpha = self.alpha mask = y > pred if sample_weight is None: loss = (alpha * diff[mask].sum() + (1.0 - alpha) * diff[~mask].sum()) / y.shape[0] else: loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) + (1.0 - alpha) * np.sum(sample_weight[~mask] * diff[~mask])) / sample_weight.sum()) return loss def negative_gradient(self, y, pred, **kargs): alpha = self.alpha pred = pred.ravel() mask = y > pred return (alpha * mask) - ((1.0 - alpha) * ~mask) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) sample_weight = sample_weight.take(terminal_region, axis=0) val = _weighted_percentile(diff, sample_weight, self.percentile) tree.value[leaf, 0] = val class ClassificationLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for classification loss functions. """ def _score_to_proba(self, score): """Template method to convert scores to probabilities. the does not support probabilites raises AttributeError. """ raise TypeError('%s does not support predict_proba' % type(self).__name__) @abstractmethod def _score_to_decision(self, score): """Template method to convert scores to decisions. Returns int arrays. """ class BinomialDeviance(ClassificationLossFunction): """Binomial deviance loss function for binary classification. Binary classification is a special case; here, we only need to fit one tree instead of ``n_classes`` trees. """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(BinomialDeviance, self).__init__(1) def init_estimator(self): return LogOddsEstimator() def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * np.sum(sample_weight * ((y * pred) - np.logaddexp(0.0, pred)))) def negative_gradient(self, y, pred, **kargs): """Compute the residual (= negative gradient). """ return y - expit(pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. our node estimate is given by: sum(w * (y - prob)) / sum(w * prob * (1 - prob)) we take advantage that: y - prob = residual """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class MultinomialDeviance(ClassificationLossFunction): """Multinomial deviance loss function for multi-class classification. For multi-class classification we need to fit ``n_classes`` trees at each stage. """ is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError("{0:s} requires more than 2 classes.".format( self.__class__.__name__)) super(MultinomialDeviance, self).__init__(n_classes) def init_estimator(self): return PriorProbabilityEstimator() def __call__(self, y, pred, sample_weight=None): # create one-hot label encoding Y = np.zeros((y.shape[0], self.K), dtype=np.float64) for k in range(self.K): Y[:, k] = y == k if sample_weight is None: return np.sum(-1 * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) else: return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) def negative_gradient(self, y, pred, k=0, **kwargs): """Compute negative gradient for the ``k``-th class. """ return y - np.nan_to_num(np.exp(pred[:, k] - logsumexp(pred, axis=1))) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) numerator *= (self.K - 1) / self.K denominator = np.sum(sample_weight * (y - residual) * (1.0 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): return np.nan_to_num( np.exp(score - (logsumexp(score, axis=1)[:, np.newaxis]))) def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class ExponentialLoss(ClassificationLossFunction): """Exponential loss function for binary classification. Same loss as AdaBoost. References ---------- Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007 """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(ExponentialLoss, self).__init__(1) def init_estimator(self): return ScaledLogOddsEstimator() def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() if sample_weight is None: return np.mean(np.exp(-(2. * y - 1.) * pred)) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.exp(-(2 * y - 1) * pred))) def negative_gradient(self, y, pred, **kargs): y_ = -(2. * y - 1.) return y_ * np.exp(y_ * pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] pred = pred.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) y_ = 2. * y - 1. numerator = np.sum(y_ * sample_weight * np.exp(-y_ * pred)) denominator = np.sum(sample_weight * np.exp(-y_ * pred)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = expit(2.0 * score.ravel()) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): return (score.ravel() >= 0.0).astype(np.int) LOSS_FUNCTIONS = {'ls': LeastSquaresError, 'lad': LeastAbsoluteError, 'huber': HuberLossFunction, 'quantile': QuantileLossFunction, 'deviance': None, # for both, multinomial and binomial 'exponential': ExponentialLoss, } INIT_ESTIMATORS = {'zero': ZeroEstimator} class VerboseReporter(object): """Reports verbose output to stdout. If ``verbose==1`` output is printed once in a while (when iteration mod verbose_mod is zero).; if larger than 1 then output is printed for each update. """ def __init__(self, verbose): self.verbose = verbose def init(self, est, begin_at_stage=0): # header fields and line format str header_fields = ['Iter', 'Train Loss'] verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}'] # do oob? if est.subsample < 1: header_fields.append('OOB Improve') verbose_fmt.append('{oob_impr:>16.4f}') header_fields.append('Remaining Time') verbose_fmt.append('{remaining_time:>16s}') # print the header line print(('%10s ' + '%16s ' * (len(header_fields) - 1)) % tuple(header_fields)) self.verbose_fmt = ' '.join(verbose_fmt) # plot verbose info each time i % verbose_mod == 0 self.verbose_mod = 1 self.start_time = time() self.begin_at_stage = begin_at_stage def update(self, j, est): """Update reporter with new iteration. """ do_oob = est.subsample < 1 # we need to take into account if we fit additional estimators. i = j - self.begin_at_stage # iteration relative to the start iter if (i + 1) % self.verbose_mod == 0: oob_impr = est.oob_improvement_[j] if do_oob else 0 remaining_time = ((est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)) if remaining_time > 60: remaining_time = '{0:.2f}m'.format(remaining_time / 60.0) else: remaining_time = '{0:.2f}s'.format(remaining_time) print(self.verbose_fmt.format(iter=j + 1, train_score=est.train_score_[j], oob_impr=oob_impr, remaining_time=remaining_time)) if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0): # adjust verbose frequency (powers of 10) self.verbose_mod *= 10 class BaseGradientBoosting(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Abstract base class for Gradient Boosting. """ @abstractmethod def __init__(self, loss, learning_rate, n_estimators, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, init, subsample, max_features, random_state, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False): self.n_estimators = n_estimators self.learning_rate = learning_rate self.loss = loss self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.subsample = subsample self.max_features = max_features self.max_depth = max_depth self.init = init self.random_state = random_state self.alpha = alpha self.verbose = verbose self.max_leaf_nodes = max_leaf_nodes self.warm_start = warm_start self.estimators_ = np.empty((0, 0), dtype=np.object) def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, criterion, splitter, random_state): """Fit another stage of ``n_classes_`` trees to the boosting model. """ assert sample_mask.dtype == np.bool loss = self.loss_ original_y = y for k in range(loss.K): if loss.is_multi_class: y = np.array(original_y == k, dtype=np.float64) residual = loss.negative_gradient(y, y_pred, k=k, sample_weight=sample_weight) # induce regression tree on residuals tree = DecisionTreeRegressor( criterion=criterion, splitter=splitter, max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_features=self.max_features, max_leaf_nodes=self.max_leaf_nodes, random_state=random_state) if self.subsample < 1.0: # no inplace multiplication! sample_weight = sample_weight * sample_mask.astype(np.float64) tree.fit(X, residual, sample_weight=sample_weight, check_input=False) # update tree leaves loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) # add tree to ensemble self.estimators_[i, k] = tree return y_pred def _check_params(self): """Check validity of parameters and raise ValueError if not valid. """ if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than 0 but " "was %r" % self.n_estimators) if self.learning_rate <= 0.0: raise ValueError("learning_rate must be greater than 0 but " "was %r" % self.learning_rate) if (self.loss not in self._SUPPORTED_LOSS or self.loss not in LOSS_FUNCTIONS): raise ValueError("Loss '{0:s}' not supported. ".format(self.loss)) if self.loss == 'deviance': loss_class = (MultinomialDeviance if len(self.classes_) > 2 else BinomialDeviance) else: loss_class = LOSS_FUNCTIONS[self.loss] if self.loss in ('huber', 'quantile'): self.loss_ = loss_class(self.n_classes_, self.alpha) else: self.loss_ = loss_class(self.n_classes_) if not (0.0 < self.subsample <= 1.0): raise ValueError("subsample must be in (0,1] but " "was %r" % self.subsample) if self.init is not None: if isinstance(self.init, six.string_types): if self.init not in INIT_ESTIMATORS: raise ValueError('init="%s" is not supported' % self.init) else: if (not hasattr(self.init, 'fit') or not hasattr(self.init, 'predict')): raise ValueError("init=%r must be valid BaseEstimator " "and support both fit and " "predict" % self.init) if not (0.0 < self.alpha < 1.0): raise ValueError("alpha must be in (0.0, 1.0) but " "was %r" % self.alpha) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": # if is_classification if self.n_classes_ > 1: max_features = max(1, int(np.sqrt(self.n_features))) else: # is regression max_features = self.n_features elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features))) else: raise ValueError("Invalid value for max_features: %r. " "Allowed string values are 'auto', 'sqrt' " "or 'log2'." % self.max_features) elif self.max_features is None: max_features = self.n_features elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if 0. < self.max_features <= 1.: max_features = max(int(self.max_features * self.n_features), 1) else: raise ValueError("max_features must be in (0, n_features]") self.max_features_ = max_features def _init_state(self): """Initialize model state and allocate model state data structures. """ if self.init is None: self.init_ = self.loss_.init_estimator() elif isinstance(self.init, six.string_types): self.init_ = INIT_ESTIMATORS[self.init]() else: self.init_ = self.init self.estimators_ = np.empty((self.n_estimators, self.loss_.K), dtype=np.object) self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64) # do oob? if self.subsample < 1.0: self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64) def _clear_state(self): """Clear the state of the gradient boosting model. """ if hasattr(self, 'estimators_'): self.estimators_ = np.empty((0, 0), dtype=np.object) if hasattr(self, 'train_score_'): del self.train_score_ if hasattr(self, 'oob_improvement_'): del self.oob_improvement_ if hasattr(self, 'init_'): del self.init_ def _resize_state(self): """Add additional ``n_estimators`` entries to all attributes. """ # self.n_estimators is the number of additional est to fit total_n_estimators = self.n_estimators if total_n_estimators < self.estimators_.shape[0]: raise ValueError('resize with smaller n_estimators %d < %d' % (total_n_estimators, self.estimators_[0])) self.estimators_.resize((total_n_estimators, self.loss_.K)) self.train_score_.resize(total_n_estimators) if (self.subsample < 1 or hasattr(self, 'oob_improvement_')): # if do oob resize arrays or create new if not available if hasattr(self, 'oob_improvement_'): self.oob_improvement_.resize(total_n_estimators) else: self.oob_improvement_ = np.zeros((total_n_estimators,), dtype=np.float64) def _is_initialized(self): return len(getattr(self, 'estimators_', [])) > 0 def fit(self, X, y, sample_weight=None, monitor=None): """Fit the gradient boosting model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. monitor : callable, optional The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of ``_fit_stages`` as keyword arguments ``callable(i, self, locals())``. If the callable returns ``True`` the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting. Returns ------- self : object Returns self. """ # if not warmstart - clear the estimator state if not self.warm_start: self._clear_state() # Check input X, y = check_X_y(X, y, dtype=DTYPE) n_samples, self.n_features = X.shape if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float32) else: sample_weight = column_or_1d(sample_weight, warn=True) check_consistent_length(X, y, sample_weight) y = self._validate_y(y) random_state = check_random_state(self.random_state) self._check_params() if not self._is_initialized(): # init state self._init_state() # fit initial model - FIXME make sample_weight optional self.init_.fit(X, y, sample_weight) # init predictions y_pred = self.init_.predict(X) begin_at_stage = 0 else: # add more estimators to fitted model # invariant: warm_start = True if self.n_estimators < self.estimators_.shape[0]: raise ValueError('n_estimators=%d must be larger or equal to ' 'estimators_.shape[0]=%d when ' 'warm_start==True' % (self.n_estimators, self.estimators_.shape[0])) begin_at_stage = self.estimators_.shape[0] y_pred = self._decision_function(X) self._resize_state() # fit the boosting stages n_stages = self._fit_stages(X, y, y_pred, sample_weight, random_state, begin_at_stage, monitor) # change shape of arrays after fit (early-stopping or additional ests) if n_stages != self.estimators_.shape[0]: self.estimators_ = self.estimators_[:n_stages] self.train_score_ = self.train_score_[:n_stages] if hasattr(self, 'oob_improvement_'): self.oob_improvement_ = self.oob_improvement_[:n_stages] return self def _fit_stages(self, X, y, y_pred, sample_weight, random_state, begin_at_stage=0, monitor=None): """Iteratively fits the stages. For each stage it computes the progress (OOB, train score) and delegates to ``_fit_stage``. Returns the number of stages fit; might differ from ``n_estimators`` due to early stopping. """ n_samples = X.shape[0] do_oob = self.subsample < 1.0 sample_mask = np.ones((n_samples, ), dtype=np.bool) n_inbag = max(1, int(self.subsample * n_samples)) loss_ = self.loss_ # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # init criterion and splitter criterion = FriedmanMSE(1) splitter = PresortBestSplitter(criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) if self.verbose: verbose_reporter = VerboseReporter(self.verbose) verbose_reporter.init(self, begin_at_stage) # perform boosting iterations i = begin_at_stage for i in range(begin_at_stage, self.n_estimators): # subsampling if do_oob: sample_mask = _random_sample_mask(n_samples, n_inbag, random_state) # OOB score before adding this stage old_oob_score = loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask]) # fit next stage of trees y_pred = self._fit_stage(i, X, y, y_pred, sample_weight, sample_mask, criterion, splitter, random_state) # track deviance (= loss) if do_oob: self.train_score_[i] = loss_(y[sample_mask], y_pred[sample_mask], sample_weight[sample_mask]) self.oob_improvement_[i] = ( old_oob_score - loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask])) else: # no need to fancy index w/ no subsampling self.train_score_[i] = loss_(y, y_pred, sample_weight) if self.verbose > 0: verbose_reporter.update(i, self) if monitor is not None: early_stopping = monitor(i, self, locals()) if early_stopping: break return i + 1 def _make_estimator(self, append=True): # we don't need _make_estimator raise NotImplementedError() def _init_decision_function(self, X): """Check input and compute prediction of ``init``. """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, call `fit`" " before making predictions`.") if X.shape[1] != self.n_features: raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features, X.shape[1])) score = self.init_.predict(X).astype(np.float64) return score def _decision_function(self, X): # for use in inner loop, not raveling the output in single-class case, # not doing input validation. score = self._init_decision_function(X) predict_stages(self.estimators_, X, self.learning_rate, score) return score @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples]. """ X = check_array(X, dtype=DTYPE, order="C") score = self._decision_function(X) if score.shape[1] == 1: return score.ravel() return score def _staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ X = check_array(X, dtype=DTYPE, order="C") score = self._init_decision_function(X) for i in range(self.estimators_.shape[0]): predict_stage(self.estimators_, i, X, self.learning_rate, score) yield score.copy() @deprecated(" and will be removed in 0.19") def staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ for dec in self._staged_decision_function(X): # no yield from in Python2.X yield dec @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") total_sum = np.zeros((self.n_features, ), dtype=np.float64) for stage in self.estimators_: stage_sum = sum(tree.feature_importances_ for tree in stage) / len(stage) total_sum += stage_sum importances = total_sum / len(self.estimators_) return importances def _validate_y(self, y): self.n_classes_ = 1 if y.dtype.kind == 'O': y = y.astype(np.float64) # Default implementation return y class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin): """Gradient Boosting for classification. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage ``n_classes_`` regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced. Read more in the :ref:`User Guide <gradient_boosting>`. Parameters ---------- loss : {'deviance', 'exponential'}, optional (default='deviance') loss function to be optimized. 'deviance' refers to deviance (= logistic regression) for classification with probabilistic outputs. For loss 'exponential' gradient boosting recovers the AdaBoost algorithm. learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. init : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K] The collection of fitted sub-estimators. ``loss_.K`` is 1 for binary classification, otherwise n_classes. See also -------- sklearn.tree.DecisionTreeClassifier, RandomForestClassifier AdaBoostClassifier References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('deviance', 'exponential') def __init__(self, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False): super(GradientBoostingClassifier, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start) def _validate_y(self, y): self.classes_, y = np.unique(y, return_inverse=True) self.n_classes_ = len(self.classes_) return y def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples]. """ X = check_array(X, dtype=DTYPE, order="C") score = self._decision_function(X) if score.shape[1] == 1: return score.ravel() return score def staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ for dec in self._staged_decision_function(X): # no yield from in Python2.X yield dec def predict(self, X): """Predict class for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y: array of shape = ["n_samples] The predicted values. """ score = self.decision_function(X) decisions = self.loss_._score_to_decision(score) return self.classes_.take(decisions, axis=0) def staged_predict(self, X): """Predict class at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for score in self._staged_decision_function(X): decisions = self.loss_._score_to_decision(score) yield self.classes_.take(decisions, axis=0) def predict_proba(self, X): """Predict class probabilities for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Raises ------ AttributeError If the ``loss`` does not support probabilities. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ score = self.decision_function(X) try: return self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) def predict_log_proba(self, X): """Predict class log-probabilities for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Raises ------ AttributeError If the ``loss`` does not support probabilities. Returns ------- p : array of shape = [n_samples] The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) return np.log(proba) def staged_predict_proba(self, X): """Predict class probabilities at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ try: for score in self._staged_decision_function(X): yield self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin): """Gradient Boosting for regression. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function. Read more in the :ref:`User Guide <gradient_boosting>`. Parameters ---------- loss : {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls') loss function to be optimized. 'ls' refers to least squares regression. 'lad' (least absolute deviation) is a highly robust loss function solely based on order information of the input variables. 'huber' is a combination of the two. 'quantile' allows quantile regression (use `alpha` to specify the quantile). learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. alpha : float (default=0.9) The alpha-quantile of the huber loss function and the quantile loss function. Only if ``loss='huber'`` or ``loss='quantile'``. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. `init` : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : ndarray of DecisionTreeRegressor, shape = [n_estimators, 1] The collection of fitted sub-estimators. See also -------- DecisionTreeRegressor, RandomForestRegressor References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile') def __init__(self, loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False): super(GradientBoostingRegressor, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, alpha=alpha, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start) def predict(self, X): """Predict regression target for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted values. """ X = check_array(X, dtype=DTYPE, order="C") return self._decision_function(X).ravel() def staged_predict(self, X): """Predict regression target at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for y in self._staged_decision_function(X): yield y.ravel()
bsd-3-clause
mespe/SolRad
collection/compare_cimis_cfsr/compare_levels.py
1
2960
import pandas as pd import matplotlib.pyplot as plt from netCDF4 import Dataset import netCDF4 def load_CFSR_data(): my_example_nc_file = 'RES.nc' # latitude, longitude = (39.5, -122) fh = Dataset(my_example_nc_file, mode='r') print(fh.variables.keys()) print(help(fh.variables['time'])) print(fh.variables['time'].name) ####time = fh['time'][:] ####print(time) times = fh.variables['time'] time_np = netCDF4.num2date(times[:],times.units) -pd.offsets.Hour(8) #print(time_np.shape) variables = {"SHTFL_L1_Avg_1" : "Sensible heat flux", "DSWRF_L1_Avg_1" : "Downward shortwave radiation flux", "CSDSF_L1_Avg_1" : "Clear sky downward solar flux", "DSWRF_L1_Avg_1" : "Downward shortwave radiation flux", "DLWRF_L1_Avg_1" : "Downward longwave radiation flux", "CSULF_L1_Avg_1" : "Clear sky upward longwave flux", "GFLUX_L1_Avg_1" : "Ground heat flux"} #downward_solar_flux_np = fh.variables["DSWRF_L1_Avg_1"][:,0,0] + fh.variables["DLWRF_L1_Avg_1"][:,0,0]- fh.variables["USWRF_L1_Avg_1"][:,0,0] - fh.variables["ULWRF_L1_Avg_1"][:,0,0] downward_solar_flux_ground = fh.variables["CSDSF_L1_Avg_1"][:, 0, 0] #(fh.variables["SHTFL_L1_Avg_1"][:,0,0] + fh.variables["LHTFL_L1_Avg_1"][:,0,0] + #fh.variables["DSWRF_L1_Avg_1"][:,0,0] + fh.variables["DLWRF_L1_Avg_1"][:,0,0] - #fh.variables["USWRF_L1_Avg_1"][:,0,0] - fh.variables["ULWRF_L1_Avg_1"][:,0,0] + #fh.variables["GFLUX_L1_Avg_1"][:,0,0] ) downward_solar_flux_atm = fh.variables["DSWRF_L8_Avg_1"][:, 0, 0] #print(downward_solar_flux_np.shape) df = pd.DataFrame({'datetime': time_np, 'solar rad': downward_solar_flux_ground}) #plt.plot(df['time'][:100], df['solar'][:100]) # save to a pickle file df.to_pickle('pes_ground_sf.pkl') #'CSDSF_L1_Avg_1' df = pd.DataFrame({'datetime': time_np, 'solar rad': downward_solar_flux_atm}) df.to_pickle('pes_atm_sf.pkl') for key in fh.variables.keys(): variable = fh.variables[key] #variable = fh.variables[key][:] print(variable) print() def compare(): ground = pd.read_pickle('pes_ground_sf.pkl') atm = pd.read_pickle('pes_atm_sf.pkl') plt.plot(ground['datetime'][:1500], ground['solar rad'][:1500], label = "gournd", alpha = 0.5) plt.plot(atm['datetime'][:1500], atm['solar rad'][:1500], label = "atm", alpha = 0.5) plt.legend() #for i in range(10): # print(cfsr['datetime'][i], cimis['datetime'][i]) #print(cimis['datetime'][i]) #load_CFSR_data() compare()
mit
Tastalian/pymanoid
pymanoid/body.py
3
24049
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2015-2020 Stephane Caron <[email protected]> # # This file is part of pymanoid <https://github.com/stephane-caron/pymanoid>. # # pymanoid is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # pymanoid is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # pymanoid. If not, see <http://www.gnu.org/licenses/>. import openravepy from numpy import array, dot, eye, hstack, ndarray, vstack, zeros from .misc import matplotlib_to_rgb, norm from .sim import get_openrave_env from .transformations import crossmat, rotation_matrix_from_rpy, rpy_from_quat class Body(object): """ Base class for rigid bodies. Wraps OpenRAVE's KinBody type. Parameters ---------- rave_body : openravepy.KinBody OpenRAVE body to wrap. pos : array, shape=(3,), optional Initial position in inertial frame. rpy : array, shape=(3,), optional Initial orientation in inertial frame. pose : array, shape=(7,), optional Initial pose. Supersedes ``pos`` and ``rpy`` if they are provided at the same time. color : char, optional Color code in matplotlib convention ('b' for blue, 'g' for green, ...). visible : bool, optional Visibility in the GUI. """ count = 0 def __init__(self, rave_body, pos=None, rpy=None, pose=None, color=None, visible=True): self.color = color self.rave = rave_body if not rave_body.GetName(): self.set_name("%s%s" % (type(self).__name__, Body.count)) Body.count += 1 if pos is not None: self.set_pos(pos) if rpy is not None: self.set_rpy(rpy) if pose is not None: self.set_pose(pose) if color is not None: self.set_color(color) if not visible: self.hide() def __str__(self): return "pymanoid.Body('%s')" % self.name def set_color(self, color): """ Set the color of the rigid body. Parameters ---------- color : tuple or string RGB tuple, or color code in matplotlib convention. """ if isinstance(color, str): color = matplotlib_to_rgb(color) for link in self.rave.GetLinks(): for geom in link.GetGeometries(): geom.SetAmbientColor(color) geom.SetDiffuseColor(color) self.color = color def set_name(self, name): """ Set body name in OpenRAVE scope. name : string Body name. """ self.rave.SetName(name) def set_transparency(self, transparency): """ Set the transparency of the rigid body. Parameters ---------- transparency : double, optional Transparency value from 0 (opaque) to 1 (invisible). """ for link in self.rave.GetLinks(): for geom in link.GetGeometries(): geom.SetTransparency(transparency) def show(self): """Make the body visible.""" self.rave.SetVisible(True) def hide(self): """Make the body invisible.""" self.rave.SetVisible(False) @property def index(self): """ OpenRAVE index of the body. Notes ----- This index is notably used to compute jacobians and hessians. """ return self.rave.GetIndex() @property def name(self): """Body name.""" return str(self.rave.GetName()) @property def T(self): """ Homogeneous coordinates of the rigid body. These coordinates describe the orientation and position of the rigid body by the 4 x 4 transformation matrix .. math:: T = \\left[ \\begin{array}{cc} R & p \\\\ 0_{1 \\times 3} & 1 \\end{array} \\right] where `R` is a `3 x 3` rotation matrix and `p` is the vector of position coordinates. Notes ----- More precisely, `T` is the transformation matrix *from* the body frame *to* the world frame: if :math:`\\tilde{p}_\\mathrm{body} = [x\\ y\\ z\\ 1]` denotes the homogeneous coordinates of a point in the body frame, then the homogeneous coordinates of this point in the world frame are :math:`\\tilde{p}_\\mathrm{world} = T \\tilde{p}_\\mathrm{body}`. """ return self.rave.GetTransform() @property def transform(self): """ Homogeneous coordinates of the rigid body. These coordinates describe the orientation and position of the rigid body by the 4 x 4 transformation matrix .. math:: T = \\left[ \\begin{array}{cc} R & p \\\\ 0_{1 \\times 3} & 1 \\end{array} \\right] where `R` is a `3 x 3` rotation matrix and `p` is the vector of position coordinates. Notes ----- More precisely, `T` is the transformation matrix *from* the body frame *to* the world frame: if :math:`\\tilde{p}_\\mathrm{body} = [x\\ y\\ z\\ 1]` denotes the homogeneous coordinates of a point in the body frame, then the homogeneous coordinates of this point in the world frame are :math:`\\tilde{p}_\\mathrm{world} = T \\tilde{p}_\\mathrm{body}`. """ return self.T @property def pose(self): """ Body pose as a 7D quaternion + position vector. The pose vector :math:`[q_w\\,q_x\\,q_y\\,q_z\\,x\\,y\\,z]` consists of a quaternion :math:`q = [q_w\\,q_x\\,q_y\\,q_z]` (with the real term :math:`q_w` coming first) for the body orientation, followed by the coordinates :math:`p = [x\\,y\\,z]` in the world frame. """ pose = self.rave.GetTransformPose() if pose[0] < 0: # convention: cos(alpha) > 0 # this convention enforces Slerp shortest path pose[:4] *= -1 return pose @property def R(self): """Rotation matrix `R` from local to world coordinates.""" return self.T[0:3, 0:3] @property def rotation_matrix(self): """Rotation matrix `R` from local to world coordinates.""" return self.R @property def p(self): """Position coordinates `[x y z]` in the world frame.""" return self.T[0:3, 3] @property def pos(self): """Position coordinates `[x y z]` in the world frame.""" return self.p @property def x(self): """`x`-coordinate in the world frame.""" return self.p[0] @property def y(self): """`y`-coordinate in the world frame.""" return self.p[1] @property def z(self): """`z`-coordinate in the world frame.""" return self.p[2] @property def t(self): """Tangent vector directing the `x`-axis of the body frame.""" return self.T[0:3, 0] @property def b(self): """Binormal vector directing the `y`-axis of the body frame.""" return self.T[0:3, 1] @property def n(self): """Normal vector directing the `z`-axis of the body frame.""" return self.T[0:3, 2] @property def normal(self): """Normal vector directing the `z`-axis of the body frame.""" return self.T[0:3, 2] @property def quat(self): """Quaternion of the rigid body orientation.""" return self.pose[0:4] @property def rpy(self): """ Roll-pitch-yaw angles. They correspond to Euleur angles for the sequence (1, 2, 3). See [Diebel06]_ for details. """ return rpy_from_quat(self.quat) @property def roll(self): """Roll angle of the body orientation.""" return self.rpy[0] @property def pitch(self): """Pitch angle of the body orientation.""" return self.rpy[1] @property def yaw(self): """Yaw angle of the body orientation.""" return self.rpy[2] def set_transform(self, T): """ Set homogeneous coordinates of the rigid body. Parameters ---------- T : array, shape=(4, 4) Transform matrix. """ self.rave.SetTransform(T) def set_pos(self, pos): """ Set the position of the body in the world frame. Parameters ---------- pos : array, shape=(3,) 3D vector of position coordinates. """ T = self.T.copy() T[:3, 3] = pos self.set_transform(T) def set_rotation_matrix(self, R): """ Set the orientation of the rigid body. Recall that this orientation is described by the rotation matrix `R` *from* the body frame *to* the world frame. Parameters ---------- R : (3, 3) array Rotation matrix. """ T = self.T.copy() T[:3, :3] = R self.set_transform(T) def set_x(self, x): """ Set the `x`-coordinate of the body in the world frame. Parameters ---------- x : scalar New `x`-coordinate. """ T = self.T.copy() T[0, 3] = x self.set_transform(T) def set_y(self, y): """ Set the `y`-coordinate of the body in the world frame. Parameters ---------- y : scalar New `y`-coordinate. """ T = self.T.copy() T[1, 3] = y self.set_transform(T) def set_z(self, z): """ Set the `z`-coordinate of the body in the world frame. Parameters ---------- z : scalar New `z`-coordinate. """ T = self.T.copy() T[2, 3] = z self.set_transform(T) def set_rpy(self, rpy): """ Set the roll-pitch-yaw angles of the body orientation. Parameters ---------- rpy : scalar triplet Triplet `(r, p, y)` of roll-pitch-yaw angles. """ T = self.T.copy() T[0:3, 0:3] = rotation_matrix_from_rpy(rpy) self.set_transform(T) def set_roll(self, roll): """ Set the roll angle of the body orientation. Parameters ---------- roll : scalar Roll angle in [rad]. """ return self.set_rpy([roll, self.pitch, self.yaw]) def set_pitch(self, pitch): """ Set the pitch angle of the body orientation. Parameters ---------- pitch : scalar Pitch angle in [rad]. """ return self.set_rpy([self.roll, pitch, self.yaw]) def set_yaw(self, yaw): """ Set the yaw angle of the body orientation. Parameters ---------- yaw : scalar Yaw angle in [rad]. """ return self.set_rpy([self.roll, self.pitch, yaw]) def set_pose(self, pose): """ Set the 7D pose of the body orientation. Parameters ---------- pose : (7,) array Pose of the body, i.e. quaternion + position in world frame. """ T = openravepy.matrixFromPose(pose) self.set_transform(T) def set_quat(self, quat): """ Set the quaternion of the body orientation. Parameters ---------- quat : (4,) array Quaternion in (w, x, y, z) format. """ pose = self.pose.copy() pose[0:4] = quat self.set_pose(pose) def translate(self, translation): """ Apply a translation to the body. Parameters ---------- translation : (3,) array Offset to apply to the position (world coordinates) of the body. """ self.set_pos(self.p + translation) def remove(self): """ Remove body from OpenRAVE environment. """ env = get_openrave_env() with env: env.Remove(self.rave) def __del__(self): """ Add body removal to garbage collection step (effective). """ try: self.remove() except Exception: # __del__ exceptions are ignored pass def apply_twist(self, v, omega, dt): """ Apply a twist :math:`[v\\ \\omega]` defined in the local coordinate frame. Parameters ---------- v : (3,) array Linear velocity in local frame. omega : (3,) array Angular velocity in local frame. dt : scalar Duration of twist application in [s]. """ self.set_pos(self.p + v * dt) self.set_rotation_matrix(self.R + dot(crossmat(omega), self.R) * dt) def dist(self, point): """ Distance from the body frame origin to another point. Parameters ---------- point : array or Point Point to compute the distance to. """ if isinstance(point, list): point = array(point) if isinstance(point, ndarray): return norm(point - self.p) return norm(point.p - self.p) @property def adjoint_matrix(self): """ Adjoint matrix converting wrenches in the local frame :math:`\\cal L` to the inertial frame :math:`\\cal W`, that is the matrix :math:`{}^{\\cal W}A_{\\cal L}` such that: .. math:: {}^{\\cal W}w = {}^{\\cal W}A_{\\cal L} {}^{\\cal L} w Returns ------- A : array Adjoint matrix. """ return vstack([ hstack([self.R, eye(3)]), hstack([dot(crossmat(self.p), self.R), self.R])]) class Manipulator(Body): """ Manipulators are special bodies with an end-effector property. Parameters ---------- manipulator : openravepy.KinBody OpenRAVE manipulator object. pos : array, shape=(3,), optional Initial position in inertial frame. rpy : array, shape=(3,), optional Initial orientation in inertial frame. pose : array, shape=(7,), optional Initial pose. Supersedes ``pos`` and ``rpy`` if they are provided at the same time. color : char, optional Color code in matplotlib convention ('r' for red, 'b' for blue, etc.). visible : bool, optional Visibility in the GUI. shape : (scalar, scalar), optional Dimensions (half-length, half-width) of a contact patch in [m]. friction : scalar, optional Static friction coefficient for potential contacts. """ def __init__(self, manipulator, pos=None, rpy=None, pose=None, color=None, visible=True, shape=None, friction=None): super(Manipulator, self).__init__( manipulator, pos=pos, rpy=rpy, pose=pose, color=color, visible=visible) self.end_effector = manipulator.GetEndEffector() self.friction = friction self.shape = shape self.wrench = None def get_contact(self, pos=None, shape=None): """ Get contact located at the current manipulator pose. Parameters ---------- pos : (3,) array, optional Override manipulator position with this one. shape : (scalar, scalar), optional Dimensions (half-length, half-width) of contact patch in [m]. Returns ------- contact : Contact Contact located at manipulator pose. """ from contact import Contact pose = self.pose.copy() if pos is not None: pose[4:] = pos shape = self.shape if shape is None else shape if shape is None: raise Exception("Please provide a shape for the contact area") return Contact( shape, pose=pose, friction=self.friction, link=self) @property def force(self): """ Resultant of contact forces applied on the effector (if defined). Coordinates are given in the end-effector frame. """ if self.wrench is None: return None return self.wrench[0:3] @property def index(self): """ Index used in Jacobian and Hessian computations. """ return self.end_effector.GetIndex() @property def moment(self): """ Moment of contact forces applied on the effector (if defined). Coordinates are given in the end-effector frame. """ if self.wrench is None: return None return self.wrench[3:6] class Box(Body): """ Rectangular box. Parameters ---------- X : scalar Box half-length in [m]. Y : scalar Box half-width in [m]. Z : scalar Box half-height in [m]. pos : array, shape=(3,) Initial position in the world frame. rpy : array, shape=(3,) Initial orientation in the world frame. pose : array, shape=(7,) Initial pose in the world frame. color : char Color letter in ['r', 'g', 'b']. visible : bool, optional Visibility in the GUI. dZ : scalar, optional Shift in box normal coordinates used to make Contact slabs. """ def __init__(self, X, Y, Z, pos=None, rpy=None, pose=None, color='r', visible=True, dZ=0.): aabb = [0., 0., dZ, X, Y, Z] env = get_openrave_env() with env: box = openravepy.RaveCreateKinBody(env, '') box.InitFromBoxes(array([array(aabb)]), True) super(Box, self).__init__( box, pos=pos, rpy=rpy, pose=pose, color=color, visible=visible) env.Add(box, True) class Cube(Box): """ Cube. Parameters ---------- size : scalar Half-length of a side of the cube in [m]. pos : array, shape=(3,) Initial position in the world frame. rpy : array, shape=(3,) Initial orientation in the world frame. pose : array, shape=(7,) Initial pose in the world frame. color : char Color letter in ['r', 'g', 'b']. visible : bool, optional Visibility in the GUI. """ def __init__(self, size, pos=None, rpy=None, pose=None, color='r', visible=True): super(Cube, self).__init__( size, size, size, pos=pos, rpy=rpy, pose=pose, color=color, visible=visible) class Point(Cube): """ Points represented by cubes with a default size. Parameters ---------- pos : array, shape=(3,) Initial position in the world frame. vel : array, shape=(3,), optional Initial velocity in the world frame. accel : array, shape=(3,), optional Initial acceleration in the world frame. size : scalar, optional Half-length of a side of the cube in [m]. color : char Color letter in ['r', 'g', 'b']. visible : bool, optional Visibility in the GUI. """ def __init__(self, pos, vel=None, accel=None, size=0.01, color='r', visible=True): super(Point, self).__init__( size, pos=pos, color=color, visible=visible) self.__pd = zeros(3) if vel is None else array(vel) self.__pdd = zeros(3) if accel is None else array(accel) def copy(self, color='r', visible=True): """ Copy constructor. Parameters ---------- color : char, optional Color of the copy, in ['r', 'g', 'b']. visible : bool, optional Should the copy be visible? """ return Point(self.p, self.pd, color=color, visible=visible) @property def pd(self): """Point velocity.""" return self.__pd.copy() @property def xd(self): """Point velocity along x-axis.""" return self.__pd[0] @property def yd(self): """Point velocity along y-axis.""" return self.__pd[1] @property def zd(self): """Point velocity along z-axis.""" return self.__pd[2] def set_vel(self, pd): """ Update the point velocity. Parameters ---------- pd : array, shape=(3,) Velocity coordinates in the world frame. """ self.__pd = array(pd) @property def pdd(self): """Point acceleration.""" return self.__pdd.copy() @property def xdd(self): """Point acceleration along x-axis.""" return self.__pdd[0] @property def ydd(self): """Point acceleration along y-axis.""" return self.__pdd[1] @property def zdd(self): """Point acceleration along z-axis.""" return self.__pdd[2] def set_accel(self, pdd): """ Update the point acceleration. Parameters ---------- pdd : array, shape=(3,) Acceleration coordinates in the world frame. """ self.__pdd = array(pdd) def integrate_constant_accel(self, pdd, dt): """ Apply Euler integration for a constant acceleration. Parameters ---------- pdd : array, shape=(3,) Point acceleration in the world frame. dt : scalar Duration in [s]. """ self.set_pos(self.p + (self.pd + .5 * pdd * dt) * dt) self.set_vel(self.pd + pdd * dt) self.set_accel(pdd) def integrate_constant_jerk(self, pddd, dt): """ Apply Euler integration for a constant jerk. Parameters ---------- pddd : array, shape=(3,) Point jerk in the world frame. dt : scalar Duration in [s]. """ self.set_pos(self.p + dt * ( self.pd + .5 * dt * (self.pdd + dt * pddd / 3.))) self.set_vel(self.pd + dt * (self.pdd + dt * pddd / 2.)) self.set_accel(self.pdd + dt * pddd) class PointMass(Point): """ Point with a mass property and a size proportional to it. Parameters ---------- pos : (3,) array Initial position in the world frame. mass : scalar Total mass in [kg]. vel : (3,) array, optional Initial velocity in the world frame. color : char, optional Color letter in ['r', 'g', 'b']. visible : bool, optional Visibility in the GUI. size : scalar, optional Half-length of a side of the CoM cube handle, in [m]. """ def __init__(self, pos, mass, vel=None, color='r', visible=True, size=None): if size is None: size = max(5e-3, 6e-4 * mass) super(PointMass, self).__init__( pos, vel=vel, size=size, color=color, visible=visible) self.mass = mass def copy(self, color='r', visible=True): """ Copy constructor. Parameters ---------- color : char, optional Color of the copy, in ['r', 'g', 'b']. visible : bool, optional Should the copy be visible? """ return PointMass( self.p, self.mass, self.pd, color=color, visible=visible) @property def momentum(self): """Linear momentum in the world frame.""" return self.mass * self.pd
gpl-3.0
AntonSever/umat
endpoints/advertiser_report_log.py
1
1518
# -*- coding: utf-8 -*- from pandas import read_csv from .advertiser_report import AdvertiserReport from .params.filter import Field from .params.v3 import Params from .service.export import ( Export, MatExportError ) from .service.util import print_bold class AdvertiserReportLog(AdvertiserReport): def __init__(self, api_key, advertiser_id, export_limit=2000000, export_delay=30, export_timeout=1500): super(AdvertiserReportLog, self).__init__(api_key) self.advertiser_id = advertiser_id self.export_limit = export_limit self.export_delay = export_delay self.export_timeout = export_timeout self.params = Params(api_key) self.params.filter = Field('test_profile_id').is_null() self.export = Export( self.export_url, self.params, self.export_limit, self.export_delay, self.export_timeout ) def get_dataframe(self): df = read_csv(self.export.csv_url, parse_dates=True) df_len = len(df.index) if __debug__: print_bold('DataFrame length: {}'.format(df_len)) if df_len >= self.export_limit: raise MatExportError( 'Number of results exceeds the limit. ' 'The data are incomplete. ' 'Increase the limit parameter or request data for a lesser period.' ) return df
mit
shusenl/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
njuwangchen/TravelRec
backend/hack.py
1
15425
# coding: utf-8 # In[1]: import requests, json from math import radians, cos, sin, asin, sqrt from datetime import datetime import random import time import cPickle as pickle # import xgboost as xgb # import pandas as pd # In[2]: # REQUEST POINT OF INTEREST def requestPoints(city_name): search_type = "points-of-interest/yapq-search-text" number = 10 params = "city_name=%s&number_of_images=1&number_of_results=%d" % (city_name, number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #requestPoints("Chicago") # In[3]: # REQUEST FLIGHT def requestFlights(origin, dest, start_date, end_date, budget): search_type = "flights/low-fare-search" number = 5 params = "origin=%s&destination=%s&departure_date=%s&return_date=%s&max_price=%d&currency=USD&adults=1&non_stop=true&number_of_results=%d" % (origin, dest, start_date, end_date, budget, number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #requestFlights("BOS", "CHI", "2016-06-01", "2016-06-05", 10000) # In[4]: # REQUEST HOTELS NEAR THE AIRPORT def requestAirportHotels(dest, start_date, end_date, budget): search_type = "hotels/search-airport" number = 10 day = abs((datetime.strptime(start_date, "%Y-%m-%d") - datetime.strptime(end_date, "%Y-%m-%d")).days) params = "location=%s&check_in=%s&check_out=%s&max_rate=%f&number_of_results=%d&currency=USD" % (dest, start_date, end_date, budget/float(day), number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #requestAirportHotels("BOS", "2016-06-01", "2016-06-05", 10000) # In[5]: # REQUEST GEO HOTELS def requestGeoHotels(latitude, longitude, radius, start_date, end_date, budget): search_type = "hotels/search-circle" number = 10 day = abs((datetime.strptime(start_date, "%Y-%m-%d") - datetime.strptime(end_date, "%Y-%m-%d")).days) params = "latitude=%f&longitude=%f&radius=%f&check_in=%s&check_out=%s&currency=USD&max_rate=%f&number_of_results=%d" % (latitude, longitude, radius, start_date, end_date, budget/float(day), number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #print requestAirportHotels(36.0857, -115.1541, 42, "2016-06-14", "2016-06-16", 200) # In[6]: # REQUEST TOP DEST def requestTopDests(origin, date, number): search_type = "travel-intelligence/top-destinations" params = "period=%s&origin=%s&number_of_results=%d" % (date, origin, number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #print requestTopDests("BOS", "2015-01", 10) # In[7]: # REQUEST TOP SEARCHES def requestTopSearches(origin, date, number): search_type = "travel-intelligence/top-searches" params = "period=%s&origin=%s&country=US&number_of_results=%d" % (date, origin, number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #print requestTopSearches("BOS", "2015-01", 10) # In[8]: # REQUEST INSPIRATION FLIGHT def requestInspirFlight(origin, date0, date1, budget, number): search_type = "flights/inspiration-search" params = "origin=%s&departure_date=%s--%s&max_price=%s" % (origin, date0, date1, budget) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) js = json.loads(sess.get(url).text) return js #print requestInspirFlight("BOS", "2016-06-14", "2016-06-16", 300, 10) # In[9]: # REQUEST CODE TO CITY def requestCodeToCity(city_code): if (city_code == "WAS"): return "Washington" url = "%s/location/%s?apikey=%s" % (base, city_code, apikey) js = json.loads(sess.get(url).text) #print "city_code = ", city_code return js["airports"][0]["city_name"] #print requestCodeToCity("BOS") # In[10]: # REQUEST POINT OF INTEREST def requestPoints(city_name): search_type = "points-of-interest/yapq-search-text" number = 10 params = "city_name=%s&number_of_images=1&number_of_results=%d" % (city_name, number) url = "%s/%s?apikey=%s&%s" % (base, search_type, apikey, params) #print "city_name = ", city_name js = json.loads(sess.get(url).text) return js #requestPoints("Chicago") # In[11]: # GENERATE CANDIDATE LIST def candidatesList(origin, date0, date1, budget): candidates = set() l = requestTopDests(origin, "2015-" + date0.split("-")[1], 10) if (l.has_key("results") == True): candidates = candidates | {x["destination"] for x in l["results"]} l = requestTopSearches(origin, "2015-" + date0.split("-")[1], 5) if (l.has_key("results") == True): candidates = candidates | {x["destination"] for x in l["results"]} l = requestInspirFlight(origin, date0, date1, budget, 10) if (l.has_key("results") == True): candidates = candidates | {x["destination"] for x in l["results"][:15]} candidates &= support_code return candidates #print candidatesList("BOS", "2016-06-01", "2016-06-17", 1000)"2015-" + date0.split("-")[1] # In[12]: # CALCULATE DISTANCE def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r # In[13]: # CALCULATE SCORES - linear method # def calulateScoreLinear(feature): def calulateScore(feature): feature['average_rate'] = feature['average_rate'] / 5 # 0.2 feature['central_dst'] = 1 - feature['central_dst'] / 50 # 0.2 feature['flight_price'] = 1 - feature['flight_price'] # 0.1 feature['hotel_price'] = 1 - feature['hotel_price'] # 0.1 feature['total_price'] = 1 - feature['average_rate'] # 0.3 feature['nonstop'] = feature['nonstop'] # 0.1 return feature['average_rate'] * 0.2 + feature['central_dst'] * 0.2 + feature['flight_price'] * 0.2 + feature['hotel_price'] * 0.1 + feature['total_price'] * 0.3 + feature['nonstop'] * 0.1 #return random.random() # In[14]: ''' # CALCULATE SCORES - xgb model # def calulateScoreXGB(feature): def calulateScore(feature): feature['average_rate'] = feature['average_rate'] / 5 # 0.2 feature['central_dst'] = 1 - feature['central_dst'] / 50 # 0.2 feature['flight_price'] = 1 - feature['flight_price'] # 0.1 feature['hotel_price'] = 1 - feature['hotel_price'] # 0.1 feature['total_price'] = 1 - feature['average_rate'] # 0.3 feature['nonstop'] = feature['nonstop'] # 0.1 feature_list = [feature] testData = pd.DataFrame(feature_list) predicted = xg.predict(xgb.DMatrix(testData[select_features])) return predicted[0] #return random.random() ''' # In[15]: def getScoreList(origin, start_date, end_date, budget): dest_list = candidatesList(origin, start_date, end_date, budget) print "dest_list = ", dest_list dest_score_list = [] for dest in dest_list: print "current dest = ", dest # REQUEST POINTS OF INTERTES point_js = poi_dict[dest] if (point_js.has_key("points_of_interest") == False or len(point_js["points_of_interest"]) == 0): print "num of points_of_interest = 0" continue else: print "num of points_of_interest = ", len(point_js["points_of_interest"]) l = reduce(lambda (n1, r1, lo1, la1),(n2, r2, lo2, la2): (n1 + n2, r1 + r2, lo1 + lo2, la1 + la2), map(lambda x: (1, float(x["grades"]["yapq_grade"]), float(x["location"]["longitude"]), float(x["location"]["latitude"])), point_js["points_of_interest"])) average_rate = l[1] / l[0] average_lo = l[2] / l[0] average_la = l[3] / l[0] # REQUEST HOTEL INFO hotel_js = requestGeoHotels(average_la, average_lo, 50, start_date, end_date, budget) if (hotel_js.has_key("results") == False or len(hotel_js["results"]) == 0): print "num of hotels = 0" continue else: print "num of hotels = ", len(hotel_js["results"]) # REQUEST FLIGHT INFO flight_js = requestFlights(origin, dest, start_date, end_date, budget) if (flight_js.has_key("results") == False or len(flight_js["results"]) == 0): print "num of flight = 0" continue else: print "num of flight = ", len(flight_js["results"]) score_list = [] for flight in flight_js["results"]: flightID = "origin=%s,dest=%s,start_date=%s,end_date=%s,outbound=%s,inbound=%s" % (origin, dest, start_date, end_date, flight["itineraries"][0]["outbound"]["flights"][0]["aircraft"], flight["itineraries"][0]["inbound"]["flights"][0]["aircraft"]) #print "flightID =", flightID flight_dict[flightID] = flight for hotel in hotel_js["results"]: hotelID = "dest=%s,start_date=%s,end_date=%s,property_code=%s" % (dest, start_date, end_date, hotel["property_code"]) #print "hotelID =", hotelID hotel_dict[hotelID] = hotel feature = {} # flight feature feature["flight_price"] = float(flight["fare"]["total_price"]) / budget if (len(flight["itineraries"][0]["inbound"]["flights"]) != 1 or len(flight["itineraries"][0]["outbound"]["flights"]) != 1): feature["nonstop"] = 0 else: feature["nonstop"] = 1 # hotel feature feature["hotel_price"] = float(hotel["total_price"]["amount"]) / budget # point feature feature["average_rate"] = average_rate # combination feature feature["total_price"] = 1 - (feature["flight_price"] + feature["hotel_price"]) if feature["total_price"] > 1: continue feature["central_dst"] = 50 - haversine(average_lo, average_la, float(hotel["location"]["longitude"]), float(hotel["location"]["latitude"])) # Calculate Score score = calulateScore(feature) score_list.append((score, flightID, hotelID)) #print "feature = ", feature #print "score = ", score score_list = sorted(score_list, key=lambda score: score[0], reverse = True) if (len(score_list) > 0): # print "score_list = ", score_list ret = (score_list[0][0], dest, [score_list[i] for i in range(min(3, len(score_list)))]) # print ret dest_score_list.append(ret) #return 0 else: print "Warning : len(score_list) == 0 ?" print "Warning : num of points_of_interest = ", len(point_js["points_of_interest"]) print "Warning : num of hotels = ", len(hotel_js["results"]) print "Warning : num of flight = ", len(flight_js["results"]) dest_score_list = sorted(dest_score_list, key=lambda score: score[0], reverse = True) return dest_score_list # In[16]: def formatRet(report): ret = {} ret["name"] = requestCodeToCity(report[1]) routes = [] for i in report[2]: curr = {} curr["flight"] = flight_dict[i[1]] curr["hotel"] = hotel_dict[i[2]] curr["rating"] = i[0] routes.append(curr) ret["routes"] = routes ret["POIs"] = poi_dict[report[1]]["points_of_interest"] return ret #ret = formatRet(dest_score_list[0]) #print ret # In[17]: def learnPOIList(): # Precessing for just one time for city_name in support_name: if city_to_code_dict.has_key(city_name) == False: continue city_code = city_to_code_dict[city_name] poi_dict[city_code] = requestPoints(city_name) print city_code, " - ", city_name while (poi_dict[city_code].has_key("points_of_interest") == False or len(poi_dict[city_code]["points_of_interest"]) == 0): print "Warning: no interest? dest = ", city_code print poi_dict[city_code] time.sleep(2) poi_dict[city_code] = requestPoints(requestCodeToCity(city_code)) pickle.dump(poi_dict, open("/var/www/demo/poi_dict.pkl","wb")) # In[18]: def preprocessing(): # BASIC API STAFF global apikey, sess, base apikey = "oz0gEI6TQenhtwNMnpI8UU7tYZfHvbAa" sess = requests.Session() base = "https://api.sandbox.amadeus.com/v1.2/" # CITY_TO_CODE_DICT global city_to_code_dict city_to_code_dict = {} with open('/var/www/demo/code.txt') as f: for l in f: curr = l.decode("utf-8").split() city_to_code_dict[" ".join(curr[:-2])] = curr[-2] f.close() # SUPPORT_DICT global support_name, support_code with open("/var/www/demo/cities.txt") as f: support_name = {x[:-1].decode("utf-8") for x in f} support_code = {x for x in map(lambda x : city_to_code_dict[x] if city_to_code_dict.has_key(x) else x, support_name)} f.close() # FUNCTIONAL DICT global flight_dict, hotel_dict, poi_dict flight_dict, hotel_dict = {}, {} # learnPOIList() poi_dict = pickle.load(open("/var/www/demo/poi_dict.pkl","rb")) # XGB Model # global xg, select_features # xg = pickle.load(open("/var/www/demo/xg_model.pkl","rb")) # select_features = ['average_rate', 'central_dst', 'flight_price', 'hotel_price', 'total_price', 'nonstop'] # In[19]: # responseRequest API def responseRequest(city_name, start_date, end_date, budget): # Error Check city_name = city_name.strip().capitalize() if city_to_code_dict.has_key(city_name) == False: return {"results" : [], "message" : "We are sorry that we don't support this city"} if datetime.strptime(start_date, "%Y-%m-%d") >= datetime.strptime(end_date, "%Y-%m-%d"): return {"results" : [], "message" : "Start date should be earlier than end date"} # Get messages origin = city_to_code_dict[city_name] print "origin = ", origin dest_score_list = getScoreList(origin, start_date, end_date, budget) ret = [formatRet(i) for i in dest_score_list] response = {"results" : ret[:3]} return response #responseRequest("CHI", "2016-06-25", "2016-06-28", 1000) # In[20]: preprocessing() # In[21]: # t = responseRequest("Boston", "2016-06-25", "2016-06-28", 1000) # t # In[22]: # responseRequest("Chicago", "2016-06-25", "2016-03-28", 1000) # In[ ]:
apache-2.0
pompiduskus/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
ZenDevelopmentSystems/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
gotomypc/scikit-learn
sklearn/cluster/tests/test_spectral.py
262
7954
"""Testing for Spectral Clustering methods""" from sklearn.externals.six.moves import cPickle dumps, loads = cPickle.dumps, cPickle.loads import numpy as np from scipy import sparse from sklearn.utils import check_random_state from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_warns_message from sklearn.cluster import SpectralClustering, spectral_clustering from sklearn.cluster.spectral import spectral_embedding from sklearn.cluster.spectral import discretize from sklearn.metrics import pairwise_distances from sklearn.metrics import adjusted_rand_score from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel from sklearn.datasets.samples_generator import make_blobs def test_spectral_clustering(): S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]]) for eigen_solver in ('arpack', 'lobpcg'): for assign_labels in ('kmeans', 'discretize'): for mat in (S, sparse.csr_matrix(S)): model = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed', eigen_solver=eigen_solver, assign_labels=assign_labels ).fit(mat) labels = model.labels_ if labels[0] == 0: labels = 1 - labels assert_array_equal(labels, [1, 1, 1, 0, 0, 0, 0]) model_copy = loads(dumps(model)) assert_equal(model_copy.n_clusters, model.n_clusters) assert_equal(model_copy.eigen_solver, model.eigen_solver) assert_array_equal(model_copy.labels_, model.labels_) def test_spectral_amg_mode(): # Test the amg mode of SpectralClustering centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) try: from pyamg import smoothed_aggregation_solver amg_loaded = True except ImportError: amg_loaded = False if amg_loaded: labels = spectral_clustering(S, n_clusters=len(centers), random_state=0, eigen_solver="amg") # We don't care too much that it's good, just that it *worked*. # There does have to be some lower limit on the performance though. assert_greater(np.mean(labels == true_labels), .3) else: assert_raises(ValueError, spectral_embedding, S, n_components=len(centers), random_state=0, eigen_solver="amg") def test_spectral_unknown_mode(): # Test that SpectralClustering fails with an unknown mode set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, eigen_solver="<unknown>") def test_spectral_unknown_assign_labels(): # Test that SpectralClustering fails with an unknown assign_labels set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, assign_labels="<unknown>") def test_spectral_clustering_sparse(): X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) S = rbf_kernel(X, gamma=1) S = np.maximum(S - 1e-4, 0) S = sparse.coo_matrix(S) labels = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed').fit(S).labels_ assert_equal(adjusted_rand_score(y, labels), 1) def test_affinities(): # Note: in the following, random_state has been selected to have # a dataset that yields a stable eigen decomposition both when built # on OSX and Linux X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01 ) # nearest neighbors affinity sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', random_state=0) assert_warns_message(UserWarning, 'not fully connected', sp.fit, X) assert_equal(adjusted_rand_score(y, sp.labels_), 1) sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0) labels = sp.fit(X).labels_ assert_equal(adjusted_rand_score(y, labels), 1) X = check_random_state(10).rand(10, 5) * 10 kernels_available = kernel_metrics() for kern in kernels_available: # Additive chi^2 gives a negative similarity matrix which # doesn't make sense for spectral clustering if kern != 'additive_chi2': sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) # raise error on unknown affinity sp = SpectralClustering(n_clusters=2, affinity='<unknown>') assert_raises(ValueError, sp.fit, X) def test_discretize(seed=8): # Test the discretize using a noise assignment matrix random_state = np.random.RandomState(seed) for n_samples in [50, 100, 150, 500]: for n_class in range(2, 10): # random class labels y_true = random_state.random_integers(0, n_class, n_samples) y_true = np.array(y_true, np.float) # noise class assignment matrix y_indicator = sparse.coo_matrix((np.ones(n_samples), (np.arange(n_samples), y_true)), shape=(n_samples, n_class + 1)) y_true_noisy = (y_indicator.toarray() + 0.1 * random_state.randn(n_samples, n_class + 1)) y_pred = discretize(y_true_noisy, random_state) assert_greater(adjusted_rand_score(y_true, y_pred), 0.8)
