repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
michael-pacheco/dota2-predictor
training/query.py
2
7404
""" Module responsible for querying the result of a game """ import operator import os import logging import numpy as np from os import listdir from sklearn.externals import joblib from preprocessing.augmenter import augment_with_advantages from tools.metadata import get_hero_dict, get_last_patch logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def _query_missing(model, scaler, radiant_heroes, dire_heroes, synergies, counters, similarities, heroes_released): """ Query the best missing hero that can be picked given 4 heroes in one team and 5 heroes in the other. Args: model: estimator that has fitted the data scaler: the scaler used for fitting the data radiant_heroes: list of hero IDs from radiant team dire_heroes: list of hero IDs from dire team synergies: matrix defining the synergy scores between heroes counters: matrix defining the counter scores between heroes similarities: matrix defining similarities between heroes heroes_released: number of heroes released in the queried patch Returns: list of variable length containing hero suggestions """ all_heroes = radiant_heroes + dire_heroes base_similarity_radiant = 0 base_similarity_dire = 0 radiant = len(radiant_heroes) == 4 for i in range(4): for j in range(4): if i > j: base_similarity_radiant += similarities[radiant_heroes[i], radiant_heroes[j]] base_similarity_dire += similarities[dire_heroes[i], dire_heroes[j]] query_base = np.zeros((heroes_released, 2 * heroes_released + 3)) for i in range(heroes_released): if radiant: radiant_heroes.append(i + 1) else: dire_heroes.append(i + 1) for j in range(5): query_base[i][radiant_heroes[j] - 1] = 1 query_base[i][dire_heroes[j] - 1 + heroes_released] = 1 query_base[i][-3:] = augment_with_advantages(synergies, counters, radiant_heroes, dire_heroes) if radiant: del radiant_heroes[-1] else: del dire_heroes[-1] if radiant: probabilities = model.predict_proba(scaler.transform(query_base))[:, 1] else: probabilities = model.predict_proba(scaler.transform(query_base))[:, 0] heroes_dict = get_hero_dict() similarities_list = [] results_dict = {} for i, prob in enumerate(probabilities): if i + 1 not in all_heroes and i != 23: if radiant: similarity_new = base_similarity_radiant for j in range(4): similarity_new += similarities[i + 1][radiant_heroes[j]] similarities_list.append(similarity_new) else: similarity_new = base_similarity_dire for j in range(4): similarity_new += similarities[i + 1][dire_heroes[j]] similarities_list.append(similarity_new) results_dict[heroes_dict[i + 1]] = (prob, similarity_new) results_list = sorted(results_dict.items(), key=operator.itemgetter(1), reverse=True) similarities_list.sort() max_similarity_allowed = similarities_list[len(similarities_list) / 4] filtered_list = [x for x in results_list if x[1][1] < max_similarity_allowed] return filtered_list def _query_full(model, scaler, radiant_heroes, dire_heroes, synergies, counters, heroes_released): """ Query the result of a game when both teams have their line-ups finished. Args: model: estimator that has fitted the data scaler: the scaler used for fitting the data radiant_heroes: list of hero IDs from radiant team dire_heroes: list of hero IDs from dire team synergies: matrix defining the synergy scores between heroes counters: matrix defining the counter scores between heroes heroes_released: number of heroes released in the queried patch Returns: string with info about the predicted winner team """ features = np.zeros(2 * heroes_released + 3) for i in range(5): features[radiant_heroes[i] - 1] = 1 features[dire_heroes[i] - 1 + heroes_released] = 1 extra_data = augment_with_advantages(synergies, counters, radiant_heroes, dire_heroes) features[-3:] = extra_data features_reshaped = features.reshape(1, -1) features_final = scaler.transform(features_reshaped) probability = model.predict_proba(features_final)[:, 1] * 100 if probability > 50: return "Radiant has %.3f%% chance" % probability else: return "Dire has %.3f%% chance" % (100 - probability) def query(mmr, radiant_heroes, dire_heroes, synergies=None, counters=None, similarities=None): if similarities is None: sims = np.loadtxt('pretrained/similarities_all.csv') else: sims = np.loadtxt(similarities) if counters is None: cnts = np.loadtxt('pretrained/counters_all.csv') else: cnts = np.loadtxt(counters) if synergies is None: syns = np.loadtxt('pretrained/synergies_all.csv') else: syns = np.loadtxt(synergies) if mmr < 0 or mmr > 10000: logger.error("MMR should be a number between 0 and 10000") return if mmr < 2000: model_dict = joblib.load(os.path.join("pretrained", "2000-.pkl")) logger.info("Using 0-2000 MMR model") elif mmr > 5000: model_dict = joblib.load(os.path.join("pretrained", "5000+.pkl")) logger.info("Using 5000-10000 MMR model") else: file_list = [int(valid_file[:4]) for valid_file in listdir('pretrained') if '.pkl' in valid_file] file_list.sort() min_distance = 10000 final_mmr = -1000 for model_mmr in file_list: if abs(mmr - model_mmr) < min_distance: min_distance = abs(mmr - model_mmr) final_mmr = model_mmr logger.info("Using closest model available: %d MMR model", final_mmr) model_dict = joblib.load(os.path.join("pretrained", str(final_mmr) + ".pkl")) scaler = model_dict['scaler'] model = model_dict['model'] last_patch_info = get_last_patch() heroes_released = last_patch_info['heroes_released'] if len(radiant_heroes) + len(dire_heroes) == 10: return _query_full(model, scaler, radiant_heroes, dire_heroes, syns, cnts, heroes_released) return _query_missing(model, scaler, radiant_heroes, dire_heroes, syns, cnts, sims, heroes_released)
mit
Solid-Mechanics/matplotlib-4-abaqus
matplotlib/backends/qt4_compat.py
12
3172
""" A Qt API selector that can be used to switch between PyQt and PySide. """ import os from matplotlib import rcParams, verbose # Available APIs. QT_API_PYQT = 'PyQt4' # API is not set here; Python 2.x default is V 1 QT_API_PYQTv2 = 'PyQt4v2' # forced to Version 2 API QT_API_PYSIDE = 'PySide' # only supports Version 2 API ETS = dict(pyqt=QT_API_PYQTv2, pyside=QT_API_PYSIDE) # If the ETS QT_API environment variable is set, use it. Note that # ETS requires the version 2 of PyQt4, which is not the platform # default for Python 2.x. QT_API_ENV = os.environ.get('QT_API') if QT_API_ENV is not None: try: QT_API = ETS[QT_API_ENV] except KeyError: raise RuntimeError( 'Unrecognized environment variable %r, valid values are: %r or %r' % (QT_API_ENV, 'pyqt', 'pyside')) else: # No ETS environment, so use rcParams. QT_API = rcParams['backend.qt4'] # We will define an appropriate wrapper for the differing versions # of file dialog. _getSaveFileName = None # Now perform the imports. if QT_API in (QT_API_PYQT, QT_API_PYQTv2): import sip if QT_API == QT_API_PYQTv2: if QT_API_ENV == 'pyqt': cond = ("Found 'QT_API=pyqt' environment variable. " "Setting PyQt4 API accordingly.\n") else: cond = "PyQt API v2 specified." try: sip.setapi('QString', 2) except: res = 'QString API v2 specification failed. Defaulting to v1.' verbose.report(cond+res, 'helpful') # condition has now been reported, no need to repeat it: cond = "" try: sip.setapi('QVariant', 2) except: res = 'QVariant API v2 specification failed. Defaulting to v1.' verbose.report(cond+res, 'helpful') from PyQt4 import QtCore, QtGui # Alias PyQt-specific functions for PySide compatibility. QtCore.Signal = QtCore.pyqtSignal try: QtCore.Slot = QtCore.pyqtSlot except AttributeError: QtCore.Slot = pyqtSignature # Not a perfect match but # works in simple cases QtCore.Property = QtCore.pyqtProperty __version__ = QtCore.PYQT_VERSION_STR try : if sip.getapi("QString") > 1 : # Use new getSaveFileNameAndFilter() _get_save = QtGui.QFileDialog.getSaveFileNameAndFilter else : # Use old getSaveFileName() _getSaveFileName = QtGui.QFileDialog.getSaveFileName except (AttributeError, KeyError) : # call to getapi() can fail in older versions of sip _getSaveFileName = QtGui.QFileDialog.getSaveFileName else: # can only be pyside from PySide import QtCore, QtGui, __version__, __version_info__ if __version_info__ < (1,0,3): raise ImportError( "Matplotlib backend_qt4 and backend_qt4agg require PySide >=1.0.3") _get_save = QtGui.QFileDialog.getSaveFileName if _getSaveFileName is None: def _getSaveFileName(self, msg, start, filters, selectedFilter): return _get_save(self, msg, start, filters, selectedFilter)[0]
mit
awacha/cct
cct/processinggui/graphing/corrmat.py
1
8132
import logging from typing import Union, Tuple import matplotlib.cm import numpy as np from PyQt5 import QtWidgets from matplotlib.axes import Axes from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT, FigureCanvasQTAgg from matplotlib.figure import Figure from .corrmat_ui import Ui_Form logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class CorrMatView(QtWidgets.QWidget, Ui_Form): cmat: np.ndarray = None fsns: np.ndarray = None axes: Axes = None figure: Figure = None canvas: FigureCanvasQTAgg = None toolbar: NavigationToolbar2QT = None _figsize: Tuple[float, float] = None def __init__(self, parent: QtWidgets.QWidget = None, project: "Project" = None, figsize: Tuple[float, float] = (4, 4)): super().__init__(parent) self._figsize = figsize self.project = project self.setupUi(self) def setupUi(self, Form): super().setupUi(Form) self.figure = Figure(figsize=self._figsize, constrained_layout=True) self.canvas = FigureCanvasQTAgg(self.figure) self.toolbar = NavigationToolbar2QT(self.canvas, self) self.figureVerticalLayout.addWidget(self.toolbar) self.figureVerticalLayout.addWidget(self.canvas) self.axes = self.figure.add_subplot(1, 1, 1) self.paletteComboBox.addItems(sorted(matplotlib.cm.cmap_d)) self.paletteComboBox.setCurrentIndex(self.paletteComboBox.findText(self.project.config.cmatpalette)) if self.paletteComboBox.currentIndex() < 0: self.paletteComboBox.setCurrentIndex(0) self.project.newResultsAvailable.connect(self.onUpdateResults) self.paletteComboBox.currentIndexChanged.connect(self.onPaletteComboBoxChanged) self.sampleNameComboBox.currentIndexChanged.connect(self.onSampleNameComboBoxChanged) self.distanceComboBox.currentIndexChanged.connect(self.onDistanceComboBoxChanged) def setSampleAndDistance(self, samplename: str, distance: Union[str, float]): logger.debug('Setting sample name to {}, distance to {}'.format(samplename, distance)) if self.project is not None: self.onUpdateResults() logger.debug( 'After onUpdateResults, sample name is at {}, distance at {}'.format(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText())) self.sampleNameComboBox.blockSignals(True) self.sampleNameComboBox.setCurrentIndex(self.sampleNameComboBox.findText(samplename)) self.sampleNameComboBox.blockSignals(False) assert self.sampleNameComboBox.currentIndex() >= 0 targetdist = distance if isinstance(distance, str) else '{:.2f}'.format(distance) self.distanceComboBox.blockSignals(True) self.distanceComboBox.setCurrentIndex(self.distanceComboBox.findText(targetdist)) self.distanceComboBox.blockSignals(False) assert self.distanceComboBox.currentIndex() >= 0 self.onDistanceComboBoxChanged() # ensure that the correlation matrix is reloaded logger.debug('Sample name changed to {}, distance to {}'.format(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText())) logger.debug('Running replot') self.replot() def onUpdateResults(self): logger.debug('onUpdateResults') if self.project is None: return currentSample = self.sampleNameComboBox.currentText() if self.sampleNameComboBox.currentIndex() >= 0 else None self.sampleNameComboBox.blockSignals(True) try: self.sampleNameComboBox.clear() self.sampleNameComboBox.addItems(sorted(self.project.h5reader.samples())) target = self.sampleNameComboBox.findText(currentSample) if currentSample is not None else -1 if target < 0: target = 0 finally: self.sampleNameComboBox.blockSignals(False) logger.debug('Setting sample index to {}'.format(target)) self.sampleNameComboBox.setCurrentIndex(target) self.onSampleNameComboBoxChanged() def replot(self): logger.debug('replot') if self.cmat is None: self.figure.clear() self.canvas.draw_idle() return self.figure.clear() self.axes = self.figure.add_subplot(1, 1, 1) self.axes.clear() self.axes.set_adjustable('box') self.axes.set_aspect(1.0) img = self.axes.imshow(self.cmat, interpolation='nearest', cmap=self.paletteComboBox.currentText(), extent=[-0.5, self.cmat.shape[1]-0.5, self.cmat.shape[0]-0.5, -0.5], origin='upper') logger.debug('CMAT shape: {}'.format(self.cmat.shape)) self.axes.xaxis.set_ticks(np.arange(self.cmat.shape[1])) self.axes.yaxis.set_ticks(np.arange(self.cmat.shape[0])) self.axes.xaxis.set_ticklabels([str(f) for f in self.fsns], rotation=90) self.axes.yaxis.set_ticklabels([str(f) for f in self.fsns]) self.figure.colorbar(img, ax=self.axes) self.canvas.draw_idle() if self.sampleNameComboBox.isEnabled() and self.distanceComboBox.isEnabled(): self.setWindowTitle('Correlation matrix: {} @{}'.format(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText())) def onPaletteComboBoxChanged(self): self.replot() def onSampleNameComboBoxChanged(self): logger.debug('Sample name changed to {}'.format(self.sampleNameComboBox.currentText())) if self.distanceComboBox.currentIndex() < 0: currentdist = None else: currentdist = float(self.distanceComboBox.currentText()) distances = self.project.h5reader.distanceKeys(self.sampleNameComboBox.currentText()) self.distanceComboBox.blockSignals(True) try: self.distanceComboBox.clear() self.distanceComboBox.addItems(sorted(distances, key=lambda x: float(x))) targetdist = sorted(distances, key=lambda d: abs(float(d) - currentdist))[0] \ if currentdist is not None else distances[0] finally: self.distanceComboBox.blockSignals(False) self.distanceComboBox.setCurrentIndex(self.distanceComboBox.findText(targetdist)) self.onDistanceComboBoxChanged() def onDistanceComboBoxChanged(self): logger.debug('Distance changed to {}'.format(self.distanceComboBox.currentText())) try: self.cmat = self.project.h5reader.getCorrMat(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText()) self.fsns = np.array(sorted(list( self.project.h5reader.getCurveParameter(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText(), 'fsn').keys()))) logger.debug('Got cmat and fsns from sample {}, distance {}'.format(self.sampleNameComboBox.currentText(), self.distanceComboBox.currentText())) logger.debug('cmat shape: {}. FSNS length: {}'.format(self.cmat.shape, len(self.fsns))) except OSError: return self.replot() def savefig(self, filename: str, **kwargs): self.canvas.draw() self.figure.savefig( filename, # format=None # infer the format from the file name transparent=True, # all patches will be transparent, instead of opaque white optimize=True, # optimize JPEG file, ignore for other file types progressive=True, # progressive JPEG, ignore for other file types quality=95, # JPEG quality, ignore for other file types **kwargs )
bsd-3-clause
minesense/VisTrails
vistrails/packages/sklearn/tests.py
2
12976
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## All rights reserved. ## Contact: [email protected] ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division import numpy as np import unittest from vistrails.tests.utils import execute, intercept_results from vistrails.packages.sklearn.init import (Digits, Iris, TrainTestSplit, Predict, Score, Transform, CrossValScore, _modules, GridSearchCV) from vistrails.packages.sklearn import identifier from sklearn.metrics import f1_score def class_by_name(name): """Returns an autogenerated class from _modules from a string name.""" for module in _modules: if module.__name__ == name: return module class TestSklearn(unittest.TestCase): def test_digits(self): # check that the digits dataset can be loaded with intercept_results(Digits, 'data', Digits, 'target') as (data, target): self.assertFalse(execute([ ('datasets|Digits', identifier, []) ])) data = np.vstack(data) target = np.hstack(target) self.assertEqual(data.shape, (1797, 64)) self.assertEqual(target.shape, (1797,)) def test_iris(self): # check that the iris dataset can be loaded with intercept_results(Iris, 'data', Iris, 'target') as (data, target): self.assertFalse(execute([ ('datasets|Iris', identifier, []) ])) data = np.vstack(data) target = np.hstack(target) self.assertEqual(data.shape, (150, 4)) self.assertEqual(target.shape, (150,)) def test_train_test_split(self): # check that we can split the iris dataset with intercept_results(TrainTestSplit, 'training_data', TrainTestSplit, 'training_target', TrainTestSplit, 'test_data', TrainTestSplit, 'test_target') as results: X_train, y_train, X_test, y_test = results self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('cross-validation|TrainTestSplit', identifier, [('test_size', [('Integer', '50')])]) ], [ (0, 'data', 1, 'data'), (0, 'target', 1, 'target') ] )) X_train = np.vstack(X_train) X_test = np.vstack(X_test) y_train = np.hstack(y_train) y_test = np.hstack(y_test) self.assertEqual(X_train.shape, (100, 4)) self.assertEqual(X_test.shape, (50, 4)) self.assertEqual(y_train.shape, (100,)) self.assertEqual(y_test.shape, (50,)) def test_classifier_training_predict(self): with intercept_results(Predict, 'prediction', Predict, 'decision_function', TrainTestSplit, 'test_target', Score, 'score') as results: y_pred, decision_function, y_test, score = results self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('cross-validation|TrainTestSplit', identifier, [('test_size', [('Integer', '50')])]), ('classifiers|LinearSVC', identifier, []), ('Predict', identifier, []), ('Score', identifier, []), # use custom metric ('Score', identifier, [('metric', [('String', 'f1')])]), ], [ # train test split (0, 'data', 1, 'data'), (0, 'target', 1, 'target'), # fit LinearSVC on training data (1, 'training_data', 2, 'training_data'), (1, 'training_target', 2, 'training_target'), # predict on test data (2, 'model', 3, 'model'), (1, 'test_data', 3, 'data'), # score test data (2, 'model', 4, 'model'), (1, 'test_data', 4, 'data'), (1, 'test_target', 4, 'target'), # f1 scorer (2, 'model', 5, 'model'), (1, 'test_data', 5, 'data'), (1, 'test_target', 5, 'target') ] )) y_pred = np.hstack(y_pred) decision_function = np.vstack(decision_function) y_test = np.hstack(y_test) # unpack the results from the two scorers score_acc, score_f1 = score self.assertEqual(y_pred.shape, (50,)) self.assertTrue(np.all(np.unique(y_pred) == np.array([0, 1, 2]))) self.assertEqual(decision_function.shape, (50, 3)) # some accuracy self.assertTrue(np.mean(y_test == y_pred) > .8) # score is actually the accuracy self.assertEqual(np.mean(y_test == y_pred), score_acc) # f1 score is actually f1 score self.assertEqual(f1_score(y_test, y_pred), score_f1) def test_transformer_supervised_transform(self): # test feature selection with intercept_results(Transform, 'transformed_data') as (transformed_data,): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('feature_selection|SelectKBest', identifier, [('k', [('Integer', '2')])]), ('Transform', identifier, []) ], [ (0, 'data', 1, 'training_data'), (0, 'target', 1, 'training_target'), (1, 'model', 2, 'model'), (0, 'data', 2, 'data') ] )) transformed_data = np.vstack(transformed_data) self.assertEqual(transformed_data.shape, (150, 2)) def test_transformer_unsupervised_transform(self): # test PCA with intercept_results(Transform, 'transformed_data') as (transformed_data,): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('decomposition|PCA', identifier, [('n_components', [('Integer', '2')])]), ('Transform', identifier, []) ], [ (0, 'data', 1, 'training_data'), (1, 'model', 2, 'model'), (0, 'data', 2, 'data') ] )) transformed_data = np.vstack(transformed_data) self.assertEqual(transformed_data.shape, (150, 2)) def test_manifold_learning(self): # test Isomap with intercept_results(class_by_name("Isomap"), 'transformed_data') as (transformed_data,): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('manifold|Isomap', identifier, []), ], [ (0, 'data', 1, 'training_data'), ] )) transformed_data = np.vstack(transformed_data) self.assertEqual(transformed_data.shape, (150, 2)) def test_cross_val_score(self): # chech that cross_val score of LinearSVC has the right length with intercept_results(CrossValScore, 'scores') as (scores,): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('classifiers|LinearSVC', identifier, []), ('cross-validation|CrossValScore', identifier, []), ], [ (0, 'data', 2, 'data'), (0, 'target', 2, 'target'), (1, 'model', 2, 'model') ] )) scores = np.hstack(scores) self.assertEqual(scores.shape, (3,)) self.assertTrue(np.mean(scores) > .8) def test_gridsearchcv(self): # check that gridsearch on DecisionTreeClassifier does the right number of runs # and gives the correct result. with intercept_results(GridSearchCV, 'scores', GridSearchCV, 'best_parameters') as (scores, parameters): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('classifiers|DecisionTreeClassifier', identifier, []), ('GridSearchCV', identifier, [('parameters', [('Dictionary', "{'max_depth': [1, 2, 3, 4]}")])]), ], [ (0, 'data', 2, 'data'), (0, 'target', 2, 'target'), (1, 'model', 2, 'model') ] )) self.assertEqual(len(scores[0]), 4) self.assertTrue(parameters[0]['max_depth'], 2) def test_pipeline(self): with intercept_results(Iris, 'target', Predict, 'prediction') as (y_true, y_pred): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('preprocessing|StandardScaler', identifier, []), ('feature_selection|SelectKBest', identifier, [('k', [('Integer', '2')])]), ('classifiers|LinearSVC', identifier, []), ('Pipeline', identifier, []), ('Predict', identifier, []) ], [ # feed data to pipeline (0, 'data', 4, 'training_data'), (0, 'target', 4, 'training_target'), # put models in pipeline (1, 'model', 4, 'model1'), (2, 'model', 4, 'model2'), (3, 'model', 4, 'model3'), # predict using pipeline (4, 'model', 5, 'model'), (0, 'data', 5, 'data') ] )) y_true, y_pred = np.array(y_true[0]), np.array(y_pred[0]) self.assertEqual(y_true.shape, y_pred.shape) self.assertTrue(np.mean(y_true == y_pred) > .8) def test_nested_cross_validation(self): with intercept_results(CrossValScore, 'scores') as (scores, ): self.assertFalse(execute( [ ('datasets|Iris', identifier, []), ('classifiers|DecisionTreeClassifier', identifier, []), ('GridSearchCV', identifier, [('parameters', [('Dictionary', "{'max_depth': [1, 2, 3, 4]}")])]), ('cross-validation|CrossValScore', identifier, []) ], [ (0, 'data', 3, 'data'), (0, 'target', 3, 'target'), (1, 'model', 2, 'model'), (2, 'model', 3, 'model') ] )) self.assertEqual(len(scores[0]), 3) self.assertTrue(np.mean(scores[0]) > .8)
bsd-3-clause
richardotis/scipy
scipy/special/add_newdocs.py
11
70503
# Docstrings for generated ufuncs # # The syntax is designed to look like the function add_newdoc is being # called from numpy.lib, but in this file add_newdoc puts the # docstrings in a dictionary. This dictionary is used in # generate_ufuncs.py to generate the docstrings for the ufuncs in # scipy.special at the C level when the ufuncs are created at compile # time. from __future__ import division, print_function, absolute_import docdict = {} def get(name): return docdict.get(name) def add_newdoc(place, name, doc): docdict['.'.join((place, name))] = doc add_newdoc("scipy.special", "sph_harm", r""" sph_harm(m, n, theta, phi) Compute spherical harmonics. .. math:: Y^m_n(\theta,\phi) = \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}} e^{i m \theta} P^m_n(\cos(\phi)) Parameters ---------- m : int ``|m| <= n``; the order of the harmonic. n : int where `n` >= 0; the degree of the harmonic. This is often called ``l`` (lower case L) in descriptions of spherical harmonics. theta : float [0, 2*pi]; the azimuthal (longitudinal) coordinate. phi : float [0, pi]; the polar (colatitudinal) coordinate. Returns ------- y_mn : complex float The harmonic :math:`Y^m_n` sampled at `theta` and `phi` Notes ----- There are different conventions for the meaning of input arguments `theta` and `phi`. We take `theta` to be the azimuthal angle and `phi` to be the polar angle. It is common to see the opposite convention - that is `theta` as the polar angle and `phi` as the azimuthal angle. References ---------- .. [1] Digital Library of Mathematical Functions, 14.30. http://dlmf.nist.gov/14.30 """) add_newdoc("scipy.special", "_ellip_harm", """ Internal function, use `ellip_harm` instead. """) add_newdoc("scipy.special", "_ellip_norm", """ Internal function, use `ellip_norm` instead. """) add_newdoc("scipy.special", "_lambertw", """ Internal function, use `lambertw` instead. """) add_newdoc("scipy.special", "airy", """ airy(z) Airy functions and their derivatives. Parameters ---------- z : float or complex Argument. Returns ------- Ai, Aip, Bi, Bip Airy functions Ai and Bi, and their derivatives Aip and Bip Notes ----- The Airy functions Ai and Bi are two independent solutions of y''(x) = x y. """) add_newdoc("scipy.special", "airye", """ airye(z) Exponentially scaled Airy functions and their derivatives. Scaling:: eAi = Ai * exp(2.0/3.0*z*sqrt(z)) eAip = Aip * exp(2.0/3.0*z*sqrt(z)) eBi = Bi * exp(-abs((2.0/3.0*z*sqrt(z)).real)) eBip = Bip * exp(-abs((2.0/3.0*z*sqrt(z)).real)) Parameters ---------- z : float or complex Argument. Returns ------- eAi, eAip, eBi, eBip Airy functions Ai and Bi, and their derivatives Aip and Bip """) add_newdoc("scipy.special", "bdtr", """ bdtr(k, n, p) Binomial distribution cumulative distribution function. Sum of the terms 0 through k of the Binomial probability density. :: y = sum(nCj p**j (1-p)**(n-j),j=0..k) Parameters ---------- k, n : int Terms to include p : float Probability Returns ------- y : float Sum of terms """) add_newdoc("scipy.special", "bdtrc", """ bdtrc(k, n, p) Binomial distribution survival function. Sum of the terms k+1 through n of the Binomial probability density :: y = sum(nCj p**j (1-p)**(n-j), j=k+1..n) Parameters ---------- k, n : int Terms to include p : float Probability Returns ------- y : float Sum of terms """) add_newdoc("scipy.special", "bdtri", """ bdtri(k, n, y) Inverse function to bdtr vs. p Finds probability `p` such that for the cumulative binomial probability ``bdtr(k, n, p) == y``. """) add_newdoc("scipy.special", "bdtrik", """ bdtrik(y, n, p) Inverse function to bdtr vs k """) add_newdoc("scipy.special", "bdtrin", """ bdtrin(k, y, p) Inverse function to bdtr vs n """) add_newdoc("scipy.special", "binom", """ binom(n, k) Binomial coefficient """) add_newdoc("scipy.special", "btdtria", """ btdtria(p, b, x) Inverse of btdtr vs a """) add_newdoc("scipy.special", "btdtrib", """ btdtria(a, p, x) Inverse of btdtr vs b """) add_newdoc("scipy.special", "bei", """ bei(x) Kelvin function bei """) add_newdoc("scipy.special", "beip", """ beip(x) Derivative of the Kelvin function bei """) add_newdoc("scipy.special", "ber", """ ber(x) Kelvin function ber. """) add_newdoc("scipy.special", "berp", """ berp(x) Derivative of the Kelvin function ber """) add_newdoc("scipy.special", "besselpoly", r""" besselpoly(a, lmb, nu) Weighted integral of a Bessel function. .. math:: \int_0^1 x^\lambda J_\nu(2 a x) \, dx where :math:`J_\nu` is a Bessel function and :math:`\lambda=lmb`, :math:`\nu=nu`. """) add_newdoc("scipy.special", "beta", """ beta(a, b) Beta function. :: beta(a,b) = gamma(a) * gamma(b) / gamma(a+b) """) add_newdoc("scipy.special", "betainc", """ betainc(a, b, x) Incomplete beta integral. Compute the incomplete beta integral of the arguments, evaluated from zero to x:: gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x). Notes ----- The incomplete beta is also sometimes defined without the terms in gamma, in which case the above definition is the so-called regularized incomplete beta. Under this definition, you can get the incomplete beta by multiplying the result of the scipy function by beta(a, b). """) add_newdoc("scipy.special", "betaincinv", """ betaincinv(a, b, y) Inverse function to beta integral. Compute x such that betainc(a,b,x) = y. """) add_newdoc("scipy.special", "betaln", """ betaln(a, b) Natural logarithm of absolute value of beta function. Computes ``ln(abs(beta(x)))``. """) add_newdoc("scipy.special", "boxcox", """ boxcox(x, lmbda) Compute the Box-Cox transformation. The Box-Cox transformation is:: y = (x**lmbda - 1) / lmbda if lmbda != 0 log(x) if lmbda == 0 Returns `nan` if ``x < 0``. Returns `-inf` if ``x == 0`` and ``lmbda < 0``. Parameters ---------- x : array_like Data to be transformed. lmbda : array_like Power parameter of the Box-Cox transform. Returns ------- y : array Transformed data. Notes ----- .. versionadded:: 0.14.0 Examples -------- >>> boxcox([1, 4, 10], 2.5) array([ 0. , 12.4 , 126.09110641]) >>> boxcox(2, [0, 1, 2]) array([ 0.69314718, 1. , 1.5 ]) """) add_newdoc("scipy.special", "boxcox1p", """ boxcox1p(x, lmbda) Compute the Box-Cox transformation of 1 + `x`. The Box-Cox transformation computed by `boxcox1p` is:: y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0 log(1+x) if lmbda == 0 Returns `nan` if ``x < -1``. Returns `-inf` if ``x == -1`` and ``lmbda < 0``. Parameters ---------- x : array_like Data to be transformed. lmbda : array_like Power parameter of the Box-Cox transform. Returns ------- y : array Transformed data. Notes ----- .. versionadded:: 0.14.0 Examples -------- >>> boxcox1p(1e-4, [0, 0.5, 1]) array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04]) >>> boxcox1p([0.01, 0.1], 0.25) array([ 0.00996272, 0.09645476]) """) add_newdoc("scipy.special", "inv_boxcox", """ inv_boxcox(y, lmbda) Compute the inverse of the Box-Cox transformation. Find ``x`` such that:: y = (x**lmbda - 1) / lmbda if lmbda != 0 log(x) if lmbda == 0 Parameters ---------- y : array_like Data to be transformed. lmbda : array_like Power parameter of the Box-Cox transform. Returns ------- x : array Transformed data. Notes ----- .. versionadded:: 0.16.0 Examples -------- >>> y = boxcox([1, 4, 10], 2.5) >>> inv_boxcox(y, 2.5) array([1., 4., 10.]) """) add_newdoc("scipy.special", "inv_boxcox1p", """ inv_boxcox1p(y, lmbda) Compute the inverse of the Box-Cox transformation. Find ``x`` such that:: y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0 log(1+x) if lmbda == 0 Parameters ---------- y : array_like Data to be transformed. lmbda : array_like Power parameter of the Box-Cox transform. Returns ------- x : array Transformed data. Notes ----- .. versionadded:: 0.16.0 Examples -------- >>> y = boxcox1p([1, 4, 10], 2.5) >>> inv_boxcox1p(y, 2.5) array([1., 4., 10.]) """) add_newdoc("scipy.special", "btdtr", """ btdtr(a,b,x) Cumulative beta distribution. Returns the area from zero to x under the beta density function:: gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x) See Also -------- betainc """) add_newdoc("scipy.special", "btdtri", """ btdtri(a,b,p) p-th quantile of the beta distribution. This is effectively the inverse of btdtr returning the value of x for which ``btdtr(a,b,x) = p`` See Also -------- betaincinv """) add_newdoc("scipy.special", "cbrt", """ cbrt(x) Cube root of x """) add_newdoc("scipy.special", "chdtr", """ chdtr(v, x) Chi square cumulative distribution function Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with v degrees of freedom:: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x) """) add_newdoc("scipy.special", "chdtrc", """ chdtrc(v,x) Chi square survival function Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v degrees of freedom:: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf) """) add_newdoc("scipy.special", "chdtri", """ chdtri(v,p) Inverse to chdtrc Returns the argument x such that ``chdtrc(v,x) == p``. """) add_newdoc("scipy.special", "chdtriv", """ chdtri(p, x) Inverse to chdtr vs v Returns the argument v such that ``chdtr(v, x) == p``. """) add_newdoc("scipy.special", "chndtr", """ chndtr(x, df, nc) Non-central chi square cumulative distribution function """) add_newdoc("scipy.special", "chndtrix", """ chndtrix(p, df, nc) Inverse to chndtr vs x """) add_newdoc("scipy.special", "chndtridf", """ chndtridf(x, p, nc) Inverse to chndtr vs df """) add_newdoc("scipy.special", "chndtrinc", """ chndtrinc(x, df, p) Inverse to chndtr vs nc """) add_newdoc("scipy.special", "cosdg", """ cosdg(x) Cosine of the angle x given in degrees. """) add_newdoc("scipy.special", "cosm1", """ cosm1(x) cos(x) - 1 for use when x is near zero. """) add_newdoc("scipy.special", "cotdg", """ cotdg(x) Cotangent of the angle x given in degrees. """) add_newdoc("scipy.special", "dawsn", """ dawsn(x) Dawson's integral. Computes:: exp(-x**2) * integral(exp(t**2),t=0..x). References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "ellipe", """ ellipe(m) Complete elliptic integral of the second kind This function is defined as .. math:: E(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{1/2} dt Parameters ---------- m : array_like Defines the parameter of the elliptic integral. Returns ------- E : ndarray Value of the elliptic integral. See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near m = 1 ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipeinc : Incomplete elliptic integral of the second kind """) add_newdoc("scipy.special", "ellipeinc", """ ellipeinc(phi, m) Incomplete elliptic integral of the second kind This function is defined as .. math:: E(\\phi, m) = \\int_0^{\\phi} [1 - m \\sin(t)^2]^{1/2} dt Parameters ---------- phi : array_like amplitude of the elliptic integral. m : array_like parameter of the elliptic integral. Returns ------- E : ndarray Value of the elliptic integral. See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near m = 1 ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind """) add_newdoc("scipy.special", "ellipj", """ ellipj(u, m) Jacobian elliptic functions Calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real u. Parameters ---------- m, u Parameters Returns ------- sn, cn, dn, ph The returned functions:: sn(u|m), cn(u|m), dn(u|m) The value ``ph`` is such that if ``u = ellik(ph, m)``, then ``sn(u|m) = sin(ph)`` and ``cn(u|m) = cos(ph)``. """) add_newdoc("scipy.special", "ellipkm1", """ ellipkm1(p) Complete elliptic integral of the first kind around m = 1 This function is defined as .. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt where `m = 1 - p`. Parameters ---------- p : array_like Defines the parameter of the elliptic integral as m = 1 - p. Returns ------- K : ndarray Value of the elliptic integral. See Also -------- ellipk : Complete elliptic integral of the first kind ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind """) add_newdoc("scipy.special", "ellipkinc", """ ellipkinc(phi, m) Incomplete elliptic integral of the first kind This function is defined as .. math:: K(\\phi, m) = \\int_0^{\\phi} [1 - m \\sin(t)^2]^{-1/2} dt Parameters ---------- phi : array_like amplitude of the elliptic integral m : array_like parameter of the elliptic integral Returns ------- K : ndarray Value of the elliptic integral Notes ----- This function is also called ``F(phi, m)``. See Also -------- ellipkm1 : Complete elliptic integral of the first kind, near m = 1 ellipk : Complete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind """) add_newdoc("scipy.special", "entr", r""" entr(x) Elementwise function for computing entropy. .. math:: \text{entr}(x) = \begin{cases} - x \log(x) & x > 0 \\ 0 & x = 0 \\ -\infty & \text{otherwise} \end{cases} Parameters ---------- x : ndarray Input array. Returns ------- res : ndarray The value of the elementwise entropy function at the given points x. See Also -------- kl_div, rel_entr Notes ----- This function is concave. .. versionadded:: 0.14.0 """) add_newdoc("scipy.special", "erf", """ erf(z) Returns the error function of complex argument. It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``. Parameters ---------- x : ndarray Input array. Returns ------- res : ndarray The values of the error function at the given points x. See Also -------- erfc, erfinv, erfcinv Notes ----- The cumulative of the unit normal distribution is given by ``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``. References ---------- .. [1] http://en.wikipedia.org/wiki/Error_function .. [2] Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm .. [3] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "erfc", """ erfc(x) Complementary error function, 1 - erf(x). References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "erfi", """ erfi(z) Imaginary error function, -i erf(i z). Notes ----- .. versionadded:: 0.12.0 References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "erfcx", """ erfcx(x) Scaled complementary error function, exp(x^2) erfc(x). Notes ----- .. versionadded:: 0.12.0 References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "eval_jacobi", """ eval_jacobi(n, alpha, beta, x, out=None) Evaluate Jacobi polynomial at a point. """) add_newdoc("scipy.special", "eval_sh_jacobi", """ eval_sh_jacobi(n, p, q, x, out=None) Evaluate shifted Jacobi polynomial at a point. """) add_newdoc("scipy.special", "eval_gegenbauer", """ eval_gegenbauer(n, alpha, x, out=None) Evaluate Gegenbauer polynomial at a point. """) add_newdoc("scipy.special", "eval_chebyt", """ eval_chebyt(n, x, out=None) Evaluate Chebyshev T polynomial at a point. This routine is numerically stable for `x` in ``[-1, 1]`` at least up to order ``10000``. """) add_newdoc("scipy.special", "eval_chebyu", """ eval_chebyu(n, x, out=None) Evaluate Chebyshev U polynomial at a point. """) add_newdoc("scipy.special", "eval_chebys", """ eval_chebys(n, x, out=None) Evaluate Chebyshev S polynomial at a point. """) add_newdoc("scipy.special", "eval_chebyc", """ eval_chebyc(n, x, out=None) Evaluate Chebyshev C polynomial at a point. """) add_newdoc("scipy.special", "eval_sh_chebyt", """ eval_sh_chebyt(n, x, out=None) Evaluate shifted Chebyshev T polynomial at a point. """) add_newdoc("scipy.special", "eval_sh_chebyu", """ eval_sh_chebyu(n, x, out=None) Evaluate shifted Chebyshev U polynomial at a point. """) add_newdoc("scipy.special", "eval_legendre", """ eval_legendre(n, x, out=None) Evaluate Legendre polynomial at a point. """) add_newdoc("scipy.special", "eval_sh_legendre", """ eval_sh_legendre(n, x, out=None) Evaluate shifted Legendre polynomial at a point. """) add_newdoc("scipy.special", "eval_genlaguerre", """ eval_genlaguerre(n, alpha, x, out=None) Evaluate generalized Laguerre polynomial at a point. """) add_newdoc("scipy.special", "eval_laguerre", """ eval_laguerre(n, x, out=None) Evaluate Laguerre polynomial at a point. """) add_newdoc("scipy.special", "eval_hermite", """ eval_hermite(n, x, out=None) Evaluate Hermite polynomial at a point. """) add_newdoc("scipy.special", "eval_hermitenorm", """ eval_hermitenorm(n, x, out=None) Evaluate normalized Hermite polynomial at a point. """) add_newdoc("scipy.special", "exp1", """ exp1(z) Exponential integral E_1 of complex argument z :: integral(exp(-z*t)/t,t=1..inf). """) add_newdoc("scipy.special", "exp10", """ exp10(x) 10**x """) add_newdoc("scipy.special", "exp2", """ exp2(x) 2**x """) add_newdoc("scipy.special", "expi", """ expi(x) Exponential integral Ei Defined as:: integral(exp(t)/t,t=-inf..x) See `expn` for a different exponential integral. """) add_newdoc('scipy.special', 'expit', """ expit(x) Expit ufunc for ndarrays. The expit function, also known as the logistic function, is defined as expit(x) = 1/(1+exp(-x)). It is the inverse of the logit function. Parameters ---------- x : ndarray The ndarray to apply expit to element-wise. Returns ------- out : ndarray An ndarray of the same shape as x. Its entries are expit of the corresponding entry of x. Notes ----- As a ufunc expit takes a number of optional keyword arguments. For more information see `ufuncs <http://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_ .. versionadded:: 0.10.0 """) add_newdoc("scipy.special", "expm1", """ expm1(x) exp(x) - 1 for use when x is near zero. """) add_newdoc("scipy.special", "expn", """ expn(n, x) Exponential integral E_n Returns the exponential integral for integer n and non-negative x and n:: integral(exp(-x*t) / t**n, t=1..inf). """) add_newdoc("scipy.special", "exprel", r""" exprel(x) Relative error exponential, (exp(x)-1)/x, for use when x is near zero. Parameters ---------- x : ndarray Input array. Returns ------- res : ndarray Output array. See Also -------- expm1 .. versionadded:: 0.17.0 """) add_newdoc("scipy.special", "fdtr", """ fdtr(dfn, dfd, x) F cumulative distribution function Returns the area from zero to x under the F density function (also known as Snedcor's density or the variance ratio density). This is the density of X = (unum/dfn)/(uden/dfd), where unum and uden are random variables having Chi square distributions with dfn and dfd degrees of freedom, respectively. """) add_newdoc("scipy.special", "fdtrc", """ fdtrc(dfn, dfd, x) F survival function Returns the complemented F distribution function. """) add_newdoc("scipy.special", "fdtri", """ fdtri(dfn, dfd, p) Inverse to fdtr vs x Finds the F density argument x such that ``fdtr(dfn, dfd, x) == p``. """) add_newdoc("scipy.special", "fdtridfd", """ fdtridfd(dfn, p, x) Inverse to fdtr vs dfd Finds the F density argument dfd such that ``fdtr(dfn,dfd,x) == p``. """) add_newdoc("scipy.special", "fdtridfn", """ fdtridfn(p, dfd, x) Inverse to fdtr vs dfn finds the F density argument dfn such that ``fdtr(dfn,dfd,x) == p``. """) add_newdoc("scipy.special", "fresnel", """ fresnel(z) Fresnel sin and cos integrals Defined as:: ssa = integral(sin(pi/2 * t**2),t=0..z) csa = integral(cos(pi/2 * t**2),t=0..z) Parameters ---------- z : float or complex array_like Argument Returns ------- ssa, csa Fresnel sin and cos integral values """) add_newdoc("scipy.special", "gamma", """ gamma(z) Gamma function The gamma function is often referred to as the generalized factorial since ``z*gamma(z) = gamma(z+1)`` and ``gamma(n+1) = n!`` for natural number *n*. """) add_newdoc("scipy.special", "gammainc", """ gammainc(a, x) Incomplete gamma function Defined as:: 1 / gamma(a) * integral(exp(-t) * t**(a-1), t=0..x) `a` must be positive and `x` must be >= 0. """) add_newdoc("scipy.special", "gammaincc", """ gammaincc(a,x) Complemented incomplete gamma integral Defined as:: 1 / gamma(a) * integral(exp(-t) * t**(a-1), t=x..inf) = 1 - gammainc(a,x) `a` must be positive and `x` must be >= 0. """) add_newdoc("scipy.special", "gammainccinv", """ gammainccinv(a,y) Inverse to gammaincc Returns `x` such that ``gammaincc(a,x) == y``. """) add_newdoc("scipy.special", "gammaincinv", """ gammaincinv(a, y) Inverse to gammainc Returns `x` such that ``gammainc(a, x) = y``. """) add_newdoc("scipy.special", "gammaln", """ gammaln(z) Logarithm of absolute value of gamma function Defined as:: ln(abs(gamma(z))) See Also -------- gammasgn """) add_newdoc("scipy.special", "gammasgn", """ gammasgn(x) Sign of the gamma function. See Also -------- gammaln """) add_newdoc("scipy.special", "gdtr", """ gdtr(a,b,x) Gamma distribution cumulative density function. Returns the integral from zero to x of the gamma probability density function:: a**b / gamma(b) * integral(t**(b-1) exp(-at),t=0..x). The arguments a and b are used differently here than in other definitions. """) add_newdoc("scipy.special", "gdtrc", """ gdtrc(a,b,x) Gamma distribution survival function. Integral from x to infinity of the gamma probability density function. See Also -------- gdtr, gdtri """) add_newdoc("scipy.special", "gdtria", """ gdtria(p, b, x, out=None) Inverse of gdtr vs a. Returns the inverse with respect to the parameter `a` of ``p = gdtr(a, b, x)``, the cumulative distribution function of the gamma distribution. Parameters ---------- p : array_like Probability values. b : array_like `b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter of the gamma distribution. x : array_like Nonnegative real values, from the domain of the gamma distribution. out : ndarray, optional If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of `a`, `b` and `x`. `out` is then the array returned by the function. Returns ------- a : ndarray Values of the `a` parameter such that `p = gdtr(a, b, x)`. `1/a` is the "scale" parameter of the gamma distribution. See Also -------- gdtr : CDF of the gamma distribution. gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`. gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`. Examples -------- First evaluate `gdtr`. >>> p = gdtr(1.2, 3.4, 5.6) >>> print(p) 0.94378087442 Verify the inverse. >>> gdtria(p, 3.4, 5.6) 1.2 """) add_newdoc("scipy.special", "gdtrib", """ gdtrib(a, p, x, out=None) Inverse of gdtr vs b. Returns the inverse with respect to the parameter `b` of ``p = gdtr(a, b, x)``, the cumulative distribution function of the gamma distribution. Parameters ---------- a : array_like `a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale" parameter of the gamma distribution. p : array_like Probability values. x : array_like Nonnegative real values, from the domain of the gamma distribution. out : ndarray, optional If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of `a`, `b` and `x`. `out` is then the array returned by the function. Returns ------- b : ndarray Values of the `b` parameter such that `p = gdtr(a, b, x)`. `b` is the "shape" parameter of the gamma distribution. See Also -------- gdtr : CDF of the gamma distribution. gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`. gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`. Examples -------- First evaluate `gdtr`. >>> p = gdtr(1.2, 3.4, 5.6) >>> print(p) 0.94378087442 Verify the inverse. >>> gdtrib(1.2, p, 5.6) 3.3999999999723882 """) add_newdoc("scipy.special", "gdtrix", """ gdtrix(a, b, p, out=None) Inverse of gdtr vs x. Returns the inverse with respect to the parameter `x` of ``p = gdtr(a, b, x)``, the cumulative distribution function of the gamma distribution. This is also known as the p'th quantile of the distribution. Parameters ---------- a : array_like `a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale" parameter of the gamma distribution. b : array_like `b` parameter values of `gdtr(a, b, x)`. `b` is the "shape" parameter of the gamma distribution. p : array_like Probability values. out : ndarray, optional If a fourth argument is given, it must be a numpy.ndarray whose size matches the broadcast result of `a`, `b` and `x`. `out` is then the array returned by the function. Returns ------- x : ndarray Values of the `x` parameter such that `p = gdtr(a, b, x)`. See Also -------- gdtr : CDF of the gamma distribution. gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`. gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`. Examples -------- First evaluate `gdtr`. >>> p = gdtr(1.2, 3.4, 5.6) >>> print(p) 0.94378087442 Verify the inverse. >>> gdtrix(1.2, 3.4, p) 5.5999999999999996 """) add_newdoc("scipy.special", "hankel1", """ hankel1(v, z) Hankel function of the first kind Parameters ---------- v : float Order z : float or complex Argument """) add_newdoc("scipy.special", "hankel1e", """ hankel1e(v, z) Exponentially scaled Hankel function of the first kind Defined as:: hankel1e(v,z) = hankel1(v,z) * exp(-1j * z) Parameters ---------- v : float Order z : complex Argument """) add_newdoc("scipy.special", "hankel2", """ hankel2(v, z) Hankel function of the second kind Parameters ---------- v : float Order z : complex Argument """) add_newdoc("scipy.special", "hankel2e", """ hankel2e(v, z) Exponentially scaled Hankel function of the second kind Defined as:: hankel1e(v,z) = hankel1(v,z) * exp(1j * z) Parameters ---------- v : float Order z : complex Argument """) add_newdoc("scipy.special", "huber", r""" huber(delta, r) Huber loss function. .. math:: \text{huber}(\delta, r) = \begin{cases} \infty & \delta < 0 \\ \frac{1}{2}r^2 & 0 \le \delta, | r | \le \delta \\ \delta ( |r| - \frac{1}{2}\delta ) & \text{otherwise} \end{cases} Parameters ---------- delta : ndarray Input array, indicating the quadratic vs. linear loss changepoint. r : ndarray Input array, possibly representing residuals. Returns ------- res : ndarray The computed Huber loss function values. Notes ----- This function is convex in r. .. versionadded:: 0.15.0 """) add_newdoc("scipy.special", "hyp1f1", """ hyp1f1(a, b, x) Confluent hypergeometric function 1F1(a, b; x) """) add_newdoc("scipy.special", "hyp1f2", """ hyp1f2(a, b, c, x) Hypergeometric function 1F2 and error estimate Returns ------- y Value of the function err Error estimate """) add_newdoc("scipy.special", "hyp2f0", """ hyp2f0(a, b, x, type) Hypergeometric function 2F0 in y and an error estimate The parameter `type` determines a convergence factor and can be either 1 or 2. Returns ------- y Value of the function err Error estimate """) add_newdoc("scipy.special", "hyp2f1", """ hyp2f1(a, b, c, z) Gauss hypergeometric function 2F1(a, b; c; z). """) add_newdoc("scipy.special", "hyp3f0", """ hyp3f0(a, b, c, x) Hypergeometric function 3F0 in y and an error estimate Returns ------- y Value of the function err Error estimate """) add_newdoc("scipy.special", "hyperu", """ hyperu(a, b, x) Confluent hypergeometric function U(a, b, x) of the second kind """) add_newdoc("scipy.special", "i0", """ i0(x) Modified Bessel function of order 0 """) add_newdoc("scipy.special", "i0e", """ i0e(x) Exponentially scaled modified Bessel function of order 0. Defined as:: i0e(x) = exp(-abs(x)) * i0(x). """) add_newdoc("scipy.special", "i1", """ i1(x) Modified Bessel function of order 1 """) add_newdoc("scipy.special", "i1e", """ i1e(x) Exponentially scaled modified Bessel function of order 1. Defined as:: i1e(x) = exp(-abs(x)) * i1(x) """) add_newdoc("scipy.special", "it2i0k0", """ it2i0k0(x) Integrals related to modified Bessel functions of order 0 Returns ------- ii0 ``integral((i0(t)-1)/t, t=0..x)`` ik0 ``int(k0(t)/t,t=x..inf)`` """) add_newdoc("scipy.special", "it2j0y0", """ it2j0y0(x) Integrals related to Bessel functions of order 0 Returns ------- ij0 ``integral((1-j0(t))/t, t=0..x)`` iy0 ``integral(y0(t)/t, t=x..inf)`` """) add_newdoc("scipy.special", "it2struve0", """ it2struve0(x) Integral related to Struve function of order 0 Returns ------- i ``integral(H0(t)/t, t=x..inf)`` """) add_newdoc("scipy.special", "itairy", """ itairy(x) Integrals of Airy functios Calculates the integral of Airy functions from 0 to x Returns ------- Apt, Bpt Integrals for positive arguments Ant, Bnt Integrals for negative arguments """) add_newdoc("scipy.special", "iti0k0", """ iti0k0(x) Integrals of modified Bessel functions of order 0 Returns simple integrals from 0 to x of the zeroth order modified Bessel functions i0 and k0. Returns ------- ii0, ik0 """) add_newdoc("scipy.special", "itj0y0", """ itj0y0(x) Integrals of Bessel functions of order 0 Returns simple integrals from 0 to x of the zeroth order Bessel functions j0 and y0. Returns ------- ij0, iy0 """) add_newdoc("scipy.special", "itmodstruve0", """ itmodstruve0(x) Integral of the modified Struve function of order 0 Returns ------- i ``integral(L0(t), t=0..x)`` """) add_newdoc("scipy.special", "itstruve0", """ itstruve0(x) Integral of the Struve function of order 0 Returns ------- i ``integral(H0(t), t=0..x)`` """) add_newdoc("scipy.special", "iv", """ iv(v,z) Modified Bessel function of the first kind of real order Parameters ---------- v Order. If z is of real type and negative, v must be integer valued. z Argument. """) add_newdoc("scipy.special", "ive", """ ive(v,z) Exponentially scaled modified Bessel function of the first kind Defined as:: ive(v,z) = iv(v,z) * exp(-abs(z.real)) """) add_newdoc("scipy.special", "j0", """ j0(x) Bessel function the first kind of order 0 """) add_newdoc("scipy.special", "j1", """ j1(x) Bessel function of the first kind of order 1 """) add_newdoc("scipy.special", "jn", """ jn(n, x) Bessel function of the first kind of integer order n. Notes ----- `jn` is an alias of `jv`. """) add_newdoc("scipy.special", "jv", """ jv(v, z) Bessel function of the first kind of real order v """) add_newdoc("scipy.special", "jve", """ jve(v, z) Exponentially scaled Bessel function of order v Defined as:: jve(v,z) = jv(v,z) * exp(-abs(z.imag)) """) add_newdoc("scipy.special", "k0", """ k0(x) Modified Bessel function K of order 0 Modified Bessel function of the second kind (sometimes called the third kind) of order 0. """) add_newdoc("scipy.special", "k0e", """ k0e(x) Exponentially scaled modified Bessel function K of order 0 Defined as:: k0e(x) = exp(x) * k0(x). """) add_newdoc("scipy.special", "k1", """ i1(x) Modified Bessel function of the first kind of order 1 """) add_newdoc("scipy.special", "k1e", """ k1e(x) Exponentially scaled modified Bessel function K of order 1 Defined as:: k1e(x) = exp(x) * k1(x) """) add_newdoc("scipy.special", "kei", """ kei(x) Kelvin function ker """) add_newdoc("scipy.special", "keip", """ keip(x) Derivative of the Kelvin function kei """) add_newdoc("scipy.special", "kelvin", """ kelvin(x) Kelvin functions as complex numbers Returns ------- Be, Ke, Bep, Kep The tuple (Be, Ke, Bep, Kep) contains complex numbers representing the real and imaginary Kelvin functions and their derivatives evaluated at x. For example, kelvin(x)[0].real = ber x and kelvin(x)[0].imag = bei x with similar relationships for ker and kei. """) add_newdoc("scipy.special", "ker", """ ker(x) Kelvin function ker """) add_newdoc("scipy.special", "kerp", """ kerp(x) Derivative of the Kelvin function ker """) add_newdoc("scipy.special", "kl_div", r""" kl_div(x, y) Elementwise function for computing Kullback-Leibler divergence. .. math:: \mathrm{kl\_div}(x, y) = \begin{cases} x \log(x / y) - x + y & x > 0, y > 0 \\ y & x = 0, y \ge 0 \\ \infty & \text{otherwise} \end{cases} Parameters ---------- x : ndarray First input array. y : ndarray Second input array. Returns ------- res : ndarray Output array. See Also -------- entr, rel_entr Notes ----- This function is non-negative and is jointly convex in x and y. .. versionadded:: 0.14.0 """) add_newdoc("scipy.special", "kn", """ kn(n, x) Modified Bessel function of the second kind of integer order n These are also sometimes called functions of the third kind. """) add_newdoc("scipy.special", "kolmogi", """ kolmogi(p) Inverse function to kolmogorov Returns y such that ``kolmogorov(y) == p``. """) add_newdoc("scipy.special", "kolmogorov", """ kolmogorov(y) Complementary cumulative distribution function of Kolmogorov distribution Returns the complementary cumulative distribution function of Kolmogorov's limiting distribution (Kn* for large n) of a two-sided test for equality between an empirical and a theoretical distribution. It is equal to the (limit as n->infinity of the) probability that sqrt(n) * max absolute deviation > y. """) add_newdoc("scipy.special", "kv", """ kv(v,z) Modified Bessel function of the second kind of real order v Returns the modified Bessel function of the second kind (sometimes called the third kind) for real order v at complex z. """) add_newdoc("scipy.special", "kve", """ kve(v,z) Exponentially scaled modified Bessel function of the second kind. Returns the exponentially scaled, modified Bessel function of the second kind (sometimes called the third kind) for real order v at complex z:: kve(v,z) = kv(v,z) * exp(z) """) add_newdoc("scipy.special", "log1p", """ log1p(x) Calculates log(1+x) for use when x is near zero """) add_newdoc('scipy.special', 'logit', """ logit(x) Logit ufunc for ndarrays. The logit function is defined as logit(p) = log(p/(1-p)). Note that logit(0) = -inf, logit(1) = inf, and logit(p) for p<0 or p>1 yields nan. Parameters ---------- x : ndarray The ndarray to apply logit to element-wise. Returns ------- out : ndarray An ndarray of the same shape as x. Its entries are logit of the corresponding entry of x. Notes ----- As a ufunc logit takes a number of optional keyword arguments. For more information see `ufuncs <http://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_ .. versionadded:: 0.10.0 """) add_newdoc("scipy.special", "lpmv", """ lpmv(m, v, x) Associated legendre function of integer order. Parameters ---------- m : int Order v : real Degree. Must be ``v>-m-1`` or ``v<m`` x : complex Argument. Must be ``|x| <= 1``. """) add_newdoc("scipy.special", "mathieu_a", """ mathieu_a(m,q) Characteristic value of even Mathieu functions Returns the characteristic value for the even solution, ``ce_m(z,q)``, of Mathieu's equation. """) add_newdoc("scipy.special", "mathieu_b", """ mathieu_b(m,q) Characteristic value of odd Mathieu functions Returns the characteristic value for the odd solution, ``se_m(z,q)``, of Mathieu's equation. """) add_newdoc("scipy.special", "mathieu_cem", """ mathieu_cem(m,q,x) Even Mathieu function and its derivative Returns the even Mathieu function, ``ce_m(x,q)``, of order m and parameter q evaluated at x (given in degrees). Also returns the derivative with respect to x of ce_m(x,q) Parameters ---------- m Order of the function q Parameter of the function x Argument of the function, *given in degrees, not radians* Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "mathieu_modcem1", """ mathieu_modcem1(m, q, x) Even modified Mathieu function of the first kind and its derivative Evaluates the even modified Mathieu function of the first kind, ``Mc1m(x,q)``, and its derivative at `x` for order m and parameter `q`. Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "mathieu_modcem2", """ mathieu_modcem2(m, q, x) Even modified Mathieu function of the second kind and its derivative Evaluates the even modified Mathieu function of the second kind, Mc2m(x,q), and its derivative at x (given in degrees) for order m and parameter q. Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "mathieu_modsem1", """ mathieu_modsem1(m,q,x) Odd modified Mathieu function of the first kind and its derivative Evaluates the odd modified Mathieu function of the first kind, Ms1m(x,q), and its derivative at x (given in degrees) for order m and parameter q. Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "mathieu_modsem2", """ mathieu_modsem2(m, q, x) Odd modified Mathieu function of the second kind and its derivative Evaluates the odd modified Mathieu function of the second kind, Ms2m(x,q), and its derivative at x (given in degrees) for order m and parameter q. Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "mathieu_sem", """ mathieu_sem(m, q, x) Odd Mathieu function and its derivative Returns the odd Mathieu function, se_m(x,q), of order m and parameter q evaluated at x (given in degrees). Also returns the derivative with respect to x of se_m(x,q). Parameters ---------- m Order of the function q Parameter of the function x Argument of the function, *given in degrees, not radians*. Returns ------- y Value of the function yp Value of the derivative vs x """) add_newdoc("scipy.special", "modfresnelm", """ modfresnelm(x) Modified Fresnel negative integrals Returns ------- fm Integral ``F_-(x)``: ``integral(exp(-1j*t*t),t=x..inf)`` km Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp`` """) add_newdoc("scipy.special", "modfresnelp", """ modfresnelp(x) Modified Fresnel positive integrals Returns ------- fp Integral ``F_+(x)``: ``integral(exp(1j*t*t),t=x..inf)`` kp Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp`` """) add_newdoc("scipy.special", "modstruve", """ modstruve(v, x) Modified Struve function Returns the modified Struve function Lv(x) of order v at x, x must be positive unless v is an integer. """) add_newdoc("scipy.special", "nbdtr", """ nbdtr(k, n, p) Negative binomial cumulative distribution function Returns the sum of the terms 0 through k of the negative binomial distribution:: sum((n+j-1)Cj p**n (1-p)**j,j=0..k). In a sequence of Bernoulli trials this is the probability that k or fewer failures precede the nth success. """) add_newdoc("scipy.special", "nbdtrc", """ nbdtrc(k,n,p) Negative binomial survival function Returns the sum of the terms k+1 to infinity of the negative binomial distribution. """) add_newdoc("scipy.special", "nbdtri", """ nbdtri(k, n, y) Inverse of nbdtr vs p Finds the argument p such that ``nbdtr(k,n,p) = y``. """) add_newdoc("scipy.special", "nbdtrik", """ nbdtrik(y,n,p) Inverse of nbdtr vs k Finds the argument k such that ``nbdtr(k,n,p) = y``. """) add_newdoc("scipy.special", "nbdtrin", """ nbdtrin(k,y,p) Inverse of nbdtr vs n Finds the argument n such that ``nbdtr(k,n,p) = y``. """) add_newdoc("scipy.special", "ncfdtr", """ ncfdtr(dfn, dfd, nc, f) Cumulative distribution function of the non-central F distribution. Parameters ---------- dfn : array_like Degrees of freedom of the numerator sum of squares. Range (0, inf). dfd : array_like Degrees of freedom of the denominator sum of squares. Range (0, inf). nc : array_like Noncentrality parameter. Should be in range (0, 1e4). f : array_like Quantiles, i.e. the upper limit of integration. Returns ------- cdf : float or ndarray The calculated CDF. If all inputs are scalar, the return will be a float. Otherwise it will be an array. See Also -------- ncdfdtri : Inverse CDF (iCDF) of the non-central F distribution. ncdfdtridfd : Calculate dfd, given CDF and iCDF values. ncdfdtridfn : Calculate dfn, given CDF and iCDF values. ncdfdtrinc : Calculate noncentrality parameter, given CDF, iCDF, dfn, dfd. Examples -------- >>> from scipy import special >>> from scipy import stats >>> import matplotlib.pyplot as plt Plot the CDF of the non-central F distribution, for nc=0. Compare with the F-distribution from scipy.stats: >>> x = np.linspace(-1, 8, num=500) >>> dfn = 3 >>> dfd = 2 >>> ncf_stats = stats.f.cdf(x, dfn, dfd) >>> ncf_special = special.ncfdtr(dfn, dfd, 0, x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, ncf_stats, 'b-', lw=3) >>> ax.plot(x, ncf_special, 'r-') >>> plt.show() """) add_newdoc("scipy.special", "ncfdtri", """ ncfdtri(p, dfn, dfd, nc) Inverse cumulative distribution function of the non-central F distribution. See `ncfdtr` for more details. """) add_newdoc("scipy.special", "ncfdtridfd", """ ncfdtridfd(p, f, dfn, nc) Calculate degrees of freedom (denominator) for the noncentral F-distribution. See `ncfdtr` for more details. """) add_newdoc("scipy.special", "ncfdtridfn", """ ncfdtridfn(p, f, dfd, nc) Calculate degrees of freedom (numerator) for the noncentral F-distribution. See `ncfdtr` for more details. """) add_newdoc("scipy.special", "ncfdtrinc", """ ncfdtrinc(p, f, dfn, dfd) Calculate non-centrality parameter for non-central F distribution. See `ncfdtr` for more details. """) add_newdoc("scipy.special", "nctdtr", """ nctdtr(df, nc, t) Cumulative distribution function of the non-central t distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution. Should be in range (0, inf). nc : array_like Noncentrality parameter. Should be in range (-1e6, 1e6). t : array_like Quantiles, i.e. the upper limit of integration. Returns ------- cdf : float or ndarray The calculated CDF. If all inputs are scalar, the return will be a float. Otherwise it will be an array. See Also -------- nctdtrit : Inverse CDF (iCDF) of the non-central t distribution. nctdtridf : Calculate degrees of freedom, given CDF and iCDF values. nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values. Examples -------- >>> from scipy import special >>> from scipy import stats >>> import matplotlib.pyplot as plt Plot the CDF of the non-central t distribution, for nc=0. Compare with the t-distribution from scipy.stats: >>> x = np.linspace(-5, 5, num=500) >>> df = 3 >>> nct_stats = stats.t.cdf(x, df) >>> nct_special = special.nctdtr(df, 0, x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, nct_stats, 'b-', lw=3) >>> ax.plot(x, nct_special, 'r-') >>> plt.show() """) add_newdoc("scipy.special", "nctdtridf", """ nctdtridf(p, nc, t) Calculate degrees of freedom for non-central t distribution. See `nctdtr` for more details. Parameters ---------- p : array_like CDF values, in range (0, 1]. nc : array_like Noncentrality parameter. Should be in range (-1e6, 1e6). t : array_like Quantiles, i.e. the upper limit of integration. """) add_newdoc("scipy.special", "nctdtrinc", """ nctdtrinc(df, p, t) Calculate non-centrality parameter for non-central t distribution. See `nctdtr` for more details. Parameters ---------- df : array_like Degrees of freedom of the distribution. Should be in range (0, inf). p : array_like CDF values, in range (0, 1]. t : array_like Quantiles, i.e. the upper limit of integration. """) add_newdoc("scipy.special", "nctdtrit", """ nctdtrit(df, nc, p) Inverse cumulative distribution function of the non-central t distribution. See `nctdtr` for more details. Parameters ---------- df : array_like Degrees of freedom of the distribution. Should be in range (0, inf). nc : array_like Noncentrality parameter. Should be in range (-1e6, 1e6). p : array_like CDF values, in range (0, 1]. """) add_newdoc("scipy.special", "ndtr", """ ndtr(x) Gaussian cumulative distribution function Returns the area under the standard Gaussian probability density function, integrated from minus infinity to x:: 1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x) """) add_newdoc("scipy.special", "nrdtrimn", """ nrdtrimn(p, x, std) Calculate mean of normal distribution given other params. Parameters ---------- p : array_like CDF values, in range (0, 1]. x : array_like Quantiles, i.e. the upper limit of integration. std : array_like Standard deviation. Returns ------- mn : float or ndarray The mean of the normal distribution. See Also -------- nrdtrimn, ndtr """) add_newdoc("scipy.special", "nrdtrisd", """ nrdtrisd(p, x, mn) Calculate standard deviation of normal distribution given other params. Parameters ---------- p : array_like CDF values, in range (0, 1]. x : array_like Quantiles, i.e. the upper limit of integration. mn : float or ndarray The mean of the normal distribution. Returns ------- std : array_like Standard deviation. See Also -------- nrdtristd, ndtr """) add_newdoc("scipy.special", "log_ndtr", """ log_ndtr(x) Logarithm of Gaussian cumulative distribution function Returns the log of the area under the standard Gaussian probability density function, integrated from minus infinity to x:: log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x)) """) add_newdoc("scipy.special", "ndtri", """ ndtri(y) Inverse of ndtr vs x Returns the argument x for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to y. """) add_newdoc("scipy.special", "obl_ang1", """ obl_ang1(m, n, c, x) Oblate spheroidal angular function of the first kind and its derivative Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "obl_ang1_cv", """ obl_ang1_cv(m, n, c, cv, x) Oblate spheroidal angular function obl_ang1 for precomputed characteristic value Computes the oblate spheroidal angular function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "obl_cv", """ obl_cv(m, n, c) Characteristic value of oblate spheroidal function Computes the characteristic value of oblate spheroidal wave functions of order m,n (n>=m) and spheroidal parameter c. """) add_newdoc("scipy.special", "obl_rad1", """ obl_rad1(m,n,c,x) Oblate spheroidal radial function of the first kind and its derivative Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "obl_rad1_cv", """ obl_rad1_cv(m,n,c,cv,x) Oblate spheroidal radial function obl_rad1 for precomputed characteristic value Computes the oblate spheroidal radial function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "obl_rad2", """ obl_rad2(m,n,c,x) Oblate spheroidal radial function of the second kind and its derivative. Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "obl_rad2_cv", """ obl_rad2_cv(m,n,c,cv,x) Oblate spheroidal radial function obl_rad2 for precomputed characteristic value Computes the oblate spheroidal radial function of the second kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pbdv", """ pbdv(v, x) Parabolic cylinder function D Returns (d,dp) the parabolic cylinder function Dv(x) in d and the derivative, Dv'(x) in dp. Returns ------- d Value of the function dp Value of the derivative vs x """) add_newdoc("scipy.special", "pbvv", """ pbvv(v,x) Parabolic cylinder function V Returns the parabolic cylinder function Vv(x) in v and the derivative, Vv'(x) in vp. Returns ------- v Value of the function vp Value of the derivative vs x """) add_newdoc("scipy.special", "pbwa", """ pbwa(a,x) Parabolic cylinder function W Returns the parabolic cylinder function W(a,x) in w and the derivative, W'(a,x) in wp. .. warning:: May not be accurate for large (>5) arguments in a and/or x. Returns ------- w Value of the function wp Value of the derivative vs x """) add_newdoc("scipy.special", "pdtr", """ pdtr(k, m) Poisson cumulative distribution function Returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) * m**j / j!, j=0..k) = gammaincc( k+1, m). Arguments must both be positive and k an integer. """) add_newdoc("scipy.special", "pdtrc", """ pdtrc(k, m) Poisson survival function Returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc( k+1, m). Arguments must both be positive and k an integer. """) add_newdoc("scipy.special", "pdtri", """ pdtri(k,y) Inverse to pdtr vs m Returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the given probability y: calculated by gammaincinv(k+1, y). k must be a nonnegative integer and y between 0 and 1. """) add_newdoc("scipy.special", "pdtrik", """ pdtrik(p,m) Inverse to pdtr vs k Returns the quantile k such that ``pdtr(k, m) = p`` """) add_newdoc("scipy.special", "poch", """ poch(z, m) Rising factorial (z)_m The Pochhammer symbol (rising factorial), is defined as:: (z)_m = gamma(z + m) / gamma(z) For positive integer `m` it reads:: (z)_m = z * (z + 1) * ... * (z + m - 1) """) add_newdoc("scipy.special", "pro_ang1", """ pro_ang1(m,n,c,x) Prolate spheroidal angular function of the first kind and its derivative Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pro_ang1_cv", """ pro_ang1_cv(m,n,c,cv,x) Prolate spheroidal angular function pro_ang1 for precomputed characteristic value Computes the prolate spheroidal angular function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pro_cv", """ pro_cv(m,n,c) Characteristic value of prolate spheroidal function Computes the characteristic value of prolate spheroidal wave functions of order m,n (n>=m) and spheroidal parameter c. """) add_newdoc("scipy.special", "pro_rad1", """ pro_rad1(m,n,c,x) Prolate spheroidal radial function of the first kind and its derivative Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pro_rad1_cv", """ pro_rad1_cv(m,n,c,cv,x) Prolate spheroidal radial function pro_rad1 for precomputed characteristic value Computes the prolate spheroidal radial function of the first kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pro_rad2", """ pro_rad2(m,n,c,x) Prolate spheroidal radial function of the secon kind and its derivative Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pro_rad2_cv", """ pro_rad2_cv(m,n,c,cv,x) Prolate spheroidal radial function pro_rad2 for precomputed characteristic value Computes the prolate spheroidal radial function of the second kind and its derivative (with respect to x) for mode parameters m>=0 and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires pre-computed characteristic value. Returns ------- s Value of the function sp Value of the derivative vs x """) add_newdoc("scipy.special", "pseudo_huber", r""" pseudo_huber(delta, r) Pseudo-Huber loss function. .. math:: \mathrm{pseudo\_huber}(\delta, r) = \delta^2 \left( \sqrt{ 1 + \left( \frac{r}{\delta} \right)^2 } - 1 \right) Parameters ---------- delta : ndarray Input array, indicating the soft quadratic vs. linear loss changepoint. r : ndarray Input array, possibly representing residuals. Returns ------- res : ndarray The computed Pseudo-Huber loss function values. Notes ----- This function is convex in :math:`r`. .. versionadded:: 0.15.0 """) add_newdoc("scipy.special", "psi", """ psi(z) Digamma function The derivative of the logarithm of the gamma function evaluated at z (also called the digamma function). """) add_newdoc("scipy.special", "radian", """ radian(d, m, s) Convert from degrees to radians Returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians. """) add_newdoc("scipy.special", "rel_entr", r""" rel_entr(x, y) Elementwise function for computing relative entropy. .. math:: \mathrm{rel\_entr}(x, y) = \begin{cases} x \log(x / y) & x > 0, y > 0 \\ 0 & x = 0, y \ge 0 \\ \infty & \text{otherwise} \end{cases} Parameters ---------- x : ndarray First input array. y : ndarray Second input array. Returns ------- res : ndarray Output array. See Also -------- entr, kl_div Notes ----- This function is jointly convex in x and y. .. versionadded:: 0.14.0 """) add_newdoc("scipy.special", "rgamma", """ rgamma(z) Gamma function inverted Returns ``1/gamma(x)`` """) add_newdoc("scipy.special", "round", """ round(x) Round to nearest integer Returns the nearest integer to x as a double precision floating point result. If x ends in 0.5 exactly, the nearest even integer is chosen. """) add_newdoc("scipy.special", "shichi", """ shichi(x) Hyperbolic sine and cosine integrals Returns ------- shi ``integral(sinh(t)/t, t=0..x)`` chi ``eul + ln x + integral((cosh(t)-1)/t, t=0..x)`` where ``eul`` is Euler's constant. """) add_newdoc("scipy.special", "sici", """ sici(x) Sine and cosine integrals Returns ------- si ``integral(sin(t)/t, t=0..x)`` ci ``eul + ln x + integral((cos(t) - 1)/t, t=0..x)`` where ``eul`` is Euler's constant. """) add_newdoc("scipy.special", "sindg", """ sindg(x) Sine of angle given in degrees """) add_newdoc("scipy.special", "smirnov", """ smirnov(n, e) Kolmogorov-Smirnov complementary cumulative distribution function Returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (Dn+ or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal to the probability that the maximum difference between a theoretical distribution and an empirical one based on n samples is greater than e. """) add_newdoc("scipy.special", "smirnovi", """ smirnovi(n, y) Inverse to smirnov Returns ``e`` such that ``smirnov(n, e) = y``. """) add_newdoc("scipy.special", "spence", """ spence(x) Dilogarithm integral Returns the dilogarithm integral:: -integral(log t / (t-1),t=1..x) """) add_newdoc("scipy.special", "stdtr", """ stdtr(df,t) Student t distribution cumulative density function Returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of freedom:: gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) * integral((1+x**2/df)**(-df/2-1/2), x=-inf..t) """) add_newdoc("scipy.special", "stdtridf", """ stdtridf(p,t) Inverse of stdtr vs df Returns the argument df such that stdtr(df,t) is equal to p. """) add_newdoc("scipy.special", "stdtrit", """ stdtrit(df,p) Inverse of stdtr vs t Returns the argument t such that stdtr(df,t) is equal to p. """) add_newdoc("scipy.special", "struve", """ struve(v,x) Struve function Computes the struve function Hv(x) of order v at x, x must be positive unless v is an integer. """) add_newdoc("scipy.special", "tandg", """ tandg(x) Tangent of angle x given in degrees. """) add_newdoc("scipy.special", "tklmbda", """ tklmbda(x, lmbda) Tukey-Lambda cumulative distribution function """) add_newdoc("scipy.special", "wofz", """ wofz(z) Faddeeva function Returns the value of the Faddeeva function for complex argument:: exp(-z**2)*erfc(-i*z) References ---------- .. [1] Steven G. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/Faddeeva """) add_newdoc("scipy.special", "xlogy", """ xlogy(x, y) Compute ``x*log(y)`` so that the result is 0 if `x = 0`. Parameters ---------- x : array_like Multiplier y : array_like Argument Returns ------- z : array_like Computed x*log(y) Notes ----- .. versionadded:: 0.13.0 """) add_newdoc("scipy.special", "xlog1py", """ xlog1py(x, y) Compute ``x*log1p(y)`` so that the result is 0 if `x = 0`. Parameters ---------- x : array_like Multiplier y : array_like Argument Returns ------- z : array_like Computed x*log1p(y) Notes ----- .. versionadded:: 0.13.0 """) add_newdoc("scipy.special", "y0", """ y0(x) Bessel function of the second kind of order 0 Returns the Bessel function of the second kind of order 0 at x. """) add_newdoc("scipy.special", "y1", """ y1(x) Bessel function of the second kind of order 1 Returns the Bessel function of the second kind of order 1 at x. """) add_newdoc("scipy.special", "yn", """ yn(n,x) Bessel function of the second kind of integer order Returns the Bessel function of the second kind of integer order n at x. """) add_newdoc("scipy.special", "yv", """ yv(v,z) Bessel function of the second kind of real order Returns the Bessel function of the second kind of real order v at complex z. """) add_newdoc("scipy.special", "yve", """ yve(v,z) Exponentially scaled Bessel function of the second kind of real order Returns the exponentially scaled Bessel function of the second kind of real order v at complex z:: yve(v,z) = yv(v,z) * exp(-abs(z.imag)) """) add_newdoc("scipy.special", "zeta", """ zeta(x, q) Hurwitz zeta function The Riemann zeta function of two arguments (also known as the Hurwitz zeta funtion). This function is defined as .. math:: \\zeta(x, q) = \\sum_{k=0}^{\\infty} 1 / (k+q)^x, where ``x > 1`` and ``q > 0``. See also -------- zetac """) add_newdoc("scipy.special", "zetac", """ zetac(x) Riemann zeta function minus 1. This function is defined as .. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x, where ``x > 1``. See Also -------- zeta """) add_newdoc("scipy.special", "_struve_asymp_large_z", """ _struve_asymp_large_z(v, z, is_h) Internal function for testing struve & modstruve Evaluates using asymptotic expansion Returns ------- v, err """) add_newdoc("scipy.special", "_struve_power_series", """ _struve_power_series(v, z, is_h) Internal function for testing struve & modstruve Evaluates using power series Returns ------- v, err """) add_newdoc("scipy.special", "_struve_bessel_series", """ _struve_bessel_series(v, z, is_h) Internal function for testing struve & modstruve Evaluates using Bessel function series Returns ------- v, err """)
bsd-3-clause
prheenan/Research
Personal/EventDetection/Util/Learning.py
1
23562
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys,traceback from Research.Personal.EventDetection.Util import Analysis,InputOutput,Scoring from GeneralUtil.python import CheckpointUtilities,GenUtilities,PlotUtilities from sklearn.model_selection import StratifiedKFold import multiprocessing class fold_meta: def __init__(self,meta): self.velocity = meta.Velocity self.name = meta.Name self.source_file = meta.SourceFile class fold: def __init__(self,param,scores,info): """ stores a single 'fold' (ie: fixed parameter value, scores and meta for each FEC) Args: param: parameter used scores: list of score object, one per FEC in thefold info: meta information about the FEC objects """ self.param = param self.scores = scores self.info = info class learning_curve: def __init__(self,description,func_to_call,list_of_params): """ stores the folds and parameters associated with a function and list of learning parameters Args: description: short name func_to_call: what function to call for this data list of paramters: list of dictionaries (Each of which is passed to func_to_call for the appropriate folds) """ self.description = description self.list_of_folds = None self.validation_folds = None self.list_of_params = list_of_params self.func_to_call = func_to_call def param_values(self): # XXX assume 1-D search, only one parameters per list return np.array([l.values()[0] for l in self.list_of_params]) def set_list_of_folds(self,folds): self.list_of_folds = folds def set_validation_folds(self,folds): self.validation_folds = folds def _scores_by_params(self,train=True,score_tx_func=lambda x: x): """ Returns a nested list; first lever is parameter, second level is folds, third level is all scores in the fold Args: train: wherher to get the training or validaiton folds score_tx_func: takes in a scoring object, should also return one useful for (e.g.) only looking at subsets of data Returns: nested list as desribed """ fold_list = self.list_of_folds if train else self.validation_folds scores_by_params = [ [[score_tx_func(s) for s in fold.scores] for fold in folds_by_param] for folds_by_param in fold_list] return scores_by_params def _walk_scores(scores, func_score=lambda x : x, func_fold =lambda x : x, func_param=lambda x : x, func_top = lambda x:x): """ function for 'easily' walking through list of scores Args: func_<x>: applied at the level of x (e.g. func_score is for a single score, func_fold is a list of scores meaning a fold, etc) Returns: result of the chained functions """ return func_top([ func_param([ func_fold([func_score(s) for s in scores]) for scores in by_param]) for by_param in scores]) def safe_scores(scores,value_func=lambda x: x,eval_func=lambda x:x): """ function for getting possibly None values and evaluating them Args: scores: list of scores value:func: takes a score, gives a value eval_func: for evaluating the non-None values Returns: result of the chained functions """ raw = [value_func(s) for s in scores] safe = [r for r in raw if r is not None] if (len(safe) > 0): return eval_func(safe) else: return None def safe_median(scores): """ function for safely evaluating the median Args: scores: see safe_scores Returns: result of the chained functions """ return safe_scores(scores,eval_func=np.median) def median_dist_per_param(scores,**kwargs): """ function for safely getting the median of the scores we want Args: scores: see safe_scores **kwargs: passed to minimum_distance_median Returns: median of the minimum distance to an event, per paramter across folds (1-D arrray) """ score_func = lambda x: x.minimum_distance_median(**kwargs) func_fold = lambda x: safe_scores(x,value_func=score_func, eval_func=np.median) return _walk_scores(scores,func_fold =func_fold, func_param=safe_median,func_top=np.array) def stdev_dist_per_param(scores,**kwargs): """ function for safely getting the median of the scores we want Args: scores: see safe_scores kwargs: see median_dist_per_param Returns: stdev of the minimum distance to an event, per paramter across folds (1-D arrray) """ score_func = lambda x: x.minimum_distance_distribution(**kwargs) eval_func = lambda x: np.std(np.concatenate(x)) func_fold = lambda x: safe_scores(x,value_func=score_func, eval_func=eval_func) return _walk_scores(scores,func_fold =func_fold, func_param=safe_median,func_top=np.array) def rupture_objects(scores,get_true,slice_v=slice(0,None,1)): """ get the rupture objects associated with the scores Args: scores: see event_distance_distribution get_true: if true, gets the *true* rupture objects associated with the Returns: array of rupture objects, one per parameter """ if (get_true): func_tmp = lambda x: [v.ruptures_true for v in x] else: func_tmp = lambda x: [v.ruptures_predicted for v in x] # need to concatenate everything func_fold = lambda *args,**kwargs: np.concatenate(func_tmp(*args,**kwargs)) return _walk_scores(scores,func_fold=func_fold, func_param=np.concatenate,func_top=np.array) def limits_and_bins_force_and_load(ruptures_true,ruptures_pred, loading_true,loading_pred,n=10,limit=False): """ Return a 4-tuple of limit,bins for rupture force and loading rate Args: <x>_<true/pred> : llist of true/predicted x limit: if true, limite each axis to the 98 percentle of the data n: number of bins Returns: limits force,bins force,limits loaidng,bins loading """ double_f = lambda f1,f2,*args: f2(f1([data for f_type in args for data in f_type])) # determine the limits on the rupture force if limit: get_limited_data = lambda x: np.array(x)[((x >= np.percentile(x,1)) & (x <= np.percentile(x,99)))] else: get_limited_data = lambda x: x min_y = double_f(get_limited_data,np.min,ruptures_pred,ruptures_true) max_y = double_f(get_limited_data,np.max,ruptures_pred,ruptures_true) lim_force = [min_y,max_y] # determine the limits on the loading rate safe = lambda x: [x[i] for i in np.where(np.array(x)>0)[0]] min_x = double_f(get_limited_data,np.min,safe(loading_pred), safe(loading_true)) max_x = double_f(get_limited_data,np.max,safe(loading_pred), safe(loading_true)) lim_load = [min_x,max_x] bins_rupture= np.linspace(*lim_force,num=n) min_y = max(min(lim_load),1e-2) logy = np.log10([min_y,max(lim_load)]) bins_load = np.logspace(*logy,num=n) return lim_force,bins_rupture,lim_load,bins_load def get_rupture_in_pN_and_loading_in_pN_per_s(objs): """ Args: objs: see _plot_rupture_objecs Returns: tuple of <rupture force in pN, loading rate in pN> """ to_pN = lambda x: x * 1e12 rupture_forces_pN = np.array([to_pN(obj.rupture_force) for obj in objs]) loading_rate_pN_per_s = np.array([to_pN(obj.loading_rate) for obj in objs]) return rupture_forces_pN,loading_rate_pN_per_s def get_true_and_predicted_ruptures_per_param(learner,**kw): """ gets the truee and preicted rupture objects for the *validation* folds of each learner object Args: learner: the learner_curve obect to use **kw: passed to _scores_by_params Returns: tuple of validation true, predicted ruptures """ train_scores = learner._scores_by_params(train=True,**kw) valid_scores = learner._scores_by_params(train=False,**kw) # get the validation ruptures (both true and predicted) ruptures_valid_true = rupture_objects(valid_scores,get_true=True) ruptures_valid_pred = rupture_objects(valid_scores,get_true=False) return ruptures_valid_true,ruptures_valid_pred def concatenate_all(x): return np.concatenate([list(np.array(v).flatten()) for v in x if len(v) > 0]) def lambda_distribution(scores,f_lambda): """ gets the distribution of distances at each paramter value Args: scores: learner._scores_by_params object **kwargs: passed to minimum_distance_distribution Returns: concatenates distributions at each parameter value """ func_fold = lambda x: [f_lambda(v) for v in x] func_param = concatenate_all return _walk_scores(scores,func_fold = func_fold, func_param=func_param,func_top=np.array) def event_distance_distribution(scores,distance_is_absolute=False,**kwargs): """ gets the distribution of distances at each paramter value Args: scores: learner._scores_by_params object **kwargs: passed to minimum_distance_distribution Returns: concatenates distributions at each parameter value """ kw = dict(distance_is_absolute=distance_is_absolute,**kwargs) func_fold = lambda x: \ np.concatenate([v.minimum_distance_distribution(**kw) for v in x]) return _walk_scores(scores,func_fold = func_fold, func_param=np.concatenate,func_top=np.array) def f_score_dist(v): """ returns the distance f score for the given score object v Args: v: to scoore Returns; f score, 0 to 1, higher is better. """ kw = dict(floor_is_max=True) dist_to_true = v.minimum_distance_distribution(to_true=True,**kw) dist_to_pred = v.minimum_distance_distribution(to_true=False,**kw) max_x = v.max_x # get the averages ? XXX if (len(dist_to_true) != 0): average_to_true = np.median(dist_to_true) else: average_to_true = 0 if (len(dist_to_pred) != 0): average_to_pred = np.median(dist_to_pred) else: average_to_pred = 0 # defining precision and recall in a distance-analogy sense precision_dist = average_to_true recall_dist = average_to_pred f_score = \ 1-(2/max_x) * (precision_dist * recall_dist)/(precision_dist+recall_dist) return f_score def event_distance_f_score(scores): """ returns the *distance* f score for each curve Args: scores: see fold_number_events_off """ func_fold = lambda x: [f_score_dist(v) for v in x] return _walk_scores(scores,func_fold = func_fold, func_param=np.concatenate,func_top=np.array) def fold_number_events_off(scores): """ see number_events_off_per_param Args: scores: see number_events_off_per_param learning_curve._scores_by_params returns: sum of missed events divided by sum of true events """ true_pred = [x.n_true_and_predicted_events() for x in scores] true_list = [t[0] for t in true_pred] pred_list = [t[1] for t in true_pred] missed_list = [abs(true-pred) for true,pred in zip(true_list,pred_list)] relative_missed = np.sum(missed_list)/np.sum(true_list) to_ret = relative_missed return to_ret def number_events_off_per_param(params,scores): """ gets the (relative) number of events we were off by: (1) gettting the predicted and true number of events in a fold (2) getting rel=missed - true (3) taking the mean and stdev of rel across all folds Args: params: the x value to use scores: the scorer object to use, formatted like learning_curve._scores_by_params returns; tuple of <valid params, valid scores, valie errors> """ cat_median = lambda x: safe_median(np.concatenate(x)) cat_std = lambda x: np.std(np.concatenate(x)) score_func = lambda s : _walk_scores(s,func_fold=fold_number_events_off, func_param=safe_median, func_top=np.array) error_func = lambda s: _walk_scores(s,func_fold=fold_number_events_off, func_param=np.std, func_top=np.array) kw = dict(score_func=score_func,error_func=error_func) return valid_scores_erors_and_params(params,scores,**kw) def median_dist_metric(x_values,scores,**kwargs): """ function for safely getting the median metric Args: x_values: the parameters scores: see safe_scores **kwargs: passed to minimum_distance_median... Returns: see valid_scores_erors_and_params """ score_func_pred = lambda x: median_dist_per_param(x,**kwargs) error_func_pred = lambda x: stdev_dist_per_param(x,**kwargs) kw_pred = dict(score_func=score_func_pred,error_func=error_func_pred) x,dist,dist_std = valid_scores_erors_and_params(x_values,scores,**kw_pred) return x,dist,dist_std def valid_scores_erors_and_params(params,scores,score_func,error_func): """ given a function for getting scores and errors, finds where the results are valid, selecting the x,y, and erro there Args: params: what the x values are scores: the scores we will search using score/error_func <score/error>_func: functions giving the scores and errors of scores at each value of params. If undefined, then is None Returns: tuple of <valid x, valid score, valid score error> """ dist = score_func(scores) dist_std = error_func(scores) valid_func = lambda x: (~np.equal(x,None)) good_idx_func = lambda train,valid : np.where( valid_func(train) & \ valid_func(valid)) good_idx = good_idx_func(dist,dist_std) return params[good_idx],dist[good_idx],dist_std[good_idx] def single_example_info_and_score(func,example,**kwargs): """ Returns a list of learning_curve objects Args: func: a method taking in example and **kwargs and returning event indices example: TimeSepForce object **kwargs: for func Returns: tuple of <scoring object, folding_meta object> """ meta = example.Meta # get the predicted event index event_idx = func(example,**kwargs) example_split = Analysis.zero_and_split_force_extension_curve(example) # get the score score = Scoring.get_scoring_info(example_split,event_idx) return score,fold_meta(meta) def run_functor(functor): """ Given a no-argument functor, run it and return its result. We can use this with multiprocessing.map and map it over a list of job functors to do them. Handles getting more than multiprocessing's pitiful exception output Args: functor: a no-argument function (probably a lambda) Returns: whatever functor does, possibly raising an exception """ try: # This is where you do your actual work return functor() except: # Put all exception text into an exception and raise that err_string = "".join(traceback.format_exception(*sys.exc_info())) raise Exception(err_string) def single_example_multiproc(args): """ multiprocesing interface to single_example_info_and_score Args: tuple of arguments to single_example_info_and_score Returns: see single_example_info_and_score """ func,example,dict_kwargs = args return single_example_info_and_score(func,example,**dict_kwargs) class multiprocessing_functor(object): def __init__(self): pass def __call__(self,*args): return single_example_multiproc(*args) def single_fold_score(fold_data,func,kwargs,pool): """ Gets the fold object for a single set of data (ie: a single fold) for a fixed parameter set Args: fold_data: set of TimeSepForce objects to use func: to call, should return a list of predicted event starts kwargs: dict, fixed parameters to pass to func pool: if not none, a Multiprocessing pool for parallel processing... Returns: fold object """ scores = [] info = [] if (pool is None): scores_info = [single_example_info_and_score(func,ex,**kwargs) for ex in fold_data] else: # we make a list of functor objects (functions + arguments) # that we can then safely run functors_args = [ (func,ex,kwargs) for ex in fold_data] scores_info = pool.map(multiprocessing_functor(),functors_args) # POST: got the scores an info, somehow... scores = [s[0] for s in scores_info] info = [s[1] for s in scores_info] return fold(kwargs,scores,info) def folds_for_one_param(data,param,fold_idx,func_to_call,pool): folds = [] folds_valid = [] for train_idx,test_idx in fold_idx: # get the training scores fold_data = [data[f] for f in train_idx] folds_tmp = single_fold_score(fold_data,func_to_call,param, pool=pool) folds.append(folds_tmp) # get the validation scores valid_data = [data[f] for f in test_idx] valid_fold = single_fold_score(valid_data,func_to_call,param, pool=pool) folds_valid.append(valid_fold) return folds,folds_valid def get_all_folds_for_one_learner(cache_directory,force,learner,data,fold_idx, pool): """ Gets all the folds for a single learner Args: cache_directory: base where we cache things force: if true, force re-reading of all folds learner: learning_curve to use data: list of TimeSepForce objects to use fold_idx: list of <train,test>; one tuple per fold pool: a multiprocessing pool to draw from (if not None) Returns: tuple of : (0) list, one element per paramter. each element is a list of folds (1) list, one element per parameter. each element is a list of validation folds """ func_to_call = learner.func_to_call params_then_folds,param_validation_fold = [],[] for i,param in enumerate(learner.list_of_params): param_val = param.values()[0] cache_name = "{:s}_{:s}_param_{:d}_{:.3g}.pkl".\ format(cache_directory,learner.description,i,param_val) ret = CheckpointUtilities.getCheckpoint(cache_name,folds_for_one_param, force,data,param,fold_idx, func_to_call,pool=pool) folds,folds_valid = ret # done with all the folds for this parameter; save them out params_then_folds.append(folds) param_validation_fold.append(folds_valid) return params_then_folds,param_validation_fold def _get_single_curve(name,tuple_v,func): """ Returns a single learning curve object Args: name: the name of the curvess tuple_v: tuple like <function to call, list of parameters> func: takes in list of single parameters, returns a list of kwargs dicts for func Returns: learning_curve object """ return learning_curve(name,tuple_v[0],func(tuple_v[1])) def get_single_learner_folds(cache_directory,force,l,data,fold_idx,pool_size): """ return the training and testing folds for a given learner Args: cache_directory: where to cache individual parameter folds force: if caching should be forced l : learner to use d : data to use fold_idx: which indices to use for the folds pool_size: number of processing to use. If <=1, just uses 1 (no parallelism) Returns: tuple of <training,validation folds> """ if (pool_size <= 1): # dont use a multiprocessing pool pool = None else: pool = multiprocessing.Pool(pool_size) print("Using {:d} processes for {:s}".format(pool_size,l.description)) ret = get_all_folds_for_one_learner(cache_directory,force, l,data,fold_idx,pool=pool) list_of_folds,validation_folds = ret return list_of_folds,validation_folds def get_cached_folds(categories,force_read,force_learn, cache_directory,limit,n_folds,seed=42, learners=None,pool_size=1): """ caches all the results for every learner after reading in all the data Args: categories: list of velocity-separated data force_read: if the csv fiels should be re-read force_learn: if the learner objects should be re-read cache_directoy: where to put the pkl files limit: how many examples to read in n_folds: now many folds to use seed: for PRNG Returns: list, one element per paramter. each element is a list of folds """ # read and update all the categories categories = InputOutput.\ read_categories(categories,force_read,cache_directory,limit) labels_data = [ [i,d] for i,cat in enumerate(categories) for d in cat.data] labels = [l[0] for l in labels_data] data = [l[1] for l in labels_data] # determine the folds to use fold_obj = StratifiedKFold(n_splits=n_folds,shuffle=True,random_state=seed) # .split returns a generator by default; convert to a list to avoid # making it only used for the first fold fold_idx = list(fold_obj.split(X=np.zeros(len(labels)),y=labels)) if (learners is None): learners = get_learners() # POST: all data read in. get all the scores for all the learners. for l in learners: cache_file = cache_directory + "folds_" + l.description + ".pkl" tmp = CheckpointUtilities.getCheckpoint(cache_file, get_single_learner_folds, force_learn, cache_directory,force_learn, l,data=data,fold_idx=fold_idx, pool_size=pool_size) list_of_folds,validation_folds = tmp l.set_list_of_folds(list_of_folds) l.set_validation_folds(validation_folds) return learners
gpl-3.0
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/sklearn/gaussian_process/gaussian_process.py
78
34552
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
gpl-2.0
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/userdemo/anchored_box03.py
1
1230
""" ============== Anchored Box03 ============== """ from matplotlib.patches import Ellipse import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.anchored_artists import AnchoredAuxTransformBox # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end fig, ax = plt.subplots(figsize=(3, 3)) box = AnchoredAuxTransformBox(ax.transData, loc=2) el = Ellipse((0, 0), width=0.1, height=0.4, angle=30) # in data coordinates! box.drawing_area.add_artist(el) ax.add_artist(box) pltshow(plt)
mit
Mega-DatA-Lab/mxnet
example/svm_mnist/svm_mnist.py
44
4094
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ############################################################# ## Please read the README.md document for better reference ## ############################################################# from __future__ import print_function import mxnet as mx import numpy as np from sklearn.datasets import fetch_mldata from sklearn.decomposition import PCA # import matplotlib.pyplot as plt import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Network declaration as symbols. The following pattern was based # on the article, but feel free to play with the number of nodes # and with the activation function data = mx.symbol.Variable('data') fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=512) act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 512) act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) # Here we add the ultimate layer based on L2-SVM objective mlp = mx.symbol.SVMOutput(data=fc3, name='svm') # To use L1-SVM objective, comment the line above and uncomment the line below # mlp = mx.symbol.SVMOutput(data=fc3, name='svm', use_linear=True) # Now we fetch MNIST dataset, add some noise, as the article suggests, # permutate and assign the examples to be used on our network mnist = fetch_mldata('MNIST original') mnist_pca = PCA(n_components=70).fit_transform(mnist.data) noise = np.random.normal(size=mnist_pca.shape) mnist_pca += noise np.random.seed(1234) # set seed for deterministic ordering p = np.random.permutation(mnist_pca.shape[0]) X = mnist_pca[p] Y = mnist.target[p] X_show = mnist.data[p] # This is just to normalize the input and separate train set and test set X = X.astype(np.float32)/255 X_train = X[:60000] X_test = X[60000:] X_show = X_show[60000:] Y_train = Y[:60000] Y_test = Y[60000:] # Article's suggestion on batch size batch_size = 200 train_iter = mx.io.NDArrayIter(X_train, Y_train, batch_size=batch_size, label_name='svm_label') test_iter = mx.io.NDArrayIter(X_test, Y_test, batch_size=batch_size, label_name='svm_label') # Here we instatiate and fit the model for our data # The article actually suggests using 400 epochs, # But I reduced to 10, for convinience mod = mx.mod.Module( context = mx.cpu(0), # Run on CPU 0 symbol = mlp, # Use the network we just defined label_names = ['svm_label'], ) mod.fit( train_data=train_iter, eval_data=test_iter, # Testing data set. MXNet computes scores on test set every epoch batch_end_callback = mx.callback.Speedometer(batch_size, 200), # Logging module to print out progress num_epoch = 10, # Train for 10 epochs optimizer_params = { 'learning_rate': 0.1, # Learning rate 'momentum': 0.9, # Momentum for SGD with momentum 'wd': 0.00001, # Weight decay for regularization }, ) # Uncomment to view an example # plt.imshow((X_show[0].reshape((28,28))*255).astype(np.uint8), cmap='Greys_r') # plt.show() # print 'Result:', model.predict(X_test[0:1])[0].argmax() # Now it prints how good did the network did for this configuration print('Accuracy:', mod.score(test_iter, mx.metric.Accuracy())[0][1]*100, '%')
apache-2.0
helldorado/ansible
hacking/cgroup_perf_recap_graph.py
54
4384
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) 2018, Matt Martz <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import argparse import csv from collections import namedtuple try: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: raise SystemExit('matplotlib is required for this script to work') Data = namedtuple('Data', ['axis_name', 'dates', 'names', 'values']) def task_start_ticks(dates, names): item = None ret = [] for i, name in enumerate(names): if name == item: continue item = name ret.append((dates[i], name)) return ret def create_axis_data(filename, relative=False): x_base = None if relative else 0 axis_name, dummy = os.path.splitext(os.path.basename(filename)) dates = [] names = [] values = [] with open(filename) as f: reader = csv.reader(f) for row in reader: if x_base is None: x_base = float(row[0]) dates.append(mdates.epoch2num(float(row[0]) - x_base)) names.append(row[1]) values.append(float(row[3])) return Data(axis_name, dates, names, values) def create_graph(data1, data2, width=11.0, height=8.0, filename='out.png', title=None): fig, ax1 = plt.subplots(figsize=(width, height), dpi=300) task_ticks = task_start_ticks(data1.dates, data1.names) ax1.grid(linestyle='dashed', color='lightgray') ax1.xaxis.set_major_formatter(mdates.DateFormatter('%X')) ax1.plot(data1.dates, data1.values, 'b-') if title: ax1.set_title(title) ax1.set_xlabel('Time') ax1.set_ylabel(data1.axis_name, color='b') for item in ax1.get_xticklabels(): item.set_rotation(60) ax2 = ax1.twiny() ax2.set_xticks([x[0] for x in task_ticks]) ax2.set_xticklabels([x[1] for x in task_ticks]) ax2.grid(axis='x', linestyle='dashed', color='lightgray') ax2.xaxis.set_ticks_position('bottom') ax2.xaxis.set_label_position('bottom') ax2.spines['bottom'].set_position(('outward', 86)) ax2.set_xlabel('Task') ax2.set_xlim(ax1.get_xlim()) for item in ax2.get_xticklabels(): item.set_rotation(60) ax3 = ax1.twinx() ax3.plot(data2.dates, data2.values, 'g-') ax3.set_ylabel(data2.axis_name, color='g') fig.tight_layout() fig.savefig(filename, format='png') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('files', nargs=2, help='2 CSV files produced by cgroup_perf_recap to graph together') parser.add_argument('--relative', default=False, action='store_true', help='Use relative dates instead of absolute') parser.add_argument('--output', default='out.png', help='output path of PNG file: Default %s(default)s') parser.add_argument('--width', type=float, default=11.0, help='Width of output image in inches. Default %(default)s') parser.add_argument('--height', type=float, default=8.0, help='Height of output image in inches. Default %(default)s') parser.add_argument('--title', help='Title for graph') return parser.parse_args() def main(): args = parse_args() data1 = create_axis_data(args.files[0], relative=args.relative) data2 = create_axis_data(args.files[1], relative=args.relative) create_graph(data1, data2, width=args.width, height=args.height, filename=args.output, title=args.title) print('Graph written to %s' % os.path.abspath(args.output)) if __name__ == '__main__': main()
gpl-3.0
ClimbsRocks/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
42
20925
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.model_selection import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.exceptions import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-4, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) @ignore_warnings def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = assert_warns(DeprecationWarning, estimator.decision_function, X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually guaranteed in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
dopplershift/Scattering
scripts/scatter_models_units.py
1
2244
import matplotlib.pyplot as plt import numpy as np import scattering, dsd import scipy.constants as consts import quantities as pq def to_dBz(lin): return 10.0 * np.log10((lin / pq.CompoundUnit("mm^6/m^3")).simplified) d = np.linspace(0.01, 1.0, 200).reshape(200,1) * pq.cm l = np.linspace(0.01, 25.0, 100).reshape(1,100) * pq.g / pq.m**3 dist = dsd.mp_from_lwc(d, l) #lam = 0.1 lam = 0.0321 * pq.m temp = 10.0 db_factor = 10.0 * np.log10(np.e) mie = scattering.scatterer(lam, temp, 'water', diameters=d) mie.set_scattering_model('mie') ray = scattering.scatterer(lam, temp, 'water', diameters=d) ray.set_scattering_model('rayleigh') oblate_rg = scattering.scatterer(lam, temp, 'water', diameters=d, shape='oblate') oblate_rg.set_scattering_model('gans') sphere_rg = scattering.scatterer(lam, temp, 'water', diameters=d, shape='sphere') sphere_rg.set_scattering_model('gans') oblate = scattering.scatterer(lam, temp, 'water', diameters=d, shape='oblate') oblate.set_scattering_model('tmatrix') d = d.squeeze() l = l.squeeze() lines = ['r-', 'g-', 'b-', 'k-', 'k--'] names = ['Rayleigh', 'Rayleigh-Gans (oblate)', 'Rayleigh-Gans (sphere)', 'Mie', 'T-Matrix (oblate)'] models = [ray, oblate_rg, sphere_rg, mie, oblate] for model, line, name in zip(models, lines, names): ref = to_dBz(model.get_reflectivity_factor(dist)) atten = model.get_attenuation(dist).rescale(1/pq.km) * db_factor plt.subplot(2, 2, 1) plt.semilogy(d, model.sigma_b.rescale('m^2'), line, label=name) plt.subplot(2, 2, 2) plt.plot(l, ref, line, label=name) plt.subplot(2, 2, 3) plt.semilogy(d, model.sigma_e.rescale('m^2'), line, label=name) plt.subplot(2, 2, 4) plt.plot(l, atten, line, label=name) plt.subplot(2,2,1) plt.legend(loc = 'lower right') plt.xlabel('Diameter (cm)') plt.ylabel(r'$\sigma_b \rm{(m^2)}$') plt.subplot(2,2,2) plt.xlabel('Rain Content (g/m^3)') plt.ylabel(r'Z$_{e}$ (dBz)') plt.subplot(2,2,3) plt.xlabel('Diameter (cm)') plt.ylabel(r'$\sigma_e \rm{(m^2)}$') plt.subplot(2,2,4) plt.xlabel('Rain Content (g/m^3)') plt.ylabel('1-way Attenuation (db/km)') plt.gcf().text(0.5,0.95,'Comparison of Various Scattering models', horizontalalignment='center',fontsize=16) plt.show()
bsd-2-clause
kylerbrown/scikit-learn
sklearn/linear_model/ransac.py
191
14261
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <RansacRegression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = residual_metric(diff) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue if n_inliers_subset == 0: raise ValueError("No inliers found, possible cause is " "setting residual_threshold ({0}) too low.".format( self.residual_threshold)) # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
msultan/msmbuilder
msmbuilder/tests/test_decomposition.py
3
6992
from __future__ import absolute_import import numpy as np from mdtraj.testing import eq from numpy.testing import assert_approx_equal from numpy.testing import assert_array_almost_equal from sklearn.pipeline import Pipeline from sklearn.decomposition import PCA as PCAr from msmbuilder.example_datasets import AlanineDipeptide from ..cluster import KCenters from ..decomposition import (FactorAnalysis, FastICA, KernelTICA, MiniBatchSparsePCA, PCA, SparsePCA, tICA) from ..decomposition.kernel_approximation import LandmarkNystroem from ..featurizer import DihedralFeaturizer random = np.random.RandomState(42) trajs = [random.randn(10, 3) for _ in range(5)] def test_tica_fit_transform(): X = random.randn(10, 3) tica = tICA(n_components=2, lag_time=1) y2 = tica.fit_transform([np.copy(X)])[0] def test_tica_singular_1(): tica = tICA(n_components=1) # make some data that has one column repeated twice X = random.randn(100, 2) X = np.hstack((X, X[:, 0, np.newaxis])) tica.fit([X]) assert tica.components_.dtype == np.float64 assert tica.eigenvalues_.dtype == np.float64 def test_tica_singular_2(): tica = tICA(n_components=1) # make some data that has one column of all zeros X = random.randn(100, 2) X = np.hstack((X, np.zeros((100, 1)))) tica.fit([X]) assert tica.components_.dtype == np.float64 assert tica.eigenvalues_.dtype == np.float64 def test_tica_shape(): model = tICA(n_components=3).fit([random.randn(100, 10)]) eq(model.eigenvalues_.shape, (3,)) eq(model.eigenvectors_.shape, (10, 3)) eq(model.components_.shape, (3, 10)) def test_tica_score_1(): X = random.randn(100, 5) for n in range(1, 5): tica = tICA(n_components=n, shrinkage=0) tica.fit([X]) assert_approx_equal( tica.score([X]), tica.eigenvalues_.sum()) assert_approx_equal(tica.score([X]), tica.score_) def test_tica_score_2(): X = random.randn(100, 5) Y = random.randn(100, 5) model = tICA(shrinkage=0.0, n_components=2).fit([X]) s1 = model.score([Y]) s2 = tICA(shrinkage=0.0).fit(model.transform([Y])).eigenvalues_.sum() eq(s1, s2) def test_tica_multiple_components(): X = random.randn(100, 5) tica = tICA(n_components=1, shrinkage=0) tica.fit([X]) Y1 = tica.transform([X])[0] tica.n_components = 4 Y4 = tica.transform([X])[0] tica.n_components = 3 Y3 = tica.transform([X])[0] assert Y1.shape == (100, 1) assert Y4.shape == (100, 4) assert Y3.shape == (100, 3) eq(Y1.flatten(), Y3[:, 0]) eq(Y3, Y4[:, :3]) def test_tica_kinetic_mapping(): X = random.randn(10, 3) tica1 = tICA(n_components=2, lag_time=1) tica2 = tICA(n_components=2, lag_time=1, kinetic_mapping=True) y1 = tica1.fit_transform([np.copy(X)])[0] y2 = tica2.fit_transform([np.copy(X)])[0] assert eq(y2, y1 * tica1.eigenvalues_) def test_tica_commute_mapping(): X = random.randn(10, 3) tica1 = tICA(n_components=2, lag_time=1) tica2 = tICA(n_components=2, lag_time=1, commute_mapping=True) y1 = tica1.fit_transform([np.copy(X)])[0] y2 = tica2.fit_transform([np.copy(X)])[0] regularized_timescales = 0.5 * tica2.timescales_ *\ np.tanh( np.pi *((tica2.timescales_ - tica2.lag_time) /tica2.lag_time) + 1) assert eq(y2, np.nan_to_num(y1 * np.sqrt(regularized_timescales/2))) def test_pca_vs_sklearn(): # Compare msmbuilder.pca with sklearn.decomposition pcar = PCAr() pcar.fit(np.concatenate(trajs)) pca = PCA() pca.fit(trajs) y_ref1 = pcar.transform(trajs[0]) y1 = pca.transform(trajs)[0] np.testing.assert_array_almost_equal(y_ref1, y1) np.testing.assert_array_almost_equal(pca.components_, pcar.components_) np.testing.assert_array_almost_equal(pca.explained_variance_, pcar.explained_variance_) np.testing.assert_array_almost_equal(pca.mean_, pcar.mean_) np.testing.assert_array_almost_equal(pca.n_components_, pcar.n_components_) np.testing.assert_array_almost_equal(pca.noise_variance_, pcar.noise_variance_) def test_pca_pipeline(): # Test that PCA it works in a msmbuilder pipeline p = Pipeline([('pca', PCA()), ('cluster', KCenters())]) p.fit(trajs) def test_pca_generator(): # Check to see if it works with a generator traj_dict = dict((i, t) for i, t in enumerate(trajs)) pcar = PCAr() pcar.fit(np.concatenate(trajs)) pca = PCA() # on python 3, dict.values() returns a generator pca.fit(traj_dict.values()) y_ref1 = pcar.transform(trajs[0]) y1 = pca.transform(trajs)[0] np.testing.assert_array_almost_equal(y_ref1, y1) np.testing.assert_array_almost_equal(pca.components_, pcar.components_) np.testing.assert_array_almost_equal(pca.explained_variance_, pcar.explained_variance_) np.testing.assert_array_almost_equal(pca.mean_, pcar.mean_) np.testing.assert_array_almost_equal(pca.n_components_, pcar.n_components_) np.testing.assert_array_almost_equal(pca.noise_variance_, pcar.noise_variance_) def test_sparsepca(): pca = SparsePCA() pca.fit_transform(trajs) pca.summarize() def test_minibatchsparsepca(): pca = MiniBatchSparsePCA() pca.fit_transform(trajs) pca.summarize() def test_fastica(): ica = FastICA() ica.fit_transform(trajs) ica.summarize() def test_factoranalysis(): fa = FactorAnalysis() fa.fit_transform(trajs) fa.summarize() def test_ktica_compare_to_tica(): trajectories = AlanineDipeptide().get_cached().trajectories featurizer = DihedralFeaturizer(sincos=True) features = featurizer.transform(trajectories[0:1]) features = [features[0][::10]] tica = tICA(lag_time=1, n_components=2) ktica = KernelTICA(lag_time=1, kernel='linear', n_components=2, random_state=42) tica_out = tica.fit_transform(features)[0] ktica_out = ktica.fit_transform(features)[0] assert_array_almost_equal(ktica_out, tica_out, decimal=1) def test_ktica_compare_to_pipeline(): X = random.randn(100, 5) ktica = KernelTICA(kernel='rbf', lag_time=5, n_components=1, random_state=42) y1 = ktica.fit_transform([X])[0] u = np.arange(X.shape[0])[5::1] v = np.arange(X.shape[0])[::1][:u.shape[0]] lndmrks = X[np.unique((u, v))] assert_array_almost_equal(lndmrks, ktica.landmarks, decimal=3) nystroem = LandmarkNystroem(kernel='rbf', landmarks=lndmrks, random_state=42) tica = tICA(lag_time=5, n_components=1) y2_1 = nystroem.fit_transform([X]) y2_2 = tica.fit_transform(y2_1)[0] assert_array_almost_equal(y1, y2_2)