bsd-3-clause
bourque/acsql
paper/plot_file_sizes.py
1
2400
#! /usr/bin/env python """Create plot that shows the size of the filesystem over time. Authors ------- Matthew Bourque Use --- This script is intended to be executed via the command line as such: :: python plot_file_sizes.py Dependencies ------------ - ``matplotlib`` """ import datetime import matplotlib.pyplot as plt def main(): """The main function.""" # Read in the data with open('figures/file_sizes.dat', 'r') as f: data = f.readlines() data = [item.strip().split(',') for item in data] dates = [item[0] for item in data] sizes = [float(item[1]) for item in data] detectors = [item[2] for item in data] # Sort the data by date dates, sizes, detectors = (list(x) for x in zip(*sorted(zip(dates, sizes, detectors)))) # Convert the dates to datetime objects dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates] # Get list of aggregate sizes agg_sizes_all, agg_sizes_wfc, agg_sizes_hrc, agg_sizes_sbc = [], [], [], [] agg_size_all, agg_size_wfc, agg_size_hrc, agg_size_sbc = 0, 0, 0, 0 dates_all, dates_wfc, dates_hrc, dates_sbc = [], [], [], [] for size, date, detector in zip(sizes, dates, detectors): dates_all.append(date) agg_size_all += size agg_sizes_all.append(agg_size_all) if detector == 'WFC': dates_wfc.append(date) agg_size_wfc += size agg_sizes_wfc.append(agg_size_wfc) if detector == 'HRC': dates_hrc.append(date) agg_size_hrc += size agg_sizes_hrc.append(agg_size_hrc) if detector == 'SBC': dates_sbc.append(date) agg_size_sbc += size agg_sizes_sbc.append(agg_size_sbc) # Plot the data plt.rcParams['font.size'] = 14 plt.style.use('bmh') fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111) ax.set_title('Total Size of acsql Filesystem') ax.set_ylabel('Size (TB)') ax.plot(dates_all, agg_sizes_all, linewidth=3, label='Total') ax.plot(dates_wfc, agg_sizes_wfc, linewidth=3, label='WFC') ax.plot(dates_hrc, agg_sizes_hrc, linewidth=3, label='HRC') ax.plot(dates_sbc, agg_sizes_sbc, linewidth=3, label='SBC') plt.legend() plt.tight_layout() plt.savefig('figures/filesystem_size.png') if __name__ == '__main__': main()
bsd-3-clause
pandyag/trading-with-python
lib/bats.py
78
3458
#------------------------------------------------------------------------------- # Name: BATS # Purpose: get data from BATS exchange # # Author: jev # # Created: 17/08/2013 # Copyright: (c) Jev Kuznetsov 2013 # Licence: BSD #------------------------------------------------------------------------------- import urllib import re import pandas as pd import datetime as dt import zipfile import StringIO from extra import ProgressBar import os import yahooFinance as yf from string import Template import numpy as np def fileName2date( fName): '''convert filename to date''' name = os.path.splitext(fName)[0] m = re.findall('\d+',name)[0] return dt.datetime.strptime(m,'%Y%m%d').date() def date2fileName(date): return 'BATSshvol%s.txt.zip' % date.strftime('%Y%m%d') def downloadUrl(date): s = Template('http://www.batstrading.com/market_data/shortsales/$year/$month/$fName-dl?mkt=bzx') url = s.substitute(fName=date2fileName(date), year=date.year, month='%02d' % date.month) return url class BATS_Data(object): def __init__(self, dataDir): ''' create class. dataDir: directory to which files are downloaded ''' self.dataDir = dataDir self.shortRatio = None self._checkDates() def _checkDates(self): ''' update list of available dataset dates''' self.dates = [] for fName in os.listdir(self.dataDir): self.dates.append(fileName2date(fName)) def _missingDates(self): ''' check for missing dates based on spy data''' print 'Getting yahoo data to determine business dates... ', spy = yf.getHistoricData('SPY',sDate = (2010,1,1)) busDates = [d.date() for d in spy.index ] print 'Date range: ', busDates[0] ,'-', busDates[-1] missing = [] for d in busDates: if d not in self.dates: missing.append(d) return missing def updateDb(self): print 'Updating database' missing = self._missingDates() for i, date in enumerate(missing): source = downloadUrl(date) dest = os.path.join(self.dataDir,date2fileName(date)) if not os.path.exists(dest): print 'Downloading [%i/%i]' %(i,len(missing)), source urllib.urlretrieve(source, dest) else: print 'x', print 'Update done.' self._checkDates() def loadDate(self,date): fName = os.path.join(self.dataDir, date2fileName(date)) zipped = zipfile.ZipFile(fName) # open zip file lines = zipped.read(zipped.namelist()[0]) # read first file from to lines buf = StringIO.StringIO(lines) # create buffer df = pd.read_csv(buf,sep='|',index_col=1,parse_dates=False,dtype={'Date':object,'Short Volume':np.float32,'Total Volume':np.float32}) s = df['Short Volume']/df['Total Volume'] s.name = dt.datetime.strptime(df['Date'][-1],'%Y%m%d') return s def loadData(self): ''' load data from zip files ''' data = [] pb = ProgressBar(len(self.dates)-1) for idx, date in enumerate(self.dates): data.append(self.loadDate(date)) pb.animate(idx) self.shortRatio = pd.DataFrame(data) return self.shortRatio
bsd-3-clause
Karel-van-de-Plassche/QLKNN-develop
tests/gen2_test_files/filtering.py
1
12452
from __future__ import division import re from itertools import product from IPython import embed import pandas as pd import numpy as np import gc particle_vars = [u'pf', u'df', u'vt', u'vr', u'vc'] heat_vars = [u'ef'] momentum_vars = [u'vf'] store_format = 'table' #'vti_GB', 'dfi_GB', 'vci_GB', # 'pfi_GB', 'efi_GB', # # 'efe_GB', 'vce_GB', 'pfe_GB', # 'vte_GB', 'dfe_GB' #'chie', 'ven', 'ver', 'vec'] def regime_filter(data, leq, less): bool = pd.Series(np.full(len(data), True, dtype='bool'), index=data.index) bool &= (data['efe_GB'] < less) & (data['efi_GB'] < less) bool &= (data['efe_GB'] >= leq) & (data['efi_GB'] >= leq) data = data.loc[bool] return data div_bounds = { 'efeITG_GB_div_efiITG_GB': (0.05, 1.5), 'pfeITG_GB_div_efiITG_GB': (0.05, 2), 'efeTEM_GB_div_efiTEM_GB': (0.02, 0.5), 'pfeTEM_GB_div_efiTEM_GB': (0.01, 0.8) } def div_filter(store): # This is hand-picked: # 0.05 < efeITG/efiITG < 1.5 # 0.05 < efiTEM/efeTEM < 2 # 0.02 < abs(pfeITG/efiITG) < 0.5 # 0.01 < abs(pfeTEM/efiTEM) < 0.8 for group in store: if isinstance(store, pd.HDFStore): group = group[1:] pre = len(store[group]) se = store[group] if group in div_bounds: low, high = div_bounds[group] embed() else: continue store[group] = se.loc[(low < se) & (se < high)] print('{:.2f}% of sane {!s:<9} points inside div bounds'.format(np.sum(~store[group].isnull()) / pre * 100, group)) def stability_filter(data): for col in data.columns: splitted = re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col) if splitted[0] not in heat_vars + particle_vars + momentum_vars: print('skipping {!s}'.format(col)) continue if splitted[2] == 'TEM': gam_filter = 'tem' elif splitted[2] == 'ITG': gam_filter = 'itg' elif splitted[2] == 'ETG': gam_filter = 'elec' elif splitted[0] in heat_vars and splitted[1] == 'e': gam_filter = 'multi' else: gam_filter = 'ion' pre = len(data[col]) if gam_filter == 'ion': data[col] = data[col].loc[data['gam_leq_GB'] != 0] elif gam_filter == 'elec': data[col] = data[col].loc[data['gam_great_GB'] != 0] elif gam_filter == 'multi': data[col] = data[col].loc[(data['gam_leq_GB'] != 0) | (data['gam_great_GB'] != 0)] elif gam_filter == 'tem': data[col] = data[col].loc[data['TEM']] elif gam_filter == 'itg': data[col] = data[col].loc[data['ITG']] print('{:.2f}% of sane {!s:<9} points unstable at {!s:<5} scale'.format(np.sum(~data[col].isnull()) / pre * 100, col, gam_filter)) return data def filter_negative(data): bool = pd.Series(np.full(len(data), True, dtype='bool'), index=data.index) for col in data.columns: splitted = re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col) if splitted[0] in heat_vars: bool &= (data[col] >= 0) elif splitted[0] in particle_vars: pass return bool def filter_ck(data, bound): return (np.abs(data['cki']) < bound) & (np.abs(data['cke']) < bound) def filter_totsep(data, septot_factor, startlen=None): if startlen is None: startlen = len(data) bool = pd.Series(np.full(len(data), True, dtype='bool'), index=data.index) for type, spec in product(particle_vars + heat_vars, ['i', 'e']): totname = type + spec + '_GB' if totname != 'vre_GB' and totname != 'vri_GB': if type in particle_vars or spec == 'i': # no ETG seps = ['ITG', 'TEM'] else: # All modes seps = ['ETG', 'ITG', 'TEM'] for sep in seps: sepname = type + spec + sep + '_GB' #sepflux += data[sepname] bool &= np.abs(data[sepname]) <= septot_factor * np.abs(data[totname]) print('After filter {!s:<6} {!s:<6} {:.2f}% left'.format('septot', totname, 100*np.sum(bool)/startlen)) return bool def filter_ambipolar(data, bound): return (data['absambi'] < bound) & (data['absambi'] > 1/bound) def filter_femtoflux(data, bound): fluxes = [col for col in data if len(re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col)) > 1 if re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col)[0] in particle_vars + heat_vars + momentum_vars] absflux = data[fluxes].abs() return ~((absflux < bound) & (absflux != 0)).any(axis=1) def sanity_filter(data, ck_bound, septot_factor, ambi_bound, femto_bound, startlen=None): if startlen is None: startlen = len(data) # Throw away point if negative heat flux data = data.loc[filter_negative(data)] print('After filter {!s:<13} {:.2f}% left'.format('negative', 100*len(data)/startlen)) gc.collect() # Throw away point if cke or cki too high data = data.loc[filter_ck(data, ck_bound)] print('After filter {!s:<13} {:.2f}% left'.format('ck', 100*len(data)/startlen)) gc.collect() # Throw away point if sep flux is way higher than tot flux data = data.loc[filter_totsep(data, septot_factor, startlen=startlen)] print('After filter {!s:<13} {:.2f}% left'.format('septot', 100*len(data)/startlen)) gc.collect() data = data.loc[filter_ambipolar(data, ambi_bound)] print('After filter {!s:<13} {:.2f}% left'.format('ambipolar', 100*len(data)/startlen)) gc.collect() data = data.loc[filter_femtoflux(data, femto_bound)] print('After filter {!s:<13} {:.2f}% left'.format('femtoflux', 100*len(data)/startlen)) gc.collect() # Alternatively: #data = data.loc[filter_negative(data) & filter_ck(data, ck_bound) & filter_totsep(data, septot_factor)] return data #for col in data.columns: # splitted = re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col) # if splitted[0] in particle_vars + heat_vars: # if splitted[2] != '': # data.loc[] def separate_to_store(input, data, const, storename): store = pd.HDFStore(storename) store['input'] = input.loc[data.index] for col in data: splitted = re.compile('(?=.*)(.)(|ITG|ETG|TEM)_(GB|SI|cm)').split(col) if splitted[0] in heat_vars + particle_vars + momentum_vars + ['gam_leq_GB', 'gam_less_GB']: store.put(col, data[col].dropna(), format=store_format) store.put('constants', const) store.close() def create_divsum(store): for group in store: if isinstance(store, pd.HDFStore): group = group[1:] splitted = re.compile('(?=.*)(.)(|ITG|ETG|TEM)(_GB|SI|cm)').split(group) if splitted[0] in heat_vars and splitted[1] == 'i' and len(splitted) == 5: group2 = splitted[0] + 'e' + ''.join(splitted[2:]) sets = [('_'.join([group, 'plus', group2]), store[group] + store[group2]), ('_'.join([group, 'div', group2]), store[group] / store[group2]), ('_'.join([group2, 'div', group]), store[group2] / store[group]) ] elif splitted[0] == 'pf' and splitted[1] == 'e' and len(splitted) == 5: group2 = 'efi' + ''.join(splitted[2:]) group3 = 'efe' + ''.join(splitted[2:]) sets = [ ('_'.join([group, 'plus', group2, 'plus', group3]), store[group] + store[group2] + store[group3]), ('_'.join([group, 'div', group2]), store[group] / store[group2]), ('_'.join([group, 'div', group3]), store[group] / store[group3]) ] else: continue for name, set in sets: set.name = name if isinstance(store, pd.HDFStore): store.put(set.name, set, format=store_format) else: store[set.name] = set return store def filter_9D_to_7D(input, Zeffx=1, Nustar=1e-3): if len(input.columns) != 9: print("Warning! This function assumes 9D input with ['Ati', 'Ate', 'An', 'qx', 'smag', 'x', 'Ti_Te', 'Zeffx', 'Nustar']") idx = input.index[( np.isclose(input['Zeffx'], Zeffx, atol=1e-5, rtol=1e-3) & np.isclose(input['Nustar'], Nustar, atol=1e-5, rtol=1e-3) )] return idx def filter_7D_to_4D(input, Ate=6.5, An=2, x=0.45): if len(input.columns) != 7: print("Warning! This function assumes 9D input with ['Ati', 'Ate', 'An', 'qx', 'smag', 'x', 'Ti_Te']") idx = input.index[( np.isclose(input['Ate'], Ate, atol=1e-5, rtol=1e-3) & np.isclose(input['An'], An, atol=1e-5, rtol=1e-3) & np.isclose(input['x'], x, atol=1e-5, rtol=1e-3) )] return idx def split_input(input, const): idx = {} consts = {9: const.copy(), 7: const.copy(), 4: const.copy()} idx[7] = filter_9D_to_7D(input) inputs = {9: input} idx[9] = input.index inputs[7] = input.loc[idx[7]] for name in ['Zeffx', 'Nustar']: consts[7][name] = inputs[7].head(1)[name] inputs[7].drop(['Zeffx', 'Nustar'], axis='columns', inplace=True) idx[4] = filter_7D_to_4D(inputs[7]) inputs[4] = inputs[7].loc[idx[4]] for name in ['Ate', 'An', 'x']: consts[4][name] = inputs[4].head(1)[name] inputs[4].drop(['Ate', 'An', 'x'], axis='columns', inplace=True) return idx, inputs, consts def split_sane(input, data, const): idx, inputs, consts = split_input(input, const) for dim in [7, 4]: print('splitting', dim) store = pd.HDFStore('sane_' + 'gen2_' + str(dim) + 'D_nions0_flat' + '_filter' + str(filter_num) + '.h5') store['/megarun1/flattened'] = data.loc[idx[dim]] store['/megarun1/input'] = inputs[dim] store['/megarun1/constants'] = consts[dim] store.close() def split_subsets(input, data, const, frac=0.1): idx, inputs, consts = split_input(input, const) rand_index = pd.Int64Index(np.random.permutation(input.index)) sep_index = int(frac * len(rand_index)) idx['test'] = rand_index[:sep_index] idx['training'] = rand_index[sep_index:] for dim, set in product([9, 7, 4], ['test', 'training']): print(dim, set) store = pd.HDFStore(set + '_' + 'gen2_' + str(dim) + 'D_nions0_flat.h5') store['/megarun1/flattened'] = data.loc[idx[dim] & idx[set]] store['/megarun1/input'] = inputs[dim].loc[idx[set]] store['/megarun1/constants'] = consts[dim] store.close() if __name__ == '__main__': dim = 9 store_name = ''.join(['gen2_', str(dim), 'D_nions0_flat']) store = pd.HDFStore('../' + store_name + '.h5', 'r') input = store['/megarun1/input'] data = store['/megarun1/flattened'] startlen = len(data) data = sanity_filter(data, 50, 1.5, 1.5, 1e-4, startlen=startlen) data = regime_filter(data, 0, 100) gc.collect() input = input.loc[data.index] print('After filter {!s:<13} {:.2f}% left'.format('regime', 100*len(data)/startlen)) filter_num = 7 sane_store = pd.HDFStore('../sane_' + store_name + '_filter' + str(filter_num) + '.h5') sane_store['/megarun1/input'] = input sane_store['/megarun1/flattened'] = data const = sane_store['/megarun1/constants'] = store['/megarun1/constants'] #input = sane_store['/megarun1/input'] #data = sane_store['/megarun1/flattened'] #const = sane_store['/megarun1/constants'] split_sane(input, data, const) sane_store.close() split_subsets(input, data, const, frac=0.1) del data, input, const gc.collect() for dim, set in product([4, 7, 9], ['test', 'training']): print(dim, set) basename = set + '_' + 'gen2_' + str(dim) + 'D_nions0_flat.h5' store = pd.HDFStore(basename) data = store['/megarun1/flattened'] input = store['/megarun1/input'] const = store['/megarun1/constants'] gam = data['gam_leq_GB'] gam = gam[gam != 0] data = stability_filter(data) data.put('gam_leq_GB', gam, format=store_format) separate_to_store(input, data, const, 'unstable_' + basename) #separate_to_store(input, data, '../filtered_' + store_name + '_filter6')
mit
jjx02230808/project0223
sklearn/linear_model/tests/test_bayes.py
299
1770
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
bsd-3-clause
Lawrence-Liu/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
hunter-cameron/CheckM
checkm/plot/tetraDistPlots.py
2
7670
############################################################################### # # gcPlots.py - Create a GC histogram and delta-GC plot. # ############################################################################### # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### import matplotlib.pyplot as pylab import numpy as np from AbstractPlot import AbstractPlot from checkm.util.seqUtils import readFasta from checkm.common import readDistribution, findNearest from checkm.genomicSignatures import GenomicSignatures from checkm.binTools import BinTools class TetraDistPlots(AbstractPlot): def __init__(self, options): AbstractPlot.__init__(self, options) def plot(self, fastaFile, tetraSigs, distributionsToPlot): # Set size of figure self.fig.clear() self.fig.set_size_inches(self.options.width, self.options.height) axesHist = self.fig.add_subplot(121) axesDeltaTD = self.fig.add_subplot(122) self.plotOnAxes(fastaFile, tetraSigs, distributionsToPlot, axesHist, axesDeltaTD) self.fig.tight_layout(pad=1, w_pad=1) self.draw() def plotOnAxes(self, fastaFile, tetraSigs, distributionsToPlot, axesHist, axesDeltaTD): # Read reference distributions from file dist = readDistribution('td_dist') # get tetranucleotide signature for bin seqs = readFasta(fastaFile) binTools = BinTools() binSig = binTools.binTetraSig(seqs, tetraSigs) # get tetranucleotide distances for windows genomicSig = GenomicSignatures(K=4, threads=1) data = [] seqLens = [] deltaTDs = [] for seqId, seq in seqs.iteritems(): start = 0 end = self.options.td_window_size seqLen = len(seq) seqLens.append(seqLen) deltaTDs.append(genomicSig.distance(tetraSigs[seqId], binSig)) while(end < seqLen): windowSig = genomicSig.seqSignature(seq[start:end]) data.append(genomicSig.distance(windowSig, binSig)) start = end end += self.options.td_window_size if len(data) == 0: axesHist.set_xlabel('[Error] No seqs >= %d, the specified window size' % self.options.td_window_size) return deltaTDs = np.array(deltaTDs) # Histogram plot bins = [0.0] binWidth = self.options.td_bin_width binEnd = binWidth while binEnd <= 1.0: bins.append(binEnd) binEnd += binWidth axesHist.hist(data, bins=bins, normed=True, color=(0.5, 0.5, 0.5)) axesHist.set_xlabel(r'$\Delta$ TD') axesHist.set_ylabel('% windows (' + str(self.options.td_window_size) + ' bp)') # Prettify plot for a in axesHist.yaxis.majorTicks: a.tick1On = True a.tick2On = False for a in axesHist.xaxis.majorTicks: a.tick1On = True a.tick2On = False for line in axesHist.yaxis.get_ticklines(): line.set_color(self.axesColour) for line in axesHist.xaxis.get_ticklines(): line.set_color(self.axesColour) for loc, spine in axesHist.spines.iteritems(): if loc in ['right', 'top']: spine.set_color('none') else: spine.set_color(self.axesColour) # get CD bin statistics meanTD, deltaTDs = binTools.tetraDiffDist(seqs, genomicSig, tetraSigs, binSig) # Delta-TD vs Sequence length plot axesDeltaTD.scatter(deltaTDs, seqLens, c=abs(deltaTDs), s=10, lw=0.5, cmap=pylab.cm.Greys) axesDeltaTD.set_xlabel(r'$\Delta$ TD (mean TD = %.2f)' % meanTD) axesDeltaTD.set_ylabel('Sequence length (kbp)') _, yMaxSeqs = axesDeltaTD.get_ylim() xMinSeqs, xMaxSeqs = axesDeltaTD.get_xlim() # plot reference distributions for distToPlot in distributionsToPlot: boundKey = findNearest(dist[dist.keys()[0]].keys(), distToPlot) x = [] y = [] for windowSize in dist: x.append(dist[windowSize][boundKey]) y.append(windowSize) # sort by y-values sortIndexY = np.argsort(y) x = np.array(x)[sortIndexY] y = np.array(y)[sortIndexY] # make sure x-values are strictly decreasing as y increases # as this is conservative and visually satisfying for i in xrange(0, len(x) - 1): for j in xrange(i + 1, len(x)): if x[j] > x[i]: if j == len(x) - 1: x[j] = x[i] else: x[j] = (x[j - 1] + x[j + 1]) / 2 # interpolate values from neighbours if x[j] > x[i]: x[j] = x[i] axesDeltaTD.plot(x, y, 'r--', lw=0.5, zorder=0) # ensure y-axis include zero and covers all sequences axesDeltaTD.set_ylim([0, yMaxSeqs]) # ensure x-axis is set appropriately for sequences axesDeltaTD.set_xlim([xMinSeqs, xMaxSeqs]) # draw vertical line at x=0 axesDeltaTD.vlines(0, 0, yMaxSeqs, linestyle='dashed', color=self.axesColour, zorder=0) # Change sequence lengths from bp to kbp yticks = axesDeltaTD.get_yticks() kbpLabels = [] for seqLen in yticks: label = '%.1f' % (float(seqLen) / 1000) label = label.replace('.0', '') # remove trailing zero kbpLabels.append(label) axesDeltaTD.set_yticklabels(kbpLabels) # Prettify plot for a in axesDeltaTD.yaxis.majorTicks: a.tick1On = True a.tick2On = False for a in axesDeltaTD.xaxis.majorTicks: a.tick1On = True a.tick2On = False for line in axesDeltaTD.yaxis.get_ticklines(): line.set_color(self.axesColour) for line in axesDeltaTD.xaxis.get_ticklines(): line.set_color(self.axesColour) for loc, spine in axesDeltaTD.spines.iteritems(): if loc in ['right', 'top']: spine.set_color('none') else: spine.set_color(self.axesColour)
gpl-3.0
arokem/nipy
examples/labs/need_data/histogram_fits.py
4
2055
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import print_function # Python 2/3 compatibility """ Example of a script that perfoms histogram analysis of an activation image. This is based on a real fMRI image. Simply modify the input image path to make it work on your preferred image. Needs matplotlib Author : Bertrand Thirion, 2008-2009 """ import os import numpy as np import scipy.stats as st try: import matplotlib.pyplot as plt except ImportError: raise RuntimeError("This script needs the matplotlib library") from nibabel import load import nipy.algorithms.statistics.empirical_pvalue as en # Local import from get_data_light import DATA_DIR, get_second_level_dataset # parameters verbose = 1 theta = float(st.t.isf(0.01, 100)) # paths mask_image = os.path.join(DATA_DIR, 'mask.nii.gz') input_image = os.path.join(DATA_DIR, 'spmT_0029.nii.gz') if (not os.path.exists(mask_image)) or (not os.path.exists(input_image)): get_second_level_dataset() # Read the mask nim = load(mask_image) mask = nim.get_data() # read the functional image rbeta = load(input_image) beta = rbeta.get_data() beta = beta[mask > 0] mf = plt.figure(figsize=(13, 5)) a1 = plt.subplot(1, 3, 1) a2 = plt.subplot(1, 3, 2) a3 = plt.subplot(1, 3, 3) # fit beta's histogram with a Gamma-Gaussian mixture bfm = np.array([2.5, 3.0, 3.5, 4.0, 4.5]) bfp = en.gamma_gaussian_fit(beta, bfm, verbose=1, mpaxes=a1) # fit beta's histogram with a mixture of Gaussians alpha = 0.01 pstrength = 100 bfq = en.three_classes_GMM_fit(beta, bfm, alpha, pstrength, verbose=1, mpaxes=a2) # fit the null mode of beta with the robust method efdr = en.NormalEmpiricalNull(beta) efdr.learn() efdr.plot(bar=0, mpaxes=a3) a1.set_title('Fit of the density with \n a Gamma-Gaussian mixture') a2.set_title('Fit of the density with \n a mixture of Gaussians') a3.set_title('Robust fit of the density \n with a single Gaussian') plt.show()
bsd-3-clause
QuantEcon/QuantEcon.py
quantecon/tests/test_quad.py
2
16491
""" Tests for quad.py Notes ----- Many of tests were derived from the file demqua## in the CompEcon toolbox. For all other tests, the MATLAB code is provided here in a section of comments. """ import os import unittest from scipy.io import loadmat import numpy as np from numpy.testing import assert_allclose import pandas as pd from quantecon.quad import ( qnwcheb, qnwequi, qnwlege, qnwnorm, qnwlogn, qnwsimp, qnwtrap, qnwunif, quadrect, qnwbeta, qnwgamma ) from quantecon.tests.util import get_data_dir ### MATLAB code needed to generate data (in addition to a modified demqua03) # % set random number seed so we get the same random nums as in python # rng(42) # % 1-d parameters -- just some random numbers # a = -2.0 # b = 3.0 # n = 11 # % 3-d parameters -- just some random numbers # a_3 = [-1.0 -2.0 1.0] # b_3 = [1.0 12.0 1.5] # n_3 = [7 5 9] # mu_3d = [1.0 2.0 2.5] # sigma2_3d = [1.0 0.1 0.0; 0.1 1.0 0.0; 0.0 0.0 1.2] # % 1-d nodes and weights # [x_cheb_1 w_cheb_1] = qnwcheb(n, a, b) # [x_equiN_1 w_equiN_1] = qnwequi(n, a, b, 'N') # [x_equiW_1 w_equiW_1] = qnwequi(n, a, b, 'W') # [x_equiH_1 w_equiH_1] = qnwequi(n, a, b, 'H') # rng(41); [x_equiR_1 w_equiR_1] = qnwequi(n, a, b, 'R') # [x_lege_1 w_lege_1] = qnwlege(n, a, b) # [x_norm_1 w_norm_1] = qnwnorm(n, a, b) # [x_logn_1 w_logn_1] = qnwlogn(n, a, b) # [x_simp_1 w_simp_1] = qnwsimp(n, a, b) # [x_trap_1 w_trap_1] = qnwtrap(n, a, b) # [x_unif_1 w_unif_1] = qnwunif(n, a, b) # [x_beta_1 w_beta_1] = qnwbeta(n, b, b+1) # [x_gamm_1 w_gamm_1] = qnwgamma(n, b) # % 3-d nodes and weights # [x_cheb_3 w_cheb_3] = qnwcheb(n_3, a_3, b_3) # rng(42); [x_equiN_3 w_equiN_3] = qnwequi(n_3, a_3, b_3, 'N') # [x_equiW_3 w_equiW_3] = qnwequi(n_3, a_3, b_3, 'W') # [x_equiH_3 w_equiH_3] = qnwequi(n_3, a_3, b_3, 'H') # [x_equiR_3 w_equiR_3] = qnwequi(n_3, a_3, b_3, 'R') # [x_lege_3 w_lege_3] = qnwlege(n_3, a_3, b_3) # [x_norm_3 w_norm_3] = qnwnorm(n_3, mu_3d, sigma2_3d) # [x_logn_3 w_logn_3] = qnwlogn(n_3, mu_3d, sigma2_3d) # [x_simp_3 w_simp_3] = qnwsimp(n_3, a_3, b_3) # [x_trap_3 w_trap_3] = qnwtrap(n_3, a_3, b_3) # [x_unif_3 w_unif_3] = qnwunif(n_3, a_3, b_3) # [x_beta_3 w_beta_3] = qnwbeta(n_3, b_3, b_3+1.0) # [x_gamm_3 w_gamm_3] = qnwgamma(n_3, b_3) ### End MATLAB commands data_dir = get_data_dir() data = loadmat(os.path.join(data_dir, "matlab_quad.mat"), squeeze_me=True) # Unpack parameters from MATLAB a = data['a'] b = data['b'] n = data['n'] a_3 = data['a_3'] b_3 = data['b_3'] n_3 = data['n_3'] mu_3d = data['mu_3d'] sigma2_3d = data['sigma2_3d'] class TestQuadrect(unittest.TestCase): @classmethod def setUpClass(cls): ## Create Python Data for quadrect # Create the python data -- similar to notebook code kinds = ["trap", "simp", "lege", "N", "W", "H", "R"] # Define some functions f1 = lambda x: np.exp(-x) f2 = lambda x: 1.0 / (1.0 + 25.0 * x**2.0) f3 = lambda x: np.abs(x) ** 0.5 func_names = ["f1", "f2", "f3"] # Integration parameters n = np.array([5, 11, 21, 51, 101, 401]) # number of nodes np.random.seed(42) # same seed as ML code. a, b = -1, 1 # endpoints # Set up pandas DataFrame to hold results ind = pd.MultiIndex.from_product([func_names, n]) ind.names = ["Function", "Number of Nodes"] cols = pd.Index(kinds, name="Kind") quad_rect_res1d = pd.DataFrame(index=ind, columns=cols, dtype=float) for i, func in enumerate([f1, f2, f3]): func_name = func_names[i] for kind in kinds: for num in n: num_in = num ** 2 if len(kind) == 1 else num quad_rect_res1d.loc[func_name, num][kind] = quadrect(func, num_in, a, b, kind) cls.data1d = quad_rect_res1d # Now 2d data kinds2 = ["lege", "trap", "simp", "N", "W", "H", "R"] f1_2 = lambda x: np.exp(x[:, 0] + x[:, 1]) f2_2 = lambda x: np.exp(-x[:, 0] * np.cos(x[:, 1]**2)) # Set up pandas DataFrame to hold results a = ([0, 0], [-1, -1]) b = ([1, 2], [1, 1]) ind_2 = pd.Index(n**2, name="Num Points") cols2 = pd.Index(kinds2, name="Kind") data2 = pd.DataFrame(index=ind_2, columns=cols2, dtype=float) for num in n: for kind in kinds2[:4]: data2.loc[num**2][kind] = quadrect(f1_2, [num, num], a[0], b[0], kind) for kind in kinds2[4:]: data2.loc[num**2][kind] = quadrect(f1_2, num**2, a[0], b[0], kind) cls.data2d1 = data2 n3 = 10 ** (2 + np.array([1, 2, 3])) ind_3 = pd.Index(n3, name="Num Points") cols3 = pd.Index(kinds2[3:]) data3 = pd.DataFrame(index=ind_3, columns=cols3, dtype=float) for num in n3: for kind in kinds2[3:]: data3.loc[num][kind] = quadrect(f2_2, num, a[1], b[1], kind) cls.data2d2 = data3 ## Organize MATLAB Data ml_data = pd.DataFrame(index=ind, columns=cols, dtype=float) ml_data.iloc[:6, :] = data['int_1d'][:, :, 0] ml_data.iloc[6:12, :] = data['int_1d'][:, :, 1] ml_data.iloc[12:18, :] = data['int_1d'][:, :, 2] ml_data2 = pd.DataFrame(index=ind_2, columns=cols2, dtype=float) ml_data2.iloc[:, :] = data['int_2d1'] ml_data3 = pd.DataFrame(index=ind_3, columns=cols3, dtype=float) ml_data3.iloc[:, :] = data['int_2d2'] cls.ml_data1d = ml_data cls.ml_data2d1 = ml_data2 cls.ml_data2d2 = ml_data3 def test_quadrect_1d_lege(self): assert_allclose(self.data1d['lege'], self.ml_data1d['lege']) def test_quadrect_1d_trap(self): assert_allclose(self.data1d['trap'], self.ml_data1d['trap']) def test_quadrect_1d_simp(self): assert_allclose(self.data1d['simp'], self.ml_data1d['simp']) def test_quadrect_1d_R(self): assert_allclose(self.data1d['R'], self.ml_data1d['R']) def test_quadrect_1d_W(self): assert_allclose(self.data1d['W'], self.ml_data1d['W']) def test_quadrect_1d_N(self): assert_allclose(self.data1d['N'], self.ml_data1d['N']) def test_quadrect_1d_H(self): assert_allclose(self.data1d['H'], self.ml_data1d['H']) def test_quadrect_2d_lege(self): assert_allclose(self.data2d1['lege'], self.ml_data2d1['lege']) def test_quadrect_2d_trap(self): assert_allclose(self.data2d1['trap'], self.ml_data2d1['trap']) def test_quadrect_2d_simp(self): assert_allclose(self.data2d1['simp'], self.ml_data2d1['simp']) # NOTE: The R tests will fail in more than 1 dimension. This is a # function of MATLAB and numpy storing arrays in different # "order". See comment in TestQnwequiR.setUpClass # def test_quadrect_2d_R(self): # assert_allclose(self.data2d1['R'], self.ml_data2d1['R']) def test_quadrect_2d_W(self): assert_allclose(self.data2d1['W'], self.ml_data2d1['W']) def test_quadrect_2d_N(self): assert_allclose(self.data2d1['N'], self.ml_data2d1['N']) def test_quadrect_2d_H(self): assert_allclose(self.data2d1['H'], self.ml_data2d1['H']) def test_quadrect_2d_W2(self): assert_allclose(self.data2d2['W'], self.ml_data2d2['W']) def test_quadrect_2d_N2(self): assert_allclose(self.data2d2['N'], self.ml_data2d2['N']) def test_quadrect_2d_H2(self): assert_allclose(self.data2d2['H'], self.ml_data2d2['H']) class TestQnwcheb(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_cheb_1, cls.w_cheb_1 = qnwcheb(n, a, b) cls.x_cheb_3, cls.w_cheb_3 = qnwcheb(n_3, a_3, b_3) def test_qnwcheb_nodes_1d(self): assert_allclose(self.x_cheb_1, data['x_cheb_1']) def test_qnwcheb_nodes_3d(self): assert_allclose(self.x_cheb_3, data['x_cheb_3']) def test_qnwcheb_weights_1d(self): assert_allclose(self.w_cheb_1, data['w_cheb_1']) def test_qnwcheb_weights_3d(self): assert_allclose(self.w_cheb_3, data['w_cheb_3']) class TestQnwequiN(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiN_1, cls.w_equiN_1 = qnwequi(n, a, b, "N") cls.x_equiN_3, cls.w_equiN_3 = qnwequi(n_3, a_3, b_3, "N") def test_qnwequiN_nodes_1d(self): assert_allclose(self.x_equiN_1, data['x_equiN_1']) def test_qnwequiN_nodes_3d(self): assert_allclose(self.x_equiN_3, data['x_equiN_3']) def test_qnwequiN_weights_1d(self): assert_allclose(self.w_equiN_1, data['w_equiN_1']) def test_qnwequiN_weights_3d(self): assert_allclose(self.w_equiN_3, data['w_equiN_3']) class TestQnwequiW(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiW_1, cls.w_equiW_1 = qnwequi(n, a, b, "W") cls.x_equiW_3, cls.w_equiW_3 = qnwequi(n_3, a_3, b_3, "W") def test_qnwequiW_nodes_1d(self): assert_allclose(self.x_equiW_1, data['x_equiW_1']) def test_qnwequiW_nodes_3d(self): assert_allclose(self.x_equiW_3, data['x_equiW_3']) def test_qnwequiW_weights_1d(self): assert_allclose(self.w_equiW_1, data['w_equiW_1']) def test_qnwequiW_weights_3d(self): assert_allclose(self.w_equiW_3, data['w_equiW_3']) class TestQnwequiH(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiH_1, cls.w_equiH_1 = qnwequi(n, a, b, "H") cls.x_equiH_3, cls.w_equiH_3 = qnwequi(n_3, a_3, b_3, "H") def test_qnwequiH_nodes_1d(self): assert_allclose(self.x_equiH_1, data['x_equiH_1']) def test_qnwequiH_nodes_3d(self): assert_allclose(self.x_equiH_3, data['x_equiH_3']) def test_qnwequiH_weights_1d(self): assert_allclose(self.w_equiH_1, data['w_equiH_1']) def test_qnwequiH_weights_3d(self): assert_allclose(self.w_equiH_3, data['w_equiH_3']) class TestQnwequiR(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_equiR_1, cls.w_equiR_1 = qnwequi(n, a, b, "R", random_state=41) temp, cls.w_equiR_3 = qnwequi(n_3, a_3, b_3, "R", random_state=42) # NOTE: I need to do a little magic here. MATLAB and numpy # are generating the same random numbers, but MATLAB is # column major and numpy is row major, so they are stored # in different places for multi-dimensional arrays. # The ravel, reshape code here moves the numpy nodes into # the same relative position as the MATLAB ones. Also, in # order for this to work I have to undo the shifting of # the nodes, re-organize data, then re-shift. If this # seems like voodoo to you, it kinda is. But, the fact # that the test can pass after this kind of manipulation # is a strong indicator that we are doing it correctly unshifted = (temp - a_3) / (b_3 - a_3) reshaped = np.ravel(unshifted).reshape(315, 3, order='F') reshifted = a_3 + reshaped * (b_3 - a_3) cls.x_equiR_3 = reshifted def test_qnwequiR_nodes_1d(self): assert_allclose(self.x_equiR_1, data['x_equiR_1']) def test_qnwequiR_nodes_3d(self): assert_allclose(self.x_equiR_3, data['x_equiR_3']) def test_qnwequiR_weights_1d(self): assert_allclose(self.w_equiR_1, data['w_equiR_1']) def test_qnwequiR_weights_3d(self): assert_allclose(self.w_equiR_3, data['w_equiR_3']) class TestQnwlege(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_lege_1, cls.w_lege_1 = qnwlege(n, a, b) cls.x_lege_3, cls.w_lege_3 = qnwlege(n_3, a_3, b_3) def test_qnwlege_nodes_1d(self): assert_allclose(self.x_lege_1, data['x_lege_1']) def test_qnwlege_nodes_3d(self): assert_allclose(self.x_lege_3, data['x_lege_3']) def test_qnwlege_weights_1d(self): assert_allclose(self.w_lege_1, data['w_lege_1']) def test_qnwlege_weights_3d(self): assert_allclose(self.w_lege_3, data['w_lege_3']) class TestQnwnorm(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_norm_1, cls.w_norm_1 = qnwnorm(n, a, b) cls.x_norm_3, cls.w_norm_3 = qnwnorm(n_3, mu_3d, sigma2_3d) def test_qnwnorm_nodes_1d(self): assert_allclose(self.x_norm_1, data['x_norm_1']) def test_qnwnorm_nodes_3d(self): assert_allclose(self.x_norm_3, data['x_norm_3']) def test_qnwnorm_weights_1d(self): assert_allclose(self.w_norm_1, data['w_norm_1']) def test_qnwnorm_weights_3d(self): assert_allclose(self.w_norm_3, data['w_norm_3']) class TestQnwlogn(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_logn_1, cls.w_logn_1 = qnwlogn(n, a, b) cls.x_logn_3, cls.w_logn_3 = qnwlogn(n_3, mu_3d, sigma2_3d) def test_qnwlogn_nodes_1d(self): assert_allclose(self.x_logn_1, data['x_logn_1']) def test_qnwlogn_nodes_3d(self): assert_allclose(self.x_logn_3, data['x_logn_3']) def test_qnwlogn_weights_1d(self): assert_allclose(self.w_logn_1, data['w_logn_1']) def test_qnwlogn_weights_3d(self): assert_allclose(self.w_logn_3, data['w_logn_3']) class TestQnwsimp(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_simp_1, cls.w_simp_1 = qnwsimp(n, a, b) cls.x_simp_3, cls.w_simp_3 = qnwsimp(n_3, a_3, b_3) def test_qnwsimp_nodes_1d(self): assert_allclose(self.x_simp_1, data['x_simp_1']) def test_qnwsimp_nodes_3d(self): assert_allclose(self.x_simp_3, data['x_simp_3']) def test_qnwsimp_weights_1d(self): assert_allclose(self.w_simp_1, data['w_simp_1']) def test_qnwsimp_weights_3d(self): assert_allclose(self.w_simp_3, data['w_simp_3']) class TestQnwtrap(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_trap_1, cls.w_trap_1 = qnwtrap(n, a, b) cls.x_trap_3, cls.w_trap_3 = qnwtrap(n_3, a_3, b_3) def test_qnwtrap_nodes_1d(self): assert_allclose(self.x_trap_1, data['x_trap_1']) def test_qnwtrap_nodes_3d(self): assert_allclose(self.x_trap_3, data['x_trap_3']) def test_qnwtrap_weights_1d(self): assert_allclose(self.w_trap_1, data['w_trap_1']) def test_qnwtrap_weights_3d(self): assert_allclose(self.w_trap_3, data['w_trap_3']) class TestQnwunif(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_unif_1, cls.w_unif_1 = qnwunif(n, a, b) cls.x_unif_3, cls.w_unif_3 = qnwunif(n_3, a_3, b_3) def test_qnwunif_nodes_1d(self): assert_allclose(self.x_unif_1, data['x_unif_1']) def test_qnwunif_nodes_3d(self): assert_allclose(self.x_unif_3, data['x_unif_3']) def test_qnwunif_weights_1d(self): assert_allclose(self.w_unif_1, data['w_unif_1']) def test_qnwunif_weights_3d(self): assert_allclose(self.w_unif_3, data['w_unif_3']) class TestQnwbeta(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_beta_1, cls.w_beta_1 = qnwbeta(n, b, b + 1.0) cls.x_beta_3, cls.w_beta_3 = qnwbeta(n_3, b_3, b_3 + 1.0) def test_qnwbeta_nodes_1d(self): assert_allclose(self.x_beta_1, data['x_beta_1']) def test_qnwbeta_nodes_3d(self): assert_allclose(self.x_beta_3, data['x_beta_3']) def test_qnwbeta_weights_1d(self): assert_allclose(self.w_beta_1, data['w_beta_1']) def test_qnwbeta_weights_3d(self): assert_allclose(self.w_beta_3, data['w_beta_3']) class TestQnwgamm(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_gamm_1, cls.w_gamm_1 = qnwgamma(n, b) cls.x_gamm_3, cls.w_gamm_3 = qnwgamma(n_3, b_3) def test_qnwgamm_nodes_1d(self): assert_allclose(self.x_gamm_1, data['x_gamm_1']) def test_qnwgamm_nodes_3d(self): assert_allclose(self.x_gamm_3, data['x_gamm_3']) def test_qnwgamm_weights_1d(self): assert_allclose(self.w_gamm_1, data['w_gamm_1']) def test_qnwgamm_weights_3d(self): assert_allclose(self.w_gamm_3, data['w_gamm_3'])
bsd-3-clause
sanuj/opencog
opencog/python/spatiotemporal/temporal_events/relation_formulas.py
33
19534
from math import fabs, sqrt, floor from numpy import convolve, NINF as NEGATIVE_INFINITY, PINF as POSITIVE_INFINITY import numpy from scipy.stats.distributions import uniform_gen from spatiotemporal.temporal_events.util import calculate_bounds_of_probability_distribution from spatiotemporal.temporal_interval_handling import calculateCenterMass from spatiotemporal.time_intervals import TimeInterval from utility.functions import FunctionPiecewiseLinear, FunctionHorizontalLinear, integral, FUNCTION_ZERO, almost_equals DECOMPOSITION_PRECISION = 10 ** 14 __author__ = 'keyvan' TEMPORAL_RELATIONS = { 'p': 'precedes', 'm': 'meets', 'o': 'overlaps', 'F': 'finished by', 'D': 'contains', 's': 'starts', 'e': 'equals', 'S': 'started by', 'd': 'during', 'f': 'finishes', 'O': 'overlapped by', 'M': 'met by', 'P': 'preceded by' } class TemporalRelation(dict): all_relations = 'pmoFDseSdfOMP' _type = None _list = None _vector = None @staticmethod def from_list(list_object): relation = TemporalRelation() for i, name in enumerate(TemporalRelation.all_relations): value = list_object[i] if not isinstance(value, (int, float)): value = float(value) relation[name] = value return relation def to_list(self): if self._list is None: self._list = [] for name in self.all_relations: self._list.append(self[name]) return self._list def to_vector(self): if self._vector is None: _list = self.to_list() self._vector = numpy.array(_list) return self._vector @property def type(self): if self._type is None: self._type = ''.join([name for name in TemporalRelation.all_relations if self[name] > 0]) return self._type def __setitem__(self, relation_name, value): if relation_name not in TemporalRelation.all_relations: raise AttributeError("'{0}' is not a valid Allen relation'".format(relation_name)) dict.__setitem__(self, relation_name, floor(value * DECOMPOSITION_PRECISION) / DECOMPOSITION_PRECISION) def __repr__(self): return 'TemporalRelation({0})'.format(self.type) def __str__(self): return repr(self) def __hash__(self): return hash(tuple(self.to_list())) class BaseRelationFormula(object): def __init__(self): self.bounds = {} def duration_of(self, dist): a, b = self.bounds_of(dist) return fabs(a - b) def bounds_of(self, dist): # if dist in self.bounds: # return self.bounds[dist] bounds = calculate_bounds_of_probability_distribution(dist) self.bounds[dist] = bounds return bounds def before_point(self, point_1_value, point_2_value): return 0 def same_point(self, point_1_value, point_2_value): return 1 - fabs(self.before_point(point_1_value, point_2_value) - self.after_point(point_1_value, point_2_value)) def after_point(self, point_1_value, point_2_value): return self.before_point(point_2_value, point_1_value) def before_integral_bounds(self, dist_1, dist_2): return calculate_bounds_of_probability_distribution(dist_1) def same_integral_bounds(self, dist_1, dist_2): dist_1_a, dist_1_b = calculate_bounds_of_probability_distribution(dist_1) dist_2_a, dist_2_b = calculate_bounds_of_probability_distribution(dist_2) return max(dist_1_a, dist_2_a), min(dist_1_b, dist_2_b) def after_integral_bounds(self, dist_1, dist_2): return calculate_bounds_of_probability_distribution(dist_2) def before(self, dist_1, dist_2): return integral(lambda x: self.before_point(dist_1.pdf(x), dist_2.pdf(x)), *self.before_integral_bounds(dist_1, dist_2)) def same(self, dist_1, dist_2): return integral(lambda x: self.same_point(dist_1.pdf(x), dist_2.pdf(x)), *self.same_integral_bounds(dist_1, dist_2)) def after(self, dist_1, dist_2): return integral(lambda x: self.after_point(dist_1.pdf(x), dist_2.pdf(x)), *self.after_integral_bounds(dist_1, dist_2)) def compare(self, dist_1, dist_2): """ returns before, same and after """ return self.before(dist_1, dist_2), self.same(dist_1, dist_2), self.after(dist_1, dist_2) class FormulaCreator(object): def __init__(self, relation_formula): self.relation_formula = relation_formula def temporal_relations_between(self, temporal_event_1, temporal_event_2): dist_1_beginning, dist_1_ending = temporal_event_1.distribution_beginning, temporal_event_1.distribution_ending dist_2_beginning, dist_2_ending = temporal_event_2.distribution_beginning, temporal_event_2.distribution_ending self.relation_formula.bounds[dist_1_beginning] = temporal_event_1.a, temporal_event_1.beginning self.relation_formula.bounds[dist_1_ending] = temporal_event_1.ending, temporal_event_1.b self.relation_formula.bounds[dist_2_beginning] = temporal_event_2.a, temporal_event_2.beginning self.relation_formula.bounds[dist_2_ending] = temporal_event_2.ending, temporal_event_2.b combinations = [ (dist_1_beginning, dist_2_beginning), (dist_1_beginning, dist_2_ending), (dist_1_ending, dist_2_beginning), (dist_1_ending, dist_2_ending) ] return self.calculate_relations(combinations) def calculate_relations(self, combinations=None): """ Calculates the values of the 13 relations based on the before, same, and after values of the combinations between the beginning and ending distributions of the two intervals obtained, e.g. from the DecompositionFitter. :param combinations: the 4 combinations between beginning and ending distribution :return: a dictionary containing the 13 relations as keys and their degrees as values """ if combinations is None: combinations = self.relation_formula.combinations dist_1_beginning, dist_2_beginning = combinations[0] dist_1_ending, dist_2_ending = combinations[3] before = {} same = {} after = {} # iterates over the 4 combinations between beginning and ending for key in combinations: before[key], same[key], after[key] = self.relation_formula.compare(*key) result = TemporalRelation() result['p'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ before[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['m'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ same[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['o'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['F'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['D'] = before[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['s'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['e'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['S'] = same[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['d'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * before[dist_1_ending, dist_2_ending] result['f'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * same[dist_1_ending, dist_2_ending] result['O'] = after[dist_1_beginning, dist_2_beginning] * before[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['M'] = after[dist_1_beginning, dist_2_beginning] * same[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] result['P'] = after[dist_1_beginning, dist_2_beginning] * after[dist_1_beginning, dist_2_ending] * \ after[dist_1_ending, dist_2_beginning] * after[dist_1_ending, dist_2_ending] return result class RelationFormulaConvolution(BaseRelationFormula): def function_convolution_uniform(self, bounds_1, bounds_2, probability=None): a1, b1 = bounds_1 a2, b2 = bounds_2 length_1 = fabs(a1 - b1) length_2 = fabs(a2 - b2) convolution_bounds_a, convolution_bounds_b = a1 - b2, b1 - a2 trapezium_0, trapezium_1 = convolution_bounds_a, convolution_bounds_a + min(length_2, length_1) trapezium_2, trapezium_3 = trapezium_1 + fabs(length_1 - length_2), convolution_bounds_b #assert trapezium_2 + min(length_2, length_1) == trapezium_3 if probability is None: probability = min(1 / length_1, 1 / length_2) result = FunctionPiecewiseLinear( {trapezium_0: 0, trapezium_1: probability, trapezium_2: probability, trapezium_3: 0}, FUNCTION_ZERO) result.is_normalised = True return result def function_convolution(self, dist_1, dist_2, bins=50): a_1, b_1, a_2, b_2 = 0, 0, 0, 0 if dist_1 in self.bounds: a_1, b_1 = self.bounds[dist_1] else: a_1, b_1 = calculate_bounds_of_probability_distribution(dist_1) self.bounds[dist_1] = a_1, b_1 if dist_2 in self.bounds: a_2, b_2 = self.bounds[dist_2] else: a_2, b_2 = calculate_bounds_of_probability_distribution(dist_2) self.bounds[dist_2] = a_2, b_2 if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen, uniform_gen): return self.function_convolution_uniform((a_1, b_1), (a_2, b_2)) convolution_bounds_a, convolution_bounds_b = min(a_1, a_2), max(b_1, b_2) delta = fabs(convolution_bounds_a - convolution_bounds_b) / bins convolution_interval = TimeInterval(convolution_bounds_a, convolution_bounds_b, bins) x = [dist_1.pdf(t) for t in convolution_interval] y = [dist_2.pdf(t) for t in reversed(convolution_interval)] c = convolve(x, y) dictionary_convolution = {} for t in xrange(len(c)): dictionary_convolution[delta * t] = c[t] bias = calculateCenterMass(dictionary_convolution)[0] + dist_2.mean() - dist_1.mean() dictionary_convolution_biased = {} for t in dictionary_convolution: dictionary_convolution_biased[t - bias] = dictionary_convolution[t] convolution_function = FunctionPiecewiseLinear(dictionary_convolution_biased, FunctionHorizontalLinear(0)) return convolution_function.normalised() def calculate_similarity(self, dist_1, dist_2): if (type(dist_1.dist), type(dist_2.dist)) == (uniform_gen, uniform_gen): length_dist_1 = self.duration_of(dist_1) length_dist_2 = self.duration_of(dist_2) return min(length_dist_1, length_dist_2) / sqrt(length_dist_1 * length_dist_2) dist_1_mean, dist_2_mean = dist_1.mean(), dist_2.mean() dist_1_transformed = lambda t: dist_1.pdf(t + dist_1_mean) dist_2_transformed = lambda t: dist_2.pdf(t + dist_2_mean) geometric_mean = lambda t: sqrt(dist_1_transformed(t) * dist_2_transformed(t)) return integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY) def compare(self, dist_1, dist_2): convolution = self.function_convolution(dist_1, dist_2) before = integral(convolution, NEGATIVE_INFINITY, 0) after = integral(convolution, 0, POSITIVE_INFINITY) similarity = self.calculate_similarity(dist_1, dist_2) correlation = 1 - fabs(before - after) same = similarity * correlation return before, same, after class RelationFormulaGeometricMean(BaseRelationFormula): def compare(self, dist_1, dist_2): dist_1_interval = TimeInterval(*self.bounds_of(dist_1)) dist_2_interval = TimeInterval(*self.bounds_of(dist_2)) dictionary_input_output = {} for time_step in dist_1_interval + dist_2_interval: dictionary_input_output[time_step] = sqrt(dist_1.pdf(time_step) * dist_2.pdf(time_step)) geometric_mean = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO) same = integral(geometric_mean, NEGATIVE_INFINITY, POSITIVE_INFINITY) dist_1_mean, dist_1_skewness, dist_1_kurtosis = dist_1.stats(moments='msk') dist_1_standard_deviation = dist_1.std() dist_2_mean, dist_2_skewness, dist_2_kurtosis = dist_2.stats(moments='msk') dist_2_standard_deviation = dist_2.std() distance = fabs(dist_1_standard_deviation - dist_2_standard_deviation) + fabs(dist_1_skewness - dist_2_skewness) distance += fabs(dist_1_kurtosis - dist_2_kurtosis) delta = dist_1_mean - dist_2_mean non_same_portion = 1.0 - same portion_after, portion_before = 1.0, 0.0 if almost_equals(distance, 0): if delta < 0: portion_after, portion_before = 0.0, 1.0 else: dist_1_standardized_pdf = lambda x: dist_1.pdf(dist_1_standard_deviation * x + dist_1_mean) dist_2_standardized_pdf = lambda x: dist_2.pdf(dist_2_standard_deviation * x + dist_2_mean) geometric_mean = lambda t: sqrt(dist_1_standardized_pdf(t) * dist_2_standardized_pdf(t)) geometric_mean_scaled = lambda p: geometric_mean(p / distance) geometric_mean_scaled_length = max(self.duration_of(dist_1), self.duration_of(dist_2)) dictionary_input_output = {} for time_step in TimeInterval(-geometric_mean_scaled_length / 2.0, geometric_mean_scaled_length / 2.0): dictionary_input_output[time_step] = geometric_mean_scaled(time_step) geometric_mean_scaled = FunctionPiecewiseLinear(dictionary_input_output, function_undefined=FUNCTION_ZERO) portion_after = integral(geometric_mean_scaled, NEGATIVE_INFINITY, delta) portion_before = integral(geometric_mean_scaled, delta, POSITIVE_INFINITY) after = portion_after / (portion_after + portion_before) * non_same_portion return 1.0 - same - after, same, after if __name__ == '__main__': import matplotlib.pyplot as plt from scipy.stats import norm, uniform, expon from spatiotemporal.temporal_events import TemporalEvent, TemporalEventPiecewiseLinear import matplotlib.pyplot as plt figure_number = 1 for event_1, event_2 in [ ( TemporalEvent(uniform(loc=3, scale=2), uniform(loc=7, scale=9)), TemporalEvent(uniform(loc=0, scale=10), uniform(loc=13, scale=2)) ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=3, scale=2)), # TemporalEvent(uniform(loc=3, scale=2), uniform(loc=6, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=8, scale=5), uniform(loc=15, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=3, scale=2), uniform(loc=13, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=7), uniform(loc=8, scale=7)), # TemporalEvent(uniform(loc=4, scale=1), uniform(loc=11, scale=2)), # ), # # ( # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)), # TemporalEvent(uniform(loc=0, scale=11), uniform(loc=13, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=8), uniform(loc=6, scale=8)), # TemporalEvent(uniform(loc=0, scale=22), uniform(loc=13, scale=8)) # ), # # ( # TemporalEvent(uniform(loc=2, scale=2), uniform(loc=7, scale=2)), # TemporalEvent(uniform(loc=1, scale=4), uniform(loc=6, scale=4)) # ), # # ( # TemporalEvent(uniform(loc=1, scale=2), uniform(loc=4, scale=2)), # TemporalEvent(uniform(loc=6, scale=2), uniform(loc=9, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=3), uniform(loc=15, scale=2)), # TemporalEvent(uniform(loc=5, scale=2), uniform(loc=9, scale=3)) # ), # # ( # TemporalEvent(uniform(loc=5, scale=3), uniform(loc=9, scale=2)), # TemporalEvent(uniform(loc=1, scale=2), uniform(loc=15, scale=3)) # ), # # ( # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=10, scale=2)), # TemporalEvent(uniform(loc=15, scale=2), uniform(loc=25, scale=2)) # ), # # ( # TemporalEvent(uniform(loc=15, scale=2), uniform(loc=25, scale=2)), # TemporalEvent(uniform(loc=0, scale=2), uniform(loc=10, scale=2)) # ), # # ( # TemporalEvent(norm(loc=1, scale=4.5), expon(loc=30, scale=2)), # TemporalEvent(norm(loc=25, scale=4.5), expon(loc=60, scale=2)) # ), # # ( # TemporalEvent(expon(loc=1, scale=4.5), norm(loc=30, scale=2)), # TemporalEvent(expon(loc=25, scale=4.5), norm(loc=60, scale=2)) # ), # # ( # TemporalEventPiecewiseLinear({1: 0, 2: 0.1, 3: 0.3, 4: 0.7, 5: 1}, {6: 1, 7: 0.9, 8: 0.6, 9: 0.1, 10: 0}), # TemporalEventPiecewiseLinear({7.5: 0, 8.5: 0.1, 9.5: 0.3, 10.5: 0.7, 11.5: 1}, # {13: 1, 14.5: 0.9, 15.3: 0.6, 17: 0.1, 20: 0}) # ), ]: temporal_relations = event_1 * event_2 print '\nFigure' + str(figure_number) print '----------------------' print sum(temporal_relations.values()) for p in 'pmoFDseSdfOMP': print p, temporal_relations[p] figure_number += 1 event_1.plot(show_distributions=True).ylim(ymin=-0.1, ymax=1.1) event_2.plot(show_distributions=True).figure() plt.show()
agpl-3.0
liupfskygre/qiime
qiime/colors.py
15
24391