lgpl-2.1
BorisJeremic/Real-ESSI-Examples
education_examples/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/contact/Dry_Contact/Hard_Contact/Frictional_SDOF_With_Tangential_Damping/plot.py
6
1237
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 24}) plt.style.use('grayscale') # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=20 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=20 fig = plt.figure(figsize=(10,10)) # Go over each feioutput and plot each one. thefile = "Frictional_SDOF_freeVibration.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][24,:] # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(times,disp,Linewidth=4) plt.grid() plt.minorticks_on() plt.xlabel("Time [s] ") plt.ylabel("Displacement [m] ") plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0
nlalevee/spark
python/pyspark/worker.py
4
10236
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Worker that receives input from Piped RDD. """ from __future__ import print_function import os import sys import time import socket import traceback from pyspark.accumulators import _accumulatorRegistry from pyspark.broadcast import Broadcast, _broadcastRegistry from pyspark.taskcontext import TaskContext from pyspark.files import SparkFiles from pyspark.rdd import PythonEvalType from pyspark.serializers import write_with_length, write_int, read_long, \ write_long, read_int, SpecialLengths, UTF8Deserializer, PickleSerializer, \ BatchedSerializer, ArrowStreamPandasSerializer from pyspark.sql.types import to_arrow_type from pyspark import shuffle pickleSer = PickleSerializer() utf8_deserializer = UTF8Deserializer() def report_times(outfile, boot, init, finish): write_int(SpecialLengths.TIMING_DATA, outfile) write_long(int(1000 * boot), outfile) write_long(int(1000 * init), outfile) write_long(int(1000 * finish), outfile) def add_path(path): # worker can be used, so donot add path multiple times if path not in sys.path: # overwrite system packages sys.path.insert(1, path) def read_command(serializer, file): command = serializer._read_with_length(file) if isinstance(command, Broadcast): command = serializer.loads(command.value) return command def chain(f, g): """chain two functions together """ return lambda *a: g(f(*a)) def wrap_udf(f, return_type): if return_type.needConversion(): toInternal = return_type.toInternal return lambda *a: toInternal(f(*a)) else: return lambda *a: f(*a) def wrap_pandas_scalar_udf(f, return_type): arrow_return_type = to_arrow_type(return_type) def verify_result_length(*a): result = f(*a) if not hasattr(result, "__len__"): raise TypeError("Return type of the user-defined functon should be " "Pandas.Series, but is {}".format(type(result))) if len(result) != len(a[0]): raise RuntimeError("Result vector from pandas_udf was not the required length: " "expected %d, got %d" % (len(a[0]), len(result))) return result return lambda *a: (verify_result_length(*a), arrow_return_type) def wrap_pandas_group_map_udf(f, return_type): def wrapped(*series): import pandas as pd result = f(pd.concat(series, axis=1)) if not isinstance(result, pd.DataFrame): raise TypeError("Return type of the user-defined function should be " "pandas.DataFrame, but is {}".format(type(result))) if not len(result.columns) == len(return_type): raise RuntimeError( "Number of columns of the returned pandas.DataFrame " "doesn't match specified schema. " "Expected: {} Actual: {}".format(len(return_type), len(result.columns))) arrow_return_types = (to_arrow_type(field.dataType) for field in return_type) return [(result[result.columns[i]], arrow_type) for i, arrow_type in enumerate(arrow_return_types)] return wrapped def read_single_udf(pickleSer, infile, eval_type): num_arg = read_int(infile) arg_offsets = [read_int(infile) for i in range(num_arg)] row_func = None for i in range(read_int(infile)): f, return_type = read_command(pickleSer, infile) if row_func is None: row_func = f else: row_func = chain(row_func, f) # the last returnType will be the return type of UDF if eval_type == PythonEvalType.SQL_PANDAS_SCALAR_UDF: return arg_offsets, wrap_pandas_scalar_udf(row_func, return_type) elif eval_type == PythonEvalType.SQL_PANDAS_GROUP_MAP_UDF: return arg_offsets, wrap_pandas_group_map_udf(row_func, return_type) else: return arg_offsets, wrap_udf(row_func, return_type) def read_udfs(pickleSer, infile, eval_type): num_udfs = read_int(infile) udfs = {} call_udf = [] for i in range(num_udfs): arg_offsets, udf = read_single_udf(pickleSer, infile, eval_type) udfs['f%d' % i] = udf args = ["a[%d]" % o for o in arg_offsets] call_udf.append("f%d(%s)" % (i, ", ".join(args))) # Create function like this: # lambda a: (f0(a0), f1(a1, a2), f2(a3)) # In the special case of a single UDF this will return a single result rather # than a tuple of results; this is the format that the JVM side expects. mapper_str = "lambda a: (%s)" % (", ".join(call_udf)) mapper = eval(mapper_str, udfs) func = lambda _, it: map(mapper, it) if eval_type == PythonEvalType.SQL_PANDAS_SCALAR_UDF \ or eval_type == PythonEvalType.SQL_PANDAS_GROUP_MAP_UDF: timezone = utf8_deserializer.loads(infile) ser = ArrowStreamPandasSerializer(timezone) else: ser = BatchedSerializer(PickleSerializer(), 100) # profiling is not supported for UDF return func, None, ser, ser def main(infile, outfile): try: boot_time = time.time() split_index = read_int(infile) if split_index == -1: # for unit tests exit(-1) version = utf8_deserializer.loads(infile) if version != "%d.%d" % sys.version_info[:2]: raise Exception(("Python in worker has different version %s than that in " + "driver %s, PySpark cannot run with different minor versions." + "Please check environment variables PYSPARK_PYTHON and " + "PYSPARK_DRIVER_PYTHON are correctly set.") % ("%d.%d" % sys.version_info[:2], version)) # initialize global state taskContext = TaskContext._getOrCreate() taskContext._stageId = read_int(infile) taskContext._partitionId = read_int(infile) taskContext._attemptNumber = read_int(infile) taskContext._taskAttemptId = read_long(infile) shuffle.MemoryBytesSpilled = 0 shuffle.DiskBytesSpilled = 0 _accumulatorRegistry.clear() # fetch name of workdir spark_files_dir = utf8_deserializer.loads(infile) SparkFiles._root_directory = spark_files_dir SparkFiles._is_running_on_worker = True # fetch names of includes (*.zip and *.egg files) and construct PYTHONPATH add_path(spark_files_dir) # *.py files that were added will be copied here num_python_includes = read_int(infile) for _ in range(num_python_includes): filename = utf8_deserializer.loads(infile) add_path(os.path.join(spark_files_dir, filename)) if sys.version > '3': import importlib importlib.invalidate_caches() # fetch names and values of broadcast variables num_broadcast_variables = read_int(infile) for _ in range(num_broadcast_variables): bid = read_long(infile) if bid >= 0: path = utf8_deserializer.loads(infile) _broadcastRegistry[bid] = Broadcast(path=path) else: bid = - bid - 1 _broadcastRegistry.pop(bid) _accumulatorRegistry.clear() eval_type = read_int(infile) if eval_type == PythonEvalType.NON_UDF: func, profiler, deserializer, serializer = read_command(pickleSer, infile) else: func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type) init_time = time.time() def process(): iterator = deserializer.load_stream(infile) serializer.dump_stream(func(split_index, iterator), outfile) if profiler: profiler.profile(process) else: process() except Exception: try: write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile) write_with_length(traceback.format_exc().encode("utf-8"), outfile) except IOError: # JVM close the socket pass except Exception: # Write the error to stderr if it happened while serializing print("PySpark worker failed with exception:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) exit(-1) finish_time = time.time() report_times(outfile, boot_time, init_time, finish_time) write_long(shuffle.MemoryBytesSpilled, outfile) write_long(shuffle.DiskBytesSpilled, outfile) # Mark the beginning of the accumulators section of the output write_int(SpecialLengths.END_OF_DATA_SECTION, outfile) write_int(len(_accumulatorRegistry), outfile) for (aid, accum) in _accumulatorRegistry.items(): pickleSer._write_with_length((aid, accum._value), outfile) # check end of stream if read_int(infile) == SpecialLengths.END_OF_STREAM: write_int(SpecialLengths.END_OF_STREAM, outfile) else: # write a different value to tell JVM to not reuse this worker write_int(SpecialLengths.END_OF_DATA_SECTION, outfile) exit(-1) if __name__ == '__main__': # Read a local port to connect to from stdin java_port = int(sys.stdin.readline()) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(("127.0.0.1", java_port)) sock_file = sock.makefile("rwb", 65536) main(sock_file, sock_file)
apache-2.0
mcstrother/dicom-sr-qi
unported scripts/magnification.py
2
2713
"""Makes box plots for DAP and exposure vs magnification. Can change some things in line to change the data source (bjh vs. slch) and to decide between graphing DAP and Exposure """ import my_utils import srdata import csv import matplotlib def build_table(): procs = srdata.process_file(my_utils.BJH_XML_FILE, my_utils.BJH_SYNGO_FILES) procs = procs + srdata.process_file(my_utils.SLCH_XML_FILE, my_utils.SLCH_SYNGO_FILES) #procs = srdata.process_file(my_utils.SLCH_XML_FILE, my_utils.SLCH_SYNGO_FILES) dose_lookup = {} exposure_lookup = {} DAP_lookup = {} for proc in procs: for e in proc.events: if e.is_valid() and e.Irradiation_Event_Type == "Fluoroscopy": if not e.iiDiameter in dose_lookup: dose_lookup[e.iiDiameter] = [] exposure_lookup[e.iiDiameter] = [] DAP_lookup[e.iiDiameter] = [] dose_lookup[e.iiDiameter].append(e.Dose_RP/e.Number_of_Pulses) exposure_lookup[e.iiDiameter].append(e.Exposure/e.Number_of_Pulses) DAP_lookup[e.iiDiameter].append(e.Dose_Area_Product/e.Number_of_Pulses) return (dose_lookup, exposure_lookup, DAP_lookup) def write_csv(lookup): table = [] for diameter, exposures in lookup.iteritems(): row = [str(diameter)] row = row + [e for e in exposures] table.append(row) table = my_utils.transposed(table) with open("temp.csv",'wb') as f: w = csv.writer(f) w.writerows(table) import matplotlib.pyplot as plt def plot(lookup): data = [] for iiDiameter in sorted(lookup.keys()): data.append(lookup[iiDiameter]) plt.boxplot(data, sym='') plt.setp(plt.gca(),'xticklabels',sorted(lookup.keys())) plt.show() def setup_DAP_axes(): plt.title("DAP vs. Magnification") plt.xlabel("iiDiameter") plt.ylabel("DAP (Gy*m^2)") def setup_exposure_axes(): plt.title("Exposure vs. Magnification") plt.xlabel("iiDiameter") plt.ylabel("Exposure (uAs)") def main(): dose_lookup,exposure_lookup,DAP_lookup = build_table() plt.figure(1) #setup_DAP_axes() #plot(DAP_lookup) setup_exposure_axes() plot(exposure_lookup) #write_csv(DAP_lookup) if __name__ == "__main__": main()
bsd-2-clause
joshzarrabi/e-mission-server
emission/tests/analysisTests/intakeTests/TestFilterAccuracy.py
1
5000
# Standard imports import unittest import datetime as pydt import logging import pymongo import json import bson.json_util as bju import pandas as pd # Our imports import emission.analysis.intake.cleaning.filter_accuracy as eaicf import emission.storage.timeseries.abstract_timeseries as esta import emission.storage.pipeline_queries as epq class TestFilterAccuracy(unittest.TestCase): def setUp(self): # We need to access the database directly sometimes in order to # forcibly insert entries for the tests to pass. But we put the import # in here to reduce the temptation to use the database directly elsewhere. import emission.core.get_database as edb import uuid self.testUUID = uuid.uuid4() self.entries = json.load(open("emission/tests/data/smoothing_data/tablet_2015-11-03"), object_hook=bju.object_hook) for entry in self.entries: entry["user_id"] = self.testUUID edb.get_timeseries_db().save(entry) self.ts = esta.TimeSeries.get_time_series(self.testUUID) def tearDown(self): import emission.core.get_database as edb edb.get_timeseries_db().remove({"user_id": self.testUUID}) edb.get_pipeline_state_db().remove({"user_id": self.testUUID}) def testEmptyCallToPriorDuplicate(self): time_query = epq.get_time_range_for_accuracy_filtering(self.testUUID) unfiltered_points_df = self.ts.get_data_df("background/location", time_query) self.assertEqual(len(unfiltered_points_df), 205) # Check call to check duplicate with a zero length dataframe entry = unfiltered_points_df.iloc[5] self.assertEqual(eaicf.check_prior_duplicate(pd.DataFrame(), 0, entry), False) def testEmptyCall(self): # Check call to the entire filter accuracy with a zero length timeseries import emission.core.get_database as edb edb.get_timeseries_db().remove({"user_id": self.testUUID}) # We expect that this should not throw eaicf.filter_accuracy(self.testUUID) self.assertEqual(len(self.ts.get_data_df("background/location")), 0) def testCheckPriorDuplicate(self): time_query = epq.get_time_range_for_accuracy_filtering(self.testUUID) unfiltered_points_df = self.ts.get_data_df("background/location", time_query) self.assertEqual(len(unfiltered_points_df), 205) entry = unfiltered_points_df.iloc[5] unfiltered_appended_df = pd.DataFrame([entry] * 5).append(unfiltered_points_df).reset_index() logging.debug("unfiltered_appended_df = %s" % unfiltered_appended_df[["fmt_time"]].head()) self.assertEqual(eaicf.check_prior_duplicate(unfiltered_appended_df, 0, entry), False) self.assertEqual(eaicf.check_prior_duplicate(unfiltered_appended_df, 5, entry), True) self.assertEqual(eaicf.check_prior_duplicate(unfiltered_points_df, 5, entry), False) def testConvertToFiltered(self): time_query = epq.get_time_range_for_accuracy_filtering(self.testUUID) unfiltered_points_df = self.ts.get_data_df("background/location", time_query) self.assertEqual(len(unfiltered_points_df), 205) entry_from_df = unfiltered_points_df.iloc[5] entry_copy = eaicf.convert_to_filtered(self.ts.get_entry_at_ts("background/location", "metadata.write_ts", entry_from_df.metadata_write_ts)) self.assertNotIn("_id", entry_copy) self.assertEquals(entry_copy["metadata"]["key"], "background/filtered_location") def testExistingFilteredLocation(self): time_query = epq.get_time_range_for_accuracy_filtering(self.testUUID) unfiltered_points_df = self.ts.get_data_df("background/location", time_query) self.assertEqual(len(unfiltered_points_df), 205) entry_from_df = unfiltered_points_df.iloc[5] self.assertEqual(eaicf.check_existing_filtered_location(self.ts, entry_from_df), False) entry_copy = self.ts.get_entry_at_ts("background/location", "metadata.write_ts", entry_from_df.metadata_write_ts) self.ts.insert(eaicf.convert_to_filtered(entry_copy)) self.assertEqual(eaicf.check_existing_filtered_location(self.ts, entry_from_df), True) def testFilterAccuracy(self): unfiltered_points_df = self.ts.get_data_df("background/location", None) self.assertEqual(len(unfiltered_points_df), 205) pre_filtered_points_df = self.ts.get_data_df("background/filtered_location", None) self.assertEqual(len(pre_filtered_points_df), 0) eaicf.filter_accuracy(self.testUUID) filtered_points_df = self.ts.get_data_df("background/filtered_location", None) self.assertEqual(len(filtered_points_df), 124) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) unittest.main()
bsd-3-clause
clsb/miles
miles/commands.py
1
38839
"""Commands for the user interface.""" __all__ = [name for name in dir() if name.lower().startswith('Command')] import argparse try: import argcomplete except ImportError: argcomplete = None import logging import sys from abc import ABCMeta, abstractmethod from typing import Sequence import miles.default as default from miles import (Configuration, Distributions, Milestones, Simulation, bold, colored, load_database, load_distributions, make_database, save_distributions, version) # noqa: E501 class Command(metaclass=ABCMeta): """A command.""" name = None # type: str @abstractmethod def setup_parser(self, subparsers): raise NotImplementedError @abstractmethod def do(self, args): raise NotImplementedError @staticmethod def add_argument_config(parser): arg = parser.add_argument('config', type=str, metavar='CONFIG-FILE', help='name of ' 'the configuration file') if argcomplete: completer = argcomplete.completers.FilesCompleter arg.completer = completer(allowednames='cfg') class Commands: """A collection of commands.""" def __init__(self, parser, commands): self.commands = [] for command in commands: command.setup_parser(parser) self.commands.append(command) def __getitem__(self, command_name): for command in self.commands: if command.name == command_name: return command def filter_distributions(milestones: Milestones, milestones_str: Sequence[str], distributions: Distributions) \ -> Distributions: """Select specific distributions.""" if milestones_str: selected_distributions = Distributions() for milestone_str in milestones_str: milestone = milestones.make_from_str(milestone_str) if milestone in distributions.keys(): selected_distributions[milestone] = distributions[milestone] return selected_distributions else: return distributions class CommandRun(Command): """Run milestoning simulation""" name = 'run' def setup_parser(self, subparsers): """Command-line options for exact milestoning.""" description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) b = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to ' 'file containing initial distributions') if argcomplete: completer = argcomplete.completers.FilesCompleter b.completer = completer(allowednames='dst') p.add_argument('-s', '--samples', type=int, default=default.samples_per_milestone_per_iteration, metavar='MIN-SAMPLES', help='minimum number of ' 'trajectory fragments to sample per milestone ' 'per iteration (default is %(default)d)') p.add_argument('-l', '--local-tolerance', type=float, default=default.local_convergence_tolerance, help='tolerance for convergence within each milestone ' '(default is %(default)g)') p.add_argument('-g', '--global-tolerance', type=float, default=default.global_convergence_tolerance, help='tolerance for convergence of the ' 'iterative process (default is %(default)g)') p.add_argument('-m', '--max-iterations', type=int, metavar='MAX-ITERATIONS', default=default.max_iterations, help='maximum ' 'number of iterations (default is ' '%(default)d)') p.add_argument('-p', '--include-products', action='store_true', default=False, help='sample trajectories from product ' 'milestones (default is %(default)s)') p.add_argument('-M', '--mpi-processes', type=int, required=True, help='number of MPI processes') def do(self, args): simulation = Simulation(args.config) try: distributions = load_distributions(args.input) except FileNotFoundError: logging.error('Unable to find {!r}'.format(args.input)) sys.exit(-1) # Remove product milestones from the initial distributions. if args.include_products is False: for milestone in simulation.milestones.products: if milestone in distributions.keys(): del distributions[milestone] from miles.run import run run(simulation, initial_distributions=distributions, num_iterations=args.max_iterations, num_samples=args.samples, local_tolerance=args.local_tolerance, global_tolerance=args.global_tolerance, num_processes=args.mpi_processes) class CommandSample(Command): """Sample trajectory fragments on specific milestones""" name = 'sample' def setup_parser(self, subparsers): """Command-line options for exact milestoning.""" description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) b = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to ' 'file containing initial distributions') if argcomplete: completer = argcomplete.completers.FilesCompleter b.completer = completer(allowednames='dst') p.add_argument('-m', '--milestone', metavar='MILESTONE', required=True, action='append', help='restrict' ' to specified milestone(s)') p.add_argument('-s', '--samples', type=int, default=default.samples_per_milestone_per_iteration, metavar='MIN-SAMPLES', help='minimum number of ' 'trajectory fragments to sample per milestone ' 'per iteration (default is %(default)d)') p.add_argument('-l', '--local-tolerance', type=float, default=default.local_convergence_tolerance, help='tolerance for convergence within each milestone ' '(default is %(default)g)') p.add_argument('-M', '--mpi-processes', type=int, required=True, help='number of MPI processes') def do(self, args): simulation = Simulation(args.config) try: initial_distributions = load_distributions(args.input) except FileNotFoundError: logging.error('Unable to find {!r}'.format(args.input)) sys.exit(-1) distributions = filter_distributions(simulation.milestones, args.milestone, initial_distributions) if len(distributions) == 0: logging.error('{!r} does not contain points for {}.' .format(args.input, ','.join(args.milestone))) sys.exit(-1) from miles.run import run run(simulation, initial_distributions=distributions, num_iterations=1, num_samples=args.samples, local_tolerance=args.local_tolerance, global_tolerance=default.global_convergence_tolerance, num_processes=args.mpi_processes) class CommandPlot(Command): """Plot results""" name = 'plot' def setup_parser(self, subparsers): """Command-line options for plotting results.""" description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) g = p.add_mutually_exclusive_group(required=True) g.add_argument('-v', '--voronoi', action='store_true', help='plot Voronoi tessellation (default is ' '%(default)s)') g.add_argument('-H', '--histograms', action='store_true', default=False, help='plot histograms of ' 'distributions at each milestone') p.add_argument('-l', '--labels', action='store_true', default=False, help='plot milestone indices ' '(default is %(default)s)') p.add_argument('-n', '--num-bins', required=False, help='number of bins for histogram (default ' 'is %(default)s)') p.add_argument('-s', '--marker-size', type=int, required=False, default=default.marker_size, help='set marker size ' '(default is %(default)d)') b = p.add_argument('-c', '--colors', type=str, required=False, default=default.colors, help='specify color ' 'scheme (default is %(default)s)') if argcomplete: import matplotlib.cm as cm color_maps = list(cm.datad.keys()) completer = argcomplete.completers.ChoicesCompleter b.completer = completer(color_maps) p.add_argument('-t', '--title', type=str, required=False, help='set title') p.add_argument('-b', '--colorbar-title', type=str, metavar='CB-TITLE', required=False, help='set color bar title') p.add_argument('-m', '--min-value', type=float, required=False, default=0.0, help='set lower bound for data') p.add_argument('-M', '--max-value', type=float, required=False, default=None, help='set upper bound for data') p.add_argument('-x', '--xlabel', type=str, required=False, default='$x_1$', help='set label of x axis') p.add_argument('-y', '--ylabel', type=str, required=False, default='$x_2$', help='set label of y axis') a = p.add_argument('-i', '--input', type=str, # required=True, metavar='FILE', action='append', help='path(s) to input data file(s)') if argcomplete: a.completer = argcomplete.completers.FilesCompleter() p.add_argument('-o', '--output', type=str, required=False, metavar='FILE', help='output figure name') def do(self, args): simulation = Simulation(args.config, catch_signals=False, setup_reactants_and_products=False) if args.title is None and args.input is not None: args.title = args.input[0] from miles.plot import plot plot(simulation, **args.__dict__) class CommandLong(Command): """Run long trajectory simulation""" name = 'long' def setup_parser(self, subparsers): """Command-line options for long trajectories.""" description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) p.add_argument('-i', '--interval', type=int, metavar='N', default=default.save_interval, required=False, help='save results to disk every %(metavar)s ' 'transitions (default is %(default)d)') p.add_argument('-m', '--max-trajectories', type=int, required=False, metavar='MAX-TRAJECTORIES', default=default.trajectory_max_trajectories, help='maximum number of transitions to ' 'sample (default is %(default)d)') p.add_argument('-M', '--mpi-processes', type=int, required=True, help='number of MPI processes') def do(self, args): simulation = Simulation(args.config) from miles.long import long long(simulation, max_trajectories=args.max_trajectories, num_processes=args.mpi_processes) class CommandMkDist(Command): """Create distribution file from database""" name = 'mkdist' def setup_parser(self, subparsers): """Command line options for creation of distribution files.""" description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) p.add_argument('-d', '--database', type=str, metavar='DIRECTORY', required=False, help='directory where the database is located ' '(default is set to the path specified in the ' 'configuration file)') p.add_argument('-m', '--milestone', metavar='MILESTONE', action='append', help='restrict to specified ' 'milestone(s)') p.add_argument('-o', '--output', type=str, metavar='FILE', required=True, help='name of the file where the distributions ' 'will be written') p.add_argument('-l', '--less-than', type=int, metavar='NUM-POINTS', required=False, help='maximum number of points that a' 'milestone should have') p.add_argument('-g', '--greater-than', type=int, metavar='NUM-POINTS', required=False, help='minimum number of points that a' 'milestone should have') group = p.add_mutually_exclusive_group(required=False) group.add_argument('-r', '--reset-velocities', action='store_true', dest='reset_velocities', default=True, required=False, help='set initial ' 'velocities from Maxwell-Boltzmann distribution ' '(default is %(default)s)') group.add_argument('-n', '--no-reset-velocities', action='store_false', dest='reset_velocities', default=False, required=False, help='do not set ' 'initial velocities from Maxwell-Boltzmann ' 'distribution (default is %(default)s)') def do(self, args): simulation = Simulation(args.config, catch_signals=False, setup_reactants_and_products=False) milestones = simulation.milestones if args.database is not None: collective_variables = simulation.collective_variables db = load_database(args.database, collective_variables) else: db = simulation.database ds = db.to_distributions(args.reset_velocities) new_ds = Distributions() restricted_milestones = set() if args.milestone: for mls in args.milestone: restricted_milestone = milestones.make_from_str(mls) restricted_milestones.add(restricted_milestone) for milestone in ds.keys(): if args.milestone and milestone not in restricted_milestones: continue d = ds[milestone] l = len(d) if not ((args.greater_than and l < args.greater_than) or (args.less_than and l > args.less_than)): new_ds[milestone] = d print('{} has {} points'.format(milestone, l)) save_distributions(new_ds, args.output) num_distributions = len(list(new_ds.keys())) logging.info('Wrote {} distribution(s) to {!r}.' .format(num_distributions, args.output)) class CommandLsDist(Command): """Print information about a set of distributions""" name = 'lsdist' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) a = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to file ' 'containing distributions') if argcomplete: completer = argcomplete.completers.FilesCompleter a.completer = completer(allowednames='dst') def do(self, args): try: # Attempt to use reactants and products if there are any. simulation = Simulation(args.config, catch_signals=False) except: simulation = Simulation(args.config, catch_signals=False, setup_reactants_and_products=False) milestones = simulation.milestones try: distributions = load_distributions(args.input) except FileNotFoundError: logging.error('Unable to find {!r}'.format(args.input)) sys.exit(-1) known_milestones = sorted(distributions.keys()) for milestone in known_milestones: distribution = distributions[milestone] msg = ('{} has {} points' .format(milestone, len(distribution))) if milestone in milestones.reactants: print(colored(bold(' '.join([msg, '(reactant)'])), 'red')) elif milestone in milestones.products: print(colored(bold(' '.join([msg, '(product)'])), 'green')) else: print(msg) class CommandPath(Command): """Compute max-weight path""" name = 'path' example = ''' Example ------- The command miles path simulation.cfg --reactant 0,1 --product 2,3 --product 3,4 \\ --transition-matrix K.mtx --stationary-vector q.dat will compute the maximum weight path between the milestone 0,1 (reactant) and milestones 2,3 or 3,4 (products). ''' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), epilog=self.example, formatter_class=argparse.RawDescriptionHelpFormatter, description=description.capitalize()) self.add_argument_config(p) p.add_argument('-K', '--transition-matrix', type=str, metavar='FILE', required=True, help='file name of transition matrix') p.add_argument('-q', '--stationary-vector', type=str, metavar='FILE', required=True, help='file name of stationary vector') p.add_argument('-r', '--reactant', metavar='MILESTONE', action='append', help='use specified milestone(s) ' 'as reactant') p.add_argument('-p', '--product', metavar='MILESTONE', action='append', help='use specified milestone(s) ' 'as product') p.add_argument('-o', '--output', metavar='FILE', type=str, default='path.dat', help='file name where ' 'to save the maximum weight path (default ' 'is %(default)s)') def do(self, args): import scipy.io import numpy as np from miles.max_weight_path import max_weight_path simulation = Simulation(args.config, catch_signals=False) K = scipy.io.mmread(args.transition_matrix).tocoo() q = np.loadtxt(args.stationary_vector) milestones = simulation.milestones if args.reactant: reactant_indices = {milestones.make_from_str(a).index for a in args.reactant} else: reactant_indices = {m.index for m in milestones.reactants} if args.product: product_indices = {milestones.make_from_str(a).index for a in args.product} else: product_indices = {m.index for m in milestones.products} print('Reactant milestones:') for idx in reactant_indices: print(' {}'.format(milestones.make_from_index(idx))) print('Product milestones:') for idx in product_indices: print(' {}'.format(milestones.make_from_index(idx))) path = max_weight_path(K, q, reactant_indices, product_indices) np.savetxt(args.output, path) print('Maximum weight path written to {!r}'.format(args.output)) class CommandCite(Command): """Obtain citations of relevant papers""" name = 'cite' def setup_parser(self, subparsers): description = self.__doc__ subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) def do(self, args): bibtex_citation = bold('The exact milestoning algorithm is ' 'described in:') + r""" @article{Bello-Rivas2015, author = {Bello-Rivas, J. M. and Elber, R.}, doi = {10.1063/1.4913399}, issn = {0021-9606}, journal = {The Journal of Chemical Physics}, month = {mar}, number = {9}, pages = {094102}, title = {{Exact milestoning}}, url = {https://doi.org/10.1063/1.4913399}, volume = {142}, year = {2015} } """ + \ bold('The algorithm for the computation of global ' 'max-weight paths is described in:') + r""" @article{Viswanath2013, author = {Viswanath, S. and Kreuzer, S. M. and Cardenas, A. E. and Elber, R.}, doi = {10.1063/1.4827495}, issn = {00219606}, journal = {The Journal of Chemical Physics}, month = {nov}, number = {17}, pages = {174105}, title = {{Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples}}, url = {https://doi.org/10.1063/1.4827495}, volume = {139}, year = {2013} }""" print(bibtex_citation) DISCLAIMER = ("""{} the stationary distributions obtained by the {} and {} commands are only valid for databases generated by the {} command.""".format(bold('Warning:'), bold('analyze'), bold('resample'), bold('long'))) class CommandAnalyze(Command): """Analyze results and generate output files""" name = 'analyze' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), epilog=DISCLAIMER, description=description.capitalize()) self.add_argument_config(p) p.add_argument('-o', '--output', metavar='FILE', type=str, default='stationary-analyze.dst', help='file name where to save the stationary ' 'distributions (default is %(default)s)') p.add_argument('-K', '--transition-matrix', type=str, metavar='FILE', default='K.mtx', help='file name of the transition matrix ' '(default is %(default)s)') p.add_argument('-T', '--lag-time-matrix', type=str, metavar='FILE', default='T.mtx', help='file name of the lag time matrix ' '(default is %(default)s)') p.add_argument('-q', '--stationary-flux', type=str, metavar='FILE', default='q.dat', help='file name of the stationary flux vector ' '(default is %(default)s)') p.add_argument('-t', '--local-mfpts', type=str, metavar='FILE', default='t.dat', help='file name of the vector of local MFPTs ' '(default is %(default)s)') p.add_argument('-p', '--stationary-probability', type=str, metavar='FILE', default='p.dat', help='file name of the stationary probability vector ' '(default is %(default)s)') def do(self, args): simulation = Simulation(args.config, catch_signals=False) from miles.analyze import TransitionKernel, analyze kernel = TransitionKernel(simulation.database) mfpt = analyze(kernel, args.output, args.transition_matrix, args.lag_time_matrix, args.stationary_flux, args.local_mfpts, args.stationary_probability) logging.info('Mean first passage time: {:.4f} units of time.' .format(mfpt)) class CommandCommittor(Command): """Compute the committor function""" name = 'committor' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) p.add_argument('-K', '--transition-matrix', type=str, metavar='FILE', required=True, help='file name of the transition matrix') p.add_argument('-o', '--output', metavar='FILE', type=str, default='committor.dat', help='file name where ' 'to save the committor vector (default ' 'is %(default)s)') def do(self, args): import scipy.io import numpy as np from miles.committor import committor simulation = Simulation(args.config, catch_signals=False) K = scipy.io.mmread(args.transition_matrix).tocsr() milestones = simulation.milestones reactant_indices = {m.index for m in milestones.reactants} product_indices = {m.index for m in milestones.products} committor_vector = committor(K, reactant_indices, product_indices) np.savetxt(args.output, committor_vector) print('Committor function written to {!r}'.format(args.output)) class CommandResample(Command): """Resample database and analyze results""" name = 'resample' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), epilog=DISCLAIMER, description=description.capitalize()) self.add_argument_config(p) p.add_argument('-s', '--samples', type=int, default=10*default.samples_per_milestone_per_iteration, metavar='NUM-SAMPLES', help='number of ' 'trajectory fragments per milestone to ' 'sample (default is %(default)d)') p.add_argument('-d', '--database', metavar='DIRECTORY', type=str, default='database-resample', help='output database directory name ' '(default is %(default)s)') p.add_argument('-o', '--output', metavar='FILE', type=str, default='stationary-resample.dst', help='file ' 'name where to save the resampled stationary ' 'distributions (default is %(default)s)') p.add_argument('-K', '--transition-matrix', type=str, metavar='FILE', default='K-resample.mtx', help='file name of the transition matrix ' '(default is %(default)s)') p.add_argument('-T', '--lag-time-matrix', type=str, metavar='FILE', default='T-resample.mtx', help='file name of the lag time matrix ' '(default is %(default)s)') p.add_argument('-q', '--stationary-flux', type=str, metavar='FILE', default='q-resample.dat', help='file name of the stationary flux vector ' '(default is %(default)s)') p.add_argument('-t', '--local-mfpts', type=str, metavar='FILE', default='t-resample.dat', help='file name of the vector of local MFPTs ' '(default is %(default)s)') p.add_argument('-p', '--stationary-probability', type=str, metavar='FILE', default='p.dat', help='file name of the stationary probability vector ' '(default is %(default)s)') def do(self, args): simulation = Simulation(args.config, catch_signals=False) from miles.resample import resample resample(simulation, args.samples, args.database, args.output, args.transition_matrix, args.lag_time_matrix, args.stationary_flux, args.local_mfpts, args.stationary_probability) class CommandVersion(Command): """Display program's version""" name = 'version' def setup_parser(self, subparsers): description = self.__doc__ subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) def do(self, args): print(bold(version.v_gnu)) class CommandReset(Command): """Reset velocities in a distribution""" name = 'reset' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) a = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to ' 'file containing distributions') if argcomplete: completer = argcomplete.completers.FilesCompleter a.completer = completer(allowednames='dst') p.add_argument('-o', '--output', type=str, required=True, metavar='FILE', help='path to file ' 'where to save the transformed distributions') def _reset_velocities(self, ds): pass def do(self, args): try: distributions = load_distributions(args.input) except FileNotFoundError: logging.error('Unable to find {!r}'.format(args.input)) sys.exit(-1) self._reset_velocities(distributions) save_distributions(distributions, args.output) class CommandMPI(Command): """Start MPI services """ name = 'mpi' def setup_parser(self, subparsers): description = self.__doc__.strip() subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) def do(self, args): from miles.timestepper_service import timestepper_service timestepper_service() class CommandPrepare(Command): """Sample first hitting points """ name = 'prepare' _suffixes = ('coor', 'vel', 'xsc', 'dcd', 'dvd', 'dcdvel') def setup_parser(self, subparsers): description = self.__doc__.strip() p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) a = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to file ' 'containing initial results for the MD program') if argcomplete: completer = argcomplete.completers.FilesCompleter a.completer = completer(allowednames=self._suffixes) p.add_argument('-m', '--milestone', metavar='MILESTONE', required=False, help='restrict to specified milestone') p.add_argument('--start', type=int, required=False, metavar='NUM-CROSSINGS', default=0, help='number of milestone crossings to obtain before ' 'starting to save to database (default is %(default)s)') p.add_argument('--stop', type=int, required=True, metavar='NUM-CROSSINGS', help='maximum number of ' 'milestone crossings to obtain') p.add_argument('--step', type=int, required=False, metavar='NUM-CROSSINGS', default=1, help='number of milestone crossings to skip (default ' 'is %(default)s)') def do(self, args): simulation = Simulation(args.config, catch_signals=True, setup_reactants_and_products=False) from miles.prepare import prepare if args.milestone: milestone = simulation.milestones.make_from_str(args.milestone) else: milestone = None prepare(simulation, milestone, args.input, args.start, args.stop, args.step) class CommandPlay(Command): """Find hitting points in trajectory files """ name = 'play' _suffixes = ('coor', 'vel', 'xsc', 'dcd', 'dvd', 'dcdvel') def setup_parser(self, subparsers): description = self.__doc__.strip() p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) a = p.add_argument('-i', '--input', type=str, required=True, metavar='FILE', help='path to file ' 'containing initial results for the MD program') if argcomplete: completer = argcomplete.completers.FilesCompleter a.completer = completer(allowednames=self._suffixes) p.add_argument('-m', '--milestone', metavar='MILESTONE', required=False, help='restrict to specified milestone') p.add_argument('-c', '--crossings', required=False, default=False, action='store_true', help='include same-milestone ' 'crossings in addition to transitions between ' 'neighboring milestones (default is %(default)s)') p.add_argument('--start', type=int, required=False, metavar='NUM-CROSSINGS', default=0, help='number of milestone crossings to obtain before ' 'starting to save to database (default is %(default)s)') p.add_argument('--stop', type=int, required=False, default=float('inf'), metavar='NUM-CROSSINGS', help='maximum number of milestone crossings to obtain' ' (default is %(default)s)') p.add_argument('--step', type=int, required=False, metavar='NUM-CROSSINGS', default=1, help='number of milestone crossings to skip (default ' 'is %(default)s)') def do(self, args): simulation = Simulation(args.config, catch_signals=True, setup_reactants_and_products=False) from miles.play import play if args.milestone: milestone = simulation.milestones.make_from_str(args.milestone) else: milestone = None play(simulation, milestone, args.input, args.crossings, args.start, args.stop, args.step) class CommandMkdb(Command): """Create database of first hitting points""" name = 'mkdb' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) a = p.add_argument('-a', '--anchors', type=str, required=True, metavar='FILE', help='path to file ' 'containing anchors in CSV format') t = p.add_argument('-t', '--transitions', type=str, metavar='FILE', help='path to file ' 'containing transitions in CSV format') if argcomplete: completer = argcomplete.completers.FilesCompleter a.completer = completer(allowednames='csv') t.completer = completer(allowednames='csv') def do(self, args): config = Configuration() config.parse(args.config) from miles import ColvarsParser colvars_parser = ColvarsParser(config.colvars_file) print('Using collective variables defined in {!r}.' .format(config.colvars_file)) print('Please verify that the collective variables shown ' 'below are correct.\n') print(colvars_parser) collective_variables = colvars_parser.collective_variables database = make_database(config.database_file, collective_variables) database.insert_anchors_from_csv(args.anchors) if args.transitions is not None: database.insert_transitions_from_csv(args.transitions) class CommandFsck(Command): """Verify database integrity""" name = 'fsck' def setup_parser(self, subparsers): description = self.__doc__ p = subparsers.add_parser(self.name, help=description.lower(), description=description.capitalize()) self.add_argument_config(p) def do(self, args): simulation = Simulation(args.config, catch_signals=False) from miles.fsck import fsck status = fsck(simulation) sys.exit(status) command_list = [CommandMkdb(), CommandMkDist(), CommandLsDist(), CommandPrepare(), CommandPlay(), CommandMPI(), CommandRun(), CommandPlot(), CommandLong(), CommandAnalyze(), CommandCommittor(), CommandPath(), CommandFsck(), CommandVersion(), CommandCite(), # CommandResample(), # CommandReset(), # CommandSample(), ]
mit
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
mit
sniemi/SamPy
focus/FocusModel.py
1
20065
""" User Interface for Focus Monitor """ import glob import string, time, datetime from math import * from matplotlib import dates from matplotlib.dates import MinuteLocator, DateFormatter from Tkinter import * import tkMessageBox import numpy as N import pylab as P def modelled(camera, date, startTime, stopTime): """ Date in form of a string: month day year. Times as 15:33 - 24 hour clock """ print 'Modelled', camera, date, startTime, stopTime thermal = "/Users/niemi/Desktop/temp/hst/OTA/thermal/" # Focus model offsets camConst = {'PC': 261.1, 'HRC': 261.0, 'WFC1': 259.7, 'WFC2': 260.35} secMove = {'2004.12.22': 4.16, '2006.07.31': 5.34} # Define data lists julian = [] temp1 = [] temp2 = [] temp3 = [] temp4 = [] temp5 = [] temp6 = [] hours = [] focusDate = time.strptime(date, '%m/%d/%Y') timeAxis = [] year = focusDate[0] month = focusDate[1] day = focusDate[2] # Get date-dependent focus adjustment focusShift = 0.0 dateStamp = '%4d.%02d.%02d' % (year, month, day) for k in secMove.keys(): if dateStamp > k: focusShift = focusShift + secMove[k] print 'Secondary mirror move ', focusShift dayOfYear = focusDate[7] dayString = "%03d" % dayOfYear yearString = str(year) start = string.split(startTime, ':') stop = string.split(stopTime, ':') startHour = int(start[0]) startMinute = int(start[1]) stopHour = int(stop[0]) stopMinute = int(stop[1]) jday = toJulian(year, month, day) jstart = jday + (startHour + startMinute / 60.0) / 24.0 - 40.0 / (60.0 * 24.0) # 40 minute backtrack jstop = jday + (stopHour + stopMinute / 60.0) / 24.0 fileName = 'thermalData' + yearString + '.dat' #if not(os.access(thermal + fileName, os.F_OK)): # then check Chris Long's file f = open(thermal + fileName, 'r') while f: line = f.readline() if line == '': break columns = string.split(line) timeStamp = columns[0] jul = float(columns[1]) if jstart <= jul <= jstop: julian.append(jul) tup = fromJulian(jul) hr = tup[3] + (tup[4] + tup[5] / 60.0) / 60.0 # Extract hours hours.append(hr) tobj = datetime.datetime(tup[0], tup[1], tup[2], tup[3], tup[4], tup[5]) timeAxis.append(tobj) num = dates.date2num(tobj) temp1.append(float(columns[2])) temp2.append(float(columns[3])) temp3.append(float(columns[4])) temp4.append(float(columns[5])) temp5.append(float(columns[6])) temp6.append(float(columns[7])) if day > dayOfYear: break f.close() if len(temp1) == 0: # No temperature data in time range - Check Chris Long file longFile = glob.glob(thermal + '/breathing2009/BreathingData' + '*') # will produce a list if len(longFile) > 0: longFile.sort() print 'Using ', longFile[-1] # Use latest version f = open(longFile[-1], 'r') while f: line = f.readline() if line == '': break columns = string.split(line) timeStamp = columns[0] jul = float(columns[1]) if jstart <= jul <= jstop: julian.append(jul) tup = fromJulian(jul) hr = tup[3] + (tup[4] + tup[5] / 60.0) / 60.0 # Extract hours hours.append(hr) tobj = datetime.datetime(tup[0], tup[1], tup[2], tup[3], tup[4], tup[5]) timeAxis.append(tobj) num = dates.date2num(tobj) temp1.append(float(columns[2])) temp2.append(float(columns[3])) temp3.append(float(columns[4])) temp4.append(float(columns[5])) temp5.append(float(columns[6])) temp6.append(float(columns[7])) if day > dayOfYear: break f.close() else: print 'Did not find Chris Long file' print 'No matching thermal data file' gui.statusBar.config(text='No matching thermal data file') return jtime = N.array(julian) aftLS = N.array(temp1) trussAxial = N.array(temp2) trussDiam = N.array(temp3) aftShroud = N.array(temp4) fwdShell = N.array(temp5) lightShield = N.array(temp6) #tBreath is value of light shield temp minus average of previous eight values tBreath = lightShield.copy() # Make a real copy l = N.size(tBreath) if l < 10: print 'No temperature data' gui.statusBar.config(text='No temperature data') return r1 = range(8) tBreath[r1] = 0.0 r2 = range(8, l) for r in r2: tBreath[r] = 0.7 * (lightShield[r] - sum(lightShield[r - 8:r]) / 8.0) focusModel = camConst[camera] + focusShift\ - 0.0052 * jtime + 0.48 * aftLS + 0.81 * trussAxial - 0.28 * aftShroud + 0.18 * fwdShell + 0.55 * tBreath print 'Average model%10.2f' % (N.mean(focusModel[8:])) # Just the Bely term Bely = 0.55 * tBreath bShift = N.mean(focusModel) - N.mean(Bely) Bely = Bely + bShift # Time independent Focus model with mean zero offset flatModel = camConst[camera] + focusShift\ + 0.48 * aftLS + 0.81 * trussAxial - 0.28 * aftShroud + 0.18 * fwdShell + 0.55 * tBreath - 281.64 print 'Flat model%10.2f' % (N.mean(flatModel[8:])) # Make up an output file op = open('plotdata' + dateStamp + '.txt', 'w') op.write('Julian Date Date Time Model Flat Model\n') for r in range(8, l): dataString1 = '%12.6f' % jtime[r] dataString2 = timeAxis[r].strftime(' %b %d %Y %H:%M:%S') dataString3 = '%8.4f %8.4f \n' %\ (focusModel[r], flatModel[r]) op.write(dataString1 + dataString2 + dataString3) t = timeAxis[r] #print t.strftime('%b %d %Y %H:%M:%S') op.close() # Set up for plots P.figure(1) P.clf() P.subplot(211) P.ylabel('Degrees C') P.title('Temperatures ' + date) P.plot(dates.date2num(timeAxis), temp3) P.plot(dates.date2num(timeAxis), temp4) P.plot(dates.date2num(timeAxis), temp5) ax = P.gca() ax.xaxis.set_major_locator(MinuteLocator((0, 20, 40))) ax.xaxis.set_major_formatter((DateFormatter('%H:%M'))) P.legend(('Truss Dia', 'Aft Shr', 'Fwd Sh'), loc='upper left') P.grid(True) P.subplot(212) P.plot(dates.date2num(timeAxis), temp1) P.plot(dates.date2num(timeAxis), temp6) P.legend(('Aft LS', 'Light Sh')) P.xlabel('Time') P.ylabel('Degrees C') ax2 = P.gca() ax2.xaxis.set_major_locator(MinuteLocator((0, 20, 40))) ax2.xaxis.set_major_formatter((DateFormatter('%H:%M'))) P.grid(True) P.figure(2) #P.clf() P.plot(hours[8:], focusModel[8:], '-ro') #P.plot(hours[8:], Bely[8:], '-g+') P.title('Model ' + date) P.xlabel('Time') P.ylabel('microns') #print gui.display if gui.display == 'Comparison': P.legend(('Measured', 'Model'), loc='upper right') P.grid(True) P.draw() return def measured(camera, testDate): """ Extract focus measurements """ print 'MEASURED' fDate = [] fJulian = [] fActual = [] dateList = [] measure = open(camera + 'FocusHistory.txt', 'r') focusData = measure.readlines() measure.close() for k in range(10): print focusData[k] #Temporary test count = len(focusData) print count, 'lines in History file' for l in range(2, count): pieces = string.split(focusData[l]) if len(pieces) > 0: dataSet = pieces[0] if dataSet != '0': fDate.append(pieces[2]) fJulian.append(pieces[3]) fActual.append(pieces[4]) entries = len(fDate) print entries, ' entries' plotJulian = [] plotTime = [] plotFocus = [] for e in range(entries): if fDate[e] == testDate: t = float(fJulian[e]) h = 24.0 * (t - floor(t)) plotJulian.append(t) plotTime.append(h) plotFocus.append(float(fActual[e])) meanF = sum(plotFocus) / len(plotFocus) print 'Average measurement%10.2f' % (meanF) # Reformat date pDate = time.strptime(testDate, '%m/%d/%y') dateText = time.asctime(pDate) datePieces = string.split(dateText) plotDate = datePieces[1] + ' ' + datePieces[2] + ' ' + datePieces[4] P.figure(2) P.clf() P.plot(plotTime, plotFocus, '-bo') P.grid(True) P.title(camera + ' Focus measurement ' + plotDate) P.xlabel('Time') P.ylabel('Microns') P.draw() return (plotJulian[0], plotJulian[-1]) def toJulian(year, month, day): """ Use time functions """ dateString = str(year) + ' ' + str(month) + ' ' + str(day) + ' UTC' tup = time.strptime(dateString, '%Y %m %d %Z') sec = time.mktime(tup) days = (sec - time.timezone) / 86400.0 # Cancel time zone correction jday = days + 40587 # Julian date of Jan 1 1900 return jday def fromJulian(j): days = j - 40587 # From Jan 1 1900 sec = days * 86400.0 tup = time.gmtime(sec) return tup def comparison(camera, date): monthName = ['blank', 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] times = measured(camera, date) # times now contains start and end Julian times t0 = times[0] tp0 = fromJulian(t0) h0 = 24.0 * (t0 - int(t0)) ih0 = int(h0) m0 = int(60 * (h0 - int(h0))) t1 = times[1] tp1 = fromJulian(t1) h1 = 24.0 * (t1 - int(t1)) ih1 = int(h1) m1 = int(60 * (h1 - int(h1))) dateString = '%2d/%2d/%4d' % (tp1[1], tp1[2], tp1[0]) dateString = string.lstrip(dateString) # clean up leading blanks startTime = '%02d:%02d' % (h0, m0) stopTime = '%02d:%02d' % (h1, m1) modelled(camera, dateString, startTime, stopTime) class FocusMenu(object): def __init__(self): self.root = None def CreateForm(self): self.root = Tk() self.root.title('HST Focus Monitor') self.disp = StringVar() self.disp.set('Modelled') self.cam = StringVar() self.cam.set('PC') self.year = IntVar() Label(self.root, text='Display').grid(row=1, column=2) Label(self.root, text='Camera').grid(row=1, column=0, sticky=W) # Camera choice self.rc1 = Radiobutton(self.root, text='PC', variable=self.cam, value='PC') self.rc1.grid(row=3, column=0, sticky=W) self.rc2 = Radiobutton(self.root, text='HRC', variable=self.cam, value='HRC') self.rc2.grid(row=4, column=0, sticky=W) #Display choice self.rd1 = Radiobutton(self.root, text='Modelled', variable=self.disp, value='Modelled') self.rd1.grid(row=3, column=2, sticky=W) self.rd2 = Radiobutton(self.root, text='Measured', variable=self.disp, value='Measured') self.rd2.grid(row=4, column=2, sticky=W) self.rd3 = Radiobutton(self.root, text='Comparison', variable=self.disp, value='Comparison') self.rd3.grid(row=5, column=2, sticky=W) # Year of model or measurement Label(self.root, text='Year to display').grid(row=6, column=0, sticky=W) self.yearEntry = Entry(self.root) self.yearEntry.grid(row=6, column=1) self.b1 = Button(self.root, text='Proceed', command=self.GetDate) self.b1.grid(row=13, column=1) self.b2 = Button(self.root, text='Exit', command=self.Finish) self.b2.grid(row=13, column=2) self.statusBar = Label(self.root, text='', foreground='blue') self.statusBar.grid(row=11, sticky=S) def Show(self): self.root.mainloop() def GetDate(self): # Validate year and date input firstYear = 2003 lastYear = time.gmtime()[0] # Get current year self.display = self.disp.get() self.camera = self.cam.get() self.year = self.yearEntry.get() goodyear = False try: iy = int(self.year) if iy < firstYear or iy > lastYear: self.statusBar.config(text='Year must be between 2003 and current year') else: goodyear = True except ValueError: self.statusBar.config(text='Bad format for Year') msg.grid(row=7, column=0) if goodyear: # Show selection for exact date if self.display == 'Measured' or self.display == 'Comparison': #print 'Display', self.display focusFile = self.camera + 'FocusHistory.txt' print 'Focus File', focusFile # Temporary measure = open(focusFile, 'r') focusData = measure.readlines() lf = len(focusData) measure.close() self.dateList = [] # Prepare to collect measurement dates from one year for l in range(1, lf): #Skip first line pieces = string.split(focusData[l]) if len(pieces) > 1 and pieces[0] != "0": # Skip blank and meaningless lines [m, d, y] = string.split(pieces[2], '/') if int(y) == iy % 100: # Match last two digits of year dateStamp = pieces[2] # If this is different from previous date, add to list if len(self.dateList) == 0 or self.dateList[-1] != dateStamp: self.dateList.append( dateStamp) # Now make up listbox with dateList ly = len(self.dateList) if ly == 0: nodata = 'No data for ' + self.camera + ' in ' + self.year self.statusBar.config(text=nodata) goodyear = False return Label(self.root, text='Choose date of measurement').grid(row=7, column=0, sticky=NW) self.measureDates = Listbox(self.root, height=ly, selectmode=SINGLE) self.measureDates.grid(row=7, column=1) self.dateChoice = None # until chosen for i in range(ly): self.measureDates.insert(END, self.dateList[i]) self.measureDates.bind("<Button1-ButtonRelease>", self.ChooseDate) self.b1.grid_forget() # Remove PROCEED button self.rc1.config(state=DISABLED) # Turn off camera and display choices self.rc2.config(state=DISABLED) self.rd1.config(state=DISABLED) self.rd2.config(state=DISABLED) self.rd3.config(state=DISABLED) self.yearEntry.config(state=DISABLED) self.statusBar.config(text='') Button(self.root, text='Display', command=self.StartGraph).grid(row=8, column=1) elif self.display == 'Modelled': # Select arbitrary dates and times #print 'Display',self.display self.b1.grid_forget() # Remove PROCEED button self.rc1.config(state=DISABLED) # Turn off camera and display choices self.rc2.config(state=DISABLED) self.rd1.config(state=DISABLED) self.rd2.config(state=DISABLED) self.rd3.config(state=DISABLED) self.yearEntry.config(state=DISABLED) self.statusBar.config(text='') Label(self.root, text='Date e.g. 11/23').grid(row=8, column=0, sticky=W) self.dayEntry = Entry(self.root) self.dayEntry.grid(row=8, column=1) Label(self.root, text='Start time in form 12:23').grid(row=9, column=0, sticky=W) self.time1Entry = Entry(self.root) self.time1Entry.grid(row=9, column=1) self.time2Entry = Entry(self.root) self.time2Entry.grid(row=10, column=1) Label(self.root, text='Use 24 hour clock').grid(row=9, column=2) Label(self.root, text='Stop time').grid(row=10, column=0, sticky=W) Button(self.root, text='Display', command=self.GetTimes).grid(row=11, column=1) def GetTimes(self): self.day = self.dayEntry.get() try: (m, d) = string.split(self.day, '/') if (1 <= int(m) <= 12) and (1 <= int(d) <= 31): goodday = True else: self.statusBar.config(text='Numerical error in date') goodday = False except ValueError: self.statusBar.config(text='Date to be in form mm/dd') goodday = False self.time1 = self.time1Entry.get() try: (hour1, minute1) = string.split(self.time1, ':') if (0 <= int(hour1) <= 23) and (0 <= int(minute1) <= 59): goodstart = True else: self.statusBar.config(text='Numerical error in start time') goodstart = False except ValueError: self.statusBar.config(text='Start time to be in form hh:mm') goodstart = False if goodstart: print 'h1m1', hour1, minute1 self.time2 = self.time2Entry.get() try: (hour2, minute2) = string.split(self.time2, ':') if (0 <= int(hour2) <= 23) and (0 <= int(minute2) <= 59): goodstop = True else: self.statusBar.config(text='Numerical error in stop time') goodstop = True except ValueError: self.statusBar.config(text='Stop time to be in form hh:mm') goodstop = False if goodstop: print 'h2m2', hour2, minute2 # Final check if goodstart and goodstop: t1 = int(hour1) + int(minute1) / 60.0 t2 = int(hour2) + int(minute2) / 60.0 if t1 > t2: goodstop = False self.statusBar.config(text='Start time is later than stop time').grid(row=11, column=0) else: goodstop = True if goodday and goodstart and goodstop: self.statusBar.config(text='Generating graphs') graph() # Start display return def ChooseDate(self, event): item = self.measureDates.curselection() self.dateChoice = self.dateList[int(item[0])] def StartGraph(self): if self.dateChoice: # Proceed only if date choice has been made self.statusBar.config(text='Generating graphs') graph() #self.statusBar.config(text = 'Finished') else: self.statusBar.config(text='Choose a date') def Finish(self): self.root.destroy() P.close('all') def graph(): monthName = ['blank', 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] print 'Create display' print 'Camera', gui.camera print 'Display ', gui.display if gui.display == 'Modelled': #print gui.day, gui.year, gui.time1, gui.time2 fulldate = "%5s/%4s" % (gui.day, gui.year) fulldate = string.lstrip(fulldate) modelled(gui.camera, fulldate, gui.time1, gui.time2) elif gui.display == 'Measured': #print 'Date ', gui.dateChoice times = measured(gui.camera, gui.dateChoice) elif gui.display == "Comparison": #print gui.camera, gui.dateChoice comparison(gui.camera, gui.dateChoice) print 'Finished' #gui.statusBar.config(text = 'Finished') return if __name__ == '__main__': gui = FocusMenu() # Creates an instance of FocusMenu gui.CreateForm() # Builds the form gui.Show() # Starts the loop
bsd-2-clause
bssrdf/pmtk3
python/demos/ch04/discrimAnalysisDboundariesDemo.py
7
2629
#!/usr/bin/env python import numpy as np import matplotlib.pylab as pl from sklearn.lda import LDA from sklearn.qda import QDA c = 'bgr' m = 'xos' n_samples = 30 # number of each class samplesn model_names = ('LDA', 'QDA') def mvn2d(x, y, u, sigma): """calculate the probability of 2d-guss""" xx, yy = np.meshgrid(x, y) xy = np.c_[xx.ravel(), yy.ravel()] sigma_inv = np.linalg.inv(sigma) z = np.dot((xy - u), sigma_inv) z = np.sum(z * (xy - u), axis=1) z = np.exp(-0.5 * z) z = z / (2 * np.pi * np.linalg.det(sigma) ** 0.5) return z.reshape(xx.shape) models = [([[1.5, 1.5], [-1.5, -1.5]], # means [np.eye(2)] * 2 # sigmas[:, j].reshape(200, 200) ), # model 1 ([[1.5, 1.5], [-1.5, -1.5]], # means [[[1.5, 0], [0, 1]], np.eye(2) * 0.7] # sigmas ), # model2 ([[0, 0], [0, 5], [5, 5]], [np.eye(2)] * 3 ), # model3 ([[0, 0], [0, 5], [5, 5]], [[[4, 0], [0, 1]], np.eye(2), np.eye(2)] ) # model4 ] for n_th, (u, sigma) in enumerate(models): # generate random points x = [] # store sample points y = [] # store class labels for i in range(len(u)): x.append(np.random.multivariate_normal(u[i], sigma[i], n_samples)) y.append([i] * n_samples) points = np.vstack(x) labels = np.hstack(y) x_min, y_min = np.min(points, axis=0) x_max, y_max = np.max(points, axis=0) x_range = np.linspace(x_min - 1, x_max + 1, 200) y_range = np.linspace(y_min - 1, y_max + 1, 200) xx, yy = np.meshgrid(x_range, y_range) for k, model in enumerate((LDA(), QDA())): #fit, predict clf = model clf.fit(points, labels) z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) z = z.reshape(200, 200) z_p = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()]) #draw areas and boundries pl.figure() pl.pcolormesh(xx, yy, z) pl.cool() for j in range(len(u)): pl.contour(xx, yy, z_p[:, j].reshape(200, 200), [0.5], lw=3, colors='k') #draw points for i, point in enumerate(x): pl.plot(point[:, 0], point[:, 1], c[i] + m[i]) #draw contours for i in range(len(u)): prob = mvn2d(x_range, y_range, u[i], sigma[i]) cs = pl.contour(xx, yy, prob, colors=c[i]) pl.title('Seperate {0} classes using {1}'. format(len(u), model_names[k])) pl.savefig('discrimAnalysisDboundariesDemo_%d.png' % (n_th * 2 + k)) pl.show()
mit
JsNoNo/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
great-expectations/great_expectations
tests/test_utils.py
1
11980
import logging import os import uuid from typing import List import numpy as np import pandas as pd import pytest from great_expectations.data_context.store import CheckpointStore, StoreBackend from great_expectations.data_context.store.util import ( build_checkpoint_store_using_store_backend, delete_checkpoint_config_from_store_backend, delete_config_from_store_backend, load_checkpoint_config_from_store_backend, load_config_from_store_backend, save_checkpoint_config_to_store_backend, save_config_to_store_backend, ) from great_expectations.data_context.types.base import BaseYamlConfig, CheckpointConfig from great_expectations.data_context.util import build_store_from_config logger = logging.getLogger(__name__) # Taken from the following stackoverflow: # https://stackoverflow.com/questions/23549419/assert-that-two-dictionaries-are-almost-equal def assertDeepAlmostEqual(expected, actual, *args, **kwargs): """ Assert that two complex structures have almost equal contents. Compares lists, dicts and tuples recursively. Checks numeric values using pyteset.approx and checks all other values with an assertion equality statement Accepts additional positional and keyword arguments and pass those intact to pytest.approx() (that's how you specify comparison precision). """ is_root = "__trace" not in kwargs trace = kwargs.pop("__trace", "ROOT") try: # if isinstance(expected, (int, float, long, complex)): if isinstance(expected, (int, float, complex)): assert expected == pytest.approx(actual, *args, **kwargs) elif isinstance(expected, (list, tuple, np.ndarray)): assert len(expected) == len(actual) for index in range(len(expected)): v1, v2 = expected[index], actual[index] assertDeepAlmostEqual(v1, v2, __trace=repr(index), *args, **kwargs) elif isinstance(expected, dict): assert set(expected) == set(actual) for key in expected: assertDeepAlmostEqual( expected[key], actual[key], __trace=repr(key), *args, **kwargs ) else: assert expected == actual except AssertionError as exc: exc.__dict__.setdefault("traces", []).append(trace) if is_root: trace = " -> ".join(reversed(exc.traces)) exc = AssertionError("{}\nTRACE: {}".format(str(exc), trace)) raise exc def safe_remove(path): if path is not None: try: os.remove(path) except OSError as e: print(e) def create_files_for_regex_partitioner( root_directory_path: str, directory_paths: list = None, test_file_names: list = None ): if not directory_paths: return if not test_file_names: test_file_names: list = [ "alex_20200809_1000.csv", "eugene_20200809_1500.csv", "james_20200811_1009.csv", "abe_20200809_1040.csv", "will_20200809_1002.csv", "james_20200713_1567.csv", "eugene_20201129_1900.csv", "will_20200810_1001.csv", "james_20200810_1003.csv", "alex_20200819_1300.csv", ] base_directories = [] for dir_path in directory_paths: if dir_path is None: base_directories.append(dir_path) else: data_dir_path = os.path.join(root_directory_path, dir_path) os.makedirs(data_dir_path, exist_ok=True) base_dir = str(data_dir_path) # Put test files into the directories. for file_name in test_file_names: file_path = os.path.join(base_dir, file_name) with open(file_path, "w") as fp: fp.writelines([f'The name of this file is: "{file_path}".\n']) base_directories.append(base_dir) def create_files_in_directory( directory: str, file_name_list: List[str], file_content_fn=lambda: "x,y\n1,2\n2,3" ): subdirectories = [] for file_name in file_name_list: splits = file_name.split("/") for i in range(1, len(splits)): subdirectories.append(os.path.join(*splits[:i])) subdirectories = set(subdirectories) for subdirectory in subdirectories: os.makedirs(os.path.join(directory, subdirectory), exist_ok=True) for file_name in file_name_list: file_path = os.path.join(directory, file_name) with open(file_path, "w") as f_: f_.write(file_content_fn()) def create_fake_data_frame(): return pd.DataFrame( { "x": range(10), "y": list("ABCDEFGHIJ"), } ) def validate_uuid4(uuid_string: str) -> bool: """ Validate that a UUID string is in fact a valid uuid4. Happily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-character hex string is considered valid. From https://gist.github.com/ShawnMilo/7777304 Args: uuid_string: string to check whether it is a valid UUID or not Returns: True if uuid_string is a valid UUID or False if not """ try: val = uuid.UUID(uuid_string, version=4) except ValueError: # If it's a value error, then the string # is not a valid hex code for a UUID. return False # If the uuid_string is a valid hex code, # but an invalid uuid4, # the UUID.__init__ will convert it to a # valid uuid4. This is bad for validation purposes. return val.hex == uuid_string.replace("-", "") def get_sqlite_temp_table_names(engine): result = engine.execute( """ SELECT name FROM sqlite_temp_master """ ) rows = result.fetchall() return {row[0] for row in rows} def get_sqlite_table_names(engine): result = engine.execute( """ SELECT name FROM sqlite_master """ ) rows = result.fetchall() return {row[0] for row in rows} def build_in_memory_store_backend( module_name: str = "great_expectations.data_context.store", class_name: str = "InMemoryStoreBackend", **kwargs, ) -> StoreBackend: logger.debug("Starting data_context/store/util.py#build_in_memory_store_backend") store_backend_config: dict = {"module_name": module_name, "class_name": class_name} store_backend_config.update(**kwargs) return build_store_from_config( store_config=store_backend_config, module_name=module_name, runtime_environment=None, ) def build_tuple_filesystem_store_backend( base_directory: str, *, module_name: str = "great_expectations.data_context.store", class_name: str = "TupleFilesystemStoreBackend", **kwargs, ) -> StoreBackend: logger.debug( f"""Starting data_context/store/util.py#build_tuple_filesystem_store_backend using base_directory: "{base_directory}""" ) store_backend_config: dict = { "module_name": module_name, "class_name": class_name, "base_directory": base_directory, } store_backend_config.update(**kwargs) return build_store_from_config( store_config=store_backend_config, module_name=module_name, runtime_environment=None, ) def build_tuple_s3_store_backend( bucket: str, *, module_name: str = "great_expectations.data_context.store", class_name: str = "TupleS3StoreBackend", **kwargs, ) -> StoreBackend: logger.debug( f"""Starting data_context/store/util.py#build_tuple_s3_store_backend using bucket: {bucket} """ ) store_backend_config: dict = { "module_name": module_name, "class_name": class_name, "bucket": bucket, } store_backend_config.update(**kwargs) return build_store_from_config( store_config=store_backend_config, module_name=module_name, runtime_environment=None, ) def build_checkpoint_store_using_filesystem( store_name: str, base_directory: str, overwrite_existing: bool = False, ) -> CheckpointStore: store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) return build_checkpoint_store_using_store_backend( store_name=store_name, store_backend=store_backend_obj, overwrite_existing=overwrite_existing, ) def save_checkpoint_config_to_filesystem( store_name: str, base_directory: str, checkpoint_name: str, checkpoint_configuration: CheckpointConfig, ): store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) save_checkpoint_config_to_store_backend( store_name=store_name, store_backend=store_backend_obj, checkpoint_name=checkpoint_name, checkpoint_configuration=checkpoint_configuration, ) def load_checkpoint_config_from_filesystem( store_name: str, base_directory: str, checkpoint_name: str, ) -> CheckpointConfig: store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) return load_checkpoint_config_from_store_backend( store_name=store_name, store_backend=store_backend_obj, checkpoint_name=checkpoint_name, ) def delete_checkpoint_config_from_filesystem( store_name: str, base_directory: str, checkpoint_name: str, ): store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) delete_checkpoint_config_from_store_backend( store_name=store_name, store_backend=store_backend_obj, checkpoint_name=checkpoint_name, ) def save_config_to_filesystem( configuration_store_class_name: str, configuration_store_module_name: str, store_name: str, base_directory: str, configuration_key: str, configuration: BaseYamlConfig, ): store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) save_config_to_store_backend( class_name=configuration_store_class_name, module_name=configuration_store_module_name, store_name=store_name, store_backend=store_backend_obj, configuration_key=configuration_key, configuration=configuration, ) def load_config_from_filesystem( configuration_store_class_name: str, configuration_store_module_name: str, store_name: str, base_directory: str, configuration_key: str, ) -> BaseYamlConfig: store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) return load_config_from_store_backend( class_name=configuration_store_class_name, module_name=configuration_store_module_name, store_name=store_name, store_backend=store_backend_obj, configuration_key=configuration_key, ) def delete_config_from_filesystem( configuration_store_class_name: str, configuration_store_module_name: str, store_name: str, base_directory: str, configuration_key: str, ): store_config: dict = {"base_directory": base_directory} store_backend_obj: StoreBackend = build_tuple_filesystem_store_backend( **store_config ) delete_config_from_store_backend( class_name=configuration_store_class_name, module_name=configuration_store_module_name, store_name=store_name, store_backend=store_backend_obj, configuration_key=configuration_key, )
apache-2.0
thekingofkings/chicago-crime
python/housePrice.py
2
1403
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Parse Chicago house price per sqft. Created on Fri May 19 20:30:20 2017 @author: hxw186 """ from tract import Tract import pandas as pd from shapely.geometry import Point import pickle def get_individual_house_price(): houses = pd.read_csv("..//data/house_source.csv", index_col=0) houses = houses.loc[lambda x : (x["priceSqft"] > 30) & (x["priceSqft"] < 3000), :] return houses def retrieve_CA_avg_house_price(): houses = get_individual_house_price() cas = Tract.createAllCAObjects() house_cnt = {k:0 for k in cas.keys()} avg_price = {k:0.0 for k in cas.keys()} for idx, house in houses.iterrows(): p = Point(house.lon, house.lat) for k, ca in cas.items(): if ca.polygon.contains(p): house_cnt[k] += 1 avg_price[k] += house.priceSqft break for k in house_cnt.keys(): if house_cnt[k] == 0: print k else: avg_price[k] /= house_cnt[k] assert avg_price[54] == 0 avg_price[54] = (avg_price[53] + avg_price[55]) / 2 with open("../data/ca-average-house-price.pickle", 'w') as fout: pickle.dump(avg_price, fout) pickle.dump(house_cnt, fout) return avg_price if __name__ == '__main__': avg_price = retrieve_CA_avg_house_price()
mit
Carralex/landlab
landlab/plot/imshow.py
1
21335
#! /usr/bin/env python """ Methods to plot data defined on Landlab grids. Plotting functions ++++++++++++++++++ .. autosummary:: :toctree: generated/ ~landlab.plot.imshow.imshow_grid ~landlab.plot.imshow.imshow_grid_at_cell ~landlab.plot.imshow.imshow_grid_at_node """ import numpy as np import inspect from landlab.field.scalar_data_fields import FieldError try: import matplotlib.pyplot as plt except ImportError: import warnings warnings.warn('matplotlib not found', ImportWarning) from landlab.grid import CLOSED_BOUNDARY from landlab.grid.raster import RasterModelGrid from landlab.grid.voronoi import VoronoiDelaunayGrid from landlab.plot.event_handler import query_grid_on_button_press from landlab.utils.decorators import deprecated def imshow_grid_at_node(grid, values, **kwds): """Prepare a map view of data over all nodes in the grid. Data is plotted as cells shaded with the value at the node at its center. Outer edges of perimeter cells are extrapolated. Closed elements are colored uniformly (default black, overridden with kwd 'color_for_closed'); other open boundary nodes get their actual values. *values* can be a field name, a regular array, or a masked array. If a masked array is provided, masked entries will be treated as if they were Landlab CLOSED_BOUNDARYs. Used together with the color_at_closed=None keyword (i.e., "transparent"), this can allow for construction of overlay layers in a figure (e.g., only defining values in a river network, and overlaying it on another landscape). Use matplotlib functions like xlim, ylim to modify your plot after calling :func:`imshow_grid`, as desired. Node coordinates are printed when a mouse button is pressed on a cell in the plot. This function happily works with both regular and irregular grids. Construction :: imshow_grid_at_node(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Node values, or a field name as a string from which to draw the data. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed nodes (default 'black'). If None, closed (or masked) nodes will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. """ if isinstance(values, str): values_at_node = grid.at_node[values] else: values_at_node = values if values_at_node.size != grid.number_of_nodes: raise ValueError('number of values does not match number of nodes') values_at_node = np.ma.masked_where( grid.status_at_node == CLOSED_BOUNDARY, values_at_node) try: shape = grid.shape except AttributeError: shape = (-1, ) _imshow_grid_values(grid, values_at_node.reshape(shape), **kwds) if isinstance(values, str): plt.title(values) plt.gcf().canvas.mpl_connect('button_press_event', lambda event: query_grid_on_button_press(event, grid)) @deprecated(use='imshow_grid_at_node', version='0.5') def imshow_node_grid(grid, values, **kwds): imshow_grid_at_node(grid, values, **kwds) def imshow_grid_at_cell(grid, values, **kwds): """Map view of grid data over all grid cells. Prepares a map view of data over all cells in the grid. Method can take any of the same ``**kwds`` as :func:`imshow_grid_at_node`. Construction :: imshow_grid_at_cell(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, colorbar_label=None, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Values at the cells on the grid. Alternatively, can be a field name (string) from which to draw the data from the grid. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed elements (default 'black'). If None, closed (or masked) elements will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. Raises ------ ValueError If input grid is not uniform rectilinear. """ if isinstance(values, str): try: values_at_cell = grid.at_cell[values] except FieldError: values_at_cell = grid.at_node[values] else: values_at_cell = values if values_at_cell.size == grid.number_of_nodes: values_at_cell = values_at_cell[grid.node_at_cell] if values_at_cell.size != grid.number_of_cells: raise ValueError('number of values must match number of cells or ' 'number of nodes') values_at_cell = np.ma.asarray(values_at_cell) values_at_cell.mask = True values_at_cell.mask[grid.core_cells] = False myimage = _imshow_grid_values(grid, values_at_cell.reshape(grid.cell_grid_shape), **kwds) if isinstance(values, str): plt.title(values) return myimage @deprecated(use='imshow_grid_at_cell', version='0.5') def imshow_cell_grid(grid, values, **kwds): imshow_grid_at_cell(grid, values, **kwds) def _imshow_grid_values(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=(None, None), symmetric_cbar=False, cmap='pink', limits=None, colorbar_label = None, allow_colorbar=True, vmin=None, vmax=None, norm=None, shrink=1., color_for_closed='black', color_for_background=None, show_elements=False, output=None): gridtypes = inspect.getmro(grid.__class__) cmap = plt.get_cmap(cmap) if color_for_closed is not None: cmap.set_bad(color=color_for_closed) else: cmap.set_bad(alpha=0.) if isinstance(grid, RasterModelGrid): if values.ndim != 2: raise ValueError('values must have ndim == 2') y = np.arange(values.shape[0] + 1) * grid.dy - grid.dy * .5 x = np.arange(values.shape[1] + 1) * grid.dx - grid.dx * .5 kwds = dict(cmap=cmap) (kwds['vmin'], kwds['vmax']) = (values.min(), values.max()) if (limits is None) and ((vmin is None) and (vmax is None)): if symmetric_cbar: (var_min, var_max) = (values.min(), values.max()) limit = max(abs(var_min), abs(var_max)) (kwds['vmin'], kwds['vmax']) = (- limit, limit) elif limits is not None: (kwds['vmin'], kwds['vmax']) = (limits[0], limits[1]) else: if vmin is not None: kwds['vmin'] = vmin if vmax is not None: kwds['vmax'] = vmax if np.isclose(grid.dx, grid.dy): if values.size == grid.number_of_nodes: myimage = plt.imshow( values.reshape(grid.shape), origin='lower', extent=(x[0], x[-1], y[0], y[-1]), **kwds) else: # this is a cell grid, and has been reshaped already... myimage = plt.imshow(values, origin='lower', extent=(x[0], x[-1], y[0], y[-1]), **kwds) myimage = plt.pcolormesh(x, y, values, **kwds) plt.gca().set_aspect(1.) plt.autoscale(tight=True) if allow_colorbar: cb = plt.colorbar(norm=norm, shrink=shrink) if colorbar_label: cb.set_label(colorbar_label) elif VoronoiDelaunayGrid in gridtypes: # This is still very much ad-hoc, and needs prettifying. # We should save the modifications needed to plot color all the way # to the diagram edge *into* the grid, for faster plotting. # (see http://stackoverflow.com/questions/20515554/... # colorize-voronoi-diagram) # (This technique is not implemented yet) from scipy.spatial import voronoi_plot_2d import matplotlib.colors as colors import matplotlib.cm as cmx cm = plt.get_cmap(cmap) if (limits is None) and ((vmin is None) and (vmax is None)): # only want to work with NOT CLOSED nodes open_nodes = grid.status_at_node != 4 if symmetric_cbar: (var_min, var_max) = (values.flat[ open_nodes].min(), values.flat[open_nodes].max()) limit = max(abs(var_min), abs(var_max)) (vmin, vmax) = (- limit, limit) else: (vmin, vmax) = (values.flat[ open_nodes].min(), values.flat[open_nodes].max()) elif limits is not None: (vmin, vmax) = (limits[0], limits[1]) else: open_nodes = grid.status_at_node != 4 if vmin is None: vmin = values.flat[open_nodes].min() if vmax is None: vmax = values.flat[open_nodes].max() cNorm = colors.Normalize(vmin, vmax) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) colorVal = scalarMap.to_rgba(values) if show_elements: myimage = voronoi_plot_2d(grid.vor, show_vertices=False, show_points=False) # show_points to be supported in scipy0.18, but harmless for now mycolors = (i for i in colorVal) for order in grid.vor.point_region: region = grid.vor.regions[order] colortouse = next(mycolors) if -1 not in region: polygon = [grid.vor.vertices[i] for i in region] plt.fill(*zip(*polygon), color=colortouse) plt.gca().set_aspect(1.) # plt.autoscale(tight=True) # Tempting though it is to move the boundary outboard of the outermost # nodes (e.g., to the outermost corners), this is a bad idea, as the # outermost cells tend to have highly elongated shapes which make the # plot look stupid plt.xlim((np.min(grid.node_x), np.max(grid.node_x))) plt.ylim((np.min(grid.node_y), np.max(grid.node_y))) scalarMap.set_array(values) if allow_colorbar: cb = plt.colorbar(scalarMap, shrink=shrink) if grid_units[1] is None and grid_units[0] is None: grid_units = grid.axis_units if grid_units[1] == '-' and grid_units[0] == '-': plt.xlabel('X') plt.ylabel('Y') else: plt.xlabel('X (%s)' % grid_units[1]) plt.ylabel('Y (%s)' % grid_units[0]) else: plt.xlabel('X (%s)' % grid_units[1]) plt.ylabel('Y (%s)' % grid_units[0]) if plot_name is not None: plt.title('%s' % (plot_name)) if var_name is not None or var_units is not None: if var_name is not None: assert type(var_name) is str if var_units is not None: assert type(var_units) is str colorbar_label = var_name + ' (' + var_units + ')' else: colorbar_label = var_name else: assert type(var_units) is str colorbar_label = '(' + var_units + ')' assert type(colorbar_label) is str assert allow_colorbar cb.set_label(colorbar_label) if color_for_background is not None: plt.gca().set_axis_bgcolor(color_for_background) if output is not None: if type(output) is str: plt.savefig(output) plt.clf() elif output: plt.show() def imshow_grid(grid, values, **kwds): """Prepare a map view of data over all nodes or cells in the grid. Data is plotted as colored cells. If at='node', the surrounding cell is shaded with the value at the node at its center. If at='cell', the cell is shaded with its own value. Outer edges of perimeter cells are extrapolated. Closed elements are colored uniformly (default black, overridden with kwd 'color_for_closed'); other open boundary nodes get their actual values. *values* can be a field name, a regular array, or a masked array. If a masked array is provided, masked entries will be treated as if they were Landlab CLOSED_BOUNDARYs. Used together with the color_at_closed=None keyword (i.e., "transparent"), this can allow for construction of overlay layers in a figure (e.g., only defining values in a river network, and overlaying it on another landscape). Use matplotlib functions like xlim, ylim to modify your plot after calling :func:`imshow_grid`, as desired. This function happily works with both regular and irregular grids. Construction :: imshow_grid(grid, values, plot_name=None, var_name=None, var_units=None, grid_units=None, symmetric_cbar=False, cmap='pink', limits=(values.min(), values.max()), vmin=values.min(), vmax=values.max(), allow_colorbar=True, colorbar_label=None, norm=[linear], shrink=1., color_for_closed='black', color_for_background=None, show_elements=False) Parameters ---------- grid : ModelGrid Grid containing the field to plot, or describing the geometry of the provided array. values : array_like, masked_array, or str Node or cell values, or a field name as a string from which to draw the data. at : str, {'node', 'cell'} Tells plotter where values are defined. plot_name : str, optional String to put as the plot title. var_name : str, optional Variable name, to use as a colorbar label. var_units : str, optional Units for the variable being plotted, for the colorbar. grid_units : tuple of str, optional Units for y, and x dimensions. If None, component will look to the gri property `axis_units` for this information. If no units are specified there, no entry is made. symmetric_cbar : bool Make the colormap symetric about 0. cmap : str Name of a colormap limits : tuple of float Minimum and maximum of the colorbar. vmin, vmax: floats Alternatives to limits. allow_colorbar : bool If True, include the colorbar. colorbar_label : str or None The string with which to label the colorbar. norm : matplotlib.colors.Normalize The normalizing object which scales data, typically into the interval [0, 1]. Ignore in most cases. shrink : float Fraction by which to shrink the colorbar. color_for_closed : str or None Color to use for closed elements (default 'black'). If None, closed (or masked) elements will be transparent. color_for_background : color str or other color declaration, or None Color to use for closed elements (default None). If None, the background will be transparent, and appear white. show_elements : bool If True, and grid is a Voronoi, the faces will be plotted in black along with just the colour of the cell, defining the cell outlines (defaults False). output : None, string, or bool If None (or False), the image is sent to the imaging buffer to await an explicit call to show() or savefig() from outside this function. If a string, the string should be the path to a save location, and the filename (with file extension). The function will then call plt.savefig([string]) itself. If True, the function will call plt.show() itself once plotting is complete. """ show = kwds.pop('show', False) values_at = kwds.pop('values_at', 'node') values_at = kwds.pop('at', values_at) if isinstance(values, str): values = grid.field_values(values_at, values) if isinstance(values, str): values = grid.field_values(values_at, values) if values_at == 'node': imshow_grid_at_node(grid, values, **kwds) elif values_at == 'cell': imshow_grid_at_cell(grid, values, **kwds) else: raise TypeError('value location %s not understood' % values_at) # retained for backwards compatibility: if show: plt.show()
mit
crawfordsm/pyspectrograph
ah_bootstrap.py
16
35044
""" This bootstrap module contains code for ensuring that the astropy_helpers package will be importable by the time the setup.py script runs. It also includes some workarounds to ensure that a recent-enough version of setuptools is being used for the installation. This module should be the first thing imported in the setup.py of distributions that make use of the utilities in astropy_helpers. If the distribution ships with its own copy of astropy_helpers, this module will first attempt to import from the shipped copy. However, it will also check PyPI to see if there are any bug-fix releases on top of the current version that may be useful to get past platform-specific bugs that have been fixed. When running setup.py, use the ``--offline`` command-line option to disable the auto-upgrade checks. When this module is imported or otherwise executed it automatically calls a main function that attempts to read the project's setup.cfg file, which it checks for a configuration section called ``[ah_bootstrap]`` the presences of that section, and options therein, determine the next step taken: If it contains an option called ``auto_use`` with a value of ``True``, it will automatically call the main function of this module called `use_astropy_helpers` (see that function's docstring for full details). Otherwise no further action is taken (however, ``ah_bootstrap.use_astropy_helpers`` may be called manually from within the setup.py script). Additional options in the ``[ah_boostrap]`` section of setup.cfg have the same names as the arguments to `use_astropy_helpers`, and can be used to configure the bootstrap script when ``auto_use = True``. See https://github.com/astropy/astropy-helpers for more details, and for the latest version of this module. """ import contextlib import errno import imp import io import locale import os import re import subprocess as sp import sys try: from ConfigParser import ConfigParser, RawConfigParser except ImportError: from configparser import ConfigParser, RawConfigParser if sys.version_info[0] < 3: _str_types = (str, unicode) _text_type = unicode PY3 = False else: _str_types = (str, bytes) _text_type = str PY3 = True # What follows are several import statements meant to deal with install-time # issues with either missing or misbehaving pacakges (including making sure # setuptools itself is installed): # Some pre-setuptools checks to ensure that either distribute or setuptools >= # 0.7 is used (over pre-distribute setuptools) if it is available on the path; # otherwise the latest setuptools will be downloaded and bootstrapped with # ``ez_setup.py``. This used to be included in a separate file called # setuptools_bootstrap.py; but it was combined into ah_bootstrap.py try: import pkg_resources _setuptools_req = pkg_resources.Requirement.parse('setuptools>=0.7') # This may raise a DistributionNotFound in which case no version of # setuptools or distribute is properly installed _setuptools = pkg_resources.get_distribution('setuptools') if _setuptools not in _setuptools_req: # Older version of setuptools; check if we have distribute; again if # this results in DistributionNotFound we want to give up _distribute = pkg_resources.get_distribution('distribute') if _setuptools != _distribute: # It's possible on some pathological systems to have an old version # of setuptools and distribute on sys.path simultaneously; make # sure distribute is the one that's used sys.path.insert(1, _distribute.location) _distribute.activate() imp.reload(pkg_resources) except: # There are several types of exceptions that can occur here; if all else # fails bootstrap and use the bootstrapped version from ez_setup import use_setuptools use_setuptools() # typing as a dependency for 1.6.1+ Sphinx causes issues when imported after # initializing submodule with ah_boostrap.py # See discussion and references in # https://github.com/astropy/astropy-helpers/issues/302 try: import typing # noqa except ImportError: pass # Note: The following import is required as a workaround to # https://github.com/astropy/astropy-helpers/issues/89; if we don't import this # module now, it will get cleaned up after `run_setup` is called, but that will # later cause the TemporaryDirectory class defined in it to stop working when # used later on by setuptools try: import setuptools.py31compat # noqa except ImportError: pass # matplotlib can cause problems if it is imported from within a call of # run_setup(), because in some circumstances it will try to write to the user's # home directory, resulting in a SandboxViolation. See # https://github.com/matplotlib/matplotlib/pull/4165 # Making sure matplotlib, if it is available, is imported early in the setup # process can mitigate this (note importing matplotlib.pyplot has the same # issue) try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot except: # Ignore if this fails for *any* reason* pass # End compatibility imports... # In case it didn't successfully import before the ez_setup checks import pkg_resources from setuptools import Distribution from setuptools.package_index import PackageIndex from setuptools.sandbox import run_setup from distutils import log from distutils.debug import DEBUG # TODO: Maybe enable checking for a specific version of astropy_helpers? DIST_NAME = 'astropy-helpers' PACKAGE_NAME = 'astropy_helpers' # Defaults for other options DOWNLOAD_IF_NEEDED = True INDEX_URL = 'https://pypi.python.org/simple' USE_GIT = True OFFLINE = False AUTO_UPGRADE = True # A list of all the configuration options and their required types CFG_OPTIONS = [ ('auto_use', bool), ('path', str), ('download_if_needed', bool), ('index_url', str), ('use_git', bool), ('offline', bool), ('auto_upgrade', bool) ] class _Bootstrapper(object): """ Bootstrapper implementation. See ``use_astropy_helpers`` for parameter documentation. """ def __init__(self, path=None, index_url=None, use_git=None, offline=None, download_if_needed=None, auto_upgrade=None): if path is None: path = PACKAGE_NAME if not (isinstance(path, _str_types) or path is False): raise TypeError('path must be a string or False') if PY3 and not isinstance(path, _text_type): fs_encoding = sys.getfilesystemencoding() path = path.decode(fs_encoding) # path to unicode self.path = path # Set other option attributes, using defaults where necessary self.index_url = index_url if index_url is not None else INDEX_URL self.offline = offline if offline is not None else OFFLINE # If offline=True, override download and auto-upgrade if self.offline: download_if_needed = False auto_upgrade = False self.download = (download_if_needed if download_if_needed is not None else DOWNLOAD_IF_NEEDED) self.auto_upgrade = (auto_upgrade if auto_upgrade is not None else AUTO_UPGRADE) # If this is a release then the .git directory will not exist so we # should not use git. git_dir_exists = os.path.exists(os.path.join(os.path.dirname(__file__), '.git')) if use_git is None and not git_dir_exists: use_git = False self.use_git = use_git if use_git is not None else USE_GIT # Declared as False by default--later we check if astropy-helpers can be # upgraded from PyPI, but only if not using a source distribution (as in # the case of import from a git submodule) self.is_submodule = False @classmethod def main(cls, argv=None): if argv is None: argv = sys.argv config = cls.parse_config() config.update(cls.parse_command_line(argv)) auto_use = config.pop('auto_use', False) bootstrapper = cls(**config) if auto_use: # Run the bootstrapper, otherwise the setup.py is using the old # use_astropy_helpers() interface, in which case it will run the # bootstrapper manually after reconfiguring it. bootstrapper.run() return bootstrapper @classmethod def parse_config(cls): if not os.path.exists('setup.cfg'): return {} cfg = ConfigParser() try: cfg.read('setup.cfg') except Exception as e: if DEBUG: raise log.error( "Error reading setup.cfg: {0!r}\n{1} will not be " "automatically bootstrapped and package installation may fail." "\n{2}".format(e, PACKAGE_NAME, _err_help_msg)) return {} if not cfg.has_section('ah_bootstrap'): return {} config = {} for option, type_ in CFG_OPTIONS: if not cfg.has_option('ah_bootstrap', option): continue if type_ is bool: value = cfg.getboolean('ah_bootstrap', option) else: value = cfg.get('ah_bootstrap', option) config[option] = value return config @classmethod def parse_command_line(cls, argv=None): if argv is None: argv = sys.argv config = {} # For now we just pop recognized ah_bootstrap options out of the # arg list. This is imperfect; in the unlikely case that a setup.py # custom command or even custom Distribution class defines an argument # of the same name then we will break that. However there's a catch22 # here that we can't just do full argument parsing right here, because # we don't yet know *how* to parse all possible command-line arguments. if '--no-git' in argv: config['use_git'] = False argv.remove('--no-git') if '--offline' in argv: config['offline'] = True argv.remove('--offline') return config def run(self): strategies = ['local_directory', 'local_file', 'index'] dist = None # First, remove any previously imported versions of astropy_helpers; # this is necessary for nested installs where one package's installer # is installing another package via setuptools.sandbox.run_setup, as in # the case of setup_requires for key in list(sys.modules): try: if key == PACKAGE_NAME or key.startswith(PACKAGE_NAME + '.'): del sys.modules[key] except AttributeError: # Sometimes mysterious non-string things can turn up in # sys.modules continue # Check to see if the path is a submodule self.is_submodule = self._check_submodule() for strategy in strategies: method = getattr(self, 'get_{0}_dist'.format(strategy)) dist = method() if dist is not None: break else: raise _AHBootstrapSystemExit( "No source found for the {0!r} package; {0} must be " "available and importable as a prerequisite to building " "or installing this package.".format(PACKAGE_NAME)) # This is a bit hacky, but if astropy_helpers was loaded from a # directory/submodule its Distribution object gets a "precedence" of # "DEVELOP_DIST". However, in other cases it gets a precedence of # "EGG_DIST". However, when activing the distribution it will only be # placed early on sys.path if it is treated as an EGG_DIST, so always # do that dist = dist.clone(precedence=pkg_resources.EGG_DIST) # Otherwise we found a version of astropy-helpers, so we're done # Just active the found distribution on sys.path--if we did a # download this usually happens automatically but it doesn't hurt to # do it again # Note: Adding the dist to the global working set also activates it # (makes it importable on sys.path) by default. try: pkg_resources.working_set.add(dist, replace=True) except TypeError: # Some (much) older versions of setuptools do not have the # replace=True option here. These versions are old enough that all # bets may be off anyways, but it's easy enough to work around just # in case... if dist.key in pkg_resources.working_set.by_key: del pkg_resources.working_set.by_key[dist.key] pkg_resources.working_set.add(dist) @property def config(self): """ A `dict` containing the options this `_Bootstrapper` was configured with. """ return dict((optname, getattr(self, optname)) for optname, _ in CFG_OPTIONS if hasattr(self, optname)) def get_local_directory_dist(self): """ Handle importing a vendored package from a subdirectory of the source distribution. """ if not os.path.isdir(self.path): return log.info('Attempting to import astropy_helpers from {0} {1!r}'.format( 'submodule' if self.is_submodule else 'directory', self.path)) dist = self._directory_import() if dist is None: log.warn( 'The requested path {0!r} for importing {1} does not ' 'exist, or does not contain a copy of the {1} ' 'package.'.format(self.path, PACKAGE_NAME)) elif self.auto_upgrade and not self.is_submodule: # A version of astropy-helpers was found on the available path, but # check to see if a bugfix release is available on PyPI upgrade = self._do_upgrade(dist) if upgrade is not None: dist = upgrade return dist def get_local_file_dist(self): """ Handle importing from a source archive; this also uses setup_requires but points easy_install directly to the source archive. """ if not os.path.isfile(self.path): return log.info('Attempting to unpack and import astropy_helpers from ' '{0!r}'.format(self.path)) try: dist = self._do_download(find_links=[self.path]) except Exception as e: if DEBUG: raise log.warn( 'Failed to import {0} from the specified archive {1!r}: ' '{2}'.format(PACKAGE_NAME, self.path, str(e))) dist = None if dist is not None and self.auto_upgrade: # A version of astropy-helpers was found on the available path, but # check to see if a bugfix release is available on PyPI upgrade = self._do_upgrade(dist) if upgrade is not None: dist = upgrade return dist def get_index_dist(self): if not self.download: log.warn('Downloading {0!r} disabled.'.format(DIST_NAME)) return None log.warn( "Downloading {0!r}; run setup.py with the --offline option to " "force offline installation.".format(DIST_NAME)) try: dist = self._do_download() except Exception as e: if DEBUG: raise log.warn( 'Failed to download and/or install {0!r} from {1!r}:\n' '{2}'.format(DIST_NAME, self.index_url, str(e))) dist = None # No need to run auto-upgrade here since we've already presumably # gotten the most up-to-date version from the package index return dist def _directory_import(self): """ Import astropy_helpers from the given path, which will be added to sys.path. Must return True if the import succeeded, and False otherwise. """ # Return True on success, False on failure but download is allowed, and # otherwise raise SystemExit path = os.path.abspath(self.path) # Use an empty WorkingSet rather than the man # pkg_resources.working_set, since on older versions of setuptools this # will invoke a VersionConflict when trying to install an upgrade ws = pkg_resources.WorkingSet([]) ws.add_entry(path) dist = ws.by_key.get(DIST_NAME) if dist is None: # We didn't find an egg-info/dist-info in the given path, but if a # setup.py exists we can generate it setup_py = os.path.join(path, 'setup.py') if os.path.isfile(setup_py): with _silence(): run_setup(os.path.join(path, 'setup.py'), ['egg_info']) for dist in pkg_resources.find_distributions(path, True): # There should be only one... return dist return dist def _do_download(self, version='', find_links=None): if find_links: allow_hosts = '' index_url = None else: allow_hosts = None index_url = self.index_url # Annoyingly, setuptools will not handle other arguments to # Distribution (such as options) before handling setup_requires, so it # is not straightforward to programmatically augment the arguments which # are passed to easy_install class _Distribution(Distribution): def get_option_dict(self, command_name): opts = Distribution.get_option_dict(self, command_name) if command_name == 'easy_install': if find_links is not None: opts['find_links'] = ('setup script', find_links) if index_url is not None: opts['index_url'] = ('setup script', index_url) if allow_hosts is not None: opts['allow_hosts'] = ('setup script', allow_hosts) return opts if version: req = '{0}=={1}'.format(DIST_NAME, version) else: req = DIST_NAME attrs = {'setup_requires': [req]} try: if DEBUG: _Distribution(attrs=attrs) else: with _silence(): _Distribution(attrs=attrs) # If the setup_requires succeeded it will have added the new dist to # the main working_set return pkg_resources.working_set.by_key.get(DIST_NAME) except Exception as e: if DEBUG: raise msg = 'Error retrieving {0} from {1}:\n{2}' if find_links: source = find_links[0] elif index_url != INDEX_URL: source = index_url else: source = 'PyPI' raise Exception(msg.format(DIST_NAME, source, repr(e))) def _do_upgrade(self, dist): # Build up a requirement for a higher bugfix release but a lower minor # release (so API compatibility is guaranteed) next_version = _next_version(dist.parsed_version) req = pkg_resources.Requirement.parse( '{0}>{1},<{2}'.format(DIST_NAME, dist.version, next_version)) package_index = PackageIndex(index_url=self.index_url) upgrade = package_index.obtain(req) if upgrade is not None: return self._do_download(version=upgrade.version) def _check_submodule(self): """ Check if the given path is a git submodule. See the docstrings for ``_check_submodule_using_git`` and ``_check_submodule_no_git`` for further details. """ if (self.path is None or (os.path.exists(self.path) and not os.path.isdir(self.path))): return False if self.use_git: return self._check_submodule_using_git() else: return self._check_submodule_no_git() def _check_submodule_using_git(self): """ Check if the given path is a git submodule. If so, attempt to initialize and/or update the submodule if needed. This function makes calls to the ``git`` command in subprocesses. The ``_check_submodule_no_git`` option uses pure Python to check if the given path looks like a git submodule, but it cannot perform updates. """ cmd = ['git', 'submodule', 'status', '--', self.path] try: log.info('Running `{0}`; use the --no-git option to disable git ' 'commands'.format(' '.join(cmd))) returncode, stdout, stderr = run_cmd(cmd) except _CommandNotFound: # The git command simply wasn't found; this is most likely the # case on user systems that don't have git and are simply # trying to install the package from PyPI or a source # distribution. Silently ignore this case and simply don't try # to use submodules return False stderr = stderr.strip() if returncode != 0 and stderr: # Unfortunately the return code alone cannot be relied on, as # earlier versions of git returned 0 even if the requested submodule # does not exist # This is a warning that occurs in perl (from running git submodule) # which only occurs with a malformatted locale setting which can # happen sometimes on OSX. See again # https://github.com/astropy/astropy/issues/2749 perl_warning = ('perl: warning: Falling back to the standard locale ' '("C").') if not stderr.strip().endswith(perl_warning): # Some other unknown error condition occurred log.warn('git submodule command failed ' 'unexpectedly:\n{0}'.format(stderr)) return False # Output of `git submodule status` is as follows: # # 1: Status indicator: '-' for submodule is uninitialized, '+' if # submodule is initialized but is not at the commit currently indicated # in .gitmodules (and thus needs to be updated), or 'U' if the # submodule is in an unstable state (i.e. has merge conflicts) # # 2. SHA-1 hash of the current commit of the submodule (we don't really # need this information but it's useful for checking that the output is # correct) # # 3. The output of `git describe` for the submodule's current commit # hash (this includes for example what branches the commit is on) but # only if the submodule is initialized. We ignore this information for # now _git_submodule_status_re = re.compile( '^(?P<status>[+-U ])(?P<commit>[0-9a-f]{40}) ' '(?P<submodule>\S+)( .*)?$') # The stdout should only contain one line--the status of the # requested submodule m = _git_submodule_status_re.match(stdout) if m: # Yes, the path *is* a git submodule self._update_submodule(m.group('submodule'), m.group('status')) return True else: log.warn( 'Unexpected output from `git submodule status`:\n{0}\n' 'Will attempt import from {1!r} regardless.'.format( stdout, self.path)) return False def _check_submodule_no_git(self): """ Like ``_check_submodule_using_git``, but simply parses the .gitmodules file to determine if the supplied path is a git submodule, and does not exec any subprocesses. This can only determine if a path is a submodule--it does not perform updates, etc. This function may need to be updated if the format of the .gitmodules file is changed between git versions. """ gitmodules_path = os.path.abspath('.gitmodules') if not os.path.isfile(gitmodules_path): return False # This is a minimal reader for gitconfig-style files. It handles a few of # the quirks that make gitconfig files incompatible with ConfigParser-style # files, but does not support the full gitconfig syntax (just enough # needed to read a .gitmodules file). gitmodules_fileobj = io.StringIO() # Must use io.open for cross-Python-compatible behavior wrt unicode with io.open(gitmodules_path) as f: for line in f: # gitconfig files are more flexible with leading whitespace; just # go ahead and remove it line = line.lstrip() # comments can start with either # or ; if line and line[0] in (':', ';'): continue gitmodules_fileobj.write(line) gitmodules_fileobj.seek(0) cfg = RawConfigParser() try: cfg.readfp(gitmodules_fileobj) except Exception as exc: log.warn('Malformatted .gitmodules file: {0}\n' '{1} cannot be assumed to be a git submodule.'.format( exc, self.path)) return False for section in cfg.sections(): if not cfg.has_option(section, 'path'): continue submodule_path = cfg.get(section, 'path').rstrip(os.sep) if submodule_path == self.path.rstrip(os.sep): return True return False def _update_submodule(self, submodule, status): if status == ' ': # The submodule is up to date; no action necessary return elif status == '-': if self.offline: raise _AHBootstrapSystemExit( "Cannot initialize the {0} submodule in --offline mode; " "this requires being able to clone the submodule from an " "online repository.".format(submodule)) cmd = ['update', '--init'] action = 'Initializing' elif status == '+': cmd = ['update'] action = 'Updating' if self.offline: cmd.append('--no-fetch') elif status == 'U': raise _AHBootstrapSystemExit( 'Error: Submodule {0} contains unresolved merge conflicts. ' 'Please complete or abandon any changes in the submodule so that ' 'it is in a usable state, then try again.'.format(submodule)) else: log.warn('Unknown status {0!r} for git submodule {1!r}. Will ' 'attempt to use the submodule as-is, but try to ensure ' 'that the submodule is in a clean state and contains no ' 'conflicts or errors.\n{2}'.format(status, submodule, _err_help_msg)) return err_msg = None cmd = ['git', 'submodule'] + cmd + ['--', submodule] log.warn('{0} {1} submodule with: `{2}`'.format( action, submodule, ' '.join(cmd))) try: log.info('Running `{0}`; use the --no-git option to disable git ' 'commands'.format(' '.join(cmd))) returncode, stdout, stderr = run_cmd(cmd) except OSError as e: err_msg = str(e) else: if returncode != 0: err_msg = stderr if err_msg is not None: log.warn('An unexpected error occurred updating the git submodule ' '{0!r}:\n{1}\n{2}'.format(submodule, err_msg, _err_help_msg)) class _CommandNotFound(OSError): """ An exception raised when a command run with run_cmd is not found on the system. """ def run_cmd(cmd): """ Run a command in a subprocess, given as a list of command-line arguments. Returns a ``(returncode, stdout, stderr)`` tuple. """ try: p = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE) # XXX: May block if either stdout or stderr fill their buffers; # however for the commands this is currently used for that is # unlikely (they should have very brief output) stdout, stderr = p.communicate() except OSError as e: if DEBUG: raise if e.errno == errno.ENOENT: msg = 'Command not found: `{0}`'.format(' '.join(cmd)) raise _CommandNotFound(msg, cmd) else: raise _AHBootstrapSystemExit( 'An unexpected error occurred when running the ' '`{0}` command:\n{1}'.format(' '.join(cmd), str(e))) # Can fail of the default locale is not configured properly. See # https://github.com/astropy/astropy/issues/2749. For the purposes under # consideration 'latin1' is an acceptable fallback. try: stdio_encoding = locale.getdefaultlocale()[1] or 'latin1' except ValueError: # Due to an OSX oddity locale.getdefaultlocale() can also crash # depending on the user's locale/language settings. See: # http://bugs.python.org/issue18378 stdio_encoding = 'latin1' # Unlikely to fail at this point but even then let's be flexible if not isinstance(stdout, _text_type): stdout = stdout.decode(stdio_encoding, 'replace') if not isinstance(stderr, _text_type): stderr = stderr.decode(stdio_encoding, 'replace') return (p.returncode, stdout, stderr) def _next_version(version): """ Given a parsed version from pkg_resources.parse_version, returns a new version string with the next minor version. Examples ======== >>> _next_version(pkg_resources.parse_version('1.2.3')) '1.3.0' """ if hasattr(version, 'base_version'): # New version parsing from setuptools >= 8.0 if version.base_version: parts = version.base_version.split('.') else: parts = [] else: parts = [] for part in version: if part.startswith('*'): break parts.append(part) parts = [int(p) for p in parts] if len(parts) < 3: parts += [0] * (3 - len(parts)) major, minor, micro = parts[:3] return '{0}.{1}.{2}'.format(major, minor + 1, 0) class _DummyFile(object): """A noop writeable object.""" errors = '' # Required for Python 3.x encoding = 'utf-8' def write(self, s): pass def flush(self): pass @contextlib.contextmanager def _silence(): """A context manager that silences sys.stdout and sys.stderr.""" old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = _DummyFile() sys.stderr = _DummyFile() exception_occurred = False try: yield except: exception_occurred = True # Go ahead and clean up so that exception handling can work normally sys.stdout = old_stdout sys.stderr = old_stderr raise if not exception_occurred: sys.stdout = old_stdout sys.stderr = old_stderr _err_help_msg = """ If the problem persists consider installing astropy_helpers manually using pip (`pip install astropy_helpers`) or by manually downloading the source archive, extracting it, and installing by running `python setup.py install` from the root of the extracted source code. """ class _AHBootstrapSystemExit(SystemExit): def __init__(self, *args): if not args: msg = 'An unknown problem occurred bootstrapping astropy_helpers.' else: msg = args[0] msg += '\n' + _err_help_msg super(_AHBootstrapSystemExit, self).__init__(msg, *args[1:]) BOOTSTRAPPER = _Bootstrapper.main() def use_astropy_helpers(**kwargs): """ Ensure that the `astropy_helpers` module is available and is importable. This supports automatic submodule initialization if astropy_helpers is included in a project as a git submodule, or will download it from PyPI if necessary. Parameters ---------- path : str or None, optional A filesystem path relative to the root of the project's source code that should be added to `sys.path` so that `astropy_helpers` can be imported from that path. If the path is a git submodule it will automatically be initialized and/or updated. The path may also be to a ``.tar.gz`` archive of the astropy_helpers source distribution. In this case the archive is automatically unpacked and made temporarily available on `sys.path` as a ``.egg`` archive. If `None` skip straight to downloading. download_if_needed : bool, optional If the provided filesystem path is not found an attempt will be made to download astropy_helpers from PyPI. It will then be made temporarily available on `sys.path` as a ``.egg`` archive (using the ``setup_requires`` feature of setuptools. If the ``--offline`` option is given at the command line the value of this argument is overridden to `False`. index_url : str, optional If provided, use a different URL for the Python package index than the main PyPI server. use_git : bool, optional If `False` no git commands will be used--this effectively disables support for git submodules. If the ``--no-git`` option is given at the command line the value of this argument is overridden to `False`. auto_upgrade : bool, optional By default, when installing a package from a non-development source distribution ah_boostrap will try to automatically check for patch releases to astropy-helpers on PyPI and use the patched version over any bundled versions. Setting this to `False` will disable that functionality. If the ``--offline`` option is given at the command line the value of this argument is overridden to `False`. offline : bool, optional If `False` disable all actions that require an internet connection, including downloading packages from the package index and fetching updates to any git submodule. Defaults to `True`. """ global BOOTSTRAPPER config = BOOTSTRAPPER.config config.update(**kwargs) # Create a new bootstrapper with the updated configuration and run it BOOTSTRAPPER = _Bootstrapper(**config) BOOTSTRAPPER.run()