#!/usr/bin/env python # file colors.py __author__ = "Jesse Stombaugh" __copyright__ = "Copyright 2011, The QIIME Project" # consider project name # remember to add yourself __credits__ = ["Rob Knight", "Jesse Stombaugh", "Yoshiki Vazquez-Baeza"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jesse Stombaugh" __email__ = "[email protected]" """Code for coloring series based on prefs file. """ from colorsys import rgb_to_hsv, hsv_to_rgb from parse import parse_mapping_file, group_by_field, parse_taxa_summary_table from numpy import array from math import floor import os import re from qiime.util import MissingFileError from qiime.sort import natsort def string_to_rgb(s): """Converts hex string to RGB""" orig_s = s s = s.strip() if s.startswith('#'): s = s[1:] if not len(s) == 6: raise ValueError("String %s doesn't look like a hex string" % orig_s) return int(s[:2], 16), int(s[2:4], 16), int(s[4:], 16) def rgb_tuple_to_hsv(rgb): """Converts rgb tuple to hsv on Mage's scale""" rgb_0_to_1 = array(rgb) / 255.0 hsv = rgb_to_hsv(*tuple(rgb_0_to_1)) return hsv[0] * 360, hsv[1] * 100, hsv[2] * 100 def mage_hsv_tuple_to_rgb(hsv): """Converts hsv tuple on Mage scale to rgb on 0-255 scale""" hsv_0_to_1 = hsv[0] / 360.0, hsv[1] / 100.0, hsv[2] / 100.0 rgb = hsv_to_rgb(*tuple(hsv_0_to_1)) return int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255) class Color(object): """Stores a color object: name, HSV, ability to write as HTML or Mage. Note: the reason we store as HSV, not RGB, is that you frequently want to do gradient colors by hue going from e.g. white to blue, white to red, etc. Unfortunately, in RGB, you can't specify _which_ white you have in e.g. #FFFFFF, whereas to get the right gradient you need to be able to specify that you want (0,0,100) or (180,0,100) or whatever. Hence the colorspace gymnastics. """ def __init__(self, name, coords, colorspace='rgb'): """Returns new Color object. Init with name and coords as (R,G,B). Can also initialize with coords as (H,S,V) or #aabbcc format. """ self.Name = name if isinstance(coords, str): # assume is hex format self.Coords = rgb_tuple_to_hsv(string_to_rgb(coords)) elif colorspace == 'rgb': self.Coords = rgb_tuple_to_hsv(tuple(coords)) elif colorspace == 'hsv': self.Coords = tuple(coords) else: raise ValueError( "Unknown colorspace %s: valid values are rgb, hsv" % colorspace) def toRGB(self): """Returns self as r, g, b tuple.""" return mage_hsv_tuple_to_rgb(self.Coords) def toMage(self): """Returns self as Mage/KiNG-format string""" h, s, v = self.Coords return '@hsvcolor {%s} %3.1f %3.1f %3.1f' % (self.Name, h, s, v) def toHex(self): """Returns self as hex string.""" rgb = self.toRGB() return ('#%02s%02s%02s' % (hex(rgb[0])[2:], hex(rgb[1])[2:], hex(rgb[2])[2:])).replace(' ', '0') def toInt(self): """Returns self as hex string.""" rgb = self.toHex()[1:] return int(float.fromhex(rgb)) def __str__(self): """Return string representation of self""" return str(self.Name) + ':' + self.toHex() def color_dict_to_objects(d, colorspace='hsv'): """Converts color dict to dict of Color objects""" result = {} for k, v in d.items(): result[k] = Color(k, v, colorspace) return result # Note: these are all in Mage HSV colorspace ''' These are the old colors data_color_hsv = { 'aqua': (180, 100, 100), 'blue': (240,100,100), 'fuchsia': (300,100,100), 'gray': (300,0,50.2), 'green': (120,100,50.2), 'lime': (120,100,100), 'maroon': (0,100,50.2), 'olive': (60,100,50.2), 'purple': (300,100,50.2), 'red': (0,100,100), 'silver': (0, 0, 75.3), 'teal': (180,100,50.2), 'yellow': (60,100,100) } This is the old order data_color_order = ['blue','lime','red','aqua','fuchsia','yellow','green', \ 'maroon','teal','purple','olive','silver','gray'] ''' data_color_hsv = { #'black1': (0,0,20), 'red1': (0, 100, 100), 'blue1': (240, 100, 100), 'orange1': (28, 98, 95), 'green1': (120, 100, 50.2), 'purple1': (302, 73, 57), 'yellow1': (60, 100, 100), 'cyan1': (184, 49, 96), 'pink1': (333, 37, 96), 'teal1': (178, 42, 63), 'brown1': (36, 89, 42), 'gray1': (0, 0, 50.2), 'lime': (123, 99, 96), 'red2': (14, 51, 97), 'blue2': (211, 42, 85), 'orange2': (32, 46, 99), 'green2': (142, 36, 79), 'purple2': (269, 29, 75), 'yellow2': (56, 40, 100), #'black2': (303,100,24), 'gray2': (0, 0, 75.3), #'teal2': (192,100,24), 'red3': (325, 100, 93), 'blue3': (197, 100, 100), #'purple3': (271,43,36), 'brown2': (33, 45, 77), 'green3': (60, 100, 50.2), 'purple4': (264, 75, 100), #'yellow3': (60,66,75), #'blue4': (213,45,77), 'red4': (348, 31, 74), 'teal3': (180, 100, 50.2), #'brown3': (60,100,28), 'red5': (0, 100, 50.2), 'green4': (81, 100, 26), #'purple5': (240,100,41), 'orange3': (26, 100, 65) #'brown4': (25,100,20), #'red6': (17,100,63), #'purple6':(272,100,44) } data_color_order = ['red1', 'blue1', 'orange1', 'green1', 'purple1', 'yellow1', 'cyan1', 'pink1', 'teal1', 'brown1', 'gray1', 'lime', 'red2', 'blue2', 'orange2', 'green2', 'purple2', 'yellow2', 'gray2', 'red3', 'blue3', 'brown2', 'green3', 'purple4', 'red4', 'teal3', 'red5', 'green4', 'orange3'] data_colors = color_dict_to_objects(data_color_hsv) kinemage_colors = [ 'hotpink', 'blue', 'lime', 'gold', 'red', 'sea', 'purple', 'green'] def iter_color_groups(mapping, prefs): """Iterates over color groups for each category given mapping file/prefs. See get_group_colors for details of algorithm. """ # Iterate through prefs and color by given mapping labels for key in natsort(prefs.keys()): col_name = prefs[key]['column'] if 'colors' in prefs[key]: if isinstance(prefs[key]['colors'], dict): colors = prefs[key]['colors'].copy() # copy so we can mutate else: colors = prefs[key]['colors'][:] else: colors = {} labelname = prefs[key]['column'] # Define groups and associate appropriate colors to each group groups = group_by_field(mapping, col_name) colors, data_colors, data_color_order = \ get_group_colors(groups, colors) yield labelname, groups, colors, data_colors, data_color_order def get_group_colors(groups, colors, data_colors=data_colors, data_color_order=data_color_order): """Figures out group colors for a specific series based on prefs. Algorithm is as follows: - For each name, color pair we know about: - Check if the name is one of the groups (exact match) - If it isn't, assume it's a prefix and pull out all the matching groups - If the color is just a string, set everything to the color with that name - Otherwise, assume that either it's a new color we're adding, or that it's a range for gradient coloring. - If it's a new color, create it and add it to added_data_colors. - If it's a gradient, make up all the new colors and add them to added_data_colors The current method for gradient coloring of columns (should perhaps replace with more general method) is to pass in any of the following: 'colors':(('white', (0,0,100)),('red',(0,100,100))) makes gradient between white and red, applies to all samples 'colors':{'RK':(('white',(0,0,100)),('red',(0,100,100))), 'NF':(('white',(120,0,100)),('green',(120,100,100))) } pulls the combination samples starting with RK, colors with first gradient, then pulls the combination samples starting with NF, colors with the next gradient. Return values are: - colors: dict of {group_value:color_name} - data_colors: dict of {color_name:color_object} - data_color_order: order in which the data colors are used/written. """ added_data_colors = {} if isinstance(colors, dict): # assume we're getting some of the colors out of a dict if colors.items() != []: for k, v in sorted(colors.items()): if k not in groups: # assume is prefix k_matches = [g for g in groups if g.startswith(k)] if isinstance(v, str): # just set everything to this color for m in k_matches: colors[m] = v else: # assume is new color or range first, second = v if isinstance(first, str): # new named color? if first not in data_colors: added_data_colors[first] = Color(first, second) for m in k_matches: colors[m] = first else: # new color range? start_color, end_color = map(get_color, [first, second]) num_colors = len(k_matches) curr_data_colors = color_dict_to_objects( make_color_dict(start_color, start_hsv, end_color, end_hsv, num_colors)) curr_colors = {} color_groups(k_matches, curr_colors, natsort(curr_data_colors)) colors.update(curr_colors) added_data_colors.update(curr_data_colors) del colors[k] elif not isinstance(v, str): # assume val is new color color = get_color(v) if color.Name not in data_colors: added_data_colors[color.Name] = color colors[k] = color.Name # handle any leftover groups color_groups(groups, colors, data_color_order) # add new colors data_colors.update(added_data_colors) if added_data_colors != {}: data_color_order.append(''.join(natsort(added_data_colors))) else: # handle case where no prefs is used color_groups(groups, colors, data_color_order) else: # handle the case where colors is a tuple for gradients start_color, end_color = map(get_color, colors) start_hsv = start_color.Coords end_hsv = end_color.Coords num_colors = len(groups) data_colors = color_dict_to_objects( make_color_dict(start_color, start_hsv, end_color, end_hsv, num_colors)) data_color_order = list(natsort(data_colors.keys())) colors = {} color_groups(groups, colors, data_color_order) return colors, data_colors, data_color_order def get_color(color, data_colors=data_colors): """Gets a color by looking up its name or initializing with name+data""" if isinstance(color, str): if color in data_colors: return data_colors[color] else: raise ValueError("Color name %s in prefs not recognized" % color) else: name, coords = color if isinstance(coords, str): colorspace = 'rgb' else: colorspace = 'hsv' return Color(name, coords, colorspace) def color_groups(groups, colors, data_color_order): """Colors a set of groups in data_color_order, handling special colors. Modifies colors in-place. Cycles through data colors (i.e. wraps around when last color is reached). """ group_num = -1 for g in natsort(groups): if g not in colors: group_num += 1 if group_num == len(data_color_order): group_num = 0 colors[g] = data_color_order[group_num] def make_color_dict(start_name, start_hsv, end_name, end_hsv, n): """Makes dict of color gradient""" colors = linear_gradient(start_hsv, end_hsv, n) names = ['%sto%s%s_%s' % (start_name, end_name, n, i) for i in range(n)] return dict(zip(names, colors)) def combine_map_label_cols(combinecolorby, mapping): """Merge two or more mapping columns into one column""" combinedmapdata = array([''] * len(mapping), dtype='a100') title = [] match = False for p in range(len(combinecolorby)): for i in range(len(mapping[0])): if str(combinecolorby[p]) == str(mapping[0][i]): match = True for q in range(len(mapping)): combinedmapdata[q] = combinedmapdata[q] + mapping[q][i] break else: match = False if not match: raise ValueError( 'One of the columns you tried to combine does not exist!') title.append(combinecolorby[p]) combinedmapdata[0] = '&&'.join(title) for i in range(len(combinedmapdata)): mapping[i].append(combinedmapdata[i]) return mapping def process_colorby(colorby, data, color_prefs=None): """Parses the colorby option from the command line. color_prefs is required if colorby is not passed. """ match = False prefs = {} mapping = data['map'] colorbydata = [] if colorby is None and color_prefs is None: # if coloby option are prefs file not given, color by all categories # in mapping file colorbydata = mapping[0] elif colorby and color_prefs: # if both the colorby option and prefs file are given, use the categories # from the colorby option with their appropriate colors in the prefs # file prefs_colorby = [color_prefs[i]['column'] for i in color_prefs] cmd_colorby = colorby.strip().strip("'").split(',') for i in range(len(cmd_colorby)): for j in range(len(prefs_colorby)): if cmd_colorby[i] == prefs_colorby[j]: colorbydata.append(prefs_colorby[j]) match = True break else: match = False if not match: colorbydata.append(cmd_colorby[i]) names = list(colorbydata) elif colorby: # if only the colorby option is passed colorbydata = colorby.strip().strip("'").split(',') else: # if only the prefs file is passed colorbydata = [color_prefs[i]['column'] for i in color_prefs] names = list(color_prefs) match = False for j, col in enumerate(colorbydata): key = str(col) # transfer over old color data if it was present if '&&' in col: # Create an array using multiple columns from mapping file combinecolorby = col.split('&&') data['map'] = combine_map_label_cols(combinecolorby, mapping) prefs[key] = {} prefs[key]['column'] = '&&'.join(combinecolorby) else: # Color by only one column in mapping file prefs[key] = {} prefs[key]['column'] = col if color_prefs: for p in color_prefs: if 'column' in color_prefs[p] and color_prefs[p]['column'] == col: if 'colors' in color_prefs[p]: prefs[key]['colors'] = color_prefs[p]['colors'] else: prefs[key]['colors'] = ( ('white', (0, 0, 100)), ('red', (0, 100, 100))) match = True break else: match = False if not match: prefs[key] = {} prefs[key]['column'] = col prefs[key]['colors'] = ( ('white', (0, 0, 100)), ('red', (0, 100, 100))) return prefs, data def linear_gradient(start, end, nbins, eps=1e-10): """Makes linear color gradient from start to end, using nbins. Returns list of (x, y, z) tuples in current colorspace. eps is used to prevent the case where start and end are the same. """ start = array(start) end = array(end) result = [] n_minus_1 = max(float(nbins - 1), eps) for i in range(nbins): result.append( list((start * (n_minus_1 - i) / n_minus_1) + (end * (i / n_minus_1)))) return result # The following functions were not unit_tested, however the parts within # the functions are unit_tested def get_map(options, data): """Opens and returns mapping data""" try: map_f = open(options.map_fname, 'U').readlines() except (TypeError, IOError): raise MissingFileError('Mapping file required for this analysis') data['map'] = parse_mapping_file(map_f) return data['map'] def map_from_coords(coords): """Makes pseudo mapping file from coords. set data['map'] to result of this if coords file supplied but not map. TODO: write equivalent function for other inputs, e.g. for rarefaction -- basic principle is that you need data structure that you can extract list of sample ids from. """ result = (([['SampleID', 'Sample']])) for i in range(len(data['coord'][0])): data['map'].append([data['coord'][0][i], 'Sample']) def sample_color_prefs_and_map_data_from_options(options): """Returns color prefs and mapping data based on options. Note: opens files as needed. Only returns the info related to metadata coloring and category maps. If you need additional info, it is necessary to get that info explicitly (e.g. coord files, rarefaction files, etc.). For example, you might modify the data dict afterwards to add coords, rarefaction info, etc. depending on the application. """ data = {} # Open and get mapping data, if none supplied create a pseudo mapping \ # file mapping, headers, comments = get_map(options, data) new_mapping = [] new_mapping.append(headers) for i in range(len(mapping)): new_mapping.append(mapping[i]) data['map'] = new_mapping # need to set some other way from sample ids # Determine which mapping headers to color by, if none given, color by \ # Sample ID's try: colorby = options.colorby except AttributeError: colorby = None if options.prefs_path: prefs = eval(open(options.prefs_path, 'U').read()) color_prefs, data = process_colorby(colorby, data, prefs['sample_coloring']) if 'background_color' in prefs: background_color = prefs['background_color'] else: background_color = 'black' if 'ball_scale' in prefs: ball_scale = prefs['ball_scale'] else: ball_scale = 1.0 arrow_colors = {} if 'arrow_line_color' in prefs: arrow_colors['line_color'] = prefs['arrow_line_color'] else: arrow_colors['line_color'] = 'white' if 'arrow_head_color' in prefs: arrow_colors['head_color'] = prefs['arrow_head_color'] else: arrow_colors['head_color'] = 'red' else: background_color = 'black' color_prefs, data = process_colorby(colorby, data, None) ball_scale = 1.0 arrow_colors = {'line_color': 'white', 'head_color': 'red'} if options.prefs_path and options.background_color: background_color = options.background_color elif options.background_color: background_color = options.background_color if background_color == 'black': label_color = 'white' else: label_color = 'black' return ( color_prefs, data, background_color, label_color, ball_scale, arrow_colors ) def taxonomy_color_prefs_and_map_data_from_options(options): """Returns color prefs and counts data based on options. counts data is any file in a format that can be parsed by parse_otu_table """ data = {} data['counts'] = {} taxonomy_levels = [] # need to set some other way from sample ids # Determine which mapping headers to color by, if none given, color by \ # Sample ID's taxonomy_count_files = options.counts_fname for f in taxonomy_count_files: try: counts_f = open(f, 'U').readlines() except (TypeError, IOError): raise MissingFileError('Counts file required for this analysis') sample_ids, otu_ids, otu_table = \ parse_taxa_summary_table(counts_f) data['counts'][f] = (sample_ids, otu_ids, otu_table) level = max([len(t.split(';')) - 1 for t in otu_ids]) taxonomy_levels.append(str(level)) if options.prefs_path: prefs = eval(open(options.prefs_path, 'U').read()) color_prefs = taxonomy_process_prefs(taxonomy_levels, prefs['taxonomy_coloring']) if 'background_color' in prefs: background_color = prefs['background_color'] else: background_color = 'black' else: background_color = 'black' color_prefs = taxonomy_process_prefs(taxonomy_levels, None) if options.prefs_path and options.background_color: background_color = options.background_color elif options.background_color: background_color = options.background_color if background_color == 'black': label_color = 'white' else: label_color = 'black' return color_prefs, data, background_color, label_color def taxonomy_process_prefs(taxonomy_levels, color_prefs=None): """Creates taxonomy prefs dict given specific taxonomy levels. color_prefs is not required taxonomy_levels is a list of the level number i.e. Phylum is 2 prefs will include a 'colors' dictionary for each given level if there is a cooresponding level in color_prefs that is the dictionary for the level otherwise it adds and empty dict """ prefs = {} for j, col in enumerate(taxonomy_levels): key = str(col) col = str(col) # Color by only one level prefs[key] = {} prefs[key]['column'] = col if color_prefs: for p in color_prefs: if 'column' in color_prefs[p] and str(color_prefs[p]['column']) == col: if 'colors' in color_prefs[p]: prefs[key]['colors'] = color_prefs[p]['colors'].copy() else: prefs[key]['colors'] = {} match = True break else: match = False if not match: prefs[key] = {} prefs[key]['column'] = col prefs[key]['colors'] = {} return prefs def get_qiime_hex_string_color(index): """Retrieve an HEX color from the list of QIIME colors Input: index: index of the color to retrieve, if the number is greater than the number of available colors, it will rollover in the list. Output: color: string in the format #FF0000 """ assert index >= 0, "There are no negative indices for the QIIME colors" n_colors = len(data_color_order) if index >= n_colors: index = int(index - floor((index / n_colors) * n_colors)) return data_colors[data_color_order[index]].toHex() def matplotlib_rgb_color(rgb_color): """Returns RGB color in matplotlib format. ex: (255,0,255) will return (1.0,0.0,1.0) """ return tuple([i / 255. for i in rgb_color])
gpl-2.0
dmitryduev/pypride
bin/tecs.py
1
20564
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- """ Created on Fri Feb 21 15:18:45 2014 @author: oasis """ from pypride.vintlib import * import os import multiprocessing as mp #import matplotlib.pyplot as plt #import prettyplotlib as ppl #from time import time as _time import argparse ''' #============================================================================== # Function returning slant tecs (modified ion_igs) #============================================================================== ''' def ion_tec(sta, iono, elv, azi, UT, f_0=None): ''' Calculate ionospheric delay using IGS vertical TEC maps ''' # calculate distance to point J of ray pierce into ionosphere from site # H = 438.1*1e3 # m - mean height of the ionosphere above R_E H = 450*1e3 # m - height of ionosphere above R_E as stated in IONEX files R_E = 6371.0*1e3 # m - Earth's radius from the TEC map alpha = 0.9782 lat_geod = sta.lat_geod lon_gcen = sta.lon_gcen h_geod = sta.h_geod UT_tec = iono.UT_tec fVTEC = iono.fVTEC #WGS84 Ellipsoid a = 6378137.0 # m f = 1.0/298.2572235630 b = a*(1.0-f) # m ec = sqrt((a**2-b**2)/(a**2)) R_oscul = a*sqrt(1.0-ec**2)/(1.0-(ec*sin(lat_geod))**2) # m source_vec = np.array([sin(pi/2.0-elv)*cos(azi),\ sin(pi/2.0-elv)*sin(azi),\ cos(pi/2.0-elv) ]) # slanted distance btw the ground and the iono layer ds = (R_oscul+h_geod)*sin(-elv) + \ 0.5 * sqrt( (2.0*(R_oscul+h_geod)*sin(-elv))**2 - \ 4.0*((R_oscul+h_geod)**2 - (R_E+H)**2) ) # cart crds of the starting point rpt = [R_oscul+h_geod, lat_geod, lon_gcen] r0 = sph2cart(rpt) # cart crds of the ionospheric pierce point r1 = r0 + ds*source_vec # lat/long of the pierce point rlalo = cart2sph(r1) lon = 180.0*rlalo[2]/pi lat = 180.0*rlalo[1]/pi # find closest epoch in TEC data: # easy case - UT is in UT_tec n0 = np.searchsorted(UT_tec, UT) if UT in UT_tec: # only need to interpolate TECz to the Lat/Lon of the pierce point TEC_z = float(fVTEC[n0](lon, lat)) else: # else take 4 consecutive epochs and interpolate: N_epoch = len(fVTEC) if n0==1 or n0==0: nl = 0; nr = 4 elif n0==N_epoch-2 or n0==N_epoch-1: nl = N_epoch-4; nr = N_epoch else: nl = n0-2; nr = n0+2 TEC_z = [] for nn in range(nl,nr): TEC_z.append(float(fVTEC[nn](lon, lat))) # interpolate zenith TECz to the epoch of observation # fTEC = sp.interpolate.interp1d(UT_tec[nl:nr], TEC_z, kind='linear') # TEC_z = fTEC(UT) TEC_z = np.interp(UT, UT_tec[nl:nr], TEC_z) # calculate slanted TEC TEC = TEC_z / cos(asin( (R_oscul+h_geod)*sin(alpha*(pi/2.0-elv))/(R_E+H) )) TEC_tecu = 0.1*TEC # in TEC units # calculate ionspheric delay for the source # delay_ion = 5.308018e10*TEC_tecu/(4.0*pi**2*f_0*f_0) return TEC_tecu ''' #============================================================================== # Calculate all sorts of TECs #============================================================================== ''' def calctec(ins): ''' Calculate all sorts of TECs ''' # parse single-variable input: record, sta_r, sta_t, sou_type, source, \ ip_tecs, const, inp, tec_uplink = ins t = datetime.datetime(*map(int, record[4:10])) + \ datetime.timedelta(seconds=record[10]/2.0) # t_obs - middle of obs run t_obs = (t.hour*3600.0 + t.minute*60.0 + record[10]/2.0)/86400.0 ''' download iono data ''' # doup(False, inp['do_ion_calc'], \ # inp['cat_eop'], inp['meteo_cat'], inp['ion_cat'], \ # t, t, 'igs') ''' load vtec maps ''' try: if record[34]==30.0 or record[35]==30.0 or record[36]==1.0: iono = ion(t, t, inp) ''' calculate tec for downlink ''' if record[34]==30.0: st = sta_r[int(record[3])-1] # receiving station el = record[18]*pi/180 if record[17]>180: az = (record[17]-360.0)*pi/180 else: az = record[17]*pi/180 tec = ion_tec(st, iono, el, az, t_obs) # print 'TEC down:', record[34], '{:4.1f}'.format(tec) # replace corresponding field in the record: record[34] = tec ''' calculate tec for uplink ''' if record[35]==30.0: st = sta_t[int(record[33])-1] # transmittimg station # use planetary ephems mjd = mjuliandate(t.year, t.month, t.day) UTC = (t.hour + t.minute/60.0 + t.second/3600.0)/24.0 JD = mjd + 2400000.5 TAI, TT = taitime(mjd, UTC) with open(inp['cat_eop'], 'r') as fc: fc_lines = fc.readlines() eops = np.zeros((7,7)) # +/- 3 days for jj in range(len(fc_lines)): if fc_lines[jj][0]!=' ' and fc_lines[jj][0]!='*': entry = [float(x) for x in fc_lines[jj].split()] if len(entry) > 0 and entry[3] == np.floor(mjd) - 3: for kk in range(7): eops[kk,0] = entry[3] # mjd eops[kk,1] = entry[6] # UT1-UTC eops[kk,2] = entry[6] - nsec(entry[3]) # UT1 - TAI eops[kk,3] = entry[4] # x_p eops[kk,4] = entry[5] # y_p eops[kk,5] = entry[8] # dX eops[kk,6] = entry[9] # dY entry = [float(x) for x in fc_lines[jj+kk+1].split()] break #exit loop UT1, eop_int = eop_iers(mjd, UTC, eops) CT, dTAIdCT = t_eph(JD, UT1, TT, st.lon_gcen, st.u, st.v) # Earth: rrd = pleph(JD+CT, 3, 12, inp['jpl_eph']) earth = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 # Venus/Mars if source.lower()=='vex': rrd = pleph(JD+CT, 2, 12, inp['jpl_eph']) elif source.lower()=='mex': rrd = pleph(JD+CT, 4, 12, inp['jpl_eph']) planet = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 lt = np.linalg.norm(planet[:,0]-earth[:,0])/const.C dt = 3*datetime.timedelta(seconds=lt) # 2-way LT if tec_uplink=='planet': # 3 LTs ago (2LTs - signal round trip + another LT ) # print dt # print CT CT -= dt.total_seconds()/86400.0 _, eop_int = eop_iers(mjd, UTC-2.0*lt/86400.0, eops) # print CT ## Earth: rrd = pleph(JD+CT, 3, 12, inp['jpl_eph']) earth = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 # Earth's acceleration in m/s**2: v_plus = np.array(pleph(JD+CT+1.0/86400.0, 3, 12, inp['jpl_eph'])[3:]) v_minus = np.array(pleph(JD+CT-1.0/86400.0, 3, 12, inp['jpl_eph'])[3:]) a = (v_plus - v_minus)*1e3 / 2.0 a = np.array(np.matrix(a).T) earth = np.hstack((earth, a)) ## Sun: rrd = pleph(JD+CT, 11, 12, inp['jpl_eph']) sun = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 ## Moon: rrd = pleph(JD+CT, 10, 12, inp['jpl_eph']) moon = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 # Venus/Mars if source.lower()=='vex': rrd = pleph(JD+CT, 2, 12, inp['jpl_eph']) elif source.lower()=='mex': rrd = pleph(JD+CT, 4, 12, inp['jpl_eph']) planet = np.reshape(np.asarray(rrd), (3,2), 'F') * 1e3 r2000 = ter2cel(t-dt, eop_int, dTAIdCT, 'iau2000') st = dehanttideinel(st, t-dt, earth, sun, moon, r2000) st = hardisp(st, t-dt, r2000) st = poletide(st, t-dt, eop_int, r2000) st.j2000gp(r2000) r = planet[:,0] - (st.r_GCRS + earth[:,0]) ra = np.arctan2(r[1],r[0]) # right ascention dec = np.arctan(r[2]/np.sqrt(r[0]**2+r[1]**2)) # declination if ra < 0: ra += 2.0*np.pi K_s = np.array([cos(dec)*cos(ra), \ cos(dec)*sin(ra), \ sin(dec)]) az, el = aber_source(st.v_GCRS, st.vw, K_s, r2000, earth) # print map(lambda x:x*180/pi, (az,el)) # print t_obs, 2.0*lt/86400.0 tec = ion_tec(st, iono, el, az, (t_obs - 2.0*lt/86400.0)) # print t, tec elif tec_uplink=='sc': # load s/c ephemeris: # tic = _time() eph = load_sc_eph(sou_type, source, t, t, inp) # print 'loading eph took', _time()-tic, ' s' # lt to station in seconds at t_obs lt, _, _ = st.LT_radec_bc(eph.bcrs[0], eph.CT, JD, UTC, inp['jpl_eph']) # az/el 2LT ago (another LT is accounted for internally) r2000 = ter2cel(t, eop_int, dTAIdCT, 'iau2000') az, el = st.AzEl2(eph.gtrs, eph.UT, JD, \ UTC - 2.0*lt/86400.0, inp['jpl_eph']) # print map(lambda x:x*180/pi, (az,el)) # print t_obs, 2.0*lt/86400.0 tec = ion_tec(st, iono, el, az, (t_obs - 2.0*lt/86400.0)) # print t, tec # print 'TEC up:', record[35], '{:4.1f}'.format(tec) # replace corresponding field in the record: record[35] = tec ''' calculate IP tec (intepolate from table) ''' if record[36]==1.0: orb_phase = record[22] + record[23] ip_tec, _ = lagint(4, ip_tecs[:,0], ip_tecs[:,3], orb_phase) record[36] = ip_tec*(1+880.0/749.0) except Exception, err: print err print 'error occured for {:4d}/{:02d}/{:02d}'\ .format(t.year, t.month, t.day) finally: return record ''' #============================================================================== # Run pipeline #============================================================================== ''' if __name__ == '__main__': ''' This script is supposed to be run from the command line ''' # create parser parser = argparse.ArgumentParser() # optional arguments parser.add_argument('-s', '--spacecraft', type=str, choices=['vex', 'mex'], help='spacecraft') parser.add_argument('-u', '--uppoint', type=str, choices=['sc', 'planet'], default='planet', help='where to point when calculating TEC on uplink:'+\ ' \'planet\' to point at the S/C host planet (default),'+\ ' \'sc\' to point at the S/C') parser.add_argument('-i', '--ionomodel', type=str, choices=['igs', 'igr'], default='igr', help='IGS\' ionospheric TEC model to use: final or '+\ 'rapid (default)') parser.add_argument('-p', '--parallel', action='store_true', help='run computation in parallel mode') # positional argument parser.add_argument('inpFile', type=str, help="input ScintObsSummary table") args = parser.parse_args() scint_table_file = args.inpFile # which spacecraft? if args.spacecraft=='vex': source = 'vex' elif args.spacecraft=='mex': source = 'mex' else: # try to guess: if 'vex' in scint_table_file.lower(): source = 'vex' elif 'mex' in scint_table_file.lower(): source = 'mex' else: raise Exception('Spacecraft not set; failed to guess.') # where to point uplink? if args.uppoint=='sc': tec_uplink = 'sc' elif args.uppoint=='planet': tec_uplink = 'planet' else: # let's do it quickly by default tec_uplink = 'planet' # proceed with pipelining: inp = inp_set('inp.cfg') inp.iono_model = args.ionomodel inp = inp.get_section('all') const = constants() receivers = ['METSAHOV', 'MEDICINA', 'MATERA', 'NOTO', 'WETTZELL', \ 'YEBES40M', 'PUSHCHIN', 'ONSALA60', 'HARTRAO', \ 'SESHAN25', 'KUNMING', 'URUMQI', 'HART15M', \ 'SVETLOE', 'ZELENCHK', 'BADARY', 'TIANMA65', 'WARK12M',\ 'HOBART26', 'HOBART12', 'YARRA12M', 'KATH12M',\ 'WARK30M', 'WETTZ13S', 'WETTZ13N'] transmitters = ['NWNORCIA', 'CEBREROS', 'MALARGUE', 'TIDBIN64', 'DSS35',\ 'DSS45', 'DSS34', 'DSS65', 'DSS63', 'DSS14', 'DSS15'] recv_short = shname(receivers, inp['shnames_cat'], inp['shnames_cat_igs']) tran_short = shname(transmitters, inp['shnames_cat'], inp['shnames_cat_igs']) ''' load cats ''' # last argument is dummy sou_type = 'S' _, sta_r, _ = load_cats(inp, source, sou_type, receivers, \ datetime.datetime.now()) _, sta_t, _ = load_cats(inp, source, sou_type, transmitters, \ datetime.datetime.now()) ''' calculate site positions in geodetic coordinate frame + transformation matrix VW from VEN to the Earth-fixed coordinate frame ''' for st_r in sta_r: st_r.geodetic(const) for st_t in sta_t: st_t.geodetic(const) ''' load IP TEC table ''' if source == 'vex': f_iptec = 'TecVenus.NFS.txt' if source == 'mex': f_iptec = 'TecMars.NFS.txt' with open(os.path.join(inp['ion_cat'], 'scint', f_iptec)) as fipt: ip_tecs = np.array([map(float,x.split()) for x in fipt.readlines() \ if x[0]!='#']) ''' Parse Scint Table ''' # with open(os.path.join(inp['ion_cat'], 'scint', scint_table_file)) as f: with open(scint_table_file) as f: f_lines = f.readlines() scintTable = [] f_lines_clean = [l for l in f_lines if l[0]=='|' and len(l)>20] for line in f_lines_clean: line_parsed = map(float, line.replace('|',' ').split()) scintTable.append(line_parsed) scintTable = np.array(scintTable) ''' precompute ephemerides for faster access ''' # get unique dates in the scintTable dates = np.array([datetime.datetime(*map(int, x[4:7])) for x in scintTable]) dates = np.unique(dates) # planet position could be used instead! if tec_uplink == 'sc': # now get "min" and "max" epochs on that day startStopTimes = [] for date in dates: span = [x[4:10] for x in scintTable \ if datetime.datetime(*map(int,x[4:7])) == date] mjds = [] for spa in span: mjds.append(mjuliandate(*spa)) mjd_min = np.argmin(mjds) # "min" epoch mjd_max = np.argmax(mjds) # "max" epoch start = datetime.datetime(*map(int, span[mjd_min])) stop = datetime.datetime(*map(int, span[mjd_max])) startStopTimes.append([start, stop]) # print date, start, stop # create one ephemeris spanning across min-max # (not to recalculate it at each step) print 'Creating ephemerides...' # do it in a parallel way! def ephmakerWrapper(args): ''' wrapper func to unpack arguments ''' return load_sc_eph(*args) # check raw eph files boundaries: path = os.path.join(inp['sc_eph_cat'], 'raw_'+source.lower()) checkbound(source, orb_path=path) ## make single-var inputs: #ins = [] #for (start, stop) in startStopTimes: # ins.append((sou_type, source, start, stop, inp)) ## number of cores available #n_cpu = mp.cpu_count() ## create pool #pool = mp.Pool(n_cpu) ## asyncronously apply calctec to each of ins #pool.map_async(ephmakerWrapper, ins) ## close bassejn #pool.close() # we are not adding any more processes #pool.join() # wait until all threads are done before going on ## do it in serial way! for ii, (start, stop) in enumerate(startStopTimes): print len(startStopTimes)-ii, 'ephemerides to go' load_sc_eph(sou_type, source, start, stop, inp, load=False) ''' download iono data if necessary ''' print 'Fetching ionospheric data...' #tec_model = 'igs' # final 'igs' or rapid 'igr' IGS solution tec_model = inp['iono_model'] for t in dates: doup(False, inp['do_ion_calc'], \ inp['cat_eop'], inp['meteo_cat'], inp['ion_cat'], \ t, t, tec_model) ''' iterate over records in scint table ''' print 'Computing TECs...' # make single-var inputs: ins = [] for record in scintTable: ins.append((record, sta_r, sta_t, sou_type, source, \ ip_tecs, const, inp, tec_uplink)) ## parallel way: if args.parallel: # number of cores available n_cpu = mp.cpu_count() # create pool pool = mp.Pool(n_cpu) # asyncronously apply calctec to each of ins result = pool.map_async(calctec, ins) # close bassejn pool.close() # we are not adding any more processes pool.join() # wait until all threads are done before going on # get the ordered results back into obsz outs = result.get() scintTableOut = [] for ou in outs: scintTableOut.append(ou) ## serial way: else: scintTableOut = [] for ii, record in enumerate(ins): print len(scintTable)-ii, 'records to go' scintTableOut.append(calctec(record)) #%% ''' #========================================================================== # Create output table #========================================================================== ''' print 'Outputting...' # date string #date_string = datetime.datetime.now().strftime("%y%m%d") #out_table = ''.join(('ScintTable.', date_string)) # put in the vispy output folder if '/' in scint_table_file: slash = [i for i,x in enumerate(scint_table_file) if x=='/'] out = scint_table_file[slash[-1]+1:] else: out = scint_table_file out_table = ''.join((out[:-4], 'i', out[-4:])) first_entry = [i for i, x in enumerate(f_lines) if x[0]=='|'][0] header = [x for x in f_lines[:first_entry] if x[0]=='/'] last_entry = [i for i, x in enumerate(f_lines) if x[0]=='|'][-1] footer = [x for x in f_lines[last_entry:] if x[0]=='/'] with open(os.path.join(inp['out_path'], out_table), 'w') as f: # print header: for line in header: f.write(''.join((line.strip(), '\n'))) # print table: for ii, record in enumerate(scintTableOut): line = '|{:5d}'.format(ii+1) line += '{:4d}{:4d}{:4d}{:8d} {:02d} {:02d} {:02d} {:02d} {:02d}'\ .format(*map(int, record[1:10]) ) line += '{:6d}{:4d} {:02d}'\ .format(*map(int, record[10:13])) line += ' {:04.1f}'\ .format(float(record[13])) line += '{:4d} {:02d}'\ .format(*map(int,record[14:16])) line += ' {:04.1f}'\ .format(float(record[16])) line += '{:6.1f}{:6.1f}{:6.1f}{:6.1f}{:8.4f}{:7.2f}{:7.2f} |'\ .format(*map(float, record[17:24])) line += '{:8.3f}{:7.3f}{:8.3f}{:6.3f}{:10.2f}{:7.2f}{:8.2f}'\ .format(*map(float, record[24:31])) line += '{:8d} |{:3d}{:7d}'\ .format(*map(int, record[31:34])) line += '{:6.1f}{:8.1f}{:9.1f} |\n'\ .format(*map(float, record[34:])) f.write(line) # print footer: for line in footer: f.write(''.join((line.strip(), '\n')))
gpl-2.0
mxjl620/scikit-learn
benchmarks/bench_plot_fastkmeans.py
294
4676
from __future__ import print_function from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() data = nr.random_integers(-50, 50, (n_samples, n_features)) print('K-Means') tstart = time() kmeans = KMeans(init='k-means++', n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results['kmeans_speed'].append(delta) results['kmeans_quality'].append(kmeans.inertia_) print('Fast K-Means') # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=10, batch_size=chunk) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0]]) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() print('Fast K-Means') tstart = time() mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(np.int) features_range = np.linspace(150, 50000, 5).astype(np.int) chunks = np.linspace(500, 10000, 15).astype(np.int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max([max(i) for i in [t for (label, t) in results.iteritems() if "speed" in label]]) max_inertia = max([max(i) for i in [ t for (label, t) in results.iteritems() if "speed" not in label]]) fig = plt.figure('scikit-learn K-Means benchmark results') for c, (label, timings) in zip('brcy', sorted(results.iteritems())): if 'speed' in label: ax = fig.add_subplot(2, 2, 1, projection='3d') ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection='3d') ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') i = 0 for c, (label, timings) in zip('br', sorted(results_2.iteritems())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel('Chunks') ax.set_ylabel(label) plt.show()
bsd-3-clause
weissercn/MLTools
Dalitz_simplified/classifier_eval_simplified.py
1
17436
#adapted from the example at http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html """ This script can be used to get the p value for classifiers. It takes input files with column vectors corresponding to features and lables. Then there are two different routes one can go down. When mode has a value of 1, then a grid search will be performed on one set of input files. If it is 2, then the hyperparemeter search is performed by spearmint. When the mode is turned off (0), then the p value is computed for multiple sets of input files and the p value distribution is plotted. One sets all the valiables including the classifier in the "args" list. The classifier provided is ignored if keras_mode is on (1) in which case a keras neural network is used. """ from __future__ import print_function print(__doc__) import os import p_value_scoring_object import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn import cross_validation from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV from keras.utils import np_utils from scipy import stats import math ############################################################################## # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) def Xy_to_keras_Xy(X,y): print("X.shape : ",X.shape) keras_X = X keras_y = np_utils.to_categorical(y, 2) return (keras_X, keras_y) def make_keras_model(n_hidden_layers, dimof_middle, dimof_input): from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.utils import np_utils, generic_utils from keras.wrappers.scikit_learn import KerasClassifier dimof_output =2 print("dimof_input : ",dimof_input, "dimof_output : ", dimof_output) batch_size = 1 dropout = 0.5 countof_epoch = 5 model = Sequential() model.add(Dense(input_dim=dimof_input, output_dim=dimof_middle, init="glorot_uniform",activation='tanh')) model.add(Dropout(dropout)) for n in range(n_hidden_layers): model.add(Dense(input_dim=dimof_middle, output_dim=dimof_middle, init="glorot_uniform",activation='tanh')) model.add(Dropout(dropout)) model.add(Dense(input_dim=dimof_middle, output_dim=dimof_output, init="glorot_uniform",activation='sigmoid')) #Compiling (might take longer) model.compile(loss='categorical_crossentropy', optimizer='sgd') return model class Counter(object): # Creating a counter object to be able to perform cross validation with only one split def __init__(self, list1,list2): self.current = 1 self.list1 =list1 self.list2 =list2 def __iter__(self): 'Returns itself as an iterator object' return self def __next__(self): 'Returns the next value till current is lower than high' if self.current > 1: raise StopIteration else: self.current += 1 return self.list1,self.list2 next = __next__ #python2 def histo_plot_pvalue(U_0,abins,axlabel,aylabel,atitle,aname): bins_probability=np.histogram(U_0,bins=abins)[1] #Finding the p values corresponding to 1,2 and 3 sigma significance. no_one_std_dev=sum(i < (1-0.6827) for i in U_0) no_two_std_dev=sum(i < (1-0.9545) for i in U_0) no_three_std_dev=sum(i < (1-0.9973) for i in U_0) print(no_one_std_dev,no_two_std_dev,no_three_std_dev) with open(aname+"_p_values_1_2_3_std_dev.txt",'w') as p_value_1_2_3_std_dev_file: p_value_1_2_3_std_dev_file.write(str(no_one_std_dev)+'\t'+str(no_two_std_dev)+'\t'+str(no_three_std_dev)+'\n') #plt.rc('text', usetex=True) textstr = '$1\sigma=%i$\n$2\sigma=%i$\n$3\sigma=%i$'%(no_one_std_dev, no_two_std_dev, no_three_std_dev) # Making a histogram of the probability predictions of the algorithm. fig_pred_0= plt.figure() ax1_pred_0= fig_pred_0.add_subplot(1, 1, 1) n0, bins0, patches0 = ax1_pred_0.hist(U_0, bins=bins_probability, facecolor='red', alpha=0.5) ax1_pred_0.set_xlabel(axlabel) ax1_pred_0.set_ylabel(aylabel) ax1_pred_0.set_title(atitle) plt.xlim([0,1]) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords ax1_pred_0.text(0.85, 0.95, textstr, transform=ax1_pred_0.transAxes, fontsize=14, verticalalignment='top', bbox=props) fig_pred_0.savefig(aname+"_p_values_plot.png") #fig_pred_0.show() plt.close(fig_pred_0) def classifier_eval(mode,keras_mode,args): ############################################################################## # Setting parameters # name=args[0] sample1_name= args[1] sample2_name= args[2] shuffling_seed = args[3] #mode =0 if you want evaluation of a model =1 if grid hyperparameter search =2 if spearmint hyperparameter search comp_file_list=args[4] print(comp_file_list) cv_n_iter = args[5] clf = args[6] C_range = args[7] gamma_range = args[8] if len(args)>9: #AD mode =1 : Anderson Darling test used instead of Kolmogorov Smirnov #AD mode =2 : Visualisation of the decision boundary #AD mode anything else: use KS and no visualisation AD_mode = args[9] else: AD_mode = 0 if mode==0: #For standard evaluation score_list=[] print("standard evaluation mode") elif mode==1: #For grid search print("grid hyperparameter search mode") param_grid = dict(gamma=gamma_range, C=C_range) elif mode==2: #For spearmint hyperparameter search score_list=[] print("spearmint hyperparameter search mode") else: print("No valid mode chosen") return 1 ############################################################################## # Load and prepare data set # # dataset for grid search for comp_file_0,comp_file_1 in comp_file_list: print("Operating of files :"+comp_file_0+" "+comp_file_1) #extracts data from the files features_0=np.loadtxt(comp_file_0,dtype='d') features_1=np.loadtxt(comp_file_1,dtype='d') #determine how many data points are in each sample no_0=features_0.shape[0] no_1=features_1.shape[0] no_tot=no_0+no_1 #Give all samples in file 0 the label 0 and in file 1 the feature 1 label_0=np.zeros((no_0,1)) label_1=np.ones((no_1,1)) #Create an array containing samples and features. data_0=np.c_[features_0,label_0] data_1=np.c_[features_1,label_1] data=np.r_[data_0,data_1] np.random.shuffle(data) X=data[:,:-1] y=data[:,-1] print("X : ",X) print("y : ",y) atest_size=0.2 if cv_n_iter==1: train_range = range(int(math.floor(no_tot*(1-atest_size)))) test_range = range(int(math.ceil(no_tot*(1-atest_size))),no_tot) #print("train_range : ", train_range) #print("test_range : ", test_range) acv = Counter(train_range,test_range) #print(acv) else: acv = StratifiedShuffleSplit(y, n_iter=cv_n_iter, test_size=atest_size, random_state=42) print("Finished with setting up samples") # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. if AD_mode != 2: scaler = StandardScaler() X = scaler.fit_transform(X) if mode==1: ############################################################################## # Grid Search # # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. if AD_mode==1: grid = GridSearchCV(clf, scoring=p_value_scoring_object.p_value_scoring_object_AD ,param_grid=param_grid, cv=acv) else: grid = GridSearchCV(clf, scoring=p_value_scoring_object.p_value_scoring_object ,param_grid=param_grid, cv=acv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)),size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') plt.savefig('prediction_comparison.png') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=-1.0, midpoint=-0.0001)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.savefig('Heat_map.png') else: if keras_mode==1: from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.layers import Dropout from keras.utils import np_utils, generic_utils dimof_input = X.shape[1] dimof_output =2 y = np_utils.to_categorical(y, dimof_output) print("dimof_input : ",dimof_input, "dimof_output : ", dimof_output) #y = np_utils.to_categorical(y, dimof_output) scores = [] counter = 1 for train_index, test_index in acv: print("Cross validation run ", counter) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] print("X_train : ",X_train) print("y_train : ",y_train) batch_size = 1 dimof_middle = args[10] dropout = 0.5 countof_epoch = 5 n_hidden_layers = args[11] model = Sequential() model.add(Dense(input_dim=dimof_input, output_dim=dimof_middle, init="glorot_uniform",activation='tanh')) model.add(Dropout(dropout)) for n in range(n_hidden_layers): model.add(Dense(input_dim=dimof_middle, output_dim=dimof_middle, init="glorot_uniform",activation='tanh')) model.add(Dropout(dropout)) model.add(Dense(input_dim=dimof_middle, output_dim=dimof_output, init="glorot_uniform",activation='sigmoid')) #Compiling (might take longer) model.compile(loss='categorical_crossentropy', optimizer='sgd') model.fit(X_train, y_train,show_accuracy=True,batch_size=batch_size, nb_epoch=countof_epoch, verbose=0) prob_pred = model.predict_proba(X_test) print("prob_pred : ", prob_pred) assert (not (np.isnan(np.sum(prob_pred)))) # for y is 2D change dimof_output =2, add y = np_utils.to_categorical(y, dimof_output) and change the following line prob_pred = np.array([sublist[0] for sublist in prob_pred]) y_test = np.array([sublist[0] for sublist in y_test]) print("y_test : ", y_test) print("prob_pred : ", prob_pred) #Just like in p_value_scoring_strategy.py y_test = np.reshape(y_test,(1,y_test.shape[0])) prob_pred = np.reshape(prob_pred,(1,prob_pred.shape[0])) prob_0 = prob_pred[np.logical_or.reduce([y_test==0])] prob_1 = prob_pred[np.logical_or.reduce([y_test==1])] if __debug__: print("Plot") if AD_mode==1: p_AD_stat=stats.anderson_ksamp([prob_0,prob_1]) print(p_AD_stat) scores.append(p_AD_stat[2]) else: p_KS=stats.ks_2samp(prob_0,prob_1) print(p_KS) scores.append(p_KS[1]) counter +=1 else: if keras_mode==2: X, y = Xy_to_keras_Xy(X,y) if AD_mode==1: scores = (-1)*cross_validation.cross_val_score(clf,X,y,cv=acv,scoring=p_value_scoring_object.p_value_scoring_object_AD) elif AD_mode==2: print("X[:,0].min() , ", X[:,0].min(), "X[:,0].max() : ", X[:,0].max()) scores = (-1)*cross_validation.cross_val_score(clf,X,y,cv=acv,scoring=p_value_scoring_object.p_value_scoring_object_visualisation) import os os.rename("visualisation.png",name+"_visualisation.png") else: scores = (-1)*cross_validation.cross_val_score(clf,X,y,cv=acv,scoring=p_value_scoring_object.p_value_scoring_object) print("scores : ",scores) score_list.append(np.mean(scores)) if mode==2: return np.mean(scores) ############################################################################################################################################################ ############################################################### Evaluation of results #################################################################### ############################################################################################################################################################ if mode==0: # The score list has been computed. Let's plot the distribution print(score_list) with open(name+"_p_values",'w') as p_value_file: for item in score_list: p_value_file.write(str(item)+'\n') histo_plot_pvalue(score_list,50,"p value","Frequency","p value distribution",name) if __name__ == "__main__": print("Executing classifier_eval_simplified as a stand-alone script") print() comp_file_list=[] from sklearn import tree from sklearn.ensemble import AdaBoostClassifier from sklearn.svm import SVC #clf = SVC(C=100,gamma=0.1,probability=True, cache_size=7000) #################################################################### # Dalitz operaton #################################################################### for i in range(100): comp_file_list.append((os.environ['MLToolsDir']+"/Dalitz/dpmodel/data/data.{0}.0.txt".format(i), os.environ['MLToolsDir']+"/Dalitz/dpmodel/data/data.2{0}.1.txt".format(str(i).zfill(2)))) clf = tree.DecisionTreeClassifier('gini','best',46, 100, 1, 0.0, None) #clf = AdaBoostClassifier(base_estimator=tree.DecisionTreeClassifier(max_depth=2), learning_rate=0.95,n_estimators=440) #clf = SVC(C=params['aC'],gamma=params['agamma'],probability=True, cache_size=7000) args=["dalitz_dt","particle","antiparticle",100,comp_file_list,1,clf,np.logspace(-2, 10, 13),np.logspace(-9, 3, 13),1] #For nn: #args=["dalitz","particle","antiparticle",100,comp_file_list,1,clf,np.logspace(-2, 10, 13),np.logspace(-9, 3, 13),1,params['dimof_middle'],params['n_hidden_layers']] #################################################################### # Gaussian samples operation #################################################################### #clf = tree.DecisionTreeClassifier('gini','best',37, 89, 1, 0.0, None) #clf = AdaBoostClassifier(base_estimator=tree.DecisionTreeClassifier(max_depth=2), learning_rate=0.01,n_estimators=983) #clf = SVC(C=params['aC'],gamma=params['agamma'],probability=True, cache_size=7000) #args=["gauss_svc","particle","antiparticle",100,comp_file_list,1,clf,np.logspace(-2, 10, 13),np.logspace(-9, 3, 13)] #For nn: #args=["dalitz","particle","antiparticle",100,comp_file_list,1,clf,np.logspace(-2, 10, 13),np.logspace(-9, 3, 13),params['dimof_middle'],params['n_hidden_layers']] #################################################################### classifier_eval(0,0,args)
mit
kernc/scikit-learn
sklearn/cluster/tests/test_bicluster.py
143
9461
"""Testing for Spectral Biclustering methods""" import numpy as np from scipy.sparse import csr_matrix, issparse from sklearn.model_selection import ParameterGrid from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.cluster.bicluster import _scale_normalize from sklearn.cluster.bicluster import _bistochastic_normalize from sklearn.cluster.bicluster import _log_normalize from sklearn.metrics import consensus_score from sklearn.datasets import make_biclusters, make_checkerboard class MockBiclustering(BaseEstimator, BiclusterMixin): # Mock object for testing get_submatrix. def __init__(self): pass def get_indices(self, i): # Overridden to reproduce old get_submatrix test. return (np.where([True, True, False, False, True])[0], np.where([False, False, True, True])[0]) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) model = MockBiclustering() for X in (data, csr_matrix(data), data.tolist()): submatrix = model.get_submatrix(0, X) if issparse(submatrix): submatrix = submatrix.toarray() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.toarray() assert_true(np.all(X != -1)) def _test_shape_indices(model): # Test get_shape and get_indices on fitted model. for i in range(model.n_clusters): m, n = model.get_shape(i) i_ind, j_ind = model.get_indices(i) assert_equal(len(i_ind), m) assert_equal(len(j_ind), n) def test_spectral_coclustering(): # Test Dhillon's Spectral CoClustering on a simple problem. param_grid = {'svd_method': ['randomized', 'arpack'], 'n_svd_vecs': [None, 20], 'mini_batch': [False, True], 'init': ['k-means++'], 'n_init': [10], 'n_jobs': [1]} random_state = 0 S, rows, cols = make_biclusters((30, 30), 3, noise=0.5, random_state=random_state) S -= S.min() # needs to be nonnegative before making it sparse S = np.where(S < 1, 0, S) # threshold some values for mat in (S, csr_matrix(S)): for kwargs in ParameterGrid(param_grid): model = SpectralCoclustering(n_clusters=3, random_state=random_state, **kwargs) model.fit(mat) assert_equal(model.rows_.shape, (3, 30)) assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def test_spectral_biclustering(): # Test Kluger methods on a checkerboard dataset. S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5, random_state=0) non_default_params = {'method': ['scale', 'log'], 'svd_method': ['arpack'], 'n_svd_vecs': [20], 'mini_batch': [True]} for mat in (S, csr_matrix(S)): for param_name, param_values in non_default_params.items(): for param_value in param_values: model = SpectralBiclustering( n_clusters=3, n_init=3, init='k-means++', random_state=0, ) model.set_params(**dict([(param_name, param_value)])) if issparse(mat) and model.get_params().get('method') == 'log': # cannot take log of sparse matrix assert_raises(ValueError, model.fit, mat) continue else: model.fit(mat) assert_equal(model.rows_.shape, (9, 30)) assert_equal(model.columns_.shape, (9, 30)) assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def _do_scale_test(scaled): """Check that rows sum to one constant, and columns to another.""" row_sum = scaled.sum(axis=1) col_sum = scaled.sum(axis=0) if issparse(scaled): row_sum = np.asarray(row_sum).squeeze() col_sum = np.asarray(col_sum).squeeze() assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) def _do_bistochastic_test(scaled): """Check that rows and columns sum to the same constant.""" _do_scale_test(scaled) assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) def test_scale_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled, _, _ = _scale_normalize(mat) _do_scale_test(scaled) if issparse(mat): assert issparse(scaled) def test_bistochastic_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled = _bistochastic_normalize(mat) _do_bistochastic_test(scaled) if issparse(mat): assert issparse(scaled) def test_log_normalize(): # adding any constant to a log-scaled matrix should make it # bistochastic generator = np.random.RandomState(0) mat = generator.rand(100, 100) scaled = _log_normalize(mat) + 1 _do_bistochastic_test(scaled) def test_fit_best_piecewise(): model = SpectralBiclustering(random_state=0) vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) assert_array_equal(best, vectors[:2]) def test_project_and_cluster(): model = SpectralBiclustering(random_state=0) data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) vectors = np.array([[1, 0], [0, 1], [0, 0]]) for mat in (data, csr_matrix(data)): labels = model._project_and_cluster(data, vectors, n_clusters=2) assert_array_equal(labels, [0, 0, 1, 1]) def test_perfect_checkerboard(): raise SkipTest("This test is failing on the buildbot, but cannot" " reproduce. Temporarily disabling it until it can be" " reproduced and fixed.") model = SpectralBiclustering(3, svd_method="arpack", random_state=0) S, rows, cols = make_checkerboard((30, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((40, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((30, 40), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) def test_errors(): data = np.arange(25).reshape((5, 5)) model = SpectralBiclustering(n_clusters=(3, 3, 3)) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters='abc') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters=(3, 'abc')) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(svd_method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_best=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=3, n_best=4) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering() data = np.arange(27).reshape((3, 3, 3)) assert_raises(ValueError, model.fit, data)
bsd-3-clause
VandyAstroML/Vandy_AstroML
profiles/Nick/MLDigits1_1.py
1
14577
import sys import os import numpy as np import math import random from scipy import stats import matplotlib matplotlib.use( 'Agg' ) import matplotlib.pyplot as plt from sklearn.datasets import load_digits #import sklearn from datetime import datetime startTime = datetime.now() print("WELCOME TO A QUICK PYTHON PROGRAM.") print("It will do machine learning stuff with Numbers.. yep. ") """ ----------------------------------------------------- NICHOLAS CHASON Machine Learning Code 1. - Native Nays. ----------------------------------------------------- """ def plot_image_basic( xlist, ylist, title, xlab, ylab, legend_val, psize, xlog, ylog, yflip , pcounter, cmap_var=''): print("Entered Basic Plot Function") if legend_val != 0: pass plot_title=" Blank Title " x_axis="Blank X" y_axis="Blank Y" pointsize = 5 #sets new plot features from call. """ if True: plot_title = title x_axis = xlab y_axis = ylab pointsize = psize """ #plt.title(plot_title) #plt.xlabel(x_axis) #plt.ylabel(y_axis) #plt.yscale("log") """ if yflip == True: try: plt.ylim(max(ylist), min(ylist)) except: print("uh.oh.... try except statement. check ylim.") if ylog != 0: plt.yscale("log", nonposy='clip') if xlog != 0: plt.xscale("log", nonposy='clip') """ plt.imshow(xlist, cmap=cmap_var) #plt.xlim(min(xlist), max(xlist) ) figure_name=os.path.expanduser('~/Feb17astroML_plot%s.png' % pcount) plt.savefig(figure_name) print("Saving plot: %s" % figure_name) plt.clf() dummy = pcounter + 1 return dummy """ =================== LOAD DIGITS =================== """ digits = load_digits() """ #---------------------------------------- #To print the Descritption of load_digits #---------------------------------------- #To print the full description of data... print digits['DESCR'] """ """ ===================== PRINT INITIAL INFO ===================== """ max_pixel_value = 16 test_reduce_fraction = 4. #1/(fraction) Reduces the test set. [set 2 for half.] pcount = 0 #Set the Colormap color_map_used = plt.get_cmap('autumn') #Print the Data Keys print 'Data Dict Keys: ', digits.keys() #Loading in data #Including the pixel values for each sample. digits_data = digits['data'] total_number_of_images = len(digits_data) #Get a single random image index for print and plot. max_image_idx = total_number_of_images rand_image_idx = int(random.random() * max_image_idx) digits_targetnames = digits['target_names'] digits_target = digits['target'] print '\nSample Data Matrix: Element #', rand_image_idx print '------------------------' #Prints digits_data[rand_image_idx]. #The pixel row length is currently set to 8. length_row = 8 for idx, value in enumerate(digits_data[rand_image_idx]): print ("%d " % int(value)), #print " ", if ((idx+1)%length_row == 0): print '\n', print 'Possible Target names: ', digits_targetnames print 'Truth Targets: ', digits_target print 'Total Images: ', len(digits_data) """ =========================== BUILD TRAINING / TEST SET =========================== """ test_fraction = 0.1 training_fraction = 1. - test_fraction #Get Random Indexes. test_number_of_images = math.floor(total_number_of_images * test_fraction) test_idxs = random.sample(range(0, total_number_of_images), int(test_number_of_images)) training_number_of_images = math.floor(total_number_of_images * training_fraction) training_idxs = random.sample(range(0, total_number_of_images), int(training_number_of_images)) print 'Length test : ', len(test_idxs) print 'Length training: ', len(training_idxs) test_training_ratio = test_number_of_images/training_number_of_images test_total_ratio = test_number_of_images/total_number_of_images print 'The Test/Training ratio is: ', test_training_ratio print 'The Test/Total ratio is: ', test_total_ratio """ BUILD A SORTED LIST OF LISTS OF training DATA! """ #2 - Dimensional. 0-->9 ; [0 -- > matching indexes] Training_Index_Master_Array = [] #Loop over all possilbe Number Values. {0 --> 9} for num in range(0, 10): num_idxs = [] for i, idx in enumerate(training_idxs): if digits_target[idx] == num: num_idxs.append(idx) num_idxs.sort() Training_Index_Master_Array.append(num_idxs) """ BUILD A SORTED LIST OF LISTS OF test DATA! NOTE: CAUTION! DO NOT ACCESS THESE UNTIL THE END!!!!!!! """ #2 - Dimensional. 0-->9 ; [0 -- > matching indexes] Test_Index_Master_Array = [] #Loop over all possilbe Number Values. {0 --> 9} for num in range(0, 10): num_idxs = [] for i, idx in enumerate(test_idxs): if digits_target[idx] == num: num_idxs.append(idx) num_idxs.sort() Test_Index_Master_Array.append(num_idxs) #To Access the indexes of the training set matching Truth = index_TIMA #index_TIMA = 2 #print Training_Index_Master_Array[index_TIMA] #Do something """ ========================================================== Begin Machine Magic ========================================================== """ print("Building the Average Set of Numbers from Training Set...") """ ------------------------------- Build Average Number ------------------------------- """ #Declare Variables for loops #Initialize Array for storing a single Average pixel array for a number. #Training_Pixels_Master_Array = [[0 for i in range(10)] for y in range(64)] #pix_vals = [[1 for x in range(length_row)] for y in range(length_row)] pix_vals = [1 for x in range(length_row*length_row)] #print pix_vals temp_sum = 0 idx_counter = 0 pix_val = 0 # For each number, for each training example matching that number, # for each pixel, FIND THE AVERAGE VALUE. #Sums over each number for num in range(0, 10): #Sums over each pixel. for pix_idx in range(0, (length_row*length_row)): #tracks the sum of the pixel value for each matching image #Sums over each matching image for i, index in enumerate(Training_Index_Master_Array[num]): pix_val = digits_data[index][pix_idx] temp_sum += pix_val idx_counter += 1 #Store Average Value and Clear temporary values. avg_pix_val = temp_sum / idx_counter idx_counter = 0 temp_sum = 0 pix_vals[pix_idx] = avg_pix_val #Was done as a debegging measure. too lazy to remove. if num == 0: Training_Pixel_0 = pix_vals[:] if num == 1: Training_Pixel_1 = pix_vals[:] if num == 2: Training_Pixel_2 = pix_vals[:] if num == 3: Training_Pixel_3 = pix_vals[:] if num == 4: Training_Pixel_4 = pix_vals[:] if num == 5: Training_Pixel_5 = pix_vals[:] if num == 6: Training_Pixel_6 = pix_vals[:] if num == 7: Training_Pixel_7 = pix_vals[:] if num == 8: Training_Pixel_8 = pix_vals[:] if num == 9: Training_Pixel_9 = pix_vals[:] if num == 10: print("ERROR NUMBER SHOULDNT EQUAL 10...") #SETS THE TRAINING ARRAY. Training_Pixels_Master_Array= [ Training_Pixel_0, \ Training_Pixel_1, Training_Pixel_2, Training_Pixel_3, \ Training_Pixel_4, Training_Pixel_5, Training_Pixel_6, \ Training_Pixel_7, Training_Pixel_8, Training_Pixel_9, ] """ #======================================== #TO PRING OUT TRAINING Matrix #======================================== """ rand_number_value = int(digits_target[rand_image_idx]) print("Training_Pixels_Master_Array for Random Value: %d" % int(rand_number_value)) print("==================================================") for idx, value in enumerate(Training_Pixels_Master_Array[rand_number_value]): print ("%.2f " % value), #print " ", if ((idx+1)%length_row == 0): print '\n', """ ------------------------------- END: Build Average Number ------------------------------- """ print("Finished Building Average Numbers from Training Data!... Choosing Test. ") """ ============================================= ********************************************* TESTING PORTION OF THE CODE. ENTER HERE. ********************************************* ============================================= """ predicted_value = 0 #What does the code predict success_truths = 0 #How many correctly predicted secondary_predicted_value = 0 #What is the codes second choice secondary_success_truths = 0 #How many correctly predicted out of top two guesses false_predictions = 0 #How many primary predictions are false false_secondary_predictions = 0 #How many primary or secondary predictions are false #Initialize relevant things iterations = 0 #Total number of items looped over. predictions = [] truths = [] successes = [] #LOOP FOR GOING OVER TEST SET! print("MAX ITERATIONS SET TO 1/%d of test set." % test_reduce_fraction) max_test_iterations = len(test_idxs)/test_reduce_fraction #print("Test_Index_Master_Array[1]: ") #print Test_Index_Master_Array[1] for poop_index, poop_value in enumerate(test_idxs): pass if iterations >= max_test_iterations: print("Breaking due to max_test_iterations being reached! ... Break") break """ ===================================== TESTING SINGLE RANDOM DRAW from test ===================================== """ #Uncomment to choose a single Choice to evaluate. random_test_idx = poop_value #random_test_idx = random.choice(training_idxs) print("\nSelected index: %s, as random choice." % random_test_idx) #Compute the cost of random image from averages store in costs #INITIALIZE COSTS. costs_SI = [] costs = 0 for i_counter in range(10): #print Training_Pixels_Master_Array[i_counter] for pix_idx in range(length_row*length_row): cost_val = abs(float(Training_Pixels_Master_Array[i_counter][pix_idx]) - \ float(digits_data[random_test_idx][pix_idx])) costs += cost_val costs_SI.append(costs) costs = 0 #PRINT THE COSTS TO THE SCREEN. print("======================================================") print(" COSTS CALCULATED! ..." ) print("======================================================") print("Predicted # | Pixel Cost_per_image ") #PRint out the Costs. for i in range(10): stringv = float(costs_SI[i]) print " {0} .......... {1:.1f}".format(i, stringv) """ ------------------------ FIND MIMIMUM COST ------------------------ """ predicted_value = costs_SI.index(min(costs_SI)) #Find Secondary Value. current_cost = 9999999 for i, cost in enumerate(costs_SI): if i == predicted_value or cost >= current_cost: pass else: current_cost = cost secondary_predicted_value = i truth = digits_target[random_test_idx] print("WE FIRST PREDICT A VALUE OF: %d" % predicted_value) print("It may also be the value : %d" % secondary_predicted_value) print("THE ACTUAL VALUE WAS : %d" % truth) #LISTS to store predictions and truths for analysis. predictions.append(predicted_value) truths.append(truth) if predicted_value == truth: successes.append(1) #Successes == 1 means TRUTH success_truths += 1 else: successes.append(0) #Successes == 0 means FAILURE #PRINT THE FAILURES. print("FAILURE EXAMPLE PRINTING....") title_label = "A single number. " x_label = "x coordinate" y_label = "y coordinate" x_data = digits['images'][poop_value] y_data = [] legend_val = 0 pointsize = 3 yflip = False ylog = 0 xlog = 0 pcount = plot_image_basic(x_data, y_data, title_label, x_label, y_label, \ legend_val, pointsize, xlog, ylog, yflip, pcount, color_map_used) false_predictions += 1 if (secondary_predicted_value == truth) or (predicted_value == truth): secondary_success_truths += 1 else: false_secondary_predictions += 1 iterations += 1 print("\n") print("*************************************************************") print(" **************** FINISHED TESTING **************** ") print("*************************************************************\n") print("================================") print("SUCCESS/ failure TABLE: ") print("================================") print("Correct Primary Predictions: %d " % success_truths) print("Correct Pri|Sec Predictions: %d " % secondary_success_truths) print("Total Predictions Made: %d " % iterations) print("Ratio of Correct (Primary) to Total: %.3f" % (1.0*success_truths/iterations)) print("Ratio of Correct (Pri|Sec) to Total: %.3f" % (1.0*secondary_success_truths/iterations)) print("================================") suc_count = 0 fail_count = 0 tot_count = 0 fail_num_by_num = [] success_ratio_by_num = [] fail_ratio_by_num = [] for num in range(10): for i, elem in enumerate(truths): if elem == num: if successes[i] == 1: #FAILURE suc_count += 1 else: fail_count += 1 tot_count += 1 try: suc_ratio = 1.0*suc_count/tot_count fail_ratio = 1.0*fail_count/tot_count except: print("Encountered a value with no data points! num = %d " % num) suc_ratio = 0 fail_ratio = 0 success_ratio_by_num.append(suc_ratio) fail_num_by_num.append(fail_count) fail_ratio_by_num.append(fail_ratio) suc_count = 0 fail_count = 0 tot_count = 0 print("Success Ratio By Number\n ------------------------------") print("Truth_val | Success | Failure | #Fail Pri. ") for imtired, reallytired in enumerate(success_ratio_by_num): print(" %d: %.3f %.3f %d" % \ (imtired, reallytired, fail_ratio_by_num[imtired], \ fail_num_by_num[imtired])) """ ==================== PRINT SAMPLE IMAGE ==================== """ #initial plots generated to 0. #pcount = 0 #Set the Colormap color_map_used = plt.get_cmap('autumn') #Plot 1. A single number. #------------------------------------------------------------------ #Generate a random number for the image from 0 ==> max_image_idx #max_image_idx = total_number_of_images #rand_image_idx = int(random.random() * max_image_idx) """ title_label = "A single number. " x_label = "x coordinate" y_label = "y coordinate" x_data = digits['images'][rand_image_idx] y_data = [] legend_val = 0 pointsize = 3 yflip = False ylog = 0 xlog = 0 pcount = plot_image_basic(x_data, y_data, title_label, x_label, y_label, \ legend_val, pointsize, xlog, ylog, yflip, pcount, color_map_used) """ """ print("Now Plotting....") # =================== PLOTTING GUESSES =================== # pcount = 0 title_label = "" x_label = "" y_label = "" x_data = np.linspace(0, len(errorsLIST), num=len(errorsLIST)) y_data = errorsLIST legend_val = 0 pointsize = 3 yflip = False ylog = 0 xlog = 0 pcount = plot_basic(x_data, y_data, title_label, x_label, y_label, \ legend_val, pointsize, xlog, ylog, yflip, pcount) """ print("Time: ") print (datetime.now() - startTime) print("END. ") #Doop.