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/sklearn/examples/neural_networks/plot_mlp_training_curves.py
1
4499
""" ======================================================== Compare Stochastic learning strategies for MLPClassifier ======================================================== This example visualizes some training loss curves for different stochastic learning strategies, including SGD and Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The general trend shown in these examples seems to carry over to larger datasets, however. Note that those results can be highly dependent on the value of ``learning_rate_init``. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import datasets # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end # different learning rate schedules and momentum parameters params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': True, 'learning_rate_init': 0.2}, {'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9, 'nesterovs_momentum': False, 'learning_rate_init': 0.2}, {'solver': 'adam', 'learning_rate_init': 0.01}] labels = ["constant learning-rate", "constant with momentum", "constant with Nesterov's momentum", "inv-scaling learning-rate", "inv-scaling with momentum", "inv-scaling with Nesterov's momentum", "adam"] plot_args = [{'c': 'red', 'linestyle': '-'}, {'c': 'green', 'linestyle': '-'}, {'c': 'blue', 'linestyle': '-'}, {'c': 'red', 'linestyle': '--'}, {'c': 'green', 'linestyle': '--'}, {'c': 'blue', 'linestyle': '--'}, {'c': 'black', 'linestyle': '-'}] def plot_on_dataset(X, y, ax, name): # for each dataset, plot learning for each learning strategy print("\nlearning on dataset %s" % name) ax.set_title(name) X = MinMaxScaler().fit_transform(X) mlps = [] if name == "digits": # digits is larger but converges fairly quickly max_iter = 15 else: max_iter = 400 for label, param in zip(labels, params): print("training: %s" % label) mlp = MLPClassifier(verbose=0, random_state=0, max_iter=max_iter, **param) mlp.fit(X, y) mlps.append(mlp) print("Training set score: %f" % mlp.score(X, y)) print("Training set loss: %f" % mlp.loss_) for mlp, label, args in zip(mlps, labels, plot_args): ax.plot(mlp.loss_curve_, label=label, **args) fig, axes = plt.subplots(2, 2, figsize=(15, 10)) # load / generate some toy datasets iris = datasets.load_iris() digits = datasets.load_digits() data_sets = [(iris.data, iris.target), (digits.data, digits.target), datasets.make_circles(noise=0.2, factor=0.5, random_state=1), datasets.make_moons(noise=0.3, random_state=0)] for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits', 'circles', 'moons']): plot_on_dataset(*data, ax=ax, name=name) fig.legend(ax.get_lines(), labels=labels, ncol=3, loc="upper center") # plt.show() pltshow(plt)
mit
seap-udea/tQuakes
plots/analysis/quake-map.py
2
2786
# ############################################################ # IMPORT TOOLS # ############################################################ from tquakes import * from matplotlib import use use('Agg') import matplotlib.pyplot as plt confile=prepareScript() conf=execfile(confile) quake=loadConf("quake.conf") # ############################################################ # CONNECT TO DATABASE # ############################################################ connection=connectDatabase() db=connection.cursor() # ############################################################ # PREPARE PLOTTING REGION # ############################################################ fig,axs=subPlots(plt,[1]) # ############################################################ # GET QUAKES # ############################################################ dl=dlat/10.0 dt=dlon/10.0 latb=center[0]-dlat/2;latu=center[0]+dlat/2 lonl=center[1]-dlon/2;lonr=center[1]+dlon/2 search=search+"and (cluster1='0' or cluster1 like '-%%') and qlat+0>=%.2f and qlat+0<%.2f and qlon+0>=%.2f and qlon+0<%.2f limit %d"%(latb,latu,lonl,lonr,limit) qids,quakes=getQuakes(search,db) nquakes=len(qids) # ############################################################ # GET QUAKE MAP # ############################################################ # ############################################################ # CREATE MAPS # ############################################################ ms=scatterMap(axs[0],quakes[:,QLAT],quakes[:,QLON],resolution=resolution, limits=[center[0],center[1],dlat,dlon], merdict=dict(labels=[False,False,True,False]), color='k',marker='o',linestyle='none', markeredgecolor='none',markersize=1,zorder=10) slon=float(quake.qlon);slat=float(quake.qlat); x,y=ms(slon,slat) ms.plot(x,y,'wo',markersize=20,zorder=50000) # ############################################################ # DECORATION # ############################################################ axs[0].text(0.95,0.05,"N = %d\nlat,lon = %.2f, %.2f\n$\Delta$(lat,lon) = %.2f, %.2f"%(nquakes, center[0], center[1], dlat,dlon), horizontalalignment="right", verticalalignment="bottom", zorder=50,bbox=dict(fc='w',pad=20), transform=axs[0].transAxes) # ############################################################ # SAVING FIGURE # ############################################################ saveFigure(confile,fig)
gpl-2.0
NicovincX2/Python-3.5
Probabilités/Théorème de la théorie des probabilités/central_limit_theorem.py
1
1822
# -*- coding: utf-8 -*- import os from __future__ import division import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt # provides capability to define function with partial arguments from functools import partial N = 1000000 # number of times n samples are taken. Try varying this number. nobb = 101 # number of bin boundaries on plots n = np.array([1, 2, 3, 5, 10, 100]) # number of samples to average over exp_mean = 3 # mean of exponential distribution a, b = 0.7, 0.5 # parameters of beta distribution dist = [partial(np.random.random), partial( np.random.exponential, exp_mean), partial(np.random.beta, a, b)] title_names = ["Flat", "Exponential (mean=%.1f)" % exp_mean, "Beta (a=%.1f, b=%.1f)" % (a, b)] drange = np.array([[0, 1], [0, 10], [0, 1]]) # ranges of distributions means = np.array([0.5, exp_mean, a / (a + b)]) # means of distributions # variances of distributions var = np.array([1 / 12, exp_mean**2, a * b / ((a + b + 1) * (a + b)**2)]) binrange = np.array([np.linspace(p, q, nobb) for p, q in drange]) ln, ld = len(n), len(dist) plt.figure(figsize=((ld * 4) + 1, (ln * 2) + 1)) for i in xrange(ln): # loop over number of n samples to average over for j in xrange(ld): # loop over the different distributions plt.subplot(ln, ld, i * ld + 1 + j) plt.hist(np.mean(dist[j]((N, n[i])), 1), binrange[j], normed=True) plt.xlim(drange[j]) if j == 0: plt.ylabel('n=%i' % n[i], fontsize=15) if i == 0: plt.title(title_names[j], fontsize=15) else: clt = (1 / (np.sqrt(2 * np.pi * var[j] / n[i]))) * exp(-( ((binrange[j] - means[j])**2) * n[i] / (2 * var[j]))) plt.plot(binrange[j], clt, 'r', linewidth=2) plt.show() os.system("pause")
gpl-3.0
frodo81/EnergyMonitor
TestFiles/LibTest.py
1
6355
''' Created on 01.11.2013 @author: bernd ''' import unittest from emLibrary.InfoFile import InfoFile from emLibrary.DataFile import DataFile from datetime import datetime import pandas as pd from sympy.plotting.plot import plt class Test(unittest.TestCase): # Location of INFO-File filename = "a01307fe.bin" datafile = "a0130800.bin" # datafile = "a0130884.bin" # datafile = "a013081f.bin" # datafile = "a013085c.bin" def testConstructor(self): print "Starting testConstructor ..." testobject = InfoFile(self.filename) print " " + testobject.infoHex print "Finished testConstructor sucessfully!\n" def testValue(self): print "Starting testValue ..." print " Test with 2 params" testobject = InfoFile(self.filename) print " %s" % (testobject.getdec(5, 7)/1000.0) print " %s" % (testobject.getdec(8, 10)/100.0) print " Test with 3 params" print " %s" % (testobject.getdec(5,7,"494e464f3a000a4d00d4420065280001530000a60001020000b200000b00000a00008f0000b70000d20000c70415071c0960096009600960096009600960096004130654044504a90729067307a706b503f60420000002000000020000133305100dffffffff")/1000.0) print "Finished testValue sucessfully!\n" def testAttributes(self): print "Starting testAttributes ..." testobject = InfoFile(self.filename) print " Total power and times" print " Total power: %s kWh" % testobject.TotalPower print " Total recorded time: %s h" % testobject.TotalRecTime print " Total ON time: %s h" % testobject.TotalONTime print " Total power values" print " as List: " print " " + str(testobject.Totalkwh) print " as value: " print " Total kwh (today): %s kwh" % testobject.Totalkwh[0] print " Total kwh (yesterday): %s kwh" % testobject.Totalkwh[1] print " Total kwh (2 days ago): %s kwh" % testobject.Totalkwh[2] print " Total kwh (3 days ago): %s kwh" % testobject.Totalkwh[3] print " Total kwh (4 days ago): %s kwh" % testobject.Totalkwh[4] print " Total kwh (5 days ago): %s kwh" % testobject.Totalkwh[5] print " Total kwh (6 days ago): %s kwh" % testobject.Totalkwh[6] print " Total kwh (7 days ago): %s kwh" % testobject.Totalkwh[7] print " Total kwh (8 days ago): %s kwh" % testobject.Totalkwh[8] print " Total kwh (9 days ago): %s kwh" % testobject.Totalkwh[9] print " Total recorded times values" print " as List: " print " " + str(testobject.TotalRecTimeList) print " as value: " print " Total recorded time (today): %s h" % testobject.TotalRecTimeList[0] print " Total recorded time (yesterday): %s h" % testobject.TotalRecTimeList[1] print " Total recorded time (2 days ago): %s h" % testobject.TotalRecTimeList[2] print " Total recorded time (3 days ago): %s h" % testobject.TotalRecTimeList[3] print " Total recorded time (4 days ago): %s h" % testobject.TotalRecTimeList[4] print " Total recorded time (5 days ago): %s h" % testobject.TotalRecTimeList[5] print " Total recorded time (6 days ago): %s h" % testobject.TotalRecTimeList[6] print " Total recorded time (7 days ago): %s h" % testobject.TotalRecTimeList[7] print " Total recorded time (8 days ago): %s h" % testobject.TotalRecTimeList[8] print " Total recorded time (9 days ago): %s h" % testobject.TotalRecTimeList[9] print " Total ON times values" print " as List: " print " " + str(testobject.TotalONTimeList) print " as value: " print " Total ON time (today): %s h" % testobject.TotalONTimeList[0] print " Total ON time (yesterday): %s h" % testobject.TotalONTimeList[1] print " Total ON time (2 days ago): %s h" % testobject.TotalONTimeList[2] print " Total ON time (3 days ago): %s h" % testobject.TotalONTimeList[3] print " Total ON time (4 days ago): %s h" % testobject.TotalONTimeList[4] print " Total ON time (5 days ago): %s h" % testobject.TotalONTimeList[5] print " Total ON time (6 days ago): %s h" % testobject.TotalONTimeList[6] print " Total ON time (7 days ago): %s h" % testobject.TotalONTimeList[7] print " Total ON time (8 days ago): %s h" % testobject.TotalONTimeList[8] print " Total ON time (9 days ago): %s h" % testobject.TotalONTimeList[9] print " ID Number" print " ID number: %s" % testobject.ID print " Tarif information" print " Tarif 1: %s Euro" % testobject.Tarif1 print " Tarif 2: %s Euro" % testobject.Tarif2 print " Date and time information" print " Initial Date and time: %s " % testobject.InitialDate print "Finished testAttributes sucessfully!\n" def testDataConstructor(self): print "Starting testDataConstructor ..." testobject = DataFile(self.datafile) print testobject.dataHexList print testobject.StartDateList # for key in sorted(testobject.DataDic.iterkeys()): # print "%s : %s" % (key,testobject.DataDic[key]) for key in sorted(testobject.DataDic.iterkeys()): print "%s;%s;%s;%s" % (key,testobject.DataDic[key][0],testobject.DataDic[key][1],testobject.DataDic[key][2]) # print testobject.DataDic # print testobject.DataDic[datetime(2013, 5, 17, 17, 8)] # print testobject.DataDic[datetime(2013, 5, 17, 17, 9)] # print testobject.DataDic[datetime(2013, 5, 17, 17, 10)] print "Finished testConstructor sucessfully!\n" def testPandasDataFile(self): testobject = DataFile(self.datafile) pdData = pd.DataFrame(testobject.DataDic.values(), index=testobject.DataDic.keys()) pdData.plot() plt.show() print "Finished testAttributes sucessfully!\n" if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testConstructor'] unittest.main()
gpl-2.0
amolkahat/pandas
pandas/tests/api/test_types.py
2
2622
# -*- coding: utf-8 -*- import sys import pytest from pandas.api import types from pandas.util import testing as tm from .test_api import Base class TestTypes(Base): allowed = ['is_bool', 'is_bool_dtype', 'is_categorical', 'is_categorical_dtype', 'is_complex', 'is_complex_dtype', 'is_datetime64_any_dtype', 'is_datetime64_dtype', 'is_datetime64_ns_dtype', 'is_datetime64tz_dtype', 'is_datetimetz', 'is_dtype_equal', 'is_extension_type', 'is_float', 'is_float_dtype', 'is_int64_dtype', 'is_integer', 'is_integer_dtype', 'is_number', 'is_numeric_dtype', 'is_object_dtype', 'is_scalar', 'is_sparse', 'is_string_dtype', 'is_signed_integer_dtype', 'is_timedelta64_dtype', 'is_timedelta64_ns_dtype', 'is_unsigned_integer_dtype', 'is_period', 'is_period_dtype', 'is_interval', 'is_interval_dtype', 'is_re', 'is_re_compilable', 'is_dict_like', 'is_iterator', 'is_file_like', 'is_list_like', 'is_hashable', 'is_array_like', 'is_named_tuple', 'pandas_dtype', 'union_categoricals', 'infer_dtype'] deprecated = ['is_any_int_dtype', 'is_floating_dtype', 'is_sequence'] dtypes = ['CategoricalDtype', 'DatetimeTZDtype', 'PeriodDtype', 'IntervalDtype'] def test_types(self): self.check(types, self.allowed + self.dtypes + self.deprecated) def check_deprecation(self, fold, fnew): with tm.assert_produces_warning(DeprecationWarning): try: result = fold('foo') expected = fnew('foo') assert result == expected except TypeError: pytest.raises(TypeError, lambda: fnew('foo')) except AttributeError: pytest.raises(AttributeError, lambda: fnew('foo')) def test_deprecated_from_api_types(self): for t in self.deprecated: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): getattr(types, t)(1) def test_moved_infer_dtype(): # del from sys.modules to ensure we try to freshly load. # if this was imported from another test previously, we would # not see the warning, since the import is otherwise cached. sys.modules.pop("pandas.lib", None) with tm.assert_produces_warning(FutureWarning): import pandas.lib e = pandas.lib.infer_dtype('foo') assert e is not None
bsd-3-clause
Alwnikrotikz/freetype-py
examples/example_1.py
2
2975
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- # # Direct translation of example 1 from the freetype tutorial: # http://www.freetype.org/freetype2/docs/tutorial/step1.html # import math from freetype import * if __name__ == '__main__': import Image from freetype import * WIDTH, HEIGHT = 640, 480 image = Image.new('L', (WIDTH,HEIGHT)) def draw_bitmap( bitmap, x, y): x_max = x + bitmap.width y_max = y + bitmap.rows p = 0 for p,i in enumerate(range(x,x_max)): for q,j in enumerate(range(y,y_max)): if i < 0 or j < 0 or i >= WIDTH or j >= HEIGHT: continue; pixel = image.getpixel((i,j)) pixel |= int(bitmap.buffer[q * bitmap.width + p]); image.putpixel((i,j), pixel) library = FT_Library() matrix = FT_Matrix() face = FT_Face() pen = FT_Vector() filename= './Vera.ttf' text = 'Hello World !' num_chars = len(text) angle = ( 25.0 / 360 ) * 3.14159 * 2 # initialize library, error handling omitted error = FT_Init_FreeType( byref(library) ) # create face object, error handling omitted error = FT_New_Face( library, filename, 0, byref(face) ) # set character size: 50pt at 100dpi, error handling omitted error = FT_Set_Char_Size( face, 50 * 64, 0, 100, 0 ) slot = face.contents.glyph # set up matrix matrix.xx = (int)( math.cos( angle ) * 0x10000L ) matrix.xy = (int)(-math.sin( angle ) * 0x10000L ) matrix.yx = (int)( math.sin( angle ) * 0x10000L ) matrix.yy = (int)( math.cos( angle ) * 0x10000L ) # the pen position in 26.6 cartesian space coordinates; */ # start at (300,200) relative to the upper left corner */ pen.x = 200 * 64; pen.y = ( HEIGHT - 300 ) * 64 for n in range(num_chars): # set transformation FT_Set_Transform( face, byref(matrix), byref(pen) ) # load glyph image into the slot (erase previous one) charcode = ord(text[n]) index = FT_Get_Char_Index( face, charcode ) FT_Load_Glyph( face, index, FT_LOAD_RENDER ) # now, draw to our target surface (convert position) draw_bitmap( slot.contents.bitmap, slot.contents.bitmap_left, HEIGHT - slot.contents.bitmap_top ) # increment pen position pen.x += slot.contents.advance.x pen.y += slot.contents.advance.y FT_Done_Face(face) FT_Done_FreeType(library) import matplotlib.pyplot as plt plt.imshow(image, origin='lower', interpolation='nearest', cmap=plt.cm.gray) plt.show()
bsd-3-clause
alexnowakvila/DCN
code/Sorting/Logger.py
1
3298
import numpy as np import os import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.spatial import ConvexHull import torch import torch.nn as nn from torch.autograd import Variable from torch import optim import torch.nn.functional as F class Logger(object): def __init__(self, path): directory = os.path.join(path, 'plots/') self.path = directory # Create directory if necessary try: os.stat(directory) except: os.mkdir(directory) def write_settings(self, args): # write info path = self.path + 'settings.txt' with open(path, 'w') as file: for arg in vars(args): file.write(str(arg) + ' : ' + str(getattr(args, arg)) + '\n') def plot_losses(self, losses, losses_reg, scales=[], fig=0): # discriminative losses plt.figure(fig) plt.clf() plt.semilogy(range(0, len(losses)), losses, 'b') plt.xlabel('iterations') plt.ylabel('Loss') plt.title('discriminative loss') path = os.path.join(self.path, 'losses.png') plt.savefig(path) # reg loss plt.figure(fig + 1) plt.clf() plt.semilogy(range(0, len(losses_reg)), losses_reg, 'b') plt.xlabel('iterations') plt.ylabel('Loss') plt.title('split regularization loss') path = os.path.join(self.path, 'split_variances.png') plt.savefig(path) def plot_accuracies(self, accuracies, scales=[], mode='train', fig=0): plt.figure(fig) plt.clf() colors = cm.rainbow(np.linspace(0, 1, len(scales))) l = [] names = [str(sc) for sc in scales] for i, acc in enumerate(accuracies): ll, = plt.plot(range(len(acc)), acc, color=colors[i]) l.append(ll) plt.ylabel('accuracy') plt.legend(l, names, loc=2, prop={'size': 6}) if mode == 'train': plt.xlabel('iterations') else: plt.xlabel('iterations x 1000') path = os.path.join(self.path, 'accuracies_{}.png'.format(mode)) plt.savefig(path) def plot_Phis_sparsity(self, Phis, fig=0): Phis = [phis[0].data.cpu().numpy() for phis in Phis] plt.figure(fig) plt.clf() for i, phi in enumerate(Phis): plt.subplot(1, len(Phis), i + 1) # plot first element of the batch plt.spy(phi, precision=0.001, marker='o', markersize=2) plt.xticks([]) plt.yticks([]) plt.title('k={}'.format(i)) path = os.path.join(self.path, 'Phis.png') plt.savefig(path) def save_results(self, losses, accuracies_test): np.savez(self.path + 'results.npz', Loss=losses, Accuracies=accuracies_test) def save_test_results(self, accuracies_test, scales): path = self.path + 'test_results.txt' with open(path, 'w') as file: file.write('--------------TEST RESULTS-------------- \n') for i, accs in enumerate(accuracies_test): result_acc = ('Accuracy for {} scales: {} \n' .format(scales[i], accs)) file.write(result_acc + '\n')
bsd-3-clause
ssaeger/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
55
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coef_ with B print("Estimated B") print(np.round(pls2.coef_, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of components exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coef_, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
crockettcobb/data
pew-religions/Religion-Leah.py
37
3271
#!/usr/bin/env python import numpy as np import pandas as pd religions = ['Buddhist', 'Catholic', 'Evangel Prot', 'Hindu', 'Hist Black Prot', 'Jehovahs Witness', 'Jewish', 'Mainline Prot', 'Mormon', 'Muslim', 'Orthodox Christian', 'Unaffiliated'] csv = open("current.csv", 'w') csv.truncate() def write_row(matrix): arr = np.asarray(matrix[0])[0] row = ','.join([str(a) for a in arr]) + '\n' csv.write(row) # Intitial distribution of religions in US first = np.matrix([.007, .208, .254, .007, .065, .008, .019, .147, .016, .009, .005, .228]) # Normed to sum to 100% current = first / np.sum(first) t0 = current write_row(current) # Transition matrix trans = np.matrix(((0.390296314, 0.027141947, 0.06791021, 0.001857564, 0, 0, 0.011166082, 0.059762879, 0, 0, 0, 0.396569533), (0.005370791, 0.593173325, 0.103151608, 0.000649759, 0.010486747, 0.005563864, 0.002041424, 0.053825329, 0.004760476, 0.001130529, 0.000884429, 0.199488989), (0.00371836, 0.023900817, 0.650773331, 0.000250102, 0.016774503, 0.003098214, 0.001865491, 0.122807467, 0.004203107, 0.000186572, 0.002123778, 0.151866648), (0, 0, 0.0033732, 0.804072618, 0, 0.001511151, 0, 0.01234639, 0, 0.00209748, 0, 0.17659916), (0.002051357, 0.016851659, 0.09549708, 0, 0.699214315, 0.010620473, 0.000338804, 0.024372871, 0.000637016, 0.009406884, 0.000116843, 0.129892558), (0, 0.023278276, 0.109573979, 0, 0.077957568, 0.336280578, 0, 0.074844833, 0.007624035, 0, 0, 0.35110361), (0.006783201, 0.004082693, 0.014329604, 0, 0, 0.000610585, 0.745731278, 0.009587587, 0, 0, 0.002512334, 0.184058682), (0.005770357, 0.038017215, 0.187857555, 0.000467601, 0.008144075, 0.004763516, 0.003601208, 0.451798506, 0.005753587, 0.000965543, 0.00109818, 0.25750798), (0.007263135, 0.01684885, 0.06319935, 0.000248467, 0.0059394, 0, 0.001649896, 0.03464334, 0.642777489, 0.002606278, 0, 0.208904711), (0, 0.005890381, 0.023573308, 0, 0.011510643, 0, 0.005518343, 0.014032084, 0, 0.772783807, 0, 0.15424369), (0.004580353, 0.042045841, 0.089264134 , 0, 0.00527346, 0, 0, 0.061471387, 0.005979218, 0.009113978, 0.526728084, 0.243246723), (0.006438308, 0.044866331, 0.1928814, 0.002035375, 0.04295005, 0.010833621, 0.011541439, 0.09457963, 0.01365141, 0.005884336, 0.002892072, 0.525359211))) # Fertility array fert = np.matrix(((2.1, 2.3, 2.3, 2.1, 2.5, 2.1, 2, 1.9, 3.4, 2.8, 2.1, 1.7))) # Create data frame for printing later religionDataFrame = pd.DataFrame() for x in range(0,100): ### beginning of conversion step # apply transition matrix to current distribution current = current * trans ### beginning of fertility step # divide by two for couple number current = current/2 # adjust by fertility current = np.multiply(fert, current) # normalize to 100% current = current / np.sum(current) write_row(current) # add to data frame religionDataFrame = religionDataFrame.append(pd.DataFrame(current), ignore_index=True) csv.close() religionDataFrame.columns = religions religionDataFrame.to_csv("current_pandas_save.csv")
mit
aabadie/scikit-learn
sklearn/neighbors/tests/test_neighbors.py
49
46769
from itertools import product import numpy as np from scipy.sparse import (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.utils.validation import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn import neighbors, datasets from sklearn.exceptions import DataConversionWarning rng = np.random.RandomState(0) # load and shuffle iris dataset iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # load and shuffle digits digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,) ALGORITHMS = ('ball_tree', 'brute', 'kd_tree', 'auto') P = (1, 2, 3, 4, np.inf) # Filter deprecation warnings. neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph) neighbors.radius_neighbors_graph = ignore_warnings( neighbors.radius_neighbors_graph) def _weight_func(dist): """ Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid. """ # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide='ignore'): retval = 1. / dist return retval ** 2 def test_unsupervised_kneighbors(n_samples=20, n_features=5, n_query_pts=2, n_neighbors=5): # Test unsupervised neighbors methods X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results_nodist = [] results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, p=p) neigh.fit(X) results_nodist.append(neigh.kneighbors(test, return_distance=False)) results.append(neigh.kneighbors(test, return_distance=True)) for i in range(len(results) - 1): assert_array_almost_equal(results_nodist[i], results[i][1]) assert_array_almost_equal(results[i][0], results[i + 1][0]) assert_array_almost_equal(results[i][1], results[i + 1][1]) def test_unsupervised_inputs(): # test the types of valid input into NearestNeighbors X = rng.random_sample((10, 3)) nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1) nbrs_fid.fit(X) dist1, ind1 = nbrs_fid.kneighbors(X) nbrs = neighbors.NearestNeighbors(n_neighbors=1) for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)): nbrs.fit(input) dist2, ind2 = nbrs.kneighbors(X) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2) def test_precomputed(random_state=42): """Tests unsupervised NearestNeighbors with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric='euclidean') DYX = metrics.pairwise_distances(Y, X, metric='euclidean') for method in ['kneighbors']: # TODO: also test radius_neighbors, but requires different assertion # As a feature matrix (n_samples by n_features) nbrs_X = neighbors.NearestNeighbors(n_neighbors=3) nbrs_X.fit(X) dist_X, ind_X = getattr(nbrs_X, method)(Y) # As a dense distance matrix (n_samples by n_samples) nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check auto works too nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check X=None in prediction dist_X, ind_X = getattr(nbrs_X, method)(None) dist_D, ind_D = getattr(nbrs_D, method)(None) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Must raise a ValueError if the matrix is not of correct shape assert_raises(ValueError, getattr(nbrs_D, method), X) target = np.arange(X.shape[0]) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): print(Est) est = Est(metric='euclidean') est.radius = est.n_neighbors = 1 pred_X = est.fit(X, target).predict(Y) est.metric = 'precomputed' pred_D = est.fit(DXX, target).predict(DYX) assert_array_almost_equal(pred_X, pred_D) def test_precomputed_cross_validation(): # Ensure array is split correctly rng = np.random.RandomState(0) X = rng.rand(20, 2) D = pairwise_distances(X, metric='euclidean') y = rng.randint(3, size=20) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): metric_score = cross_val_score(Est(), X, y) precomp_score = cross_val_score(Est(metric='precomputed'), D, y) assert_array_equal(metric_score, precomp_score) def test_unsupervised_radius_neighbors(n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0): # Test unsupervised radius-based query rng = np.random.RandomState(random_state) X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p) neigh.fit(X) ind1 = neigh.radius_neighbors(test, return_distance=False) # sort the results: this is not done automatically for # radius searches dist, ind = neigh.radius_neighbors(test, return_distance=True) for (d, i, i1) in zip(dist, ind, ind1): j = d.argsort() d[:] = d[j] i[:] = i[j] i1[:] = i1[j] results.append((dist, ind)) assert_array_almost_equal(np.concatenate(list(ind)), np.concatenate(list(ind1))) for i in range(len(results) - 1): assert_array_almost_equal(np.concatenate(list(results[i][0])), np.concatenate(list(results[i + 1][0]))), assert_array_almost_equal(np.concatenate(list(results[i][1])), np.concatenate(list(results[i + 1][1]))) def test_kneighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) # Test prediction with y_str knn.fit(X, y_str) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_kneighbors_classifier_float_labels(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors) knn.fit(X, y.astype(np.float)) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) def test_kneighbors_classifier_predict_proba(): # Test KNeighborsClassifier.predict_proba() method X = np.array([[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]) y = np.array([4, 4, 5, 5, 1, 1]) cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist cls.fit(X, y) y_prob = cls.predict_proba(X) real_prob = np.array([[0, 2. / 3, 1. / 3], [1. / 3, 2. / 3, 0], [1. / 3, 0, 2. / 3], [0, 1. / 3, 2. / 3], [2. / 3, 1. / 3, 0], [2. / 3, 1. / 3, 0]]) assert_array_equal(real_prob, y_prob) # Check that it also works with non integer labels cls.fit(X, y.astype(str)) y_prob = cls.predict_proba(X) assert_array_equal(real_prob, y_prob) # Check that it works with weights='distance' cls = neighbors.KNeighborsClassifier( n_neighbors=2, p=1, weights='distance') cls.fit(X, y) y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]])) real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]]) assert_array_almost_equal(real_prob, y_prob) def test_radius_neighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) neigh.fit(X, y_str) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_radius_neighbors_classifier_when_no_neighbors(): # Test radius-based classifier when no neighbors found. # In this case it should rise an informative exception X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier weight_func = _weight_func for outlier_label in [0, -1, None]: for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: rnc = neighbors.RadiusNeighborsClassifier clf = rnc(radius=radius, weights=weights, algorithm=algorithm, outlier_label=outlier_label) clf.fit(X, y) assert_array_equal(np.array([1, 2]), clf.predict(z1)) if outlier_label is None: assert_raises(ValueError, clf.predict, z2) elif False: assert_array_equal(np.array([1, outlier_label]), clf.predict(z2)) def test_radius_neighbors_classifier_outlier_labeling(): # Test radius-based classifier when no neighbors found and outliers # are labeled. X = np.array([[1.0, 1.0], [2.0, 2.0], [0.99, 0.99], [0.98, 0.98], [2.01, 2.01]]) y = np.array([1, 2, 1, 1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.4, 1.4], [1.01, 1.01], [2.01, 2.01]]) # one outlier correct_labels1 = np.array([1, 2]) correct_labels2 = np.array([-1, 1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) assert_array_equal(correct_labels2, clf.predict(z2)) def test_radius_neighbors_classifier_zero_distance(): # Test radius-based classifier, when distance to a sample is zero. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.0, 2.0]]) correct_labels1 = np.array([1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) def test_neighbors_regressors_zero_distance(): # Test radius-based regressor, when distance to a sample is zero. X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]]) y = np.array([1.0, 1.5, 2.0, 0.0]) radius = 0.2 z = np.array([[1.1, 1.1], [2.0, 2.0]]) rnn_correct_labels = np.array([1.25, 2.0]) knn_correct_unif = np.array([1.25, 1.0]) knn_correct_dist = np.array([1.25, 2.0]) for algorithm in ALGORITHMS: # we don't test for weights=_weight_func since user will be expected # to handle zero distances themselves in the function. for weights in ['uniform', 'distance']: rnn = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) rnn.fit(X, y) assert_array_almost_equal(rnn_correct_labels, rnn.predict(z)) for weights, corr_labels in zip(['uniform', 'distance'], [knn_correct_unif, knn_correct_dist]): knn = neighbors.KNeighborsRegressor(n_neighbors=2, weights=weights, algorithm=algorithm) knn.fit(X, y) assert_array_almost_equal(corr_labels, knn.predict(z)) def test_radius_neighbors_boundary_handling(): """Test whether points lying on boundary are handled consistently Also ensures that even with only one query point, an object array is returned rather than a 2d array. """ X = np.array([[1.5], [3.0], [3.01]]) radius = 3.0 for algorithm in ALGORITHMS: nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X) results = nbrs.radius_neighbors([[0.0]], return_distance=False) assert_equal(results.shape, (1,)) assert_equal(results.dtype, object) assert_array_equal(results[0], [0, 1]) def test_RadiusNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 2 n_samples = 40 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] for o in range(n_output): rnn = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train[:, o]) y_pred_so.append(rnn.predict(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) # Multioutput prediction rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn_mo.fit(X_train, y_train) y_pred_mo = rnn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) def test_kneighbors_classifier_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-NN classifier on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 X *= X > .2 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) for sparsev in SPARSE_TYPES + (np.asarray,): X_eps = sparsev(X[:n_test_pts] + epsilon) y_pred = knn.predict(X_eps) assert_array_equal(y_pred, y[:n_test_pts]) def test_KNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 5 n_samples = 50 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] y_pred_proba_so = [] for o in range(n_output): knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train[:, o]) y_pred_so.append(knn.predict(X_test)) y_pred_proba_so.append(knn.predict_proba(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) assert_equal(len(y_pred_proba_so), n_output) # Multioutput prediction knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn_mo.fit(X_train, y_train) y_pred_mo = knn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) # Check proba y_pred_proba_mo = knn_mo.predict_proba(X_test) assert_equal(len(y_pred_proba_mo), n_output) for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so): assert_array_almost_equal(proba_mo, proba_so) def test_kneighbors_regressor(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < 0.3)) def test_KNeighborsRegressor_multioutput_uniform_weight(): # Test k-neighbors in multi-output regression with uniform weight rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train) neigh_idx = knn.kneighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred = knn.predict(X_test) assert_equal(y_pred.shape, y_test.shape) assert_equal(y_pred_idx.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_kneighbors_regressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_radius_neighbors_regressor(n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < radius / 2)) def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight(): # Test radius neighbors in multi-output regression (uniform weight) rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): rnn = neighbors. RadiusNeighborsRegressor(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train) neigh_idx = rnn.radius_neighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred_idx = np.array(y_pred_idx) y_pred = rnn.predict(X_test) assert_equal(y_pred_idx.shape, y_test.shape) assert_equal(y_pred.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_RadiusNeighborsRegressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression with various weight rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): rnn = neighbors.RadiusNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) rnn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = rnn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_kneighbors_regressor_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test radius-based regression on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .25).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) for sparsev in SPARSE_OR_DENSE: X2 = sparsev(X) assert_true(np.mean(knn.predict(X2).round() == y) > 0.95) def test_neighbors_iris(): # Sanity checks on the iris dataset # Puts three points of each label in the plane and performs a # nearest neighbor query on points near the decision boundary. for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_array_equal(clf.predict(iris.data), iris.target) clf.set_params(n_neighbors=9, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_true(np.mean(clf.predict(iris.data) == iris.target) > 0.95) rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm) rgs.fit(iris.data, iris.target) assert_greater(np.mean(rgs.predict(iris.data).round() == iris.target), 0.95) def test_neighbors_digits(): # Sanity check on the digits dataset # the 'brute' algorithm has been observed to fail if the input # dtype is uint8 due to overflow in distance calculations. X = digits.data.astype('uint8') Y = digits.target (n_samples, n_features) = X.shape train_test_boundary = int(n_samples * 0.8) train = np.arange(0, train_test_boundary) test = np.arange(train_test_boundary, n_samples) (X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test] clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm='brute') score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test) score_float = clf.fit(X_train.astype(float), Y_train).score( X_test.astype(float), Y_test) assert_equal(score_uint8, score_float) def test_kneighbors_graph(): # Test kneighbors_graph to build the k-Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) # n_neighbors = 1 A = neighbors.kneighbors_graph(X, 1, mode='connectivity', include_self=True) assert_array_equal(A.toarray(), np.eye(A.shape[0])) A = neighbors.kneighbors_graph(X, 1, mode='distance') assert_array_almost_equal( A.toarray(), [[0.00, 1.01, 0.], [1.01, 0., 0.], [0.00, 1.40716026, 0.]]) # n_neighbors = 2 A = neighbors.kneighbors_graph(X, 2, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 0.], [0., 1., 1.]]) A = neighbors.kneighbors_graph(X, 2, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 2.23606798], [1.01, 0., 1.40716026], [2.23606798, 1.40716026, 0.]]) # n_neighbors = 3 A = neighbors.kneighbors_graph(X, 3, mode='connectivity', include_self=True) assert_array_almost_equal( A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) def test_kneighbors_graph_sparse(seed=36): # Test kneighbors_graph to build the k-Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_radius_neighbors_graph(): # Test radius_neighbors_graph to build the Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 1.], [0., 1., 1.]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 0.], [1.01, 0., 1.40716026], [0., 1.40716026, 0.]]) def test_radius_neighbors_graph_sparse(seed=36): # Test radius_neighbors_graph to build the Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_neighbors_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, neighbors.NearestNeighbors, algorithm='blah') X = rng.random_sample((10, 2)) Xsparse = csr_matrix(X) y = np.ones(10) for cls in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): assert_raises(ValueError, cls, weights='blah') assert_raises(ValueError, cls, p=-1) assert_raises(ValueError, cls, algorithm='blah') nbrs = cls(algorithm='ball_tree', metric='haversine') assert_raises(ValueError, nbrs.predict, X) assert_raises(ValueError, ignore_warnings(nbrs.fit), Xsparse, y) nbrs = cls() assert_raises(ValueError, nbrs.fit, np.ones((0, 2)), np.ones(0)) assert_raises(ValueError, nbrs.fit, X[:, :, None], y) nbrs.fit(X, y) assert_raises(ValueError, nbrs.predict, [[]]) if (isinstance(cls, neighbors.KNeighborsClassifier) or isinstance(cls, neighbors.KNeighborsRegressor)): nbrs = cls(n_neighbors=-1) assert_raises(ValueError, nbrs.fit, X, y) nbrs = neighbors.NearestNeighbors().fit(X) assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah') assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') def test_neighbors_metrics(n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5): # Test computing the neighbors for various metrics # create a symmetric matrix V = rng.rand(n_features, n_features) VI = np.dot(V, V.T) metrics = [('euclidean', {}), ('manhattan', {}), ('minkowski', dict(p=1)), ('minkowski', dict(p=2)), ('minkowski', dict(p=3)), ('minkowski', dict(p=np.inf)), ('chebyshev', {}), ('seuclidean', dict(V=rng.rand(n_features))), ('wminkowski', dict(p=3, w=rng.rand(n_features))), ('mahalanobis', dict(VI=VI))] algorithms = ['brute', 'ball_tree', 'kd_tree'] X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for metric, metric_params in metrics: results = {} p = metric_params.pop('p', 2) for algorithm in algorithms: # KD tree doesn't support all metrics if (algorithm == 'kd_tree' and metric not in neighbors.KDTree.valid_metrics): assert_raises(ValueError, neighbors.NearestNeighbors, algorithm=algorithm, metric=metric, metric_params=metric_params) continue neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric, p=p, metric_params=metric_params) neigh.fit(X) results[algorithm] = neigh.kneighbors(test, return_distance=True) assert_array_almost_equal(results['brute'][0], results['ball_tree'][0]) assert_array_almost_equal(results['brute'][1], results['ball_tree'][1]) if 'kd_tree' in results: assert_array_almost_equal(results['brute'][0], results['kd_tree'][0]) assert_array_almost_equal(results['brute'][1], results['kd_tree'][1]) def test_callable_metric(): def custom_metric(x1, x2): return np.sqrt(np.sum(x1 ** 2 + x2 ** 2)) X = np.random.RandomState(42).rand(20, 2) nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto', metric=custom_metric) nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute', metric=custom_metric) nbrs1.fit(X) nbrs2.fit(X) dist1, ind1 = nbrs1.kneighbors(X) dist2, ind2 = nbrs2.kneighbors(X) assert_array_almost_equal(dist1, dist2) def test_metric_params_interface(): assert_warns(SyntaxWarning, neighbors.KNeighborsClassifier, metric_params={'p': 3}) def test_predict_sparse_ball_kd_tree(): rng = np.random.RandomState(0) X = rng.rand(5, 5) y = rng.randint(0, 2, 5) nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree') nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree') for model in [nbrs1, nbrs2]: model.fit(X, y) assert_raises(ValueError, model.predict, csr_matrix(X)) def test_non_euclidean_kneighbors(): rng = np.random.RandomState(0) X = rng.rand(5, 5) # Find a reasonable radius. dist_array = pairwise_distances(X).flatten() np.sort(dist_array) radius = dist_array[15] # Test kneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.kneighbors_graph( X, 3, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(3, metric=metric).fit(X) assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray()) # Test radiusneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.radius_neighbors_graph( X, radius, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X) assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).A) # Raise error when wrong parameters are supplied, X_nbrs = neighbors.NearestNeighbors(3, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.kneighbors_graph, X_nbrs, 3, metric='euclidean') X_nbrs = neighbors.NearestNeighbors(radius=radius, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.radius_neighbors_graph, X_nbrs, radius, metric='euclidean') def check_object_arrays(nparray, list_check): for ind, ele in enumerate(nparray): assert_array_equal(ele, list_check[ind]) def test_k_and_radius_neighbors_train_is_not_query(): # Test kneighbors et.al when query is not training data for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) test_data = [[2], [1]] # Test neighbors. dist, ind = nn.kneighbors(test_data) assert_array_equal(dist, [[1], [0]]) assert_array_equal(ind, [[1], [1]]) dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5) check_object_arrays(dist, [[1], [1, 0]]) check_object_arrays(ind, [[1], [0, 1]]) # Test the graph variants. assert_array_equal( nn.kneighbors_graph(test_data).A, [[0., 1.], [0., 1.]]) assert_array_equal( nn.kneighbors_graph([[2], [1]], mode='distance').A, np.array([[0., 1.], [0., 0.]])) rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5) assert_array_equal(rng.A, [[0, 1], [1, 1]]) def test_k_and_radius_neighbors_X_None(): # Test kneighbors et.al when query is None for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, [[1], [1]]) assert_array_equal(ind, [[1], [0]]) dist, ind = nn.radius_neighbors(None, radius=1.5) check_object_arrays(dist, [[1], [1]]) check_object_arrays(ind, [[1], [0]]) # Test the graph variants. rng = nn.radius_neighbors_graph(None, radius=1.5) kng = nn.kneighbors_graph(None) for graph in [rng, kng]: assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.data, [1, 1]) assert_array_equal(rng.indices, [1, 0]) X = [[0, 1], [0, 1], [1, 1]] nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm) nn.fit(X) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 1.], [1., 0., 1.], [1., 1., 0]])) def test_k_and_radius_neighbors_duplicates(): # Test behavior of kneighbors when duplicates are present in query for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) nn.fit([[0], [1]]) # Do not do anything special to duplicates. kng = nn.kneighbors_graph([[0], [1]], mode='distance') assert_array_equal( kng.A, np.array([[0., 0.], [0., 0.]])) assert_array_equal(kng.data, [0., 0.]) assert_array_equal(kng.indices, [0, 1]) dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5) check_object_arrays(dist, [[0, 1], [1, 0]]) check_object_arrays(ind, [[0, 1], [0, 1]]) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5) assert_array_equal(rng.A, np.ones((2, 2))) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode='distance') assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.indices, [0, 1, 0, 1]) assert_array_equal(rng.data, [0, 1, 1, 0]) # Mask the first duplicates when n_duplicates > n_neighbors. X = np.ones((3, 1)) nn = neighbors.NearestNeighbors(n_neighbors=1) nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, np.zeros((3, 1))) assert_array_equal(ind, [[1], [0], [1]]) # Test that zeros are explicitly marked in kneighbors_graph. kng = nn.kneighbors_graph(mode='distance') assert_array_equal( kng.A, np.zeros((3, 3))) assert_array_equal(kng.data, np.zeros(3)) assert_array_equal(kng.indices, [1., 0., 1.]) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]])) def test_include_self_neighbors_graph(): # Test include_self parameter in neighbors_graph X = [[2, 3], [4, 5]] kng = neighbors.kneighbors_graph(X, 1, include_self=True).A kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A assert_array_equal(kng, [[1., 0.], [0., 1.]]) assert_array_equal(kng_not_self, [[0., 1.], [1., 0.]]) rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A rng_not_self = neighbors.radius_neighbors_graph( X, 5.0, include_self=False).A assert_array_equal(rng, [[1., 1.], [1., 1.]]) assert_array_equal(rng_not_self, [[0., 1.], [1., 0.]]) def test_same_knn_parallel(): X, y = datasets.make_classification(n_samples=30, n_features=5, n_redundant=0, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y) def check_same_knn_parallel(algorithm): clf = neighbors.KNeighborsClassifier(n_neighbors=3, algorithm=algorithm) clf.fit(X_train, y_train) y = clf.predict(X_test) dist, ind = clf.kneighbors(X_test) graph = clf.kneighbors_graph(X_test, mode='distance').toarray() clf.set_params(n_jobs=3) clf.fit(X_train, y_train) y_parallel = clf.predict(X_test) dist_parallel, ind_parallel = clf.kneighbors(X_test) graph_parallel = \ clf.kneighbors_graph(X_test, mode='distance').toarray() assert_array_equal(y, y_parallel) assert_array_almost_equal(dist, dist_parallel) assert_array_equal(ind, ind_parallel) assert_array_almost_equal(graph, graph_parallel) for algorithm in ALGORITHMS: yield check_same_knn_parallel, algorithm def test_dtype_convert(): classifier = neighbors.KNeighborsClassifier(n_neighbors=1) CLASSES = 15 X = np.eye(CLASSES) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:CLASSES]] result = classifier.fit(X, y).predict(X) assert_array_equal(result, y) # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # Non-regression test for #4523 # 'brute': uses scipy.spatial.distance through pairwise_distances # 'ball_tree': uses sklearn.neighbors.dist_metrics rng = np.random.RandomState(0) X = rng.uniform(size=(6, 5)) NN = neighbors.NearestNeighbors nn1 = NN(metric="jaccard", algorithm='brute').fit(X) nn2 = NN(metric="jaccard", algorithm='ball_tree').fit(X) assert_array_equal(nn1.kneighbors(X)[0], nn2.kneighbors(X)[0])
bsd-3-clause
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/sklearn/ensemble/tests/test_weight_boosting.py
83
17276
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(LogisticRegression(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
gpl-2.0
binghongcha08/pyQMD
GWP/2D/1.1.1/contour.py
1
1753
import numpy as np import matplotlib import matplotlib.cm as cm import matplotlib.mlab as mlab import matplotlib.pyplot as plt #import seaborn as sns #sns.set_context("paper",font_scale=1.5) #sns.set_style({'font.family':'Times New Roman'}) #matplotlib.rcParams['xtick.direction'] = 'out' #matplotlib.rcParams['ytick.direction'] = 'out' matplotlib.rcParams.update({'font.size': 20}) font = {'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 18} matplotlib.rc('font', **font) delta = 0.02 xmin = -4.0 xmax = 4.0 ymin = -3.0 ymax = 3.0 X = np.arange(xmin, xmax, delta) Y = np.arange(ymin, ymax, delta) x, y = np.meshgrid(X, Y) #Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) #Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # difference of Gaussians a = 16 #Z1 = np.exp(-a*(X-1)**2 -a*(Y+1)**2) #Z2 = np.exp(-a*(X+1)**2 -a*(Y-1)**2) #z = (1.0-(x-np.sqrt(2.0)*y)**2/3.0)**2/8.0 + (np.sqrt(2.0)*x-y)**2/6.0-1.0/8.0 a = 1.0 b = 4.0 c = 4.0 z = y**2*(a*y**2-b)+c*(x-y)**2/2.0+b**2/4.0/a cmap = cm.get_cmap('ocean') # Create a simple contour plot with labels using default colors. The # inline argument to clabel will control whether the labels are draw # over the line segments of the contour, removing the lines beneath # the label plt.figure() levels = [0.0, 1, 2, 4.0, 8.0,12.0,16.0,20] CS = plt.contour(x, y, z, levels,cmap=cmap) #sns.kdeplot(z) #plt.contour(X, Y, Z2,cmap=cmap) plt.clabel(CS, inline=1, fontsize=9) #cb = plt.colorbar(CS) #cb.set_label('') #plt.title('Simplest default with labels') dat = np.genfromtxt(fname='xyt.dat') plt.plot(dat[:,0],dat[:,1],'ko',markersize=4) plt.xlabel('x [Bohr]') plt.ylabel('y [Bohr]') plt.xlim(-4,4) plt.ylim(-3.6,3) plt.savefig('contour.pdf') plt.show()
gpl-3.0
khkaminska/scikit-learn
sklearn/datasets/samples_generator.py
103
56423
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
jorik041/scikit-learn
sklearn/neighbors/tests/test_neighbors.py
103
41083
from itertools import product import numpy as np from scipy.sparse import (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn import neighbors, datasets rng = np.random.RandomState(0) # load and shuffle iris dataset iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # load and shuffle digits digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,) ALGORITHMS = ('ball_tree', 'brute', 'kd_tree', 'auto') P = (1, 2, 3, 4, np.inf) # Filter deprecation warnings. neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph) neighbors.radius_neighbors_graph = ignore_warnings( neighbors.radius_neighbors_graph) def _weight_func(dist): """ Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid. """ # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide='ignore'): retval = 1. / dist return retval ** 2 def test_unsupervised_kneighbors(n_samples=20, n_features=5, n_query_pts=2, n_neighbors=5): # Test unsupervised neighbors methods X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results_nodist = [] results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, p=p) neigh.fit(X) results_nodist.append(neigh.kneighbors(test, return_distance=False)) results.append(neigh.kneighbors(test, return_distance=True)) for i in range(len(results) - 1): assert_array_almost_equal(results_nodist[i], results[i][1]) assert_array_almost_equal(results[i][0], results[i + 1][0]) assert_array_almost_equal(results[i][1], results[i + 1][1]) def test_unsupervised_inputs(): # test the types of valid input into NearestNeighbors X = rng.random_sample((10, 3)) nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1) nbrs_fid.fit(X) dist1, ind1 = nbrs_fid.kneighbors(X) nbrs = neighbors.NearestNeighbors(n_neighbors=1) for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)): nbrs.fit(input) dist2, ind2 = nbrs.kneighbors(X) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2) def test_unsupervised_radius_neighbors(n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0): # Test unsupervised radius-based query rng = np.random.RandomState(random_state) X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p) neigh.fit(X) ind1 = neigh.radius_neighbors(test, return_distance=False) # sort the results: this is not done automatically for # radius searches dist, ind = neigh.radius_neighbors(test, return_distance=True) for (d, i, i1) in zip(dist, ind, ind1): j = d.argsort() d[:] = d[j] i[:] = i[j] i1[:] = i1[j] results.append((dist, ind)) assert_array_almost_equal(np.concatenate(list(ind)), np.concatenate(list(ind1))) for i in range(len(results) - 1): assert_array_almost_equal(np.concatenate(list(results[i][0])), np.concatenate(list(results[i + 1][0]))), assert_array_almost_equal(np.concatenate(list(results[i][1])), np.concatenate(list(results[i + 1][1]))) def test_kneighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) # Test prediction with y_str knn.fit(X, y_str) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_kneighbors_classifier_float_labels(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors) knn.fit(X, y.astype(np.float)) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) def test_kneighbors_classifier_predict_proba(): # Test KNeighborsClassifier.predict_proba() method X = np.array([[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]) y = np.array([4, 4, 5, 5, 1, 1]) cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist cls.fit(X, y) y_prob = cls.predict_proba(X) real_prob = np.array([[0, 2. / 3, 1. / 3], [1. / 3, 2. / 3, 0], [1. / 3, 0, 2. / 3], [0, 1. / 3, 2. / 3], [2. / 3, 1. / 3, 0], [2. / 3, 1. / 3, 0]]) assert_array_equal(real_prob, y_prob) # Check that it also works with non integer labels cls.fit(X, y.astype(str)) y_prob = cls.predict_proba(X) assert_array_equal(real_prob, y_prob) # Check that it works with weights='distance' cls = neighbors.KNeighborsClassifier( n_neighbors=2, p=1, weights='distance') cls.fit(X, y) y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]])) real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]]) assert_array_almost_equal(real_prob, y_prob) def test_radius_neighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) neigh.fit(X, y_str) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_radius_neighbors_classifier_when_no_neighbors(): # Test radius-based classifier when no neighbors found. # In this case it should rise an informative exception X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier weight_func = _weight_func for outlier_label in [0, -1, None]: for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: rnc = neighbors.RadiusNeighborsClassifier clf = rnc(radius=radius, weights=weights, algorithm=algorithm, outlier_label=outlier_label) clf.fit(X, y) assert_array_equal(np.array([1, 2]), clf.predict(z1)) if outlier_label is None: assert_raises(ValueError, clf.predict, z2) elif False: assert_array_equal(np.array([1, outlier_label]), clf.predict(z2)) def test_radius_neighbors_classifier_outlier_labeling(): # Test radius-based classifier when no neighbors found and outliers # are labeled. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier correct_labels1 = np.array([1, 2]) correct_labels2 = np.array([1, -1]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) assert_array_equal(correct_labels2, clf.predict(z2)) def test_radius_neighbors_classifier_zero_distance(): # Test radius-based classifier, when distance to a sample is zero. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.0, 2.0]]) correct_labels1 = np.array([1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) def test_neighbors_regressors_zero_distance(): # Test radius-based regressor, when distance to a sample is zero. X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]]) y = np.array([1.0, 1.5, 2.0, 0.0]) radius = 0.2 z = np.array([[1.1, 1.1], [2.0, 2.0]]) rnn_correct_labels = np.array([1.25, 2.0]) knn_correct_unif = np.array([1.25, 1.0]) knn_correct_dist = np.array([1.25, 2.0]) for algorithm in ALGORITHMS: # we don't test for weights=_weight_func since user will be expected # to handle zero distances themselves in the function. for weights in ['uniform', 'distance']: rnn = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) rnn.fit(X, y) assert_array_almost_equal(rnn_correct_labels, rnn.predict(z)) for weights, corr_labels in zip(['uniform', 'distance'], [knn_correct_unif, knn_correct_dist]): knn = neighbors.KNeighborsRegressor(n_neighbors=2, weights=weights, algorithm=algorithm) knn.fit(X, y) assert_array_almost_equal(corr_labels, knn.predict(z)) def test_radius_neighbors_boundary_handling(): """Test whether points lying on boundary are handled consistently Also ensures that even with only one query point, an object array is returned rather than a 2d array. """ X = np.array([[1.5], [3.0], [3.01]]) radius = 3.0 for algorithm in ALGORITHMS: nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X) results = nbrs.radius_neighbors([0.0], return_distance=False) assert_equal(results.shape, (1,)) assert_equal(results.dtype, object) assert_array_equal(results[0], [0, 1]) def test_RadiusNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 2 n_samples = 40 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] for o in range(n_output): rnn = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train[:, o]) y_pred_so.append(rnn.predict(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) # Multioutput prediction rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn_mo.fit(X_train, y_train) y_pred_mo = rnn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) def test_kneighbors_classifier_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-NN classifier on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 X *= X > .2 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) for sparsev in SPARSE_TYPES + (np.asarray,): X_eps = sparsev(X[:n_test_pts] + epsilon) y_pred = knn.predict(X_eps) assert_array_equal(y_pred, y[:n_test_pts]) def test_KNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 5 n_samples = 50 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] y_pred_proba_so = [] for o in range(n_output): knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train[:, o]) y_pred_so.append(knn.predict(X_test)) y_pred_proba_so.append(knn.predict_proba(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) assert_equal(len(y_pred_proba_so), n_output) # Multioutput prediction knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn_mo.fit(X_train, y_train) y_pred_mo = knn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) # Check proba y_pred_proba_mo = knn_mo.predict_proba(X_test) assert_equal(len(y_pred_proba_mo), n_output) for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so): assert_array_almost_equal(proba_mo, proba_so) def test_kneighbors_regressor(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < 0.3)) def test_KNeighborsRegressor_multioutput_uniform_weight(): # Test k-neighbors in multi-output regression with uniform weight rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train) neigh_idx = knn.kneighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred = knn.predict(X_test) assert_equal(y_pred.shape, y_test.shape) assert_equal(y_pred_idx.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_kneighbors_regressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_radius_neighbors_regressor(n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < radius / 2)) def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight(): # Test radius neighbors in multi-output regression (uniform weight) rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): rnn = neighbors. RadiusNeighborsRegressor(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train) neigh_idx = rnn.radius_neighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred_idx = np.array(y_pred_idx) y_pred = rnn.predict(X_test) assert_equal(y_pred_idx.shape, y_test.shape) assert_equal(y_pred.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_RadiusNeighborsRegressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression with various weight rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): rnn = neighbors.RadiusNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) rnn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = rnn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_kneighbors_regressor_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test radius-based regression on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .25).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) for sparsev in SPARSE_OR_DENSE: X2 = sparsev(X) assert_true(np.mean(knn.predict(X2).round() == y) > 0.95) def test_neighbors_iris(): # Sanity checks on the iris dataset # Puts three points of each label in the plane and performs a # nearest neighbor query on points near the decision boundary. for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_array_equal(clf.predict(iris.data), iris.target) clf.set_params(n_neighbors=9, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_true(np.mean(clf.predict(iris.data) == iris.target) > 0.95) rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm) rgs.fit(iris.data, iris.target) assert_true(np.mean(rgs.predict(iris.data).round() == iris.target) > 0.95) def test_neighbors_digits(): # Sanity check on the digits dataset # the 'brute' algorithm has been observed to fail if the input # dtype is uint8 due to overflow in distance calculations. X = digits.data.astype('uint8') Y = digits.target (n_samples, n_features) = X.shape train_test_boundary = int(n_samples * 0.8) train = np.arange(0, train_test_boundary) test = np.arange(train_test_boundary, n_samples) (X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test] clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm='brute') score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test) score_float = clf.fit(X_train.astype(float), Y_train).score( X_test.astype(float), Y_test) assert_equal(score_uint8, score_float) def test_kneighbors_graph(): # Test kneighbors_graph to build the k-Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) # n_neighbors = 1 A = neighbors.kneighbors_graph(X, 1, mode='connectivity') assert_array_equal(A.toarray(), np.eye(A.shape[0])) A = neighbors.kneighbors_graph(X, 1, mode='distance') assert_array_almost_equal( A.toarray(), [[0.00, 1.01, 0.], [1.01, 0., 0.], [0.00, 1.40716026, 0.]]) # n_neighbors = 2 A = neighbors.kneighbors_graph(X, 2, mode='connectivity') assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 0.], [0., 1., 1.]]) A = neighbors.kneighbors_graph(X, 2, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 2.23606798], [1.01, 0., 1.40716026], [2.23606798, 1.40716026, 0.]]) # n_neighbors = 3 A = neighbors.kneighbors_graph(X, 3, mode='connectivity') assert_array_almost_equal( A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) def test_kneighbors_graph_sparse(seed=36): # Test kneighbors_graph to build the k-Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_radius_neighbors_graph(): # Test radius_neighbors_graph to build the Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='connectivity') assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 1.], [0., 1., 1.]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 0.], [1.01, 0., 1.40716026], [0., 1.40716026, 0.]]) def test_radius_neighbors_graph_sparse(seed=36): # Test radius_neighbors_graph to build the Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_neighbors_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, neighbors.NearestNeighbors, algorithm='blah') X = rng.random_sample((10, 2)) Xsparse = csr_matrix(X) y = np.ones(10) for cls in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): assert_raises(ValueError, cls, weights='blah') assert_raises(ValueError, cls, p=-1) assert_raises(ValueError, cls, algorithm='blah') nbrs = cls(algorithm='ball_tree', metric='haversine') assert_raises(ValueError, nbrs.predict, X) assert_raises(ValueError, ignore_warnings(nbrs.fit), Xsparse, y) nbrs = cls() assert_raises(ValueError, nbrs.fit, np.ones((0, 2)), np.ones(0)) assert_raises(ValueError, nbrs.fit, X[:, :, None], y) nbrs.fit(X, y) assert_raises(ValueError, nbrs.predict, []) nbrs = neighbors.NearestNeighbors().fit(X) assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah') assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') def test_neighbors_metrics(n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5): # Test computing the neighbors for various metrics # create a symmetric matrix V = rng.rand(n_features, n_features) VI = np.dot(V, V.T) metrics = [('euclidean', {}), ('manhattan', {}), ('minkowski', dict(p=1)), ('minkowski', dict(p=2)), ('minkowski', dict(p=3)), ('minkowski', dict(p=np.inf)), ('chebyshev', {}), ('seuclidean', dict(V=rng.rand(n_features))), ('wminkowski', dict(p=3, w=rng.rand(n_features))), ('mahalanobis', dict(VI=VI))] algorithms = ['brute', 'ball_tree', 'kd_tree'] X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for metric, metric_params in metrics: results = [] p = metric_params.pop('p', 2) for algorithm in algorithms: # KD tree doesn't support all metrics if (algorithm == 'kd_tree' and metric not in neighbors.KDTree.valid_metrics): assert_raises(ValueError, neighbors.NearestNeighbors, algorithm=algorithm, metric=metric, metric_params=metric_params) continue neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric, p=p, metric_params=metric_params) neigh.fit(X) results.append(neigh.kneighbors(test, return_distance=True)) assert_array_almost_equal(results[0][0], results[1][0]) assert_array_almost_equal(results[0][1], results[1][1]) def test_callable_metric(): metric = lambda x1, x2: np.sqrt(np.sum(x1 ** 2 + x2 ** 2)) X = np.random.RandomState(42).rand(20, 2) nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto', metric=metric) nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute', metric=metric) nbrs1.fit(X) nbrs2.fit(X) dist1, ind1 = nbrs1.kneighbors(X) dist2, ind2 = nbrs2.kneighbors(X) assert_array_almost_equal(dist1, dist2) def test_metric_params_interface(): assert_warns(DeprecationWarning, neighbors.KNeighborsClassifier, metric='wminkowski', w=np.ones(10)) assert_warns(SyntaxWarning, neighbors.KNeighborsClassifier, metric_params={'p': 3}) def test_predict_sparse_ball_kd_tree(): rng = np.random.RandomState(0) X = rng.rand(5, 5) y = rng.randint(0, 2, 5) nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree') nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree') for model in [nbrs1, nbrs2]: model.fit(X, y) assert_raises(ValueError, model.predict, csr_matrix(X)) def test_non_euclidean_kneighbors(): rng = np.random.RandomState(0) X = rng.rand(5, 5) # Find a reasonable radius. dist_array = pairwise_distances(X).flatten() np.sort(dist_array) radius = dist_array[15] # Test kneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.kneighbors_graph( X, 3, metric=metric).toarray() nbrs1 = neighbors.NearestNeighbors(3, metric=metric).fit(X) assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray()) # Test radiusneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.radius_neighbors_graph( X, radius, metric=metric).toarray() nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X) assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).toarray()) # Raise error when wrong parameters are supplied, X_nbrs = neighbors.NearestNeighbors(3, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.kneighbors_graph, X_nbrs, 3, metric='euclidean') X_nbrs = neighbors.NearestNeighbors(radius=radius, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.radius_neighbors_graph, X_nbrs, radius, metric='euclidean') def check_object_arrays(nparray, list_check): for ind, ele in enumerate(nparray): assert_array_equal(ele, list_check[ind]) def test_k_and_radius_neighbors_train_is_not_query(): # Test kneighbors et.al when query is not training data for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) test_data = [[2], [1]] # Test neighbors. dist, ind = nn.kneighbors(test_data) assert_array_equal(dist, [[1], [0]]) assert_array_equal(ind, [[1], [1]]) dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5) check_object_arrays(dist, [[1], [1, 0]]) check_object_arrays(ind, [[1], [0, 1]]) # Test the graph variants. assert_array_equal( nn.kneighbors_graph(test_data).A, [[0., 1.], [0., 1.]]) assert_array_equal( nn.kneighbors_graph([[2], [1]], mode='distance').A, np.array([[0., 1.], [0., 0.]])) rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5) assert_array_equal(rng.A, [[0, 1], [1, 1]]) def test_k_and_radius_neighbors_X_None(): # Test kneighbors et.al when query is None for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, [[1], [1]]) assert_array_equal(ind, [[1], [0]]) dist, ind = nn.radius_neighbors(None, radius=1.5) check_object_arrays(dist, [[1], [1]]) check_object_arrays(ind, [[1], [0]]) # Test the graph variants. rng = nn.radius_neighbors_graph(None, radius=1.5) kng = nn.kneighbors_graph(None) for graph in [rng, kng]: assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.data, [1, 1]) assert_array_equal(rng.indices, [1, 0]) X = [[0, 1], [0, 1], [1, 1]] nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm) nn.fit(X) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 1.], [1., 0., 1.], [1., 1., 0]])) def test_k_and_radius_neighbors_duplicates(): # Test behavior of kneighbors when duplicates are present in query for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) nn.fit([[0], [1]]) # Do not do anything special to duplicates. kng = nn.kneighbors_graph([[0], [1]], mode='distance') assert_array_equal( kng.A, np.array([[0., 0.], [0., 0.]])) assert_array_equal(kng.data, [0., 0.]) assert_array_equal(kng.indices, [0, 1]) dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5) check_object_arrays(dist, [[0, 1], [1, 0]]) check_object_arrays(ind, [[0, 1], [0, 1]]) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5) assert_array_equal(rng.A, np.ones((2, 2))) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode='distance') assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.indices, [0, 1, 0, 1]) assert_array_equal(rng.data, [0, 1, 1, 0]) # Mask the first duplicates when n_duplicates > n_neighbors. X = np.ones((3, 1)) nn = neighbors.NearestNeighbors(n_neighbors=1) nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, np.zeros((3, 1))) assert_array_equal(ind, [[1], [0], [1]]) # Test that zeros are explicitly marked in kneighbors_graph. kng = nn.kneighbors_graph(mode='distance') assert_array_equal( kng.A, np.zeros((3, 3))) assert_array_equal(kng.data, np.zeros(3)) assert_array_equal(kng.indices, [1., 0., 1.]) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]])) def test_include_self_neighbors_graph(): # Test include_self parameter in neighbors_graph X = [[2, 3], [4, 5]] kng = neighbors.kneighbors_graph(X, 1, include_self=True).A kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A assert_array_equal(kng, [[1., 0.], [0., 1.]]) assert_array_equal(kng_not_self, [[0., 1.], [1., 0.]]) rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A rng_not_self = neighbors.radius_neighbors_graph( X, 5.0, include_self=False).A assert_array_equal(rng, [[1., 1.], [1., 1.]]) assert_array_equal(rng_not_self, [[0., 1.], [1., 0.]]) def test_dtype_convert(): classifier = neighbors.KNeighborsClassifier(n_neighbors=1) CLASSES = 15 X = np.eye(CLASSES) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:CLASSES]] result = classifier.fit(X, y).predict(X) assert_array_equal(result, y)
bsd-3-clause
Barmaley-exe/scikit-learn
sklearn/metrics/tests/test_ranking.py
11
37239
from __future__ import division, print_function import numpy as np from itertools import product import warnings from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): """Test Area under Receiver Operating Characteristic (ROC) curve""" y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) roc_auc = auc(fpr, tpr) expected_auc = _auc(y_true, probas_pred) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): """Test whether the returned threshold matches up with tpr""" # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): """Test to ensure that we don't return spurious repeating thresholds. Duplicated thresholds can arise due to machine precision issues. """ dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): """roc_curve not applicable for multi-class problems""" y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): """roc_curve for confidence scores""" y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): """roc_curve for hard decisions""" y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_auc(): """Test Area Under Curve (AUC) computation""" x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): """Test that roc_auc_score function returns an error when trying to compute AUC for non-binary class values. """ rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): """Test Precision-Recall and aread under PR curve""" p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): """Check on several small example that it works """ assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): """Check tie handling in score""" # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): """ Check that Label ranking average precision works for various""" # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, return_indicator=True, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3)
bsd-3-clause
cbertinato/pandas
pandas/tests/arrays/categorical/test_constructors.py
1
23771
from datetime import datetime import numpy as np import pytest from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DatetimeIndex, Index, Interval, IntervalIndex, NaT, Series, Timestamp, date_range, period_range, timedelta_range) import pandas.util.testing as tm class TestCategoricalConstructors: def test_validate_ordered(self): # see gh-14058 exp_msg = "'ordered' must either be 'True' or 'False'" exp_err = TypeError # This should be a boolean. ordered = np.array([0, 1, 2]) with pytest.raises(exp_err, match=exp_msg): Categorical([1, 2, 3], ordered=ordered) with pytest.raises(exp_err, match=exp_msg): Categorical.from_codes([0, 0, 1], categories=['a', 'b', 'c'], ordered=ordered) def test_constructor_empty(self): # GH 17248 c = Categorical([]) expected = Index([]) tm.assert_index_equal(c.categories, expected) c = Categorical([], categories=[1, 2, 3]) expected = pd.Int64Index([1, 2, 3]) tm.assert_index_equal(c.categories, expected) def test_constructor_empty_boolean(self): # see gh-22702 cat = pd.Categorical([], categories=[True, False]) categories = sorted(cat.categories.tolist()) assert categories == [False, True] def test_constructor_tuples(self): values = np.array([(1,), (1, 2), (1,), (1, 2)], dtype=object) result = Categorical(values) expected = Index([(1,), (1, 2)], tupleize_cols=False) tm.assert_index_equal(result.categories, expected) assert result.ordered is False def test_constructor_tuples_datetimes(self): # numpy will auto reshape when all of the tuples are the # same len, so add an extra one with 2 items and slice it off values = np.array([(Timestamp('2010-01-01'),), (Timestamp('2010-01-02'),), (Timestamp('2010-01-01'),), (Timestamp('2010-01-02'),), ('a', 'b')], dtype=object)[:-1] result = Categorical(values) expected = Index([(Timestamp('2010-01-01'),), (Timestamp('2010-01-02'),)], tupleize_cols=False) tm.assert_index_equal(result.categories, expected) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical(arr, ordered=False) assert not factor.ordered # this however will raise as cannot be sorted msg = ("'values' is not ordered, please explicitly specify the " "categories order by passing in a categories argument.") with pytest.raises(TypeError, match=msg): Categorical(arr, ordered=True) def test_constructor_interval(self): result = Categorical([Interval(1, 2), Interval(2, 3), Interval(3, 6)], ordered=True) ii = IntervalIndex([Interval(1, 2), Interval(2, 3), Interval(3, 6)]) exp = Categorical(ii, ordered=True) tm.assert_categorical_equal(result, exp) tm.assert_index_equal(result.categories, ii) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"], dtype=np.object_) c1 = Categorical(exp_arr) tm.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) tm.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) tm.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique msg = "Categorical categories must be unique" with pytest.raises(ValueError, match=msg): Categorical([1, 2], [1, 2, 2]) with pytest.raises(ValueError, match=msg): Categorical(["a", "b"], ["a", "b", "b"]) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) assert not c1.ordered # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) tm.assert_categorical_equal(c1, c2) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) tm.assert_categorical_equal(c1, c2) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) tm.assert_categorical_equal(c1, c2) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) tm.assert_numpy_array_equal(c1.__array__(), c2.__array__()) tm.assert_index_equal(c2.categories, Index(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) tm.assert_categorical_equal(c1, c2) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) tm.assert_categorical_equal(c1, c2) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) tm.assert_categorical_equal(c1, c2) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) tm.assert_categorical_equal(c1, c2) # This should result in integer categories, not float! cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) assert is_integer_dtype(cat.categories) # https://github.com/pandas-dev/pandas/issues/3678 cat = Categorical([np.nan, 1, 2, 3]) assert is_integer_dtype(cat.categories) # this should result in floats cat = Categorical([np.nan, 1, 2., 3]) assert is_float_dtype(cat.categories) cat = Categorical([np.nan, 1., 2., 3.]) assert is_float_dtype(cat.categories) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notna()]) # assert is_integer_dtype(vals) # corner cases cat = Categorical([1]) assert len(cat.categories) == 1 assert cat.categories[0] == 1 assert len(cat.codes) == 1 assert cat.codes[0] == 0 cat = Categorical(["a"]) assert len(cat.categories) == 1 assert cat.categories[0] == "a" assert len(cat.codes) == 1 assert cat.codes[0] == 0 # Scalars should be converted to lists cat = Categorical(1) assert len(cat.categories) == 1 assert cat.categories[0] == 1 assert len(cat.codes) == 1 assert cat.codes[0] == 0 # two arrays # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(None): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(None): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_existing_categories(self): # GH25318: constructing with pd.Series used to bogusly skip recoding # categories c0 = Categorical(["a", "b", "c", "a"]) c1 = Categorical(["a", "b", "c", "a"], categories=["b", "c"]) c2 = Categorical(c0, categories=c1.categories) tm.assert_categorical_equal(c1, c2) c3 = Categorical(Series(c0), categories=c1.categories) tm.assert_categorical_equal(c1, c3) def test_constructor_not_sequence(self): # https://github.com/pandas-dev/pandas/issues/16022 msg = r"^Parameter 'categories' must be list-like, was" with pytest.raises(TypeError, match=msg): Categorical(['a', 'b'], categories='a') def test_constructor_with_null(self): # Cannot have NaN in categories msg = "Categorial categories cannot be null" with pytest.raises(ValueError, match=msg): Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) with pytest.raises(ValueError, match=msg): Categorical([None, "a", "b", "c"], categories=[None, "a", "b", "c"]) with pytest.raises(ValueError, match=msg): Categorical(DatetimeIndex(['nat', '20160101']), categories=[NaT, Timestamp('20160101')]) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) tm.assert_categorical_equal(ci.values, Categorical(ci)) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) tm.assert_categorical_equal(ci.values, Categorical(ci.astype(object), categories=ci.categories)) def test_constructor_with_generator(self): # This was raising an Error in isna(single_val).any() because isna # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) tm.assert_categorical_equal(cat, exp) cat = Categorical(xrange(3)) tm.assert_categorical_equal(cat, exp) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) tm.assert_categorical_equal(cat, exp) cat = Categorical([0, 1, 2], categories=xrange(3)) tm.assert_categorical_equal(cat, exp) @pytest.mark.parametrize("dtl", [ date_range("1995-01-01 00:00:00", periods=5, freq="s"), date_range("1995-01-01 00:00:00", periods=5, freq="s", tz="US/Eastern"), timedelta_range("1 day", periods=5, freq="s") ]) def test_constructor_with_datetimelike(self, dtl): # see gh-12077 # constructor with a datetimelike and NaT s = Series(dtl) c = Categorical(s) expected = type(dtl)(s) expected.freq = None tm.assert_index_equal(c.categories, expected) tm.assert_numpy_array_equal(c.codes, np.arange(5, dtype="int8")) # with NaT s2 = s.copy() s2.iloc[-1] = NaT c = Categorical(s2) expected = type(dtl)(s2.dropna()) expected.freq = None tm.assert_index_equal(c.categories, expected) exp = np.array([0, 1, 2, 3, -1], dtype=np.int8) tm.assert_numpy_array_equal(c.codes, exp) result = repr(c) assert "NaT" in result def test_constructor_from_index_series_datetimetz(self): idx = date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') result = Categorical(idx) tm.assert_index_equal(result.categories, idx) result = Categorical(Series(idx)) tm.assert_index_equal(result.categories, idx) def test_constructor_from_index_series_timedelta(self): idx = timedelta_range('1 days', freq='D', periods=3) result = Categorical(idx) tm.assert_index_equal(result.categories, idx) result = Categorical(Series(idx)) tm.assert_index_equal(result.categories, idx) def test_constructor_from_index_series_period(self): idx = period_range('2015-01-01', freq='D', periods=3) result = Categorical(idx) tm.assert_index_equal(result.categories, idx) result = Categorical(Series(idx)) tm.assert_index_equal(result.categories, idx) def test_constructor_invariant(self): # GH 14190 vals = [ np.array([1., 1.2, 1.8, np.nan]), np.array([1, 2, 3], dtype='int64'), ['a', 'b', 'c', np.nan], [pd.Period('2014-01'), pd.Period('2014-02'), NaT], [Timestamp('2014-01-01'), Timestamp('2014-01-02'), NaT], [Timestamp('2014-01-01', tz='US/Eastern'), Timestamp('2014-01-02', tz='US/Eastern'), NaT], ] for val in vals: c = Categorical(val) c2 = Categorical(c) tm.assert_categorical_equal(c, c2) @pytest.mark.parametrize('ordered', [True, False]) def test_constructor_with_dtype(self, ordered): categories = ['b', 'a', 'c'] dtype = CategoricalDtype(categories, ordered=ordered) result = Categorical(['a', 'b', 'a', 'c'], dtype=dtype) expected = Categorical(['a', 'b', 'a', 'c'], categories=categories, ordered=ordered) tm.assert_categorical_equal(result, expected) assert result.ordered is ordered def test_constructor_dtype_and_others_raises(self): dtype = CategoricalDtype(['a', 'b'], ordered=True) msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): Categorical(['a', 'b'], categories=['a', 'b'], dtype=dtype) with pytest.raises(ValueError, match=msg): Categorical(['a', 'b'], ordered=True, dtype=dtype) with pytest.raises(ValueError, match=msg): Categorical(['a', 'b'], ordered=False, dtype=dtype) @pytest.mark.parametrize('categories', [ None, ['a', 'b'], ['a', 'c'], ]) @pytest.mark.parametrize('ordered', [True, False]) def test_constructor_str_category(self, categories, ordered): result = Categorical(['a', 'b'], categories=categories, ordered=ordered, dtype='category') expected = Categorical(['a', 'b'], categories=categories, ordered=ordered) tm.assert_categorical_equal(result, expected) def test_constructor_str_unknown(self): with pytest.raises(ValueError, match="Unknown dtype"): Categorical([1, 2], dtype="foo") def test_constructor_from_categorical_with_dtype(self): dtype = CategoricalDtype(['a', 'b', 'c'], ordered=True) values = Categorical(['a', 'b', 'd']) result = Categorical(values, dtype=dtype) # We use dtype.categories, not values.categories expected = Categorical(['a', 'b', 'd'], categories=['a', 'b', 'c'], ordered=True) tm.assert_categorical_equal(result, expected) def test_constructor_from_categorical_with_unknown_dtype(self): dtype = CategoricalDtype(None, ordered=True) values = Categorical(['a', 'b', 'd']) result = Categorical(values, dtype=dtype) # We use values.categories, not dtype.categories expected = Categorical(['a', 'b', 'd'], categories=['a', 'b', 'd'], ordered=True) tm.assert_categorical_equal(result, expected) def test_constructor_from_categorical_string(self): values = Categorical(['a', 'b', 'd']) # use categories, ordered result = Categorical(values, categories=['a', 'b', 'c'], ordered=True, dtype='category') expected = Categorical(['a', 'b', 'd'], categories=['a', 'b', 'c'], ordered=True) tm.assert_categorical_equal(result, expected) # No string result = Categorical(values, categories=['a', 'b', 'c'], ordered=True) tm.assert_categorical_equal(result, expected) def test_constructor_with_categorical_categories(self): # GH17884 expected = Categorical(['a', 'b'], categories=['a', 'b', 'c']) result = Categorical( ['a', 'b'], categories=Categorical(['a', 'b', 'c'])) tm.assert_categorical_equal(result, expected) result = Categorical( ['a', 'b'], categories=CategoricalIndex(['a', 'b', 'c'])) tm.assert_categorical_equal(result, expected) def test_from_codes(self): # too few categories dtype = CategoricalDtype(categories=[1, 2]) msg = "codes need to be between " with pytest.raises(ValueError, match=msg): Categorical.from_codes([1, 2], categories=dtype.categories) with pytest.raises(ValueError, match=msg): Categorical.from_codes([1, 2], dtype=dtype) # no int codes msg = "codes need to be array-like integers" with pytest.raises(ValueError, match=msg): Categorical.from_codes(["a"], categories=dtype.categories) with pytest.raises(ValueError, match=msg): Categorical.from_codes(["a"], dtype=dtype) # no unique categories with pytest.raises(ValueError, match="Categorical categories must be unique"): Categorical.from_codes([0, 1, 2], categories=["a", "a", "b"]) # NaN categories included with pytest.raises(ValueError, match="Categorial categories cannot be null"): Categorical.from_codes([0, 1, 2], categories=["a", "b", np.nan]) # too negative dtype = CategoricalDtype(categories=["a", "b", "c"]) msg = r"codes need to be between -1 and len\(categories\)-1" with pytest.raises(ValueError, match=msg): Categorical.from_codes([-2, 1, 2], categories=dtype.categories) with pytest.raises(ValueError, match=msg): Categorical.from_codes([-2, 1, 2], dtype=dtype) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], categories=dtype.categories) tm.assert_categorical_equal(exp, res) res = Categorical.from_codes([0, 1, 2], dtype=dtype) tm.assert_categorical_equal(exp, res) def test_from_codes_with_categorical_categories(self): # GH17884 expected = Categorical(['a', 'b'], categories=['a', 'b', 'c']) result = Categorical.from_codes( [0, 1], categories=Categorical(['a', 'b', 'c'])) tm.assert_categorical_equal(result, expected) result = Categorical.from_codes( [0, 1], categories=CategoricalIndex(['a', 'b', 'c'])) tm.assert_categorical_equal(result, expected) # non-unique Categorical still raises with pytest.raises(ValueError, match="Categorical categories must be unique"): Categorical.from_codes([0, 1], Categorical(['a', 'b', 'a'])) def test_from_codes_with_nan_code(self): # GH21767 codes = [1, 2, np.nan] dtype = CategoricalDtype(categories=['a', 'b', 'c']) with pytest.raises(ValueError, match="codes need to be array-like integers"): Categorical.from_codes(codes, categories=dtype.categories) with pytest.raises(ValueError, match="codes need to be array-like integers"): Categorical.from_codes(codes, dtype=dtype) def test_from_codes_with_float(self): # GH21767 codes = [1.0, 2.0, 0] # integer, but in float dtype dtype = CategoricalDtype(categories=['a', 'b', 'c']) with tm.assert_produces_warning(FutureWarning): cat = Categorical.from_codes(codes, dtype.categories) tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype='i1')) with tm.assert_produces_warning(FutureWarning): cat = Categorical.from_codes(codes, dtype=dtype) tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype='i1')) codes = [1.1, 2.0, 0] # non-integer with pytest.raises(ValueError, match="codes need to be array-like integers"): Categorical.from_codes(codes, dtype.categories) with pytest.raises(ValueError, match="codes need to be array-like integers"): Categorical.from_codes(codes, dtype=dtype) def test_from_codes_with_dtype_raises(self): msg = 'Cannot specify' with pytest.raises(ValueError, match=msg): Categorical.from_codes([0, 1], categories=['a', 'b'], dtype=CategoricalDtype(['a', 'b'])) with pytest.raises(ValueError, match=msg): Categorical.from_codes([0, 1], ordered=True, dtype=CategoricalDtype(['a', 'b'])) def test_from_codes_neither(self): msg = "Both were None" with pytest.raises(ValueError, match=msg): Categorical.from_codes([0, 1]) @pytest.mark.parametrize('dtype', [None, 'category']) def test_from_inferred_categories(self, dtype): cats = ['a', 'b'] codes = np.array([0, 0, 1, 1], dtype='i8') result = Categorical._from_inferred_categories(cats, codes, dtype) expected = Categorical.from_codes(codes, cats) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('dtype', [None, 'category']) def test_from_inferred_categories_sorts(self, dtype): cats = ['b', 'a'] codes = np.array([0, 1, 1, 1], dtype='i8') result = Categorical._from_inferred_categories(cats, codes, dtype) expected = Categorical.from_codes([1, 0, 0, 0], ['a', 'b']) tm.assert_categorical_equal(result, expected) def test_from_inferred_categories_dtype(self): cats = ['a', 'b', 'd'] codes = np.array([0, 1, 0, 2], dtype='i8') dtype = CategoricalDtype(['c', 'b', 'a'], ordered=True) result = Categorical._from_inferred_categories(cats, codes, dtype) expected = Categorical(['a', 'b', 'a', 'd'], categories=['c', 'b', 'a'], ordered=True) tm.assert_categorical_equal(result, expected) def test_from_inferred_categories_coerces(self): cats = ['1', '2', 'bad'] codes = np.array([0, 0, 1, 2], dtype='i8') dtype = CategoricalDtype([1, 2]) result = Categorical._from_inferred_categories(cats, codes, dtype) expected = Categorical([1, 1, 2, np.nan]) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('ordered', [None, True, False]) def test_construction_with_ordered(self, ordered): # GH 9347, 9190 cat = Categorical([0, 1, 2], ordered=ordered) assert cat.ordered == bool(ordered) @pytest.mark.xfail(reason="Imaginary values not supported in Categorical") def test_constructor_imaginary(self): values = [1, 2, 3 + 1j] c1 = Categorical(values) tm.assert_index_equal(c1.categories, Index(values)) tm.assert_numpy_array_equal(np.array(c1), np.array(values))
bsd-3-clause
lukas/scikit-class
examples/by-hand/utils/models.py
2
5070
import ipywidgets from ipywidgets import interact import matplotlib.pyplot as plt import numpy as np import wandb class Model(object): """Base class for the other *Model classes. Implements plotting and interactive components and interface with Parameters object.""" def __init__(self, input_values, model_inputs, parameters, funk): self.model_inputs = np.atleast_2d(model_inputs) self.input_values = input_values self.parameters = parameters self.funk = funk self.plotted = False self.has_data = False self.show_MSE = False def plot(self): if not self.plotted: self.initialize_plot() else: self.artist.set_data(self.input_values, self.outputs) return @property def outputs(self): return np.squeeze(self.funk(self.model_inputs)) def initialize_plot(self): self.fig = plt.figure() self.ax = plt.subplot(111) self.artist, = self.ax.plot( self.input_values, self.outputs, linewidth=4, color=np.divide([255, 204, 51], 256)) self.plotted = True self.ax.set_ylim([0, 1]) self.ax.set_xlim([0, 1]) def make_interactive(self, log=True): """called in a cell after Model.plot() to make the plot interactive.""" self.log = log if self.log: wandb.init(entity="wandb", project="by-hand", config={"model": "linear"}) @interact(**self.parameters.widgets) def make(**kwargs): for parameter in kwargs.keys(): self.parameters.dict[parameter] = kwargs[parameter] self.parameters.update() self.plot() if self.log: wandb.log(kwargs) if self.show_MSE: MSE = self.compute_MSE() print("loss:\t"+str(MSE)) if self.log: wandb.log({"train_loss": MSE}) return return def set_data(self, xs, ys): self.data_inputs = self.transform_inputs(xs) self.correct_outputs = ys if self.has_data: _offsets = np.asarray([xs, ys]).T self.data_scatter.set_offsets(_offsets) else: self.data_scatter = self.ax.scatter(xs, ys, color='k', alpha=0.5, s=72) self.has_data = True def compute_MSE(self): """Used in fitting models lab to display MSE performance for hand-fitting exercises""" outputs = np.squeeze(self.funk(self.data_inputs)) squared_errors = np.square(self.correct_outputs - outputs) MSE = np.mean(squared_errors) return MSE class LinearModel(Model): """A linear model is a model whose transform is the dot product of its parameters with its inputs. Technically really an affine model, as LinearModel.transform_inputs adds a bias term.""" def __init__(self, input_values, parameters, model_inputs=None): if model_inputs is None: model_inputs = self.transform_inputs(input_values) else: model_inputs = model_inputs def funk(inputs): return np.dot(self.parameters.values, inputs) Model.__init__(self, input_values, model_inputs, parameters, funk) def transform_inputs(self, input_values): model_inputs = [[1]*input_values.shape[0], input_values] return model_inputs class Parameters(object): """Tracks and updates parameter values and metadata, like range and identity, for parameters of a model. Interfaces with widget-making tools via the Model class to make interactive widgets for Model plots.""" def __init__(self, defaults, ranges, names=None): assert len(defaults) == len(ranges),\ "must have default and range for each parameter" self.values = np.atleast_2d(defaults) self.num = len(defaults) self._zip = zip(defaults, ranges) if names is None: self.names = ['parameter_' + str(idx) for idx in range(self.num)] else: self.names = names self.dict = dict(zip(self.names, self.values)) self.defaults = defaults self.ranges = ranges self.make_widgets() def make_widgets(self): self._widgets = [self.make_widget(parameter, idx) for idx, parameter in enumerate(self._zip)] self.widgets = {self.names[idx]: _widget for idx, _widget in enumerate(self._widgets)} def make_widget(self, parameter, idx): default = parameter[0] range = parameter[1] name = self.names[idx] return ipywidgets.FloatSlider( value=default, min=range[0], max=range[1], step=0.01, description=name) def update(self): sorted_keys = sorted(self.dict.keys()) self.values = np.atleast_2d([self.dict[key] for key in sorted_keys])
gpl-2.0
qbilius/conv-exp
hop2008/run.py
1
10927
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys, os, glob, subprocess import cPickle as pickle from collections import OrderedDict import numpy as np import scipy.io import pandas import seaborn as sns import sklearn.cluster, sklearn.metrics from psychopy_ext import stats, utils import base class HOP2008(base.Base): def __init__(self, *args, **kwargs): kwargs['skip_hmo'] = False super(HOP2008, self).__init__(*args, **kwargs) self.kwargs = kwargs self.dims = OrderedDict([ ('px', np.array([0,0,0,1,1,1,2,2,2])), ('shape', np.array([0,1,2,1,2,0,2,0,1]))]) self.colors = OrderedDict([('px', base.COLORS[0]), ('shape', base.COLORS[1])]) def get_images(self): self._gen_alpha() def mds(self): path = os.path.join('hop2008', 'img', 'alpha', '*.*') icons = sorted(glob.glob(path)) super(HOP2008, self).mds(icons=icons, seed=3) # to match behav # def plot_lin(self, subplots=False): # super(HOP2008, self).plot_lin(subplots=False) # def corr_mod(self): # self.dissimilarity() # human = pickle.load(open('dis_hop2008_human.pkl', 'rb')) # df = [] # for label, data in human.items(): # d = self.dis[self.dis.keys()[-1]] # inds = np.triu_indices(d.shape[0], k=1) # corr = np.corrcoef(data[inds], d[inds])[0,1] # df.append([label, corr]) # df = pandas.DataFrame(df, columns=['layer', 'correlation']) # sns.factorplot('layer', 'correlation', data=df, # color='steelblue', kind='bar') # self.show('corr_mod') # def plot_linear_clf(self): # xlabel = '%s layers' % self.model_name # self.lin = self.lin.rename(columns={'layer': xlabel}) # if self.model_name == 'GoogleNet': # g = sns.factorplot(xlabel, 'accuracy', 'kind', data=self.lin, # kind='point', markers='None', legend=False, ci=0) # g.axes.flat[0].set_xticklabels([]) # import matplotlib.lines as mlines # colors = sns.color_palette('Set2', 8)[:len(self.dims)] # handles = [] # for mname, color in zip(self.dims.keys(), colors): # patch = mlines.Line2D([], [], color=color, label=mname) # handles.append(patch) # g.axes.flat[0].legend(handles=handles, loc='best') # else: # g = sns.factorplot(xlabel, 'accuracy', 'kind', data=self.lin, # kind='point') # g.axes.flat[0].axhline(1/3., ls='--', c='.2') # self.show(pref='lin') def avg_hop2008(self, dis, plot=True): # dis = self.dissimilarity() df = [] for layer, dis in dis.items(): df.extend(self._avg(dis, layer, 'px')) df.extend(self._avg(dis, layer, 'shape')) other = dis.copy() for sh in np.unique(self.dims['px']): ss = self.dims['px'] == sh other.T[ss].T[ss] = np.nan for sh in np.unique(self.dims['shape']): ss = self.dims['shape'] == sh other.T[ss].T[ss] = np.nan inds = range(len(other)) n = 0 for si, s1 in enumerate(inds): for s2 in inds[si+1:]: if not np.isnan(other[s1,s2]): df.append([layer, 'other', n, s1, s2, other[s1,s2]]) n += 1 df = pandas.DataFrame(df, columns=['layer', 'kind', 'n', 'i', 'j', 'dissimilarity']) if plot: df = stats.factorize(df, order={'kind': ['px', 'shape', 'other']}) # df = df[df.feature != 'other'] # agg = stats.aggregate(df, values='dissimilarity', rows='layer', # cols='feature', yerr='n') agg = df.pivot_table(index='n', columns=['layer', 'kind'], values='dissimilarity') sns.factorplot('layer', 'dissimilarity', 'kind', data=df, kind='bar') self.show(pref='avg') return df def _avg(self, dis, layer, name): df = [] n = 0 inds = np.arange(len(self.dims[name])) for sh in np.unique(self.dims[name]): sel = inds[self.dims[name]==sh] for si, s1 in enumerate(sel): for s2 in sel[si+1:]: df.append([layer, name, n, s1, s2, dis[s1,s2]]) n += 1 return df def dis_group_diff(self, plot=True): group = self.dis_group(plot=False) agg = group.pivot_table(index=['layer','n'], columns='kind', values='similarity').reset_index() agg['diff'] = agg['shape'] - agg['px'] if self.bootstrap: dfs = [] for layer in agg.layer.unique(): sel = agg[agg.layer==layer]['diff'] pct = stats.bootstrap_resample(sel, ci=None, func=np.mean) d = OrderedDict([('kind', ['diff'] * len(pct)), ('layer', [layer]*len(pct)), ('preference', sel.mean()), ('iter', range(len(pct))), ('bootstrap', pct)]) dfs.append(pandas.DataFrame.from_dict(d)) df = pandas.concat(dfs) else: df = agg.groupby('layer').mean().reset_index() df = df.rename(columns={'diff':'preference'}) df['kind'] = 'diff' df['iter'] = 0 df['bootstrap'] = np.nan del df['px'] del df['shape'] return df def plot_dis_group_diff(self, subplots=False): xlabel = '%s layer' % self.model_name self.diff = self.diff.rename(columns={'layer': xlabel}) orange = sns.color_palette('Set2', 8)[1] self.plot_single_model(self.diff, subplots=subplots, colors=orange) sns.plt.axhline(0, ls='--', c='.15') sns.plt.ylim([-.2, .8]) self.show('dis_group_diff') def dis_group(self, plot=True): dis = self.dissimilarity() df = self.avg_hop2008(dis, plot=False) df = df[df.kind != 'other'][['layer', 'kind', 'n', 'dissimilarity']] df['similarity'] = 1 - df.dissimilarity group = df.copy() del group['dissimilarity'] print(group) if self.task == 'run' and plot: self.plot_single(group, 'dis_group') return group def _gen_alpha(self): path = 'hop2008/img/alpha' if not os.path.isdir(path): os.makedirs(path) for f in sorted(glob.glob('hop2008/img/*.tif')): fname = os.path.basename(f) newname = fname.split('.')[0] + '.png' newname = os.path.join(path, newname) # and now some ridiculousness just because ImageMagick can't make # alpha channel for no reason alphaname = fname.split('.')[0] + '_alpha.png' alphaname = os.path.join(path, alphaname) subprocess.call('convert {} -alpha set -channel RGBA ' '-fuzz 10% -fill none ' '-floodfill +0+0 rgba(100,100,100,0) ' '{}'.format(f, newname).split()) subprocess.call('convert {} -alpha set -channel RGBA ' '-fuzz 10% -fill none ' '-floodfill +0+0 rgb(100,100,100) ' '-alpha extract {}'.format(f, alphaname).split()) im = utils.load_image(newname) alpha = utils.load_image(alphaname) scipy.misc.imsave(newname, np.dstack([im,im,im,alpha])) os.remove(alphaname) def remake_hop2008(**kwargs): data = scipy.io.loadmat('hop2008_behav.mat') data = np.array(list(data['behavioralDiff8'][0])) # reorder such that all recta things are last, not first a11 = data[:,:3,:3] a12 = data[:,:3,3:] a21 = data[:,3:,:3] a22 = data[:,3:,3:] b1 = np.concatenate([a22,a21], axis=2) b2 = np.concatenate([a12,a11], axis=2) b = np.concatenate([b1,b2], axis=1) pickle.dump(b, open('dis_hop2008_behav.pkl', 'wb')) def ceil_rel(**kwargs): data = pickle.load(open('dis_hop2008_behav.pkl', 'rb')) inds = np.triu_indices(data.shape[1], k=1) df = np.array([d[inds] for d in data]) zmn = np.mean(scipy.stats.zscore(df, axis=1), axis=0) ceil = np.mean([np.corrcoef(subj,zmn)[0,1] for subj in df]) rng = np.arange(df.shape[0]) floor = [] for s, subj in enumerate(df): mn = np.mean(df[rng!=s], axis=0) floor.append(np.corrcoef(subj,mn)[0,1]) floor = np.mean(floor) return floor, ceil class Compare(base.Compare): def __init__(self, *args): super(Compare, self).__init__(*args) def dis_group(self): return self.compare(pref='dis_group') def dis_group_diff(self): return self.compare(pref='dis_group_diff', ylim=[-.4,.4]) def report(**kwargs): html = kwargs['html'] html.writeh('HOP2008', h='h1') # html.writeh('Clustering', h='h2') # # kwargs['layers'] = 'all' # kwargs['task'] = 'run' # kwargs['func'] = 'dis_group' # myexp = HOP2008(**kwargs) # for depth, model_name in myexp.models: # if depth != 'shallow': # myexp.set_model(model_name) # myexp.dis_group() # # kwargs['layers'] = 'output' # kwargs['task'] = 'compare' # kwargs['func'] = 'dis_group_diff' # myexp = HOP2008(**kwargs) # Compare(myexp).dis_group_diff() html.writeh('MDS', h='h2') kwargs['layers'] = 'output' kwargs['task'] = 'run' kwargs['func'] = 'mds' myexp = HOP2008(**kwargs) for name in ['px', 'shape', 'googlenet']: myexp.set_model(name) myexp.mds() html.writeh('Correlation', h='h2') kwargs['layers'] = 'all' kwargs['task'] = 'run' kwargs['func'] = 'corr' myexp = HOP2008(**kwargs) for depth, model_name in myexp.models: if depth != 'shallow': myexp.set_model(model_name) myexp.corr() kwargs['layers'] = 'output' kwargs['task'] = 'compare' kwargs['func'] = 'corr' kwargs['force'] = False kwargs['forcemodels'] = False myexp = HOP2008(**kwargs) Compare(myexp).corr()
gpl-3.0
qiime2-plugins/normalize
q2_feature_table/_summarize/_visualizer.py
1
11251
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os import pkg_resources import shutil import biom import numpy as np import pandas as pd import seaborn as sns import matplotlib import matplotlib.pyplot as plt from q2_types.feature_data import DNAIterator import q2templates import skbio import qiime2 import json from ._vega_spec import vega_spec _blast_url_template = ("http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?" "ALIGNMENT_VIEW=Pairwise&PROGRAM=blastn&DATABASE" "=nt&CMD=Put&QUERY=%s") TEMPLATES = pkg_resources.resource_filename('q2_feature_table', '_summarize') def tabulate_seqs(output_dir: str, data: DNAIterator) -> None: sequences = [] seq_lengths = [] with open(os.path.join(output_dir, 'sequences.fasta'), 'w') as fh: for sequence in data: skbio.io.write(sequence, format='fasta', into=fh) str_seq = str(sequence) seq_len = len(str_seq) sequences.append({'id': sequence.metadata['id'], 'len': seq_len, 'url': _blast_url_template % str_seq, 'seq': str_seq}) seq_lengths.append(seq_len) seq_len_stats = _compute_descriptive_stats(seq_lengths) _write_tsvs_of_descriptive_stats(seq_len_stats, output_dir) index = os.path.join(TEMPLATES, 'tabulate_seqs_assets', 'index.html') q2templates.render(index, output_dir, context={'data': sequences, 'stats': seq_len_stats}) js = os.path.join( TEMPLATES, 'tabulate_seqs_assets', 'js', 'tsorter.min.js') os.mkdir(os.path.join(output_dir, 'js')) shutil.copy(js, os.path.join(output_dir, 'js', 'tsorter.min.js')) def summarize(output_dir: str, table: biom.Table, sample_metadata: qiime2.Metadata = None) -> None: number_of_features, number_of_samples = table.shape sample_summary, sample_frequencies = _frequency_summary( table, axis='sample') if number_of_samples > 1: # Calculate the bin count, with a minimum of 5 bins IQR = sample_summary['3rd quartile'] - sample_summary['1st quartile'] if IQR == 0.0: bins = 5 else: # Freedman–Diaconis rule bin_width = (2 * IQR) / (number_of_samples ** (1/3)) bins = max((sample_summary['Maximum frequency'] - sample_summary['Minimum frequency']) / bin_width, 5) sample_frequencies_ax = sns.distplot(sample_frequencies, kde=False, rug=True, bins=int(round(bins))) sample_frequencies_ax.get_xaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ','))) sample_frequencies_ax.set_xlabel('Frequency per sample') sample_frequencies_ax.set_ylabel('Number of samples') sample_frequencies_ax.get_figure().savefig( os.path.join(output_dir, 'sample-frequencies.pdf')) sample_frequencies_ax.get_figure().savefig( os.path.join(output_dir, 'sample-frequencies.png')) plt.gcf().clear() feature_summary, feature_frequencies = _frequency_summary( table, axis='observation') if number_of_features > 1: feature_frequencies_ax = sns.distplot(feature_frequencies, kde=False, rug=False) feature_frequencies_ax.set_xlabel('Frequency per feature') feature_frequencies_ax.set_ylabel('Number of features') feature_frequencies_ax.set_xscale('log') feature_frequencies_ax.set_yscale('log') feature_frequencies_ax.get_figure().savefig( os.path.join(output_dir, 'feature-frequencies.pdf')) feature_frequencies_ax.get_figure().savefig( os.path.join(output_dir, 'feature-frequencies.png')) sample_summary_table = q2templates.df_to_html( sample_summary.apply('{:,}'.format).to_frame('Frequency')) feature_summary_table = q2templates.df_to_html( feature_summary.apply('{:,}'.format).to_frame('Frequency')) index = os.path.join(TEMPLATES, 'summarize_assets', 'index.html') context = { 'number_of_samples': number_of_samples, 'number_of_features': number_of_features, 'total_frequencies': int(np.sum(sample_frequencies)), 'sample_summary_table': sample_summary_table, 'feature_summary_table': feature_summary_table, } feature_qualitative_data = _compute_qualitative_summary(table) sample_frequencies.sort_values(inplace=True, ascending=False) feature_frequencies.sort_values(inplace=True, ascending=False) sample_frequencies.to_csv( os.path.join(output_dir, 'sample-frequency-detail.csv')) feature_frequencies.to_csv( os.path.join(output_dir, 'feature-frequency-detail.csv')) feature_frequencies = feature_frequencies.astype(int) \ .apply('{:,}'.format).to_frame('Frequency') feature_frequencies['# of Samples Observed In'] = \ pd.Series(feature_qualitative_data).astype(int).apply('{:,}'.format) feature_frequencies_table = q2templates.df_to_html(feature_frequencies) sample_frequency_template = os.path.join( TEMPLATES, 'summarize_assets', 'sample-frequency-detail.html') feature_frequency_template = os.path.join( TEMPLATES, 'summarize_assets', 'feature-frequency-detail.html') context.update({'max_count': sample_frequencies.max(), 'feature_frequencies_table': feature_frequencies_table, 'feature_qualitative_data': feature_qualitative_data, 'tabs': [{'url': 'index.html', 'title': 'Overview'}, {'url': 'sample-frequency-detail.html', 'title': 'Interactive Sample Detail'}, {'url': 'feature-frequency-detail.html', 'title': 'Feature Detail'}]}) # Create a JSON object containing the Sample Frequencies to build the # table in sample-frequency-detail.html sample_frequencies_json = sample_frequencies.to_json() templates = [index, sample_frequency_template, feature_frequency_template] context.update({'frequencies_list': json.dumps(sorted(sample_frequencies.values.tolist()))}) if sample_metadata is not None: context.update({'vega_spec': json.dumps(vega_spec(sample_metadata, sample_frequencies )) }) context.update({'sample_frequencies_json': sample_frequencies_json}) q2templates.util.copy_assets(os.path.join(TEMPLATES, 'summarize_assets', 'vega'), output_dir) q2templates.render(templates, output_dir, context=context) def _compute_descriptive_stats(lst: list): """Basic descriptive statistics and a (parametric) seven-number summary. Calculates descriptive statistics for a list of numerical values, including count, min, max, mean, and a parametric seven-number-summary. This summary includes values for the lower quartile, median, upper quartile, and percentiles 2, 9, 91, and 98. If the data is normally distributed, these seven percentiles will be equally spaced when plotted. Parameters ---------- lst : list of int or float values Returns ------- dict a dictionary containing the following descriptive statistics: count int: the number of items in `lst` min int or float: the smallest number in `lst` max int or float: the largest number in `lst` mean float: the mean of `lst` range int or float: the range of values in `lst` std float: the standard deviation of values in `lst` seven_num_summ_percentiles list of floats: the parameter percentiles used to calculate this seven-number summary: [2, 9, 25, 50, 75, 91, 98] seven_num_summ_values list of floats: the calculated percentile values of the summary """ # NOTE: With .describe(), NaN values in passed lst are excluded by default if len(lst) == 0: raise ValueError('No values provided.') seq_lengths = pd.Series(lst) seven_num_summ_percentiles = [0.02, 0.09, 0.25, 0.5, 0.75, 0.91, 0.98] descriptive_stats = seq_lengths.describe( percentiles=seven_num_summ_percentiles) return {'count': int(descriptive_stats.loc['count']), 'min': descriptive_stats.loc['min'], 'max': descriptive_stats.loc['max'], 'range': descriptive_stats.loc['max'] - descriptive_stats.loc['min'], 'mean': descriptive_stats.loc['mean'], 'std': descriptive_stats.loc['std'], 'seven_num_summ_percentiles': seven_num_summ_percentiles, 'seven_num_summ_values': descriptive_stats.loc['2%':'98%'].tolist() } def _write_tsvs_of_descriptive_stats(dictionary: dict, output_dir: str): descriptive_stats = ['count', 'min', 'max', 'mean', 'range', 'std'] stat_list = [] for key in descriptive_stats: stat_list.append(dictionary[key]) descriptive_stats = pd.DataFrame( {'Statistic': descriptive_stats, 'Value': stat_list}) descriptive_stats.to_csv( os.path.join(output_dir, 'descriptive_stats.tsv'), sep='\t', index=False, float_format='%g') seven_number_summary = pd.DataFrame( {'Quantile': dictionary['seven_num_summ_percentiles'], 'Value': dictionary['seven_num_summ_values']}) seven_number_summary.to_csv( os.path.join(output_dir, 'seven_number_summary.tsv'), sep='\t', index=False, float_format='%g') def _compute_qualitative_summary(table): table = table.transpose() sample_count = {} for count_vector, feature_id, _ in table.iter(): sample_count[feature_id] = (count_vector != 0).sum() return sample_count def _frequencies(table, axis): return pd.Series(data=table.sum(axis=axis), index=table.ids(axis=axis)) def _frequency_summary(table, axis='sample'): frequencies = _frequencies(table, axis=axis) summary = pd.Series([frequencies.min(), frequencies.quantile(0.25), frequencies.median(), frequencies.quantile(0.75), frequencies.max(), frequencies.mean()], index=['Minimum frequency', '1st quartile', 'Median frequency', '3rd quartile', 'Maximum frequency', 'Mean frequency']) return summary, frequencies