mit
rchurch4/georgetown-data-science-fall-2015
data_preparation/data_preparation_lib/clean_and_feature_generation_yelp.py
1
10765
# Ravi Makhija # clean_and_feature_generation_yelp.py # Version 4 # Python 2 # # Description: # Function to generate extra features. This is used in # data_preparation_yelp.py. # # List of features generated: # restaurant_latitude # restaurant_longitude # user_latitude, # user_longitude # user_restaurant_distance # user_is_local # user_review_length # mean_restaurant_rating_yelp # mean_restaurant_rating_yelp_local # mean_restaurant_rating_yelp_non_local # # References: # pandas join for aggregate: # http://stackoverflow.com/questions/12200693/python-pandas-how-to-assign-groupby-operation-results-back-to-columns-in-parent # pandas tutorial # http://pandas.pydata.org/pandas-docs/stable/10min.html#min import pandas as pd import numpy as np import os from geopy.geocoders import Nominatim from geopy.distance import vincenty import time import sys def clean_and_feature_generation_yelp(input_file_paths): # input: # input_file_paths # takes the input file paths as a list of strings. # these paths point to csv files created from # the original scraped json files. # output: # One csv per input csv file is created. # return # None print 'Starting feature additions and basic cleaning.' ################ # Begin adding features and basic cleaning. ################ for i, current_input_file_path in enumerate(input_file_paths): # Dynamically make output file paths current_output_file_path = current_input_file_path.replace('.csv', '_cleaned_features.csv') print "Current file: ", current_input_file_path ################ # Data loading ################ # Load data in as a Pandas DataFrame. d = pd.read_csv(current_input_file_path) num_rows = len(d) # this should only be changed during testing. ################ # Data cleaning ################ def data_cleaning(): # Clean up address formatting for i in range(len(d)): d.loc[i, 'restaurant_address'] = d.loc[i, 'restaurant_address'].replace('Washington, DC', ', Washington, DC') # Extract and coerce user_num_reviews to a float for i in range(len(d)): number_extract = d.loc[i, 'user_num_reviews'][0:d.loc[i, 'user_num_reviews'].find('review')] d.loc[i, 'user_num_reviews'] = float(number_extract.strip()) print 'data_cleaning() complete' ################ # Feature generating main methods # # Note: Some of the feature generation scrip takes time # to run (e.g. grabbing geocodes), that is why this script # has been made modular by allowing one to specify which # main methods (e.g. which features) to run in the end. ################ def make_restaurant_geocode(): # Generates: # d.restaurant_latitude # d.restaurant_longitude # Assign geocode based on restaurant_location. # Since the number of cities we are investigating is # relatively small (definitely under 10 in the foreseeable # future), hardcoding in the latitude and longitude seems # like the quickest approach. for i in range(num_rows): # Restaurant geocode if d.loc[i, 'restaurant_location'] == "Washington, DC": d.loc[i, 'restaurant_latitude'] = 38.8949549 d.loc[i, 'restaurant_longitude'] = -77.0366456 elif d.loc[i, 'restaurant_location'] == "Nashville, TN": d.loc[i, 'restaurant_latitude'] = 36.1622296 d.loc[i, 'restaurant_longitude'] = -86.774353 print 'make_restaurant_geocode() complete' def make_user_geocode(): # Generates: # d.user_latitude, # d.user_longitude # Load in lookup table for geocodes geocode_lookup_table_df = pd.read_csv('data/geocode_lookup_table.csv') # Make dictionary out of lookup table a = geocode_lookup_table_df.user_location b = geocode_lookup_table_df.user_latitude c = geocode_lookup_table_df.user_longitude dict_keys = list(a) dict_values = zip(list(b), list(c)) geocode_lookup_table = dict(zip(dict_keys, dict_values)) # Get lat/long for cities and store in dataframe for i in range(num_rows): d.loc[i, 'user_latitude'] = geocode_lookup_table[d.loc[i, 'user_location']][0] d.loc[i, 'user_longitude'] = geocode_lookup_table[d.loc[i, 'user_location']][1] # replace missing values with NaN #d = d.applymap(lambda x: np.nan if isinstance(x, basestring) and x.isspace() else x) print 'make_user_geocode() complete' def make_user_restaurant_distance(): # Generates: # d.user_restaurant_distance # Description: # Uses the Vincenty distance formula to calculate distance between # two points on a sphere, using the latitude and longitude. for i in range(num_rows): restaurant_geocode = (d.loc[i, 'restaurant_latitude'], d.loc[i, 'restaurant_longitude']) user_geocode = (d.loc[i, 'user_latitude'], d.loc[i, 'user_longitude']) try: d.loc[i, 'user_restaurant_distance'] = vincenty(restaurant_geocode, user_geocode).miles except: # crashing when lat/long is missing continue print 'make_user_restaurant_distance() complete' def make_user_is_local(): # Generates: # d.is_local # Description: # User is considered local if he or she is within the distance_threshold. distance_threshold = 50 # in miles for i in range(num_rows): if d.loc[i, 'user_restaurant_distance'] <= distance_threshold: d.loc[i, 'user_is_local'] = True else: d.loc[i, 'user_is_local'] = False print 'make_user_is_local() is complete' def make_user_review_length(): # Generates: # d.user_review_length for i in range(num_rows): # need to set this to len(d) later d.loc[i, 'user_review_length'] = len(d.loc[i, 'user_review']) print 'make_user_review_length() is complete' def make_user_rating_mean_for_restaurant_yelp(d): # Generates: # d.user_rating_mean_for_restaurant_yelp # Description: # Mean of all yelp user ratings in data set by restaurant. # Input: # The same dataframe all functions here are working with. # for some reason, only the functions that use d.groupby # require passing d as an argument. the other functions # have access to d already. that is the reasons for this # input. mean_ratings = d.groupby('restaurant_name')['user_rating'].mean() d = d.join(mean_ratings, on='restaurant_name', rsuffix='_mean_for_restaurant_yelp') print 'make_user_rating_mean_for_restaurant_yelp() is complete' def make_user_rating_mean_for_restaurant_yelp_local(d): # Generates: # d.user_rating_mean_for_restaurant_yelp_local # Input: # The same dataframe all functions here are working with. # for some reason, only the functions that use d.groupby # require passing d as an argument. the other functions # have access to d already. that is the reasons for this # input. # replace missing values with NaN (don't need to do this currently) #d = d.applymap(lambda x: np.nan if isinstance(x, basestring) and x.isspace() else x) mean_ratings = d.groupby(['user_is_local', 'restaurant_name'])['user_rating'].mean() mean_ratings_local = mean_ratings[1] # there's surely a better way to do this #d = d.join(mean_ratings, on=['user_is_local', 'restaurant_name'], rsuffix='_mean_for_restaurant_yelp_local') d = d.join(mean_ratings_local, on=['restaurant_name'], rsuffix='_mean_for_restaurant_yelp_local') print 'make_user_rating_mean_for_restaurant_yelp_local() is complete' def make_user_rating_mean_for_restaurant_yelp_non_local(d): # Generates: # d.user_rating_mean_for_restaurant_yelp_non_local # Input: # The same dataframe all functions here are working with. # for some reason, only the functions that use d.groupby # require passing d as an argument. the other functions # have access to d already. that is the reasons for this # input. mean_ratings = d.groupby(['user_is_local', 'restaurant_name'])['user_rating'].mean() mean_ratings_non_local = mean_ratings[0] d = d.join(mean_ratings_non_local, on=['restaurant_name'], rsuffix='_mean_for_restaurant_yelp_non_local') print 'make_user_rating_mean_for_restaurant_yelp_non_local() is complete' ################ # Run 'closure' main methods ################ global_main_switch = True # set to true to quickly run all main methods if False or global_main_switch: # data cleaning data_cleaning() if True or global_main_switch: # geocode-based features make_restaurant_geocode() make_user_geocode() make_user_restaurant_distance() make_user_is_local() if False or global_main_switch: # review text-based features make_user_review_length() if False or global_main_switch: # aggregate mean yelp ratings make_user_rating_mean_for_restaurant_yelp(d) make_user_rating_mean_for_restaurant_yelp_local(d) make_user_rating_mean_for_restaurant_yelp_non_local(d) ################ # Save results ################ d.to_csv(current_output_file_path, index=False) print 'finished creating', current_output_file_path # success message
mit
cl4rke/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
227
2520
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
thilbern/scikit-learn
sklearn/utils/testing.py
4
21772
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import sklearn from sklearn.base import BaseEstimator # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Py 2.6 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except Exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("Should have raised %r" % expected_exception(expected_regexp)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not w[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, w[0])) # substring will match, the entire message with typo won't msg = w[0].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if not check_in_message(msg): raise AssertionError("The message received ('%s') for <%s> is " "not the one you expected ('%s')" % (msg, func.__name__, message )) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exception, message, function, *args, **kwargs): """Helper function to test error messages in exceptions""" try: function(*args, **kwargs) raise AssertionError("Should have raised %r" % exception(message)) except exception as e: error_message = str(e) assert_in(message, error_message) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified matplotlib.pylab.figure() except: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
rodorad/spark-tk
regression-tests/sparktkregtests/testcases/scoretests/linear_regression_test.py
2
2224
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Tests Linear Regression scoring engine """ import unittest import os from sparktkregtests.lib import sparktk_test from sparktkregtests.lib import scoring_utils class LinearRegression(sparktk_test.SparkTKTestCase): def setUp(self): """Build test frame""" super(LinearRegression, self).setUp() dataset = self.get_file("linear_regression_gen.csv") schema = [("c1", float), ("c2", float), ("c3", float), ("c4", float), ("label", float)] self.frame = self.context.frame.import_csv( dataset, schema=schema) def test_model_scoring(self): """Test publishing a linear regression model""" model = self.context.models.regression.linear_regression.train(self.frame, "label", ['c1', 'c2', 'c3', 'c4']) predict = model.predict(self.frame, ['c1', 'c2', 'c3', 'c4']) test_rows = predict.to_pandas(predict.count()) file_name = self.get_name("linear_regression") model_path = model.export_to_mar(self.get_export_file(file_name)) with scoring_utils.scorer( model_path, self.id()) as scorer: for _, i in test_rows.iterrows(): res = scorer.score( [dict(zip(["c1", "c2", "c3", "c4"], list(i[0:4])))]) self.assertEqual( i["predicted_value"], res.json()["data"][0]['Prediction']) if __name__ == '__main__': unittest.main()
apache-2.0
devanjedi/opencricket
src/ci/scorecardParser.py
1
1202
#!/usr/bin/python from bs4 import BeautifulSoup import re import urllib3 import time import pandas #httpool = urllib3.PoolManager() #response = httpool.request('GET','http://stats.espncricinfo.com/ci/engine/stats/index.html?class=1;opposition=8;team=2;template=results;type=bowling;view=innings') #html = response.data soup = BeautifulSoup(open("../../testdata/score.html")) #print (soup.prettify()) t = soup.title.contents[0] #print t.contents[0] reg="([^:]*): (.*?) v (.*?) at ([^,]*), ([^|]*)| " lt = re.compile(reg) mo = lt.match(t) test= mo.group(1) team1 = mo.group(2) team2 = mo.group(3) location = mo.group(4) date = mo.group(5) print team1 print date #for player in soup.find_all('a', class_="playerName"): # print player.string # print player.get('href') #for i in range(1,11): # soup = BeautifulSoup(html) # time.sleep(1) # link= soup.find('a', class_="PaginationLink").get('href') # print link # response = httpool.request('GET','http://stats.espncricinfo.com'+link) # html = response.data soup = BeautifulSoup(open('../../testdata/guru.html')) tdata=soup.find(class_='guruNav').contents[0] print tdata #dfs = pandas.io.html.read_html(tdata) #print dfs
gpl-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/indexing/multiindex/conftest.py
2
1111
import numpy as np import pytest from pandas import DataFrame, Index, MultiIndex from pandas.util import testing as tm @pytest.fixture def multiindex_dataframe_random_data(): """DataFrame with 2 level MultiIndex with random data""" index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) return DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp") ) @pytest.fixture def multiindex_year_month_day_dataframe_random_data(): """DataFrame with 3 level MultiIndex (year, month, day) covering first 100 business days from 2000-01-01 with random data""" tdf = tm.makeTimeDataFrame(100) ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels], inplace=True) ymd.index.set_names(["year", "month", "day"], inplace=True) return ymd
apache-2.0
nmartensen/pandas
pandas/core/indexes/numeric.py
4
13436
import numpy as np from pandas._libs import (index as libindex, algos as libalgos, join as libjoin) from pandas.core.dtypes.common import ( is_dtype_equal, pandas_dtype, is_float_dtype, is_object_dtype, is_integer_dtype, is_bool, is_bool_dtype, is_scalar) from pandas.core.common import _asarray_tuplesafe, _values_from_object from pandas import compat from pandas.core import algorithms from pandas.core.indexes.base import ( Index, InvalidIndexError, _index_shared_docs) from pandas.util._decorators import Appender, cache_readonly import pandas.core.indexes.base as ibase _num_index_shared_docs = dict() class NumericIndex(Index): """ Provide numeric type operations This is an abstract class """ _is_numeric_dtype = True def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False): if fastpath: return cls._simple_new(data, name=name) # isscalar, generators handled in coerce_to_ndarray data = cls._coerce_to_ndarray(data) if issubclass(data.dtype.type, compat.string_types): cls._string_data_error(data) if copy or not is_dtype_equal(data.dtype, cls._default_dtype): subarr = np.array(data, dtype=cls._default_dtype, copy=copy) cls._assert_safe_casting(data, subarr) else: subarr = data if name is None and hasattr(data, 'name'): name = data.name return cls._simple_new(subarr, name=name) @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # we will try to coerce to integers return self._maybe_cast_indexer(label) def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ if is_bool(value) or is_bool_dtype(value): # force conversion to object # so we don't lose the bools raise TypeError return value def _convert_tolerance(self, tolerance): try: return float(tolerance) except ValueError: raise ValueError('tolerance argument for %s must be numeric: %r' % (type(self).__name__, tolerance)) @classmethod def _assert_safe_casting(cls, data, subarr): """ Subclasses need to override this only if the process of casting data from some accepted dtype to the internal dtype(s) bears the risk of truncation (e.g. float to int). """ pass @property def is_all_dates(self): """ Checks that all the labels are datetime objects """ return False _num_index_shared_docs['class_descr'] = """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. %(klass)s is a special case of `Index` with purely %(ltype)s labels. %(extra)s Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: %(dtype)s) copy : bool Make a copy of input ndarray name : object Name to be stored in the index Notes ----- An Index instance can **only** contain hashable objects. """ _int64_descr_args = dict( klass='Int64Index', ltype='integer', dtype='int64', extra="""This is the default index type used by the DataFrame and Series ctors when no explicit index is provided by the user. """ ) class Int64Index(NumericIndex): __doc__ = _num_index_shared_docs['class_descr'] % _int64_descr_args _typ = 'int64index' _arrmap = libalgos.arrmap_int64 _left_indexer_unique = libjoin.left_join_indexer_unique_int64 _left_indexer = libjoin.left_join_indexer_int64 _inner_indexer = libjoin.inner_join_indexer_int64 _outer_indexer = libjoin.outer_join_indexer_int64 _can_hold_na = False _engine_type = libindex.Int64Engine _default_dtype = np.int64 @property def inferred_type(self): return 'integer' @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # don't coerce ilocs to integers if kind != 'iloc': key = self._maybe_cast_indexer(key) return (super(Int64Index, self) ._convert_scalar_indexer(key, kind=kind)) def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Int64Index(joined, name=name) @classmethod def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast') Int64Index._add_numeric_methods() Int64Index._add_logical_methods() _uint64_descr_args = dict( klass='UInt64Index', ltype='unsigned integer', dtype='uint64', extra='' ) class UInt64Index(NumericIndex): __doc__ = _num_index_shared_docs['class_descr'] % _uint64_descr_args _typ = 'uint64index' _arrmap = libalgos.arrmap_uint64 _left_indexer_unique = libjoin.left_join_indexer_unique_uint64 _left_indexer = libjoin.left_join_indexer_uint64 _inner_indexer = libjoin.inner_join_indexer_uint64 _outer_indexer = libjoin.outer_join_indexer_uint64 _can_hold_na = False _na_value = 0 _engine_type = libindex.UInt64Engine _default_dtype = np.uint64 @property def inferred_type(self): return 'integer' @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('u8') @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # don't coerce ilocs to integers if kind != 'iloc': key = self._maybe_cast_indexer(key) return (super(UInt64Index, self) ._convert_scalar_indexer(key, kind=kind)) @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = _asarray_tuplesafe(keyarr) if is_integer_dtype(keyarr): return _asarray_tuplesafe(keyarr, dtype=np.uint64) return keyarr @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. if keyarr.is_integer(): return keyarr.astype(np.uint64) return keyarr def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return UInt64Index(joined, name=name) @classmethod def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as uints. """ if not issubclass(data.dtype.type, np.unsignedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast') UInt64Index._add_numeric_methods() UInt64Index._add_logical_methods() _float64_descr_args = dict( klass='Float64Index', dtype='float64', ltype='float', extra='' ) class Float64Index(NumericIndex): __doc__ = _num_index_shared_docs['class_descr'] % _float64_descr_args _typ = 'float64index' _engine_type = libindex.Float64Engine _arrmap = libalgos.arrmap_float64 _left_indexer_unique = libjoin.left_join_indexer_unique_float64 _left_indexer = libjoin.left_join_indexer_float64 _inner_indexer = libjoin.inner_join_indexer_float64 _outer_indexer = libjoin.outer_join_indexer_float64 _default_dtype = np.float64 @property def inferred_type(self): return 'floating' @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_float_dtype(dtype): values = self._values.astype(dtype, copy=copy) elif is_integer_dtype(dtype): if self.hasnans: raise ValueError('cannot convert float NaN to integer') values = self._values.astype(dtype, copy=copy) elif is_object_dtype(dtype): values = self._values.astype('object', copy=copy) else: raise TypeError('Setting %s dtype to anything other than ' 'float64 or object is not supported' % self.__class__) return Index(values, name=self.name, dtype=dtype) @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) return key @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): # if we are not a slice, then we are done if not isinstance(key, slice): return key if kind == 'iloc': return super(Float64Index, self)._convert_slice_indexer(key, kind=kind) # translate to locations return self.slice_indexer(key.start, key.stop, key.step, kind=kind) def _format_native_types(self, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter(self.values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False) return formatter.get_result_as_array() def get_value(self, series, key): """ we always want to get an index value, never a value """ if not is_scalar(key): raise InvalidIndexError k = _values_from_object(key) loc = self.get_loc(k) new_values = _values_from_object(series)[loc] return new_values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self is other: return True if not isinstance(other, Index): return False # need to compare nans locations and make sure that they are the same # since nans don't compare equal this is a bit tricky try: if not isinstance(other, Float64Index): other = self._constructor(other) if (not is_dtype_equal(self.dtype, other.dtype) or self.shape != other.shape): return False left, right = self._values, other._values return ((left == right) | (self._isnan & other._isnan)).all() except (TypeError, ValueError): return False def __contains__(self, other): if super(Float64Index, self).__contains__(other): return True try: # if other is a sequence this throws a ValueError return np.isnan(other) and self.hasnans except ValueError: try: return len(other) <= 1 and ibase._try_get_item(other) in self except TypeError: return False except: return False @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): try: if np.all(np.isnan(key)): nan_idxs = self._nan_idxs try: return nan_idxs.item() except (ValueError, IndexError): # should only need to catch ValueError here but on numpy # 1.7 .item() can raise IndexError when NaNs are present if not len(nan_idxs): raise KeyError(key) return nan_idxs except (TypeError, NotImplementedError): pass return super(Float64Index, self).get_loc(key, method=method, tolerance=tolerance) @cache_readonly def is_unique(self): return super(Float64Index, self).is_unique and self._nan_idxs.size < 2 @Appender(Index.isin.__doc__) def isin(self, values, level=None): if level is not None: self._validate_index_level(level) return algorithms.isin(np.array(self), values) Float64Index._add_numeric_methods() Float64Index._add_logical_methods_disabled()
bsd-3-clause
depet/scikit-learn
sklearn/decomposition/truncated_svd.py
1
6027
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # License: 3-clause BSD. import numpy as np try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import (array2d, as_float_array, atleast2d_or_csr, check_random_state) from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iterations : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- `components_` : array, shape (n_components, n_features) See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iterations=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iterations = n_iterations self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ U, Sigma, VT = self._fit(X) Sigma = np.diag(Sigma) # or (X * VT.T).T, whichever takes fewer operations... return np.dot(U, Sigma.T) def _fit(self, X): X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iterations, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT return U, Sigma, VT def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = atleast2d_or_csr(X) return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = array2d(X) return np.dot(X, self.components_)
bsd-3-clause
sumspr/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
alberto-antonietti/nest-simulator
pynest/examples/sensitivity_to_perturbation.py
3
8848
# -*- coding: utf-8 -*- # # sensitivity_to_perturbation.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Sensitivity to perturbation --------------------------- This script simulates a network in two successive trials, which are identical except for one extra input spike in the second realisation (a small perturbation). The network consists of recurrent, randomly connected excitatory and inhibitory neurons. Its activity is driven by an external Poisson input provided to all neurons independently. In order to ensure that the network is reset appropriately between the trials, we do the following steps: - resetting the network - resetting the random network generator - resetting the internal clock - deleting all entries in the spike detector - introducing a hyperpolarisation phase between the trials (in order to avoid that spikes remaining in the NEST memory after the first simulation are fed into the second simulation) """ ############################################################################### # Importing all necessary modules for simulation, analysis and plotting. import numpy import matplotlib.pyplot as plt import nest ############################################################################### # Here we define all parameters necessary for building and simulating the # network. # We start with the global network parameters. NE = 1000 # number of excitatory neurons NI = 250 # number of inhibitory neurons N = NE + NI # total number of neurons KE = 100 # excitatory in-degree KI = 25 # inhibitory in-degree ############################################################################### # Parameters specific for the neurons in the network. The default values of # the reset potential ``E_L`` and the spiking threshold ``V_th`` are used to set # the limits of the initial potential of the neurons. neuron_model = 'iaf_psc_delta' neuron_params = nest.GetDefaults(neuron_model) Vmin = neuron_params['E_L'] # minimum of initial potential distribution (mV) Vmax = neuron_params['V_th'] # maximum of initial potential distribution (mV) ############################################################################### # Synapse parameters. Changing the weights `J` in the network can lead to # qualitatively different behaviors. If `J` is small (e.g. ``J = 0.1``), we # are likely to observe a non-chaotic network behavior (after perturbation # the network returns to its original activity). Increasing `J` # (e.g ``J = 5.5``) leads to rather chaotic activity. Given that in this # example the transition to chaos is probabilistic, we sometimes observe # chaotic behavior for small weights (e.g. ``J = 0.5``) and non-chaotic # behavior for strong weights (e.g. ``J = 5.4``). J = 0.5 # excitatory synaptic weight (mV) g = 6. # relative inhibitory weight delay = 0.1 # spike transmission delay (ms) # External input parameters. Jext = 0.2 # PSP amplitude for external Poisson input (mV) rate_ext = 6500. # rate of the external Poisson input # Perturbation parameters. t_stim = 400. # perturbation time (time of the extra spike) Jstim = Jext # perturbation amplitude (mV) # Simulation parameters. T = 1000. # simulation time per trial (ms) fade_out = 2. * delay # fade out time (ms) dt = 0.01 # simulation time resolution (ms) seed_NEST = 30 # seed of random number generator in Nest seed_numpy = 30 # seed of random number generator in numpy senders = [] spiketimes = [] ############################################################################### # we run the two simulations successively. After each simulation the # sender ids and spiketimes are stored in a list (``senders``, ``spiketimes``). for trial in [0, 1]: # Before we build the network, we reset the simulation kernel to ensure # that previous NEST simulations in the python shell will not disturb this # simulation and set the simulation resolution (later defined # synaptic delays cannot be smaller than the simulation resolution). nest.ResetKernel() nest.SetKernelStatus({"resolution": dt}) ############################################################################### # Now we start building the network and create excitatory and inhibitory nodes # and connect them. According to the connectivity specification, each neuron # is assigned random KE synapses from the excitatory population and random KI # synapses from the inhibitory population. nodes_ex = nest.Create(neuron_model, NE) nodes_in = nest.Create(neuron_model, NI) allnodes = nodes_ex + nodes_in nest.Connect(nodes_ex, allnodes, conn_spec={'rule': 'fixed_indegree', 'indegree': KE}, syn_spec={'weight': J, 'delay': dt}) nest.Connect(nodes_in, allnodes, conn_spec={'rule': 'fixed_indegree', 'indegree': KI}, syn_spec={'weight': -g * J, 'delay': dt}) ############################################################################### # Afterwards we create a ``poisson_generator`` that provides spikes (the external # input) to the neurons until time ``T`` is reached. # Afterwards a ``dc_generator``, which is also connected to the whole population, # provides a stong hyperpolarisation step for a short time period ``fade_out``. # # The ``fade_out`` period has to last at least twice as long as the simulation # resolution to supress the neurons from firing. ext = nest.Create("poisson_generator", params={'rate': rate_ext, 'stop': T}) nest.Connect(ext, allnodes, syn_spec={'weight': Jext, 'delay': dt}) suppr = nest.Create("dc_generator", params={'amplitude': -1e16, 'start': T, 'stop': T + fade_out}) nest.Connect(suppr, allnodes) spikedetector = nest.Create("spike_detector") nest.Connect(allnodes, spikedetector) ############################################################################### # We then create the ``spike_generator``, which provides the extra spike # (perturbation). stimulus = nest.Create("spike_generator") stimulus.spike_times = [] ############################################################################### # We need to reset the random number generator and the clock of # the simulation Kernel. In addition, we ensure that there is no spike left in # the spike detector. nest.SetKernelStatus({"rng_seeds": [seed_NEST], 'time': 0.0}) spikedetector.n_events = 0 # We assign random initial membrane potentials to all neurons numpy.random.seed(seed_numpy) Vms = Vmin + (Vmax - Vmin) * numpy.random.rand(N) allnodes.V_m = Vms ############################################################################## # In the second trial, we add an extra input spike at time ``t_stim`` to the # neuron that fires first after perturbation time ``t_stim``. Thus, we make sure # that the perturbation is transmitted to the network before it fades away in # the perturbed neuron. (Single IAF-neurons are not chaotic.) if trial == 1: id_stim = [senders[0][spiketimes[0] > t_stim][0]] nest.Connect(stimulus, nest.NodeCollection(id_stim), syn_spec={'weight': Jstim, 'delay': dt}) stimulus.spike_times = [t_stim] # Now we simulate the network and add a fade out period to discard # remaining spikes. nest.Simulate(T) nest.Simulate(fade_out) # Storing the data. senders += [spikedetector.get('events', 'senders')] spiketimes += [spikedetector.get('events', 'times')] ############################################################################### # We plot the spiking activity of the network (first trial in red, second trial # in black). plt.figure(1) plt.clf() plt.plot(spiketimes[0], senders[0], 'ro', ms=4.) plt.plot(spiketimes[1], senders[1], 'ko', ms=2.) plt.xlabel('time (ms)') plt.ylabel('neuron id') plt.xlim((0, T)) plt.ylim((0, N)) plt.show()
gpl-2.0
ieguinoa/tools-iuc
tools/fsd/td.py
17
59714
#!/usr/bin/env python # Tag distance analysis of SSCSs # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: [email protected] # # Takes at least one TABULAR file with tags before the alignment to the SSCS and # optionally a second TABULAR file as input. The program produces a plot which shows a histogram of Hamming distances # separated after family sizes, a family size distribution separated after Hamming distances for all (sample_size=0) # or a given sample of SSCSs or SSCSs, which form a DCS. In additon, the tool produces HD and FSD plots for the # difference between the HDs of both parts of the tags and for the chimeric reads and finally a CSV file with the # data of the plots. It is also possible to perform the HD analysis with shortened tags with given sizes as input. # The tool can run on a certain number of processors, which can be defined by the user. # USAGE: python td.py --inputFile filename --inputName1 filename --sample_size int / # --only_DCS True --FamilySize3 True --subset_tag True --nproc int --minFS int --maxFS int # --nr_above_bars True/False --output_tabular outptufile_name_tabular import argparse import operator import sys from collections import Counter, defaultdict from functools import partial from multiprocessing.pool import Pool import matplotlib.pyplot as plt import numpy from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def plotFSDwithHD2(familySizeList1, maximumXFS, minimumXFS, originalCounts, subtitle, pdf, relative=False, diff=True, rel_freq=False): if diff is False: colors = ["#e6194b", "#3cb44b", "#ffe119", "#0082c8", "#f58231", "#911eb4"] labels = ["TD=1", "TD=2", "TD=3", "TD=4", "TD=5-8", "TD>8"] else: colors = ["#93A6AB", "#403C14", "#731E41", "#BAB591", "#085B6F", "#E8AA35", "#726C66"] if relative is True: labels = ["d=0", "d=0.1", "d=0.2", "d=0.3", "d=0.4", "d=0.5-0.8", "d>0.8"] else: labels = ["d=0", "d=1", "d=2", "d=3", "d=4", "d=5-8", "d>8"] fig = plt.figure(figsize=(6, 7)) ax = fig.add_subplot(111) plt.subplots_adjust(bottom=0.1) p1 = numpy.bincount(numpy.concatenate(familySizeList1)) maximumY = numpy.amax(p1) if len(range(minimumXFS, maximumXFS)) == 0: range1 = range(minimumXFS - 1, minimumXFS + 2) else: range1 = range(0, maximumXFS + 2) if rel_freq: w = [numpy.zeros_like(data) + 1. / len(numpy.concatenate(familySizeList1)) for data in familySizeList1] plt.hist(familySizeList1, label=labels, weights=w, color=colors, stacked=True, rwidth=0.8, alpha=1, align="left", edgecolor="None", bins=range1) plt.ylabel("Relative Frequency", fontsize=14) plt.ylim((0, 1.07)) else: plt.hist(familySizeList1, label=labels, color=colors, stacked=True, rwidth=0.8, alpha=1, align="left", edgecolor="None", bins=range1) if len(numpy.concatenate(familySizeList1)) != 0: plt.ylim((0, max(numpy.bincount(numpy.concatenate(familySizeList1))) * 1.1)) plt.ylabel("Absolute Frequency", fontsize=14) plt.ylim((0, maximumY * 1.2)) plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(1.45, 1)) plt.suptitle(subtitle, y=1, x=0.5, fontsize=14) plt.xlabel("Family size", fontsize=14) ticks = numpy.arange(0, maximumXFS + 1, 1) ticks1 = [str(_) for _ in ticks] if maximumXFS >= 20: ticks1[len(ticks1) - 1] = ">=20" plt.xticks(numpy.array(ticks), ticks1) [l.set_visible(False) for (i, l) in enumerate(ax.get_xticklabels()) if i % 5 != 0] plt.xlim((0, maximumXFS + 1)) legend = "\nfamily size: \nabsolute frequency: \nrelative frequency: " plt.text(0.15, -0.08, legend, size=12, transform=plt.gcf().transFigure) # count = numpy.bincount(originalCounts) # original counts if max(originalCounts) >= 20: max_count = ">= 20" else: max_count = max(originalCounts) legend1 = "{}\n{}\n{:.5f}".format(max_count, p1[len(p1) - 1], float(p1[len(p1) - 1]) / sum(p1)) plt.text(0.5, -0.08, legend1, size=12, transform=plt.gcf().transFigure) legend3 = "singletons\n{:,}\n{:.5f}".format(int(p1[1]), float(p1[1]) / sum(p1)) plt.text(0.7, -0.08, legend3, transform=plt.gcf().transFigure, size=12) plt.grid(b=True, which='major', color='#424242', linestyle=':') pdf.savefig(fig, bbox_inches="tight") plt.close("all") def plotHDwithFSD(list1, maximumX, minimumX, subtitle, lenTags, pdf, xlabel, relative=False, nr_above_bars=True, nr_unique_chimeras=0, len_sample=0, rel_freq=False): if relative is True: step = 0.1 else: step = 1 fig = plt.figure(figsize=(6, 8)) plt.subplots_adjust(bottom=0.1) p1 = numpy.array([v for k, v in sorted(Counter(numpy.concatenate(list1)).items())]) maximumY = numpy.amax(p1) if relative is True: # relative difference bin1 = numpy.arange(-1, maximumX + 0.2, 0.1) else: bin1 = maximumX + 1 if rel_freq: w = [numpy.zeros_like(data) + 1. / len(numpy.concatenate(list1)) for data in list1] counts = plt.hist(list1, bins=bin1, edgecolor='black', linewidth=1, weights=w, label=["FS=1", "FS=2", "FS=3", "FS=4", "FS=5-10", "FS>10"], rwidth=0.8, color=["#808080", "#FFFFCC", "#FFBF00", "#DF0101", "#0431B4", "#86B404"], stacked=True, alpha=1, align="left", range=(0, maximumX + 1)) plt.ylim((0, 1.07)) plt.ylabel("Relative Frequency", fontsize=14) bins = counts[1] # width of bins counts = numpy.array(map(float, counts[0][5])) else: counts = plt.hist(list1, bins=bin1, edgecolor='black', linewidth=1, label=["FS=1", "FS=2", "FS=3", "FS=4", "FS=5-10", "FS>10"], rwidth=0.8, color=["#808080", "#FFFFCC", "#FFBF00", "#DF0101", "#0431B4", "#86B404"], stacked=True, alpha=1, align="left", range=(0, maximumX + 1)) maximumY = numpy.amax(p1) plt.ylim((0, maximumY * 1.2)) plt.ylabel("Absolute Frequency", fontsize=14) bins = counts[1] # width of bins counts = numpy.array([int(_) for _ in counts[0][5]]) plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(1.45, 1)) plt.suptitle(subtitle, y=1, x=0.5, fontsize=14) plt.xlabel(xlabel, fontsize=14) plt.grid(b=True, which='major', color='#424242', linestyle=':') plt.xlim((minimumX - step, maximumX + step)) plt.xticks(numpy.arange(0, maximumX + step, step)) if nr_above_bars: bin_centers = -0.4 * numpy.diff(bins) + bins[:-1] for x_label, label in zip(counts, bin_centers): # labels for values if x_label == 0: continue else: if rel_freq: plt.annotate("{:,}\n{:.3f}".format(int(round(x_label * len(numpy.concatenate(list1)))), float(x_label)), xy=(label, x_label + len(numpy.concatenate(list1)) * 0.0001), xycoords="data", color="#000066", fontsize=10) else: plt.annotate("{:,}\n{:.3f}".format(x_label, float(x_label) / sum(counts)), xy=(label, x_label + len(numpy.concatenate(list1)) * 0.01), xycoords="data", color="#000066", fontsize=10) if nr_unique_chimeras != 0: if (relative and ((counts[len(counts) - 1] / nr_unique_chimeras) == 2)) or \ (sum(counts) / nr_unique_chimeras) == 2: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}\nnr. of CF = {:,} ({:,})"\ .format(lenTags, len_sample, len(numpy.concatenate(list1)), nr_unique_chimeras, nr_unique_chimeras * 2) else: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}\nnr. of CF = {:,}".format( lenTags, len_sample, len(numpy.concatenate(list1)), nr_unique_chimeras) else: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}".format( lenTags, len_sample, len(numpy.concatenate(list1))) plt.text(0.14, -0.07, legend, size=12, transform=plt.gcf().transFigure) pdf.savefig(fig, bbox_inches="tight") plt.close("all") plt.clf() def plotHDwithDCS(list1, maximumX, minimumX, subtitle, lenTags, pdf, xlabel, relative=False, nr_above_bars=True, nr_unique_chimeras=0, len_sample=0, rel_freq=False): step = 1 fig = plt.figure(figsize=(6, 8)) plt.subplots_adjust(bottom=0.1) p1 = numpy.array([v for k, v in sorted(Counter(numpy.concatenate(list1)).items())]) maximumY = numpy.amax(p1) bin1 = maximumX + 1 if rel_freq: w = [numpy.zeros_like(data) + 1. / len(numpy.concatenate(list1)) for data in list1] counts = plt.hist(list1, bins=bin1, edgecolor='black', linewidth=1, weights=w, label=["DCS", "ab", "ba"], rwidth=0.8, color=["#FF0000", "#5FB404", "#FFBF00"], stacked=True, alpha=1, align="left", range=(0, maximumX + 1)) plt.ylim((0, 1.07)) plt.ylabel("Relative Frequency", fontsize=14) bins = counts[1] # width of bins counts = numpy.array([float(_) for _ in counts[0][2]]) else: counts = plt.hist(list1, bins=bin1, edgecolor='black', linewidth=1, label=["DCS", "ab", "ba"], rwidth=0.8, color=["#FF0000", "#5FB404", "#FFBF00"], stacked=True, alpha=1, align="left", range=(0, maximumX + 1)) plt.ylim((0, maximumY * 1.2)) plt.ylabel("Absolute Frequency", fontsize=14) bins = counts[1] # width of bins counts = numpy.array([int(_) for _ in counts[0][2]]) plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(1.45, 1)) plt.suptitle(subtitle, y=1, x=0.5, fontsize=14) plt.xlabel(xlabel, fontsize=14) plt.grid(b=True, which='major', color='#424242', linestyle=':') plt.xlim((minimumX - step, maximumX + step)) plt.xticks(numpy.arange(0, maximumX + step, step)) if nr_above_bars: bin_centers = -0.4 * numpy.diff(bins) + bins[:-1] for x_label, label in zip(counts, bin_centers): # labels for values if x_label == 0: continue else: if rel_freq: plt.annotate("{:,}\n{:.3f}".format(int(round(x_label * len(numpy.concatenate(list1)))), float(x_label)), xy=(label, x_label + len(numpy.concatenate(list1)) * 0.0001), xycoords="data", color="#000066", fontsize=10) else: plt.annotate("{:,}\n{:.3f}".format(x_label, float(x_label) / sum(counts)), xy=(label, x_label + len(numpy.concatenate(list1)) * 0.01), xycoords="data", color="#000066", fontsize=10) if nr_unique_chimeras != 0: if (sum(counts) / nr_unique_chimeras) == 2: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}\nnr. of CF = {:,} ({:,})".\ format(lenTags, len_sample, len(numpy.concatenate(list1)), nr_unique_chimeras, nr_unique_chimeras * 2) else: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}\nnr. of CF = {:,}".format( lenTags, len_sample, len(numpy.concatenate(list1)), nr_unique_chimeras) else: legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}".format( lenTags, len_sample, len(numpy.concatenate(list1))) plt.text(0.14, -0.07, legend, size=12, transform=plt.gcf().transFigure) legend2 = "SSCS ab = {:,} ({:.5f})\nSSCS ba = {:,} ({:.5f})\nDCS = {:,} ({:.5f})".format( len(list1[1]), len(list1[1]) / float(nr_unique_chimeras), len(list1[2]), len(list1[2]) / float(nr_unique_chimeras), len(list1[0]), len(list1[0]) / float(nr_unique_chimeras)) plt.text(0.6, -0.047, legend2, size=12, transform=plt.gcf().transFigure) pdf.savefig(fig, bbox_inches="tight") plt.close("all") plt.clf() def plotHDwithinSeq(sum1, sum1min, sum2, sum2min, min_value, lenTags, pdf, len_sample, rel_freq=False): fig = plt.figure(figsize=(6, 8)) plt.subplots_adjust(bottom=0.1) ham_partial = [sum1, sum1min, sum2, sum2min, numpy.array(min_value)] # new hd within tags maximumX = numpy.amax(numpy.concatenate(ham_partial)) minimumX = numpy.amin(numpy.concatenate(ham_partial)) if len(range(minimumX, maximumX)) == 0: range1 = minimumX else: range1 = range(minimumX, maximumX + 2) if rel_freq: w = [numpy.zeros_like(data) + 1. / len(data) for data in ham_partial] plt.hist(ham_partial, align="left", rwidth=0.8, stacked=False, weights=w, label=["TD a.min", "TD b.max", "TD b.min", "TD a.max", "TD a.min + b.max,\nTD a.max + b.min"], bins=range1, color=["#58ACFA", "#0404B4", "#FE642E", "#B40431", "#585858"], edgecolor='black', linewidth=1) plt.ylabel("Relative Frequency", fontsize=14) plt.ylim(0, 1.07) else: plt.hist(ham_partial, align="left", rwidth=0.8, stacked=False, label=["TD a.min", "TD b.max", "TD b.min", "TD a.max", "TD a.min + b.max,\nTD a.max + b.min"], bins=range1, color=["#58ACFA", "#0404B4", "#FE642E", "#B40431", "#585858"], edgecolor='black', linewidth=1) plt.ylabel("Absolute Frequency", fontsize=14) plt.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(1.6, 1)) plt.suptitle('Tag distances within tags', fontsize=14) plt.xlabel("TD", fontsize=14) plt.grid(b=True, which='major', color='#424242', linestyle=':') plt.xlim((minimumX - 1, maximumX + 1)) plt.xticks(numpy.arange(0, maximumX + 1, 1.0)) legend = "nr. of tags = {:,}\nsample size = {:,}\nnr. of data points = {:,}".format( lenTags, len_sample, len(numpy.concatenate(ham_partial))) plt.text(0.14, -0.05, legend, size=12, transform=plt.gcf().transFigure) pdf.savefig(fig, bbox_inches="tight") plt.close("all") plt.clf() def createTableFSD2(list1, diff=True): selfAB = numpy.concatenate(list1) uniqueFS = numpy.unique(selfAB) nr = numpy.arange(0, len(uniqueFS), 1) if diff is False: count = numpy.zeros((len(uniqueFS), 6)) else: count = numpy.zeros((len(uniqueFS), 7)) state = 1 for i in list1: counts = list(Counter(i).items()) hd = [item[0] for item in counts] c = [item[1] for item in counts] table = numpy.column_stack((hd, c)) if len(table) == 0: state = state + 1 continue else: if state == 1: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 0] = j[1] if state == 2: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 1] = j[1] if state == 3: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 2] = j[1] if state == 4: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 3] = j[1] if state == 5: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 4] = j[1] if state == 6: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 5] = j[1] if state == 7: for k, l in zip(uniqueFS, nr): for j in table: if j[0] == uniqueFS[l]: count[l, 6] = j[1] state = state + 1 sumRow = count.sum(axis=1) sumCol = count.sum(axis=0) uniqueFS = uniqueFS.astype(str) if uniqueFS[len(uniqueFS) - 1] == "20": uniqueFS[len(uniqueFS) - 1] = ">20" first = ["FS={}".format(i) for i in uniqueFS] final = numpy.column_stack((first, count, sumRow)) return (final, sumCol) def createFileFSD2(summary, sumCol, overallSum, output_file, name, sep, rel=False, diff=True): output_file.write(name) output_file.write("\n") if diff is False: output_file.write("{}TD=1{}TD=2{}TD=3{}TD=4{}TD=5-8{}TD>8{}sum{}\n".format( sep, sep, sep, sep, sep, sep, sep, sep)) else: if rel is False: output_file.write("{}diff=0{}diff=1{}diff=2{}diff=3{}diff=4{}diff=5-8{}diff>8{}sum{}\n".format( sep, sep, sep, sep, sep, sep, sep, sep, sep)) else: output_file.write("{}diff=0{}diff=0.1{}diff=0.2{}diff=0.3{}diff=0.4{}diff=0.5-0.8{}diff>0.8{}sum{}\n". format(sep, sep, sep, sep, sep, sep, sep, sep, sep)) for item in summary: for nr in item: if "FS" not in nr and "diff" not in nr: nr = nr.astype(float) nr = nr.astype(int) output_file.write("{}{}".format(nr, sep)) output_file.write("\n") output_file.write("sum{}".format(sep)) sumCol = map(int, sumCol) for el in sumCol: output_file.write("{}{}".format(el, sep)) output_file.write("{}{}".format(overallSum.astype(int), sep)) output_file.write("\n\n") def createTableHD(list1, row_label): selfAB = numpy.concatenate(list1) uniqueHD = numpy.unique(selfAB) nr = numpy.arange(0, len(uniqueHD), 1) count = numpy.zeros((len(uniqueHD), 6)) state = 1 for i in list1: counts = list(Counter(i).items()) hd = [item[0] for item in counts] c = [item[1] for item in counts] table = numpy.column_stack((hd, c)) if len(table) == 0: state = state + 1 continue else: if state == 1: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 0] = j[1] if state == 2: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 1] = j[1] if state == 3: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 2] = j[1] if state == 4: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 3] = j[1] if state == 5: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 4] = j[1] if state == 6: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 5] = j[1] state = state + 1 sumRow = count.sum(axis=1) sumCol = count.sum(axis=0) first = ["{}{}".format(row_label, i) for i in uniqueHD] final = numpy.column_stack((first, count, sumRow)) return (final, sumCol) def createTableHDwithTags(list1): selfAB = numpy.concatenate(list1) uniqueHD = numpy.unique(selfAB) nr = numpy.arange(0, len(uniqueHD), 1) count = numpy.zeros((len(uniqueHD), 5)) state = 1 for i in list1: counts = list(Counter(i).items()) hd = [item[0] for item in counts] c = [item[1] for item in counts] table = numpy.column_stack((hd, c)) if len(table) == 0: state = state + 1 continue else: if state == 1: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 0] = j[1] if state == 2: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 1] = j[1] if state == 3: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 2] = j[1] if state == 4: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 3] = j[1] if state == 5: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 4] = j[1] state = state + 1 sumRow = count.sum(axis=1) sumCol = count.sum(axis=0) first = ["TD={}".format(i) for i in uniqueHD] final = numpy.column_stack((first, count, sumRow)) return (final, sumCol) def createTableHDwithDCS(list1): selfAB = numpy.concatenate(list1) uniqueHD = numpy.unique(selfAB) nr = numpy.arange(0, len(uniqueHD), 1) count = numpy.zeros((len(uniqueHD), len(list1))) state = 1 for i in list1: counts = list(Counter(i).items()) hd = [item[0] for item in counts] c = [item[1] for item in counts] table = numpy.column_stack((hd, c)) if len(table) == 0: state = state + 1 continue else: if state == 1: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 0] = j[1] if state == 2: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 1] = j[1] if state == 3: for k, l in zip(uniqueHD, nr): for j in table: if j[0] == uniqueHD[l]: count[l, 2] = j[1] state = state + 1 sumRow = count.sum(axis=1) sumCol = count.sum(axis=0) first = ["TD={}".format(i) for i in uniqueHD] final = numpy.column_stack((first, count, sumRow)) return (final, sumCol) def createFileHD(summary, sumCol, overallSum, output_file, name, sep): output_file.write(name) output_file.write("\n") output_file.write("{}FS=1{}FS=2{}FS=3{}FS=4{}FS=5-10{}FS>10{}sum{}\n".format( sep, sep, sep, sep, sep, sep, sep, sep)) for item in summary: for nr in item: if "TD" not in nr and "diff" not in nr: nr = nr.astype(float) nr = nr.astype(int) output_file.write("{}{}".format(nr, sep)) output_file.write("\n") output_file.write("sum{}".format(sep)) sumCol = map(int, sumCol) for el in sumCol: output_file.write("{}{}".format(el, sep)) output_file.write("{}{}".format(overallSum.astype(int), sep)) output_file.write("\n\n") def createFileHDwithDCS(summary, sumCol, overallSum, output_file, name, sep): output_file.write(name) output_file.write("\n") output_file.write("{}DCS{}SSCS ab{}SSCS ba{}sum{}\n".format(sep, sep, sep, sep, sep)) for item in summary: for nr in item: if "TD" not in nr: nr = nr.astype(float) nr = nr.astype(int) output_file.write("{}{}".format(nr, sep)) output_file.write("\n") output_file.write("sum{}".format(sep)) sumCol = map(int, sumCol) for el in sumCol: output_file.write("{}{}".format(el, sep)) output_file.write("{}{}".format(overallSum.astype(int), sep)) output_file.write("\n\n") def createFileHDwithinTag(summary, sumCol, overallSum, output_file, name, sep): output_file.write(name) output_file.write("\n") output_file.write("{}TD a.min{}TD b.max{}TD b.min{}TD a.max{}TD a.min + b.max, TD a.max + b.min{}sum{}\n".format(sep, sep, sep, sep, sep, sep, sep)) for item in summary: for nr in item: if "TD" not in nr: nr = nr.astype(float) nr = nr.astype(int) output_file.write("{}{}".format(nr, sep)) output_file.write("\n") output_file.write("sum{}".format(sep)) sumCol = map(int, sumCol) for el in sumCol: output_file.write("{}{}".format(el, sep)) output_file.write("{}{}".format(overallSum.astype(int), sep)) output_file.write("\n\n") def hamming(array1, array2): res = 99 * numpy.ones(len(array1)) i = 0 array2 = numpy.unique(array2) # remove duplicate sequences to decrease running time for a in array1: dist = numpy.array([sum(map(operator.ne, a, b)) for b in array2]) # fastest res[i] = numpy.amin(dist[dist > 0]) # pick min distance greater than zero i += 1 return res def hamming_difference(array1, array2, mate_b): array2 = numpy.unique(array2) # remove duplicate sequences to decrease running time array1_half = numpy.array([i[0:int(len(i) / 2)] for i in array1]) # mate1 part1 array1_half2 = numpy.array([i[int(len(i) / 2):len(i)] for i in array1]) # mate1 part 2 array2_half = numpy.array([i[0:int(len(i) / 2)] for i in array2]) # mate2 part1 array2_half2 = numpy.array([i[int(len(i) / 2):len(i)] for i in array2]) # mate2 part2 diff11 = [] relativeDiffList = [] ham1 = [] ham2 = [] ham1min = [] ham2min = [] min_valueList = [] min_tagsList = [] diff11_zeros = [] min_tagsList_zeros = [] max_tag_list = [] i = 0 # counter, only used to see how many HDs of tags were already calculated if mate_b is False: # HD calculation for all a's half1_mate1 = array1_half half2_mate1 = array1_half2 half1_mate2 = array2_half half2_mate2 = array2_half2 elif mate_b is True: # HD calculation for all b's half1_mate1 = array1_half2 half2_mate1 = array1_half half1_mate2 = array2_half2 half2_mate2 = array2_half for a, b, tag in zip(half1_mate1, half2_mate1, array1): # exclude identical tag from array2, to prevent comparison to itself sameTag = numpy.where(array2 == tag)[0] indexArray2 = numpy.arange(0, len(array2), 1) index_withoutSame = numpy.delete(indexArray2, sameTag) # delete identical tag from the data # all tags without identical tag array2_half_withoutSame = half1_mate2[index_withoutSame] array2_half2_withoutSame = half2_mate2[index_withoutSame] array2_withoutSame = array2[index_withoutSame] # whole tag (=not splitted into 2 halfs) # calculate HD of "a" in the tag to all "a's" or "b" in the tag to all "b's" dist = numpy.array([sum(map(operator.ne, a, c)) for c in array2_half_withoutSame]) min_index = numpy.where(dist == dist.min())[0] # get index of min HD min_value = dist.min() # get all "b's" of the tag or all "a's" of the tag with minimum HD min_tag_half2 = array2_half2_withoutSame[min_index] min_tag_array2 = array2_withoutSame[min_index] # get whole tag with min HD dist_second_half = numpy.array([sum(map(operator.ne, b, e)) for e in min_tag_half2]) # calculate HD of "b" to all "b's" or "a" to all "a's" max_value = dist_second_half.max() max_index = numpy.where(dist_second_half == dist_second_half.max())[0] # get index of max HD max_tag = min_tag_array2[max_index] # for d, d2 in zip(min_value, max_value): if mate_b is True: # half2, corrects the variable of the HD from both halfs if it is a or b ham2.append(min_value) ham2min.append(max_value) else: # half1, corrects the variable of the HD from both halfs if it is a or b ham1.append(min_value) ham1min.append(max_value) min_valueList.append(min_value + max_value) min_tagsList.append(tag) difference1 = abs(min_value - max_value) diff11.append(difference1) rel_difference = round(float(difference1) / (min_value + max_value), 1) relativeDiffList.append(rel_difference) # tags which have identical parts: if min_value == 0 or max_value == 0: min_tagsList_zeros.append(numpy.array(tag)) difference1_zeros = abs(min_value - max_value) # td of non-identical part diff11_zeros.append(difference1_zeros) max_tag_list.append(numpy.array(max_tag)) else: min_tagsList_zeros.append(None) diff11_zeros.append(None) max_tag_list.append(None) i += 1 return ([diff11, ham1, ham2, min_valueList, min_tagsList, relativeDiffList, diff11_zeros, min_tagsList_zeros, ham1min, ham2min, max_tag_list]) def readFileReferenceFree(file): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype=str) integers = numpy.array(data_array[:, 0]).astype(int) return (integers, data_array) def hammingDistanceWithFS(fs, ham): fs = numpy.asarray(fs) maximum = max(ham) minimum = min(ham) ham = numpy.asarray(ham) singletons = numpy.where(fs == 1)[0] data = ham[singletons] hd2 = numpy.where(fs == 2)[0] data2 = ham[hd2] hd3 = numpy.where(fs == 3)[0] data3 = ham[hd3] hd4 = numpy.where(fs == 4)[0] data4 = ham[hd4] hd5 = numpy.where((fs >= 5) & (fs <= 10))[0] data5 = ham[hd5] hd6 = numpy.where(fs > 10)[0] data6 = ham[hd6] list1 = [data, data2, data3, data4, data5, data6] return (list1, maximum, minimum) def familySizeDistributionWithHD(fs, ham, diff=False, rel=True): hammingDistances = numpy.unique(ham) fs = numpy.asarray(fs) ham = numpy.asarray(ham) bigFamilies2 = numpy.where(fs > 19)[0] if len(bigFamilies2) != 0: fs[bigFamilies2] = 20 maximum = max(fs) minimum = min(fs) if diff is True: hd0 = numpy.where(ham == 0)[0] data0 = fs[hd0] if rel is True: hd1 = numpy.where(ham == 0.1)[0] else: hd1 = numpy.where(ham == 1)[0] data = fs[hd1] if rel is True: hd2 = numpy.where(ham == 0.2)[0] else: hd2 = numpy.where(ham == 2)[0] data2 = fs[hd2] if rel is True: hd3 = numpy.where(ham == 0.3)[0] else: hd3 = numpy.where(ham == 3)[0] data3 = fs[hd3] if rel is True: hd4 = numpy.where(ham == 0.4)[0] else: hd4 = numpy.where(ham == 4)[0] data4 = fs[hd4] if rel is True: hd5 = numpy.where((ham >= 0.5) & (ham <= 0.8))[0] else: hd5 = numpy.where((ham >= 5) & (ham <= 8))[0] data5 = fs[hd5] if rel is True: hd6 = numpy.where(ham > 0.8)[0] else: hd6 = numpy.where(ham > 8)[0] data6 = fs[hd6] if diff is True: list1 = [data0, data, data2, data3, data4, data5, data6] else: list1 = [data, data2, data3, data4, data5, data6] return (list1, hammingDistances, maximum, minimum) def hammingDistanceWithDCS(minHD_tags_zeros, diff_zeros, data_array): diff_zeros = numpy.array(diff_zeros) maximum = numpy.amax(diff_zeros) minimum = numpy.amin(diff_zeros) minHD_tags_zeros = numpy.array(minHD_tags_zeros) idx = numpy.concatenate([numpy.where(data_array[:, 1] == i)[0] for i in minHD_tags_zeros]) subset_data = data_array[idx, :] seq = numpy.array(subset_data[:, 1]) # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) DCS_tags = u[c == 2] rest_tags = u[c == 1] dcs = numpy.repeat("DCS", len(DCS_tags)) idx_sscs = numpy.concatenate([numpy.where(subset_data[:, 1] == i)[0] for i in rest_tags]) sscs = subset_data[idx_sscs, 2] all_tags = numpy.column_stack((numpy.concatenate((DCS_tags, subset_data[idx_sscs, 1])), numpy.concatenate((dcs, sscs)))) hd_DCS = [] ab_SSCS = [] ba_SSCS = [] for i in range(len(all_tags)): tag = all_tags[i, :] hd = diff_zeros[numpy.where(minHD_tags_zeros == tag[0])[0]] if tag[1] == "DCS": hd_DCS.append(hd) elif tag[1] == "ab": ab_SSCS.append(hd) elif tag[1] == "ba": ba_SSCS.append(hd) if len(hd_DCS) != 0: hd_DCS = numpy.concatenate(hd_DCS) if len(ab_SSCS) != 0: ab_SSCS = numpy.concatenate(ab_SSCS) if len(ba_SSCS) != 0: ba_SSCS = numpy.concatenate(ba_SSCS) list1 = [hd_DCS, ab_SSCS, ba_SSCS] # list for plotting return (list1, maximum, minimum) def make_argparser(): parser = argparse.ArgumentParser(description='Tag distance analysis of duplex sequencing data') parser.add_argument('--inputFile', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--sample_size', default=1000, type=int, help='Sample size of Tag distance analysis.') parser.add_argument('--subset_tag', default=0, type=int, help='The tag is shortened to the given number.') parser.add_argument('--nproc', default=4, type=int, help='The tool runs with the given number of processors.') parser.add_argument('--only_DCS', action="store_false", help='Only tags of the DCSs are included in the HD analysis') parser.add_argument('--minFS', default=1, type=int, help='Only tags, which have a family size greater or equal than specified, ' 'are included in the HD analysis') parser.add_argument('--maxFS', default=0, type=int, help='Only tags, which have a family size smaller or equal than specified, ' 'are included in the HD analysis') parser.add_argument('--nr_above_bars', action="store_true", help='If False, values above bars in the histograms are removed') parser.add_argument('--rel_freq', action="store_false", help='If True, the relative frequencies are displayed.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.') parser.add_argument('--output_chimeras_tabular', default="data.tabular", type=str, help='Name of the tabular file with all chimeric tags.') return parser def Hamming_Distance_Analysis(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) file1 = args.inputFile name1 = args.inputName1 index_size = args.sample_size title_savedFile_pdf = args.output_pdf title_savedFile_csv = args.output_tabular output_chimeras_tabular = args.output_chimeras_tabular onlyDuplicates = args.only_DCS rel_freq = args.rel_freq minFS = args.minFS maxFS = args.maxFS nr_above_bars = args.nr_above_bars subset = args.subset_tag nproc = args.nproc sep = "\t" # input checks if index_size < 0: print("index_size is a negative integer.") exit(2) if nproc <= 0: print("nproc is smaller or equal zero") exit(3) if subset < 0: print("subset_tag is smaller or equal zero.") exit(5) # PLOT plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['patch.edgecolor'] = "#000000" plt.rc('figure', figsize=(11.69, 8.27)) # A4 format name1 = name1.split(".tabular")[0] with open(title_savedFile_csv, "w") as output_file, PdfPages(title_savedFile_pdf) as pdf: print("dataset: ", name1) integers, data_array = readFileReferenceFree(file1) data_array = numpy.array(data_array) print("total nr of tags:", len(data_array)) # filter tags out which contain any other character than ATCG valid_bases = ["A", "T", "G", "C"] tagsToDelete = [] for idx, t in enumerate(data_array[:, 1]): for char in t: if char not in valid_bases: tagsToDelete.append(idx) break if len(tagsToDelete) != 0: # delete tags with N in the tag from data print("nr of tags with any other character than A, T, C, G:", len(tagsToDelete), float(len(tagsToDelete)) / len(data_array)) index_whole_array = numpy.arange(0, len(data_array), 1) index_withoutN_inTag = numpy.delete(index_whole_array, tagsToDelete) data_array = data_array[index_withoutN_inTag, :] integers = integers[index_withoutN_inTag] print("total nr of filtered tags:", len(data_array)) int_f = numpy.array(data_array[:, 0]).astype(int) data_array = data_array[numpy.where(int_f >= minFS)] integers = integers[integers >= minFS] # select family size for tags if maxFS > 0: int_f2 = numpy.array(data_array[:, 0]).astype(int) data_array = data_array[numpy.where(int_f2 <= maxFS)] integers = integers[integers <= maxFS] if onlyDuplicates is True: tags = data_array[:, 2] seq = data_array[:, 1] # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c == 2] # get family sizes, tag for duplicates duplTags_double = integers[numpy.in1d(seq, d)] duplTags = duplTags_double[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS duplTags_tag = tags[numpy.in1d(seq, d)][0::2] # ab duplTags_seq = seq[numpy.in1d(seq, d)][0::2] # ab - tags if minFS > 1: duplTags_tag = duplTags_tag[(duplTags >= minFS) & (duplTagsBA >= minFS)] duplTags_seq = duplTags_seq[(duplTags >= minFS) & (duplTagsBA >= minFS)] duplTags = duplTags[(duplTags >= minFS) & (duplTagsBA >= minFS)] # ab+ba with FS>=3 data_array = numpy.column_stack((duplTags, duplTags_seq)) data_array = numpy.column_stack((data_array, duplTags_tag)) integers = numpy.array(data_array[:, 0]).astype(int) print("DCS in whole dataset", len(data_array)) print("min FS", min(integers)) print("max FS", max(integers)) # HD analysis for a subset of the tag if subset > 0: tag1 = numpy.array([i[0:int(len(i) / 2)] for i in data_array[:, 1]]) tag2 = numpy.array([i[int(len(i) / 2):len(i)] for i in data_array[:, 1]]) flanking_region_float = float((len(tag1[0]) - subset)) / 2 flanking_region = int(flanking_region_float) if flanking_region_float % 2 == 0: tag1_shorten = numpy.array([i[flanking_region:len(i) - flanking_region] for i in tag1]) tag2_shorten = numpy.array([i[flanking_region:len(i) - flanking_region] for i in tag2]) else: flanking_region_rounded = int(round(flanking_region, 1)) flanking_region_rounded_end = len(tag1[0]) - subset - flanking_region_rounded tag1_shorten = numpy.array( [i[flanking_region:len(i) - flanking_region_rounded_end] for i in tag1]) tag2_shorten = numpy.array( [i[flanking_region:len(i) - flanking_region_rounded_end] for i in tag2]) data_array_tag = numpy.array([i + j for i, j in zip(tag1_shorten, tag2_shorten)]) data_array = numpy.column_stack((data_array[:, 0], data_array_tag, data_array[:, 2])) print("length of tag= ", len(data_array[0, 1])) # select sample: if no size given --> all vs. all comparison if index_size == 0: result = numpy.arange(0, len(data_array), 1) else: numpy.random.shuffle(data_array) unique_tags, unique_indices = numpy.unique(data_array[:, 1], return_index=True) # get only unique tags result = numpy.random.choice(unique_indices, size=index_size, replace=False) # array of random sequences of size=index.size # comparison random tags to whole dataset result1 = data_array[result, 1] # random tags result2 = data_array[:, 1] # all tags print("sample size= ", len(result1)) # HD analysis of whole tag proc_pool = Pool(nproc) chunks_sample = numpy.array_split(result1, nproc) ham = proc_pool.map(partial(hamming, array2=result2), chunks_sample) proc_pool.close() proc_pool.join() ham = numpy.concatenate(ham).astype(int) # with open("HD_whole dataset_{}.txt".format(app_f), "w") as output_file1: # for h, tag in zip(ham, result1): # output_file1.write("{}\t{}\n".format(tag, h)) proc_pool_b = Pool(nproc) diff_list_a = proc_pool_b.map(partial(hamming_difference, array2=result2, mate_b=False), chunks_sample) diff_list_b = proc_pool_b.map(partial(hamming_difference, array2=result2, mate_b=True), chunks_sample) proc_pool_b.close() proc_pool_b.join() HDhalf1 = numpy.concatenate((numpy.concatenate([item[1] for item in diff_list_a]), numpy.concatenate([item_b[1] for item_b in diff_list_b]))).astype(int) HDhalf2 = numpy.concatenate((numpy.concatenate([item[2] for item in diff_list_a]), numpy.concatenate([item_b[2] for item_b in diff_list_b]))).astype(int) minHDs = numpy.concatenate((numpy.concatenate([item[3] for item in diff_list_a]), numpy.concatenate([item_b[3] for item_b in diff_list_b]))).astype(int) HDhalf1min = numpy.concatenate((numpy.concatenate([item[8] for item in diff_list_a]), numpy.concatenate([item_b[8] for item_b in diff_list_b]))).astype(int) HDhalf2min = numpy.concatenate((numpy.concatenate([item[9] for item in diff_list_a]), numpy.concatenate([item_b[9] for item_b in diff_list_b]))).astype(int) rel_Diff1 = numpy.concatenate([item[5] for item in diff_list_a]) rel_Diff2 = numpy.concatenate([item[5] for item in diff_list_b]) diff1 = numpy.concatenate([item[0] for item in diff_list_a]) diff2 = numpy.concatenate([item[0] for item in diff_list_b]) diff_zeros1 = numpy.concatenate([item[6] for item in diff_list_a]) diff_zeros2 = numpy.concatenate([item[6] for item in diff_list_b]) minHD_tags = numpy.concatenate([item[4] for item in diff_list_a]) minHD_tags_zeros1 = numpy.concatenate([item[7] for item in diff_list_a]) minHD_tags_zeros2 = numpy.concatenate([item[7] for item in diff_list_b]) chimera_tags1 = sum([item[10] for item in diff_list_a], []) chimera_tags2 = sum([item[10] for item in diff_list_b], []) rel_Diff = [] diff_zeros = [] minHD_tags_zeros = [] diff = [] chimera_tags = [] for d1, d2, rel1, rel2, zeros1, zeros2, tag1, tag2, ctag1, ctag2 in \ zip(diff1, diff2, rel_Diff1, rel_Diff2, diff_zeros1, diff_zeros2, minHD_tags_zeros1, minHD_tags_zeros2, chimera_tags1, chimera_tags2): relatives = numpy.array([rel1, rel2]) absolutes = numpy.array([d1, d2]) max_idx = numpy.argmax(relatives) rel_Diff.append(relatives[max_idx]) diff.append(absolutes[max_idx]) if all(i is not None for i in [zeros1, zeros2]): diff_zeros.append(max(zeros1, zeros2)) minHD_tags_zeros.append(str(tag1)) tags = [ctag1, ctag2] chimera_tags.append(tags) elif zeros1 is not None and zeros2 is None: diff_zeros.append(zeros1) minHD_tags_zeros.append(str(tag1)) chimera_tags.append(ctag1) elif zeros1 is None and zeros2 is not None: diff_zeros.append(zeros2) minHD_tags_zeros.append(str(tag2)) chimera_tags.append(ctag2) chimera_tags_new = chimera_tags data_chimeraAnalysis = numpy.column_stack((minHD_tags_zeros, chimera_tags_new)) checked_tags = [] stat_maxTags = [] with open(output_chimeras_tabular, "w") as output_file1: output_file1.write("chimera tag\tfamily size, read direction\tsimilar tag with TD=0\n") for i in range(len(data_chimeraAnalysis)): tag1 = data_chimeraAnalysis[i, 0] info_tag1 = data_array[data_array[:, 1] == tag1, :] fs_tag1 = ["{} {}".format(t[0], t[2]) for t in info_tag1] if tag1 in checked_tags: # skip tag if already written to file continue sample_half_a = tag1[0:int(len(tag1) / 2)] sample_half_b = tag1[int(len(tag1) / 2):len(tag1)] max_tags = data_chimeraAnalysis[i, 1] if len(max_tags) > 1 and len(max_tags) != len(data_array[0, 1]) and type(max_tags) is not numpy.ndarray: max_tags = numpy.concatenate(max_tags) max_tags = numpy.unique(max_tags) stat_maxTags.append(len(max_tags)) info_maxTags = [data_array[data_array[:, 1] == t, :] for t in max_tags] chimera_half_a = numpy.array([t[0:int(len(t) / 2)] for t in max_tags]) # mate1 part1 chimera_half_b = numpy.array([t[int(len(t) / 2):len(t)] for t in max_tags]) # mate1 part 2 new_format = [] for j in range(len(max_tags)): fs_maxTags = ["{} {}".format(t[0], t[2]) for t in info_maxTags[j]] if sample_half_a == chimera_half_a[j]: max_tag = "*{}* {} {}".format(chimera_half_a[j], chimera_half_b[j], ", ".join(fs_maxTags)) new_format.append(max_tag) elif sample_half_b == chimera_half_b[j]: max_tag = "{} *{}* {}".format(chimera_half_a[j], chimera_half_b[j], ", ".join(fs_maxTags)) new_format.append(max_tag) checked_tags.append(max_tags[j]) sample_tag = "{} {}\t{}".format(sample_half_a, sample_half_b, ", ".join(fs_tag1)) output_file1.write("{}\t{}\n".format(sample_tag, ", ".join(new_format))) checked_tags.append(tag1) output_file1.write( "This file contains all tags that were identified as chimeras as the first column and the " "corresponding tags which returned a Hamming distance of zero in either the first or the second " "half of the sample tag as the second column.\n" "The tags were separated by an empty space into their halves and the * marks the identical half.") output_file1.write("\n\nStatistics of nr. of tags that returned max. TD (2nd column)\n") output_file1.write("minimum\t{}\ttag(s)\n".format(numpy.amin(numpy.array(stat_maxTags)))) output_file1.write("mean\t{}\ttag(s)\n".format(numpy.mean(numpy.array(stat_maxTags)))) output_file1.write("median\t{}\ttag(s)\n".format(numpy.median(numpy.array(stat_maxTags)))) output_file1.write("maximum\t{}\ttag(s)\n".format(numpy.amax(numpy.array(stat_maxTags)))) output_file1.write("sum\t{}\ttag(s)\n".format(numpy.sum(numpy.array(stat_maxTags)))) lenTags = len(data_array) len_sample = len(result1) quant = numpy.array(data_array[result, 0]).astype(int) # family size for sample of tags seq = numpy.array(data_array[result, 1]) # tags of sample ham = numpy.asarray(ham) # HD for sample of tags if onlyDuplicates is True: # ab and ba strands of DCSs quant = numpy.concatenate((quant, duplTagsBA[result])) seq = numpy.tile(seq, 2) ham = numpy.tile(ham, 2) diff = numpy.tile(diff, 2) rel_Diff = numpy.tile(rel_Diff, 2) diff_zeros = numpy.tile(diff_zeros, 2) nr_chimeric_tags = len(data_chimeraAnalysis) print("nr of chimeras", nr_chimeric_tags) # prepare data for different kinds of plots # distribution of FSs separated after HD familySizeList1, hammingDistances, maximumXFS, minimumXFS = familySizeDistributionWithHD(quant, ham, rel=False) list1, maximumX, minimumX = hammingDistanceWithFS(quant, ham) # histogram of HDs separated after FS # get FS for all tags with min HD of analysis of chimeric reads # there are more tags than sample size in the plot, because one tag can have multiple minimas if onlyDuplicates: seqDic = defaultdict(list) for s, q in zip(seq, quant): seqDic[s].append(q) else: seqDic = dict(zip(seq, quant)) lst_minHD_tags = [] for i in minHD_tags: lst_minHD_tags.append(seqDic.get(i)) if onlyDuplicates: lst_minHD_tags = numpy.concatenate(([item[0] for item in lst_minHD_tags], [item_b[1] for item_b in lst_minHD_tags])).astype(int) # histogram with absolute and relative difference between HDs of both parts of the tag listDifference1, maximumXDifference, minimumXDifference = hammingDistanceWithFS(lst_minHD_tags, diff) listRelDifference1, maximumXRelDifference, minimumXRelDifference = hammingDistanceWithFS(lst_minHD_tags, rel_Diff) # chimeric read analysis: tags which have TD=0 in one of the halfs if len(minHD_tags_zeros) != 0: lst_minHD_tags_zeros = [] for i in minHD_tags_zeros: lst_minHD_tags_zeros.append(seqDic.get(i)) # get family size for tags of chimeric reads if onlyDuplicates: lst_minHD_tags_zeros = numpy.concatenate(([item[0] for item in lst_minHD_tags_zeros], [item_b[1] for item_b in lst_minHD_tags_zeros])).astype(int) # histogram with HD of non-identical half listDifference1_zeros, maximumXDifference_zeros, minimumXDifference_zeros = hammingDistanceWithFS( lst_minHD_tags_zeros, diff_zeros) if onlyDuplicates is False: listDCS_zeros, maximumXDCS_zeros, minimumXDCS_zeros = hammingDistanceWithDCS(minHD_tags_zeros, diff_zeros, data_array) # plot Hamming Distance with Family size distribution plotHDwithFSD(list1=list1, maximumX=maximumX, minimumX=minimumX, pdf=pdf, rel_freq=rel_freq, subtitle="Tag distance separated by family size", lenTags=lenTags, xlabel="TD", nr_above_bars=nr_above_bars, len_sample=len_sample) # Plot FSD with separation after plotFSDwithHD2(familySizeList1, maximumXFS, minimumXFS, rel_freq=rel_freq, originalCounts=quant, subtitle="Family size distribution separated by Tag distance", pdf=pdf, relative=False, diff=False) # Plot HD within tags plotHDwithinSeq(HDhalf1, HDhalf1min, HDhalf2, HDhalf2min, minHDs, pdf=pdf, lenTags=lenTags, rel_freq=rel_freq, len_sample=len_sample) # Plot difference between HD's separated after FSD plotHDwithFSD(listDifference1, maximumXDifference, minimumXDifference, pdf=pdf, subtitle="Delta Tag distance within tags", lenTags=lenTags, rel_freq=rel_freq, xlabel="absolute delta TD", relative=False, nr_above_bars=nr_above_bars, len_sample=len_sample) plotHDwithFSD(listRelDifference1, maximumXRelDifference, minimumXRelDifference, pdf=pdf, subtitle="Chimera Analysis: relative delta Tag distance", lenTags=lenTags, rel_freq=rel_freq, xlabel="relative delta TD", relative=True, nr_above_bars=nr_above_bars, nr_unique_chimeras=nr_chimeric_tags, len_sample=len_sample) # plots for chimeric reads if len(minHD_tags_zeros) != 0: # HD plotHDwithFSD(listDifference1_zeros, maximumXDifference_zeros, minimumXDifference_zeros, pdf=pdf, subtitle="Tag distance of chimeric families (CF)", rel_freq=rel_freq, lenTags=lenTags, xlabel="TD", relative=False, nr_above_bars=nr_above_bars, nr_unique_chimeras=nr_chimeric_tags, len_sample=len_sample) if onlyDuplicates is False: plotHDwithDCS(listDCS_zeros, maximumXDCS_zeros, minimumXDCS_zeros, pdf=pdf, subtitle="Tag distance of chimeric families (CF)", rel_freq=rel_freq, lenTags=lenTags, xlabel="TD", relative=False, nr_above_bars=nr_above_bars, nr_unique_chimeras=nr_chimeric_tags, len_sample=len_sample) # print all data to a CSV file # HD summary, sumCol = createTableHD(list1, "TD=") overallSum = sum(sumCol) # sum of columns in table # FSD summary5, sumCol5 = createTableFSD2(familySizeList1, diff=False) overallSum5 = sum(sumCol5) # HD of both parts of the tag summary9, sumCol9 = createTableHDwithTags([HDhalf1, HDhalf1min, HDhalf2, HDhalf2min, numpy.array(minHDs)]) overallSum9 = sum(sumCol9) # HD # absolute difference summary11, sumCol11 = createTableHD(listDifference1, "diff=") overallSum11 = sum(sumCol11) # relative difference and all tags summary13, sumCol13 = createTableHD(listRelDifference1, "diff=") overallSum13 = sum(sumCol13) # chimeric reads if len(minHD_tags_zeros) != 0: # absolute difference and tags where at least one half has HD=0 summary15, sumCol15 = createTableHD(listDifference1_zeros, "TD=") overallSum15 = sum(sumCol15) if onlyDuplicates is False: summary16, sumCol16 = createTableHDwithDCS(listDCS_zeros) overallSum16 = sum(sumCol16) output_file.write("{}\n".format(name1)) output_file.write("nr of tags{}{:,}\nsample size{}{:,}\n\n".format(sep, lenTags, sep, len_sample)) # HD createFileHD(summary, sumCol, overallSum, output_file, "Tag distance separated by family size", sep) # FSD createFileFSD2(summary5, sumCol5, overallSum5, output_file, "Family size distribution separated by Tag distance", sep, diff=False) # output_file.write("{}{}\n".format(sep, name1)) output_file.write("\n") max_fs = numpy.bincount(integers[result]) output_file.write("max. family size in sample:{}{}\n".format(sep, max(integers[result]))) output_file.write("absolute frequency:{}{}\n".format(sep, max_fs[len(max_fs) - 1])) output_file.write( "relative frequency:{}{}\n\n".format(sep, float(max_fs[len(max_fs) - 1]) / sum(max_fs))) # HD within tags output_file.write( "Chimera Analysis:\nThe tags are splitted into two halves (part a and b) for which the Tag distances (TD) are calculated seperately.\n" "The tag distance of the first half (part a) is calculated by comparing part a of the tag in the sample against all a parts in the dataset and by selecting the minimum value (TD a.min).\n" "In the next step, we select those tags that showed the minimum TD and estimate the TD for the second half (part b) of the tag by comparing part b against the previously selected subset.\n" "The maximum value represents then TD b.max. Finally, these process is repeated but starting with part b instead and TD b.min and TD a.max are calculated.\n" "Next, the absolute differences between TD a.min & TD b.max and TD b.min & TD a.max are estimated (delta HD).\n" "These are then divided by the sum of both parts (TD a.min + TD b.max or TD b.min + TD a.max, respectively) which give the relative differences between the partial HDs (rel. delta HD).\n" "For simplicity, we used the maximum value of the relative differences and the respective delta HD.\n" "Note that when only tags that can form a DCS are included in the analysis, the family sizes for both directions (ab and ba) of the strand will be included in the plots.\n") output_file.write("\nlength of one half of the tag{}{}\n\n".format(sep, int(len(data_array[0, 1]) / 2))) createFileHDwithinTag(summary9, sumCol9, overallSum9, output_file, "Tag distance of each half in the tag", sep) createFileHD(summary11, sumCol11, overallSum11, output_file, "Absolute delta Tag distance within the tag", sep) createFileHD(summary13, sumCol13, overallSum13, output_file, "Chimera analysis: relative delta Tag distance", sep) if len(minHD_tags_zeros) != 0: output_file.write( "All tags are filtered and only those tags where one half is identical (TD=0) and therefore, have a relative delta TD of 1, are kept.\n" "These tags are considered as chimeras.\n") createFileHD(summary15, sumCol15, overallSum15, output_file, "Tag distance of chimeric families separated after FS", sep) if onlyDuplicates is False: createFileHDwithDCS(summary16, sumCol16, overallSum16, output_file, "Tag distance of chimeric families separated after DCS and single SSCS (ab, ba)", sep) output_file.write("\n") if __name__ == '__main__': sys.exit(Hamming_Distance_Analysis(sys.argv))
mit
elenita1221/BDA_py_demos
demos_ch5/demo5_1.py
19
5055
"""Bayesian Data Analysis, 3rd ed Chapter 5, demo 1 Hierarchical model for Rats experiment (BDA3, p. 102). """ from __future__ import division import numpy as np from scipy.stats import beta from scipy.special import gammaln import matplotlib.pyplot as plt # Edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=(plt.rcParams['lines.color'],)) # Disable color cycle # rat data (BDA3, p. 102) y = np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 3, 2, 7, 7, 3, 3, 2, 9, 10, 4, 4, 4, 4, 4, 4, 4, 10, 4, 4, 4, 5, 11, 12, 5, 5, 6, 5, 6, 6, 6, 6, 16, 15, 15, 9, 4 ]) n = np.array([ 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 17, 20, 20, 20, 20, 19, 19, 18, 18, 25, 24, 23, 20, 20, 20, 20, 20, 20, 10, 49, 19, 46, 27, 17, 49, 47, 20, 20, 13, 48, 50, 20, 20, 20, 20, 20, 20, 20, 48, 19, 19, 19, 22, 46, 49, 20, 20, 23, 19, 22, 20, 20, 20, 52, 46, 47, 24, 14 ]) M = len(y) # plot the separate and pooled models plt.figure(figsize=(8,10)) x = np.linspace(0, 1, 250) # separate plt.subplot(2, 1, 1) lines = plt.plot(x, beta.pdf(x[:,None], y[:-1] + 1, n[:-1] - y[:-1] + 1), linewidth=1) # highlight the last line line1, = plt.plot(x, beta.pdf(x, y[-1] + 1, n[-1] - y[-1] + 1), 'r') plt.legend((lines[0], line1), (r'Posterior of $\theta_j$', r'Posterior of $\theta_{71}$')) plt.yticks(()) plt.title('separate model') # pooled plt.subplot(2, 1, 2) plt.plot(x, beta.pdf(x, y.sum() + 1, n.sum() - y.sum() + 1), linewidth=2, label=(r'Posterior of common $\theta$')) plt.legend() plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title('pooled model') # compute the marginal posterior of alpha and beta in the hierarchical model in a grid A = np.linspace(0.5, 6, 100) B = np.linspace(3, 33, 100) # calculated in logarithms for numerical accuracy lp = ( - 5/2 * np.log(A + B[:,None]) + np.sum( gammaln(A + B[:,None]) - gammaln(A) - gammaln(B[:,None]) + gammaln(A + y[:,None,None]) + gammaln(B[:,None] + (n - y)[:,None,None]) - gammaln(A + B[:,None] + n[:,None,None]), axis=0 ) ) # subtract the maximum value to avoid over/underflow in exponentation lp -= lp.max() p = np.exp(lp) # plot the marginal posterior fig = plt.figure() plt.imshow(p, origin='lower', aspect='auto', extent=(A[0], A[-1], B[0], B[-1])) plt.xlabel(r'$\alpha$', fontsize=20) plt.ylabel(r'$\beta$', fontsize=20) plt.title('The marginal posterior of alpha and beta in hierarchical model') # sample from the posterior grid of alpha and beta nsamp = 1000 samp_indices = np.unravel_index( np.random.choice(p.size, size=nsamp, p=p.ravel()/p.sum()), p.shape ) samp_A = A[samp_indices[1]] samp_B = B[samp_indices[0]] # add random jitter, see BDA3 p. 76 samp_A += (np.random.rand(nsamp) - 0.5) * (A[1]-A[0]) samp_B += (np.random.rand(nsamp) - 0.5) * (B[1]-B[0]) # Plot samples from the distribution of distributions Beta(alpha,beta), # that is, plot Beta(alpha,beta) using the posterior samples of alpha and beta fig = plt.figure(figsize=(8,10)) plt.subplot(2, 1, 1) plt.plot(x, beta.pdf(x[:,None], samp_A[:20], samp_B[:20]), linewidth=1) plt.yticks(()) plt.title(r'Posterior samples from the distribution of distributions ' r'Beta($\alpha$,$\beta$)') # The average of above distributions, is the predictive distribution for a new # theta, and also the prior distribution for theta_j. # Plot this. plt.subplot(2, 1, 2) plt.plot(x, np.mean(beta.pdf(x, samp_A[:,None], samp_B[:,None]), axis=0)) plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title(r'Predictive distribution for a new $\theta$ ' r'and prior for $\theta_j$') # And finally compare the separate model and hierarchical model plt.figure(figsize=(8,10)) x = np.linspace(0, 1, 250) # first plot the separate model (same as above) plt.subplot(2, 1, 1) # note that for clarity only every 7th distribution is plotted plt.plot(x, beta.pdf(x[:,None], y[7:-1:7] + 1, n[7:-1:7] - y[7:-1:7] + 1), linewidth=1) # highlight the last line plt.plot(x, beta.pdf(x, y[-1] + 1, n[-1] - y[-1] + 1), 'r') plt.yticks(()) plt.title('separate model') # And the hierarchical model. Note that these marginal posteriors for theta_j are # more narrow than in separate model case, due to borrowed information from # the other theta_j's. plt.subplot(2, 1, 2) # note that for clarity only every 7th distribution is plotted lines = plt.plot( x, np.mean( beta.pdf( x[:,None], y[7::7] + samp_A[:,None,None], n[7::7] - y[7::7] + samp_B[:,None,None] ), axis=0 ), linewidth=1, ) # highlight the last line lines[-1].set_linewidth(2) lines[-1].set_color('r') plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title('hierarchical model') plt.show()
gpl-3.0
brohrer/becca
becca/tools.py
1
9057
""" Constants and functions for use across the Becca core. """ from __future__ import print_function import os import sys import matplotlib.pyplot as plt import numpy as np import logging logging.basicConfig(filename='log/log.log', level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s') logger = logging.getLogger(os.path.basename(__file__)) # Shared constants epsilon = sys.float_info.epsilon big = 10 ** 20 max_int16 = np.iinfo(np.int16).max def pad(arr, shape, val=0, dtype=float): """ Pad a numpy array to the specified shape. Use val (default 0) to fill in the extra spaces. Parameters ---------- arr : array of ints or floats The array to pad. shape : int, list of ints or tuple of ints The shape to which to pad ``a``. If any element of shape is 0, that size remains unchanged in that axis. If any element of shape is < 0, the size of ``a`` in that axis is incremented by the magnitude of that value. val : float The value with which to pad ``arr``. Default is 0. dtype : dtype The data type with which to pad ``arr``. Returns ------- padded : array of ints or floats The padded version of ``arr``. """ # For padding a 1D array if isinstance(shape, int): if shape <= 0: rows = arr.size - shape else: rows = shape if rows < arr.size: logger.warn(' '.join(['arr.size is', str(arr.size), ' but trying to pad to ', str(rows), 'rows.'])) return arr # Handle the case where a is a one-dimensional array padded = np.ones(rows, dtype=dtype) * val padded[:arr.size] = arr return padded # For padding arr n-D array new_shape = shape n_dim = len(shape) if n_dim > 4: logger.info(''.join([str(n_dim), ' dimensions? Now you\'re getting greedy'])) return arr for dim, _ in enumerate(shape): if shape[dim] <= 0: new_shape[dim] = arr.shape[dim] - shape[dim] else: if new_shape[dim] < arr.shape[dim]: logger.warn(''.join(['The variable shape in dimension ', str(dim), ' is ', str(arr.shape[dim]), ' but you are trying to pad to ', str(new_shape[dim]), '.'])) logger.warn('You aren\'t allowed to make it smaller.') return arr padded = np.ones(new_shape, dtype=dtype) * val if len(new_shape) == 2: padded[:arr.shape[0], :arr.shape[1]] = arr return padded if len(new_shape) == 3: padded[:arr.shape[0], :arr.shape[1], :arr.shape[2]] = arr return padded # A maximum of 4 dimensions is enforced. padded[:arr.shape[0], :arr.shape[1], :arr.shape[2], :arr.shape[3]] = arr return padded def str_to_int(exp): """ Convert a string to an integer. The method is primitive, using a simple hash based on the ordinal value of the characters and their position in the string. Parameters ---------- exp : str The string expression to convert to an int. Returns ------- sum : int An integer that is likely (though not extremely so) to be unique within the scope of the program. """ sum_ = 0 for i, character in enumerate(exp): sum_ += i + ord(character) + i * ord(character) return sum_ def timestr(timestep, s_per_step=.25, precise=True): """ Convert the number of time steps into an age. Parameters ---------- timestep : int The age in time steps. s_per_step : float The duration of each time step in seconds. precise : bool If True, report the age down to the second. If False, just report the most significant unit of time. Default is True Returns ------- time_str : str The age in string format, including, as appropriate, years, months, days, hours, minutes, and seconds. """ # Start by calculating the total number of seconds. total_sec = timestep * s_per_step sec = int(np.mod(total_sec, 60)) time_str = ' '.join([str(sec), 'sec']) # If necessary, calculate the total number of minutes. total_min = int(total_sec / 60) if total_min == 0: return time_str min_ = int(np.mod(total_min, 60)) if precise: time_str = ' '.join([str(min_), 'min', time_str]) else: time_str = ' '.join([str(min_), 'min']) # If necessary, calculate the total number of hours. total_hr = int(total_min / 60) if total_hr == 0: return time_str hr_ = int(np.mod(total_hr, 24)) if precise: time_str = ' '.join([str(hr_), 'hr', time_str]) else: time_str = ' '.join([str(hr_), 'hr']) # If necessary, calculate the total number of days. total_day = int(total_hr / 24) if total_day == 0: return time_str day = int(np.mod(total_day, 30)) if precise: time_str = ' '.join([str(day), 'dy', time_str]) else: time_str = ' '.join([str(day), 'dy']) # If necessary, calculate the total number of months. total_mon = int(total_day / 30) if total_mon == 0: return time_str mon = int(np.mod(total_mon, 12)) if precise: time_str = ' '.join([str(mon), 'mo', time_str]) else: time_str = ' '.join([str(mon), 'mo']) # If necessary, calculate the total number of years. yr_ = int(total_mon / 12) if yr_ == 0: return time_str if precise: time_str = ' '.join([str(yr_), 'yr', time_str]) else: time_str = ' '.join([str(yr_), 'yr']) return time_str def fatigue(raw_activities, energies, fatigue_rate=3e-4, recharge_rate=1e-4): """ Limit the frequency and intensity of activities with a model of fatigue. @param raw_activities: array of floats The activities before fatigue has been applied. @param energies: array of floats The accumulated energy a channel has at its disposal. @param fatigue_rate The rate at which energy is depleted when a channel is active. @param recharge_rate: The rate at which energy is re-accumulated. @return activities: array of floats The activities after fatigue has been applied. """ energies -= fatigue_rate * raw_activities * energies energies += recharge_rate * (1 - raw_activities) * (1 - energies) activities = raw_activities * energies return activities def format_decimals(array): """ Format and print an array as a list of fixed decimal numbers in a string. Parameters ---------- array : array of floats The array to be formatted. """ if len(array.shape) == 2: for j in range(array.shape[1]): formatted = (' '.join(['{0},{1}:{2:.3}'.format(i, j, array[i, j]) for i in range(array.shape[0])])) logger.info(formatted) else: array = array.copy().ravel() formatted = (' '.join(['{0}:{1:.3}'.format(i, array[i]) for i in range(array.size)])) logger.info(formatted) def get_files_with_suffix(dir_name, suffixes): """ Get all of the files with a given suffix in dir recursively. Parameters ---------- dir_name : str The path to the directory to search. suffixes : list of str The set of suffixes for which files are being collected. Returns ------- found_filenames : list of str The filenames, including the local path from ``dir_name``. """ found_filenames = [] for localpath, _, filenames in os.walk(dir_name): for filename in filenames: for suffix in suffixes: if filename.endswith(suffix): found_filenames.append(os.path.join(localpath, filename)) found_filenames.sort() return found_filenames def visualize_array(image_data, label='data_figure'): """ Produce a visual representation of the image_data matrix. Parameters ---------- image_data : 2D array of floats The pixel values to make into an image. label : str The string label to affix to the image. It is used both to generate a figure number and as the title. """ # Treat nan values like zeros for display purposes image_data = np.nan_to_num(np.copy(image_data)) fig = plt.figure(str_to_int(label)) # Diane made the brilliant suggestion to leave this plot in color. # It looks much prettier. plt.bone() img = plt.imshow(image_data) img.set_interpolation('nearest') plt.title(label) plt.xlabel('Max = {0:.3}, Min = {1:.3}'.format(np.max(image_data), np.min(image_data))) fig.show() fig.canvas.draw()
mit
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/tests/test_dviread.py
8
1667
from nose.tools import assert_equal import matplotlib.dviread as dr import os.path original_find_tex_file = dr.find_tex_file def setup(): dr.find_tex_file = lambda x: x def teardown(): dr.find_tex_file = original_find_tex_file def test_PsfontsMap(): filename = os.path.join( os.path.dirname(__file__), 'baseline_images', 'dviread', 'test.map') fontmap = dr.PsfontsMap(filename) # Check all properties of a few fonts for n in [1, 2, 3, 4, 5]: key = 'TeXfont%d' % n entry = fontmap[key] assert_equal(entry.texname, key) assert_equal(entry.psname, 'PSfont%d' % n) if n not in [3, 5]: assert_equal(entry.encoding, 'font%d.enc' % n) elif n == 3: assert_equal(entry.encoding, 'enc3.foo') # We don't care about the encoding of TeXfont5, which specifies # multiple encodings. if n not in [1, 5]: assert_equal(entry.filename, 'font%d.pfa' % n) else: assert_equal(entry.filename, 'font%d.pfb' % n) if n == 4: assert_equal(entry.effects, {'slant': -0.1, 'extend': 2.2}) else: assert_equal(entry.effects, {}) # Some special cases entry = fontmap['TeXfont6'] assert_equal(entry.filename, None) assert_equal(entry.encoding, None) entry = fontmap['TeXfont7'] assert_equal(entry.filename, None) assert_equal(entry.encoding, 'font7.enc') entry = fontmap['TeXfont8'] assert_equal(entry.filename, 'font8.pfb') assert_equal(entry.encoding, None) entry = fontmap['TeXfont9'] assert_equal(entry.filename, '/absolute/font9.pfb')
mit
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Stress_Based_Contact_Verification/SoftContact_NonLinHardShear/Area/A_1e2/Normal_Stress_Plot.py
72
2800
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; import matplotlib; import math; from matplotlib.ticker import MaxNLocator plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Normal_Stress.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(normal_strain*100,normal_stress/1000,'-r',label='Analytical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Interface Type #") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") plt.hold(True) ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; normal_strain = -finput["/Model/Elements/Element_Outputs"][6,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain*100,normal_stress/1000,'-k',label='Numerical Solution', Linewidth=4, markersize=20) plt.xlabel(r"Normal Strain [%]") plt.ylabel(r"Normal Stress $\sigma_n [kPa]$") ############################################################# # # # axes = plt.gca() # # # axes.set_xlim([-7,7]) # # # axes.set_ylim([-1,1]) # outfigname = "Interface_Test_Normal_Stress.pdf"; # plt.axis([0, 5.5, 90, 101]) # legend = plt.legend() # legend.get_frame().set_linewidth(0.0) # legend.get_frame().set_facecolor('none') plt.legend() plt.savefig('Normal_Stress.pdf', bbox_inches='tight') # plt.show()
cc0-1.0
bptripp/it-cnn
tuning/orientation.py
1
10458
__author__ = 'bptripp' import csv import time import numpy as np import matplotlib.pyplot as plt from cnn_stimuli import get_image_file_list from alexnet import preprocess, load_net, load_vgg from scipy.signal import fftconvolve def mean_corr(out): cc = np.corrcoef(out.T) n = cc.shape[0] print('n: ' + str(n)) print(out.shape) cc_list = [] for i in range(n): for j in range(i+1,n): cc_list.append(cc[i,j]) print(cc_list) mean_cc = np.mean(cc_list) print('mean corr: ' + str(mean_cc)) def smooth(out, ind, n=5): l = out.shape[0] wrapped = np.zeros((out.shape[0]*3, len(ind))) wrapped[0:l,:] = out[:,ind] wrapped[l:2*l,:] = out[:,ind] wrapped[2*l:3*l,:] = out[:,ind] filter = 1./n*np.ones(n) # print('filter: ' + str(filter)) for i in range(wrapped.shape[1]): wrapped[:,i] = fftconvolve(wrapped[:,i], filter, 'same') return wrapped[l:2*l,:] def plot_curves(out, n, kernel_len=5, angles=None, normalize=False): print('plotting') if angles is None: angles = np.linspace(0, 360, 91) maxima = np.max(out, axis=0) # n = 10 # ind = (-maxima).argsort()[:n] # print('using first n') # ind = range(n) print('using first large n') ind = [] i = 0 while len(ind) < n: if maxima[i] > 2: ind.append(i) i = i + 1 print(ind) smoothed = smooth(out, ind, n=kernel_len) # if smooth: # smoothed = smooth(out, ind) # else: # smoothed = out[:,ind] mean_corr(smoothed) # print(len(angles)) # print(smoothed.shape) if normalize: smoothed = smoothed / np.max(smoothed, axis=0) plt.plot(angles, smoothed) plt.xlim([np.min(angles), np.max(angles)]) def freiwald_depths(out): """ From Freiwald & Tsao (2010) Science, supplementary material, page 6 ... Head orientation tuning depth was computed using the mean response to frontal faces (Rfrontal), and the mean response to full profile faces in the preferred direction (Rprofile) as follows: Tuning Depth = (Rfrontal - Rprofile) / (Rfrontal + Rprofile) """ assert(out.shape[0] == 25) frontal = np.maximum(0, out[0,:]) profile = np.maximum(0, np.maximum(out[6,:], out[19,:])) m = np.max(out, axis=0) frontal = frontal[m >= 1] profile = profile[m >= 1] return (frontal - profile) / (frontal + profile + 1e-3) def plot_freiwald_histograms(): fractions = [] fractions.append(np.loadtxt(open("../data/freiwald-4h-am.csv","rb"),delimiter=",")) fractions.append(np.loadtxt(open("../data/freiwald-4h-al.csv","rb"),delimiter=",")) fractions.append(np.loadtxt(open("../data/freiwald-4h-mlmf.csv","rb"),delimiter=",")) plt.figure(figsize=(3,2*3)) for i in range(3): plt.subplot(3,1,i+1) f = fractions[i] hist_edges = np.linspace(-1, 1, len(f)+1) # hist_edges = hist_edges[:-1] print(f.shape) print(hist_edges.shape) plt.bar(hist_edges[:-1]+.02, f, width=hist_edges[1]-hist_edges[0]-.04, color=[.5,.5,.5]) plt.xlim([-1, 1]) plt.ylim([0, .55]) plt.ylabel('Fraction of cells') plt.xlabel('Head orientation tuning depth') plt.tight_layout() plt.savefig('../figures/orientation-freiwald.eps') plt.show() def plot_logothetis_and_freiwald_tuning_data(): plt.figure(figsize=(9,2.5)) plt.subplot(1,3,1) plot_csv_tuning_curve('../data/logothetis-a.csv') plot_csv_tuning_curve('../data/logothetis-b.csv') plot_csv_tuning_curve('../data/logothetis-c.csv') plot_csv_tuning_curve('../data/logothetis-d.csv') plot_csv_tuning_curve('../data/logothetis-e.csv') plt.ylabel('Response') plt.xlabel('Angle (degrees)') plt.xlim([-180, 180]) plt.xticks([-180, -60, 60, 180]) plt.subplot(1,3,3) plot_csv_tuning_curve('../data/freiwald-1.csv') plot_csv_tuning_curve('../data/freiwald-2.csv') plot_csv_tuning_curve('../data/freiwald-3.csv') plot_csv_tuning_curve('../data/freiwald-4.csv') plt.xlabel('Angle (degrees)') plt.xlim([-180, 180]) plt.xticks([-180, -60, 60, 180]) plt.tight_layout() plt.savefig('../figures/tuning-data.eps') plt.show() def plot_csv_tuning_curve(filename): data = np.loadtxt(open(filename, 'rb'), delimiter=',') ind = np.argsort(data[:,0]) plt.plot(data[ind,0], data[ind,1]) if __name__ == '__main__': # model = load_vgg(weights_path='../weights/vgg16_weights.h5', remove_level=2) # use_vgg = True # model = load_net(weights_path='../weights/alexnet_weights.h5', remove_level=1) # use_vgg = False # # plt.figure(figsize=(6,6)) # # image_files = get_image_file_list('./images/swiss-knife-rotations/', 'png', with_path=True) # image_files = get_image_file_list('./images/staple-rotations/', 'png', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # # plt.subplot(2,2,1) # plt.subplot2grid((5,2), (0,0), rowspan=2) # plot_curves(out, 10) # # plt.ylim([0,12]) # plt.ylabel('Response') # image_files = get_image_file_list('./images/shoe-rotations/', 'png', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # # plt.subplot(2,2,2) # plt.subplot2grid((5,2), (0,1), rowspan=2) # plot_curves(out, 10) # # plt.ylim([0,12]) # image_files = get_image_file_list('./images/corolla-rotations/', 'png', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # # plt.subplot(2,2,3) # plt.subplot2grid((5,2), (3,0), rowspan=2) # plot_curves(out, 10) # # plt.ylim([0,12]) # plt.xlabel('Angle (degrees)') # plt.ylabel('Response') # image_files = get_image_file_list('./images/banana-rotations/', 'png', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # # plt.subplot(2,2,4) # plt.subplot2grid((5,2), (3,1), rowspan=2) # plot_curves(out, 10) # # plt.ylim([0,12]) # plt.xlabel('Angle (degrees)') # plt.tight_layout() # plt.savefig('../figures/orientation.eps') # plt.show() plot_freiwald_histograms() # # plot_logothetis_and_freiwald_tuning_data() # remove_levels = [0,1,2] # use_vgg = False # # # remove_levels = [0,1,2] # # use_vgg = False # # plt.figure(figsize=(9,2*len(remove_levels))) # # hist_edges = np.linspace(-1, 1, 10) # freiwalds = [] # # for i in range(len(remove_levels)): # if use_vgg: # model = load_vgg(weights_path='../weights/vgg16_weights.h5', remove_level=remove_levels[i]) # else: # model = load_net(weights_path='../weights/alexnet_weights.h5', remove_level=remove_levels[i]) # # plt.subplot(len(remove_levels),3,(3*i)+1) # image_files = get_image_file_list('./source-images/staple/', 'jpg', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # # angles = np.array(range(0,361,10)) # wrap_indices = range(18, 36) + range(19) # plot_curves(out[wrap_indices,:], 10, kernel_len=3, angles=range(-180,181,10)) # plt.xticks([-180, -60, 60, 180]) # plt.ylabel('Response') # # plt.title('Staple') # if i == len(remove_levels)-1: # plt.xlabel('Angle (degrees)') # # # plt.subplot(len(remove_levels),3,(3*i)+2) # image_files = get_image_file_list('./source-images/scooter/', 'jpg', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # wrap_indices = range(12,24) + range(13) # plot_curves(out[wrap_indices,:], 10, kernel_len=3, angles=range(-180,181,15)) # plt.xticks([-180, -60, 60, 180]) # # plt.title('Scooter') # if i == len(remove_levels)-1: # plt.xlabel('Angle (degrees)') # # plt.subplot(len(remove_levels),3,(3*i)+3) # image_files = get_image_file_list('./source-images/head/', 'jpg', with_path=True) # im = preprocess(image_files, use_vgg=use_vgg) # out = model.predict(im) # wrap_indices = range(12,24) + range(13) # plot_curves(out[wrap_indices,:], 10, kernel_len=3, angles=range(-180,181,15)) # plt.xticks([-180, -60, 60, 180]) # # plt.title('Head') # if i == len(remove_levels)-1: # plt.xlabel('Angle (degrees)') # # fd = freiwald_depths(out) # h, e = np.histogram(fd, hist_edges) # h = h.astype(float) # h = h / np.sum(h) # freiwalds.append(h) # # plt.tight_layout() # plt.savefig('../figures/orientation3d.eps') # plt.show() # # plt.figure(figsize=(3,2*len(remove_levels))) # for i in range(len(remove_levels)): # plt.subplot(len(remove_levels),1,i+1) # plt.bar(hist_edges[:-1]+.02, freiwalds[i], width=.2-.04, color=[.5,.5,.5]) # plt.xlim([-1, 1]) # plt.ylim([0, .55]) # plt.ylabel('Fraction of units') # # plt.xlabel('Head orientation tuning depth') # plt.tight_layout() # plt.savefig('../figures/orientation-freiwald-net.eps') # plt.show() # plt.figure(figsize=(7,3)) # n = 15 # kernel_len = 3 # angles = range(0,361,10) # image_files = get_image_file_list('./source-images/staple/', 'jpg', with_path=True) # im = preprocess(image_files) # out = model.predict(im) # plt.subplot(1,2,1) # plot_curves(out, n, kernel_len=kernel_len, angles=angles, normalize=True) # plt.ylabel('Response') # plt.ylim([0,1]) # plt.title('CNN') # # fake = np.zeros((out.shape[0], n)) # np.random.seed(1) # prefs = 360.*np.random.rand(n) # i = 0 # widths = np.zeros(n) # while i < n: # width = 30. + 15. * np.random.randn() # if width > 1: # widths[i] = width # i = i + 1 # print(widths) # # for i in range(n): # fake[:,i] = np.exp(-(angles-prefs[i])**2 / 2 / widths[i]**2) # # # plt.subplot(1,2,2) # plot_curves(fake, n, kernel_len=kernel_len, angles=angles, normalize=True) # plt.title('Empirical') # plt.ylim([0,1]) # # plt.tight_layout() # plt.savefig('../figures/orientation-salman.eps') # plt.show()
mit
RachitKansal/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
andaag/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
largelymfs/w2vtools
build/scipy/scipy/signal/ltisys.py
5
30979
""" ltisys -- a collection of classes and functions for modeling linear time invariant systems. """ from __future__ import division, print_function, absolute_import # # Author: Travis Oliphant 2001 # # Feb 2010: Warren Weckesser # Rewrote lsim2 and added impulse2. # Aug 2013: Juan Luis Cano # Rewrote abcd_normalize. # from .filter_design import tf2zpk, zpk2tf, normalize, freqs import numpy from numpy import product, zeros, array, dot, transpose, ones, \ nan_to_num, zeros_like, linspace import scipy.interpolate as interpolate import scipy.integrate as integrate import scipy.linalg as linalg from scipy.lib.six import xrange from numpy import r_, eye, real, atleast_1d, atleast_2d, poly, \ squeeze, diag, asarray __all__ = ['tf2ss', 'ss2tf', 'abcd_normalize', 'zpk2ss', 'ss2zpk', 'lti', 'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode', 'freqresp'] def tf2ss(num, den): """Transfer function to state-space representation. Parameters ---------- num, den : array_like Sequences representing the numerator and denominator polynomials. The denominator needs to be at least as long as the numerator. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. """ # Controller canonical state-space representation. # if M+1 = len(num) and K+1 = len(den) then we must have M <= K # states are found by asserting that X(s) = U(s) / D(s) # then Y(s) = N(s) * X(s) # # A, B, C, and D follow quite naturally. # num, den = normalize(num, den) # Strips zeros, checks arrays nn = len(num.shape) if nn == 1: num = asarray([num], num.dtype) M = num.shape[1] K = len(den) if M > K: msg = "Improper transfer function. `num` is longer than `den`." raise ValueError(msg) if M == 0 or K == 0: # Null system return array([], float), array([], float), array([], float), \ array([], float) # pad numerator to have same number of columns has denominator num = r_['-1', zeros((num.shape[0], K - M), num.dtype), num] if num.shape[-1] > 0: D = num[:, 0] else: D = array([], float) if K == 1: return array([], float), array([], float), array([], float), D frow = -array([den[1:]]) A = r_[frow, eye(K - 2, K - 1)] B = eye(K - 1, 1) C = num[:, 1:] - num[:, 0] * den[1:] return A, B, C, D def _none_to_empty_2d(arg): if arg is None: return zeros((0, 0)) else: return arg def _atleast_2d_or_none(arg): if arg is not None: return atleast_2d(arg) def _shape_or_none(M): if M is not None: return M.shape else: return (None,) * 2 def _choice_not_none(*args): for arg in args: if arg is not None: return arg def _restore(M, shape): if M.shape == (0, 0): return zeros(shape) else: if M.shape != shape: raise ValueError("The input arrays have incompatible shapes.") return M def abcd_normalize(A=None, B=None, C=None, D=None): """Check state-space matrices and ensure they are rank-2. If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised. Parameters ---------- A, B, C, D : array_like, optional State-space matrices. All of them are None (missing) by default. Returns ------- A, B, C, D : array Properly shaped state-space matrices. Raises ------ ValueError If not enough information on the system was provided. """ A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D)) MA, NA = _shape_or_none(A) MB, NB = _shape_or_none(B) MC, NC = _shape_or_none(C) MD, ND = _shape_or_none(D) p = _choice_not_none(MA, MB, NC) q = _choice_not_none(NB, ND) r = _choice_not_none(MC, MD) if p is None or q is None or r is None: raise ValueError("Not enough information on the system.") A, B, C, D = map(_none_to_empty_2d, (A, B, C, D)) A = _restore(A, (p, p)) B = _restore(B, (p, q)) C = _restore(C, (r, p)) D = _restore(D, (r, q)) return A, B, C, D def ss2tf(A, B, C, D, input=0): """State-space to transfer function. Parameters ---------- A, B, C, D : ndarray State-space representation of linear system. input : int, optional For multiple-input systems, the input to use. Returns ------- num : 2-D ndarray Numerator(s) of the resulting transfer function(s). `num` has one row for each of the system's outputs. Each row is a sequence representation of the numerator polynomial. den : 1-D ndarray Denominator of the resulting transfer function(s). `den` is a sequence representation of the denominator polynomial. """ # transfer function is C (sI - A)**(-1) B + D A, B, C, D = map(asarray, (A, B, C, D)) # Check consistency and make them all rank-2 arrays A, B, C, D = abcd_normalize(A, B, C, D) nout, nin = D.shape if input >= nin: raise ValueError("System does not have the input specified.") # make MOSI from possibly MOMI system. if B.shape[-1] != 0: B = B[:, input] B.shape = (B.shape[0], 1) if D.shape[-1] != 0: D = D[:, input] try: den = poly(A) except ValueError: den = 1 if (product(B.shape, axis=0) == 0) and (product(C.shape, axis=0) == 0): num = numpy.ravel(D) if (product(D.shape, axis=0) == 0) and (product(A.shape, axis=0) == 0): den = [] return num, den num_states = A.shape[0] type_test = A[:, 0] + B[:, 0] + C[0, :] + D num = numpy.zeros((nout, num_states + 1), type_test.dtype) for k in range(nout): Ck = atleast_2d(C[k, :]) num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den return num, den def zpk2ss(z, p, k): """Zero-pole-gain representation to state-space representation Parameters ---------- z, p : sequence Zeros and poles. k : float System gain. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. """ return tf2ss(*zpk2tf(z, p, k)) def ss2zpk(A, B, C, D, input=0): """State-space representation to zero-pole-gain representation. Parameters ---------- A, B, C, D : ndarray State-space representation of linear system. input : int, optional For multiple-input systems, the input to use. Returns ------- z, p : sequence Zeros and poles. k : float System gain. """ return tf2zpk(*ss2tf(A, B, C, D, input=input)) class lti(object): """Linear Time Invariant class which simplifies representation. Parameters ---------- args : arguments The `lti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of elements in the tuple and the interpretation: * 2: (numerator, denominator) * 3: (zeros, poles, gain) * 4: (A, B, C, D) Each argument can be an array or sequence. Notes ----- `lti` instances have all types of representations available; for example after creating an instance s with ``(zeros, poles, gain)`` the transfer function representation (numerator, denominator) can be accessed as ``s.num`` and ``s.den``. """ def __init__(self, *args, **kwords): """ Initialize the LTI system using either: - (numerator, denominator) - (zeros, poles, gain) - (A, B, C, D) : state-space. """ N = len(args) if N == 2: # Numerator denominator transfer function input self._num, self._den = normalize(*args) self._update(N) self.inputs = 1 if len(self.num.shape) > 1: self.outputs = self.num.shape[0] else: self.outputs = 1 elif N == 3: # Zero-pole-gain form self._zeros, self._poles, self._gain = args self._update(N) # make sure we have numpy arrays self.zeros = numpy.asarray(self.zeros) self.poles = numpy.asarray(self.poles) self.inputs = 1 if len(self.zeros.shape) > 1: self.outputs = self.zeros.shape[0] else: self.outputs = 1 elif N == 4: # State-space form self._A, self._B, self._C, self._D = abcd_normalize(*args) self._update(N) self.inputs = self.B.shape[-1] self.outputs = self.C.shape[0] else: raise ValueError("Needs 2, 3, or 4 arguments.") def __repr__(self): """ Canonical representation using state-space to preserve numerical precision and any MIMO information """ return '{0}(\n{1},\n{2},\n{3},\n{4}\n)'.format( self.__class__.__name__, repr(self.A), repr(self.B), repr(self.C), repr(self.D), ) @property def num(self): return self._num @num.setter def num(self, value): self._num = value self._update(2) @property def den(self): return self._den @den.setter def den(self, value): self._den = value self._update(2) @property def zeros(self): return self._zeros @zeros.setter def zeros(self, value): self._zeros = value self._update(3) @property def poles(self): return self._poles @poles.setter def poles(self, value): self._poles = value self._update(3) @property def gain(self): return self._gain @gain.setter def gain(self, value): self._gain = value self._update(3) @property def A(self): return self._A @A.setter def A(self, value): self._A = value self._update(4) @property def B(self): return self._B @B.setter def B(self, value): self._B = value self._update(4) @property def C(self): return self._C @C.setter def C(self, value): self._C = value self._update(4) @property def D(self): return self._D @D.setter def D(self, value): self._D = value self._update(4) def _update(self, N): if N == 2: self._zeros, self._poles, self._gain = tf2zpk(self.num, self.den) self._A, self._B, self._C, self._D = tf2ss(self.num, self.den) if N == 3: self._num, self._den = zpk2tf(self.zeros, self.poles, self.gain) self._A, self._B, self._C, self._D = zpk2ss(self.zeros, self.poles, self.gain) if N == 4: self._num, self._den = ss2tf(self.A, self.B, self.C, self.D) self._zeros, self._poles, self._gain = ss2zpk(self.A, self.B, self.C, self.D) def impulse(self, X0=None, T=None, N=None): return impulse(self, X0=X0, T=T, N=N) def step(self, X0=None, T=None, N=None): return step(self, X0=X0, T=T, N=N) def output(self, U, T, X0=None): return lsim(self, U, T, X0=X0) def bode(self, w=None, n=100): """ Calculate Bode magnitude and phase data. Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See scipy.signal.bode for details. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([1], [1, 1]) >>> w, mag, phase = s1.bode() >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ return bode(self, w=w, n=n) def freqresp(self, w=None, n=10000): """Calculate the frequency response of a continuous-time system. Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See scipy.signal.freqresp for details. """ return freqresp(self, w=w, n=n) def lsim2(system, U=None, T=None, X0=None, **kwargs): """ Simulate output of a continuous-time linear system, by using the ODE solver `scipy.integrate.odeint`. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like (1D or 2D), optional An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero. T : array_like (1D or 2D), optional The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval [0,10.0]. X0 : array_like (1D), optional The initial condition of the state vector. If `X0` is not given, the initial conditions are assumed to be 0. kwargs : dict Additional keyword arguments are passed on to the function `odeint`. See the notes below for more details. Returns ------- T : 1D ndarray The time values for the output. yout : ndarray The response of the system. xout : ndarray The time-evolution of the state-vector. Notes ----- This function uses `scipy.integrate.odeint` to solve the system's differential equations. Additional keyword arguments given to `lsim2` are passed on to `odeint`. See the documentation for `scipy.integrate.odeint` for the full list of arguments. """ if isinstance(system, lti): sys = system else: sys = lti(*system) if X0 is None: X0 = zeros(sys.B.shape[0], sys.A.dtype) if T is None: # XXX T should really be a required argument, but U was # changed from a required positional argument to a keyword, # and T is after U in the argument list. So we either: change # the API and move T in front of U; check here for T being # None and raise an exception; or assign a default value to T # here. This code implements the latter. T = linspace(0, 10.0, 101) T = atleast_1d(T) if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") if U is not None: U = atleast_1d(U) if len(U.shape) == 1: U = U.reshape(-1, 1) sU = U.shape if sU[0] != len(T): raise ValueError("U must have the same number of rows " "as elements in T.") if sU[1] != sys.inputs: raise ValueError("The number of inputs in U (%d) is not " "compatible with the number of system " "inputs (%d)" % (sU[1], sys.inputs)) # Create a callable that uses linear interpolation to # calculate the input at any time. ufunc = interpolate.interp1d(T, U, kind='linear', axis=0, bounds_error=False) def fprime(x, t, sys, ufunc): """The vector field of the linear system.""" return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t])))) xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs) yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U)) else: def fprime(x, t, sys): """The vector field of the linear system.""" return dot(sys.A, x) xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs) yout = dot(sys.C, transpose(xout)) return T, squeeze(transpose(yout)), xout def _cast_to_array_dtype(in1, in2): """Cast array to dtype of other array, while avoiding ComplexWarning. Those can be raised when casting complex to real. """ if numpy.issubdtype(in2.dtype, numpy.float): # dtype to cast to is not complex, so use .real in1 = in1.real.astype(in2.dtype) else: in1 = in1.astype(in2.dtype) return in1 def lsim(system, U, T, X0=None, interp=1): """ Simulate output of a continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like An input array describing the input at each time `T` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. T : array_like The time steps at which the input is defined and at which the output is desired. X0 : The initial conditions on the state vector (zero by default). interp : {1, 0} Whether to use linear (1) or zero-order hold (0) interpolation. Returns ------- T : 1D ndarray Time values for the output. yout : 1D ndarray System response. xout : ndarray Time-evolution of the state-vector. """ if isinstance(system, lti): sys = system else: sys = lti(*system) U = atleast_1d(U) T = atleast_1d(T) if len(U.shape) == 1: U = U.reshape((U.shape[0], 1)) sU = U.shape if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") if sU[0] != len(T): raise ValueError("U must have the same number of rows " "as elements in T.") if sU[1] != sys.inputs: raise ValueError("System does not define that many inputs.") if X0 is None: X0 = zeros(sys.B.shape[0], sys.A.dtype) xout = zeros((len(T), sys.B.shape[0]), sys.A.dtype) xout[0] = X0 A = sys.A AT, BT = transpose(sys.A), transpose(sys.B) dt = T[1] - T[0] lam, v = linalg.eig(A) vt = transpose(v) vti = linalg.inv(vt) GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt) GT = _cast_to_array_dtype(GT, xout) ATm1 = linalg.inv(AT) ATm2 = dot(ATm1, ATm1) I = eye(A.shape[0], dtype=A.dtype) GTmI = GT - I F1T = dot(dot(BT, GTmI), ATm1) if interp: F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1) for k in xrange(1, len(T)): dt1 = T[k] - T[k - 1] if dt1 != dt: dt = dt1 GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt) GT = _cast_to_array_dtype(GT, xout) GTmI = GT - I F1T = dot(dot(BT, GTmI), ATm1) if interp: F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1) xout[k] = dot(xout[k - 1], GT) + dot(U[k - 1], F1T) if interp: xout[k] = xout[k] + dot((U[k] - U[k - 1]), F2T) yout = (squeeze(dot(U, transpose(sys.D))) + squeeze(dot(xout, transpose(sys.C)))) return T, squeeze(yout), squeeze(xout) def _default_response_times(A, n): """Compute a reasonable set of time samples for the response time. This function is used by `impulse`, `impulse2`, `step` and `step2` to compute the response time when the `T` argument to the function is None. Parameters ---------- A : ndarray The system matrix, which is square. n : int The number of time samples to generate. Returns ------- t : ndarray The 1-D array of length `n` of time samples at which the response is to be computed. """ # Create a reasonable time interval. # TODO: This could use some more work. # For example, what is expected when the system is unstable? vals = linalg.eigvals(A) r = min(abs(real(vals))) if r == 0.0: r = 1.0 tc = 1.0 / r t = linspace(0.0, 7 * tc, n) return t def impulse(system, X0=None, T=None, N=None): """Impulse response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector. Defaults to zero. T : array_like, optional Time points. Computed if not given. N : int, optional The number of time points to compute (if `T` is not given). Returns ------- T : ndarray A 1-D array of time points. yout : ndarray A 1-D array containing the impulse response of the system (except for singularities at zero). """ if isinstance(system, lti): sys = system else: sys = lti(*system) if X0 is None: B = sys.B else: B = sys.B + X0 if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) h = zeros(T.shape, sys.A.dtype) s, v = linalg.eig(sys.A) vi = linalg.inv(v) C = sys.C for k in range(len(h)): es = diag(numpy.exp(s * T[k])) eA = dot(dot(v, es), vi) eA = _cast_to_array_dtype(eA, h) h[k] = squeeze(dot(dot(C, eA), B)) return T, h def impulse2(system, X0=None, T=None, N=None, **kwargs): """ Impulse response of a single-input, continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : 1-D array_like, optional The initial condition of the state vector. Default: 0 (the zero vector). T : 1-D array_like, optional The time steps at which the input is defined and at which the output is desired. If `T` is not given, the function will generate a set of time samples automatically. N : int, optional Number of time points to compute. Default: 100. kwargs : various types Additional keyword arguments are passed on to the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`; see the latter's documentation for information about these arguments. Returns ------- T : ndarray The time values for the output. yout : ndarray The output response of the system. See Also -------- impulse, lsim2, integrate.odeint Notes ----- The solution is generated by calling `scipy.signal.lsim2`, which uses the differential equation solver `scipy.integrate.odeint`. .. versionadded:: 0.8.0 Examples -------- Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t) >>> from scipy import signal >>> system = ([1.0], [1.0, 2.0, 1.0]) >>> t, y = signal.impulse2(system) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y) """ if isinstance(system, lti): sys = system else: sys = lti(*system) B = sys.B if B.shape[-1] != 1: raise ValueError("impulse2() requires a single-input system.") B = B.squeeze() if X0 is None: X0 = zeros_like(B) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) # Move the impulse in the input to the initial conditions, and then # solve using lsim2(). ic = B + X0 Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs) return Tr, Yr def step(system, X0=None, T=None, N=None): """Step response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int Number of time points to compute if `T` is not given. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step2 """ if isinstance(system, lti): sys = system else: sys = lti(*system) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim(sys, U, T, X0=X0) return vals[0], vals[1] def step2(system, X0=None, T=None, N=None, **kwargs): """Step response of continuous-time system. This function is functionally the same as `scipy.signal.step`, but it uses the function `scipy.signal.lsim2` to compute the step response. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int Number of time points to compute if `T` is not given. kwargs : various types Additional keyword arguments are passed on the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`. See the documentation for `scipy.integrate.odeint` for information about these arguments. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step Notes ----- .. versionadded:: 0.8.0 """ if isinstance(system, lti): sys = system else: sys = lti(*system) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim2(sys, U, T, X0=X0, **kwargs) return vals[0], vals[1] def bode(system, w=None, n=100): """ Calculate Bode magnitude and phase data of a continuous-time system. .. versionadded:: 0.11.0 Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] mag : 1D ndarray Magnitude array [dB] phase : 1D ndarray Phase array [deg] Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([1], [1, 1]) >>> w, mag, phase = signal.bode(s1) >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ w, y = freqresp(system, w=w, n=n) mag = 20.0 * numpy.log10(abs(y)) phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi return w, mag, phase def freqresp(system, w=None, n=10000): """Calculate the frequency response of a continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] H : 1D ndarray Array of complex magnitude values Examples -------- # Generating the Nyquist plot of a transfer function >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([], [1, 1, 1], [5]) # transfer function: H(s) = 5 / (s-1)^3 >>> w, H = signal.freqresp(s1) >>> plt.figure() >>> plt.plot(H.real, H.imag, "b") >>> plt.plot(H.real, -H.imag, "r") >>> plt.show() """ if isinstance(system, lti): sys = system else: sys = lti(*system) if sys.inputs != 1 or sys.outputs != 1: raise ValueError("freqresp() requires a SISO (single input, single " "output) system.") if w is not None: worN = w else: worN = n # In the call to freqs(), sys.num.ravel() is used because there are # cases where sys.num is a 2-D array with a single row. w, h = freqs(sys.num.ravel(), sys.den, worN=worN) return w, h
mit
pelagos/paparazzi
sw/airborne/test/ahrs/ahrs_utils.py