bsd-3-clause
ycaihua/scikit-learn
benchmarks/bench_glm.py
297
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
gclenaghan/scikit-learn
sklearn/svm/classes.py
7
40216
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples from ..utils.multiclass import check_classification_targets class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") check_classification_targets(y) self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
nikitaswinnen/model-for-predicting-rapid-response-team-events
Data Science Notebooks/Pipeline/SRC/my_impala_utils.py
1
1569
import pandas as pd import numpy as np def create_modeling_table(df, table_name, schema, CUR, drop_if_exists=True): """ Input: table_name (string), schema (dict), CUR (Impala connection cursor obj), drop_if_exists (boolean) Output: None Description: Converts dictionary key, value pairs into a SQL formatted schema. """ # First ensure that the schema columns are in the same order as the dataframe columns ordered_pairs = [] for col_name in df.columns: ordered_pairs.append(str(col_name) + ' ' + str(schema[col_name])) sql_formatted_schema = str(tuple(ordered_pairs)).replace("'", "") sql_schema = "CREATE TABLE {0} {1}".format(table_name, sql_formatted_schema) if drop_if_exists: CUR.execute("DROP TABLE IF EXISTS {0}".format(table_name)) CUR.execute(sql_schema) print "{0} successfully created!".format(table_name) print "\n" return None def insert_pandas_to_impala(df, table_name, CUR): """ Input: table_name (pandas dataframe), table_name (string) Output: None Description: Formats an Impala query to bulk insert all of the dataframe rows into a Hive table. """ insert_query = "INSERT INTO {0} VALUES".format(table_name) for ix, row in enumerate(df.as_matrix()): if ix == len(df.as_matrix()) - 1: insert_query += str(tuple(row)) else: insert_query += str(tuple(row)) + ", " CUR.execute(insert_query) print "{0} rows inserted into Hive table {1}".format(ix + 1, table_name) print "\n" return None
apache-2.0
merenlab/web
data/sar11-saavs/files/p-get_percent_identity.py
1
14809
'''loop over a bam file and get the edit distance to the reference genome stored in the NM tag scale by aligned read length. works for bowtie2, maybe others. Adopted from https://gigabaseorgigabyte.wordpress.com/2017/04/14/getting-the-edit-distance-from-a-bam-alignment-a-journey/''' import sys import pysam import argparse import numpy as np import pandas as pd from scipy.interpolate import interp1d ap = argparse.ArgumentParser() ap.add_argument("-b", required=False, help="bam filepaths comma separated (no spaces)") ap.add_argument("-B", required=False, help="alternatively, a file of bam filepaths") ap.add_argument("-p", required=False, action='store_true', help="provide if you want proper percent identity (unaligned bps are included in normalization)") ap.add_argument("-u", required=False, action='store_true', help="if provided, histograms will be unnormalized") ap.add_argument("-o", required=True, help="output filepath") ap.add_argument("-r", required=False, default=None, help="If provided, only reads for specified references are considered. Comma separated.") ap.add_argument("-R", required=False, default=None, help="If provided, only reads for specified references are considered. Filepath of list of references.") ap.add_argument("-g", required=False, help="gene caller ids to report, comma-separated. requires -a flag") ap.add_argument("-G", required=False, help="filepath of gene caller ids to report, single column file. requires -a flag") ap.add_argument("-x", required=False, action='store_true', help="collapse histograms of individual genes into a single histogram per bam file. Valid only with -g and -G") ap.add_argument("-a", required=False, help="output file of anvi-export-gene-calls, required for -g and -G, incompatible with -R") ap.add_argument("-m", required=False, action='store_true', help="If provided, histogram will only be generated for the MEDIAN read length in each bam file. May want to use with -nummismatches") ap.add_argument("-nummismatches", required=False, action='store_true', help="If provided, values are number of mismatches instead of percent identity. Highly recommended to use this with -m flag") ap.add_argument("-mode", required=False, default='histogram', help="by default, this program reports histogram curves (-mode histogram). If ``-mode raw``, histograms are not computed and instead each read considered is a written with its percent identity value") # These are parameters for mode = 'histogram' ap.add_argument("-binsize", required=False, type=float, default=None, help="Size of each bin. Overrides behavior of -numbins") ap.add_argument("-autobin", required=False, action='store_true', help="Size of each bin determined on a per bam basis (creates one bin for each mismatch, but you still must supply a -range value). -m is required for this mode") ap.add_argument("-numbins", required=False, default=None, help="How many bins? default is 30") ap.add_argument("-interpolate", default=None, required=False, help="How many points should form the interpolation and from where to where? Format is 'start,end,number'. (e.g. 67,100,200) If not provided, no interpolation. Required for autobin to normalize x-axis between bam files") ap.add_argument("-range", required=False, default=None, help="What's the range? provide lower and upper bound comma-separated. default is 50,100") ap.add_argument("-melted", required=False, action='store_true', help="Use melted output format. Required if using -autobin since each bam could have different bins") # These are parameters for mode = 'raw' ap.add_argument("-subsample", required=False, type=int, default=None, help="how many reads do you want to subsample? You probably don't need more than 50,000.") args = vars(ap.parse_args()) sc = lambda parameters: any([args.get(parameter, False) for parameter in parameters]) raw_mode_parameters = ['subsample'] histogram_mode_parameters = ['binsize', 'autobin', 'numbins', 'interpolate', 'range', 'melted'] if args.get("mode") == 'histogram': if sc(raw_mode_parameters): raise Exception(" you are using mode = histogram. Don't use these parameters: {}".format(raw_mode_parameters)) # defaults if not args.get("numbins"): args['numbins'] = 30 if not args.get("range"): args['range'] = "50,100" if args.get("mode") == 'raw': if sc(histogram_mode_parameters): raise Exception(" you are using mode = raw. Don't use these parameters: {}".format(histogram_mode_parameters)) # checks if args.get("g") and args.get("G"): raise Exception("use -g or -G") if (args.get("g") or args.get("G")) and not args.get("a"): raise Exception("provide -a") if (args.get("g") or args.get("G")) and (args.get("R") or args.get("r")): raise Exception("no point providing -R/-r if using gene calls") if args.get("x") and not (args.get('g') or args.get('G')): raise Exception("you need to specify -g or -G to use -x") if args.get("b") and args.get('B'): raise Exception("specify either b or B, not both") if not args.get("b") and not args.get('B'): raise Exception("Specify one of b or B") if args.get('autobin') and not args.get("melted"): raise Exception("You can't autobin without using -melted output format.") if args.get('autobin') and not args.get("m"): raise Exception("You can't autobin without using -m.") if args.get('autobin') and not args.get("interpolate"): raise Exception("You can't autobin without using -interpolate.") if args.get("g"): genes = [int(x) for x in args['g'].split(',')] elif args.get("G"): print(args['G']) genes = [int(x.strip()) for x in open(args['G']).readlines()] else: genes = None if args.get("a"): gene_info = pd.read_csv(args['a'], sep='\t') if genes: gene_info = gene_info[gene_info['gene_callers_id'].isin(genes)] else: gene_info = None if args.get('b'): bam_filepaths = args['b'].split(",") # comma separated bam file paths if bam_filepaths[-1] == '': bam_filepaths = bam_filepaths[:-1] elif args.get('B'): bam_filepaths = [x.strip() for x in open(args['B']).readlines()] if not bam_filepaths: print('no bam files provided. nothing to do.') sys.exit() proper_pident = args['p'] output = args['o'] if args.get('r'): reference_names = args['r'].split(",") # comma separated reference names elif args.get('R'): reference_names = [x.strip() for x in open(args['R']).readlines()] else: reference_names = [None] normalize = True if not args['u'] else False ############################################################################################################################ # preamble attr = 'query_alignment_length' if not proper_pident else 'query_length' if args.get('mode') == 'histogram': range_low, range_hi = [int(x) for x in args['range'].split(",")] if not args.get("autobin"): if not args.get("binsize"): bins_template = np.linspace(range_low, range_hi, int(args['numbins']), endpoint=True) else: bins_template = np.arange(range_hi, range_low - float(args['binsize']), -float(args['binsize']))[::-1] if not args.get("nummismatches"): bins_shifted = bins_template[1:] # include 100% as a datapoint else: bins_shifted = bins_template[:-1] # include 0 mismatches as a datapoint if args.get("interpolate"): interp_low, interp_hi, interp_num = [int(x) for x in args['interpolate'].split(",")] interp_low += 0.5 bins_interp = np.linspace(interp_low, interp_hi, interp_num) else: bins_interp = np.array([]) I = lambda bins_shifted, counts, bins_interp: interp1d(bins_shifted, counts, kind='cubic')(bins_interp) if args['interpolate'] else counts J = lambda true_or_false, length: length == median_length if true_or_false else True K = lambda true_or_false, read: read.get_tag("NM") if true_or_false else 100*(1 - float(read.get_tag("NM")) / read.__getattribute__(attr)) if args.get("mode") == 'histogram': percent_identity_hist = {'value':[], 'percent_identity':[], 'id':[]} if args.get("melted") else {} if args.get("mode") == 'raw': percent_identity_hist = {'value':[], 'id':[]} for bam in bam_filepaths: print('working on {}...'.format(bam)) bam_name = bam.split("/")[-1].replace(".bam", "") samfile = pysam.AlignmentFile(bam, "rb") if args.get("m"): i = 0 read_lengths = [] for read in samfile.fetch(): read_lengths.append(read.query_length) i += 1 array = np.array(read_lengths) median_length = int(np.median(array)) second_median = int(np.median(array[array != float(median_length)])) third_median = int(np.median(array[(array != float(median_length)) & (array != float(second_median))])) print('median length was {}, second was {}, third was {}'.format(median_length, second_median, third_median)) # only if autobinning if args.get("autobin"): if not args.get("nummismatches"): binsize = 100*(1. / median_length) bins_template = np.arange(range_hi, range_low - binsize, -binsize)[::-1] bins_template += binsize * 1e-4 bins_template[-1] = 100 bins_shifted = bins_template[1:] # include 100% as a datapoint else: bins_template = np.arange(range_hi, range_low - 1, -1)[::-1] bins_shifted = bins_template[:-1] # include 0 mismatches as a datapoint if gene_info is not None: if not args.get('x'): # each gene gets its own histogram for index, row in gene_info.iterrows(): percent_identities = np.array([K(args.get("nummismatches"), read) for read in samfile.fetch(row['contig'], int(row['start']), int(row['stop'])) if J(args.get("m"), read.query_length)]) id_name = bam_name + "_" + str(row['gene_callers_id']) if args.get("mode") == 'histogram': counts, _ = np.histogram(percent_identities, bins=bins_template, density=normalize) if args.get("melted"): value = list(I(bins_shifted, counts, bins_interp)) percent_identity = list(bins_shifted if not args.get("interpolate") else bins_interp) percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) percent_identity_hist['percent_identity'].extend(percent_identity) else: percent_identity_hist[id_name] = I(bins_shifted, counts, bins_interp) elif args.get("mode") == 'raw': if args.get("subsample") and args['subsample'] < len(percent_identities): percent_identities = np.random.choice(percent_identities, args.get('subsample'), replace=False) value = percent_identities.tolist() percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) else: # histograms for each gene are collapsed into a single histogram percent_identities = [] for index, row in gene_info.iterrows(): percent_identities.extend([K(args.get("nummismatches"), read) for read in samfile.fetch(row['contig'], int(row['start']), int(row['stop'])) if J(args.get("m"), read.query_length)]) percent_identities = np.array(percent_identities) id_name = bam_name if args.get("mode") == 'histogram': counts, _ = np.histogram(percent_identities, bins=bins_template, density=normalize) if args.get("melted"): value = list(I(bins_shifted, counts, bins_interp)) percent_identity = list(bins_shifted if not args.get("interpolate") else bins_interp) percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) percent_identity_hist['percent_identity'].extend(percent_identity) else: percent_identity_hist[id_name] = I(bins_shifted, counts, bins_interp) elif args.get("mode") == 'raw': if args.get("subsample") and args['subsample'] < len(percent_identities): percent_identities = np.random.choice(percent_identities, args.get('subsample'), replace=False) value = percent_identities.tolist() percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) else: percent_identities = [] for reference_name in reference_names: # 1 minus the ratio of mismatches to the length of the read/alignment percent_identities.extend([K(args.get("nummismatches"), read) for read in samfile.fetch(reference=reference_name) if J(args.get("m"), read.query_length)]) percent_identities = np.array(percent_identities) print("{} reads considered".format(len(percent_identities))) # create a histogram id_name = bam_name if args.get("mode") == 'histogram': counts, _ = np.histogram(percent_identities, bins=bins_template, density=normalize) if args.get("melted"): value = list(I(bins_shifted, counts, bins_interp)) percent_identity = list(bins_shifted if not args.get("interpolate") else bins_interp) percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) percent_identity_hist['percent_identity'].extend(percent_identity) else: percent_identity_hist[id_name] = I(bins_shifted, counts, bins_interp) if args.get("mode") == 'raw': if args.get("subsample") and args['subsample'] < len(percent_identities): percent_identities = np.random.choice(percent_identities, args.get('subsample'), replace=False) value = percent_identities.tolist() percent_identity_hist['id'].extend([id_name] * len(value)) percent_identity_hist['value'].extend(value) samfile.close() print("") # save the file percent_identity_hist = pd.DataFrame(percent_identity_hist).reset_index(drop=True) if not args.get("melted") and args.get("mode") == 'histogram': percent_identity_hist['percent_identity' if not args['nummismatches'] else 'number_of_mismatches'] = bins_interp if args['interpolate'] else bins_shifted percent_identity_hist.to_csv(output, sep="\t", index=False)
mit
jms-dipadua/financial-forecasting
forecast_main.py
1
20208
import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import yaml #import h5py from sklearn import svm from sklearn.metrics import f1_score, accuracy_score, mean_absolute_error, mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split, StratifiedKFold, KFold from sklearn.learning_curve import learning_curve from sklearn.grid_search import GridSearchCV from sklearn.externals import joblib from keras.models import Sequential, model_from_yaml from keras.layers.core import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Convolution1D, MaxPooling1D, Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.callbacks import EarlyStopping #from keras.utils.visualize_util import plot #import pydot #import graphviz class Company: def __init__(self): self.get_params() self.read_file() self.initial_data_drop() self.gen_train_test() def get_params(self): print "welcome to the jungle." self.base_file = raw_input("RAW COMPANY file: ") # base file self.root_dir = 'data/working/v5/' # version directory self.fin_dir = 'data/outputs/v5/' # version directory self.experiment_version = raw_input("Experiment Version: ") self.fin_file_name = self.fin_dir + self.experiment_version +'.csv' # --> USE THE ROOT EXP FOR FILES? OR JUST ONE OUPUT? self.pl_file_name = self.fin_dir + self.experiment_version +'_pl.csv' def read_file(self): print "reading file" self.raw_data = pd.read_csv(self.root_dir+self.base_file) def initial_data_drop(self): self.raw_data2 = self.raw_data print "initial_data_drop (IDs & Dates)" columns = list(self.raw_data.columns.values) if 'id' in columns: self.raw_data = self.raw_data.drop(['id'], axis=1) if 'Volume' in columns: self.raw_data = self.raw_data.drop(['Volume'], axis=1) if 'Date' in columns: self.raw_dates = self.raw_data['Date'] #print self.raw_dates self.raw_data = self.raw_data.drop(['Date'], axis=1) # the following section is for experiment customization: ie selection of which inputs to keep or drop columns = list(self.raw_data.columns.values) #drop_cols = [] #drop_col_nums =[] # use this so i can make it more reliable for future experiments (i.e. when dropping the same columns across different companies) counter = 0 # get the columns to keep (manual version) """ drop_cols = [] drop_col_nums = [] for column in columns: print "Keep (1) or DROP (0): %r" % column if int(raw_input()) == 0: drop_cols.append(column) drop_col_nums.append(counter) counter += 1 print drop_cols # so i can keep track of this for experiment documentation purposes print drop_col_nums """ # v5-1 #drop_cols = ['DGS10', 'DCOILBRENTEU', 'xCIVPART', 'UNRATE', 'CPIAUCSL', 'GFDEGDQ188S', 'HOUST', 'IC4WSA', 'USD3MTD156N', 'PCE', 'PSAVERT', 'xA191RL1Q225SBEA', 'spClose', 'DEXUSEU', 'EPS', '12mo-EPS', 'net_income', 'total_assets', 'total_revenue', 'free_cash_flow', 'total_liabilities', 'profit_margin'] #drop_col_nums = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] # v5-2 #drop_cols = ['Open', 'High', 'Low', 'SMA-5', 'SMA-15', 'SMA-50', 'SMA-200', 'WMA-10', 'WMA-30', 'WMA-100', 'WMA-200', 'cci-20', 'rsi-14'] #drop_col_nums = [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] #self.raw_data.drop(self.raw_data.columns[drop_col_nums], axis = 1, inplace=True) # v5-3 ("all params") print list(self.raw_data.columns.values) # again for documentation purposes def gen_train_test(self): # split timeseries print "generating x_train, y_train, x_test" data_shape = self.raw_data.shape[0] print "data_shape of raw_data: %r" % data_shape train_len = int(round(data_shape * .9)) # get 90% of data for train print "train_len of raw_data: %r" % train_len # get rid of any NaN that may have appeared in there self.raw_data.replace(to_replace = np.nan, value = 0, inplace=True) X_train = self.raw_data.ix[0:train_len-1, :] # one less than train_len; train_len will be start of test X_train2 = self.raw_data2.ix[0:train_len-1, :] # last row of data set won't have a prior-day but that's okay, we can just drop it (since there's no way to validate it) X_test = self.raw_data.ix[train_len:data_shape-2, :] # ones less than data_shape because of 0-index + row dropping X_test2 = self.raw_data2.ix[train_len:data_shape-2, :] # generate / extract y_vals : y_train & y_valid # first row has no prior-day information but day 2 is its y-val y_vals_raw = self.raw_data.loc[:,['Close']] # RENAME AXIS y_vals_raw.rename(columns={'Close': 'nxtDayClose'}, inplace=True) # zero indexing takes care of needing to manipulate by one here # drop first day because need "day +1" close price as the "train target" based on "day's feature inputs" y_train = y_vals_raw.ix[1:train_len] y_test = y_vals_raw.ix[train_len+1:data_shape-1, :] # but as with X_test, we will later drop the last row # && drop last row from y_valid #y_valid = y_valid.iloc[0:y_valid.shape[0]-1] # as above. awkward. self.X_train = X_train self.X_train2 = X_train2 # also do checks on head / tail # to test head, swap head for tail # commented out when not testing #print self.X_train.tail(5) self.y_train = y_train.as_matrix() # make sure they're matrix/vectors #print self.y_train[-5:-1] self.X_test = X_test self.X_test2 = X_test2 #print self.X_test.tail(5) self.y_test = y_test.as_matrix() #print self.y_valid[-1] self.y_dates = self.raw_dates.ix[train_len+1:data_shape-1].as_matrix() # last step is to generate a cross-validation set # since we're in time series, we can't randomize (hence this process and not sci-kit...) # we'll dedicate 90% of data set to train, 10% to cross-validation data_shape = self.X_train.shape[0] train_len = int(round(data_shape * .9)) X_train = self.X_train[0: train_len - 1] X_cv = self.X_train[train_len: data_shape] self.X_train = X_train self.X_cv = X_cv y_train = self.y_train[0: train_len-1] y_cv = self.y_train[train_len: data_shape] self.y_train = y_train self.y_cv = y_cv print "shapes of final train/tests: \n x_train: %r \n y_train: %r \n x_cv: %r \n y_cv: %r \n x_test: %r \n y_test: %r" % (X_train.shape, y_train.shape, X_cv.shape, y_cv.shape, X_test.shape, y_test.shape) return class Forecast: def __init__(self): self.company = Company() self.basic_vis() self.pre_process_data() #v1.x-ish: scaling, PCA, etc self.svm() # uses self.company.X_train/test, etc self.ann() # uses self.company.X_train/test, etc # self.ensemble() # v1.x self.svm_decisions, self.svm_gain_loss = self.decisions(self.svm_preds) # this has to ouptut // generate a notion of "shares held" self.ann_decisions, self.ann_gain_loss = self.decisions(self.ann_preds) # this has to ouptut // generate a notion of "shares held" self.buy_hold_prof_loss() self.profit_loss_rollup() self.write_final_file() def pre_process_data(self): # some STRUCTURE and CLEAN UP # convert to numpy and numbers self.company.y_train = np.array(self.company.y_train[0:,0]) # need to recast for some reason... self.company.y_train = self.company.y_train.astype(float) # so do y_valid too self.company.y_test = np.array(self.company.y_test[0:,0]) # company.y_valid is an object..not sure...but this converts it self.company.y_test = self.company.y_test.astype(float) #print self.company.y_valid.dtype # SCALE input values ...not sure if i should do the target... scaler = StandardScaler() self.daily_highs = self.company.X_test2['High'] self.daily_lows = self.company.X_test2['Low'] self.company.X_train = scaler.fit_transform(self.company.X_train) self.company.X_test = scaler.fit_transform(self.company.X_test) self.company.X_cv = scaler.fit_transform(self.company.X_cv) # make true train and CV split #self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.company.X_train, self.company.y_train, test_size=0.33, random_state=42) return def basic_vis(self): # TODO :: shift so that its not a correlation with the OPEN but with the CLOSE (since that's the dependent var) correlations = self.company.X_train.corr() # uses pandas built in correlation # Generate a mask for the upper triangle (cuz it's just distracting) mask = np.zeros_like(correlations, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) plt.title("Feature Correlations") # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(correlations, mask=mask, cmap=cmap, vmax=.3, square=False, xticklabels=3, yticklabels=True, linewidths=.6, cbar_kws={"shrink": .5}, ax=ax) plt.yticks(rotation=0) #plt.show() f.savefig(self.company.fin_dir + '/correlation-images/' + self.company.experiment_version+'.png') def svm(self): # for regression problems, scikitlearn uses SVR: support vector regression C_range = np.logspace(0, 4, 6) # normally 12; doing 10 for now due to run-time length #print C_range gamma_range = np.logspace(-5, 1, 6) # normally 12; doing 10 for now due to run-time length #print gamma_range param_grid = dict(gamma=gamma_range, C=C_range) # based on LONG test with the gridsearch (see notes) for v4b-5 # below is rounded numbers #param_grid = dict(C=[432876], gamma=[1.8738]) ## probably want to introduce max iterations... grid = GridSearchCV(svm.SVR(kernel='rbf', verbose=True), param_grid=param_grid, cv=2, scoring = 'mean_squared_error') grid.fit(self.company.X_train, self.company.y_train) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) self.svm_preds = grid.predict(self.company.X_test) # this is for repeating or one-off specific experiments #self.svm_C = float(raw_input("input C val: ")) #self.svm_gamma = float(raw_input("input gamma val: ")) #regression = svm.SVR(kernel='rbf', C=self.svm_C, gamma=self.svm_gamma, verbose=True) #regression.fit(self.X_train, self.y_train) #self.svm_preds = regression.predict(self.company.X_test) #print self.svm_preds self.svm_mse_cv = grid.score(self.company.X_cv, self.company.y_cv) print "(cv) Mean Squared Error: %f" % self.svm_mse_cv self.svm_mse_test = grid.score(self.company.X_cv, self.company.y_cv) print "(test) Mean Squared Error: %f" % self.svm_mse_test # save the parameters to a file joblib.dump(grid.best_estimator_, self.company.fin_dir + '/svm-models/' + self.company.experiment_version +'_svm_model.pkl') # visualize results plt.figure() plt.title("SVM Learning Curve: " + self.company.experiment_version) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( grid.best_estimator_, self.company.X_train, self.company.y_train, cv=5, train_sizes=[50, 100, 200, 300, 400, 500, 600]) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") plt.savefig(self.company.fin_dir + '/svm-learning-curves/' + self.company.experiment_version+'.png') def ann(self): #print self.company.X_train.shape[1] model = Sequential() model.add(Dense(input_dim=self.company.X_train.shape[1], output_dim=50, init="glorot_uniform")) #model.add(Activation('tanh')) model.add(Dropout(0.1)) model.add(Dense(input_dim=50, output_dim=10, init="uniform")) model.add(Activation('tanh')) #model.add(Dropout(0.5)) model.add(Dense(input_dim=10, output_dim=1, init="glorot_uniform")) model.add(Activation("linear")) sgd = SGD(lr=0.3, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer='rmsprop') early_stopping = EarlyStopping(monitor='val_loss', patience=110) model.fit(self.company.X_train, self.company.y_train, nb_epoch=1000, validation_split=.1, batch_size=16, verbose = 1, show_accuracy = True, shuffle = False, callbacks=[early_stopping]) self.ann_mse = model.evaluate(self.company.X_cv, self.company.y_cv, show_accuracy=True, batch_size=16) print self.ann_mse self.ann_preds = model.predict(self.company.X_test) yaml_string = model.to_yaml() with open(self.company.fin_dir + '/ann-models/' + self.company.experiment_version +'_ann_model.yml', 'w+') as outfile: outfile.write( yaml.dump(yaml_string, default_flow_style=True) ) #model.save_weights(self.company.fin_dir + '/ann-models/' + self.company.experiment_version +'_ann_weights') """ nb_features = self.company.X_train.shape[1] X_train = self.company.X_train.reshape(self.company.X_train.shape + (1, )) X_test = self.company.X_test.reshape(self.company.X_test.shape + (1, )) print X_train.shape model = Sequential() model.add(Convolution1D(nb_filter = 24, filter_length = 1, input_shape =(nb_features,1) )) model.add(Activation("tanh")) model.add(Dropout(0.2)) # some dropout to help w/ overfitting model.add(Convolution1D(nb_filter = 48, filter_length= 1, subsample_length= 1)) model.add(Activation("tanh")) model.add(Convolution1D(nb_filter = 96, filter_length= 1, subsample_length=1)) model.add(Activation("tanh")) model.add(Dropout(0.3)) model.add(Convolution1D(nb_filter = 192, filter_length= 1, subsample_length=1)) model.add(Activation("tanh")) model.add(Dropout(0.6)) model.add(MaxPooling1D(pool_length=2)) # flatten to add dense layers model.add(Flatten()) #model.add(Dense(input_dim=nb_features, output_dim=50)) model.add(Dense(nb_features * 2)) model.add(Activation("tanh")) #model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation("linear")) sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer='sgd') early_stopping = EarlyStopping(monitor='val_loss', patience=5) model.fit(X_train, self.company.y_train, nb_epoch=50, validation_split=0.25, verbose = 1, callbacks=[early_stopping]) self.ann_preds = model.predict(X_test) """ #print self.ann_preds #print "Trained ANN Score: %r" % score # visualize #plot(model, to_file= '/ann-training/' + self.company.fin_file_name + '.png') return def ensemble(self): return def decisions(self, predictions): # intializations: self.shares_held = 0 & buy_price = 0 self.shares_held = 0 self.buy_price = 0 decisions = [] gain_loss = [] num_preds = predictions.shape[0] #print "total number of predictions: %f" % num_preds #print "shape of y_test: %f " % self.company.y_test.shape # loop through each prediction and make a purchase decision # uses for-i loop because i want to use the int for indexing within for i in range(0,num_preds): # SETUP # the actual close value actual_close = round(self.company.y_test[i],3) day_high = self.daily_highs.iloc[i] day_low = self.daily_lows.iloc[i] # the previous close, pulled from y_train (for first row of x) and y_test if i == 0: prv_close = round(self.company.y_train[-1],3) else: prv_close = round(self.company.y_test[i-1],3) #print "%r :: %r" % (prv_close, predictions[i]) # *have* to liquidate on the last day if (i == num_preds -1) and (self.shares_held > 0): sell_price = (day_high + day_low) / 2 # mean of prv & actual..."market-ish price" gain_loss.append(sell_price * self.shares_held - self.buy_price * self.shares_held ) decisions.append("final_day_liquidation") break # ACTUAL DECISIONS # buy if predictions[i] > prv_close and self.shares_held == 0: # have to fabricate a buy price: using mean of prv close & actual close...seems sort of realistic...could do mean of high, low, open too... self.buy_price = round((day_high + day_low) / 2, 3) self.shares_held = int(round(1000 / self.buy_price)) #print "shares purchased: %r at %r" % (self.shares_held, self.buy_price) #print "actual close: %r :: predicted close: %r :: previous close: %r " % (actual_close, predictions[i], prv_close) decisions.append("purchase") # sells (stop loss) elif (self.buy_price > prv_close) and (self.shares_held > 0): # stop loss check; if not > 3% loss, then no change if (prv_close / self.buy_price) < .97: sell_price = (day_high + day_low) / 2 # mean of prv & actual..."market-ish price" gain_loss.append(sell_price * self.shares_held - self.buy_price * self.shares_held) # reset holdings self.shares_held = 0 self.buy_price = 0 decisions.append("stop_loss_sell") else: # could do dollar cost averaging here (if wanted to get fancy) decisions.append("Hold") # sells (stop gain) elif (self.buy_price < prv_close) and (self.shares_held > 0): # stop gain check; if not > 10% gain, then no change if (prv_close / self.buy_price) > 1.09: sell_price = (day_high + day_low) / 2 # mean of prv & actual..."market-ish price" gain_loss.append(sell_price * self.shares_held - self.buy_price * self.shares_held ) self.shares_held = 0 self.buy_price = 0 decisions.append("stop_gain_sell") else: decisions.append("Hold") else: decisions.append("Hold") #print decisions return decisions, gain_loss def profit_loss_rollup(self): # could output something like shares purchased / sold, cost basis & exit-price # for now just a single line columns = ["Profit/Loss"] index = ["BUY-HOLD", "SVM", "ANN", "SVM-MSE-CV", "SVM-MSE-TEST", "ANN-MSE"] self.profit_df = [self.bh_pl, np.sum(self.svm_gain_loss), np.sum(self.ann_gain_loss), self.svm_mse_cv, self.svm_mse_test, self.ann_mse] self.profit_df = pd.DataFrame(self.profit_df, index=index, columns=columns) print "Buy & Hold profit/loss %r" % self.bh_pl #print self.svm_decisions print "SVM profit/loss %r" % np.sum(self.svm_gain_loss) #print self.ann_decisions print "ANN profit/loss %r" % np.sum(self.ann_gain_loss) return def buy_hold_prof_loss(self): # buy price somewhere (mean) between the previous two period close prices buy_price = round((self.company.y_test[0] + self.company.y_train[-1]) / 2,3) shares_purchased = int(round(1000/ buy_price, 0)) # sell price somewhere (mean) between the previous two perioud close prices sell_price = round((self.company.y_test[-2] + self.company.y_test[-1]) /2 ,3) self.bh_pl = sell_price * shares_purchased - buy_price * shares_purchased return def write_final_file(self): columns = ['Actual', 'SVM', 'ANN', 'SVM-decisons', 'ANN-decisions'] # going to make a data frame to print to a csv # but preds were not all in the same shape # this helps with that and merges them all up self.final_df = np.vstack((self.company.y_test, self.svm_preds)) self.final_df = np.transpose(self.final_df) self.final_df = np.hstack((self.final_df, self.ann_preds)) #print self.final_df.shape #print np.array( [self.svm_decisions] ).shape self.final_df = np.hstack((self.final_df, np.transpose(np.array( [self.svm_decisions] )) )) self.final_df = np.hstack((self.final_df, np.transpose(np.array( [self.ann_decisions] )) )) self.final_df = pd.DataFrame(self.final_df, columns=columns) self.final_df['Date'] = self.company.y_dates final_file = self.final_df.to_csv(self.company.fin_file_name,index_label='id') pl_fin_file = self.profit_df.to_csv(self.company.pl_file_name, index=True) return if __name__ == "__main__": forecast = Forecast()
gpl-3.0
RPGroup-PBoC/gist_pboc_2017
code/optical_trap_calibration_centroid.py
1
6367
# Import the necessary modules. import numpy as np import matplotlib.pyplot as plt import seaborn as sns import glob # For image processing import skimage.io import skimage.filters import skimage.segmentation import skimage.measure # In this script, we will calibrate the strength of an optical trap. The data # set for this script is of a one micron bead trapped in a laser optical trap # with a 5.2x beam expansion from a 1 mm diameter red laser source. This image # was taken at 30 frames per second and the interpixel distance of the camera # is 42 nm per pixel at 22 C. As we discussed in class, we know that the force of # the trap is related to the mean squared displacement of the bead by # # F_trap = <(x - x_avg)^2> / kBT # # where <(x - x_avg)^2> is the mean squared displacement of the bead, kB is the # Boltzmann constant, and T is the temperature of the system. Our goal is to # determine the mean squared displacement of the bead in the trap. To do so, # we will use some image processing techniques to segment the bead and identify # the centroid. You should note that if we were calibrating this optical trap # for "real-life" experiments, we would use more sophisticated techniques to # calculate the trap to a sufficient precision. # To begin, let's load up the time series of our bead and look at the first # image. bead_ims = skimage.io.imread('data/optical_tweezer/trapped_bead_5.2x_4_MMStack_Pos0.ome.tif') plt.figure() plt.imshow(bead_ims[0], cmap=plt.cm.Greys_r) plt.show() # We see that the bead is dark on a light background with some fringing on # the side. We took these images such that the bead was dark to simplify our # segmentation analysis. # Because these images are relatively clean, we can imagine using a threshold # to determine what is bead and what is not. However, there is a lot of noise # in the background of this image. Before we identify a threshold, let's try # blurring the image with a gaussian blur to smooth it out. We'll then look # at the histogram. im_blur = skimage.filters.gaussian(bead_ims[0], sigma=1) plt.figure() plt.imshow(im_blur, cmap=plt.cm.Greys_r) plt.show() # Now, let's look at the image histogram to choose a threshold. plt.figure() plt.hist(im_blur.flatten(), bins=1000) plt.xlabel('pixel value') plt.ylabel('count') plt.show() # It seems pretty distinct what pixels correlate to our bead. Let's impose a # threshold value of 0.2 and see how well it works. threshold = 0.15 im_thresh = im_blur < threshold plt.figure() plt.imshow(im_thresh, cmap=plt.cm.Greys_r) plt.show() # That seems to do a pretty good job! However, there is an object that is touching the border of the image. Since we only want to get the bead segmented, we'll clear the segmentation of anything that is touching the border. im_border = skimage.segmentation.clear_border(im_thresh) # Now, we want to find the position of the middle of the bead. While it would # be best to find the center to sub-pixel accuracy by fitting a two-dimensional # gaussian, we'll find it by extracting the centroid from the regionprops # measurement. We'll first label the image and then extract the properties. im_label = skimage.measure.label(im_border) props = skimage.measure.regionprops(im_label) centroid_x, centroid_y = props[0].centroid # Now, let's plot the position of the centroid on the image of our bead to see # how well it worked. Remember that images are plotted y vs x, so we will need # to plot the centroid_y first. plt.figure() plt.imshow(im_blur) plt.plot(centroid_y, centroid_x, 'o') plt.show() # That's pretty good! Now, to determine the mean squared displacement, we # will want to find the position of the bead at each frame. To do this, we'll # loop through all of the images and perform the exact same operations. centroid_x, centroid_y = [], [] # Empty storage lists. for i in range(len(bead_ims)): # Blur the image. im_blur = skimage.filters.gaussian(bead_ims[i], sigma=1) # Segment the image. im_thresh = im_blur < threshold # Clear the border. im_border = skimage.segmentation.clear_border(im_thresh) im_large = skimage.morphology.remove_small_objects(im_border) # Label the image and extract the centroid. im_lab = skimage.measure.label(im_large) props = skimage.measure.regionprops(im_lab, intensity_image=np.invert(bead_ims[i])) x, y = props[0].weighted_centroid # Store the x and y centroid positions in the storage list. centroid_x.append(x) centroid_y.append(y) # Now, let's generate some plots to see if our analysis makes sense. We'll # plot the centroid x vs centroid y position to make sure that our bead seems # to be diffusing in the expected manner. We'll also plot the x and y positions # as a function to time to see if there are any bumps in the table or if our # segmentation went awry. plt.figure() plt.plot(centroid_x, centroid_y, '-') plt.xlabel('x position (pixels)') plt.ylabel('y position (pixels)') # Now plot them as a function of time. time_vec = np.arange(0, len(bead_ims), 1) #* (1 / 50) # Converted to seconds. plt.figure() plt.plot(time_vec, centroid_x, '-') plt.xlabel('time (s)') plt.ylabel('x position (pixels)') plt.figure() plt.plot(time_vec, centroid_y, '-') plt.xlabel('time (s)') plt.ylabel('y position (pixels)') plt.show() # It looks like something gets bumped at frame 24 and then around 120. Let's # restrict our analysis to that zone. That all looks good! It seems to be # diffusing as expected. Now let's # calculate the mean squared displacement # and compute the trap force. ip_dist = 0.042 # Physical distance in units of microns per pixel centroid_x_micron = np.array(centroid_x) * ip_dist centroid_y_micron = np.array(centroid_y) * ip_dist # Compute the means and msd. mean_x = np.mean(centroid_x_micron[24:120]) mean_y = np.mean(centroid_y_micron[24:120]) msd_x = np.mean((centroid_x_micron[24:120] - mean_x)**2) msd_y = np.mean((centroid_y_micron[24:120] - mean_y)**2) # Compute the trap force. kT = 4.1E-3 # In units of pN * micron k_x = kT / msd_x k_y = kT / msd_y print('Trap force in x dimension is ' + str(k_x) + ' pN micron') print('Trap force in y dimension is ' + str(k_y) + ' pN micron') # Wow! That's a strong trap. Note that this is an approximation of the trap # force. To precisely measure it, we should determine the centroid of the bead # to sub-pixel accuracy.
mit
yufengg/tensorflow
tensorflow/examples/learn/wide_n_deep_tutorial.py
12
7989
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example code for TensorFlow Wide & Deep Tutorial using TF.Learn API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile import pandas as pd from six.moves import urllib import tensorflow as tf CSV_COLUMNS = [ "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket" ] gender = tf.feature_column.categorical_column_with_vocabulary_list( "gender", ["Female", "Male"]) education = tf.feature_column.categorical_column_with_vocabulary_list( "education", [ "Bachelors", "HS-grad", "11th", "Masters", "9th", "Some-college", "Assoc-acdm", "Assoc-voc", "7th-8th", "Doctorate", "Prof-school", "5th-6th", "10th", "1st-4th", "Preschool", "12th" ]) marital_status = tf.feature_column.categorical_column_with_vocabulary_list( "marital_status", [ "Married-civ-spouse", "Divorced", "Married-spouse-absent", "Never-married", "Separated", "Married-AF-spouse", "Widowed" ]) relationship = tf.feature_column.categorical_column_with_vocabulary_list( "relationship", [ "Husband", "Not-in-family", "Wife", "Own-child", "Unmarried", "Other-relative" ]) workclass = tf.feature_column.categorical_column_with_vocabulary_list( "workclass", [ "Self-emp-not-inc", "Private", "State-gov", "Federal-gov", "Local-gov", "?", "Self-emp-inc", "Without-pay", "Never-worked" ]) # To show an example of hashing: occupation = tf.feature_column.categorical_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.feature_column.categorical_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # Continuous base columns. age = tf.feature_column.numeric_column("age") education_num = tf.feature_column.numeric_column("education_num") capital_gain = tf.feature_column.numeric_column("capital_gain") capital_loss = tf.feature_column.numeric_column("capital_loss") hours_per_week = tf.feature_column.numeric_column("hours_per_week") # Transformations. age_buckets = tf.feature_column.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) # Wide columns and deep columns. base_columns = [ gender, education, marital_status, relationship, workclass, occupation, native_country, age_buckets, ] crossed_columns = [ tf.feature_column.crossed_column( ["education", "occupation"], hash_bucket_size=1000), tf.feature_column.crossed_column( [age_buckets, "education", "occupation"], hash_bucket_size=1000), tf.feature_column.crossed_column( ["native_country", "occupation"], hash_bucket_size=1000) ] deep_columns = [ tf.feature_column.indicator_column(workclass), tf.feature_column.indicator_column(education), tf.feature_column.indicator_column(gender), tf.feature_column.indicator_column(relationship), # To show an example of embedding tf.feature_column.embedding_column(native_country, dimension=8), tf.feature_column.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week, ] def maybe_download(train_data, test_data): """Maybe downloads training data and returns train and test file names.""" if train_data: train_file_name = train_data else: train_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve( "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", train_file.name) # pylint: disable=line-too-long train_file_name = train_file.name train_file.close() print("Training data is downloaded to %s" % train_file_name) if test_data: test_file_name = test_data else: test_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve( "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test", test_file.name) # pylint: disable=line-too-long test_file_name = test_file.name test_file.close() print("Test data is downloaded to %s"% test_file_name) return train_file_name, test_file_name def build_estimator(model_dir, model_type): """Build an estimator.""" if model_type == "wide": m = tf.estimator.LinearClassifier( model_dir=model_dir, feature_columns=base_columns + crossed_columns) elif model_type == "deep": m = tf.estimator.DNNClassifier( model_dir=model_dir, feature_columns=deep_columns, hidden_units=[100, 50]) else: m = tf.estimator.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=crossed_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[100, 50]) return m def input_fn(data_file, num_epochs, shuffle): """Input builder function.""" df_data = pd.read_csv( tf.gfile.Open(data_file), names=CSV_COLUMNS, skipinitialspace=True, engine="python", skiprows=1) # remove NaN elements df_data = df_data.dropna(how="any", axis=0) labels = df_data["income_bracket"].apply(lambda x: ">50K" in x).astype(int) return tf.estimator.inputs.pandas_input_fn( x=df_data, y=labels, batch_size=100, num_epochs=num_epochs, shuffle=shuffle, num_threads=5) def train_and_eval(model_dir, model_type, train_steps, train_data, test_data): """Train and evaluate the model.""" train_file_name, test_file_name = maybe_download(train_data, test_data) model_dir = tempfile.mkdtemp() if not model_dir else model_dir m = build_estimator(model_dir, model_type) # set num_epochs to None to get infinite stream of data. m.train( input_fn=input_fn(train_file_name, num_epochs=None, shuffle=True), steps=train_steps) # set steps to None to run evaluation until all data consumed. results = m.evaluate( input_fn=input_fn(test_file_name, num_epochs=1, shuffle=False), steps=None) print("model directory = %s" % model_dir) for key in sorted(results): print("%s: %s" % (key, results[key])) FLAGS = None def main(_): train_and_eval(FLAGS.model_dir, FLAGS.model_type, FLAGS.train_steps, FLAGS.train_data, FLAGS.test_data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--model_dir", type=str, default="", help="Base directory for output models." ) parser.add_argument( "--model_type", type=str, default="wide_n_deep", help="Valid model types: {'wide', 'deep', 'wide_n_deep'}." ) parser.add_argument( "--train_steps", type=int, default=2000, help="Number of training steps." ) parser.add_argument( "--train_data", type=str, default="", help="Path to the training data." ) parser.add_argument( "--test_data", type=str, default="", help="Path to the test data." ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
devanshdalal/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
112
3203
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.exceptions import ConvergenceWarning from sklearn.decomposition import FactorAnalysis from sklearn.utils.testing import ignore_warnings # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
justincassidy/scikit-learn
sklearn/utils/fixes.py
133
12882
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import os import errno import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount if 'exist_ok' in inspect.getargspec(os.makedirs).args: makedirs = os.makedirs else: def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ try: os.makedirs(name, mode=mode) except OSError as e: if (not exist_ok or e.errno != errno.EEXIST or not os.path.isdir(name)): raise
bsd-3-clause
astorfi/TensorFlow-World
codes/3-neural_networks/undercomplete-autoencoder/code/autoencoder.py
1
3507
# An undercomplete autoencoder on MNIST dataset from __future__ import division, print_function, absolute_import import tensorflow.contrib.layers as lays import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from skimage import transform from tensorflow.examples.tutorials.mnist import input_data batch_size = 500 # Number of samples in each batch epoch_num = 5 # Number of epochs to train the network lr = 0.001 # Learning rate def resize_batch(imgs): # A function to resize a batch of MNIST images to (32, 32) # Args: # imgs: a numpy array of size [batch_size, 28 X 28]. # Returns: # a numpy array of size [batch_size, 32, 32]. imgs = imgs.reshape((-1, 28, 28, 1)) resized_imgs = np.zeros((imgs.shape[0], 32, 32, 1)) for i in range(imgs.shape[0]): resized_imgs[i, ..., 0] = transform.resize(imgs[i, ..., 0], (32, 32)) return resized_imgs def autoencoder(inputs): # encoder # 32 x 32 x 1 -> 16 x 16 x 32 # 16 x 16 x 32 -> 8 x 8 x 16 # 8 x 8 x 16 -> 2 x 2 x 8 net = lays.conv2d(inputs, 32, [5, 5], stride=2, padding='SAME') net = lays.conv2d(net, 16, [5, 5], stride=2, padding='SAME') net = lays.conv2d(net, 8, [5, 5], stride=4, padding='SAME') # decoder # 2 x 2 x 8 -> 8 x 8 x 16 # 8 x 8 x 16 -> 16 x 16 x 32 # 16 x 16 x 32 -> 32 x 32 x 1 net = lays.conv2d_transpose(net, 16, [5, 5], stride=4, padding='SAME') net = lays.conv2d_transpose(net, 32, [5, 5], stride=2, padding='SAME') net = lays.conv2d_transpose(net, 1, [5, 5], stride=2, padding='SAME', activation_fn=tf.nn.tanh) return net # read MNIST dataset mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # calculate the number of batches per epoch batch_per_ep = mnist.train.num_examples // batch_size ae_inputs = tf.placeholder(tf.float32, (None, 32, 32, 1)) # input to the network (MNIST images) ae_outputs = autoencoder(ae_inputs) # create the Autoencoder network # calculate the loss and optimize the network loss = tf.reduce_mean(tf.square(ae_outputs - ae_inputs)) # claculate the mean square error loss train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss) # initialize the network init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for ep in range(epoch_num): # epochs loop for batch_n in range(batch_per_ep): # batches loop batch_img, batch_label = mnist.train.next_batch(batch_size) # read a batch batch_img = batch_img.reshape((-1, 28, 28, 1)) # reshape each sample to an (28, 28) image batch_img = resize_batch(batch_img) # reshape the images to (32, 32) _, c = sess.run([train_op, loss], feed_dict={ae_inputs: batch_img}) print('Epoch: {} - cost= {:.5f}'.format((ep + 1), c)) # test the trained network batch_img, batch_label = mnist.test.next_batch(50) batch_img = resize_batch(batch_img) recon_img = sess.run([ae_outputs], feed_dict={ae_inputs: batch_img})[0] # plot the reconstructed images and their ground truths (inputs) plt.figure(1) plt.title('Reconstructed Images') for i in range(50): plt.subplot(5, 10, i+1) plt.imshow(recon_img[i, ..., 0], cmap='gray') plt.figure(2) plt.title('Input Images') for i in range(50): plt.subplot(5, 10, i+1) plt.imshow(batch_img[i, ..., 0], cmap='gray') plt.show()
mit
WMD-group/MacroDensity
examples/FieldAtPoint.py
1
4913
#! /usr/bin/env python # FieldAtPoint.py - try to calculate the electric field (grad of potential) at arbitrary point # Forked form PlaneField.py - JMF 2016-01-25 import macrodensity as md import math import numpy as np import matplotlib.pyplot as plt from matplotlib import colors,cm #colour maps; so I can specify cube helix import sys #for argv ## Input section (define the plane with 3 points, fractional coordinates) a_point = [0, 0, 0] b_point = [1, 0, 1] c_point = [0, 1, 0] #LOCPOT.CsPbI3_cubic LOCPOT.CsPbI3_distorted LOCPOT.MAPI_pseudocubic #input_file = 'LOCPOT.CsPbI3_distorted' input_file = sys.argv[1] print("Input file ",input_file) #------------------------------------------------------------------ # Get the potential # This section should not be altered #------------------------------------------------------------------ vasp_pot, NGX, NGY, NGZ, Lattice = md.read_vasp_density(input_file) vector_a,vector_b,vector_c,av,bv,cv = md.matrix_2_abc(Lattice) resolution_x = vector_a/NGX resolution_y = vector_b/NGY resolution_z = vector_c/NGZ grid_pot, electrons = md.density_2_grid(vasp_pot,NGX,NGY,NGZ) ## Get the gradiens (Field), if required. ## Comment out if not required, due to compuational expense. print("Calculating gradients (Electic field, E=-Grad.V )...") grad_x,grad_y,grad_z = np.gradient(grid_pot[:,:,:],resolution_x,resolution_y,resolution_z) #------------------------------------------------------------------ ##------------------------------------------------------------------ ## Get the equation for the plane ## This is the section for plotting on a user defined plane; ## uncomment commands if this is the option that you want. ##------------------------------------------------------------------ ## Convert the fractional points to grid points on the density surface a = md.numbers_2_grid(a_point,NGX,NGY,NGZ) b = md.numbers_2_grid(b_point,NGX,NGY,NGZ) c = md.numbers_2_grid(c_point,NGX,NGY,NGZ) plane_coeff = md.points_2_plane(a,b,c) ## Calculate magnitude of gradient. # Should be able to use numpy.linalg.norm for this, but the Python array indices are causing me grief X2 = np.multiply(grad_x,grad_x) Y2 = np.multiply(grad_y,grad_y) Z2 = np.multiply(grad_z,grad_z) grad_mag = np.sqrt(np.add(X2,Y2,Z2)) # This was my, non working, attempt to use the built in function. #grad_mag=np.linalg.norm( [grad_y,grad_y,grad_z], axis=3) ## This function in Macrodensity averages Efield ACROSS Z for Slab calculations #xx,yy,grd = pot.create_plotting_mesh(NGX,NGY,NGZ,plane_coeff,grad_mag) #AVG over full volume # Here we construct the same xx,yy,grd variables with a SLICE, forming a plane in XY at particular ZSLICE xx, yy = np.mgrid[0:NGX,0:NGY] ZSLICE= NGZ/2 # Chosses where in the Z axis the XY slice is cut through # Slice of magnitude of electric field, for contour plotting grd=grad_mag[:,:,ZSLICE] # Slices of x and y components for arrow plotting grad_x_slice=grad_x[:,:,ZSLICE] grad_y_slice=grad_y[:,:,ZSLICE] # OK, that's all our data # This code tiles the data to (2,2) to re-expand unit cell to a 2x2 supercell in XY xx,yy=np.mgrid[0:2*NGX,0:2*NGY] grd=np.tile(grd, (2,2)) grad_x_slice=np.tile(grad_x_slice, (2,2)) grad_y_slice=np.tile(grad_y_slice, (2,2)) # End of tiling code ## Contours of the above sliced data plt.contour(xx,yy,grd,6,cmap=cm.cubehelix) # Also generate a set of Efield arrows ('quiver') for this data. # Specifying the drawing parameters is quite frustrating - they are very brittle + poorly documented. plt.quiver(xx,yy, grad_x_slice, grad_y_slice, color='grey', units='dots', width=1, headwidth=3, headlength=4 ) #, # units='xy', scale=10., zorder=3, color='blue', # width=0.007, headwidth=3., headlength=4.) plt.axis('equal') #force square aspect ratio; this assuming X and Y are equal. plt.show() ##------------------------------------------------------------------ ##------------------------------------------------------------------ # CsPbI3 - distorted PB_X=0.469972*NGX PB_Y=0.530081*NGY PB_Z=0.468559*NGZ # CsPbI3 - perfect cubic #PB_X=0.5*NGX #PB_Y=0.5*NGY #PB_Z=0.5*NGZ # MAPBI3 - pseudo cubic distorted #PB_X=0.476171*NGX #PB_Y=0.500031*NGY #PB_Z=0.475647*NGZ # Read out massive grad table, in {x,y,z} components print(grad_x[PB_X][PB_Y][PB_Z],grad_y[PB_X][PB_Y][PB_Z],grad_z[PB_X][PB_Y][PB_Z]) # Norm of electric field at this point print(np.linalg.norm([ grad_x[PB_X][PB_Y][PB_Z],grad_y[PB_X][PB_Y][PB_Z],grad_z[PB_X][PB_Y][PB_Z] ])) # OK, let's try this with a Spectral method (FFT) # JMF - Not currently working; unsure of data formats, need worked example from scipy import fftpack V_FFT=fftpack.fftn(grid_pot[:,:,:]) V_deriv=fftpack.diff(grid_pot[:,:,:]) #V_FFT,order=1) # Standard catch all to drop into ipython at end of script for variable inspection etc. from IPython import embed; embed() # End on an interactive ipython console to inspect variables etc.