86
4923
#! /usr/bin/env python # Copyright (C) 2011 Antoine Drouin # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Paparazzi; see the file COPYING. If not, write to # the Free Software Foundation, 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from __future__ import print_function import subprocess import numpy as np import matplotlib.pyplot as plt def run_simulation(ahrs_type, build_opt, traj_nb): print("\nBuilding ahrs") args = ["make", "clean", "run_ahrs_on_synth", "AHRS_TYPE=AHRS_TYPE_" + ahrs_type] + build_opt #print(args) p = subprocess.Popen(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() for i in outputlines: print(" # " + i, end=' ') print() print("Running simulation") print(" using traj " + str(traj_nb)) p = subprocess.Popen(args=["./run_ahrs_on_synth", str(traj_nb)], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() # for i in outputlines: # print(" "+i, end=' ') # print("\n") ahrs_data_type = [('time', 'float32'), ('phi_true', 'float32'), ('theta_true', 'float32'), ('psi_true', 'float32'), ('p_true', 'float32'), ('q_true', 'float32'), ('r_true', 'float32'), ('bp_true', 'float32'), ('bq_true', 'float32'), ('br_true', 'float32'), ('phi_ahrs', 'float32'), ('theta_ahrs', 'float32'), ('psi_ahrs', 'float32'), ('p_ahrs', 'float32'), ('q_ahrs', 'float32'), ('r_ahrs', 'float32'), ('bp_ahrs', 'float32'), ('bq_ahrs', 'float32'), ('br_ahrs', 'float32')] mydescr = np.dtype(ahrs_data_type) data = [[] for dummy in xrange(len(mydescr))] # import code; code.interact(local=locals()) for line in outputlines: if line.startswith("#"): print(" " + line, end=' ') else: fields = line.strip().split(' ') #print(fields) for i, number in enumerate(fields): data[i].append(number) print() for i in xrange(len(mydescr)): data[i] = np.cast[mydescr[i]](data[i]) return np.rec.array(data, dtype=mydescr) def plot_simulation_results(plot_true_state, lsty, label, sim_res): print("Plotting Results") # f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=True) plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_ahrs, lsty, label=label) plt.ylabel('degres') plt.title('phi') plt.legend() plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_ahrs, lsty) plt.title('theta') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_ahrs, lsty) plt.title('psi') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_ahrs, lsty) plt.ylabel('degres/s') plt.title('p') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_ahrs, lsty) plt.title('q') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_ahrs, lsty) plt.title('r') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_ahrs, lsty) plt.ylabel('degres/s') plt.xlabel('time in s') plt.title('bp') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_ahrs, lsty) plt.xlabel('time in s') plt.title('bq') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_ahrs, lsty) plt.xlabel('time in s') plt.title('br') if plot_true_state: plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_true, 'r--') plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_true, 'r--') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_true, 'r--') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_true, 'r--') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_true, 'r--') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_true, 'r--') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_true, 'r--') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_true, 'r--') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_true, 'r--') def show_plot(): plt.show()
gpl-2.0
zimingd/synapsePythonClient
tests/load/test_speed_upload.py
1
1365
import synapseclient from synapseclient import Project, File import synapseclient.utils as utils from datetime import datetime import filecmp import os, traceback import argparse import random from synapseclient.utils import MB, GB syn = None def setup(module): module.syn = synapseclient.Synapse() module.syn.login() def test_upload_speed(uploadSize=60 + 777771, threadCount=5): import time fh = None filepath = utils.make_bogus_binary_file(uploadSize*MB) try: t0 = time.time() fh = syn._uploadToFileHandleService(filepath, threadCount=threadCount) dt = time.time()-t0 finally: try: os.remove(filepath) except Exception: print(traceback.format_exc()) if fh: syn._deleteFileHandle(fh) return dt def main(): import pandas as pd import numpy as np global syn syn = synapseclient.Synapse() syn.login(silent=True) sizes = [1,5,10,100,500,1000] threads = [1,2,4,6,8,16] results = pd.DataFrame(np.zeros((len(sizes), len(threads))), columns=threads, index=sizes) results.index.aname = 'Size (Mb)' for size in sizes: for thread in threads: results.ix[size,thread] = test_upload_speed(size, thread) print(results) print() if __name__ == "__main__": main()
apache-2.0
aavanian/bokeh
bokeh/sampledata/airports.py
5
2832
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' The data in airports.json is a subset of US airports with field elevations > 1500 meters. The query result was taken from .. code-block:: none http://services.nationalmap.gov/arcgis/rest/services/GlobalMap/GlobalMapWFS/MapServer/10/query on October 15, 2015. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import json # External imports # Bokeh imports from ..util.dependencies import import_required from ..util.sampledata import external_path #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'data', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- def _read_data(): ''' ''' pd = import_required('pandas', 'airports sample data requires Pandas (http://pandas.pydata.org) to be installed') with open(external_path('airports.json'), 'r') as f: content = f.read() airports = json.loads(content) schema = [['attributes', 'nam'], ['attributes', 'zv3'], ['geometry', 'x'], ['geometry', 'y']] data = pd.io.json.json_normalize(airports['features'], meta=schema) data.rename(columns={'attributes.nam': 'name', 'attributes.zv3': 'elevation'}, inplace=True) data.rename(columns={'geometry.x': 'x', 'geometry.y': 'y'}, inplace=True) return data #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- data = _read_data()
bsd-3-clause
scotthartbti/android_external_chromium_org
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
154
8545
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe, skip_if_missing=False): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) crash_service_path = os.path.join(browser_dir, crash_service_exe) if skip_if_missing and not os.path.exists(crash_service_path): return proc = subprocess.Popen([crash_service_path, '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). # Skip if missing, since in win64 builds crash_service.exe is 64-bit # and crash_service64.exe does not exist. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe', skip_if_missing=True) # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
benwilliams337/cs470
potential/show_field.py
9
2996
#!/usr/bin/env python """ README This should get some of the boilerplate out of the way for you in visualizing your potential fields. Notably absent from this code is anything dealing with vectors, the interaction of mutliple fields, etc. Your code will be a lot easier if you define your potential fields in terms of vectors (angle, magnitude). For plotting, however, you'll need to turn them back into dx and dy. """ import matplotlib.pyplot as plt from pylab import * import math import random from math import atan2, cos, sin, sqrt, pi ##### PLOTTING FUNCTIONS ##### def show_obstacle(plot, points): """Draw a polygon. Points is a list if [x,y] tuples """ for p1, p2 in zip(points, [points[-1]] + list(points)): plot.plot([p1[0], p2[0]], [p1[1], p2[1]], 'b') def show_arrows(plot, potential_func, xlim=(-400, 400), ylim=(-400, 400), res=20): """ Arguments: fns: a list of potential field functions xlim, ylim: the limits of the plot res: resolution for (spacing between) arrows """ plot.set_xlim(xlim) plot.set_ylim(ylim) for x in range(xlim[0], xlim[1] + res, res): for y in range(ylim[0], ylim[1] + res, res): dx, dy = potential_func(x, y, res) if dx + dy == 0: continue plot.arrow(x, y, dx, dy, head_width=res/7.0, color='red', linewidth=.3) def plot_single(potential_func, obstacles, filename, xlim=(-400, 400), ylim=(-400, 400)): """Plot a potential function and some obstacles, and write the resulting image to a file""" print "Generating", filename fig = plt.figure() plot = plt.subplot(111) show_arrows(plot, potential_func, xlim=xlim, ylim=ylim) for obstacle in obstacles: show_obstacle(plot, obstacle) fig.savefig(filename, format='png') #### TRIVIAL EXAMPLE FUNCTIONS #### def random_field(x, y, res): """ NOTE: Your potential field calculator should probably work in vectors (angle, magnitude), but you need to return dx, dy for plotting. Arguments: x: the x position for which to calculate the potential field y: the y position for which to calculate the potential field res: current plotting resolution (helpful for scaling down your vectors for display, so they don't all overlap each other) Returns: dx, dy: the change in x and y for the arrow to point. """ return random.randint(-res, res), random.randint(-res, res) def unidirectional(x, y, res): """Another simple example""" return res, res/2 def bidirectional(x, y, res): if x > 0: return res, res/2 else: return -res, res/2 def main(): triangle = ((0, 0), (100, 100), (-100, 50)) plot_single(random_field, [triangle], 'random.png') plot_single(unidirectional, [triangle], 'unidirectional.png') plot_single(bidirectional, [triangle], 'bidirectional.png') if __name__ == '__main__': main() # vim: et sw=4 sts=4
gpl-3.0
iamaris/anaMini
sthist.py
1
1870
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt #f = open('st.txt','r') #print f.readlines() #f.close() st = [] x1 = [] x2 = [] x3 = [] x4 = [] x5 = [] x6 = [] x7 = [] x8 = [] a = np.genfromtxt("st.txt") for i in a: st.append(i[0]) x1.append(i[1]) x2.append(i[2]) x3.append(i[3]) x4.append(i[4]) x5.append(i[5]) x6.append(i[6]) x7.append(i[7]) x8.append(i[8]) s1 = np.array(x1) s2 = np.array(x2) s3 = np.array(x3) s4 = np.array(x4) s5 = np.array(x5) s6 = np.array(x6) s7 = np.array(x7) s8 = np.array(x8) s23 = s2+s3 y4 = np.divide(s4,s23) y5 = np.divide(s5,s23) y6 = np.divide(s6,s23) y7 = np.divide(s7,s23) y8 = np.divide(s8,s23) e4 = np.sqrt(np.divide(np.sqrt(s4),s4)*np.divide(np.sqrt(s4),s4)+np.divide(np.sqrt(s23),s23)*np.divide(np.sqrt(s23),s23)) e5 = np.sqrt(np.divide(np.sqrt(s5),s5)*np.divide(np.sqrt(s5),s5)+np.divide(np.sqrt(s23),s23)*np.divide(np.sqrt(s23),s23)) e6 = np.sqrt(np.divide(np.sqrt(s6),s6)*np.divide(np.sqrt(s6),s6)+np.divide(np.sqrt(s23),s23)*np.divide(np.sqrt(s23),s23)) e7 = np.sqrt(np.divide(np.sqrt(s7),s7)*np.divide(np.sqrt(s7),s7)+np.divide(np.sqrt(s23),s23)*np.divide(np.sqrt(s23),s23)) e8 = np.sqrt(np.divide(np.sqrt(s8),s8)*np.divide(np.sqrt(s8),s8)+np.divide(np.sqrt(s23),s23)*np.divide(np.sqrt(s23),s23)) #z23 = plt.errorbar(st, s23, yerr=np.sqrt(s23),fmt='o') #z4 = plt.errorbar(st, y4, yerr=e4,fmt='o') #z5 = plt.errorbar(st, y5, yerr=e5,fmt='o') #z6 = plt.errorbar(st, y6, yerr=e6,fmt='o') #z7 = plt.errorbar(st, y7, yerr=e7,fmt='o') ##z8 = plt.errorbar(st, y8, yerr=e8,fmt='o') plt.errorbar(st, y4, fmt='o') plt.errorbar(st, y5, fmt='o') plt.errorbar(st, y6, fmt='o') plt.errorbar(st, y7, fmt='o') plt.errorbar(st, y8, fmt='o') plt.xlabel('St') plt.ylabel('# Event') plt.title('St') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) plt.show()
mit
manashmndl/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
liyu1990/sklearn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
Fireblend/scikit-learn
sklearn/svm/tests/test_sparse.py
32
12988
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
FRESNA/PyPSA
examples/new_components/component_library.py
1
5522
#Create a library with its own Network class that has a new CHP #component and a new LOPF function for the CHP constraints #NB: This only works with Python 3 because of super() import pypsa, pandas as pd, numpy as np from pypsa.descriptors import Dict from pyomo.environ import Constraint override_components = pypsa.components.components.copy() override_components.loc["ShadowPrice"] = ["shadow_prices","Shadow price for a global constraint.",np.nan] override_components.loc["CHP"] = ["chps","Combined heat and power plant.",np.nan] override_component_attrs = Dict({k : v.copy() for k,v in pypsa.components.component_attrs.items()}) override_component_attrs["ShadowPrice"] = pd.DataFrame(columns = ["type","unit","default","description","status"]) override_component_attrs["ShadowPrice"].loc["name"] = ["string","n/a","n/a","Unique name","Input (required)"] override_component_attrs["ShadowPrice"].loc["value"] = ["float","n/a",0.,"shadow value","Output"] override_component_attrs["CHP"] = pd.DataFrame(columns = ["type","unit","default","description","status"]) override_component_attrs["CHP"].loc["name"] = ["string","n/a","n/a","Unique name","Input (required)"] override_component_attrs["CHP"].loc["bus_fuel"] = ["string","n/a","n/a","Name of bus where fuel source is.","Input (required)"] override_component_attrs["CHP"].loc["bus_elec"] = ["string","n/a","n/a","Name of bus where electricity is supplied.","Input (required)"] override_component_attrs["CHP"].loc["bus_heat"] = ["string","n/a","n/a","Name of bus where heat is supplied.","Input (required)"] override_component_attrs["CHP"].loc["p_nom_extendable"] = ["boolean","n/a",False,"","Input (optional)"] override_component_attrs["CHP"].loc["capital_cost"] = ["float","EUR/MW",0.,"Capital cost per rating of electricity output.","Input (optional)"] override_component_attrs["CHP"].loc["eta_elec"] = ["float","n/a",1.,"Electrical efficiency with no heat output, i.e. in condensing mode","Input (optional)"] override_component_attrs["CHP"].loc["c_v"] = ["float","n/a",1.,"Loss of fuel for each addition of heat","Input (optional)"] override_component_attrs["CHP"].loc["c_m"] = ["float","n/a",1.,"Backpressure ratio","Input (optional)"] override_component_attrs["CHP"].loc["p_nom_ratio"] = ["float","n/a",1.,"Ratio of max heat output to max electrical output; max heat of 500 MWth and max electricity of 1000 MWth means p_nom_ratio is 0.5","Input (optional)"] class Network(pypsa.Network): def __init__(self,*args,**kwargs): kwargs["override_components"]=override_components kwargs["override_component_attrs"]=override_component_attrs super().__init__(*args,**kwargs) def lopf(self,*args,**kwargs): #at this point check that all the extra links are in place for the CHPs if not self.chps.empty: self.madd("Link", self.chps.index + " electric", bus0=self.chps.bus_source.values, bus1=self.chps.bus_elec.values, p_nom_extendable=self.chps.p_nom_extendable.values, capital_cost=self.chps.capital_cost.values*self.chps.eta_elec.values, efficiency=self.chps.eta_elec.values) self.madd("Link", self.chps.index + " heat", bus0=self.chps.bus_source.values, bus1=self.chps.bus_heat.values, p_nom_extendable=self.chps.p_nom_extendable.values, efficiency=self.chps.eta_elec.values/self.chps.c_v.values) if "extra_functionality" in kwargs: user_extra_func = kwargs.pop('extra_functionality') else: user_extra_func = None #the following function should add to any extra_functionality in kwargs def extra_func(network, snapshots): #at this point add the constraints for the CHPs if not network.chps.empty: print("Setting up CHPs:",network.chps.index) def chp_nom(model, chp): return network.chps.at[chp,"eta_elec"]*network.chps.at[chp,'p_nom_ratio']*model.link_p_nom[chp + " electric"] == network.chps.at[chp,"eta_elec"]/network.chps.at[chp,"c_v"]*model.link_p_nom[chp + " heat"] network.model.chp_nom = Constraint(list(network.chps.index),rule=chp_nom) def backpressure(model,chp,snapshot): return network.chps.at[chp,'c_m']*network.chps.at[chp,"eta_elec"]/network.chps.at[chp,"c_v"]*model.link_p[chp + " heat",snapshot] <= network.chps.at[chp,"eta_elec"]*model.link_p[chp + " electric",snapshot] network.model.backpressure = Constraint(list(network.chps.index),list(snapshots),rule=backpressure) def top_iso_fuel_line(model,chp,snapshot): return model.link_p[chp + " heat",snapshot] + model.link_p[chp + " electric",snapshot] <= model.link_p_nom[chp + " electric"] network.model.top_iso_fuel_line = Constraint(list(network.chps.index),list(snapshots),rule=top_iso_fuel_line) if user_extra_func is not None: print("Now doing user defined extra functionality") user_extra_func(network,snapshots) kwargs["extra_functionality"]=extra_func super().lopf(*args,**kwargs) #Afterwards you can process the outputs, e.g. into network.chps_t.p_out #You could also delete the auxiliary links created above
gpl-3.0
moonbury/pythonanywhere
MasteringMLWithScikit-learn/8365OS_07_Codes/pca-3d-plot.py
3
1392
import matplotlib matplotlib.use('Qt4Agg') import numpy as np import pylab as pl from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = pl.figure(1, figsize=(4, 3)) pl.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) pl.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=pl.cm.spectral) x_surf = [X[:, 0].min(), X[:, 0].max(), X[:, 0].min(), X[:, 0].max()] y_surf = [X[:, 0].max(), X[:, 0].max(), X[:, 0].min(), X[:, 0].min()] x_surf = np.array(x_surf) y_surf = np.array(y_surf) v0 = pca.transform(pca.components_[0]) v0 /= v0[-1] v1 = pca.transform(pca.components_[1]) v1 /= v1[-1] ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) pl.show()
gpl-3.0
afgaron/rgz-analysis
python/test_consensus.py
2
15556
from __future__ import division # Local RGZ modules import collinearity from load_contours import get_contours,make_pathdict # Default packages import datetime import operator from collections import Counter import cStringIO import urllib import json import os.path import time import shutil # Other packages import numpy as np from matplotlib import pyplot as plt from matplotlib.pyplot import cm from matplotlib.path import Path import matplotlib.patches as patches from scipy.ndimage.filters import maximum_filter from scipy import stats from scipy.ndimage.morphology import generate_binary_structure, binary_erosion from scipy.linalg.basic import LinAlgError from astropy.io import fits from astropy import wcs from pymongo import MongoClient from PIL import Image # MongoDB parameters client = MongoClient('localhost', 27017) db = client['radio'] subjects = db['radio_subjects'] # subjects = images classifications = db['radio_classifications'] # classifications = classifications of each subject per user # General variables for the RGZ sample main_release_date = datetime.datetime(2013, 12, 17, 0, 0, 0, 0) IMG_HEIGHT_OLD = 424.0 # number of pixels in the original JPG image along the y axis IMG_WIDTH_OLD = 424.0 # number of pixels in the original JPG image along the x axis IMG_HEIGHT_NEW = 500.0 # number of pixels in the downloaded JPG image along the y axis IMG_WIDTH_NEW = 500.0 # number of pixels in the downloaded JPG image along the x axis FITS_HEIGHT = 301.0 # number of pixels in the FITS image (?) along the y axis FITS_WIDTH = 301.0 # number of pixels in the FITS image (?) along the x axis FIRST_FITS_HEIGHT = 132.0 # number of pixels in the FITS image along the y axis FIRST_FITS_WIDTH = 132.0 # number of pixels in the FITS image along the y axis # Need to add parameters for ATLAS, both IR and radio. PIXEL_SIZE = 0.00016667#/3600.0 # the number of arcseconds per pixel in the FITS image xmin = 1. xmax = IMG_HEIGHT_NEW ymin = 1. ymax = IMG_WIDTH_NEW bad_keys = ('finished_at','started_at','user_agent','lang','pending') expert_names = [u'42jkb', u'ivywong', u'stasmanian', u'klmasters', u'Kevin', u'akapinska', u'enno.middelberg', u'xDocR', u'vrooje', u'KWillett', u'DocR'] # Paths rgz_dir = '/Users/willettk/Astronomy/Research/GalaxyZoo/rgz-analysis' pathdict = make_pathdict() # Find the consensus classification for a single subject @profile def checksum(zid='ARG000255x',experts_only=False,excluded=[],no_anonymous=False,write_peak_data=False): # Find the consensus for all users who have classified a particular galaxy sub = subjects.find_one({'zooniverse_id':zid}) imgid = sub['_id'] # Classifications for this subject after launch date class_params = {"subject_ids": imgid, "updated_at": {"$gt": main_release_date}} # Only get the consensus classification for the science team members if experts_only: class_params['expert'] = True # If comparing a particular volunteer (such as an expert), don't include self-comparison if len(excluded) > 0: class_params['user_name'] = {"$nin":excluded} ''' # To exclude the experts: class_params['expert'] = {"$exists":False} ''' # To exclude anonymous classifications (registered users only): if no_anonymous: if class_params.has_key('user_name'): class_params['user_name']["$exists"] = True else: class_params['user_name'] = {"$exists":True} _c = classifications.find(class_params) #clist_all = list(classifications.find(class_params)) # Empty dicts and lists cdict = {} checksum_list = [] unique_users = set() #clen_start = len(clist_all) clen_start = 0 listcount = [] # Compute the most popular combination for each NUMBER of galaxies identified in image clist_all = [] #for c in clist_all: for c in _c: clist_all.append(c) clen_start += 1 # Skip classification if they already did one? try: user_name = c['user_name'] except KeyError: user_name = 'Anonymous' if user_name not in unique_users or user_name is 'Anonymous': unique_users.add(user_name) listcount.append(True) sumlist = [] # List of the checksums over all possible combinations # Only find data that was an actual marking, not metadata goodann = [x for x in c['annotations'] if (x.keys()[0] not in bad_keys)] n_galaxies = len(goodann) if n_galaxies > 0: # There must be at least one galaxy! for idx,ann in enumerate(goodann): xmaxlist = [] try: radio_comps = ann['radio'] # loop over all the radio components within an galaxy if radio_comps != 'No Contours': for rc in radio_comps: xmaxlist.append(float(radio_comps[rc]['xmax'])) # or make the value -99 if there are no contours else: xmaxlist.append(-99) except KeyError: xmaxlist.append(-99) # To create a unique ID for the combination of radio components, # take the product of all the xmax coordinates and sum them together. product = reduce(operator.mul, xmaxlist, 1) sumlist.append(round(product,3)) checksum = sum(sumlist) else: checksum = -99 checksum_list.append(checksum) c['checksum'] = checksum # Insert checksum into dictionary with number of galaxies as the index if cdict.has_key(n_galaxies): cdict[n_galaxies].append(checksum) else: cdict[n_galaxies] = [checksum] else: listcount.append(False) checksum_list.append(-99) #print 'Removing classification for %s' % user_name # Remove duplicates and classifications for no object #clist = [c for lc,c in zip(listcount,checksum_list) if lc and c != -99] clist = [c for lc,c in zip(listcount,clist_all) if lc and c['checksum'] != -99] clen_diff = clen_start - len(clist) ''' if clen_diff > 0: print '\nSkipping %i duplicated classifications for %s. %i good classifications total.' % (clen_diff,zid,len(clist)) ''' maxval=0 mc_checksum = 0. # Find the number of galaxies that has the highest number of consensus classifications for k,v in cdict.iteritems(): mc = Counter(v).most_common() # Check if the most common selection coordinate was for no radio contours if mc[0][0] == -99.0: if len(mc) > 1: # If so, take the selection with the next-highest number of counts mc_best = mc[1] else: continue # Selection with the highest number of counts else: mc_best = mc[0] # If the new selection has more counts than the previous one, choose it as the best match; # if tied or less than this, remain with the current consensus number of galaxies if mc_best[1] > maxval: maxval = mc_best[1] mc_checksum = mc_best[0] # Find a galaxy that matches the checksum (easier to keep track as a list) try: cmatch = next(i for i in clist if i['checksum'] == mc_checksum) except StopIteration: # Necessary for objects like ARG0003par; one classifier recorded 22 "No IR","No Contours" in a short space. Still shouldn't happen. print 'No non-zero classifications recorded for %s' % zid return None ''' try: index = clist.index(mc_checksum) cmatch = _c[index] except ValueError: # Necessary for objects like ARG0003par; one classifier recorded 22 "No IR","No Contours" in a short space. Still shouldn't happen. print 'No non-zero classifications recorded for %s' % zid return None ''' # Find IR peak for the checksummed galaxies goodann = [x for x in cmatch['annotations'] if x.keys()[0] not in bad_keys] # Find the sum of the xmax coordinates for each galaxy. This gives the index to search on. cons = {} cons['zid'] = zid cons['source'] = sub['metadata']['source'] ir_x,ir_y = {},{} cons['answer'] = {} cons['n_users'] = maxval cons['n_total'] = len(clist) answer = cons['answer'] for k,gal in enumerate(goodann): xmax_temp = [] bbox_temp = [] try: for v in gal['radio'].itervalues(): xmax_temp.append(float(v['xmax'])) bbox_temp.append((v['xmax'],v['ymax'],v['xmin'],v['ymin'])) checksum2 = round(sum(xmax_temp),3) answer[checksum2] = {} answer[checksum2]['ind'] = k answer[checksum2]['xmax'] = xmax_temp answer[checksum2]['bbox'] = bbox_temp except KeyError: print gal, zid except AttributeError: print 'No Sources, No IR recorded for %s' % zid # Make empty copy of next dict in same loop ir_x[k] = [] ir_y[k] = [] # Now loop over all sets of classifications to get the IR counterparts for c in clist: if c['checksum'] == mc_checksum: annlist = [ann for ann in c['annotations'] if ann.keys()[0] not in bad_keys] for ann in annlist: if 'ir' in ann.keys(): # Find the index k that this corresponds to try: xmax_checksum = round(sum([float(ann['radio'][a]['xmax']) for a in ann['radio']]),3) except TypeError: xmax_checksum = -99 try: k = answer[xmax_checksum]['ind'] if ann['ir'] == 'No Sources': ir_x[k].append(-99) ir_y[k].append(-99) else: # Only takes the first IR source right now; NEEDS TO BE MODIFIED. ir_x[k].append(float(ann['ir']['0']['x'])) ir_y[k].append(float(ann['ir']['0']['y'])) except KeyError: print '"No radio" still appearing as valid consensus option.' # Perform a kernel density estimate on the data for each galaxy scale_ir = IMG_HEIGHT_NEW/IMG_HEIGHT_OLD peak_data = [] # Remove empty IR peaks if they exist for (xk,xv),(yk,yv) in zip(ir_x.iteritems(),ir_y.iteritems()): if len(xv) == 0: ir_x.pop(xk) if len(yv) == 0: ir_y.pop(yk) assert len(ir_x) == len(ir_y),'Lengths of ir_x (%i) and ir_y (%i) are not the same' % (len(ir_x),len(ir_y)) for (xk,xv),(yk,yv) in zip(ir_x.iteritems(),ir_y.iteritems()): if len(xv) == 0: irx pd = {} x_exists = [xt * scale_ir for xt in xv if xt != -99.0] y_exists = [yt * scale_ir for yt in yv if yt != -99.0] x_all = [xt * scale_ir for xt in xv] y_all = [yt * scale_ir for yt in yv] coords_all = [(xx,yy) for xx,yy in zip(x_all,y_all)] ir_Counter = Counter(coords_all) most_common_ir = ir_Counter.most_common(1)[0][0] if len(Counter(x_exists)) > 2 and len(Counter(y_exists)) > 2 and most_common_ir != (-99,-99): # X,Y = grid of uniform coordinates over the IR pixel plane X, Y = np.mgrid[xmin:xmax, ymin:ymax] positions = np.vstack([X.ravel(), Y.ravel()]) try: values = np.vstack([x_exists, y_exists]) except ValueError: # Breaks on the tutorial subject. Find out why len(x) != len(y) print zid print 'Length of IR x array: %i; Length of IR y array: %i' % (len(x_exists),len(y_exists)) try: kernel = stats.gaussian_kde(values) except LinAlgError: print 'LinAlgError in KD estimation for %s' % zid,x_exists,y_exists continue # Even if there are more than 2 sets of points, if they are mutually co-linear, # matrix can't invert and kernel returns NaNs. kp = kernel(positions) if np.isnan(kp).sum() > 0: acp = collinearity.collinear(x_exists,y_exists) if len(acp) > 0: print 'There are %i unique points for %s (source no. %i in the field), but all are co-linear; KDE estimate does not work.' % (len(Counter(x_exists)),zid,xk) else: print 'There are NaNs in the KDE for %s (source no. %i in the field), but points are not co-linear.' % (zid,xk) for k,v in answer.iteritems(): if v['ind'] == xk: answer[k]['ir'] = (np.mean(x_exists),np.mean(y_exists)) else: Z = np.reshape(kp.T, X.shape) # Find the number of peaks # http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array neighborhood = np.ones((10,10)) local_max = maximum_filter(Z, footprint=neighborhood)==Z background = (Z==0) eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) detected_peaks = local_max ^ eroded_background npeaks = detected_peaks.sum() #return X,Y,Z,npeaks pd['X'] = X pd['Y'] = Y pd['Z'] = Z pd['npeaks'] = npeaks try: xpeak = float(pd['X'][pd['Z']==pd['Z'].max()][0]) ypeak = float(pd['Y'][pd['Z']==pd['Z'].max()][0]) except IndexError: print pd print zid, clist for k,v in answer.iteritems(): if v['ind'] == xk: answer[k]['ir_peak'] = (xpeak,ypeak) # Don't write to consensus for serializable JSON object if write_peak_data: answer[k]['peak_data'] = pd answer[k]['ir_x'] = x_exists answer[k]['ir_y'] = y_exists else: # Note: need to actually put a limit in if less than half of users selected IR counterpart. # Right now it still IDs a sources even if only 1/10 users said it was there. for k,v in answer.iteritems(): if v['ind'] == xk: # Case 1: multiple users selected IR source, but not enough unique points to pinpoint peak if most_common_ir != (-99,-99) and len(x_exists) > 0 and len(y_exists) > 0: answer[k]['ir'] = (x_exists[0],y_exists[0]) # Case 2: most users have selected No Sources else: answer[k]['ir'] = (-99,-99) return cons if __name__ == "__main__": checksum()
mit
EtienneCmb/tensorpac
paper/reviews/code/r3_pactools_vs_tensorpac.py
1
5037
"""Comparison between pactools and tensoprpac.""" import json with open("../../paper.json", 'r') as f: cfg = json.load(f) # noqa import pandas as pd import numpy as np from time import time as tst from tensorpac.signals import pac_signals_wavelet from tensorpac import Pac from pactools import Comodulogram, simulate_pac import seaborn as sns import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec plt.style.use('seaborn-poster') sns.set_style("white") plt.rc('font', family=cfg["font"]) ############################################################################### # simulated data parameters sf = 512. n_epochs = 20 n_times = 4000 n_perm = 20 # frequency vectors resolutions n_pha = 50 n_amp = 40 # method correspondance between pactools and tensorpac METH = dict( PACTOOLS=dict(MVL='canolty', MI='tort', PLV='penny'), TENSORPAC=dict(MVL=1, MI=2, PLV=5) ) ############################################################################### # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # SIMULATE PAC + FREQUENCY VECTORS # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ data, time = pac_signals_wavelet(sf=sf, f_pha=10, f_amp=100, noise=.8, n_epochs=n_epochs, n_times=n_times) # construct frequency vectors that fit both tensorpac and pactools f_pha_pt_width = 1. f_pha_pt = np.linspace(3, 20, n_pha) f_pha_tp = np.c_[f_pha_pt - f_pha_pt_width / 2, f_pha_pt + f_pha_pt_width / 2] f_amp_pt_width = max(f_pha_pt) * 2 # pactools recommandation f_amp_pt = np.linspace(60, 140, n_amp) f_amp_tp = np.c_[f_amp_pt - f_amp_pt_width / 2, f_amp_pt + f_amp_pt_width / 2] # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # COMPUTING FUNCTION # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def compute_pt_tp(n_jobs, n_perm, title=''): """Compute Pactools and Tensorpac.""" cpt, meth_comp, soft = [], [], [] for meth in ['MVL', 'MI', 'PLV']: # --------------------------------------------------------------------- # get the method name meth_pt = METH['PACTOOLS'][meth] meth_tp = METH['TENSORPAC'][meth] if n_perm > 0: idpac = (meth_tp, 2, 4) else: idpac = (meth_tp, 0, 0) # --------------------------------------------------------------------- # PACTOOLS pt_start = tst() estimator = Comodulogram( fs=sf, low_fq_range=f_pha_pt, low_fq_width=f_pha_pt_width, high_fq_range=f_amp_pt, high_fq_width=f_amp_pt_width, method=meth_pt, progress_bar=False, n_jobs=n_jobs, n_surrogates=n_perm) estimator.fit(data) pt_end = tst() # --------------------------------------------------------------------- # TENSORPAC tp_start = tst() p_obj = Pac(idpac=idpac, f_pha=f_pha_tp, f_amp=f_amp_tp, verbose='error') pac = p_obj.filterfit(sf, data, n_jobs=n_jobs, n_perm=n_perm).mean(-1) tp_end = tst() # --------------------------------------------------------------------- # shape shape checking assert estimator.comod_.shape == pac.T.shape # saving the results cpt += [pt_end - pt_start, tp_end - tp_start] meth_comp += [meth] * 2 soft += ['Pactools', 'Tensorpac'] # ------------------------------------------------------------------------- df = pd.DataFrame({"Computing time": cpt, "PAC method": meth_comp, "Software": soft}) sns.barplot(x="PAC method", y="Computing time", hue="Software", data=df) plt.title(title, fontsize=14, fontweight='bold') # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # RUN THE COMPARISON # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ plt.figure(figsize=(12, 10)) # single-core // no perm plt.subplot(2, 2, 1) compute_pt_tp(1, 0, title="Single-core // no surrogates") plt.subplot(2, 2, 2) compute_pt_tp(-1, 0, title="Multi-core // no surrogates") plt.subplot(2, 2, 3) compute_pt_tp(1, n_perm, title=f"Single-core // {n_perm} surrogates") plt.subplot(2, 2, 4) compute_pt_tp(-1, n_perm, title=f"Multi-core // {n_perm} surrogates") plt.tight_layout() plt.savefig(f"../figures/r3_pactools_vs_tensorpac.png", dpi=300, bbox_inches='tight') plt.show()
bsd-3-clause
saiwing-yeung/scikit-learn
benchmarks/bench_tree.py
131
3647
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import matplotlib.pyplot as plt import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) plt.figure('scikit-learn tree benchmark results') plt.subplot(211) plt.title('Learning with varying number of samples') plt.plot(xx, scikit_classifier_results, 'g-', label='classification') plt.plot(xx, scikit_regressor_results, 'r-', label='regression') plt.legend(loc='upper left') plt.xlabel('number of samples') plt.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) plt.subplot(212) plt.title('Learning in high dimensional spaces') plt.plot(xx, scikit_classifier_results, 'g-', label='classification') plt.plot(xx, scikit_regressor_results, 'r-', label='regression') plt.legend(loc='upper left') plt.xlabel('number of dimensions') plt.ylabel('Time (s)') plt.axis('tight') plt.show()
bsd-3-clause
NMTHydro/Recharge
zobs/orecharge/Gauges/plot_q_snow_ppt.py
1
3162
import datetime from dateutil import rrule from matplotlib import pyplot as plt import os import numpy as np folder = 'C:\\Users\David\\Documents\\Recharge\\Gauges\\Complete_q_ppt_HF_csv' os.chdir(folder) select_csv = "8269000_date_q_ppt.csv" fid = open(select_csv) lines = fid.readlines()[0:] fid.close() rows = [line.split(',') for line in lines] recs = [] for line in rows: recs.append([datetime.datetime.strptime(line[0], '%Y/%m/%d %H:%M'), # date float(line[1]), float(line[2])]) # discharge print "Data points: " + str(len(recs)) all_recs = np.array(recs) # Bring in snow folder = 'C:\\Users\\David\\Documents\\Recharge\\Point_data\\Taos' os.chdir(folder) select_csv = "Taos_Snow_2010_2013.csv" fid = open(select_csv) lines = fid.readlines()[1:] fid.close() rows = [line.split(',') for line in lines] recs = [] for line in rows: recs.append([datetime.datetime.strptime(line[1], '%m/%d/%Y'), # date float(line[3])]) # discharge print "Data points: " + str(len(recs)) snow = np.array(recs) snow_dates = snow[:, 0] snow_in = snow[:, 1] in_mm = 25.4 snow_mm = np.multiply(snow_in, in_mm) snow_mm = np.array(snow_mm, dtype=float) # def make_patch_spines_invisible(ax): fig, ax = plt.subplots() ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) fig, host = plt.subplots() fig.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() par2.spines["right"].set_position(("axes", 1.2)) # make_patch_spines_invisible(par2) par2.spines["right"].set_visible(True) p1, = host.plot(all_recs[:, 0], all_recs[:, 1], "Purple", label="Discharge") p2, = par1.plot(all_recs[:, 0], all_recs[:, 2], "g", label="Precipitation") p3, = par2.plot(snow[:, 0], snow[:, 1], "b", label="Snow Water Equivalent") # host.set_xlim(0, 2) # host.set_ylim(0, 2) # par1.set_ylim(0, 4) par2.set_ylim(70, 0) host.set_xlabel("Date") host.set_ylabel("Cubic Feet per Second") par1.set_ylabel("Precipitation Total for Watershed [m^3]") par2.set_ylabel("[mm]") host.yaxis.label.set_color(p1.get_color()) par1.yaxis.label.set_color(p2.get_color()) par2.yaxis.label.set_color(p3.get_color()) tkw = dict(size=4, width=1.5) host.tick_params(axis='y', colors=p1.get_color(), **tkw) par1.tick_params(axis='y', colors=p2.get_color(), **tkw) par2.tick_params(axis='y', colors=p3.get_color(), **tkw) host.tick_params(axis='x', **tkw) lines = [p1, p2, p3] host.legend(lines, [l.get_label() for l in lines], loc=2) plt.show() # fig, ax1 = plt.subplots(1, figsize=(15, 5)) # ax1.plot(all_recs[:, 0], all_recs[:, 1], '-r', label='Discharge (cfs)') # ax1.set_ylabel('Discharge (cfs)', color='r') # ax1.set_xlabel('Time') # plt.legend() # # plt.ylim(0.0,1.2) # for tl in ax1.get_yticklabels(): # tl.set_color('r') # ax2 = ax1.twinx() # ax2.plot(all_recs[:, 0], all_recs[:, 2], '-g', label='Watershed Rainfall (daily, cubic meters)') # ax2.set_ylabel('Precipitation', color='g') # # plt.ylim(0.0, 1.0) # for tl in ax2.get_yticklabels(): # tl.set_color('g') # for tl in ax2.get_xticklabels(): # tl.set_color('k') # plt.legend() # plt.title('Pueblo de Taos River Discharge vs Watershed Rainfall') # plt.show()
apache-2.0
abhishekgahlot/scikit-learn
sklearn/datasets/tests/test_base.py
39
5607
import os import shutil import tempfile import warnings import nose import numpy from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR)
bsd-3-clause
BoltzmannBrain/nupic.research
projects/sequence_prediction/continuous_sequence/run_knn.py
12
7104
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import csv import math import operator from optparse import OptionParser import pandas as pd import numpy as np from matplotlib import pyplot as plt plt.ion() def euclideanDistance(instance1, instance2, considerDimensions): """ Calculate Euclidean Distance between two samples Example use: data1 = [2, 2, 2, 'class_a'] data2 = [4, 4, 4, 'class_b'] distance = euclideanDistance(data1, data2, 3) :param instance1: list of attributes :param instance2: list of attributes :param considerDimensions: a list of dimensions to consider :return: float euclidean distance between data1 & 2 """ distance = 0 for x in considerDimensions: distance += pow((instance1[x] - instance2[x]), 2) return math.sqrt(distance) def getNeighbors(trainingSet, testInstance, k, considerDimensions=None): """ collect the k most similar instances in the trainingSet for a given test instance :param trainingSet: A list of data instances :param testInstance: a single data instance :param k: number of neighbors :param considerDimensions: a list of dimensions to consider :return: neighbors: a list of neighbor instance """ if considerDimensions is None: considerDimensions = len(testInstance) - 1 neighborList = [] for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], considerDimensions) neighborList.append((trainingSet[x], dist)) neighborList.sort(key=operator.itemgetter(1)) neighbors = [] distances = [] for x in range(k): neighbors.append(neighborList[x][0]) distances.append(neighborList[x][1]) return neighbors def getResponse(neighbors, weights=None): """ Calculated weighted response based on a list of nearest neighbors :param neighbors: a list of neighbors, each entry is a data instance :param weights: a numpy array of the same length as the neighbors :return: weightedAvg: weighted average response """ neighborResponse = [] for x in range(len(neighbors)): neighborResponse.append(neighbors[x][-1]) neighborResponse = np.array(neighborResponse).astype('float') if weights is None: weightedAvg = np.mean(neighborResponse) else: weightedAvg = np.sum(weights * neighborResponse) return weightedAvg def readDataSet(dataSet): filePath = 'data/' + dataSet + '.csv' if dataSet == 'nyc_taxi': df = pd.read_csv(filePath, header=0, skiprows=[1, 2], names=['time', 'data', 'timeofday', 'dayofweek']) sequence = df['data'] dayofweek = df['dayofweek'] timeofday = df['timeofday'] sequence5stepsAgo = np.roll(np.array(sequence), 5) seq = [] for i in xrange(len(sequence)): seq.append( [timeofday[i], dayofweek[i], sequence5stepsAgo[i], sequence[i]]) else: raise (' unrecognized dataset type ') return seq def _getArgs(): parser = OptionParser(usage="%prog PARAMS_DIR OUTPUT_DIR [options]" "\n\nCompare TM performance with trivial predictor using " "model outputs in prediction directory " "and outputting results to result directory.") parser.add_option("-d", "--dataSet", type=str, default='nyc_taxi', dest="dataSet", help="DataSet Name, choose from sine, SantaFe_A, MackeyGlass") parser.add_option("-n", "--trainingDataSize", type=int, default=6000, dest="trainingDataSize", help="size of training dataset") (options, remainder) = parser.parse_args() print options return options, remainder def saveResultToFile(dataSet, predictedInput, algorithmName): inputFileName = 'data/' + dataSet + '.csv' inputFile = open(inputFileName, "rb") csvReader = csv.reader(inputFile) # skip header rows csvReader.next() csvReader.next() csvReader.next() outputFileName = './prediction/' + dataSet + '_' + algorithmName + '_pred.csv' outputFile = open(outputFileName, "w") csvWriter = csv.writer(outputFile) csvWriter.writerow( ['timestamp', 'data', 'prediction-' + str(predictionStep) + 'step']) csvWriter.writerow(['datetime', 'float', 'float']) csvWriter.writerow(['', '', '']) for i in xrange(len(sequence)): row = csvReader.next() csvWriter.writerow([row[0], row[1], predictedInput[i]]) inputFile.close() outputFile.close() def normalizeSequence(sequence, considerDimensions=None): """ normalize sequence by subtracting the mean and :param sequence: a list of data samples :param considerDimensions: a list of dimensions to consider :return: normalized sequence """ seq = np.array(sequence).astype('float64') nSampleDim = seq.shape[1] if considerDimensions is None: considerDimensions = range(nSampleDim) for dim in considerDimensions: seq[:, dim] = (seq[:, dim] - np.mean(seq[:, dim])) / np.std(seq[:, dim]) sequence = seq.tolist() return sequence if __name__ == "__main__": (_options, _args) = _getArgs() dataSet = _options.dataSet numTrain = _options.trainingDataSize print "run knn on ", dataSet sequence = readDataSet(dataSet) # predict 5 steps ahead predictionStep = 5 nFeature = 2 k = 10 sequence = normalizeSequence(sequence, considerDimensions=[0, 1, 2]) targetInput = np.zeros((len(sequence),)) predictedInput = np.zeros((len(sequence),)) for i in xrange(numTrain, len(sequence) - predictionStep): testInstance = sequence[i + predictionStep] targetInput[i] = testInstance[-1] # select data points at that shares same timeOfDay and dayOfWeek neighbors = getNeighbors(sequence[i - numTrain:i], testInstance, k, [0, 1, 2]) predictedInput[i] = getResponse(neighbors) print "step %d, target input: %d predicted Input: %d " % ( i, targetInput[i], predictedInput[i]) saveResultToFile(dataSet, predictedInput, 'plainKNN') plt.figure() plt.plot(targetInput) plt.plot(predictedInput) plt.xlim([12800, 13500]) plt.ylim([0, 30000])
agpl-3.0
RayMick/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
160
6028
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
openmachinesblog/visualization-census-2013
basic.py
1
6264
import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.patches import Polygon, PathPatch from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap import numpy as np import io import zipfile import csv import sys def find_nearest_ind(array,value): idx = (np.abs(array-value)).argmin() return idx # part of http://stackoverflow.com/a/17479417/2501747 def add_subplot_axes(ax,rect): fig = plt.gcf() box = ax.get_position() width = box.width height = box.height inax_position = ax.transAxes.transform(rect[0:2]) transFigure = fig.transFigure.inverted() infig_position = transFigure.transform(inax_position) x = infig_position[0] y = infig_position[1] width *= rect[2] height *= rect[3] subax = fig.add_axes([x,y,width,height],frameon=False) # we don't need a frame return subax # state codes from http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict13.txt # note that areas outside of the conus have been commented out state_codes = {'01': 'Alabama', '02': 'Alaska', '15': 'Hawaii', '04': 'Arizona', '05': 'Arkansas', '06': 'California', '08': 'Colorado', '09': 'Connecticut', '10': 'Delaware', # '11': 'District of Columbia', '12': 'Florida', '13': 'Georgia', '16': 'Idaho', '17': 'Illinois', '18': 'Indiana', '19': 'Iowa', '20': 'Kansas', '21': 'Kentucky', '22': 'Louisiana', '23': 'Maine', '24': 'Maryland', '25': 'Massachusetts', '26': 'Michigan', '27': 'Minnesota', '28': 'Mississippi', '29': 'Missouri', '30': 'Montana', '31': 'Nebraska', '32': 'Nevada', '33': 'New Hampshire', '34': 'New Jersey', '35': 'New Mexico', '36': 'New York', '37': 'North Carolina', '38': 'North Dakota', '39': 'Ohio', '40': 'Oklahoma', '41': 'Oregon', '42': 'Pennsylvania', '44': 'Rhode Island', '45': 'South Carolina', '46': 'South Dakota', '47': 'Tennessee', '48': 'Texas', '49': 'Utah', '50': 'Vermont', '51': 'Virginia', '53': 'Washington', '54': 'West Virginia', '55': 'Wisconsin', '56': 'Wyoming', # '72': 'Puerto Rico' } colArg = sys.argv[1] csvf = csv.reader(open('output-{0}.csv'.format(colArg), 'rb')) header = csvf.next() # row_count = sum(1 for row in csvf) row_count = 1211264 """ Generate the data structure {state: {puma: []}} """ data = {} for i in range(row_count): row=csvf.next() state=row[0] puma=row[1] col=int(row[2]) if (state not in data): data.update({state: {puma: np.array([col])}}) elif (puma not in data[state]): data[state].update({puma: np.array([col])}) else: data[state][puma] = np.append(data[state][puma],col) """ Use three subplots (mainland,Hawaii,Alaska) """ fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(111) rect = [0.08,0.05,0.35,0.35] axAlaska = add_subplot_axes(ax,rect) rect = [0.3,0.02,0.2,0.2] axHawaii = add_subplot_axes(ax,rect) fig.suptitle('Census 2013: Internet access', fontsize=20) # create a map object with the Albers Equal Areas projection. # This projection tends to look nice for the contiguous us. mNormal = Basemap(width=5000000,height=3500000, resolution='l',projection='aea',\ ax=ax, \ lon_0=-96,lat_0=38) mAlaska = Basemap(width=5000000,height=3500000, resolution='l',projection='aea',\ ax=axAlaska, \ lon_0=-155,lat_0=65) mHawaii = Basemap(width=1000000,height=700000, resolution='l',projection='aea',\ ax=axHawaii, \ lon_0=-157,lat_0=20) # define a colorramp num_colors = 21 cm = plt.get_cmap('RdYlGn') colorGradient = [cm(1.*i/num_colors) for i in range(num_colors)] # read each states shapefile for key in state_codes.keys(): if (state_codes[key] == "Alaska"): mAlaska.readshapefile('shapefiles/pums/tl_2013_{0}_puma10'.format(key),name='state', drawbounds=True) m = mAlaska elif (state_codes[key] == "Hawaii"): mHawaii.readshapefile('shapefiles/pums/tl_2013_{0}_puma10'.format(key),name='state', drawbounds=True) m = mHawaii else: mNormal.readshapefile('shapefiles/pums/tl_2013_{0}_puma10'.format(key),name='state', drawbounds=True) m = mNormal # loop through each PUMA and assign the correct color to its shape for info, shape in zip(m.state_info, m.state): dataForStPuma = data[key][info['PUMACE10']] # get the percentage of households with Internet access woAccess = (dataForStPuma == 3) accessPerc = 1-(sum(woAccess)/(1.0*len(dataForStPuma))) colorInd = int(round(accessPerc*num_colors)) patches = [Polygon(np.array(shape), True)] pc = PatchCollection(patches, edgecolor='k', linewidths=1., zorder=2) pc.set_color(colorGradient[colorInd]) if (state_codes[key] == "Alaska"): axAlaska.add_collection(pc) elif (state_codes[key] == "Hawaii"): axHawaii.add_collection(pc) else: ax.add_collection(pc) # add colorbar legend cmap = mpl.colors.ListedColormap(colorGradient) # define the bins and normalize bounds = np.linspace(0,100,num_colors) # create a second axes for the colorbar ax2 = fig.add_axes([0.82, 0.1, 0.03, 0.8]) cb = mpl.colorbar.ColorbarBase(ax2, cmap=cmap, ticks=bounds, boundaries=bounds, format='%1i') # vertically oriented colorbar cb.ax.set_yticklabels([str(int(i))+"%" for i in bounds]) plt.savefig('map-{0}.png'.format(colArg))
mit
jmmease/pandas
pandas/tests/frame/test_quantile.py
10
15893
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import numpy as np from pandas import (DataFrame, Series, Timestamp, _np_version_under1p11) import pandas as pd from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameQuantile(TestData): def test_quantile(self): from numpy import percentile q = self.tsframe.quantile(0.1, axis=0) assert q['A'] == percentile(self.tsframe['A'], 10) tm.assert_index_equal(q.index, self.tsframe.columns) q = self.tsframe.quantile(0.9, axis=1) assert (q['2000-01-17'] == percentile(self.tsframe.loc['2000-01-17'], 90)) tm.assert_index_equal(q.index, self.tsframe.index) # test degenerate case q = DataFrame({'x': [], 'y': []}).quantile(0.1, axis=0) assert(np.isnan(q['x']) and np.isnan(q['y'])) # non-numeric exclusion df = DataFrame({'col1': ['A', 'A', 'B', 'B'], 'col2': [1, 2, 3, 4]}) rs = df.quantile(0.5) xp = df.median().rename(0.5) assert_series_equal(rs, xp) # axis df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3]) result = df.quantile(.5, axis=1) expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5) assert_series_equal(result, expected) result = df.quantile([.5, .75], axis=1) expected = DataFrame({1: [1.5, 1.75], 2: [2.5, 2.75], 3: [3.5, 3.75]}, index=[0.5, 0.75]) assert_frame_equal(result, expected, check_index_type=True) # We may want to break API in the future to change this # so that we exclude non-numeric along the same axis # See GH #7312 df = DataFrame([[1, 2, 3], ['a', 'b', 4]]) result = df.quantile(.5, axis=1) expected = Series([3., 4.], index=[0, 1], name=0.5) assert_series_equal(result, expected) def test_quantile_axis_mixed(self): # mixed on axis=1 df = DataFrame({"A": [1, 2, 3], "B": [2., 3., 4.], "C": pd.date_range('20130101', periods=3), "D": ['foo', 'bar', 'baz']}) result = df.quantile(.5, axis=1) expected = Series([1.5, 2.5, 3.5], name=0.5) assert_series_equal(result, expected) # must raise def f(): df.quantile(.5, axis=1, numeric_only=False) pytest.raises(TypeError, f) def test_quantile_axis_parameter(self): # GH 9543/9544 df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3]) result = df.quantile(.5, axis=0) expected = Series([2., 3.], index=["A", "B"], name=0.5) assert_series_equal(result, expected) expected = df.quantile(.5, axis="index") assert_series_equal(result, expected) result = df.quantile(.5, axis=1) expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5) assert_series_equal(result, expected) result = df.quantile(.5, axis="columns") assert_series_equal(result, expected) pytest.raises(ValueError, df.quantile, 0.1, axis=-1) pytest.raises(ValueError, df.quantile, 0.1, axis="column") def test_quantile_interpolation(self): # see gh-10174 from numpy import percentile # interpolation = linear (default case) q = self.tsframe.quantile(0.1, axis=0, interpolation='linear') assert q['A'] == percentile(self.tsframe['A'], 10) q = self.intframe.quantile(0.1) assert q['A'] == percentile(self.intframe['A'], 10) # test with and without interpolation keyword q1 = self.intframe.quantile(0.1) assert q1['A'] == np.percentile(self.intframe['A'], 10) tm.assert_series_equal(q, q1) # interpolation method other than default linear df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3]) result = df.quantile(.5, axis=1, interpolation='nearest') expected = Series([1, 2, 3], index=[1, 2, 3], name=0.5) tm.assert_series_equal(result, expected) # cross-check interpolation=nearest results in original dtype exp = np.percentile(np.array([[1, 2, 3], [2, 3, 4]]), .5, axis=0, interpolation='nearest') expected = Series(exp, index=[1, 2, 3], name=0.5, dtype='int64') tm.assert_series_equal(result, expected) # float df = DataFrame({"A": [1., 2., 3.], "B": [2., 3., 4.]}, index=[1, 2, 3]) result = df.quantile(.5, axis=1, interpolation='nearest') expected = Series([1., 2., 3.], index=[1, 2, 3], name=0.5) tm.assert_series_equal(result, expected) exp = np.percentile(np.array([[1., 2., 3.], [2., 3., 4.]]), .5, axis=0, interpolation='nearest') expected = Series(exp, index=[1, 2, 3], name=0.5, dtype='float64') assert_series_equal(result, expected) # axis result = df.quantile([.5, .75], axis=1, interpolation='lower') expected = DataFrame({1: [1., 1.], 2: [2., 2.], 3: [3., 3.]}, index=[0.5, 0.75]) assert_frame_equal(result, expected) # test degenerate case df = DataFrame({'x': [], 'y': []}) q = df.quantile(0.1, axis=0, interpolation='higher') assert(np.isnan(q['x']) and np.isnan(q['y'])) # multi df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=['a', 'b', 'c']) result = df.quantile([.25, .5], interpolation='midpoint') # https://github.com/numpy/numpy/issues/7163 if _np_version_under1p11: expected = DataFrame([[1.5, 1.5, 1.5], [2.5, 2.5, 2.5]], index=[.25, .5], columns=['a', 'b', 'c']) else: expected = DataFrame([[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]], index=[.25, .5], columns=['a', 'b', 'c']) assert_frame_equal(result, expected) def test_quantile_multi(self): df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=['a', 'b', 'c']) result = df.quantile([.25, .5]) expected = DataFrame([[1.5, 1.5, 1.5], [2., 2., 2.]], index=[.25, .5], columns=['a', 'b', 'c']) assert_frame_equal(result, expected) # axis = 1 result = df.quantile([.25, .5], axis=1) expected = DataFrame([[1.5, 1.5, 1.5], [2., 2., 2.]], index=[.25, .5], columns=[0, 1, 2]) # empty result = DataFrame({'x': [], 'y': []}).quantile([0.1, .9], axis=0) expected = DataFrame({'x': [np.nan, np.nan], 'y': [np.nan, np.nan]}, index=[.1, .9]) assert_frame_equal(result, expected) def test_quantile_datetime(self): df = DataFrame({'a': pd.to_datetime(['2010', '2011']), 'b': [0, 5]}) # exclude datetime result = df.quantile(.5) expected = Series([2.5], index=['b']) # datetime result = df.quantile(.5, numeric_only=False) expected = Series([Timestamp('2010-07-02 12:00:00'), 2.5], index=['a', 'b'], name=0.5) assert_series_equal(result, expected) # datetime w/ multi result = df.quantile([.5], numeric_only=False) expected = DataFrame([[Timestamp('2010-07-02 12:00:00'), 2.5]], index=[.5], columns=['a', 'b']) assert_frame_equal(result, expected) # axis = 1 df['c'] = pd.to_datetime(['2011', '2012']) result = df[['a', 'c']].quantile(.5, axis=1, numeric_only=False) expected = Series([Timestamp('2010-07-02 12:00:00'), Timestamp('2011-07-02 12:00:00')], index=[0, 1], name=0.5) assert_series_equal(result, expected) result = df[['a', 'c']].quantile([.5], axis=1, numeric_only=False) expected = DataFrame([[Timestamp('2010-07-02 12:00:00'), Timestamp('2011-07-02 12:00:00')]], index=[0.5], columns=[0, 1]) assert_frame_equal(result, expected) # empty when numeric_only=True # FIXME (gives empty frame in 0.18.1, broken in 0.19.0) # result = df[['a', 'c']].quantile(.5) # result = df[['a', 'c']].quantile([.5]) def test_quantile_invalid(self): msg = 'percentiles should all be in the interval \\[0, 1\\]' for invalid in [-1, 2, [0.5, -1], [0.5, 2]]: with tm.assert_raises_regex(ValueError, msg): self.tsframe.quantile(invalid) def test_quantile_box(self): df = DataFrame({'A': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03')], 'B': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-03', tz='US/Eastern')], 'C': [pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days')]}) res = df.quantile(0.5, numeric_only=False) exp = pd.Series([pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timedelta('2 days')], name=0.5, index=['A', 'B', 'C']) tm.assert_series_equal(res, exp) res = df.quantile([0.5], numeric_only=False) exp = pd.DataFrame([[pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timedelta('2 days')]], index=[0.5], columns=['A', 'B', 'C']) tm.assert_frame_equal(res, exp) # DatetimeBlock may be consolidated and contain NaT in different loc df = DataFrame({'A': [pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03')], 'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT, pd.Timestamp('2011-01-03')], 'B': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.NaT, pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-03', tz='US/Eastern')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.NaT, pd.Timestamp('2011-01-03', tz='US/Eastern')], 'C': [pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.NaT], 'c': [pd.NaT, pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days')]}, columns=list('AaBbCc')) res = df.quantile(0.5, numeric_only=False) exp = pd.Series([pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timedelta('2 days'), pd.Timedelta('2 days')], name=0.5, index=list('AaBbCc')) tm.assert_series_equal(res, exp) res = df.quantile([0.5], numeric_only=False) exp = pd.DataFrame([[pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timedelta('2 days'), pd.Timedelta('2 days')]], index=[0.5], columns=list('AaBbCc')) tm.assert_frame_equal(res, exp) def test_quantile_nan(self): # GH 14357 - float block where some cols have missing values df = DataFrame({'a': np.arange(1, 6.0), 'b': np.arange(1, 6.0)}) df.iloc[-1, 1] = np.nan res = df.quantile(0.5) exp = Series([3.0, 2.5], index=['a', 'b'], name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5, 0.75]) exp = DataFrame({'a': [3.0, 4.0], 'b': [2.5, 3.25]}, index=[0.5, 0.75]) tm.assert_frame_equal(res, exp) res = df.quantile(0.5, axis=1) exp = Series(np.arange(1.0, 6.0), name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5, 0.75], axis=1) exp = DataFrame([np.arange(1.0, 6.0)] * 2, index=[0.5, 0.75]) tm.assert_frame_equal(res, exp) # full-nan column df['b'] = np.nan res = df.quantile(0.5) exp = Series([3.0, np.nan], index=['a', 'b'], name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5, 0.75]) exp = DataFrame({'a': [3.0, 4.0], 'b': [np.nan, np.nan]}, index=[0.5, 0.75]) tm.assert_frame_equal(res, exp) def test_quantile_nat(self): # full NaT column df = DataFrame({'a': [pd.NaT, pd.NaT, pd.NaT]}) res = df.quantile(0.5, numeric_only=False) exp = Series([pd.NaT], index=['a'], name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5], numeric_only=False) exp = DataFrame({'a': [pd.NaT]}, index=[0.5]) tm.assert_frame_equal(res, exp) # mixed non-null / full null column df = DataFrame({'a': [pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03')], 'b': [pd.NaT, pd.NaT, pd.NaT]}) res = df.quantile(0.5, numeric_only=False) exp = Series([pd.Timestamp('2012-01-02'), pd.NaT], index=['a', 'b'], name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5], numeric_only=False) exp = DataFrame([[pd.Timestamp('2012-01-02'), pd.NaT]], index=[0.5], columns=['a', 'b']) tm.assert_frame_equal(res, exp) def test_quantile_empty(self): # floats df = DataFrame(columns=['a', 'b'], dtype='float64') res = df.quantile(0.5) exp = Series([np.nan, np.nan], index=['a', 'b'], name=0.5) tm.assert_series_equal(res, exp) res = df.quantile([0.5]) exp = DataFrame([[np.nan, np.nan]], columns=['a', 'b'], index=[0.5]) tm.assert_frame_equal(res, exp) # FIXME (gives empty frame in 0.18.1, broken in 0.19.0) # res = df.quantile(0.5, axis=1) # res = df.quantile([0.5], axis=1) # ints df = DataFrame(columns=['a', 'b'], dtype='int64') # FIXME (gives empty frame in 0.18.1, broken in 0.19.0) # res = df.quantile(0.5) # datetimes df = DataFrame(columns=['a', 'b'], dtype='datetime64[ns]') # FIXME (gives NaNs instead of NaT in 0.18.1 or 0.19.0) # res = df.quantile(0.5, numeric_only=False)
bsd-3-clause
appapantula/scikit-learn
sklearn/lda.py
72
17751
""" Linear Discriminant Analysis (LDA) """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .base import BaseEstimator, TransformerMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .preprocessing import StandardScaler __all__ = ['LDA'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] s = sc.std_[:, np.newaxis] * s * sc.std_[np.newaxis, :] # rescale elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LDA(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis (LDA). A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.qda.QDA: Quadratic discriminant analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.lda import LDA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LDA() >>> clf.fit(X, y) LDA(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y, store_covariance=False, tol=1.0e-4): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=False, tol=1.0e-4): """Fit LDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("'store_covariance' was moved to the __init__()" "method in version 0.16 and will be removed from" "fit() in version 0.18.", DeprecationWarning) else: store_covariance = self.store_covariance if tol != 1.0e-4: warnings.warn("'tol' was moved to __init__() method in version" " 0.16 and will be removed from fit() in 0.18", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = self.priors if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y, store_covariance=store_covariance, tol=tol) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X))
bsd-3-clause
mompiou/stereo-proj
stereo-proj-pyqt.py
1
88031
#!/usr/bin/python ###################################################################### # # # Stereo-Proj is a python utility to plot stereographic projetion of a given crystal. It is designed # to be used in electron microscopy experiments. # Author: F. Mompiou, CEMES-CNRS # # ####################################################################### from __future__ import division import numpy as np from PyQt4 import QtGui, QtCore import sys import random import os from PIL import Image from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib import pyplot as plt import matplotlib as mpl import stereoprojUI import intersectionsUI import angleUI import schmidUI import xyzUI import hkl_uvwUI import widthUI import kikuchiUI ################ # Misc ################ def unique_rows(a): a = np.ascontiguousarray(a) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) def GCD(a, b, rtol = 1e-05, atol = 1e-08): t = min(abs(a), abs(b)) while abs(b) > rtol * t + atol: a, b = b, a % b return a ###################################################################" ##### Projection #################################################################### def proj(x,y,z): if z==1: X=0 Y=0 elif z<-0.000001: X='nan' Y='nan' else: X=x/(1+z) Y=y/(1+z) return np.array([X,Y],float) def proj2(x,y,z): if z==1: X=0 Y=0 elif z<-0.000001: X=-x/(1-z) Y=-y/(1-z) else: X=x/(1+z) Y=y/(1+z) return np.array([X,Y,z],float) def proj_gnomonic(x,y,z): if z==0: X=x Y=y else: X=x/z Y=y/z return np.array([X,Y],float) #def proj_ortho(x,y,z): # # return np.array([x,y],float) ################################################################### # Rotation Euler # ################################################################## def rotation(phi1,phi,phi2): phi1=phi1*np.pi/180; phi=phi*np.pi/180; phi2=phi2*np.pi/180; R=np.array([[np.cos(phi1)*np.cos(phi2)-np.cos(phi)*np.sin(phi1)*np.sin(phi2), -np.cos(phi)*np.cos(phi2)*np.sin(phi1)-np.cos(phi1)* np.sin(phi2),np.sin(phi)*np.sin(phi1)],[np.cos(phi2)*np.sin(phi1) +np.cos(phi)*np.cos(phi1)*np.sin(phi2),np.cos(phi)*np.cos(phi1) *np.cos(phi2)-np.sin(phi1)*np.sin(phi2), -np.cos(phi1)*np.sin(phi)], [np.sin(phi)*np.sin(phi2), np.cos(phi2)*np.sin(phi), np.cos(phi)]],float) return R ################################################################### # Rotation around a given axis # ################################################################## def Rot(th,a,b,c): th=th*np.pi/180 no=np.linalg.norm([a,b,c]) aa=a/no bb=b/no cc=c/no c1=np.array([[1,0,0],[0,1,0],[0,0,1]],float) c2=np.array([[aa**2,aa*bb,aa*cc],[bb*aa,bb**2,bb*cc],[cc*aa, cc*bb,cc**2]],float) c3=np.array([[0,-cc,bb],[cc,0,-aa],[-bb,aa,0]],float) R=np.cos(th)*c1+(1-np.cos(th))*c2+np.sin(th)*c3 return R ####################### # # Layout functions # ####################### def color_trace(): color_trace=1 if ui.color_trace_bleu.isChecked(): color_trace=1 if ui.color_trace_bleu.isChecked(): color_trace=2 if ui.color_trace_rouge.isChecked(): color_trace=3 return color_trace def var_uvw(): var_uvw=0 if ui.uvw_button.isChecked(): var_uvw=1 return var_uvw def var_hexa(): var_hexa=0 if ui.hexa_button.isChecked(): var_hexa=1 return var_hexa def var_carre(): var_carre=0 if ui.style_box.isChecked(): var_carre=1 return var_carre #################################################################### # # Crystal definition # ################################################################## def crist(): global axes,axesh,D,Dstar,V,G abc=ui.abc_entry.text().split(",") a=np.float(abc[0])*1e-10 b=np.float(abc[1])*1e-10 c=np.float(abc[2])*1e-10 alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0]) beta=np.float(alphabetagamma[1]) gamma=np.float(alphabetagamma[2]) e=np.int(ui.e_entry.text()) d2=np.float(ui.d_label_var.text()) alpha=alpha*np.pi/180 beta=beta*np.pi/180 gamma=gamma*np.pi/180 V=a*b*c*np.sqrt(1-(np.cos(alpha)**2)-(np.cos(beta))**2-(np.cos(gamma))**2+2*np.cos(alpha)*np.cos(beta)*np.cos(gamma)) D=np.array([[a,b*np.cos(gamma),c*np.cos(beta)],[0,b*np.sin(gamma), c*(np.cos(alpha)-np.cos(beta)*np.cos(gamma))/np.sin(gamma)],[0,0,V/(a*b*np.sin(gamma))]]) Dstar=np.transpose(np.linalg.inv(D)) G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) axes=np.zeros(((2*e+1)**3-1,3)) axesh=np.zeros(((2*e+1)**3-1,7)) axesh[:,4]=color_trace() id=0 for i in range(-e,e+1): for j in range(-e,e+1): for k in range(-e,e+1): if (i,j,k)!=(0,0,0): d=1/(np.sqrt(np.dot(np.array([i,j,k]),np.dot(np.linalg.inv(G),np.array([i,j,k]))))) if d>d2*0.1*np.amax([a,b,c]): if var_uvw()==0: Ma=np.dot(Dstar,np.array([i,j,k],float)) axesh[id,3]=0 else: Ma=np.dot(D,np.array([i,j,k],float)) axesh[id,3]=1 m=np.abs(reduce(lambda x,y:GCD(x,y),[i,j,k])) if (np.around(i/m)==i/m) & (np.around(j/m)==j/m) & (np.around(k/m)==k/m): axes[id,:]=np.array([i,j,k])/m else: axes[id,:]=np.array([i,j,k]) axesh[id,0:3]=Ma/np.linalg.norm(Ma) axesh[id,5]=1 axesh[id,6]=1 id=id+1 axesh=axesh[~np.all(axesh[:,0:3]==0, axis=1)] axes=axes[~np.all(axes==0, axis=1)] return axes,axesh,D,Dstar,V,G ############################################### # # Switch to reciprocal indices with size indicating the intensity # Need as input a file with the atoms in the cells to get the structure factor # ############################################### def lattice_reciprocal(): if ui.reciprocal_checkBox.isChecked(): crist_reciprocal() else: undo_crist_reciprocal() def crist_reciprocal(): global axes,axesh, naxes for z in range(0, np.shape(axes)[0]): if z<(np.shape(axes)[0]-naxes): I,h,k,l=extinction(ui.space_group_Box.currentText(),axes[z,0],axes[z,1],axes[z,2],np.int(ui.e_entry.text()),0) else: I,h,k,l=extinction(ui.space_group_Box.currentText(),axes[z,0],axes[z,1],axes[z,2],10000,0) if I>0: if var_uvw()==0: axesh[z,3]=0 else: axesh[z,3]=1 axesh[z,5]=I axesh[z,6]=1 axes[z,:]=np.array([h,k,l]) else: axesh[z,0:3]=np.array([0,0,0]) if var_uvw()==0: axesh[z,3]=0 else: axesh[z,3]=1 axesh[z,5]=1 axesh[z,6]=1 axes[z,:]=np.array([0,0,0]) axesh=axesh[~np.all(axesh[:,0:3]==0, axis=1)] axes=axes[~np.all(axes==0, axis=1)] return axes,axesh,naxes def undo_crist_reciprocal(): global axes,axesh,naxes,dmip if naxes!=0: extra_axes=axes[-naxes:,:] extra_axesh=axesh[-naxes:,:] for i in range(0,np.shape(extra_axes)[0]): m=reduce(lambda x,y:GCD(x,y),extra_axes[i,:]) extra_axes[i,:]=extra_axes[i,:]/m if var_uvw()==0: extra_axesh[i,3]=0 else: extra_axesh[i,3]=1 extra_axesh[i,5]=1 extra_axesh[i,6]=1 crist() axes=np.vstack((axes,extra_axes)) axesh=np.vstack((axesh,extra_axesh)) else: crist() return axes, axesh,naxes def extinction(space_group,h,k,l,lim,diff): global x_space,G,x_scatt h0=h k0=k l0=l for i in range(0,len(x_space)): if space_group==x_space[i][0]: s0=i while np.amax([np.abs(h0),np.abs(k0),np.abs(l0)])<=lim: F=0 s=s0 while (s<(len(x_space)-1) and (len(x_space[s+1])==4)): q=2*np.pi*np.sqrt(np.dot(np.array([h0,k0,l0]),np.dot(np.linalg.inv(G),np.array([h0,k0,l0]))))*1e-10 f=str(x_space[s+1][0]) for z in range(0,len(x_scatt)): if f==x_scatt[z][0]: f=eval(x_scatt[z][1])*np.exp(-eval(x_scatt[z][2])*(q/4/np.pi)**2)+eval(x_scatt[z][3])*np.exp(-eval(x_scatt[z][4])*(q/4/np.pi)**2)+eval(x_scatt[z][5])*np.exp(-eval(x_scatt[z][6])*(q/4/np.pi)**2)+eval(x_scatt[z][7])*np.exp(-eval(x_scatt[z][8])*(q/4/np.pi)**2)+eval(x_scatt[z][9]) F=F+f*np.exp(2j*np.pi*(eval(x_space[s+1][1])*h0+eval(x_space[s+1][2])*k0+eval(x_space[s+1][3])*l0)) s=s+1 I=np.around(float(np.real(F*np.conj(F))),decimals=2) if diff==0: if I>0: break else: h0=2*h0 k0=2*k0 l0=2*l0 else: break return I,h0,k0,l0 ###################################################### # # Reduce number of poles/directions as a function of d-spacing (plus or minus) # ####################################################### def dist_restrict(): global G,axes,axesh abc=ui.abc_entry.text().split(",") a=np.float(abc[0])*1e-10 b=np.float(abc[1])*1e-10 c=np.float(abc[2])*1e-10 d2=np.float(ui.d_label_var.text()) for i in range(0,np.shape(axes)[0]): d=1/(np.sqrt(np.dot(axes[i,:],np.dot(np.linalg.inv(G),axes[i,:])))) if d<d2*0.1*np.amax([a,b,c]): axesh[i,6]=0 else: axesh[i,6]=1 trace() def dm(): global dmip dmip=dmip-np.float(ui.d_entry.text()) ui.d_label_var.setText(str(dmip)) dist_restrict() return dmip def dp(): global dmip, a,axes,axesh dmip=dmip+np.float(ui.d_entry.text()) ui.d_label_var.setText(str(dmip)) dist_restrict() return dmip #################################################################### # # Plot iso-schmid factor, ie for a given plan the locus of b with a given schmid factor (Oy direction # assumed to be the straining axis # #################################################################### def schmid_trace(): global M,axes,axesh,T,V,D,Dstar,trP,tr_schmid,a,minx,maxx,miny,maxy,trC pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) tr_schmid=np.vstack((tr_schmid,np.array([pole1,pole2,pole3]))) trace() def undo_schmid_trace(): global M,axes,axesh,T,V,D,Dstar,trP,tr_schmid,a,minx,maxx,miny,maxy,trC pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) tr_s=tr_schmid for i in range(1,tr_schmid.shape[0]): if tr_schmid[i,0]==pole1 and tr_schmid[i,1]==pole2 and tr_schmid[i,2]==pole3: tr_s=np.delete(tr_schmid,i,0) tr_schmid=tr_s trace() def fact(angle,r,t,n): t_ang=ang_work_space() x=r*np.cos(t)/n y=r*np.sin(t)/n C=np.dot(Rot(t_ang,0,0,1),np.array([x,y,0])) x=C[0] y=C[1] f=np.cos(angle)*2*y/((1+x**2+y**2)) return f def schmid_trace2(C): global D, Dstar,M,a for h in range(1,tr_schmid.shape[0]): b1=C[h,0] b2=C[h,1] b3=C[h,2] b=np.array([b1,b2,b3]) if var_uvw()==0: bpr=np.dot(Dstar,b)/np.linalg.norm(np.dot(Dstar,b)) else: bpr=np.dot(Dstar,b)/np.linalg.norm(np.dot(Dstar,b)) bpr2=np.dot(M,bpr) t_ang=-ang_work_space() T=np.dot(Rot(t_ang,0,0,1),np.array([0,1,0])) angleb=np.arccos(np.dot(bpr2,T)/np.linalg.norm(bpr2)) n=300 r=np.linspace(0,n,100) t=np.linspace(0,2*np.pi,100) r,t=np.meshgrid(r,t) F=fact(angleb,r,t,n) lev=[-0.5,-0.4,-0.3,-0.2,0.2,0.3,0.4,0.5] CS=a.contour(r*np.cos(t)+300, r*np.sin(t)+300, F,lev,linewidths=2) fmt = {} strs = [ '('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') -0.5','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') -0.4','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') -0.3','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') -0.2','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') 0.2','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') 0.3','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') 0.4','('+str(np.int(b1))+str(np.int(b2))+str(np.int(b3))+') 0.5'] for l,s in zip( CS.levels, strs ): fmt[l] = s a.clabel(CS,fmt=fmt,fontsize=10,inline=True) ########################################################################### # # Rotation of the sample. If Lock Axes is off rotation are along y,x,z directions. If not, the y and z axes # of the sample are locked to the crystal axes when the check box is ticked. # It mimics double-tilt holder (rotation of alpha along fixed x and rotation of beta along the beta tilt moving axis) # or tilt-rotation holder (rotation of alpha along fixed # x and rotation of z along the z-rotation moving axis). # ########################################################################## def euler_label(): global M if np.abs(M[2,2]-1)<0.0001: phir=0 phi1r=0 phi2r=np.arctan2(M[1,0],M[0,0])*180/np.pi else: phir=np.arccos(M[2,2])*180/np.pi phi2r=np.arctan2(M[2,0],M[2,1])*180/np.pi phi1r=np.arctan2(M[0,2],-M[1,2])*180/np.pi t=str(np.around(phi1r,decimals=1))+str(',')+str(np.around(phir,decimals=1))+str(',')+str(np.around(phi2r,decimals=1)) ui.angle_euler_label.setText(t) def lock(): global M, var_lock,M_lock if ui.lock_checkButton.isChecked(): var_lock=1 M_lock=M else: var_lock,M_lock=0,0 return var_lock,M_lock def rot_alpha_p(): global angle_alpha,M,a,trP,trC,s_a tha=s_a*np.float(ui.angle_alpha_entry.text()) t_ang=-ang_work_space() t_a_y=np.dot(Rot(t_ang,0,0,1),np.array([0,1,0])) M=np.dot(Rot(tha,t_a_y[0],t_a_y[1],t_a_y[2]),M) trace() euler_label() angle_alpha=angle_alpha+np.float(ui.angle_alpha_entry.text()) ui.angle_alpha_label_2.setText(str(angle_alpha)) return angle_alpha,M def rot_alpha_m(): global angle_alpha,M,a,trP,trC,s_a tha=-s_a*np.float(ui.angle_alpha_entry.text()) t_ang=-ang_work_space() t_a_y=np.dot(Rot(t_ang,0,0,1),np.array([0,1,0])) M=np.dot(Rot(tha,t_a_y[0],t_a_y[1],t_a_y[2]),M) trace() euler_label() angle_alpha=angle_alpha-np.float(ui.angle_alpha_entry.text()) ui.angle_alpha_label_2.setText(str(angle_alpha)) return angle_alpha,M def rot_beta_m(): global angle_beta,M,angle_alpha, angle_z, var_lock, M_lock,s_b t_ang=-ang_work_space() t_a_x=np.dot(Rot(t_ang,0,0,1),np.array([1,0,0])) if var_lock==0: AxeY=t_a_x else: A=np.dot(np.linalg.inv(M_lock),t_a_x) AxeY=np.dot(M,A) thb=-s_b*np.float(ui.angle_beta_entry.text()) M=np.dot(Rot(thb,AxeY[0],AxeY[1],AxeY[2]),M) trace() euler_label() angle_beta=angle_beta-np.float(ui.angle_beta_entry.text()) ui.angle_beta_label_2.setText(str(angle_beta)) return angle_beta,M def rot_beta_p(): global angle_beta,M,angle_alpha, angle_z, var_lock, M_lock,s_b t_ang=-ang_work_space() t_a_x=np.dot(Rot(t_ang,0,0,1),np.array([1,0,0])) if var_lock==0: AxeY=t_a_x else: A=np.dot(np.linalg.inv(M_lock),t_a_x) AxeY=np.dot(M,A) thb=s_b*np.float(ui.angle_beta_entry.text()) M=np.dot(Rot(thb,AxeY[0],AxeY[1],AxeY[2]),M) trace() euler_label() angle_beta=angle_beta+np.float(ui.angle_beta_entry.text()) ui.angle_beta_label_2.setText(str(angle_beta)) return angle_beta,M def rot_z_m(): global angle_beta,M,angle_alpha, angle_z, var_lock, M_lock,s_z if var_lock==0: AxeZ=np.array([0,0,1]) else: A=np.dot(np.linalg.inv(M_lock),np.array([0,0,1])) AxeZ=np.dot(M,A) thz=-s_z*np.float(ui.angle_z_entry.text()) M=np.dot(Rot(thz,AxeZ[0],AxeZ[1],AxeZ[2]),M) trace() euler_label() angle_z=angle_z-np.float(ui.angle_z_entry.text()) ui.angle_z_label_2.setText(str(angle_z)) return angle_z,M def rot_z_p(): global angle_beta,M,angle_alpha, angle_z, var_lock, M_lock,s_z if var_lock==0: AxeZ=np.array([0,0,1]) else: A=np.dot(np.linalg.inv(M_lock),np.array([0,0,1])) AxeZ=np.dot(M,A) thz=s_z*np.float(ui.angle_z_entry.text()) M=np.dot(Rot(thz,AxeZ[0],AxeZ[1],AxeZ[2]),M) trace() euler_label() angle_z=angle_z+np.float(ui.angle_z_entry.text()) ui.angle_z_label_2.setText(str(angle_z)) return angle_z,M #################################################################### # # Rotate around a given pole # #################################################################### def rotgm(): global g,M,Dstar,a thg=-np.float(ui.rot_g_entry.text()) diff=ui.diff_entry.text().split(",") diff1=np.float(diff[0]) diff2=np.float(diff[1]) diff3=np.float(diff[2]) A=np.array([diff1,diff2,diff3]) Ad=np.dot(Dstar,A) Ap=np.dot(M,Ad)/np.linalg.norm(np.dot(M,Ad)) M=np.dot(Rot(thg,Ap[0],Ap[1],Ap[2]),M) trace() euler_label() g=g-np.float(ui.rot_g_entry.text()) ui.rg_label.setText(str(g)) return g,M def rotgp(): global g,M,D thg=np.float(ui.rot_g_entry.text()) diff=ui.diff_entry.text().split(",") diff1=np.float(diff[0]) diff2=np.float(diff[1]) diff3=np.float(diff[2]) A=np.array([diff1,diff2,diff3]) Ad=np.dot(Dstar,A) Ap=np.dot(M,Ad)/np.linalg.norm(np.dot(M,Ad)) M=np.dot(Rot(thg,Ap[0],Ap[1],Ap[2]),M) trace() euler_label() g=g+np.float(ui.rot_g_entry.text()) ui.rg_label.setText(str(g)) return g,M #################################################################### # # Add a given pole and equivalent ones # #################################################################### def pole(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,naxes if var_hexa()==1: if var_uvw()==1: pole1a=2*pole1+pole2 pole2a=2*pole2+pole1 pole1=pole1a pole2=pole2a Gs=np.array([pole1,pole2,pole3],float) if var_uvw()==0: Gsh=np.dot(Dstar,Gs)/np.linalg.norm(np.dot(Dstar,Gs)) else: Gsh=np.dot(D,Gs)/np.linalg.norm(np.dot(D,Gs)) S=np.dot(M,Gsh) if S[2]<0: S=-S Gsh=-Gsh pole1=-pole1 pole2=-pole2 pole3=-pole3 T=np.vstack((T,np.array([S[0],S[1],S[2]]))) if ui.reciprocal_checkBox.isChecked(): I,h,k,l=extinction(ui.space_group_Box.currentText(),pole1,pole2,pole3,100000,0) if I>0: axes=np.vstack((axes,np.array([h,k,l]))) axes=np.vstack((axes,np.array([-h,-k,-l]))) if var_uvw()==0 : axesh=np.vstack((axesh,np.array([Gsh[0],Gsh[1],Gsh[2],0,color_trace(),I,1]))) axesh=np.vstack((axesh,np.array([-Gsh[0],-Gsh[1],-Gsh[2],0,color_trace(),I,1]))) else: axesh=np.vstack((axesh,np.array([Gsh[0],Gsh[1],Gsh[2],1,color_trace(),I,1]))) axesh=np.vstack((axesh,np.array([-Gsh[0],-Gsh[1],-Gsh[2],1,color_trace(),I,1]))) else: axes=np.vstack((axes,np.array([pole1,pole2,pole3]))) axes=np.vstack((axes,np.array([-pole1,-pole2,-pole3]))) if var_uvw()==0 : axesh=np.vstack((axesh,np.array([Gsh[0],Gsh[1],Gsh[2],0,color_trace(),0,1]))) axesh=np.vstack((axesh,np.array([-Gsh[0],-Gsh[1],-Gsh[2],0,color_trace(),0,1]))) else: axesh=np.vstack((axesh,np.array([Gsh[0],Gsh[1],Gsh[2],1,color_trace(),0,1]))) axesh=np.vstack((axesh,np.array([-Gsh[0],-Gsh[1],-Gsh[2],1,color_trace(),0,1]))) naxes=naxes+2 return axes,axesh,T,naxes def undo_pole(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,naxes if var_hexa()==1: if var_uvw()==1: pole1a=2*pole1+pole2 pole2a=2*pole2+pole1 pole1=pole1a pole2=pole2a Gs=np.array([pole1,pole2,pole3],float) if var_uvw()==0: Gsh=np.dot(Dstar,Gs)/np.linalg.norm(np.dot(Dstar,Gs)) else: Gsh=np.dot(D,Gs)/np.linalg.norm(np.dot(D,Gs)) S=np.dot(M,Gsh) if S[2]<0: S=-S Gsh=-Gsh pole1=-pole1 pole2=-pole2 pole3=-pole3 if ui.reciprocal_checkBox.isChecked(): I,h,k,l=extinction(ui.space_group_Box.currentText(),pole1,pole2,pole3,100000,0) if I>0: pole1=h pole2=k pole3=l ind=np.where((axes[:,0]==pole1) & (axes[:,1]==pole2)& (axes[:,2]==pole3)|(axes[:,0]==-pole1) & (axes[:,1]==-pole2)& (axes[:,2]==-pole3)) else: m=reduce(lambda x,y:GCD(x,y),[pole1,pole2,pole3]) ind=np.where((axes[:,0]==pole1) & (axes[:,1]==pole2)& (axes[:,2]==pole3)|(axes[:,0]==-pole1) & (axes[:,1]==-pole2)& (axes[:,2]==-pole3)) axes=np.delete(axes,ind,0) T=np.delete(T,ind,0) axesh=np.delete(axesh,ind,0) naxes=naxes-2 return axes,axesh,T,naxes def d(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar abc=ui.abc_entry.text().split(",") a=np.float(abc[0]) b=np.float(abc[1]) c=np.float(abc[2]) alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0])*np.pi/180 beta=np.float(alphabetagamma[1])*np.pi/180 gamma=np.float(alphabetagamma[2])*np.pi/180 G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) ds=(np.sqrt(np.dot(np.array([pole1,pole2,pole3]),np.dot(np.linalg.inv(G),np.array([pole1,pole2,pole3]))))) return ds def addpole_sym(): global M,axes,axesh,T,V,D,Dstar,G pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) abc=ui.abc_entry.text().split(",") a=np.float(abc[0]) b=np.float(abc[1]) c=np.float(abc[2]) alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0])*np.pi/180 beta=np.float(alphabetagamma[1])*np.pi/180 gamma=np.float(alphabetagamma[2])*np.pi/180 G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) v=d(pole1,pole2,pole3) pole(pole1,pole2,pole3) if np.abs(alpha-np.pi/2)<0.001 and np.abs(beta-np.pi/2)<0.001 and np.abs(gamma-2*np.pi/3)<0.001: pole(pole1,pole2,pole3) pole(pole1,pole2,-pole3) pole(pole2,pole1,pole3) pole(pole2,pole1,-pole3) pole(-pole1-pole2,pole2,pole3) pole(-pole1-pole2,pole2,-pole3) pole(pole1,-pole1-pole2,pole3) pole(pole1,-pole1-pole2,-pole3) pole(pole2,-pole1-pole2,pole3) pole(pole2,-pole1-pole2,-pole3) pole(-pole1-pole2,pole1,pole3) pole(-pole1-pole2,pole1,-pole3) else: if np.abs(d(pole1,pole2,-pole3)-v)<0.001: pole(pole1,pole2,-pole3) if np.abs(d(pole1,-pole2,pole3)-v)<0.001: pole(pole1,-pole2,pole3) if np.abs(d(-pole1,pole2,pole3)-v)<0.001: pole(-pole1,pole2,pole3) if np.abs(d(pole2,pole1,pole3)-v)<0.001: pole(pole2,pole1,pole3) if np.abs(d(pole2,pole1,-pole3)-v)<0.001: pole(pole2,pole1,-pole3) if np.abs(d(pole2,-pole1,pole3)-v)<0.001: pole(pole2,-pole1,pole3) if np.abs(d(-pole2,pole1,pole3)-v)<0.001: pole(-pole2,pole1,pole3) if np.abs(d(pole2,pole3,pole1)-v)<0.001: pole(pole2,pole3,pole1) if np.abs(d(pole2,pole3,pole1)-v)<0.001: pole(pole2,pole3,-pole1) if np.abs(d(pole2,-pole3,pole1)-v)<0.001: pole(pole2,-pole3,pole1) if np.abs(d(-pole2,pole3,pole1)-v)<0.001: pole(-pole2,pole3,pole1) if np.abs(d(pole1,pole3,pole2)-v)<0.001: pole(pole1,pole3,pole2) if np.abs(d(pole1,pole3,-pole2)-v)<0.001: pole(pole1,pole3,-pole2) if np.abs(d(pole1,-pole3,pole2)-v)<0.001: pole(pole1,-pole3,pole2) if np.abs(d(-pole1,pole3,pole2)-v)<0.001: pole(-pole1,pole3,pole2) if np.abs(d(pole3,pole1,pole2)-v)<0.001: pole(pole3,pole1,pole2) if np.abs(d(pole3,pole1,-pole2)-v)<0.001: pole(pole3,pole1,-pole2) if np.abs(d(pole3,-pole1,pole2)-v)<0.001: pole(pole3,-pole1,pole2) if np.abs(d(-pole3,pole1,pole2)-v)<0.001: pole(-pole3,pole1,pole2) if np.abs(d(pole3,pole2,pole1)-v)<0.001: pole(pole3,pole2,pole1) if np.abs(d(pole3,pole2,-pole1)-v)<0.001: pole(pole3,pole2,-pole1) if np.abs(d(pole3,-pole2,pole1)-v)<0.001: pole(pole3,-pole2,pole1) if np.abs(d(pole3,pole2,pole1)-v)<0.001: pole(pole3,pole2,pole1) trace() def undo_sym(): global M,axes,axesh,T,V,D,Dstar,G pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) abc=ui.abc_entry.text().split(",") a=np.float(abc[0]) b=np.float(abc[1]) c=np.float(abc[2]) alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0])*np.pi/180 beta=np.float(alphabetagamma[1])*np.pi/180 gamma=np.float(alphabetagamma[2])*np.pi/180 G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) v=d(pole1,pole2,pole3) undo_pole(pole1,pole2,pole3) if np.abs(alpha-np.pi/2)<0.001 and np.abs(beta-np.pi/2)<0.001 and np.abs(gamma-2*np.pi/3)<0.001: undo_pole(pole1,pole2,pole3) undo_pole(pole1,pole2,-pole3) undo_pole(pole2,pole1,pole3) undo_pole(pole2,pole1,-pole3) undo_pole(-pole1-pole2,pole2,pole3) undo_pole(-pole1-pole2,pole2,-pole3) undo_pole(pole1,-pole1-pole2,pole3) undo_pole(pole1,-pole1-pole2,-pole3) undo_pole(pole2,-pole1-pole2,pole3) undo_pole(pole2,-pole1-pole2,-pole3) undo_pole(-pole1-pole2,pole1,pole3) undo_pole(-pole1-pole2,pole1,-pole3) else: if np.abs(d(pole1,pole2,-pole3)-v)<0.001: undo_pole(pole1,pole2,-pole3) if np.abs(d(pole1,-pole2,pole3)-v)<0.001: undo_pole(pole1,-pole2,pole3) if np.abs(d(-pole1,pole2,pole3)-v)<0.001: undo_pole(-pole1,pole2,pole3) if np.abs(d(pole2,pole1,pole3)-v)<0.001: undo_pole(pole2,pole1,pole3) if np.abs(d(pole2,pole1,-pole3)-v)<0.001: undo_pole(pole2,pole1,-pole3) if np.abs(d(pole2,-pole1,pole3)-v)<0.001: undo_pole(pole2,-pole1,pole3) if np.abs(d(-pole2,pole1,pole3)-v)<0.001: undo_pole(-pole2,pole1,pole3) if np.abs(d(pole2,pole3,pole1)-v)<0.001: undo_pole(pole2,pole3,pole1) if np.abs(d(pole2,pole3,pole1)-v)<0.001: undo_pole(pole2,pole3,-pole1) if np.abs(d(pole2,-pole3,pole1)-v)<0.001: undo_pole(pole2,-pole3,pole1) if np.abs(d(-pole2,pole3,pole1)-v)<0.001: undo_pole(-pole2,pole3,pole1) if np.abs(d(pole1,pole3,pole2)-v)<0.001: undo_pole(pole1,pole3,pole2) if np.abs(d(pole1,pole3,-pole2)-v)<0.001: undo_pole(pole1,pole3,-pole2) if np.abs(d(pole1,-pole3,pole2)-v)<0.001: undo_pole(pole1,-pole3,pole2) if np.abs(d(-pole1,pole3,pole2)-v)<0.001: undo_pole(-pole1,pole3,pole2) if np.abs(d(pole3,pole1,pole2)-v)<0.001: undo_pole(pole3,pole1,pole2) if np.abs(d(pole3,pole1,-pole2)-v)<0.001: undo_pole(pole3,pole1,-pole2) if np.abs(d(pole3,-pole1,pole2)-v)<0.001: undo_pole(pole3,-pole1,pole2) if np.abs(d(-pole3,pole1,pole2)-v)<0.001: undo_pole(-pole3,pole1,pole2) if np.abs(d(pole3,pole2,pole1)-v)<0.001: undo_pole(pole3,pole2,pole1) if np.abs(d(pole3,pole2,-pole1)-v)<0.001: undo_pole(pole3,pole2,-pole1) if np.abs(d(pole3,-pole2,pole1)-v)<0.001: undo_pole(pole3,-pole2,pole1) if np.abs(d(pole3,pole2,pole1)-v)<0.001: undo_pole(pole3,pole2,pole1) trace() def addpole(): pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) pole(pole1,pole2,pole3) trace() def undo_addpole(): global M,axes,axesh,T,V,D,Dstar,trP,tr_schmid,nn,trC pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) undo_pole(pole1,pole2,pole3) trace() #################################################################### # # Plot a given plane and equivalent ones. Plot a cone # #################################################################### def trace_plan(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,trP,trC pole_i=0 pole_c=color_trace() if var_hexa()==1: if var_uvw()==1: pole1=2*pole1+pole2 pole2=2*pole2+pole1 pole_i=1 trP=np.vstack((trP,np.array([pole1,pole2,pole3,pole_i,pole_c]))) b=np.ascontiguousarray(trP).view(np.dtype((np.void, trP.dtype.itemsize * trP.shape[1]))) trP=np.unique(b).view(trP.dtype).reshape(-1, trP.shape[1]) def trace_cone(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,trC pole_i=0 pole_c=color_trace() inc=np.float(ui.inclination_entry.text()) if var_hexa()==1: if var_uvw()==1: pole1=2*pole1+pole2 pole2=2*pole2+pole1 pole_i=1 trC=np.vstack((trC,np.array([pole1,pole2,pole3,pole_i,pole_c,inc]))) b=np.ascontiguousarray(trC).view(np.dtype((np.void, trC.dtype.itemsize * trC.shape[1]))) trC=np.unique(b).view(trC.dtype).reshape(-1, trC.shape[1]) def trace_addplan(): global M,axes,axesh,T,V,D,Dstar,trP pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) trace_plan(pole1,pole2,pole3) trace_plan2 trace() def trace_addcone(): global M,axes,axesh,T,V,D,Dstar,trC pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) trace_cone(pole1,pole2,pole3) trace() def undo_trace_addplan(): global M,axes,axesh,T,V,D,Dstar,trP pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) undo_trace_plan(pole1,pole2,pole3) trace() def undo_trace_addcone(): global M,axes,axesh,T,V,D,Dstar,trC pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) undo_trace_cone(pole1,pole2,pole3) trace() def undo_trace_plan(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,trP,tr_schmid ind=np.where((trP[:,0]==pole1) & (trP[:,1]==pole2)& (trP[:,2]==pole3)|(trP[:,0]==-pole1) & (trP[:,1]==-pole2)& (trP[:,2]==-pole3)) trP=np.delete(trP,ind,0) b=np.ascontiguousarray(trP).view(np.dtype((np.void, trP.dtype.itemsize * trP.shape[1]))) trP=np.unique(b).view(trP.dtype).reshape(-1, trP.shape[1]) def undo_trace_cone(pole1,pole2,pole3): global M,axes,axesh,T,V,D,Dstar,trC,tr_schmid ind=np.where((trC[:,0]==pole1) & (trC[:,1]==pole2)& (trC[:,2]==pole3)|(trC[:,0]==-pole1) & (trC[:,1]==-pole2)& (trC[:,2]==-pole3)) trC=np.delete(trC,ind,0) b=np.ascontiguousarray(trC).view(np.dtype((np.void, trC.dtype.itemsize * trC.shape[1]))) trC=np.unique(b).view(trC.dtype).reshape(-1, trC.shape[1]) def trace_plan_sym(): global M,axes,axesh,T,V,D,Dstar,G pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) abc=ui.abc_entry.text().split(",") a=np.float(abc[0])*1e-10 b=np.float(abc[1])*1e-10 c=np.float(abc[2])*1e-10 alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0])*np.pi/180 beta=np.float(alphabetagamma[1])*np.pi/180 gamma=np.float(alphabetagamma[2])*np.pi/180 G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) v=d(pole1,pole2,pole3) trace_plan(pole1,pole2,pole3) if np.abs(alpha-np.pi/2)<0.001 and np.abs(beta-np.pi/2)<0.001 and np.abs(gamma-2*np.pi/3)<0.001: trace_plan(pole1,pole2,pole3) trace_plan(pole1,pole2,-pole3) trace_plan(pole2,pole1,pole3) trace_plan(pole2,pole1,-pole3) trace_plan(-pole1-pole2,pole2,pole3) trace_plan(-pole1-pole2,pole2,-pole3) trace_plan(pole1,-pole1-pole2,pole3) trace_plan(pole1,-pole1-pole2,-pole3) trace_plan(pole2,-pole1-pole2,pole3) trace_plan(pole2,-pole1-pole2,-pole3) trace_plan(-pole1-pole2,pole1,pole3) trace_plan(-pole1-pole2,pole1,-pole3) else: if np.abs(d(pole1,pole2,-pole3)-v)<0.001: trace_plan(pole1,pole2,-pole3) if np.abs(d(pole1,-pole2,pole3)-v)<0.001: trace_plan(pole1,-pole2,pole3) if np.abs(d(-pole1,pole2,pole3)-v)<0.001: trace_plan(-pole1,pole2,pole3) if np.abs(d(pole2,pole1,pole3)-v)<0.001: trace_plan(pole2,pole1,pole3) if np.abs(d(pole2,pole1,-pole3)-v)<0.001: trace_plan(pole2,pole1,-pole3) if np.abs(d(pole2,-pole1,pole3)-v)<0.001: trace_plan(pole2,-pole1,pole3) if np.abs(d(-pole2,pole1,pole3)-v)<0.001: trace_plan(-pole2,pole1,pole3) if np.abs(d(pole2,pole3,pole1)-v)<0.001: trace_plan(pole2,pole3,pole1) if np.abs(d(pole2,pole3,pole1)-v)<0.001: trace_plan(pole2,pole3,-pole1) if np.abs(d(pole2,-pole3,pole1)-v)<0.001: trace_plan(pole2,-pole3,pole1) if np.abs(d(-pole2,pole3,pole1)-v)<0.001: trace_plan(-pole2,pole3,pole1) if np.abs(d(pole1,pole3,pole2)-v)<0.001: trace_plan(pole1,pole3,pole2) if np.abs(d(pole1,pole3,-pole2)-v)<0.001: trace_plan(pole1,pole3,-pole2) if np.abs(d(pole1,-pole3,pole2)-v)<0.001: trace_plan(pole1,-pole3,pole2) if np.abs(d(-pole1,pole3,pole2)-v)<0.001: trace_plan(-pole1,pole3,pole2) if np.abs(d(pole3,pole1,pole2)-v)<0.001: trace_plan(pole3,pole1,pole2) if np.abs(d(pole3,pole1,-pole2)-v)<0.001: trace_plan(pole3,pole1,-pole2) if np.abs(d(pole3,-pole1,pole2)-v)<0.001: trace_plan(pole3,-pole1,pole2) if np.abs(d(-pole3,pole1,pole2)-v)<0.001: trace_plan(-pole3,pole1,pole2) if np.abs(d(pole3,pole2,pole1)-v)<0.001: trace_plan(pole3,pole2,pole1) if np.abs(d(pole3,pole2,-pole1)-v)<0.001: trace_plan(pole3,pole2,-pole1) if np.abs(d(pole3,-pole2,pole1)-v)<0.001: trace_plan(pole3,-pole2,pole1) if np.abs(d(pole3,pole2,pole1)-v)<0.001: trace_plan(pole3,pole2,pole1) trace() def undo_trace_plan_sym(): global M,axes,axesh,T,V,D,Dstar,G pole_entry=ui.pole_entry.text().split(",") pole1=np.float(pole_entry[0]) pole2=np.float(pole_entry[1]) pole3=np.float(pole_entry[2]) abc=ui.abc_entry.text().split(",") a=np.float(abc[0])*1e-10 b=np.float(abc[1])*1e-10 c=np.float(abc[2])*1e-10 alphabetagamma=ui.alphabetagamma_entry.text().split(",") alpha=np.float(alphabetagamma[0])*np.pi/180; beta=np.float(alphabetagamma[1])*np.pi/180; gamma=np.float(alphabetagamma[2])*np.pi/180; G=np.array([[a**2,a*b*np.cos(gamma),a*c*np.cos(beta)],[a*b*np.cos(gamma),b**2,b*c*np.cos(alpha)],[a*c*np.cos(beta),b*c*np.cos(alpha),c**2]]) v=d(pole1,pole2,pole3) undo_trace_plan(pole1,pole2,pole3) if np.abs(alpha-np.pi/2)<0.001 and np.abs(beta-np.pi/2)<0.001 and np.abs(gamma-2*np.pi/3)<0.001: undo_trace_plan(pole1,pole2,pole3) undo_trace_plan(pole1,pole2,-pole3) undo_trace_plan(pole2,pole1,pole3) undo_trace_plan(pole2,pole1,-pole3) undo_trace_plan(-pole1-pole2,pole2,pole3) undo_trace_plan(-pole1-pole2,pole2,-pole3) undo_trace_plan(pole1,-pole1-pole2,pole3) undo_trace_plan(pole1,-pole1-pole2,-pole3) undo_trace_plan(pole2,-pole1-pole2,pole3) undo_trace_plan(pole2,-pole1-pole2,-pole3) undo_trace_plan(-pole1-pole2,pole1,pole3) undo_trace_plan(-pole1-pole2,pole1,-pole3) else: if np.abs(d(pole1,pole2,-pole3)-v)<0.001: undo_trace_plan(pole1,pole2,-pole3) if np.abs(d(pole1,-pole2,pole3)-v)<0.001: undo_trace_plan(pole1,-pole2,pole3) if np.abs(d(-pole1,pole2,pole3)-v)<0.001: undo_trace_plan(-pole1,pole2,pole3) if np.abs(d(pole2,pole1,pole3)-v)<0.001: undo_trace_plan(pole2,pole1,pole3) if np.abs(d(pole2,pole1,-pole3)-v)<0.001: undo_trace_plan(pole2,pole1,-pole3) if np.abs(d(pole2,-pole1,pole3)-v)<0.001: undo_trace_plan(pole2,-pole1,pole3) if np.abs(d(-pole2,pole1,pole3)-v)<0.001: undo_trace_plan(-pole2,pole1,pole3) if np.abs(d(pole2,pole3,pole1)-v)<0.001: undo_trace_plan(pole2,pole3,pole1) if np.abs(d(pole2,pole3,pole1)-v)<0.001: undo_trace_plan(pole2,pole3,-pole1) if np.abs(d(pole2,-pole3,pole1)-v)<0.001: undo_trace_plan(pole2,-pole3,pole1) if np.abs(d(-pole2,pole3,pole1)-v)<0.001: undo_trace_plan(-pole2,pole3,pole1) if np.abs(d(pole1,pole3,pole2)-v)<0.001: undo_trace_plan(pole1,pole3,pole2) if np.abs(d(pole1,pole3,-pole2)-v)<0.001: undo_trace_plan(pole1,pole3,-pole2) if np.abs(d(pole1,-pole3,pole2)-v)<0.001: undo_trace_plan(pole1,-pole3,pole2) if np.abs(d(-pole1,pole3,pole2)-v)<0.001: undo_trace_plan(-pole1,pole3,pole2) if np.abs(d(pole3,pole1,pole2)-v)<0.001: undo_trace_plan(pole3,pole1,pole2) if np.abs(d(pole3,pole1,-pole2)-v)<0.001: undo_trace_plan(pole3,pole1,-pole2) if np.abs(d(pole3,-pole1,pole2)-v)<0.001: undo_trace_plan(pole3,-pole1,pole2) if np.abs(d(-pole3,pole1,pole2)-v)<0.001: undo_trace_plan(-pole3,pole1,pole2) if np.abs(d(pole3,pole2,pole1)-v)<0.001: undo_trace_plan(pole3,pole2,pole1) if np.abs(d(pole3,pole2,-pole1)-v)<0.001: undo_trace_plan(pole3,pole2,-pole1) if np.abs(d(pole3,-pole2,pole1)-v)<0.001: undo_trace_plan(pole3,-pole2,pole1) if np.abs(d(pole3,pole2,pole1)-v)<0.001: undo_trace_plan(pole3,pole2,pole1) trace() def trace_plan2(B): global M,axes,axesh,T,V,D,Dstar,a for h in range(0,B.shape[0]): pole1=B[h,0] pole2=B[h,1] pole3=B[h,2] Gs=np.array([pole1,pole2,pole3],float) if B[h,3]==0: Gsh=np.dot(Dstar,Gs)/np.linalg.norm(np.dot(Dstar,Gs)) else: Gsh=np.dot(D,Gs)/np.linalg.norm(np.dot(D,Gs)) S=np.dot(M,Gsh) if S[2]<0: S=-S Gsh=-Gsh pole1=-pole1 pole2=-pole2 pole3=-pole3 r=np.sqrt(S[0]**2+S[1]**2+S[2]**2) A=np.zeros((2,100)) Q=np.zeros((1,2)) t=np.arctan2(S[1],S[0])*180/np.pi w=0 ph=np.arccos(S[2]/r)*180/np.pi for g in np.linspace(-np.pi,np.pi,100): Aa=np.dot(Rot(t,0,0,1),np.dot(Rot(ph,0,1,0),np.array([np.sin(g),np.cos(g),0]))) A[:,w]=proj(Aa[0],Aa[1],Aa[2])*300 Q=np.vstack((Q,A[:,w])) w=w+1 Q=np.delete(Q,0,0) if B[h,4]==1: a.plot(Q[:,0]+300,Q[:,1]+300,'g') if B[h,4]==2: a.plot(Q[:,0]+300,Q[:,1]+300,'b') if B[h,4]==3: a.plot(Q[:,0]+300,Q[:,1]+300,'r') def trace_cone2(B): global M,axes,axesh,T,V,D,Dstar,a for h in range(0,B.shape[0]): pole1=B[h,0] pole2=B[h,1] pole3=B[h,2] i=B[h,5] Gs=np.array([pole1,pole2,pole3],float) if B[h,3]==0: Gsh=np.dot(Dstar,Gs)/np.linalg.norm(np.dot(Dstar,Gs)) else: Gsh=np.dot(D,Gs)/np.linalg.norm(np.dot(D,Gs)) S=np.dot(M,Gsh) if S[2]<0: S=-S Gsh=-Gsh pole1=-pole1 pole2=-pole2 pole3=-pole3 r=np.sqrt(S[0]**2+S[1]**2+S[2]**2) A=np.zeros((3,100)) Q=np.zeros((1,3)) t=np.arctan2(S[1],S[0])*180/np.pi w=0 ph=np.arccos(S[2]/r)*180/np.pi for g in np.linspace(-np.pi,np.pi,100): Aa=np.dot(Rot(t,0,0,1),np.dot(Rot(ph,0,1,0),np.array([np.sin(g)*np.sin(i*np.pi/180),np.cos(g)*np.sin(i*np.pi/180),np.cos(i*np.pi/180)]))) A[:,w]=proj2(Aa[0],Aa[1],Aa[2])*300 Q=np.vstack((Q,A[:,w])) w=w+1 Q=np.delete(Q,0,0) asign = np.sign(Q[:,2]) signchange = ((np.roll(asign, 1) - asign) != 0).astype(int) wp=np.where(signchange==1)[0] wp=np.append(0,wp) wp=np.append(wp,99) for tt in range(0, np.shape(wp)[0]-1): if B[h,4]==1: a.plot(Q[int(wp[tt]):int(wp[tt+1]),0]+300,Q[int(wp[tt]):int(wp[tt+1]),1]+300,'g') if B[h,4]==2: a.plot(Q[int(wp[tt]):int(wp[tt+1]),0]+300,Q[int(wp[tt]):int(wp[tt+1]),1]+300,'b') if B[h,4]==3: a.plot(Q[int(wp[tt]):int(wp[tt+1]),0]+300,Q[int(wp[tt]):int(wp[tt+1]),1]+300,'r') #################################################################### # # Click a pole # #################################################################### def click_a_pole(event): global M,Dstar,D,minx,maxx,miny,maxy,a,Stc if event.button==3: x=event.xdata y=event.ydata x=(x-300)/300 y=(y-300)/300 X=2*x/(1+x**2+y**2) Y=2*y/(1+x**2+y**2) Z=(-1+x**2+y**2)/(1+x**2+y**2) if Z<0: X=-X Y=-Y A=np.dot(np.linalg.inv(M),np.array([X,Y,Z])) if var_uvw()==0: A=np.dot(np.linalg.inv(Dstar),A)*1e10*100 else: A=np.dot(np.linalg.inv(D),A)*1e-10*100 if var_hexa()==1: Aa=(2*A[0]-A[1])/3 Ab=(2*A[1]-A[0])/3 A[0]=Aa A[1]=Ab pole(A[0],A[1],A[2]) Stc=np.vstack((Stc, np.array([A[0],A[1],A[2]]))) trace() def undo_click_a_pole(): global Stc undo_pole(Stc[-1,0],Stc[-1,1],Stc[-1,2]) Stc=Stc[:-1,:] trace() #################################################################### # # Inclinaison-beta indicator when the mouse is on the stereo # #################################################################### def coordinates(event): t_ang=ang_work_space()*np.pi/180 if event.xdata and event.ydata: x=event.xdata y=event.ydata x=(x-300)/300 y=(y-300)/300 X0=2*x/(1+x**2+y**2) Y0=2*y/(1+x**2+y**2) Z0=(-1+x**2+y**2)/(1+x**2+y**2) Rxyz=np.dot(Rot(t_ang*180/np.pi,0,0,1),[X0,Y0,Z0]) X=Rxyz[0] Y=Rxyz[1] Z=Rxyz[2] lat=np.arctan2(np.sqrt(X**2+Z**2),Y)*180/np.pi if X<0: lat=-lat longi=-np.arctan2(Z,X)*180/np.pi if ui.alpha_signBox.isChecked(): longi=-longi if np.abs(longi)>90: if longi>0: longi=longi-180 else: longi=longi+180 c=str(np.around(longi,decimals=1))+str(',')+str(np.around(lat,decimals=1)) ui.coord_label.setText(str(c)) ######################################################## # # Calculate interplanar distance # ####################################################### def dhkl(): pole_entry=ui.pole_entry.text().split(",") i=np.float(pole_entry[0]) j=np.float(pole_entry[1]) k=np.float(pole_entry[2]) abc=ui.abc_entry.text().split(",") a=np.float(abc[0]) b=np.float(abc[1]) c=np.float(abc[2]) alphabetagamma=ui.alphabetagamma_entry.text().split(",") alp=np.float(alphabetagamma[0])*np.pi/180 bet=np.float(alphabetagamma[1])*np.pi/180 gam=np.float(alphabetagamma[2])*np.pi/180 G=np.array([[a**2,a*b*np.cos(gam),a*c*np.cos(bet)],[a*b*np.cos(gam),b**2,b*c*np.cos(alp)],[a*c*np.cos(bet),b*c*np.cos(alp),c**2]]) d=np.around(1/(np.sqrt(np.dot(np.array([i,j,k]),np.dot(np.linalg.inv(G),np.array([i,j,k]))))), decimals=3) ui.dhkl_label.setText(str(d)) return #################################################################### # # Reset view after zoom/update axes/angles # #################################################################### def reset_view(): global a a.axis([minx,maxx,miny,maxy]) mpl.rcParams['font.size'] = ui.text_size_entry.text() trace() def tilt_axes(): global s_a,s_b,s_z s_a,s_b,s_z=1,1,1 if ui.alpha_signBox.isChecked(): s_a=-1 if ui.beta_signBox.isChecked(): s_b=-1 if ui.theta_signBox.isChecked(): s_b=-1 return s_a,s_b,s_z #################### # # define work space (real or reciprocal) to take tilt/y axis angles into account # ###################### def ang_work_space(): if ui.real_space_checkBox.isChecked(): t_ang=np.float(ui.image_angle_entry.text()) else: t_ang=np.float(ui.tilt_angle_entry.text()) return t_ang #################################################################### # # Enable or disable Wulff net # #################################################################### def wulff(): global a if ui.wulff_button.isChecked(): fn = os.path.join(os.path.dirname(__file__), 'stereo.png') img=Image.open(fn) img=img.rotate(float(ang_work_space()), fillcolor='white') img= np.array(img) else: img = 255*np.ones([600,600,3],dtype=np.uint8) circle = plt.Circle((300, 300), 300, color='black',fill=False) a.add_artist(circle) a.plot(300,300,'+',markersize=10,mew=3,color='black') a.imshow(img,interpolation="bicubic") #a.axis('off') plt.tight_layout() figure.subplots_adjust(left=0.1,right=0.9, bottom=0.05,top=0.95, hspace=0.2,wspace=0.2) a.figure.canvas.draw() def text_label(A,B): Aa=A[0] Ab=A[1] Ac=A[2] if B[3]==1 & var_hexa()==1: Aa=(2*A[0]-A[1])/3 Ab=(2*A[1]-A[0])/3 if np.sign(Aa)<0: s0=r'$\overline{'+str(np.abs(int(Aa)))+'}$' else: s0=str(np.abs(int(Aa))) if np.sign(Ab)<0: s1=r'$\overline{'+str(np.abs(int(Ab)))+'}$' else: s1=str(np.abs(int(Ab))) if np.sign(Ac)<0: s2=r'$\overline{'+str(np.abs(int(Ac)))+'}$' else: s2=str(np.abs(int(Ac))) s=s0+','+s1+','+s2 if var_hexa()==1: if np.sign(-Aa-Ab)<0: s3=r'$\overline{'+str(int(np.abs(-Aa-Ab)))+'}$' else: s3=str(int(np.abs(-Aa-Ab))) s=s0+','+s1+','+s3+','+s2 if B[3]==1: s='['+s+']' return s ####################################################################### ####################################################################### # # Main # ##################################################################### #################################################################### # # Refresh action on stereo # #################################################################### def trace(): global T,x,y,z,axes,axesh,M,trP,a,trC,s_a,s_b,s_z minx,maxx=a.get_xlim() miny,maxy=a.get_ylim() a = figure.add_subplot(111) a.figure.clear() a = figure.add_subplot(111) P=np.zeros((axes.shape[0],2)) T=np.zeros((axes.shape)) C=[] trace_plan2(trP) trace_cone2(trC) schmid_trace2(tr_schmid) tilt_axes() for i in range(0,axes.shape[0]): if axesh[i,6]==1: axeshr=np.array([axesh[i,0],axesh[i,1],axesh[i,2]]) T[i,:]=np.dot(M,axeshr) P[i,:]=proj(T[i,0],T[i,1],T[i,2])*300 if axesh[i,4]==1: C.append('g') if axesh[i,4]==2: C.append('b') if axesh[i,4]==3: C.append('r') s=text_label(axes[i,:],axesh[i,:]) a.annotate(s,(P[i,0]+300,P[i,1]+300)) if ui.reciprocal_checkBox.isChecked(): if np.shape(axes)[0]>0: s0=axesh[:,6]*axesh[:,5]/np.amax(axesh[:,5]) else: s0=axesh[:,6] else: s0=axesh[:,6] if var_carre()==0: a.scatter(P[:,0]+300,P[:,1]+300,c=C,s=s0*np.float(ui.size_var.text())) else: a.scatter(P[:,0]+300,P[:,1]+300,edgecolor=C, s=s0*np.float(ui.size_var.text()), facecolors='none', linewidths=1.5) a.axis([minx,maxx,miny,maxy]) wulff() #################################### # # Initial plot from a given diffraction # #################################### def princ(): global T,angle_alpha, angle_beta, angle_z,M,Dstar,D,g,M0,trP,axeshr,nn,a,minx,maxx,miny,maxy,trC,Stc, naxes,dmip,tr_schmid,s_a,s_b,s_z trP=np.zeros((1,5)) trC=np.zeros((1,6)) Stc=np.zeros((1,3)) tr_schmid=np.zeros((1,3)) dmip=0 naxes=0 crist() tilt_axes() if ui.reciprocal_checkBox.isChecked(): crist_reciprocal() a = figure.add_subplot(111) a.figure.clear() a = figure.add_subplot(111) diff=ui.diff_entry.text().split(",") diff1=np.float(diff[0]) diff2=np.float(diff[1]) diff3=np.float(diff[2]) tilt=ui.tilt_entry.text().split(",") tilt_a=np.float(tilt[0]) tilt_b=np.float(tilt[1]) tilt_z=np.float(tilt[2]) inclinaison=np.float(ui.inclinaison_entry.text()) diff_ang=-ang_work_space() d0=np.array([diff1,diff2,diff3]) if var_uvw()==0: d=np.dot(Dstar,d0) else: d=np.dot(Dstar,d0) if diff2==0 and diff1==0: normal=np.array([1,0,0]) ang=np.pi/2 else: normal=np.array([-d[2],0,d[0]]) ang=np.arccos(np.dot(d,np.array([0,1,0]))/np.linalg.norm(d)) R=np.dot(Rot(diff_ang,0,0,1),np.dot(Rot(-s_z*tilt_z,0,0,1),np.dot(Rot(-s_b*tilt_b,1,0,0),np.dot(Rot(-s_a*tilt_a,0,1,0),np.dot(Rot(-inclinaison,0,0,1),Rot(ang*180/np.pi, normal[0],normal[1],normal[2])))))) P=np.zeros((axes.shape[0],2)) T=np.zeros((axes.shape)) nn=axes.shape[0] C=[] for i in range(0,axes.shape[0]): if axesh[i,5]!=-1: axeshr=np.array([axesh[i,0],axesh[i,1],axesh[i,2]]) T[i,:]=np.dot(R,axeshr) P[i,:]=proj(T[i,0],T[i,1],T[i,2])*300 axeshr=axeshr/np.linalg.norm(axeshr) if axesh[i,4]==1: C.append('g') if axesh[i,4]==2: C.append('b') if axesh[i,4]==3: C.append('r') s=text_label(axes[i,:],axesh[i,:]) a.annotate(s,(P[i,0]+300,P[i,1]+300)) if ui.reciprocal_checkBox.isChecked(): if np.shape(axes)[0]>0: s0=axesh[:,6]*axesh[:,5]/np.amax(axesh[:,5]) else: s0=axesh[:,6] else: s0=axesh[:,6] if var_carre()==0: a.scatter(P[:,0]+300,P[:,1]+300,c=C,s=s0*np.float(ui.size_var.text())) else: a.scatter(P[:,0]+300,P[:,1]+300,edgecolor=C, s=s0*np.float(ui.size_var.text()), facecolors='none', linewidths=1.5) minx,maxx=-2,602 miny,maxy=-2,602 a.axis([minx,maxx,miny,maxy]) wulff() angle_alpha=0 angle_beta=0 angle_z=0 g=0 ui.angle_alpha_label_2.setText('0.0') ui.angle_beta_label_2.setText('0.0') ui.angle_z_label_2.setText('0.0') ui.angle_beta_label_2.setText('0.0') ui.angle_z_label_2.setText('0.0') ui.rg_label.setText('0.0') M=R M0=R euler_label() return T,angle_alpha,angle_beta,angle_z,g,M,M0 ##############################################" # # Plot from Euler angle # ##################################################" def princ2(): global T,angle_alpha,angle_beta,angle_z,M,Dstar,D,g,M0,trP,a,axeshr,nn,minx,maxx,miny,maxy,trC,Stc,naxes,dmip,tr_schmid,s_a,s_b,s_c trP=np.zeros((1,5)) trC=np.zeros((1,6)) Stc=np.zeros((1,3)) tr_schmid=np.zeros((1,3)) a = figure.add_subplot(111) a.figure.clear() a = figure.add_subplot(111) phi1phiphi2=ui.phi1phiphi2_entry.text().split(",") phi1=np.float(phi1phiphi2[0]) phi=np.float(phi1phiphi2[1]) phi2=np.float(phi1phiphi2[2]) dmip=0 naxes=0 crist() tilt_axes() if ui.reciprocal_checkBox.isChecked(): crist_reciprocal() P=np.zeros((axes.shape[0],2)) T=np.zeros((axes.shape)) nn=axes.shape[0] C=[] for i in range(0,axes.shape[0]): axeshr=np.array([axesh[i,0],axesh[i,1],axesh[i,2]]) T[i,:]=np.dot(rotation(phi1,phi,phi2),axeshr) P[i,:]=proj(T[i,0],T[i,1],T[i,2])*300 if color_trace()==1: C.append('g') axesh[i,4]=1 if color_trace()==2: C.append('b') axesh[i,4]=2 if color_trace()==3: C.append('r') axesh[i,4]=3 s=text_label(axes[i,:],axesh[i,:]) a.annotate(s,(P[i,0]+300,P[i,1]+300)) if ui.reciprocal_checkBox.isChecked(): s0=axesh[:,5]/np.amax(axesh[:,5]) else: s0=1 if var_carre()==0: a.scatter(P[:,0]+300,P[:,1]+300,c=C,s=s0*np.float(ui.size_var.text())) else: a.scatter(P[:,0]+300,P[:,1]+300,edgecolor=C, s=s0*np.float(ui.size_var.text()), facecolors='none', linewidths=1.5) minx,maxx=-2,602 miny,maxy=-2,602 a.axis([minx,maxx,miny,maxy]) wulff() angle_alpha=0 angle_beta=0 angle_z=0 g=0 ui.angle_alpha_label_2.setText('0.0') ui.angle_beta_label_2.setText('0.0') ui.angle_z_label_2.setText('0.0') ui.angle_beta_label_2.setText('0.0') ui.angle_z_label_2.setText('0.0') ui.rg_label.setText('0.0') M=rotation(phi1,phi,phi2) t=str(np.around(phi1,decimals=1))+str(',')+str(np.around(phi,decimals=1))+str(',')+str(np.around(phi2,decimals=1)) ui.angle_euler_label.setText(t) return T,angle_alpha,angle_beta,angle_z,g,M,naxes ####################################################################### ####################################################################### # # GUI Menu/Dialog # ####################################################################### ###################################################### # # Menu # ########################################################## ########################################################### # # Structure # ############################################################## def structure(item): global x0, var_hexa, d_label_var, e_entry ui.abc_entry.setText(str(item[1])+','+str(item[2])+','+str(item[3])) ui.alphabetagamma_entry.setText(str(item[4])+','+str(item[5])+','+str(item[6])) ii=ui.space_group_Box.findText(str(item[7])) ui.space_group_Box.setCurrentIndex(ii) if eval(item[4])==90 and eval(item[5])==90 and eval(item[6])==120 : ui.hexa_button.setChecked(True) ui.e_entry.setText('2') ui.d_label_var.setText('3') else: ui.d_entry.setText('1') ui.e_entry.setText('1') #################################################################### # # Measuring angle between two poles (for the angle dialog box) # #################################################################### def angle(): global Dstar n1=ui_angle.n1_entry.text().split(",") c100=np.float(n1[0]) c110=np.float(n1[1]) c120=np.float(n1[2]) n2=ui_angle.n2_entry.text().split(",") c200=np.float(n2[0]) c210=np.float(n2[1]) c220=np.float(n2[2]) c1=np.array([c100,c110,c120]) c2=np.array([c200,c210,c220]) if ui.uvw_button.isChecked==True: c1c=np.dot(Dstar,c1) c2c=np.dot(Dstar,c2) else: c1c=np.dot(Dstar,c1) c2c=np.dot(Dstar,c2) the=np.arccos(np.dot(c1c,c2c)/(np.linalg.norm(c1c)*np.linalg.norm(c2c))) thes=str(np.around(the*180/np.pi,decimals=2)) ui_angle.angle_label.setText(thes) ################################################## # # Schmid factor calculation (for the Schmid dialog box). Calculate the Schmid factor for a # given b,n couple or for equivalent couples # ################################################### def prod_scal(c1,c2): global M, Dstar, D alphabetagamma=ui.alphabetagamma_entry.text().split(",") alp=np.float(alphabetagamma[0])*np.pi/180 bet=np.float(alphabetagamma[1])*np.pi/180 gam=np.float(alphabetagamma[2])*np.pi/180 if np.abs(alp-np.pi/2)<0.001 and np.abs(bet-np.pi/2)<0.001 and np.abs(gam-2*np.pi/3)<0.001: c2p=np.array([0,0,0]) c2p[0]=2*c2[0]+c2[1] c2p[1]=2*c2[1]+c2[0] c2p[2]=c2[2] c2c=np.dot(D, c2p) else: c2c=np.dot(D, c2) c1c=np.dot(Dstar,c1) p=np.dot(c1c,c2c) return p def schmid_calc(b,n, T): global D, Dstar,M alphabetagamma=ui.alphabetagamma_entry.text().split(",") alp=np.float(alphabetagamma[0])*np.pi/180 bet=np.float(alphabetagamma[1])*np.pi/180 gam=np.float(alphabetagamma[2])*np.pi/180 if np.abs(alp-np.pi/2)<0.001 and np.abs(bet-np.pi/2)<0.001 and np.abs(gam-2*np.pi/3)<0.001: b2=np.array([0,0,0]) b2[0]=2*b[0]+b[1] b2[1]=2*b[1]+b[0] b2[2]=b[2] bpr=np.dot(D, b2) else: bpr=np.dot(D, b) npr=np.dot(Dstar,n) npr2=np.dot(M,npr) bpr2=np.dot(M,bpr) T=T/np.linalg.norm(T) t_ang=-ang_work_space() T=np.dot(Rot(t_ang,0,0,1),T) anglen=np.arccos(np.dot(npr2,T)/np.linalg.norm(npr2)) angleb=np.arccos(np.dot(bpr2,T)/np.linalg.norm(bpr2)) s=np.cos(anglen)*np.cos(angleb) return s def schmid_pole(pole1,pole2,pole3): global M,V,D,Dstar,G alphabetagamma=ui.alphabetagamma_entry.text().split(",") alp=np.float(alphabetagamma[0])*np.pi/180; bet=np.float(alphabetagamma[1])*np.pi/180; gam=np.float(alphabetagamma[2])*np.pi/180; v=d(pole1,pole2,pole3) N=np.array([pole1,pole2,pole3]) if np.abs(alp-np.pi/2)<0.001 and np.abs(bet-np.pi/2)<0.001 and np.abs(gam-2*np.pi/3)<0.001: N=np.array([[pole1,pole2,pole3],[pole1,pole2,-pole3],[pole2,pole1,pole3],[pole2,pole1,-pole3],[-pole1-pole2,pole2,pole3],[-pole1-pole2,pole2,-pole3],[pole1,-pole1-pole2,pole3],[pole1,-pole1-pole2,-pole3],[pole2,-pole1-pole2,pole3],[pole2,-pole1-pole2,-pole3],[-pole1-pole2,pole1,pole3],[-pole1-pole2,pole1,-pole3]]) else: if np.abs(d(pole1,pole2,-pole3)-v)<0.001: N=np.vstack((N,np.array([pole1,pole2,-pole3]))) if np.abs(d(pole1,-pole2,pole3)-v)<0.001: N=np.vstack((N,np.array([pole1,-pole2,pole3]))) if np.abs(d(-pole1,pole2,pole3)-v)<0.001: N=np.vstack((N,np.array([-pole1,pole2,pole3]))) if np.abs(d(pole2,pole1,pole3)-v)<0.001: N=np.vstack((N,np.array([pole2,pole1,pole3]))) if np.abs(d(pole2,pole1,-pole3)-v)<0.001: N=np.vstack((N,np.array([pole2,pole1,-pole3]))) if np.abs(d(pole2,-pole1,pole3)-v)<0.001: N=np.vstack((N,np.array([pole2,-pole1,pole3]))) if np.abs(d(-pole2,pole1,pole3)-v)<0.001: N=np.vstack((N,np.array([-pole2,pole1,pole3]))) if np.abs(d(pole2,pole3,pole1)-v)<0.001: N=np.vstack((N,np.array([pole2,pole3,pole1]))) if np.abs(d(pole2,pole3,pole1)-v)<0.001: N=np.vstack((N,np.array([pole2,pole3,-pole1]))) if np.abs(d(pole2,-pole3,pole1)-v)<0.001: N=np.vstack((N,np.array([pole2,-pole3,pole1]))) if np.abs(d(-pole2,pole3,pole1)-v)<0.001: N=np.vstack((N,np.array([-pole2,pole3,pole1]))) if np.abs(d(pole1,pole3,pole2)-v)<0.001: N=np.vstack((N,np.array([pole1,pole3,pole2]))) if np.abs(d(pole1,pole3,-pole2)-v)<0.001: N=np.vstack((N,np.array([pole1,pole3,-pole2]))) if np.abs(d(pole1,-pole3,pole2)-v)<0.001: N=np.vstack((N,np.array([pole1,-pole3,pole2]))) if np.abs(d(-pole1,pole3,pole2)-v)<0.001: N=np.vstack((N,np.array([-pole1,pole3,pole2]))) if np.abs(d(pole3,pole1,pole2)-v)<0.001: N=np.vstack((N,np.array([pole3,pole1,pole2]))) if np.abs(d(pole3,pole1,-pole2)-v)<0.001: N=np.vstack((N,np.array([pole3,pole1,-pole2]))) if np.abs(d(pole3,-pole1,pole2)-v)<0.001: N=np.vstack((N,np.array([pole3,-pole1,pole2]))) if np.abs(d(-pole3,pole1,pole2)-v)<0.001: N=np.vstack((N,np.array([-pole3,pole1,pole2]))) if np.abs(d(pole3,pole2,pole1)-v)<0.001: N=np.vstack((N,np.array([pole3,pole2,pole1]))) if np.abs(d(pole3,pole2,-pole1)-v)<0.001: N=np.vstack((N,np.array([pole3,pole2,-pole1]))) if np.abs(d(pole3,-pole2,pole1)-v)<0.001: N=np.vstack((N,np.array([pole3,-pole2,pole1]))) if np.abs(d(pole3,pole2,pole1)-v)<0.001: N=np.vstack((N,np.array([pole3,pole2,pole1]))) return N def schmid(): global D, Dstar,M n=ui_schmid.n_entry.text().split(",") h=np.float(n[0]) k=np.float(n[1]) l=np.float(n[2]) b=ui_schmid.b_entry.text().split(",") u=np.float(b[0]) v=np.float(b[1]) w=np.float(b[2]) n=np.array([h,k,l]) b=np.array([u,v,w]) T0=ui_schmid.T_entry.text().split(",") T=np.array([np.float(T0[0]),np.float(T0[1]),np.float(T0[2])]) s=schmid_calc(b,n,T) ui_schmid.schmid_factor_label.setText(str(np.around(s,decimals=2))) B=schmid_pole(u,v,w) N=schmid_pole(h,k,l) P=np.array([0,0,0,0,0,0,0]) for i in range(0,np.shape(N)[0]): for j in range(0,np.shape(B)[0]): if np.abs(prod_scal(N[i,:],B[j,:]))<0.0001: s=schmid_calc(B[j,:],N[i,:],T) R=np.array([s,N[i,0],N[i,1],N[i,2],B[j,0],B[j,1],B[j,2]]) P=np.vstack((P,R)) P=np.delete(P, (0), axis=0) P=unique_rows(P) P=-P P.view('float64,i8,i8,i8,i8,i8,i8').sort(order=['f0'], axis=0) P=-P ui_schmid.schmid_text.setText( 's | n | b') for k in range(0,np.shape(P)[0]): ui_schmid.schmid_text.append(str(np.around(P[k,0],decimals=3))+ '| '+str(np.int(P[k,1]))+ str(np.int(P[k,2])) +str(np.int(P[k,3]))+ '| '+ str(np.int(P[k,4]))+str(np.int(P[k,5]))+str(np.int(P[k,6]))) ####################################### # # Save stereo as png # ############################################" def image_save(): filename=QtGui.QFileDialog.getSaveFileName( Index,"Save file", "", ".png") pixmap = QtGui.QPixmap.grabWidget(canvas,55,49,710,710) pixmap.save(str(filename)+".png") ################################################## # # Calculating x,y,z direction and hkl<>uvw (for xyz dialog box) # ################################################### def center(): global D, Dstar,M A=np.dot(np.linalg.inv(M),np.array([0,0,1])) A2=np.dot(np.linalg.inv(M),np.array([1,0,0])) A3=np.dot(np.linalg.inv(M),np.array([0,1,0])) C=np.dot(np.linalg.inv(Dstar),A) Zp=C/np.linalg.norm(C) C2=np.dot(np.linalg.inv(Dstar),A2) Xp=C2/np.linalg.norm(C2) C3=np.dot(np.linalg.inv(Dstar),A3) Yp=C3/np.linalg.norm(C3) ui_xyz.X_text.setText(str(Xp[0]*100)+', '+str(Xp[1]*100)+', '+str(Xp[2]*100)) ui_xyz.Y_text.setText(str(Yp[0]*100)+', '+str(Yp[1]*100)+', '+str(Yp[2]*100)) ui_xyz.Z_text.setText(str(Zp[0]*100)+', '+str(Zp[1]*100)+', '+str(Zp[2]*100)) return Xp,Yp,Zp def to_uvw(): global Dstar, D, M hkl=ui_hkl_uvw.hkl_entry.text().split(",") plane=np.array([np.float( hkl[0]),np.float(hkl[1]),np.float(hkl[2])]) plane=plane/np.linalg.norm(plane) direction=np.dot(np.linalg.inv(D),np.dot(Dstar,plane))*1e-20 if var_hexa()==1: na=(2*direction[0]-direction[1])/3 n2a=(2*direction[1]-direction[0])/3 direction[0]=na direction[1]=n2a ui_hkl_uvw.uvw_label.setText(str(np.round(100*direction[0],decimals=3))+', '+str(np.round(100*direction[1],decimals=3))+', '+str(np.round(100*direction[2],decimals=3))) def to_hkl(): global Dstar, D, M uvw=ui_hkl_uvw.uvw_entry.text().split(",") direction=np.array([np.float( uvw[0]),np.float(uvw[1]),np.float(uvw[2])]) if var_hexa()==1: na=2*direction[0]+direction[1] n2a=2*direction[1]+direction[0] direction[0]=na direction[1]=n2a direction=direction/np.linalg.norm(direction) plane=np.dot(np.linalg.inv(Dstar),np.dot(D,direction))*1e20 ui_hkl_uvw.hkl_label.setText(str(np.round(100*plane[0],decimals=3))+', '+str(np.round(100*plane[1],decimals=3))+', '+str(np.round(100*plane[2],decimals=3))) ########################################################################## # # Apparent width class for dialog box: plot the width of a plane of given normal hkl with the tilt alpha angle. Plot trace direction with respect to the tilt axis # ########################################################################## def plot_width(): global D, Dstar, M # ui_width.figure.clf() B=np.dot(np.linalg.inv(M),np.array([0,0,1])) plan=ui_width.plane_entry.text().split(",") n=np.array([np.float(plan[0]),np.float(plan[1]),np.float(plan[2])]) nr=np.dot(Dstar,n) nr=nr/np.linalg.norm(nr) B=np.dot(Dstar,B) B=B/np.linalg.norm(B) la=np.zeros((1,41)) la2=np.zeros((2,41)) k=0 t_ang=ang_work_space() if ui_width.surface_box.isChecked(): s0=ui_width.foil_surface.text().split(",") s=np.array([np.float(s0[0]),np.float(s0[1]),np.float(s0[2])]) T=np.cross(nr,s) else: T=np.cross(nr,B) T=T/np.linalg.norm(T) for t in range(-40,41,2): Mi=np.dot(Rot(t,0,1,0), np.dot(Rot(t_ang,0,0,1),M)) Bi=np.dot(np.linalg.inv(Mi),np.array([0,0,1])) Bi=np.dot(Dstar,Bi) Bi=Bi/np.linalg.norm(Bi) Ti=np.dot(Mi,T) la[0,k]=np.dot(nr,Bi) la2[1,k]=np.arctan(Ti[0]/Ti[1])*180/np.pi la2[0,k]=np.dot(nr,Bi)/np.sqrt(1-np.dot(T,Bi)**2) k=k+1 ax1 = figure_width.add_subplot(111) ax1.set_xlabel('alpha tilt angle') ax1.tick_params('y', colors='black') if ui_width.trace_radio_button.isChecked(): ax2 = ax1.twinx() ax2.plot(range(-40,41,2),la2[1,:],'b-') ax2.set_ylabel('trace angle', color='b') ax2.tick_params('y', colors='b') if ui_width.thickness_checkBox.isChecked(): t=np.float(ui_width.thickness.text()) d=t/np.sqrt(1-np.dot(nr,B)**2) ax1.plot(range(-40,41,2),la2[0,:]*d,'r-') ax1.set_ylabel('w (nm)', color='black') else: ax1.plot(range(-40,41,2),la2[0,:],'r-') ax1.set_ylabel('w/d', color='black') ax1.figure.canvas.draw() def clear_width(): ax1 = figure_width.add_subplot(111) ax1.figure.clf() ax1.figure.canvas.draw() #################################################### # # Intersections # ####################################################### def intersect_norm(n1,n2,d): global Dstar, D, M Dr=1e10*D Dstarr=1e-10*Dstar n1=n1/np.linalg.norm(n1) n1=np.dot(Dstarr,n1) if d==0: l=ui_inter.checkBox.isChecked() n2=n2/np.linalg.norm(n2) n2=np.dot(Dstarr,n2) else: l=ui_inter.checkBox_2.isChecked() n2=np.dot(np.linalg.inv(M), n2) n=np.cross(n1,n2) if l: n=np.dot(np.linalg.inv(Dr),n) if var_hexa()==1: na=(2*n[0]-n[1])/3 n2a=(2*n[1]-n[0])/3 n[0]=na n[1]=n2a else: n=np.dot(np.linalg.inv(Dstarr),n) return n def intersections_plans(): n1_plan=ui_inter.n1_entry.text().split(",") n1=np.array([np.float( n1_plan[0]),np.float(n1_plan[1]),np.float(n1_plan[2])]) n2_plan=ui_inter.n2_entry.text().split(",") n2=np.array([np.float( n2_plan[0]),np.float(n2_plan[1]),np.float(n2_plan[2])]) n=intersect_norm(n1,n2,0) ui_inter.n1n2_label.setText(str(np.round(100*n[0],decimals=3))+', '+str(np.round(100*n[1],decimals=3))+', '+str(np.round(100*n[2],decimals=3))) def intersection_dir_proj(): global M n_proj=ui_inter.n_proj_entry.text().split(",") n=np.array([np.float( n_proj[0]),np.float(n_proj[1]),np.float(n_proj[2])]) angle=np.float(ui_inter.angle_proj_entry.text())*np.pi/180 norm_xyz=np.array([np.cos(angle),-np.sin(angle),0]) n_intersect=intersect_norm(n,norm_xyz,1) ui_inter.n_proj_label.setText(str(np.round(100*n_intersect[0],decimals=3))+', '+str(np.round(100*n_intersect[1],decimals=3))+', '+str(np.round(100*n_intersect[2],decimals=3))) def intersection_cone(): global Dstar,D Dr=1e10*D Dstarr=1e-10*Dstar n_c=ui_inter.n_cone_entry.text().split(",") n=np.array([np.float( n_c[0]),np.float(n_c[1]),np.float(n_c[2])]) c_c=ui_inter.cone_entry.text().split(",") c=np.array([np.float( c_c[0]),np.float(c_c[1]),np.float(c_c[2])]) r=np.cos(np.float(ui_inter.cone_angle_entry.text())*np.pi/180) n=np.dot(Dstarr,n) n=n/np.linalg.norm(n) c=np.dot(Dstarr,c) c=c/np.linalg.norm(c) x1=(c[0]*n[1]**2*r + c[0]*n[2]**2*r - c[1]*n[0]*n[1]*r - c[1]*n[2]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) - c[2]*n[0]*n[2]*r + c[2]*n[1]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2))/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) y1=(-c[0]*n[0]*n[1]*r + c[0]*n[2]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) + c[1]*n[0]**2*r + c[1]*n[2]**2*r - c[2]*n[0]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) - c[2]*n[1]*n[2]*r)/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) z1=(-r*(c[0]*n[0]*n[2] + c[1]*n[1]*n[2] - c[2]*n[0]**2 - c[2]*n[1]**2) + (-c[0]*n[1] + c[1]*n[0])*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2))/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) x2=(c[0]*n[1]**2*r + c[0]*n[2]**2*r - c[1]*n[0]*n[1]*r + c[1]*n[2]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) - c[2]*n[0]*n[2]*r - c[2]*n[1]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2))/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) y2=(-c[0]*n[0]*n[1]*r - c[0]*n[2]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) + c[1]*n[0]**2*r + c[1]*n[2]**2*r + c[2]*n[0]*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2) - c[2]*n[1]*n[2]*r)/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) z2=(-r*(c[0]*n[0]*n[2] + c[1]*n[1]*n[2] - c[2]*n[0]**2 - c[2]*n[1]**2) + (c[0]*n[1] - c[1]*n[0])*np.sqrt(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2 - n[0]**2*r**2 - n[1]**2*r**2 - n[2]**2*r**2))/(c[0]**2*n[1]**2 + c[0]**2*n[2]**2 - 2*c[0]*c[1]*n[0]*n[1] - 2*c[0]*c[2]*n[0]*n[2] + c[1]**2*n[0]**2 + c[1]**2*n[2]**2 - 2*c[1]*c[2]*n[1]*n[2] + c[2]**2*n[0]**2 + c[2]**2*n[1]**2) r1=np.array([x1,y1,z1]) r2=np.array([x2,y2,z2]) if ui_inter.checkBox_3.isChecked(): r1=np.dot(np.linalg.inv(Dr),r1) r2=np.dot(np.linalg.inv(Dr),r2) if var_hexa()==1: na=(2*r1[0]-r1[1])/3 n2a=(2*r1[1]-r1[0])/3 r1[0]=na r1[1]=n2a na2=(2*r2[0]-r2[1])/3 n2a2=(2*r2[1]-r2[0])/3 r2[0]=na2 r2[1]=n2a2 else: r1=np.dot(np.linalg.inv(Dstarr),r1) r2=np.dot(np.linalg.inv(Dstarr),r2) ui_inter.cone_plane_label.setText(str(np.round(100*r1[0], decimals=3))+','+str(np.round(100*r1[1], decimals=3))+','+str(np.round(100*r1[2], decimals=3))+'\n'+str(np.round(100*r2[0], decimals=3))+','+str(np.round(100*r2[1], decimals=3))+','+str(np.round(100*r2[2], decimals=3)) ) ################################################### # # Plot Kikuchi bands / Diffraction pattern # The diff spots/Kikuchi bands are computed within the kinematical approximation, owing the structure factor and scattering factors. # indicated in the corresponding txt files. The scattering factor is computed for every elements according to # a sum of Gaussian functions (see http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php) # ################################################# def diff_reciprocal(): global axesh_diff,axes_diff,G,V,Dstar e=np.int(ui_kikuchi.indices_entry.text()) axes_diff=np.zeros(((2*e+1)**3-1,3)) axesh_diff=np.zeros(((2*e+1)**3-1,4)) id=0 for i in range(-e,e+1): for j in range(-e,e+1): for k in range(-e,e+1): if (i,j,k)!=(0,0,0): Ma=np.dot(Dstar,np.array([i,j,k],float)) axesh_diff[id,0:3]=Ma/np.linalg.norm(Ma) if ui_kikuchi.diff_radioButton.isChecked(): axesh_diff[id,3]=extinction(ui.space_group_Box.currentText(),i,j,k,10000,1)[0] axes_diff[id,:]=np.array([i,j,k]) if ui_kikuchi.kikuchi_radioButton.isChecked(): m=reduce(lambda x,y:GCD(x,y),[i,j,k]) if (np.around(i/m)==i/m) & (np.around(j/m)==j/m) & (np.around(k/m)==k/m): axes_diff[id,:]=np.array([i,j,k])/m else: axes_diff[id,:]=np.array([i,j,k]) axesh_diff[id,3] id=id+1 axesh_diff=axesh_diff[~np.all(axesh_diff[:,0:3]==0, axis=1)] axes_diff=axes_diff[~np.all(axes_diff==0, axis=1)] for z in range(0, np.shape(axes_diff)[0]): I,h,k,l=extinction(ui.space_group_Box.currentText(),axes_diff[z,0],axes_diff[z,1],axes_diff[z,2],e,0) if I>0: axesh_diff[z,3]=I axes_diff[z,:]=np.array([h,k,l]) else: axesh_diff[z,0:3]=np.array([0,0,0]) axesh_diff[z,3]=1 axes_diff[z,:]=np.array([0,0,0]) axesh_diff=axesh_diff[~np.all(axesh_diff[:,0:3]==0, axis=1)] axes_diff=axes_diff[~np.all(axes_diff==0, axis=1)] return axes_diff, axesh_diff def set_diff_cond(): ui_kikuchi.t_entry.setText('100') ui_kikuchi.indices_entry.setText('5') ui_kikuchi.angle_entry.setText('3') ui_kikuchi.spot_size_entry.setText('100') ui_kikuchi.error_entry.setText('1') def set_kikuchi_cond(): ui_kikuchi.t_entry.setText(' ') ui_kikuchi.indices_entry.setText('3') ui_kikuchi.angle_entry.setText('15') ui_kikuchi.spot_size_entry.setText(' ') ui_kikuchi.error_entry.setText(' ') def plot_kikuchi(): global M,G,V,axesh_diff,axes_diff a_k = figure_kikuchi.add_subplot(111) a_k.clear() a_k = figure_kikuchi.add_subplot(111) E=np.float(ui_kikuchi.E_entry.text()) lamb=6.6e-34/np.sqrt(2*9.1e-31*1.6e-19*E*1e3*(1+1.6e-19*E*1e3/2/9.31e-31/9e16)) ang=np.float(ui_kikuchi.angle_entry.text())*np.pi/180 ap=np.sin(ang)/(1+np.cos(ang)) lim=np.tan(ang)/lamb*1e-9 m=np.max(axesh_diff[:,3]) if ui_kikuchi.diff_radioButton.isChecked(): smax=np.float(ui_kikuchi.error_entry.text())*1e9 ang_max=np.arccos(1-lamb*smax) thick=np.float(ui_kikuchi.t_entry.text())*1e-9 for t in range(0,np.shape(axesh_diff)[0]): T=np.dot(M,axesh_diff[t,0:3]) if np.abs(T[2])<np.sin(ang_max): Fg=np.sqrt(axesh_diff[t,3])*1e-10 d=1/(np.sqrt(np.dot(axes_diff[t,:],np.dot(np.linalg.inv(G),axes_diff[t,:])))) tb=np.arcsin(lamb/2/d)*180/np.pi S=(np.dot(Rot(2*tb,-T[1],T[0],0),np.array([0,0,1]))-np.array([0,0,1]))/lamb-T/d s=np.linalg.norm(S) xi=np.pi*V*np.cos(tb*np.pi/180)/lamb/Fg se=np.sqrt(s**2+1/xi**2) I=(thick*np.pi/xi)**2*np.sinc(se*thick)**2 st=str(int(axes_diff[t,0]))+','+str(int(axes_diff[t,1]))+','+str(int(axes_diff[t,2])) if ui_kikuchi.label_checkBox.isChecked(): a_k.annotate(st,(T[0]/d*1e-9,T[1]/d*1e-9), color="white") a_k.scatter(T[0]/d*1e-9,T[1]/d*1e-9,s=I*np.float(ui_kikuchi.spot_size_entry.text()), color="white") a_k.plot(0,0,'w+') a_k.axis('equal') a_k.axis([-lim,lim,-lim,lim]) a_k.axis('off') if ui_kikuchi.kikuchi_radioButton.isChecked(): for t in range(0,np.shape(axesh_diff)[0]): T=np.dot(M,axesh_diff[t,0:3]) if np.abs(T[2])<np.sin(ang): r=np.sqrt(T[0]**2+T[1]**2+T[2]**2) A=np.zeros((2,50)) B=np.zeros((2,50)) Qa=np.zeros((1,2)) Qb=np.zeros((1,2)) th=np.arctan2(T[1],T[0])*180/np.pi w=0 ph=np.arccos(T[2]/r)*180/np.pi d=1/(np.sqrt(np.dot(axes_diff[t,:],np.dot(np.linalg.inv(G),axes_diff[t,:])))) tb=np.arcsin(lamb/2/d)*180/np.pi/2 for g in np.linspace(-np.pi/2,np.pi/2,50): Aa=np.dot(Rot(th,0,0,1),np.dot(Rot(ph-tb,0,1,0),np.array([np.sin(g),np.cos(g),0]))) Ab=np.dot(Rot(th,0,0,1),np.dot(Rot(ph+tb,0,1,0),np.array([np.sin(g),np.cos(g),0]))) A[:,w]=proj_gnomonic(Aa[0],Aa[1],Aa[2])*300 B[:,w]=proj_gnomonic(Ab[0],Ab[1],Ab[2])*300 Qa=np.vstack((Qa,A[:,w])) Qb=np.vstack((Qb,B[:,w])) w=w+1 Qa=np.delete(Qa,0,0) Qb=np.delete(Qb,0,0) st=str(int(axes_diff[t,0]))+','+str(int(axes_diff[t,1]))+','+str(int(axes_diff[t,2])) if ui_kikuchi.label_checkBox.isChecked(): a_k.annotate(st,(Qa[2,0]+300,Qa[2,1]+300),ha='center', va='center',rotation=th-90, color="white") a_k.plot(Qa[:,0]+300,Qa[:,1]+300,'w-', linewidth=axesh_diff[t,3]/m) a_k.plot(Qb[:,0]+300,Qb[:,1]+300,'w-', linewidth=axesh_diff[t,3]/m) a_k.plot(300,300,'wo') a_k.set_facecolor('black') a_k.axis('equal') a_k.axis([300*(1-ap),300*(1+ap),300*(1-ap),300*(1+ap)]) a_k.figure.canvas.draw() ################################################## # # Add matplotlib toolbar to zoom and pan # ################################################### class NavigationToolbar(NavigationToolbar): # only display the buttons we need toolitems = [t for t in NavigationToolbar.toolitems if t[0] in ('Pan', 'Zoom')] def set_message(self, msg): pass ############################################################# # # Launch # #############################################################" try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) if __name__ == "__main__": app = QtGui.QApplication(sys.argv) Index = QtGui.QMainWindow() ui = stereoprojUI.Ui_StereoProj() ui.setupUi(Index) figure=plt.figure() canvas=FigureCanvas(figure) ui.mplvl.addWidget(canvas) toolbar = NavigationToolbar(canvas, canvas) toolbar.setMinimumWidth(601) # Read structure file file_struct=open(os.path.join(os.path.dirname(__file__), 'structure.txt') ,"r") x0=[] for line in file_struct: x0.append(map(str, line.split())) i=0 file_struct.close() for item in x0: entry = ui.menuStructure.addAction(item[0]) Index.connect(entry,QtCore.SIGNAL('triggered()'), lambda item=item: structure(item)) i=i+1 # Read space_group file f_space=open(os.path.join(os.path.dirname(__file__), 'space_group.txt'),"r") x_space=[] for line in f_space: x_space.append(map(str, line.split())) ui.space_group_Box.addItems(" ") for i in range(0,len(x_space)): if len(x_space[i])==1: ui.space_group_Box.addItems(x_space[i]) f_space.close() # Read scattering factor file f_scatt=open(os.path.join(os.path.dirname(__file__), 'scattering.txt'),"r") x_scatt=[] for line in f_scatt: x_scatt.append(map(str, line.split())) f_scatt.close() # Ctrl+z shortcut to remove clicked pole shortcut = QtGui.QShortcut(QtGui.QKeySequence("Ctrl+z"), Index) shortcut.activated.connect(undo_click_a_pole) # Connect dialog boxes and buttons Index.connect(ui.actionSave_figure, QtCore.SIGNAL('triggered()'), image_save) Angle=QtGui.QDialog() ui_angle=angleUI.Ui_Angle() ui_angle.setupUi(Angle) Index.connect(ui.actionCalculate_angle, QtCore.SIGNAL('triggered()'), Angle.show) ui_angle.buttonBox.rejected.connect(Angle.close) ui_angle.buttonBox.accepted.connect(angle) Xyz=QtGui.QDialog() ui_xyz=xyzUI.Ui_xyz_dialog() ui_xyz.setupUi(Xyz) Index.connect(ui.actionCalculate_xyz, QtCore.SIGNAL('triggered()'), Xyz.show) ui_xyz.xyz_button.clicked.connect(center) Hkl_uvw=QtGui.QDialog() ui_hkl_uvw=hkl_uvwUI.Ui_hkl_uvw() ui_hkl_uvw.setupUi(Hkl_uvw) Index.connect(ui.actionHkl_uvw, QtCore.SIGNAL('triggered()'),Hkl_uvw.show) ui_hkl_uvw.pushButton_to_uvw.clicked.connect(to_uvw) ui_hkl_uvw.pushButton_to_hkl.clicked.connect(to_hkl) Schmid=QtGui.QDialog() ui_schmid=schmidUI.Ui_Schmid() ui_schmid.setupUi(Schmid) Index.connect(ui.actionCalculate_Schmid_factor, QtCore.SIGNAL('triggered()'), Schmid.show) ui_schmid.buttonBox.rejected.connect(Schmid.close) ui_schmid.buttonBox.accepted.connect(schmid) Width=QtGui.QDialog() ui_width=widthUI.Ui_Width() ui_width.setupUi(Width) Index.connect(ui.actionCalculate_apparent_width, QtCore.SIGNAL('triggered()'), Width.show) ui_width.buttonBox.rejected.connect(Width.close) ui_width.buttonBox.accepted.connect(plot_width) ui_width.clear_button.clicked.connect(clear_width) figure_width=plt.figure() canvas_width=FigureCanvas(figure_width) ui_width.mplvl.addWidget(canvas_width) toolbar_width = NavigationToolbar(canvas_width, canvas_width) toolbar_width.setMinimumWidth(601) Intersections = QtGui.QDialog() ui_inter=intersectionsUI.Ui_Intersections() ui_inter.setupUi(Intersections) Index.connect(ui.actionCalculate_intersections, QtCore.SIGNAL('triggered()'), Intersections.show) ui_inter.pushButton_intersections_plans.clicked.connect(intersections_plans) ui_inter.pushButton_intersection_proj.clicked.connect(intersection_dir_proj) ui_inter.pushButton_intersection_cone.clicked.connect(intersection_cone) Kikuchi=QtGui.QDialog() ui_kikuchi=kikuchiUI.Ui_Kikuchi() ui_kikuchi.setupUi(Kikuchi) Index.connect(ui.actionPlot_Kikuchi_lines, QtCore.SIGNAL('triggered()'), Kikuchi.show) ui_kikuchi.buttonBox.rejected.connect(Kikuchi.close) ui_kikuchi.buttonBox.accepted.connect(plot_kikuchi) ui_kikuchi.Diff_button.clicked.connect(diff_reciprocal) ui_kikuchi.diff_radioButton.clicked.connect(set_diff_cond) ui_kikuchi.kikuchi_radioButton.clicked.connect(set_kikuchi_cond) ui_kikuchi.E_entry.setText('200') figure_kikuchi=plt.figure() figure_kikuchi.patch.set_facecolor('black') canvas_kikuchi=FigureCanvas(figure_kikuchi) ui_kikuchi.mplvl.addWidget(canvas_kikuchi) toolbar_kikuchi = NavigationToolbar(canvas_kikuchi, canvas_kikuchi) toolbar_kikuchi.setMinimumWidth(100) toolbar_kikuchi.setStyleSheet("background-color:White;") ui.button_trace2.clicked.connect(princ2) ui.button_trace.clicked.connect(princ) ui.reciprocal_checkBox.stateChanged.connect(lattice_reciprocal) ui.angle_alpha_buttonp.clicked.connect(rot_alpha_p) ui.angle_alpha_buttonm.clicked.connect(rot_alpha_m) ui.angle_beta_buttonp.clicked.connect(rot_beta_p) ui.angle_beta_buttonm.clicked.connect(rot_beta_m) ui.angle_z_buttonp.clicked.connect(rot_z_p) ui.angle_z_buttonm.clicked.connect(rot_z_m) ui.rot_gm_button.clicked.connect(rotgm) ui.rot_gp_button.clicked.connect(rotgp) ui.lock_checkButton.stateChanged.connect(lock) ui.addpole_button.clicked.connect(addpole) ui.undo_addpole_button.clicked.connect(undo_addpole) ui.sym_button.clicked.connect(addpole_sym) ui.undo_sym_button.clicked.connect(undo_sym) ui.trace_plan_button.clicked.connect(trace_addplan) ui.undo_trace_plan_button.clicked.connect(undo_trace_addplan) ui.trace_cone_button.clicked.connect(trace_addcone) ui.undo_trace_cone_button.clicked.connect(undo_trace_addcone) ui.trace_plan_sym_button.clicked.connect(trace_plan_sym) ui.undo_trace_plan_sym_button.clicked.connect(undo_trace_plan_sym) ui.trace_schmid_button.clicked.connect(schmid_trace) ui.undo_trace_schmid.clicked.connect(undo_schmid_trace) ui.norm_button.clicked.connect(dhkl) ui.dm_button.clicked.connect(dm) ui.dp_button.clicked.connect(dp) ui.reset_view_button.clicked.connect(reset_view) figure.canvas.mpl_connect('motion_notify_event', coordinates) figure.canvas.mpl_connect('button_press_event', click_a_pole) # Initialize variables dmip=0 var_lock=0 ui.lock_checkButton.setChecked(False) ui.color_trace_bleu.setChecked(True) ui.wulff_button.setChecked(True) ui.wulff_button.setChecked(True) ui.d_label_var.setText('0') ui.text_size_entry.setText('12') mpl.rcParams['font.size'] = ui.text_size_entry.text() ui.abc_entry.setText('1,1,1') ui.alphabetagamma_entry.setText('90,90,90') ui.phi1phiphi2_entry.setText('0,0,0') ui.e_entry.setText('1') ui.rg_label.setText('0.0') ui.angle_euler_label.setText(' ') ui.size_var.setText('40') ui.e_entry.setText('1') ui.angle_alpha_entry.setText('5') ui.angle_beta_entry.setText('5') ui.angle_z_entry.setText('5') ui.angle_beta_entry.setText('5') ui.angle_z_entry.setText('5') ui.tilt_angle_entry.setText('0') ui.image_angle_entry.setText('0') ui.d_entry.setText('1') ui.rot_g_entry.setText('5') ui.inclination_entry.setText('30') a = figure.add_subplot(111) tilt_axes() wulff() Index.show() sys.exit(app.exec_())
gpl-2.0
trankmichael/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
121
6117
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
dquartul/BLonD
blond/llrf/offset_frequency.py
2
7257
# coding: utf8 # Copyright 2014-2017 CERN. This software is distributed under the # terms of the GNU General Public Licence version 3 (GPL Version 3), # copied verbatim in the file LICENCE.md. # In applying this licence, CERN does not waive the privileges and immunities # granted to it by virtue of its status as an Intergovernmental Organization or # submit itself to any jurisdiction. # Project website: http://blond.web.cern.ch/ ''' **Frequency corrections to design frequency to allow fixed injection frequency and frequency offsets** :Authors: **Simon Albright** ''' import numpy as np import matplotlib.pyplot as plt import scipy.constants as cont class _FrequencyOffset(object): ''' Compute effect of having a different RF and design frequency ''' def __init__(self, Ring, RFStation, System = None, MainH = None): #: | *Import Ring* self.ring = Ring #: | *Import RFStation* self.rf_station = RFStation #: | *Set system number(s) to modify, if None all are modified* if isinstance(System, int): self.system = [System] elif hasattr(System, '__iter__'): self.system = [] for s in System: self.system.append(s) elif System is None: self.system = System else: raise TypeError("System must be int, iterable of ints or None") if self.system and not all((isinstance(s, int) for s in self.system)): raise TypeError("System must be int, iterable of ints or None") #: | *Main harmonic the delta F is taken as being in reference to, #: | if None RFStation.harmonic[0][0] is taken as the main* if MainH is not None: self.mainH = MainH else: self.mainH = RFStation.harmonic[0][0] def set_frequency(self, NewFrequencyProgram): ''' Set new frequency program ''' #: | *Check of frequency is passed as array of [time, freq]* if isinstance(NewFrequencyProgram, np.ndarray): if NewFrequencyProgram.shape[0] == 2: end_turn = np.where(self.ring.cycle_time >= \ NewFrequencyProgram[0][-1])[0][0] NewFrequencyProgram = np.interp(self.ring.cycle_time[:end_turn],\ NewFrequencyProgram[0], NewFrequencyProgram[1]) #: | *Store new frequency as numpy array relative to the main harmonic* self.new_frequency = np.array(NewFrequencyProgram)/self.mainH self.end_turn = len(self.new_frequency) #: | *Store design frequency during offset* self.design_frequency = self.rf_station.omega_rf_d[:,:self.end_turn] def calculate_phase_slip(self): ''' Calculate the phase slippage resulting from the frequency offset for \ each RF system ''' delta_phi = (2*np.pi * self.rf_station.harmonic[:,:self.end_turn] * (self.rf_station.harmonic[:,:self.end_turn] * self.new_frequency - self.design_frequency) / self.design_frequency) self.phase_slippage = np.cumsum(delta_phi, axis=1) def apply_new_frequency(self): ''' Sets the RF frequency and phase ''' if self.system is None: self.rf_station.omega_rf[:, :self.end_turn] = \ (self.rf_station.harmonic[:, :self.end_turn] * self.new_frequency) self.rf_station.phi_rf[:, :self.end_turn] += self.phase_slippage for n in range(self.rf_station.n_rf): self.rf_station.phi_rf[n, self.end_turn:] \ += self.phase_slippage[n,-1] else: for system in self.system: self.rf_station.omega_rf[system, :self.end_turn] \ = (self.rf_station.harmonic[system, :self.end_turn] * self.new_frequency) self.rf_station.phi_rf[system, :self.end_turn] \ += self.phase_slippage[system] self.rf_station.phi_rf[system, self.end_turn:] \ += self.phase_slippage[system,-1] class FixedFrequency(_FrequencyOffset): ''' Compute effect of fixed RF frequency different to frequency from momentum program at the start of the cycle. ''' def __init__(self, Ring, RFStation, FixedFrequency, FixedDuration, TransitionDuration, transition = 1): _FrequencyOffset.__init__(self, Ring, RFStation) #: | *Set value of fixed frequency* self.fixed_frequency = FixedFrequency #: | *Duration of fixed frequency* self.fixed_duration = FixedDuration #: | *Duration of transition to design frequency* self.transition_duration = TransitionDuration self.end_fixed_turn = np.where(self.ring.cycle_time >= \ self.fixed_duration)[0][0] self.end_transition_turn = np.where(self.ring.cycle_time >= \ (self.fixed_duration + self.transition_duration))[0][0] self.end_frequency = self.rf_station.omega_rf_d[0, self.end_transition_turn] if transition == 1: self.calculate_frequency_prog = self.transition_1 self.compute() def compute(self): self.calculate_frequency_prog() self.set_frequency(self.frequency_prog) self.calculate_phase_slip() self.apply_new_frequency() def linear_calculate_frequency_prog(self): ''' Calculate the fixed and transition frequency programs turn by turn ''' fixed_frequency_prog = np.ones(self.end_fixed_turn)*self.fixed_frequency transition_frequency_prog = np.linspace(float(self.fixed_frequency), float(self.end_frequency), (self.end_transition_turn - self.end_fixed_turn)) self.frequency_prog = np.concatenate((fixed_frequency_prog, \ transition_frequency_prog)) def transition_1(self): t1 = (self.ring.cycle_time[self.end_transition_turn] - self.ring.cycle_time[self.end_fixed_turn]) f1 = self.end_frequency f1Prime = (np.gradient(self.rf_station.omega_rf_d[0]) /np.gradient(self.ring.cycle_time))[self.end_transition_turn] constA = (t1*f1Prime - 2*(f1 - self.fixed_frequency))/t1**3 constB = - (t1*f1Prime - 3*(f1 - self.fixed_frequency))/t1**2 transTime = (self.ring.cycle_time[self.end_fixed_turn :self.end_transition_turn] - self.ring.cycle_time[self.end_fixed_turn]) transition_freq = (constA * transTime**3 + constB * transTime**2 + self.fixed_frequency) self.frequency_prog = np.concatenate((np.ones(self.end_fixed_turn) * self.fixed_frequency , transition_freq))
gpl-3.0
ClimbsRocks/scikit-learn
examples/ensemble/plot_random_forest_embedding.py
20
3529
""" ========================================================= Hashing feature transformation using Totally Random Trees ========================================================= RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification. The mapping is completely unsupervised and very efficient. This example visualizes the partitions given by several trees and shows how the transformation can also be used for non-linear dimensionality reduction or non-linear classification. Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed representation. This allows to separate two concentric circles simply based on the principal components of the transformed data. In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed space with an ExtraTreesClassifier forests learned on the original data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier from sklearn.decomposition import TruncatedSVD from sklearn.naive_bayes import BernoulliNB # make a synthetic dataset X, y = make_circles(factor=0.5, random_state=0, noise=0.05) # use RandomTreesEmbedding to transform data hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3) X_transformed = hasher.fit_transform(X) # Visualize result using PCA pca = TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) # Learn a Naive Bayes classifier on the transformed data nb = BernoulliNB() nb.fit(X_transformed, y) # Learn an ExtraTreesClassifier for comparison trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0) trees.fit(X, y) # scatter plot of original and reduced data fig = plt.figure(figsize=(9, 8)) ax = plt.subplot(221) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_title("Original Data (2d)") ax.set_xticks(()) ax.set_yticks(()) ax = plt.subplot(222) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50) ax.set_title("PCA reduction (2d) of transformed data (%dd)" % X_transformed.shape[1]) ax.set_xticks(()) ax.set_yticks(()) # Plot the decision in original space. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. h = .01 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # transform grid using RandomTreesEmbedding transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()]) y_grid_pred = nb.predict_proba(transformed_grid)[:, 1] ax = plt.subplot(223) ax.set_title("Naive Bayes on Transformed data") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) # transform grid using ExtraTreesClassifier y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] ax = plt.subplot(224) ax.set_title("ExtraTrees predictions") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() plt.show()
bsd-3-clause
econ-ark/HARK
examples/ConsIndShockModel/KinkedRconsumerType.py
1
15350
# --- # jupyter: # jupytext: # cell_metadata_filter: collapsed,code_folding # cell_metadata_json: true # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.6.0 # kernelspec: # display_name: econ-ark-3.8 # language: python # name: econ-ark-3.8 # --- # %% [markdown] # # KinkedRconsumerType: Consumption-saving model with idiosyncratic income shocks and different interest rates on borrowing and saving # %% {"code_folding": [0]} # Initial imports and notebook setup, click arrow to show import matplotlib.pyplot as plt import numpy as np from HARK.ConsumptionSaving.ConsIndShockModel import KinkedRconsumerType from HARK.utilities import plot_funcs_der, plot_funcs mystr = lambda number: "{:.4f}".format(number) # %% [markdown] # The module `HARK.ConsumptionSaving.ConsIndShockModel` concerns consumption-saving models with idiosyncratic shocks to (non-capital) income. All of the models assume CRRA utility with geometric discounting, no bequest motive, and income shocks are fully transitory or fully permanent. # # `ConsIndShockModel` currently includes three models: # 1. A very basic "perfect foresight" model with no uncertainty. # 2. A model with risk over transitory and permanent income shocks. # 3. The model described in (2), with an interest rate for debt that differs from the interest rate for savings. # # This notebook provides documentation for the third of these models. # $\newcommand{\CRRA}{\rho}$ # $\newcommand{\DiePrb}{\mathsf{D}}$ # $\newcommand{\PermGroFac}{\Gamma}$ # $\newcommand{\Rfree}{\mathsf{R}}$ # $\newcommand{\DiscFac}{\beta}$ # %% [markdown] # ## Statement of "kinked R" model # # Consider a small extension to the model faced by `IndShockConsumerType`s: that the interest rate on borrowing $a_t < 0$ is greater than the interest rate on saving $a_t > 0$. Consumers who face this kind of problem are represented by the $\texttt{KinkedRconsumerType}$ class. # # For a full theoretical treatment, this model analyzed in [A Theory of the Consumption Function, With # and Without Liquidity Constraints](http://www.econ2.jhu.edu/people/ccarroll/ATheoryv3JEP.pdf) # and its [expanded edition](http://www.econ2.jhu.edu/people/ccarroll/ATheoryv3NBER.pdf). # # Continuing to work with *normalized* variables (e.g. $m_t$ represents the level of market resources divided by permanent income), the "kinked R" model can be stated as: # # \begin{eqnarray*} # v_t(m_t) &=& \max_{c_t} {~} U(c_t) + \DiscFac (1-\DiePrb_{t+1}) \mathbb{E}_{t} \left[ (\PermGroFac_{t+1}\psi_{t+1})^{1-\CRRA} v_{t+1}(m_{t+1}) \right], \\ # a_t &=& m_t - c_t, \\ # a_t &\geq& \underline{a}, \\ # m_{t+1} &=& \Rfree_t/(\PermGroFac_{t+1} \psi_{t+1}) a_t + \theta_{t+1}, \\ # \Rfree_t &=& \cases{\Rfree_{boro} \texttt{ if } a_t < 0 \\ # \Rfree_{save} \texttt{ if } a_t \geq 0},\\ # \Rfree_{boro} &>& \Rfree_{save}, \\ # (\psi_{t+1},\theta_{t+1}) &\sim& F_{t+1}, \\ # \mathbb{E}[\psi]=\mathbb{E}[\theta] &=& 1. # \end{eqnarray*} # %% [markdown] # ## Solving the "kinked R" model # # The solution method for the "kinked R" model is nearly identical to that of the `IndShockConsumerType` on which it is based, using the endogenous grid method; see the notebook for that model for more information. The only significant difference is that the interest factor varies by $a_t$ across the exogenously chosen grid of end-of-period assets, with a discontinuity in $\Rfree$ at $a_t=0$. # # To correctly handle this, the `solveConsKinkedR` function inserts *two* instances of $a_t=0$ into the grid of $a_t$ values: the first corresponding to $\Rfree_{boro}$ ($a_t = -0$) and the other corresponding to $\Rfree_{save}$ ($a_t = +0$). The two consumption levels (and corresponding endogenous $m_t$ gridpoints) represent points at which the agent's first order condition is satisfied at *exactly* $a_t=0$ at the two different interest factors. In between these two points, the first order condition *does not hold with equality*: the consumer will end the period with exactly $a_t=0$, consuming $c_t=m_t$, but his marginal utility of consumption exceeds the marginal value of saving and is less than the marginal value of borrowing. This generates a consumption function with *two* kinks: two concave portions (for borrowing and saving) with a linear segment of slope 1 in between. # %% [markdown] # ## Example parameter values to construct an instance of KinkedRconsumerType # # The parameters required to create an instance of `KinkedRconsumerType` are nearly identical to those for `IndShockConsumerType`. The only difference is that the parameter $\texttt{Rfree}$ is replaced with $\texttt{Rboro}$ and $\texttt{Rsave}$. # # While the parameter $\texttt{CubicBool}$ is required to create a valid `KinkedRconsumerType` instance, it must be set to `False`; cubic spline interpolation has not yet been implemented for this model. In the future, this restriction will be lifted. # # | Parameter | Description | Code | Example value | Time-varying? | # | :---: | --- | --- | --- | --- | # | $\DiscFac$ |Intertemporal discount factor | $\texttt{DiscFac}$ | $0.96$ | | # | $\CRRA $ |Coefficient of relative risk aversion | $\texttt{CRRA}$ | $2.0$ | | # | $\Rfree_{boro}$ | Risk free interest factor for borrowing | $\texttt{Rboro}$ | $1.20$ | | # | $\Rfree_{save}$ | Risk free interest factor for saving | $\texttt{Rsave}$ | $1.01$ | | # | $1 - \DiePrb_{t+1}$ |Survival probability | $\texttt{LivPrb}$ | $[0.98]$ | $\surd$ | # |$\PermGroFac_{t+1}$|Permanent income growth factor|$\texttt{PermGroFac}$| $[1.01]$ | $\surd$ | # | $\sigma_\psi $ | Standard deviation of log permanent income shocks | $\texttt{PermShkStd}$ | $[0.1]$ |$\surd$ | # | $N_\psi $ | Number of discrete permanent income shocks | $\texttt{PermShkCount}$ | $7$ | | # | $\sigma_\theta $ | Standard deviation of log transitory income shocks | $\texttt{TranShkStd}$ | $[0.2]$ | $\surd$ | # | $N_\theta $ | Number of discrete transitory income shocks | $\texttt{TranShkCount}$ | $7$ | | # | $\mho$ | Probability of being unemployed and getting $\theta=\underline{\theta}$ | $\texttt{UnempPrb}$ | $0.05$ | | # | $\underline{\theta} $ | Transitory shock when unemployed | $\texttt{IncUnemp}$ | $0.3$ | | # | $\mho^{Ret}$ | Probability of being "unemployed" when retired | $\texttt{UnempPrb}$ | $0.0005$ | | # | $\underline{\theta}^{Ret} $ | Transitory shock when "unemployed" and retired | $\texttt{IncUnemp}$ | $0.0$ | | # | $(none)$ | Period of the lifecycle model when retirement begins | $\texttt{T_retire}$ | $0$ | | # | $(none)$ | Minimum value in assets-above-minimum grid | $\texttt{aXtraMin}$ | $0.001$ | | # | $(none)$ | Maximum value in assets-above-minimum grid | $\texttt{aXtraMax}$ | $20.0$ | | # | $(none)$ | Number of points in base assets-above-minimum grid | $\texttt{aXtraCount}$ | $48$ | | # | $(none)$ | Exponential nesting factor for base assets-above-minimum grid | $\texttt{aXtraNestFac}$ | $3$ | | # | $(none)$ | Additional values to add to assets-above-minimum grid | $\texttt{aXtraExtra}$ | $None$ | | # | $\underline{a} $ | Artificial borrowing constraint (normalized) | $\texttt{BoroCnstArt}$ | $None$ | | # | $(none) $ |Indicator for whether $\texttt{vFunc}$ should be computed | $\texttt{vFuncBool}$ | $True$ | | # | $(none)$ |Indicator for whether $\texttt{cFunc}$ should use cubic splines | $\texttt{CubicBool}$ | $False$ | | # |$T$| Number of periods in this type's "cycle" |$\texttt{T_cycle}$| $1$ | | # |(none)| Number of times the "cycle" occurs |$\texttt{cycles}$| $0$ | | # # These example parameters are almostidentical to those used for `IndShockExample` in the prior notebook, except that the interest rate on borrowing is 20% (like a credit card), and the interest rate on saving is 1%. Moreover, the artificial borrowing constraint has been set to `None`. The cell below defines a parameter dictionary with these example values. # %% {"code_folding": [0]} KinkedRdict = { # Click the arrow to expand this parameter dictionary # Parameters shared with the perfect foresight model "CRRA": 2.0, # Coefficient of relative risk aversion "DiscFac": 0.96, # Intertemporal discount factor "LivPrb": [0.98], # Survival probability "PermGroFac": [1.01], # Permanent income growth factor "BoroCnstArt": None, # Artificial borrowing constraint; imposed minimum level of end-of period assets # New parameters unique to the "kinked R" model "Rboro": 1.20, # Interest factor on borrowing (a < 0) "Rsave": 1.01, # Interest factor on saving (a > 0) # Parameters that specify the income distribution over the lifecycle (shared with IndShockConsumerType) "PermShkStd": [0.1], # Standard deviation of log permanent shocks to income "PermShkCount": 7, # Number of points in discrete approximation to permanent income shocks "TranShkStd": [0.2], # Standard deviation of log transitory shocks to income "TranShkCount": 7, # Number of points in discrete approximation to transitory income shocks "UnempPrb": 0.05, # Probability of unemployment while working "IncUnemp": 0.3, # Unemployment benefits replacement rate "UnempPrbRet": 0.0005, # Probability of "unemployment" while retired "IncUnempRet": 0.0, # "Unemployment" benefits when retired "T_retire": 0, # Period of retirement (0 --> no retirement) "tax_rate": 0.0, # Flat income tax rate (legacy parameter, will be removed in future) # Parameters for constructing the "assets above minimum" grid (shared with IndShockConsumerType) "aXtraMin": 0.001, # Minimum end-of-period "assets above minimum" value "aXtraMax": 20, # Maximum end-of-period "assets above minimum" value "aXtraCount": 48, # Number of points in the base grid of "assets above minimum" "aXtraNestFac": 3, # Exponential nesting factor when constructing "assets above minimum" grid "aXtraExtra": [None], # Additional values to add to aXtraGrid # A few other paramaters (shared with IndShockConsumerType) "vFuncBool": True, # Whether to calculate the value function during solution "CubicBool": False, # Preference shocks currently only compatible with linear cFunc "T_cycle": 1, # Number of periods in the cycle for this agent type # Parameters only used in simulation (shared with PerfForesightConsumerType) "AgentCount": 10000, # Number of agents of this type "T_sim": 500, # Number of periods to simulate "aNrmInitMean": -6.0, # Mean of log initial assets "aNrmInitStd": 1.0, # Standard deviation of log initial assets "pLvlInitMean": 0.0, # Mean of log initial permanent income "pLvlInitStd": 0.0, # Standard deviation of log initial permanent income "PermGroFacAgg": 1.0, # Aggregate permanent income growth factor "T_age": None, # Age after which simulated agents are automatically killed } # %% [markdown] # ## Solving and examining the solution of the "kinked R" model # # The cell below creates an infinite horizon instance of `KinkedRconsumerType` and solves its model by calling its `solve` method. # %% KinkyExample = KinkedRconsumerType(**KinkedRdict) KinkyExample.cycles = 0 # Make the example infinite horizon KinkyExample.solve() # %% [markdown] # An element of a `KinkedRconsumerType`'s solution will have all the same attributes as that of a `IndShockConsumerType`; see that notebook for details. # # We can plot the consumption function of our "kinked R" example, as well as the MPC: # %% print("Kinked R consumption function:") plot_funcs(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5) print("Kinked R marginal propensity to consume:") plot_funcs_der(KinkyExample.solution[0].cFunc, KinkyExample.solution[0].mNrmMin, 5) # %% [markdown] # ## Simulating the "kinked R" model # # In order to generate simulated data, an instance of `KinkedRconsumerType` needs to know how many agents there are that share these particular parameters (and are thus *ex ante* homogeneous), the distribution of states for newly "born" agents, and how many periods to simulated. These simulation parameters are described in the table below, along with example values. # # | Description | Code | Example value | # | :---: | --- | --- | # | Number of consumers of this type | $\texttt{AgentCount}$ | $10000$ | # | Number of periods to simulate | $\texttt{T_sim}$ | $500$ | # | Mean of initial log (normalized) assets | $\texttt{aNrmInitMean}$ | $-6.0$ | # | Stdev of initial log (normalized) assets | $\texttt{aNrmInitStd}$ | $1.0$ | # | Mean of initial log permanent income | $\texttt{pLvlInitMean}$ | $0.0$ | # | Stdev of initial log permanent income | $\texttt{pLvlInitStd}$ | $0.0$ | # | Aggregrate productivity growth factor | $\texttt{PermGroFacAgg}$ | $1.0$ | # | Age after which consumers are automatically killed | $\texttt{T_age}$ | $None$ | # # Here, we will simulate 10,000 consumers for 500 periods. All newly born agents will start with permanent income of exactly $P_t = 1.0 = \exp(\texttt{pLvlInitMean})$, as $\texttt{pLvlInitStd}$ has been set to zero; they will have essentially zero assets at birth, as $\texttt{aNrmInitMean}$ is $-6.0$; assets will be less than $1\%$ of permanent income at birth. # # These example parameter values were already passed as part of the parameter dictionary that we used to create `KinkyExample`, so it is ready to simulate. We need to set the `track_vars` attribute to indicate the variables for which we want to record a *history*. # %% KinkyExample.track_vars = ['mNrm', 'cNrm', 'pLvl'] KinkyExample.initialize_sim() KinkyExample.simulate() # %% [markdown] # We can plot the average (normalized) market resources in each simulated period: # %% plt.plot(np.mean(KinkyExample.history['mNrm'], axis=1)) plt.xlabel("Time") plt.ylabel("Mean market resources") plt.show() # %% [markdown] # Now let's plot the distribution of (normalized) assets $a_t$ for the current population, after simulating for $500$ periods; this should be fairly close to the long run distribution: # %% plt.plot(np.sort(KinkyExample.state_now['aNrm']), np.linspace(0.0, 1.0, KinkyExample.AgentCount)) plt.xlabel("End-of-period assets") plt.ylabel("Cumulative distribution") plt.ylim(-0.01, 1.01) plt.show() # %% [markdown] # We can see there's a significant point mass of consumers with *exactly* $a_t=0$; these are consumers who do not find it worthwhile to give up a bit of consumption to begin saving (because $\Rfree_{save}$ is too low), and also are not willing to finance additional consumption by borrowing (because $\Rfree_{boro}$ is too high). # # The smaller point masses in this distribution are due to $\texttt{HARK}$ drawing simulated income shocks from the discretized distribution, rather than the "true" lognormal distributions of shocks. For consumers who ended $t-1$ with $a_{t-1}=0$ in assets, there are only 8 values the transitory shock $\theta_{t}$ can take on, and thus only 8 values of $m_t$ thus $a_t$ they can achieve; the value of $\psi_t$ is immaterial to $m_t$ when $a_{t-1}=0$. You can verify this by changing $\texttt{TranShkCount}$ to some higher value, like 25, in the dictionary above, then running the subsequent cells; the smaller point masses will not be visible to the naked eye. # %% # %% # %%
apache-2.0
drasmuss/numpy
numpy/linalg/linalg.py
11
75845
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, transpose, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, ravel, all, Inf, dot, add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size, finfo, errstate, geterrobj, longdouble, rollaxis, amin, amax, product, abs, broadcast, atleast_2d, intp, asanyarray, isscalar ) from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ pass # Dealing with errors in _umath_linalg _linalg_error_extobj = None def _determine_error_states(): global _linalg_error_extobj errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] _linalg_error_extobj = [bufsize, invalid_call_errmask, None] _determine_error_states() def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % len(a.shape)) def _assertRankAtLeast2(*arrays): for a in arrays: if len(a.shape) < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % len(a.shape)) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError('Array must be square') def _assertNdSquareness(*arrays): for a in arrays: if max(a.shape[-2:]) != min(a.shape[-2:]): raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _assertNoEmpty2d(*arrays): for a in arrays: if a.size == 0 and product(a.shape[-2:]) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorinv, einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine _gesv `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: if a.shape[-1] == 0 and b.shape[-1] == 0: # Legal, but the ufunc cannot handle the 0-sized inner dims # let the ufunc handle all wrong cases. a = a.reshape(a.shape[:-1]) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve1 else: if b.size == 0: if (a.shape[-1] == 0 and b.shape[-2] == 0) or b.shape[-1] == 0: a = a[:,:1].reshape(a.shape[:-1] + (1,)) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if a.shape[-1] == 0: # The inner array is 0x0, the ufunc cannot handle this case return wrap(empty_like(a, dtype=result_t)) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,) 'full' : alias of 'reduced', deprecated 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced' and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in Numpy 1.8 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated.", warnings.warn(msg, DeprecationWarning) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) _assertNoEmpty2d(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Same as `lower`, with 'L' for lower and 'U' for upper triangular. Deprecated. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines _syevd, _heevd Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : (..., M, N) array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. s : (..., K) array The singular values for every matrix, sorted in descending order. v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine _gesdd The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 9), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m = a.shape[-2] n = a.shape[-1] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vt = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return wrap(u), s, wrap(vt) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x, compute_uv=False) return s[..., 0]/s[..., -1] else: return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1)) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * max(M.shape) * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : (N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) if isscalar(sign): sign = sign.astype(result_t) else: sign = sign.astype(result_t, copy=False) if isscalar(logdet): logdet = logdet.astype(real_t) else: logdet = logdet.astype(real_t, copy=False) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) if isscalar(r): r = r.astype(result_t) else: r = r.astype(result_t, copy=False) return r # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. Singular values are set to zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(), (1,), (K,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print(m, c) 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError('SVD did not converge in Linear Least Squares') resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) st = s[:min(n, m)].astype(result_real_t, copy=True) return wrap(x), wrap(resids), results['rank'], st def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by numpy.linalg.norm(). Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or numpy.amax or numpy.sum. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ if row_axis > col_axis: row_axis -= 1 y = rollaxis(rollaxis(x, col_axis, x.ndim), row_axis, -1) result = op(svd(y, compute_uv=0), axis=-1) return result def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0 >>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) if not issubclass(x.dtype.type, inexact): x = x.astype(float) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).astype(float).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") if x.dtype.type is longdouble: # Convert to a float type, so integer arrays give # float results. Don't apply asfarray to longdouble arrays, # because it will downcast to float64. absx = abs(x) else: absx = x if isComplexType(x.dtype.type) else asfarray(x) if absx.dtype is x.dtype: absx = abs(absx) else: # if the type changed, we can safely overwrite absx abs(absx, out=absx) absx **= ord return add.reduce(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord) elif len(axis) == 2: row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if not (0 <= row_axis < nd and 0 <= col_axis < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random(10000, 100) >>> B = np.random.random(100, 1000) >>> C = np.random.random(1000, 5) >>> D = np.random.random(5, 333) >>> # the actual dot multiplication >>> multi_dot([A, B, C, D]) instead of:: >>> np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> A.dot(B).dot(C).dot(D) Example: multiplication costs of different parenthesizations ------------------------------------------------------------ The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ # cost1 = cost((AB)C) cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB) A.shape[0] * B.shape[1] * C.shape[1]) # (--)C # cost2 = cost((AB)C) cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC) A.shape[0] * A.shape[1] * C.shape[1]) # A(--) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
bsd-3-clause
MIREL-UNC/wikipedia-ner
svm.py
1
1752
#!/usr/bin/env python #-*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import argparse import numpy as np import os import pandas as pd import sys from sklearn.externals import joblib from sklearn.linear_model import SGDClassifier from wikipedianer.dataset import HandcraftedFeaturesDataset from wikipedianer.pipeline.util import CL_ITERATIONS if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('dataset_path', type=str) parser.add_argument('labels_path', type=str) parser.add_argument('indices_path', type=str) parser.add_argument('results_path', type=str) args = parser.parse_args() dataset = HandcraftedFeaturesDataset(args.dataset_path, args.labels_path, args.indices_path) for iidx, iteration in enumerate(CL_ITERATIONS[:-1]): print('Running for iteration %s' % iteration, file=sys.stderr) model = SGDClassifier(verbose=1, n_jobs=12) model.fit(dataset.train_dataset, dataset.train_labels[:, iidx]) print('Getting results', file=sys.stderr) y_true = dataset.test_labels[:, iidx] y_pred = model.predict(dataset.test_dataset) results = pd.DataFrame(np.vstack([y_true, y_pred]).T, columns=['true', 'prediction']) print('Saving results', file=sys.stderr) results.to_csv(os.path.join(args.results_path, 'test_predictions_SVM_%s.csv' % iteration), index=False) print('Saving model', file=sys.stderr) joblib.dump(model, os.path.join(args.results_path, 'model_SVM_%s.pkl' % iteration)) print('Finished all iterations', file=sys.stderr)
gpl-3.0
Safery/RSX-Tracker
v0.0/RSX_TrackerV2.py
1
4286
import matplotlib.pyplot as plt from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, \ AnnotationBbox from matplotlib.cbook import get_sample_data import matplotlib.image as mpimg import numpy as np fig, ax = plt.subplots() class RSX_Mapper(): '''Initiate RSX_Mapper Class''' def __init__(self, rcord=None, lcord=None): '''(RSX_Mapper, [float, float], [float, float]) -> NoneType ''' self.MapName = [] self.rcord = [] self.lcord = [] if ((rcord == None) or (lcord == None)): cords = get_cord() self.rcord = cords[0] self.lcord = cords[1] return None else: self.rcord = rcord[0] self.lcord = lcord[1] ax.set_xlim(float(lcord[0]),float(rcord[0])) ax.set_ylim(float(lcord[1]),float(rcord[1])) return None def __str__(self): '''(RSX_Mapper) -> str ''' pass def set_custom_cord(self, rcord, lcord): ''' ''' ax.set_xlim(float(lcord[0]),float(rcord[0])) ax.set_ylim(float(lcord[1]),float(rcord[1])) self.lcord = [float(lcord[0]),float(rcord[0])] self.rcord = [float(lcord[1]),float(rcord[1])] plt.draw() plt.show() return None def set_range(self, auto=True, ticks=None): ''' ''' if (auto == True): ax.set_xticks([0.000964875]) ax.set_yticks([0.000964875]) else: ax.set_xticks([float(ticks)]) ax.set_yticks([float(ticks)]) return None def set_img(self, longi=None, lat=None, MapName='map.png', lcord, rcord): ''' ''' if ((longi == None) or (lat == None)): get_inp = input('Must provide Longitude and Latitude [Lat, Longi]\n >>> ') longi=get_inp[1] lat=[0] if (MapName in self.MapName): get_inp = input('Map Image already exists. Continue (y/n)?\n >>> ') if (get_inp == 'y'): img = mpimg.imread("img/"+str(MapName)) imagebox = OffsetImage(img, zoom=0.5) ab = AnnotationBbox(imagebox, (longi, lat), xybox=(0, 0), xycoords='data', boxcoords="offset points", pad=0, frameon=False) self.MapName.append("img/"+str(MapName)) ax.add_artist(ab) plt.draw() else: return 'No Map Image added.' else: '''img = mpimg.imread("img/"+str(MapName)) imagebox = OffsetImage(img, zoom=0.5) ab = AnnotationBbox(imagebox, (longi, lat), xybox=(0, 0), xycoords='data', boxcoords="offset points", pad=0, frameon=False) self.MapName.append("img/"+str(MapName)) ax.add_artist(ab) plt.draw() ''' img = mpimg.imread("img/"+str(MapName)) plt.imshow(img, extent = [float(lcord[0]),float(rcord[0]),float(lcord[1]),float(rcord[1])]) plt.show() def get_cord(): ''' ''' # Gets the top right Coordinate (Longitude and Latitude) _top_rcord = [] get_input = raw_input('What is the top right Coordinate?\n>>> ') _top_rcord.append(get_input[:int(str(get_input.find(',')))]) _top_rcord.append(get_input[int(str(get_input.find(',')))+1:]) # Gets the bottom left Coordinate (Longitude and Latitude) _bottom_rcord = [] get_input = raw_input('What is the bottom left Coordinate?\n>>> ') _bottom_rcord.append(get_input[:int(str(get_input.find(',')))]) _bottom_rcord.append(get_input[int(str(get_input.find(',')))+1:]) # Sets the axis length ax.set_xlim(float(_bottom_rcord[0]),float(_top_rcord[0])) ax.set_ylim(float(_bottom_rcord[1]),float(_top_rcord[1])) return [_top_rcord, _bottom_rcord]
mit
ptitjano/bokeh
bokeh/charts/utils.py
1
20165
""" This is the utils module that collects convenience functions and code that are useful for charts ecosystem. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import itertools import json from collections import OrderedDict, defaultdict from copy import copy from math import cos, sin from colorsys import hsv_to_rgb from pandas.io.json import json_normalize import pandas as pd import numpy as np from six import iteritems from ..models.glyphs import ( Asterisk, Circle, CircleCross, CircleX, Cross, Diamond, DiamondCross, InvertedTriangle, Square, SquareCross, SquareX, Triangle, X) from ..models.sources import ColumnDataSource from ..plotting.helpers import DEFAULT_PALETTE #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- DEFAULT_COLUMN_NAMES = 'abcdefghijklmnopqrstuvwxyz' # map between distinct set of marker names and marker classes marker_types = OrderedDict( [ ("circle", Circle), ("square", Square), ("triangle", Triangle), ("diamond", Diamond), ("inverted_triangle", InvertedTriangle), ("asterisk", Asterisk), ("cross", Cross), ("x", X), ("circle_cross", CircleCross), ("circle_x", CircleX), ("square_x", SquareX), ("square_cross", SquareCross), ("diamond_cross", DiamondCross), ] ) def take(n, iterable): """Return first n items of the iterable as a list.""" return itertools.islice(iterable, n) def cycle_colors(chunk, palette=DEFAULT_PALETTE): """ Build a color list just cycling through a given palette. Args: chuck (seq): the chunk of elements to generate the color list palette (seq[color]) : a palette of colors to cycle through Returns: colors """ colors = [] g = itertools.cycle(palette) for i in range(len(chunk)): colors.append(next(g)) return colors def polar_to_cartesian(r, start_angles, end_angles): """Translate polar coordinates to cartesian. Args: r (float): radial coordinate start_angles (list(float)): list of start angles end_angles (list(float)): list of end_angles angles Returns: x, y points """ cartesian = lambda r, alpha: (r*cos(alpha), r*sin(alpha)) points = [] for r, start, end in zip(r, start_angles, end_angles): points.append(cartesian(r, (end + start)/2)) return zip(*points) def ordered_set(iterable): """Creates an ordered list from strings, tuples or other hashable items. Returns: list of unique and ordered values """ mmap = {} ord_set = [] for item in iterable: # Save unique items in input order if item not in mmap: mmap[item] = 1 ord_set.append(item) return ord_set def collect_attribute_columns(**specs): """Collect list of unique and ordered columns across attribute specifications. Args: specs (dict): attribute name, :class:`AttrSpec` mapping Returns: list of columns in order as they appear in attr spec and without duplicates """ # filter down to only the specs with columns assigned to them selected_specs = {spec_name: spec for spec_name, spec in iteritems(specs) if spec.columns} # all columns used in selections of attribute specifications spec_cols = list(itertools.chain.from_iterable([spec.columns for spec in selected_specs.values()])) # return a list of unique columns in order as they appear return ordered_set(spec_cols) def df_from_json(data, rename=True, **kwargs): """Attempt to produce :class:`pandas.DataFrame` from hierarchical json-like data. This utility wraps the :func:`pandas.io.json.json_normalize` function and by default will try to rename the columns produced by it. Args: data (str or list(dict) or dict(list(dict))): a path to json data or loaded json data. This function will look into the data and try to parse it correctly based on common structures of json data. rename (bool, optional: try to rename column hierarchy to the base name. So medals.bronze would end up being bronze. This will only rename to the base column name if the name is unique, and only if the pandas json parser produced columns that have a '.' in the column name. **kwargs: any kwarg supported by :func:`pandas.io.json.json_normalize` Returns: a parsed pandas dataframe from the json data, unless the path does not exist, the input data is nether a list or dict. In that case, it will return `None`. """ parsed = None if isinstance(data, str): with open(data) as data_file: data = json.load(data_file) if isinstance(data, list): parsed = json_normalize(data) elif isinstance(data, dict): for k, v in iteritems(data): if isinstance(v, list): parsed = json_normalize(v) # try to rename the columns if configured to if rename and parsed is not None: parsed = denormalize_column_names(parsed) return parsed def denormalize_column_names(parsed_data): """Attempts to remove the column hierarchy if possible when parsing from json. Args: parsed_data (:class:`pandas.DataFrame`): df parsed from json data using :func:`pandas.io.json.json_normalize`. Returns: dataframe with updated column names """ cols = parsed_data.columns.tolist() base_columns = defaultdict(list) for col in cols: if '.' in col: # get last split of '.' to get primary column name base_columns[col].append(col.split('.')[-1]) rename = {} # only rename columns if they don't overlap another base column name for col, new_cols in iteritems(base_columns): if len(new_cols) == 1: rename[col] = new_cols[0] if len(list(rename.keys())) > 0: return parsed_data.rename(columns=rename) else: return parsed_data def get_index(data): """A generic function to return the index from values. Should be used to abstract away from specific types of data. Args: data (:class:`pandas.Series`, :class:`pandas.DataFrame`): a data source to return or derive an index for. Returns: a pandas index """ return data.index def get_unity(data, value=1): """Returns a column of ones with the same length as input data. Useful for charts that need this special data type when no input is provided for one of the dimensions. Args: data (:class:`pandas.DataFrame`): the data to add constant column to. value (str, int, object): a valid value for a dataframe, used as constant value for each row. Returns: a copy of `data` with a column of '_charts_ones' added to it """ data_copy = data.copy() data_copy['_charts_ones'] = value return data_copy['_charts_ones'] special_columns = {'index': get_index, 'unity': get_unity} def title_from_columns(cols): """Creates standard string representation of columns. If cols is None, then None is returned. """ if cols is not None: cols_title = copy(cols) if not isinstance(cols_title, list): cols_title = [cols_title] return str(', '.join(cols_title).title()).title() else: return None def gen_column_names(n): """Produces list of unique column names of length n. Args: n (int): count of column names to provide Returns: list(str) of length `n` """ col_names = list(DEFAULT_COLUMN_NAMES) # a-z if n < len(col_names): return list(take(n, col_names)) # a-z and aa-zz (500+ columns) else: n_left = n - len(col_names) labels = [''.join(item) for item in take(n_left, itertools.product(DEFAULT_COLUMN_NAMES, DEFAULT_COLUMN_NAMES))] col_names.extend(labels) return col_names def generate_patch_base(x, y, base=0.0): """ Adds base to the start and end of y, and extends x to match the length. Args: x (`pandas.Series`): x values for the area chart y (`pandas.Series`): y values for the area chart base (float): the flat side of the area glyph Returns: x, y: tuple containing padded x and y as `numpy.ndarray` """ x = x.values y = y.values # add base of area by starting and ending at base y0 = np.insert(y, 0, base) y0 = np.append(y0, base) # make sure y is same length as x x0 = np.insert(x, 0, x[0]) x0 = np.append(x0, x0[-1]) return x0, y0 class ChartHelp(object): """Builds, formats, and displays help for the chart function""" def __init__(self, *builders): self.builders = builders def __repr__(self): help_str = '' for builder in self.builders: help_str += builder.generate_help() return help_str def help(*builders): """Adds a ChartHelp object to the help attribute of the function.""" def add_help(f): f.help = ChartHelp(*builders) return f return add_help def derive_aggregation(dim_cols, agg_col, agg): """Produces consistent aggregation spec from optional column specification. This utility provides some consistency to the flexible inputs that can be provided to charts, such as not specifying dimensions to aggregate on, not specifying an aggregation, and/or not specifying a column to aggregate on. """ if dim_cols == 'index' or agg_col == 'index' or dim_cols is None: agg = None agg_col = None elif agg_col is None: if isinstance(dim_cols, list): agg_col = dim_cols[0] else: agg_col = dim_cols agg = 'count' return agg_col, agg def build_wedge_source(df, cat_cols, agg_col=None, agg='mean', level_width=0.5, level_spacing=0.01): df = cat_to_polar(df, cat_cols, agg_col, agg, level_width) add_wedge_spacing(df, level_spacing) df['centers'] = df['outers'] - (df['outers'] - df['inners']) / 2.0 # scale level 0 text position towards outside of wedge if center is not a donut if not isinstance(level_spacing, list): df.ix[df['level'] == 0, 'centers'] *= 1.5 return df def shift_series(s): """Produces a copy of the provided series shifted by one, starting with 0.""" s0 = s.copy() s0 = s0.shift(1) s0.iloc[0] = 0.0 return s0 def _create_start_end(levels): """Produces wedge start and end values from list of dataframes for each level. Returns: start, end: two series describing starting and ending angles in radians """ rads = levels[0].copy() for level in levels[1:]: rads = rads * level rads *= (2 * np.pi) end = rads.cumsum() start = shift_series(end) return start, end def cat_to_polar(df, cat_cols, agg_col=None, agg='mean', level_width=0.5): """Return start and end angles for each index in series. Returns: df: a `pandas.DataFrame` describing each aggregated wedge """ agg_col, agg = derive_aggregation(cat_cols, agg_col, agg) def calc_span_proportion(data): """How much of the circle should be assigned.""" return data/data.sum() # group by each level levels_cols = [] starts = [] ends = [] levels = [] agg_values = [] for i in range(0, len(cat_cols)): level_cols = cat_cols[:i+1] if agg_col is not None and agg is not None: gb = getattr(getattr(df.groupby(level_cols), agg_col), agg)() else: cols = [col for col in df.columns if col != 'index'] gb = df[cols[0]] # lower than top level, need to groupby next to lowest level group_level = i - 1 if group_level >= 0: levels.append(gb.groupby(level=group_level).apply(calc_span_proportion)) else: levels.append(calc_span_proportion(gb)) start_ends = _create_start_end(levels) starts.append(start_ends[0]) ends.append(start_ends[1]) agg_values.append(gb) # build array of constant value representing the level this_level = start_ends[0].copy() this_level[:] = i levels_cols.append(this_level) df = pd.DataFrame({'start': pd.concat(starts), 'end': pd.concat(ends), 'level': pd.concat(levels_cols), 'values': pd.concat(agg_values)}) if len(cat_cols) > 1: idx = df.index.copy().values for i, val in enumerate(df.index): if not isinstance(val, tuple): val = (val, '') idx[i] = val df.index = pd.MultiIndex.from_tuples(idx) df.index.names = cat_cols # sort the index to avoid performance warning (might alter chart) df.sortlevel(inplace=True) inners, outers = calc_wedge_bounds(df['level'], level_width) df['inners'] = inners df['outers'] = outers return df def add_text_label_from_index(df): """Add column for text label, based on level-oriented index. This is used for the donut chart, where there is a hierarchy of categories, which are separated and encoded into the index of the data. If there are 3 levels (columns) used, then a 3 level multi-index is used. Level 0 will have each of the values of the first column, then NaNs for the next two. The last non-empty level is used for the label of that row. """ text = [] for idx in df.index: row_text = '' if isinstance(idx, tuple): # the lowest, non-empty index is the label for lev in reversed(idx): if lev is not '' and row_text == '': row_text = str(lev) else: row_text = str(idx) text.append(row_text) df['text'] = text return df def build_wedge_text_source(df, start_col='start', end_col='end', center_col='centers'): """Generate `ColumnDataSource` for text representation of donut levels. Returns a data source with 3 columns, 'text', 'x', and 'y', where 'text' is a derived label from the `~pandas.MultiIndex` provided in `df`. """ x, y = polar_to_cartesian(df[center_col], df[start_col], df[end_col]) # extract text from the levels in index df = add_text_label_from_index(df) df['text_angle'] = calc_text_angle(df['start'], df['end']) df.ix[df.level == 0, 'text_angle'] = 0.0 text_source = ColumnDataSource(dict(text=df['text'], x=x, y=y, text_angle=df['text_angle'])) return text_source def calc_text_angle(start, end): """Produce a column of text angle values based on the bounds of the wedge.""" text_angle = (start + end) / 2.0 shift_angles = ((text_angle > (np.pi / 2)) & (text_angle < (3 * np.pi / 2))) text_angle[shift_angles] = text_angle[shift_angles] + np.pi return text_angle def calc_wedge_bounds(levels, level_width): """Calculate inner and outer radius bounds of the donut wedge based on levels.""" # add columns for the inner and outer size of the wedge glyph inners = levels * level_width outers = inners + level_width return inners, outers def add_wedge_spacing(df, spacing): """Add spacing to the `inners` column of the provided data based on level.""" # add spacing based on input settings if isinstance(spacing, list): # add spacing for each level given in order received for i, space in enumerate(spacing): df.ix[df['level'] == i, 'inners'] += space else: df.ix[df['level'] > 0, 'inners'] += spacing def build_hover_tooltips(hover_spec=None, chart_cols=None): """Produce tooltips for column dimensions used in chart configuration. Provides convenience for producing tooltips for data with labeled columns. If you had two bars in a bar chart, one for female and one for male, you may also want to have the tooltip say "Sex: female" and "Sex: male" when hovering. Args: hover_spec (bool, list(tuple(str, str), list(str), optional): either can be a valid input to the `HoverTool` tooltips kwarg, or a boolean `True` to have all dimensions specified in chart be added to the tooltip, or a list of columns that you do want to be included in the tooltips. chart_cols: Returns: list(tuple(str, str)): list of tooltips """ if isinstance(hover_spec, bool): tooltips = [(col, '@' + col) for col in chart_cols] elif isinstance(hover_spec[0], tuple): tooltips = hover_spec else: tooltips = [(col, '@' + col) for col in hover_spec] return tooltips def build_agg_tooltip(hover_text=None, agg_text=None, aggregated_col=None): """Produce a consistent tooltip based on available chart configuration. Args: hover_text (str, optional): the desired label for the value to be shown in the tooltip agg_text (str, optional): any aggregation text used for the chart aggregated_col (str, optional): any column name used for aggregation Returns: tuple(str, str): a single tooltip """ if hover_text is None: if agg_text is None: if isinstance(aggregated_col, str): hover_text = aggregated_col else: hover_text = 'value' else: hover_text = agg_text if isinstance(aggregated_col, str): hover_text = '%s of %s' % (hover_text, aggregated_col) return hover_text.title(), "@values" def label_from_index_dict(chart_index, include_cols=False): """ Args: chart_index (dict(str, any) or str or None): identifier for the data group, representing either the value of a column (str), no grouping (None), or a dict where each key represents a column, and the value is the unique value. Returns: str: a derived label representing the chart index value """ if isinstance(chart_index, str): return chart_index elif chart_index is None: return 'None' elif isinstance(chart_index, dict): if include_cols: label = ', '.join(['%s=%s' % (col, val) for col, val in iteritems( chart_index)]) else: label = tuple(chart_index.values()) if len(label) == 1: label = label[0] return label else: raise ValueError('chart_index type is not recognized, \ received %s' % type(chart_index)) def comp_glyphs_to_df(*comp_glyphs): dfs = [glyph.df for glyph in comp_glyphs] return pd.concat(dfs) def color_in_equal_space(hue, saturation=0.55, value=2.3): """ Args: hue (int or double): a numerical value that you want to assign a color Returns: str: hexadecimal color value to a given number """ golden_ratio = (1 + 5 ** 0.5) / 2 hue += golden_ratio hue %= 1 return '#{:02X}{:02X}{:02X}'.format(*tuple(int(a*100) for a in hsv_to_rgb(hue, saturation, value)))
bsd-3-clause