mit
depet/scikit-learn
sklearn/datasets/samples_generator.py
2
50824
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import linalg from ..preprocessing import LabelBinarizer from ..utils import array2d, check_random_state from ..utils import shuffle as util_shuffle from ..externals import six map = six.moves.map zip = six.moves.zip def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=2) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float or None, optional (default=0.0) Shift all features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float or None, optional (default=1.0) Multiply all features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope C = np.array(list(product([-class_sep, class_sep], repeat=n_informative))) if not hypercube: for k in range(n_clusters): C[k, :] *= generator.rand() for f in range(n_informative): C[:, f] *= generator.rand() generator.shuffle(C) # Loop over all clusters pos = 0 pos_end = 0 for k in range(n_clusters): # Number of samples in cluster k n_samples_k = n_samples_per_cluster[k] # Define the range of samples pos = pos_end pos_end = pos + n_samples_k # Assign labels y[pos:pos_end] = k % n_classes # Draw features at random X[pos:pos_end, :n_informative] = generator.randn(n_samples_k, n_informative) # Multiply by a random matrix to create co-variance of the features A = 2 * generator.rand(n_informative, n_informative) - 1 X[pos:pos_end, :n_informative] = np.dot(X[pos:pos_end, :n_informative], A) # Shift the cluster to a vertice X[pos:pos_end, :n_informative] += np.tile(C[k, :], (n_samples_k, 1)) # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.int) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features X[:, n_features - n_useless:] = generator.randn(n_samples, n_useless) # Randomly flip labels if flip_y >= 0.0: for i in range(n_samples): if generator.rand() < flip_y: y[i] = generator.randint(n_classes) # Randomly shift and scale constant_shift = shift is not None constant_scale = scale is not None for f in range(n_features): if not constant_shift: shift = (2 * generator.rand() - 1) * class_sep if not constant_scale: scale = 1 + 100 * generator.rand() X[:, f] += shift X[:, f] *= scale # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, return_indicator=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. Number of labels follows a Poisson distribution that never takes the value 0. length : int, optional (default=50) Sum of the features (number of words if documents). allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. return_indicator : bool, optional (default=False), If ``True``, return ``Y`` in the binary indicator format, else return a tuple of lists of labels. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : tuple of lists or array of shape [n_samples, n_classes] The label sets. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling n = n_classes + 1 while (not allow_unlabeled and n == 0) or n > n_classes: n = generator.poisson(n_labels) # pick n classes y = [] while len(y) != n: # pick a class with probability P(c) c = generator.multinomial(1, p_c).argmax() if not c in y: y.append(c) # pick a non-zero document length by rejection sampling k = 0 while k == 0: k = generator.poisson(length) # generate a document of length k words x = np.zeros(n_features, dtype=int) for i in range(k): if len(y) == 0: # if sample does not belong to any class, generate noise word w = generator.randint(n_features) else: # pick a class and generate an appropriate word c = y[generator.randint(len(y))] w = generator.multinomial(1, p_w_c[:, c]).argmax() x[w] += 1 return x, y X, Y = zip(*[sample_example() for i in range(n_samples)]) if return_indicator: lb = LabelBinarizer() Y = lb.fit([range(n_classes)]).transform(Y) return np.array(X, dtype=np.float64), Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See the `make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples / 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples / 2), np.ones(n_samples / 2)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y.astype(np.int) def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples / 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in), np.ones(n_samples_out)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if not noise is None: X += generator.normal(scale=noise, size=X.shape) return X, y.astype(np.int) def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = array2d(centers) n_features = centers.shape[1] X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, n in enumerate(n_samples_per_center): X.append(centers[i] + generator.normal(scale=cluster_std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors from ..utils.fixes import qr_economic u, _ = qr_economic(generator.randn(n_samples, n)) v, _ = qr_economic(generator.randn(n_features, n)) # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Parameters ---------- dim: integer, optional (default=1) The size of the random (matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- prec: array of shape = [dim, dim] Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: d = np.diag(prec) d = 1. / np.sqrt(d) prec *= d prec *= d[:, np.newaxis] return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perpsective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
DouglasLeeTucker/DECam_PGCM
bin/rawdata_clean_relevant_apass2mass_data.py
1
3725
#!/usr/bin/env python """ rawdata_clean_relevant_apass2mass_data.py Example: rawdata_clean_relevant_apass2mass_data.py --help rawdata_clean_relevant_apass2mass_data.py --inputFile apass2mass_new_rawdata_rawdata.csv --outputFile apass2mass_new_y2a1_rawdata.u.csv.tmp --verbose 2 """ ################################## def main(): import argparse import time """Create command line arguments""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--inputFile', help='name of the input CSV file', default='input.csv') parser.add_argument('--outputFile', help='name of the output CSV file', default='output.csv') parser.add_argument('--verbose', help='verbosity level of output to screen (0,1,2,...)', default=0, type=int) args = parser.parse_args() if args.verbose > 0: print args status = clean_relevant_apass2mass_data(args) return status ################################## # clean_relevant_apass2mass_data # def clean_relevant_apass2mass_data(args): import numpy as np import os import sys import datetime import fitsio import pandas as pd if args.verbose>0: print print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print 'clean_relevant_apass2mass_data' print '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' print inputFile = args.inputFile outputFile = args.outputFile # Read selected columns from inputFile... columns = ['RA_WRAP','RAJ2000_APASS','DEJ2000_APASS','GMAG_APASS','RMAG_APASS','IMAG_APASS','JMAG_2MASS','HMAG_2MASS','KMAG_2MASS','g_des','r_des','i_des','z_des','Y_des'] print datetime.datetime.now() print """Reading in selected columns from %s...""" % (inputFile) df = pd.read_csv(inputFile, usecols=columns) print datetime.datetime.now() # Rename a couple columns... df.rename(columns={'RAJ2000_APASS':'RA', 'DEJ2000_APASS':'DEC'}, inplace=True) # Add APASS "g-r" column... df.loc[:,'gr_apass'] = df.loc[:,'GMAG_APASS'] - df.loc[:,'RMAG_APASS'] # Transformation equation (20161123, from run of y2a1_new_u_from_apass2massGR.py): # u_des = g_apass + 1.699*(g_apass-r_apass)**2 - 0.1106*(g_apass-r_apass) + 0.6307, # which is appropriate for "0.2 <= (g-r)_apass <= 0.8". # Use a signal alue of -9999 for stars with colors outside this range.... df.loc[:,'UMAG_DES'] = -9999. mask1 = ( (df.GMAG_APASS > 0.0) & (df.RMAG_APASS > 0.0) ) mask2 = ( (df.gr_apass >= 0.2) & (df.gr_apass <= 0.8) ) mask_all = ( mask1 & mask2 ) df.loc[mask_all,'UMAG_DES'] = df.loc[mask_all,'GMAG_APASS'] + 1.699*df.loc[mask_all,'gr_apass']*df.loc[mask_all,'gr_apass'] - 0.1106*df.loc[mask_all,'gr_apass'] + 0.6307 # For the time being (until we've updated the transformation equations for these # other filters), we'll keep the current values of GMAG_DES, RMAG_DES, IMAG_DES, # ZMAG_DES, and YMAG_DES df.loc[:,'GMAG_DES'] = df.loc[:,'g_des'] df.loc[:,'RMAG_DES'] = df.loc[:,'r_des'] df.loc[:,'IMAG_DES'] = df.loc[:,'i_des'] df.loc[:,'ZMAG_DES'] = df.loc[:,'z_des'] df.loc[:,'YMAG_DES'] = df.loc[:,'Y_des'] # Output results... outcolumns = ['RA_WRAP','RA','DEC','GMAG_APASS','RMAG_APASS','IMAG_APASS','JMAG_2MASS','HMAG_2MASS','KMAG_2MASS','UMAG_DES','GMAG_DES','RMAG_DES','IMAG_DES','ZMAG_DES','YMAG_DES'] df.to_csv(outputFile, columns=outcolumns, index=False, float_format='%.6f') return 0 ################################## if __name__ == "__main__": main() ##################################
gpl-3.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/doc/mpl_examples/user_interfaces/pylab_with_gtk.py
3
1419
""" An example of how to use pylab to manage your figure windows, but modify the GUI by accessing the underlying gtk widgets """ from __future__ import print_function import matplotlib matplotlib.use('GTKAgg') import matplotlib.pyplot as plt ax = plt.subplot(111) plt.plot([1,2,3], 'ro-', label='easy as 1 2 3') plt.plot([1,4,9], 'gs--', label='easy as 1 2 3 squared') plt.legend() manager = plt.get_current_fig_manager() # you can also access the window or vbox attributes this way toolbar = manager.toolbar # now let's add a button to the toolbar import gtk next = 8; #where to insert this in the mpl toolbar button = gtk.Button('Click me') button.show() def clicked(button): print('hi mom') button.connect('clicked', clicked) toolitem = gtk.ToolItem() toolitem.show() toolitem.set_tooltip( toolbar.tooltips, 'Click me for fun and profit') toolitem.add(button) toolbar.insert(toolitem, next); next +=1 # now let's add a widget to the vbox label = gtk.Label() label.set_markup('Drag mouse over axes for position') label.show() vbox = manager.vbox vbox.pack_start(label, False, False) vbox.reorder_child(manager.toolbar, -1) def update(event): if event.xdata is None: label.set_markup('Drag mouse over axes for position') else: label.set_markup('<span color="#ef0000">x,y=(%f, %f)</span>'%(event.xdata, event.ydata)) plt.connect('motion_notify_event', update) plt.show()
mit
rishikksh20/scikit-learn
sklearn/neighbors/regression.py
26
10999
"""Nearest Neighbor Regression""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin from .base import RadiusNeighborsMixin, SupervisedFloatMixin from ..base import RegressorMixin from ..utils import check_array class KNeighborsRegressor(NeighborsBase, KNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`kneighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsRegressor >>> neigh = KNeighborsRegressor(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors RadiusNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.mean(_y[neigh_ind], axis=1) else: y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64) denom = np.sum(weights, axis=1) for j in range(_y.shape[1]): num = np.sum(_y[neigh_ind, j] * weights, axis=1) y_pred[:, j] = num / denom if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on neighbors within a fixed radius. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth:`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsRegressor >>> neigh = RadiusNeighborsRegressor(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors KNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.radius_neighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.array([np.mean(_y[ind, :], axis=0) for ind in neigh_ind]) else: y_pred = np.array([(np.average(_y[ind, :], axis=0, weights=weights[i])) for (i, ind) in enumerate(neigh_ind)]) if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
automl/ChaLearn_Automatic_Machine_Learning_Challenge_2015
003_grigoris.py
1
6183
import argparse import os from joblib import Parallel, delayed import numpy as np import autosklearn import autosklearn.data import autosklearn.data.competition_data_manager from autosklearn.pipeline.classification import SimpleClassificationPipeline parser = argparse.ArgumentParser() parser.add_argument('input') parser.add_argument('output') args = parser.parse_args() input = args.input dataset = 'grigoris' output = args.output path = os.path.join(input, dataset) D = autosklearn.data.competition_data_manager.CompetitionDataManager(path) X = D.data['X_train'] y = D.data['Y_train'] X_valid = D.data['X_valid'] X_test = D.data['X_test'] # Replace the following array by a new ensemble choices = \ [(0.720000, SimpleClassificationPipeline(configuration={ 'balancing:strategy': 'none', 'classifier:__choice__': 'liblinear_svc', 'classifier:liblinear_svc:C': 0.0665747065156058, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.002362381246384099, 'imputation:strategy': 'mean', 'one_hot_encoding:minimum_fraction': 0.0972585384393519, 'one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:__choice__': 'no_preprocessing', 'rescaling:__choice__': 'normalize'})), (0.100000, SimpleClassificationPipeline(configuration={ 'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'classifier:liblinear_svc:C': 7.705276414124367, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.028951969755081776, 'imputation:strategy': 'most_frequent', 'one_hot_encoding:use_minimum_fraction': 'False', 'preprocessor:__choice__': 'no_preprocessing', 'rescaling:__choice__': 'normalize'})), (0.080000, SimpleClassificationPipeline(configuration={ 'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'classifier:liblinear_svc:C': 1.0, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.0001, 'imputation:strategy': 'median', 'one_hot_encoding:minimum_fraction': 0.0033856971814438443, 'one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:__choice__': 'no_preprocessing', 'rescaling:__choice__': 'normalize'})), (0.080000, SimpleClassificationPipeline(configuration={ 'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'classifier:liblinear_svc:C': 0.2598769185905466, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 0.001007160236770467, 'imputation:strategy': 'median', 'one_hot_encoding:minimum_fraction': 0.019059927375795167, 'one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:__choice__': 'no_preprocessing', 'rescaling:__choice__': 'normalize'})), (0.020000, SimpleClassificationPipeline(configuration={ 'balancing:strategy': 'weighting', 'classifier:__choice__': 'liblinear_svc', 'classifier:liblinear_svc:C': 0.6849477125990308, 'classifier:liblinear_svc:dual': 'False', 'classifier:liblinear_svc:fit_intercept': 'True', 'classifier:liblinear_svc:intercept_scaling': 1, 'classifier:liblinear_svc:loss': 'squared_hinge', 'classifier:liblinear_svc:multi_class': 'ovr', 'classifier:liblinear_svc:penalty': 'l2', 'classifier:liblinear_svc:tol': 1.2676147487949745e-05, 'imputation:strategy': 'mean', 'one_hot_encoding:minimum_fraction': 0.003803817610653382, 'one_hot_encoding:use_minimum_fraction': 'True', 'preprocessor:__choice__': 'no_preprocessing', 'rescaling:__choice__': 'normalize'})), ] targets = [] predictions = [] predictions_valid = [] predictions_test = [] def fit_and_predict(estimator, weight, X, y): try: estimator.fit(X.copy(), y.copy()) pv = estimator.predict_proba(X_valid.copy()) * weight pt = estimator.predict_proba(X_test.copy()) * weight except Exception as e: print(e) print(estimator.configuration) pv = None pt = None return pv, pt # Make predictions and weight them all_predictions = Parallel(n_jobs=-1)(delayed(fit_and_predict) \ (estimator, weight, X, y) for weight, estimator in choices) for pv, pt in all_predictions: predictions_valid.append(pv) predictions_test.append(pt) # Output the predictions for name, predictions in [('valid', predictions_valid), ('test', predictions_test)]: predictions = np.array(predictions) predictions = np.sum(predictions, axis=0).astype(np.float32) filepath = os.path.join(output, '%s_%s_000.predict' % (dataset, name)) np.savetxt(filepath, predictions, delimiter=' ', fmt='%.4e')
bsd-2-clause
lbishal/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
157
2409
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
gclenaghan/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
grhawk/ASE
tools/ase/calculators/ase_qmmm_manyqm.py
4
60409
"""QM/MM interface with QM=FHI-aims, MM=gromacs QM could be something else, but you need to read in qm-atom charges from the qm program (in method 'get_qm_charges') One can have many QM regions, each with a different calculator. There can be only one MM calculator, which is calculating the whole system. Non-bonded interactions: ------------------------ Generally: Within the same QM-QM: by qm calculator MM-MM: by MM calculator QM-MM: by MM using MM vdw parameters and QM charges. Different QM different QM: by MM using QM and MM charges and MM-vdw parameters The Hirschfeld charges (or other atomic charges) on QM atoms are calculated by QM in a H terminated cluster in vacuum. The charge of QM atom next to MM atom (edge-QM-atom) and its H neighbors are set as in the classical force field. The extra(missing) charge results from: 1) linkH atoms 2) The edge-QM atoms, and their qm-H neighbors, have their original MM charges. 3) and the fact that the charge of the QM fraction is not usually an integer when using the original MM charges. It is added equally to all QM atoms (not being linkH and not being edge-QM-atom or its H neighbor) so that the total charge of the MM-fragment involving QM atoms will be the same as in the original MM-description. Vdw interactions are calculated by MM-gromacs for MM and MM-QM inteactions. The QM-QM vdw interaction s could be done by the FHI-aims if desired (by modifying the imput for QM-FHI-aims input accordingly. Bonded interactions:: E= E_qm(QM-H) ; qm energy of H terminated QM cluster(s) + E_mm(ALL ATOMS) ; mm energy of all atoms, ; except for terms in which all MM-interacting atoms are ; in the same QM region Forces do not act on link atoms but they are positioned by scaling. Forces on link atoms are given to their QM and MM neighbors by chain rule. (see J. Chem. Theory Comput. 2011, 7, 761-777). The optimal edge-qm-atom-linkH bond length is calculated by QM in 'get_eq_qm_atom_link_h_distances' or they are read from a file. Questions & Comments [email protected] I'm especially interested in cases when we need two or more QM regions. For instance two redox centers in a protein, cathode and anode of a fuel cell ... you name it! Some things to improve: 1) Water topology issue (at the moment water cannot be in QM), Its topology should be put into the main topology file, not in a separate file. 2) point charges and periodicity (if desired) to the QM calculation (now in vacuum) 3) Eichinger type of link atom treatment with fitted force constants for linkH-QMedge (bond strecth) linkH-QMedge-QMnextTOedge (angle terms) 4) file io using unformatted formats (.trr) instead of g96 This is not easily possible without loading extra stuff from ftp://ftp.gromacs.org/pub/contrib/xd...e-1.1.1.tar.gz. 5) Utilize gromacs-python wrapper: (just found this today 31.12.2012...) http://orbeckst.github.com/GromacsWrapper/index.html# """ import sys import numpy as np def get_neighbor_list(system): """ Makes a neighbor list of a system (ase Atoms). See https:\ //wiki.fysik.dtu.dk/ase/ase/calculators/calculators.html#module-calculators """ from ase.calculators.neighborlist import NeighborList from ase.data import covalent_radii import os import pickle NEIGHBOR_FILE = 'neighbor_list_for_ase_qmmm.txt' if os.path.exists(NEIGHBOR_FILE): print('Reading qm/mm neighbor list from file:') print('neighbor_list_for_ase_qmmm.txt') myfile = open(NEIGHBOR_FILE, 'r') neighbor_list = pickle.load(myfile) else: cut = [covalent_radii[atom.number] for atom in system] skin = [0.2 for atom in system] neighbor_list = NeighborList(cut, skin, \ self_interaction=False, bothways=True) neighbor_list.update(system) file = open(NEIGHBOR_FILE, 'w') pickle.dump(neighbor_list, file) file.close() return neighbor_list def get_qm_atoms(indexfilename='index.ndx'): """ Read the indexes of all QM atoms (there may be many QM regions) """ infile = open(indexfilename,'r') lines = infile.readlines() infile.close() qms = [] for iline, line in enumerate(lines): if (('[ QM' in line) or ('[ qm' in line) or ('[ Qm' in line)) \ or (('[QM' in line) or ('[qm' in line) or ('[Qm' in line)): qm = [] for checkline in lines[iline+1:]: if ('[') in checkline: break else: qm = qm + [int(float(s)-1.0) for s in \ checkline.split() if s.isdigit()] qm = list(set(qm)) qms.append(qm) return qms class LinkAtom: """ Class for information about a single link-atom (it terminates a QM cluster) qm_region_index and link_atom_index refer to the following indexing system: [[QM0 link atoms indexes from 0],[QM1 link atoms indexes from 0],...] So above the second link atom in second qm region would have qm_region_index=1, link_atom_index=1 link_atom_index_in_qm tells which index in qm system the link atom has for instance qm_region_index=1, link_atom_index_in_qm=20 means that link atom is 21'st atom in the second qm system """ def __init__(self, atom, qm_region_index, link_atom_index): """ set initial values to a link atom object """ self.atom = atom self.qm_region_index = qm_region_index self.link_atom_index = link_atom_index self.link_atom_index_in_qm = None self.qm_neighbor = None self.mm_neighbor = None self.qm2_neighbors = [] self.qm3_neighbors = [] self.mm2_neighbors = [] self.set_qm2_neighbors = set([]) self.set_qm3_neighbors = set([]) self.set_mm2_neighbors = set([]) self.force_constant = 0.0 self.equilibrium_distance_xh = 0.0 self.equilibrium_distance_xy = 0.0 def set_link_atom(self, atom): """ set an ase-atom to be the link atom """ self.atom = atom def set_link_atom_qm_region_index(self, qm_region_index): """ set to which qm region the link atom belongs to """ self.qm_region_index = qm_region_index def set_link_atom_index_in_qm(self, link_atom_index_in_qm): """ set what is my link atom index in this qm region """ self.link_atom_index_in_qm = link_atom_index_in_qm def set_link_atom_qm_neighbor(self, qm_neighbor): """ set what index does my qm neighbor have""" self.qm_neighbor = qm_neighbor def set_link_atom_mm_neighbor(self, mm_neighbor): """ set what index does my mm neighbor have""" self.mm_neighbor = mm_neighbor def set_link_atom_qm2_neighbors(self, qm2_neighbors): """ set what index does my second qm neighbor have""" self.qm2_neighbors = qm2_neighbors def set_link_atom_qm3_neighbors(self, qm3_neighbors): """ set what index does my third qm neighbor have""" self.qm3_neighbors = qm3_neighbors def set_link_atom_mm2_neighbors(self, mm2_neighbors): """ set what index does my second mm neighbor have""" self.mm2_neighbors = mm2_neighbors def set_force_constant(self, force_constant): """ set the force constant of bond edge-qm -- linkH (not used)""" self.force_constant = force_constant def set_equilibrium_distance_xh(self, equilibrium_distance_xh): """ set the equilibrium edge-qm -- linkH distance """ self.equilibrium_distance_xh = equilibrium_distance_xh def set_equilibrium_distance_xy(self, equilibrium_distance_xy): """set the equilibrium edge-qm -- edge-mm distance (by MM-force field)""" self.equilibrium_distance_xy = equilibrium_distance_xy def get_link_atom(self): """ get an ase-atom to be the link atom """ return self.atom def get_link_atom_qm_region_index(self): """ get to which qm region the link atom belongs to """ return self.qm_region_index def get_link_atom_index_in_qm(self): """ get what is my link atom index in this qm region """ return self.link_atom_index_in_qm def get_link_atom_qm_neighbor(self): """ get what index does my qm neighbor have""" return self.qm_neighbor def get_link_atom_mm_neighbor(self): """ get what index does my mm neighbor have""" return self.mm_neighbor def get_link_atom_qm2_neighbors(self): """ get what index does my second qm neighbor have""" return self.qm2_neighbors def get_link_atom_qm3_neighbors(self): """ get what index does my third qm neighbor have""" return self.qm3_neighbors def get_link_atom_mm2_neighbors(self): """ get what index does my second mm neighbor have""" return self.mm2_neighbors def get_force_constant(self): """ get the force constant of bond edge-qm -- linkH (not used)""" return self.force_constant def get_equilibrium_distance_xh(self): """ get the equilibrium edge-qm -- linkH distance """ return self.equilibrium_distance_xh def get_equilibrium_distance_xy(self): """get the equilibrium edge-qm -- edge-mm distance (by MM-force field)""" return self.equilibrium_distance_xy class AseQmmmManyqm: """ This is a qm/mm interface with qm=FHI-aims, mm=gromacs. We can have many QM regions, each with a different calculator. There can be only one MM calculator, which is calculating the whole system. Numeration of atoms starts from 0. (in qms, mms) In qm calculations link atom(s) come(s) last. For any qm region, the optimal bond lengths for all edge_atom-link_atom pairs are optimized by QM simultaneously at the beginning of the run when the flag link_info='byQM' is used (by method . The positions of other a """ def __init__(self, nqm_regions, \ qm_calculators, mm_calculator, \ link_info='byQM'): """ Set initial values to each qm and mm calculator. Additionally set information for the qm/mm interface. The information about qm and mm indexes is read from a file 'index.ndx' Which can be generated with a gromacs tool 'make_ndx' http://www.gromacs.org/Documentation/Gromacs_Utilities/make_ndx Parameters ========== nqm_regions: int how many qm regions qm_calculators: list members of a Class defining a Calculator ase-qm calculator for each qm region mm_calculator: a member of a Class defining a Calculator ase-mm calculator for mm (the whole system) link_info: str can be either 'byQM': the edge_qm_atom-link_h_atom distances are calculated by QM 'byFile':the edge_qm_atom-link_h_atom distances are read from a file """ from ase.io import read, write import os, glob # clean files = glob.glob('test-*') for file in files: try: os.remove(file) except OSError: pass self.atoms = None self.positions = None self.neighbor_list = None self.link_atoms = [] self.energy = None self.e_delta_stretch = None self.nqm_regions = nqm_regions self.qm_calculators = qm_calculators self.mm_calculator = mm_calculator self.qmatom_types = [] self.mmatom_types = [] #det unique name for each qm region # (the output file of each qm calculation) for i in range(len(self.qm_calculators)): self.qm_calculators[i].set(output_template = 'aims'+str(i)) self.link_systems = None self.equilibrium_distances_xy = [] self.equilibrium_distances_xh = [] self.force_constants = [] # get the sets of qm atoms self.qms = get_qm_atoms() self.set_qms = set(sum(self.qms, [])) print('qmsystem(s), indexing from 0:') print('') for index_out in self.qms: index_str = '' for index in index_out: index_str += str(index) + ' ' print ('%s' % index_str) print('') if ( len(self.qms) != nqm_regions): print ('Number of set of QM atoms does not match with nqm_regions') print ('self.qms %s' % str(self.qms)) print ('nqm_regions %s' % str(nqm_regions)) sys.exit() if ( len(self.qms) != len(qm_calculators)): print ('Number of set of QM atoms does not match with') print ('the number of QM calculators') sys.exit() #read the actual structure to define link atoms and their neighbors system_tmp = mm_calculator.atoms self.positions = system_tmp.get_positions() #get neighbor lists self.neighbor_list = get_neighbor_list(system_tmp) #get the mm-atoms next to link atoms for all qm regions (self.mms_edge, self.qms_edge, self.set_mms_edge, self.set_qms_edge) = \ self.get_edge_qm_and_mm_atoms(self.qms, system_tmp) #get the mm atoms being second neighbors to any qm atom (self.second_mms, self.set_second_mms) = \ self.get_next_neighbors(self.mms_edge, self.set_qms) #get the qm atoms being second neighbors to link atom (self.second_qms, self.set_second_qms) = \ self.get_next_neighbors(self.qms_edge, \ self.set_mms_edge) #get the qm atoms being neighbors to link atom (edge-qm atoms) # and their neighbors which have only single neighbor # (for example edge-QM(C)-H or edge-QM(C)=O; for charge exclusion) self.constant_charge_qms = \ self.get_constant_charge_qms\ (self.set_qms_edge, self.set_second_qms) #get the qm atoms being third neighbors to link atom (self.third_qms, self.set_third_qms) = \ self.get_next_neighbors\ (self.second_qms, self.set_qms_edge) print('self.qms %s' % self.qms) print('QM edge, MM edge %s' \ % str(self.qms_edge)+' '+ str(self.mms_edge)) print('MM second N of Link %s' % str(self.second_mms)) print('QM second N of Link %s' % str(self.second_qms)) print('QM third N of Link %s' % str(self.third_qms)) if link_info == 'byFILE': self.read_eq_distances_from_file() else: #get QM-MM bond lengths self.get_eq_distances_xy(\ topfilename=mm_calculator.topology_filename,\ force_field= mm_calculator.force_field) #get QM-linkH distances by QM for all link atoms self.get_eq_qm_atom_link_h_distances(system_tmp) # write current link-info data to file (it can be later used, # so XH bondconstants are already calculated by QM # Also one can manually change the XY bond lengths self.write_eq_distances_to_file(\ self.qms_edge) #get target charge of each qm-region self.classical_target_charge_sums = \ self.get_classical_target_charge_sums\ (self.mm_calculator.topology_filename, self.qms) #get a list of link H atoms self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) self.qmsystems = self.define_QM_clusters_in_vacuum(system_tmp) for iqm, qm in enumerate(self.qmsystems): write('test-qm-'+str(iqm)+'.xyz', qm) #attach calculators to qm regions for iqm, qm in enumerate(self.qmsystems): self.qmsystems[iqm].set_calculator(self.qm_calculators[iqm]) #attach calculators to the mm region (the whole system) self.mm_system = system_tmp self.mm_system.set_calculator(self.mm_calculator) #initialize total energy and forces of qm regions #and the mm energy self.qm_energies = [] self.qm_forces = [] self.qm_charges = [] self.sum_qm_charge = [] for iqm, qm in enumerate(self.qmsystems): self.qm_energies.append(0.0) self.qm_forces.append(None) self.qm_charges.append(None) self.sum_qm_charge.append(None) self.mm_energy = None #set initial zero forces self.forces = np.zeros((len(self.positions), 3)) self.charges = np.zeros((len(self.positions), 1)) try: os.remove(self.mm_calculator.topology_filename+'.orig') except: pass print('%s' % str(self.mm_calculator.topology_filename)) os.system('cp ' + self.mm_calculator.topology_filename + ' ' +\ self.mm_calculator.topology_filename + '.orig') #remove some classical bonded interaction in the topology file # this need to be done only once, because the bond topology # is unchanged during a QM/MM run #(QM charges can be updated in the topology, however) # the original topology is generated when calling Gromacs( # in the main script setting up QM, MM and minimization if (self.mm_calculator.name == 'Gromacs'): self.kill_top_lines_containing_only_qm_atoms\ (self.mm_calculator.topology_filename, self.qms, \ self.mm_calculator.topology_filename) else: print('Only Gromacs MM-calculator implemented in ASE-QM/MM') sys.exit() #exclude qm-qm non-bonded interactions in MM-gromacs self.add_exclusions() #generate input file for gromacs run self.mm_calculator.generate_gromacs_run_file() ######### end of Init ##################################### def get_forces(self, atoms): """get forces acting on all atoms except link atoms """ self.update(atoms) return self.forces def get_potential_energy(self, atoms): """ get the total energy of the MM and QM system(s) """ self.update(atoms) return self.energy def update(self, atoms): """Updates and does a check to see if a calculation is required""" if self.calculation_required(atoms): # performs an update of the atoms and qm systems self.atoms = atoms.copy() self.positions = atoms.get_positions() self.mm_system = atoms.copy() #get the positions of link H atoms self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) #get QM systens self.qmsystems = self.define_QM_clusters_in_vacuum(\ self.atoms) self.calculate(atoms) def calculation_required(self, atoms): """Checks if a calculation is required""" if ((self.positions is None) or (self.atoms != atoms) or (self.energy is None)): return True return False def calculate_mm(self): """ Calculating mm energies and forces """ import os mm = self.atoms mm.set_calculator(self.mm_calculator) if (self.mm_calculator.name == 'Gromacs'): try: os.remove(self.mm_calculator.base_filename+'.log') except: pass self.mm_calculator.update(mm) self.mm_energy = 0 self.mm_energy += mm.get_potential_energy() self.forces += mm.get_forces() def calculate_qms(self): """ QM calculations on all qm systems are carried out """ for iqm, qm in enumerate(self.qmsystems): qm.set_calculator(self.qm_calculators[iqm]) self.qm_energies[iqm] = qm.get_potential_energy() self.qm_forces[iqm] = np.zeros((len(qm), 3)) self.qm_forces[iqm] = qm.get_forces() (self.sum_qm_charge[iqm], self.qm_charges[iqm]) = \ self.get_qm_charges(iqm, number_of_link_atoms =\ len(self.qms_edge[iqm])) if (len(self.qms[iqm]) != len(self.qm_charges[iqm])): print('Problem in reading charges') print('len(self.qms[iqm]) %s' % str(len(self.qms[iqm]))) print('len(self.qm_charges[iqm]) %s' \ % str(len(self.qm_charges[iqm]))) print('Check the output of QM program') print('iqm, qm %s' % str(iqm)+ ' '+ str(qm)) print('self.qm_charges[iqm] %s' % str(self.qm_charges[iqm])) sys.exit() def calculate_single_qm(self, myqm, mycalculator): """ Calculate the qm energy of a single qm region (for X-H bond length calculations) """ myqm.set_calculator(mycalculator) return myqm.get_potential_energy() def run(self, atoms): """Runs QMs and MM""" self.forces = np.zeros((len(atoms), 3)) self.calculate_qms() # update QM charges to MM topology file self.set_qm_charges_to_mm_topology() #generate gromacs run file (.tpr) base on new topology self.mm_calculator.generate_gromacs_run_file() self.calculate_mm() def calculate(self, atoms): """gets all energies and forces (qm, mm, qm-mm and corrections)""" self.run(atoms) self.energy = sum(self.qm_energies)+self.mm_energy #map the forces of QM systems to all atoms #loop over qm regions for qm, qm_force in zip(self.qms, self.qm_forces): #loop over qm atoms in a qm region #set forces to the all-atom set (the all atom set does not # have link atoms) for iqm_atom, qm_atom in enumerate(qm): self.forces[qm_atom] = self.forces[qm_atom] + \ qm_force[iqm_atom] self.get_link_atom_forces(action = 'QM') def get_link_atoms(self, qm_links, mm_links, \ force_constants,\ equilibrium_distances_xh, equilibrium_distances_xy): """ QM atoms can be bonded to MM atoms. In this case one sets an extra H atom (a link atom). The positions of the all link H atoms in all qm regions are set along QM-MM and bond with length defined by: J. Chem. Theory Comput 2011, 7, 761-777, Eq 1 r_XH = r_XY_current*(r_XH_from_qm_calculation /r_XY_from_forceField) """ import math from ase import Atom link_hs = [] for i_qm_region, (qm0, mm0) in enumerate (zip( qm_links, mm_links)): for i_link_atom, (qmatom, mmatom) in enumerate (zip(qm0, mm0)): dx = (self.positions[mmatom, 0] - self.positions[qmatom, 0]) dy = (self.positions[mmatom, 1] - self.positions[qmatom, 1]) dz = (self.positions[mmatom, 2] - self.positions[qmatom, 2]) d = math.sqrt(dx* dx+ dy* dy+ dz* dz) unit_x = dx/ d unit_y = dy/ d unit_z = dz/ d xh_bond_length = \ d*\ self.equilibrium_distances_xh[i_qm_region][i_link_atom]/\ self.equilibrium_distances_xy[i_qm_region][i_link_atom] posh_x = self.positions[qmatom, 0] + unit_x* xh_bond_length posh_y = self.positions[qmatom, 1] + unit_y* xh_bond_length posh_z = self.positions[qmatom, 2] + unit_z* xh_bond_length tmp_link_h = (Atom('H', position=(posh_x, posh_y, posh_z))) link_h = LinkAtom(atom=tmp_link_h, \ qm_region_index = i_qm_region,\ link_atom_index = i_link_atom) link_h.set_link_atom_qm_neighbor(qmatom) link_h.set_link_atom_mm_neighbor(mmatom) link_h.set_force_constant(\ force_constants[i_qm_region][i_link_atom]) link_h.set_equilibrium_distance_xh(equilibrium_distances_xh\ [i_qm_region][i_link_atom]) link_h.set_equilibrium_distance_xy(equilibrium_distances_xy\ [i_qm_region][i_link_atom]) link_hs.append(link_h) return (link_hs) def get_link_atom_forces(self, action): """ Add forces due to link atom to QM atom and to MM atom next to each link atom. Top Curr Chem (2007) 268: 173-290 QM/MM Methods for Biological Systems Hans Martin Senn and Walter Thiel Eqs. 10(p192), 12(p193), 16a, 16b(p 194) """ for link_atom in self.link_atoms: i_qm_atom = link_atom.qm_neighbor i_mm_atom = link_atom.mm_neighbor i_qm_region = link_atom.qm_region_index link_atom_index_in_qm = link_atom.get_link_atom_index_in_qm() if (action == 'QM'): force_of_h = self.qm_forces[i_qm_region][link_atom_index_in_qm] elif (action == 'MM'): force_of_h = link_atom.mm_force else: print('not implemented in get_link_atom_forces') sys.exit() g = link_atom.equilibrium_distance_xh/\ link_atom.equilibrium_distance_xy self.forces[i_mm_atom, 0] = self.forces[i_mm_atom, 0] +\ force_of_h[0] * g self.forces[i_mm_atom, 1] = self.forces[i_mm_atom, 1] +\ force_of_h[1] * g self.forces[i_mm_atom, 2] = self.forces[i_mm_atom, 2] +\ force_of_h[2] * g self.forces[i_qm_atom, 0] = self.forces[i_qm_atom, 0] +\ force_of_h[0] * (1.0 - g) self.forces[i_qm_atom, 1] = self.forces[i_qm_atom, 1] +\ force_of_h[1] * (1.0 - g) self.forces[i_qm_atom, 2] = self.forces[i_qm_atom, 2] +\ force_of_h[2] * (1.0 - g) def add_energy_exclusion_group(self, indexfilename='index.ndx'): """ Add energy exclusions for MM calculations. This is the way to block non-bonded MM (coulomb&vdW) interactions within a single QM region. """ infile = open(indexfilename,'r') lines = infile.readlines() infile.close() qm_region_names = [] for line in lines: if (('QM' in line) or ('Qm' in line) or ('qm' in line)): qm_region_names.append(line.split()[1]) infile = open(self.mm_calculator.base_filename+'.mdp','r') lines = infile.readlines() infile.close() outfile = open(self.mm_calculator.base_filename+'.mdp','w') for line1 in lines: outfile.write(line1) outfile.write(';qm regions should not MM-interact with themselves \n') outfile.write(';but separate qm regions MM-interact with each other \n') outfile.write('energygrps = ') for name in qm_region_names: outfile.write(name + ' ') outfile.write('\n') outfile.write('energygrp_excl = ') for name in qm_region_names: outfile.write(name + ' ' + name + ' ') outfile.write('\n') outfile.close() return def add_exclusions(self): """ Add energy exclusions for MM calculations. This is the way to block non-bonded MM (coulomb&vdW) interactions within a single QM region. """ infile = open(self.mm_calculator.topology_filename,'r') lines = infile.readlines() infile.close() outfile = open(self.mm_calculator.topology_filename,'w') for line in lines: if '[ angle' in line: outfile.write('\n') outfile.write('[ exclusions ] \n') outfile.write(\ '; qm regions should not MM-interact with themselves \n') outfile.write(\ '; but separate qm regions MM-interact with each other \n') for qm_region in self.qms: for qm_atom1 in qm_region: outfile.write(str(qm_atom1 + 1) + ' ') for qm_atom2 in qm_region: if qm_atom1 != qm_atom2: outfile.write(str(qm_atom2 + 1) + ' ') outfile.write('\n') outfile.write('\n') outfile.write(line) outfile.close() return def get_qm_charges(self, i_current_qm, calculator='Aims', number_of_link_atoms = 0): """ Get partial charges on QM atoms. The charges at link atoms are not returned. """ if calculator == 'Aims': infile = open('aims'+str(i_current_qm)+'.out','r') lines = infile.readlines() infile.close() qm_charges = [] for line in lines: if ('Hirshfeld charge ' in line): qm_charges.append(float(line.split()[4])) sum_qm_charges = sum(qm_charges) #delete charges of link atoms if (number_of_link_atoms > 0): del qm_charges[-number_of_link_atoms:] return sum_qm_charges, qm_charges def get_topology_lines(self, lines): """ Get lines including charges of atoms (ok_lines) also comments in these lines (comment_lines) and lines before and after these lines (lines_before and lines_after) """ lines_before = [] lines_change = [] lines_after = [] do_lines_before = True do_lines_change = False for line in lines: if (' bonds ') in line: do_lines_change = False if do_lines_before: lines_before.append(line) elif do_lines_change: lines_change.append(line) else: lines_after.append(line) if (' atoms ') in line: do_lines_before = False do_lines_change = True #kill comments and empty lines, #get the charge in the topology file comment_lines = [] lines_ok = [] for iline in range(len(lines_change)): if lines_change[iline].startswith(';'): comment_lines.append(lines_change[iline]) elif not lines_change[iline].strip(): pass else: try: #new charge = float(lines_change[iline].split()[6]) #new charge_orig = charge_orig + charge #top_charge.append(charge) lines_ok.append(lines_change[iline]) except: print('error in reading gromacs topology') print('line is') print('%s' % lines_change[iline]) sys.exit() return lines_before, comment_lines, lines_ok, lines_after def set_qm_charges_to_mm_topology(self): """ Set qm charges to qm atoms of MM topology based on a QM calculation. 1) The charges of link atoms are neglected. 2) The charge of a qm atom next to the link atom is set to be the same value as in the original topology file. (trying to avoid the artificial polarization due to qmAtom-linkH). 3) the total charge of the system (all QM and MM atoms) should be the same as in the original classical system. Therefore, all the QM atoms will gain/loose an equal amount of charge in the MM topology file. """ infile = open(self.mm_calculator.topology_filename,'r') lines = infile.readlines() infile.close() (lines_before, comment_lines, lines_ok, lines_after) = \ self.get_topology_lines(lines) #check that the atom numering is ok for iline in range(len(lines_ok)): atom_nr = iline + 1 if int(lines_ok[iline].split()[0]) != atom_nr: print('2: error in reading gromacs topology') print('line is') print('%s' % lines_ok[iline]) sys.exit() # get the total charge of non-link H atoms in the current qm system # The charges of edge atoms and their H neighbors # are taken from topology # (they are unchanged, it is not from QM calculations) for iqm, qm in enumerate(self.qms): charges = self.qm_charges[iqm] charges_ok = charges qm_charge_no_link_edge_mm = 0.0 n_qm_charge_atoms = 0 for qm_atom, charge in zip(qm, charges): if qm_atom not in self.constant_charge_qms: qm_charge_no_link_edge_mm = \ qm_charge_no_link_edge_mm + charge n_qm_charge_atoms = n_qm_charge_atoms + 1 # correct the total charge to be equal the original one # in the topology file by # adding/ substracting missing/extra charge on # non-edge and non-single neighbor next neib QM atoms change_charge = \ ( self.classical_target_charge_sums[iqm] - \ qm_charge_no_link_edge_mm)/\ float(n_qm_charge_atoms) for iqmatom, qmatom in enumerate(qm): if qmatom not in self.constant_charge_qms: charges_ok[iqmatom] = charges[iqmatom] + change_charge # set qm charges to the lines of gromacs topology file for iqmatom, qmatom in enumerate(qm): if qmatom not in self.constant_charge_qms: lines_ok[qmatom] = \ lines_ok[qmatom][0:45]\ +str(round((charges_ok[iqmatom]),5)).rjust(11)+\ lines_ok[qmatom][56:70] # write out the new topology file sum_charge = 0.0 for iline in range(len(lines_ok)): sum_charge = sum_charge + float(lines_ok[iline][46:56]) comment = '; qtot '+str(round(sum_charge,4))+'\n'.ljust(12) outfile = open(self.mm_calculator.topology_filename, 'w') for line in lines_before: outfile.write(line) for line in comment_lines: outfile.write(line) sum_charge = 0.0 for line in lines_ok: sum_charge = sum_charge + float(line[46:56]) comment = '; qtot '+str(round(sum_charge,4)).ljust(11)+'\n' outfile.write(line[0:70]+comment) outfile.write('\n') for line in lines_after: outfile.write(line) outfile.close() #------------------------------------------------------------------ #------Below the stuff needed for initializing the QM/MM system --- #------Setting up link atoms, defining QM and MM regions ---------- #------------------------------------------------------------------ def get_edge_qm_and_mm_atoms(self, qms, system): """ Get neighbors of QM atoms (MM-link-atoms) that are not in QM (there may be many QM regions) edge-QM atom can NOT be neighbored by H atom(s) also get edge-QM atoms """ masses = system.get_masses() mms1 = [] qms1 = [] setmms1 = set([]) setqms1 = set([]) for qm in qms: link_mm_atoms = [] link_qm_atoms = [] for qm_atom in qm: indices, offsets = self.neighbor_list.get_neighbors(qm_atom) for neib_atom in indices: if neib_atom not in qm: link_mm_atoms.append(neib_atom) #take unique atoms of flattened list link_mm_atoms = list(set(link_mm_atoms)) # Kill MM atoms that are H atoms in the neighborlist oklink_mm_atoms = [] for index in link_mm_atoms: if masses[index] > 1.5: oklink_mm_atoms.append(index) else: print('WARNING:') print('qm system cannot be bond to H atoms') print('problem atom index is (numbering from 1): %s' \ % str(index+1)) print('if this is water H you should consider including it') print('in QM') #sys.exit() #get indexes of QM edge atoms, # one qm atom can be more then one time an edge atom # (then this QM atom will have more than one link atoms) for link_mm_atom in oklink_mm_atoms: indices, offsets = \ self.neighbor_list.get_neighbors(link_mm_atom) for neib_atom in indices: if neib_atom in qm: link_qm_atoms.append(neib_atom) mms1.append(oklink_mm_atoms) qms1.append(link_qm_atoms) setmms1 |= set(oklink_mm_atoms) setqms1 |= set(link_qm_atoms) return mms1, qms1, setmms1, setqms1 def get_next_neighbors(self, atom_indexes, prohibited_set): """ Get neighbors of all atoms in 'atom_indexes' that are not in 'prohibited_set'. 'atom_indexes' is a list of list in which atom indexes belonging of each QM region is a separate list, that is [[QM1 atom_indexes], [QM2 atom_indexes], ...] """ list_neibs = [] set_list_neibs = set([]) for current_atoms in atom_indexes: neibs = [] set_current_atoms = set(current_atoms) for current_atom in current_atoms: indices, offsets = \ self.neighbor_list.get_neighbors(current_atom) setneib = set(indices) neibs += list(setneib - set_current_atoms-prohibited_set) list_neibs.append(neibs) set_list_neibs |= set(neibs) return list_neibs, set_list_neibs def get_constant_charge_qms(self, set_qms_edge, set_second_qms): """ get indices of all qm atoms whose charge in MM calculations is taken from the original MM-topology (not from the QM calculation). These atoms are edge QM atoms and their neighbors in QM which have only one neighbor. At least C(edge-qm)-H(second-edge-qm) and C(edge-qm)=O(second-edge-qm) """ set_charge_exclusion = set_qms_edge for second_qms in set_second_qms: indices, offsets = self.neighbor_list.get_neighbors(second_qms) if len(indices)== 1: set_charge_exclusion.add(second_qms) return set_charge_exclusion def get_eq_distances_xy(\ self, topfilename = 'gromos.top', force_field = 'oplsaa'): """ The link atom is positioned as in J. Chem. Theory Comput 2011, 7, 761-777, Eq 1 For this purpose we need the equilibrium length of each QM-MM covalent bond. Those are obtained here from the files of the force field. """ import os print('in get_eq_distances_xy, topfilename=') print ('%s' % topfilename) for qm in self.qms_edge: equilibrium_distance_xy = [] for iqm in qm: equilibrium_distance_xy.append(0.0) self.equilibrium_distances_xy.append(equilibrium_distance_xy) #get the version of the topology file where one sees the bond # force constants (file is named as gromacs.top.dump) try: os.remove(self.mm_calculator.base_filename+'.tpr.dump') except OSError: pass os.system('gmxdump -s '+ self.mm_calculator.base_filename\ +'.tpr > ' + \ self.mm_calculator.base_filename+ \ '.tpr.dump 2>/dev/null') if 'GMXDATA' in os.environ: gromacs_home = os.environ['GMXDATA'].split(':')[0] else: gromacs_home = '/usr/local/gromacs/share/gromacs/' #read the bonded force constants of this force field in order to #get an estimate for X-Y bond constant linesff = open(gromacs_home+ '/top/'+ force_field+ \ '.ff/ffbonded.itp', 'r').readlines() oklinesff = [] start = False for line in linesff: if 'bondtypes' in line: start = True elif '[' in line: break if start and (line.strip()): oklinesff.append(line) #lines for getting oplsaa atom dual-types if 'opls' in force_field: lines_for_dual_types = open(gromacs_home+ '/top/'+ force_field+ \ '.ff/ffnonbonded.itp', 'r').readlines() #read the types of interaction for bond stretching lines_tpr = open(self.mm_calculator.base_filename+\ '.tpr.dump', 'r').readlines() #read the topology file to get QM atom type lines_top = open(topfilename, 'r').readlines() oklines_top = [] start = False for line in lines_top: if start and ('[' in line): break if start: if (not line.startswith(';')) or (not line.strip()): oklines_top.append(line) if '[ atoms' in line: start = True #get force constant and bond eq distance for all QM-MM bonds # ok_equilibrium_distances_xy = [] ok_qmatom_types = [] ok_mmatom_types = [] for qm0, mm0, eqsxy in zip( self.qms_edge, self.mms_edge, \ self.equilibrium_distances_xy): ok_eqxy = [] ok_qmatom_type = [] ok_mmatom_type = [] for qmatom, mmatom, eqxy in \ zip(qm0, mm0, eqsxy): #find qm-mm bond in topology file (indexes from 0) # get the index for interaction interaction = 'empty' for line in lines_tpr: if (' type' in line) and ('BONDS' in line): if (qmatom == int(line.split()[3])) and \ (mmatom == int(line.split()[4])): interaction = line.split()[1].lstrip('type=') break if (qmatom == int(line.split()[4])) and \ (mmatom == int(line.split()[3])): interaction = line.split()[1].lstrip('type=') break if interaction == 'empty': print('QM-MM bond not found in topology') print('atoms are: QM, MM: (from 1 indexing) %s' \ % str(qmatom+1) + str(mmatom+1)) sys.exit() for line in lines_tpr: if ('functype['+interaction+']=BONDS') in line: r_xy0 = float(line.split()[2].rstrip(',')) #get type of the QM atom qmatom_type = 'empty' for line in oklines_top: if (int(line.split()[0] ) == qmatom+ 1): qmatom_type = line.split()[1] #oplsaa atom type has a double name, #the other one is used in file ffbonded.itp break if (qmatom_type == 'empty'): print('problem in QM atom type') sys.exit() if 'opls' in force_field: found = False for line in lines_for_dual_types: if (qmatom_type == line.split()[0]): qmatom_type = line.split()[1] found = True break if not found: print('problem in QM atom type') print('with OPLSAA force field dual atom types') sys.exit() #get type of the true link-MM atom mmatom_type = 'empty' for line in oklines_top: if (int(line.split()[0] ) == mmatom+ 1): mmatom_type = line.split()[1] #oplsaa atom type has a double name, #the other one is used in file ffbonded.itp break if (mmatom_type == 'empty'): print('problem in MM atom type') sys.exit() if 'opls' in force_field: found = False for line in lines_for_dual_types: if (mmatom_type == line.split()[0]): mmatom_type = line.split()[1] found = True break if not found: print('problem in MM atom type') print('with OPLSAA force field dual atom types') sys.exit() ok_qmatom_type.append(qmatom_type) ok_mmatom_type.append(mmatom_type) if (eqxy != 0.0): #use eq constant given by the user ok_eqxy.append(eqxy) else: ok_eqxy.append(r_xy0) ok_equilibrium_distances_xy.append(ok_eqxy) ok_qmatom_types.append(ok_qmatom_type) ok_mmatom_types.append(ok_mmatom_type) outfile = open('qm-mm-linkAtomsInfo.txt','w') outfile.write(\ '=======================================================\n') outfile.write('Information about QM-MM boundary(ies) \n') outfile.write(\ 'Created using the Atomic Simulation Environment (ASE) \n') outfile.write(\ '=======================================================\n') qmregion_count = 0 # ADD qm-mm-linkAtomsInfo.txt for qm, mm, eqs_xy, eqs_xh, qmtypes, mmtypes in zip\ (self.qms_edge, self.mms_edge, ok_equilibrium_distances_xy,\ self.equilibrium_distances_xh,\ ok_qmatom_types, ok_mmatom_types): outfile.write(\ '=======================================================\n') qmregion_count = qmregion_count+ 1 outfile.write('Parameters related to QM region number '+\ str(qmregion_count)+'\n') for qmatom, mmatom, eq_xy, eq_xh, qmtype, mmtype in zip\ (qm, mm, eqs_xy, eqs_xh,\ qmtypes, mmtypes): outfile.write('qm-link-atom-index (from 1): '+str(qmatom)+'\n') outfile.write('qm-link-atom-type: '+str(qmtype)+'\n') outfile.write('mm-link-atom-index (from 1): '+str(mmatom)+'\n') outfile.write('mm-link-atom-type: '+str(mmtype)+'\n') outfile.write('qm-mm(notH)-equilibrium-distance: '\ +str(eq_xy)+' nm\n') outfile.write('qm-H-equilibrium-distance(calculated by QM): '\ +str(eq_xh)+' nm\n') outfile.close() self.equilibrium_distances_xy = ok_equilibrium_distances_xy self.qmatom_types = ok_qmatom_types self.mmatom_types = ok_mmatom_types return def write_eq_distances_to_file( self, qm_links, filename='linkDATAout.txt'): """ Write classical bond equilibrium lengths for XY (X in QM, Y in MM) Write QM calculated XH(link atom) bond length (X in QM, H link atom) """ outfile = open(filename, 'w') for iqm_region, qmlink in enumerate (qm_links): for ilink, dummy in enumerate (qmlink): data = self.equilibrium_distances_xy[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.equilibrium_distances_xh[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.force_constants[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.qmatom_types[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') data = self.mmatom_types[iqm_region][ilink] outfile.write(str(data)+' ') outfile.write('\n') outfile.close() return def read_eq_distances_from_file(self, filename='linkDATAin.txt'): """ Read classical bond equilibrium lengths for XY (X in QM, Y in MM) or XH (X in QM, H link atom) """ myfile = open(filename, 'r') self.equilibrium_distances_xy = [] self.equilibrium_distances_xh = [] self.force_constants = [] self.qmatom_types = [] self.mmatom_types = [] print('Reading X-H and other data from file: %s' % filename) for qm in self.qms_edge: equilibrium_distance_xy = [] equilibrium_distance_xh = [] force_constant = [] qmatom_type = [] mmatom_type = [] for iqm, dum in enumerate(qm): line = myfile.readline() equilibrium_distance_xy.append(float(line.split()[0])) line = myfile.readline() equilibrium_distance_xh.append(float(line.split()[0])) line = myfile.readline() force_constant.append(float(line.split()[0])) line = myfile.readline() qmatom_type.append(line.split()[0]) line = myfile.readline() mmatom_type.append(line.split()[0]) self.equilibrium_distances_xy.append(equilibrium_distance_xy) self.equilibrium_distances_xh.append(equilibrium_distance_xh) self.force_constants.append(force_constant) self.qmatom_types.append(qmatom_type) self.mmatom_types.append(mmatom_type) myfile.close() return def get_eq_qm_atom_link_h_distances(self, system_tmp): """ get equilibrium QMatom-linkH distances for all linkH:s by QM """ #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from scipy.optimize import fmin def qm_bond_energy_function(x, system_tmp, i_qm_region): """ get the qm energy of a single qm system with a given edge-qm-atom---link-h-atom distances of that qm region The qm region is i_qm_region, all edge-qm-atom---link-h-atom distance in this qm_region are optimized simultaneously """ BIG_VALUE = 100000000.0 for index_x, current_x in enumerate(x): self.equilibrium_distances_xh\ [i_qm_region][index_x] = current_x print('current X-H bond lengths [nm]') print('%s' % str(x)) self.link_atoms = self.get_link_atoms(\ self.qms_edge, self.mms_edge,\ self.force_constants,\ self.equilibrium_distances_xh, \ self.equilibrium_distances_xy) self.qmsystems = \ self.define_QM_clusters_in_vacuum(system_tmp) #try: single_qm_energy = self.calculate_single_qm(\ self.qmsystems[i_qm_region],\ self.qm_calculators[i_qm_region]) #except RuntimeError: # single_qm_energy = BIG_VALUE return single_qm_energy print('=====================================================') print('Calculating X-H bond lengths and bond force constants') print('by QM in one shot for each QM region.') print('In later calculations you can: ') print('cp linkDATAout.txt linkDATAin.txt') print("and set link_info = 'byFILE'") print('=====================================================') self.equilibrium_distances_xh = [] self.force_constants = [] for qm_edges in self.qms_edge: force_constants = [] equilibrium_distances_xh = [] for qm_edge in qm_edges: force_constants.append(0.0) equilibrium_distances_xh.append(0.11) self.force_constants.append(force_constants) self.equilibrium_distances_xh.append(equilibrium_distances_xh) #loop over qm regions. To get optimal simultaneous # edgeQMatom-linkH distance(s) in [nm] in that qm region for i_qm_region in range(len(self.qms_edge)): print('NOW running : ') print('QM region for optimising edge-linkH distances %s'\ % str(i_qm_region)) x = self.equilibrium_distances_xh[i_qm_region][:] xopt = fmin(qm_bond_energy_function, \ x,\ args=(system_tmp, i_qm_region),\ xtol=0.0001, ftol=0.0001) for index_xopt, current_xopt in enumerate(xopt): self.equilibrium_distances_xh\ [i_qm_region][index_xopt] = current_xopt print('i_qm_region, i_link_atom, optimal X-H bond[nm] %s' \ % (str(i_qm_region) + ' ' + str(index_xopt) \ + ' ' + str(current_xopt))) def define_QM_clusters_in_vacuum(self, system): """ Returns Each QM system as an Atoms object We get a list of these Atoms objects (in case we have many QM regions). """ from ase import Atoms qmsystems = [] for qm0 in self.qms: tmp_system = Atoms() for qmatom in qm0: tmp_system += system[qmatom] qmsystems.append(tmp_system) for link_atom in self.link_atoms: tmp_atom = link_atom.get_link_atom() qm_region = link_atom.get_link_atom_qm_region_index() link_atom_index_in_qm = len(qmsystems[qm_region]) qmsystems[qm_region].append(tmp_atom) link_atom.set_link_atom_index_in_qm(link_atom_index_in_qm) return qmsystems def kill_top_lines_containing_only_qm_atoms(self, \ intopfilename, \ qms, outtopfilename): """ Delete all lines in the topology file that contain only qm atoms in bonded sections (bonds, angles or dihedrals) and in pairs section (1-4 interactions) """ # get an index of all qm atoms in all qm regions qm = set() for qm_tmp in qms: qm = qm.union(set(qm_tmp)) infile = open(intopfilename,'r') lines = infile.readlines() infile.close() outfile = sys.stdout oklines = [] accept = True check = '' for line in lines: if (('[ bonds' in line)): oklines.append(line) accept = False check = 'bond' elif (('[ angles' in line)): oklines.append(line) accept = False check = 'angle' elif (('[ dihedrals' in line)): oklines.append(line) accept = False check = 'dihedral' elif (('[ pairs' in line)): oklines.append(line) accept = False check = 'pair' elif ('[' in line): oklines.append(line) accept = True check = '' elif line in ['\n']: oklines.append(line) accept = True check = '' elif accept: oklines.append(line) else: indexes = [int(float(s)-1.0) \ for s in line.split() if s.isdigit()] indexes1 = [int(s) for s in line.split() if s.isdigit()] if indexes == []:# this takes comment line #after bond, angle, dihedral oklines.append(line) elif check == 'bond': bondedatoms = set(indexes[0:2]) #set empty bond intereaction for qm-qm bonds (type 5) #(this way LJ and electrostatics is not messed up) if (bondedatoms.issubset(qm)): newline = str(indexes1[0]).rjust(8)+\ str(indexes1[1]).rjust(8)+\ ('5').rjust(8) + '\n' oklines.append(newline) else: oklines.append(line) elif check == 'angle': bondedatoms = set(indexes[0:3]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) elif check == 'dihedral': bondedatoms = set(indexes[0:4]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) elif check == 'pair': bondedatoms = set(indexes[0:2]) if (bondedatoms.issubset(qm)): pass else: oklines.append(line) outfile = open(outtopfilename,'w') for line in oklines: outfile.write(line) outfile.close() return def get_classical_target_charge_sums(self, intopfilename, qms): """ get sum of MM charges of the charged changed by QM these are qm atoms that are not link-atoms or edge-qm atoms xxx this has a problem: Water is in .itp files, not in topology... """ infile = open(intopfilename,'r') lines = infile.readlines() infile.close() (lines_before, comment_lines, ok_lines, lines_after) = \ self.get_topology_lines(lines) classical_target_charge_sums = [] for iqm, qm in enumerate(qms): classical_target_charge_sum = 0.0 for line in ok_lines: atom_index = int(line.split()[0])-1 if (atom_index in qm) and \ (not(atom_index in self.constant_charge_qms)): classical_target_charge_sum = \ classical_target_charge_sum + \ float(line.split()[6]) classical_target_charge_sums.\ append(classical_target_charge_sum) return classical_target_charge_sums
gpl-2.0
bhargav/scikit-learn
sklearn/cluster/tests/test_k_means.py
41
27789
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.utils.testing import if_not_mac_os from sklearn.utils.testing import assert_raise_message from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.exceptions import DataConversionWarning # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) @if_safe_multiprocessing_with_blas def test_k_means_plus_plus_init_2_jobs(): if sys.version_info[:2] < (3, 4): raise SkipTest( "Possible multi-process bug with some BLAS under Python < 3.4") km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regex(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regex(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_explicit_init_shape(): # test for sensible errors when giving explicit init # with wrong number of features or clusters rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 3)) for Class in [KMeans, MiniBatchKMeans]: # mismatch of number of features km = Class(n_init=1, init=X[:, :2], n_clusters=len(X)) msg = "does not match the number of features of the data" assert_raises_regex(ValueError, msg, km.fit, X) # for callable init km = Class(n_init=1, init=lambda X_, k, random_state: X_[:, :2], n_clusters=len(X)) assert_raises_regex(ValueError, msg, km.fit, X) # mismatch of number of clusters msg = "does not match the number of clusters" km = Class(n_init=1, init=X[:2, :], n_clusters=3) assert_raises_regex(ValueError, msg, km.fit, X) # for callable init km = Class(n_init=1, init=lambda X_, k, random_state: X_[:2, :], n_clusters=3) assert_raises_regex(ValueError, msg, km.fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42, n_clusters=2) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error msg = "does not match the number of clusters" assert_raises_regex(ValueError, msg, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42, n_init=1) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42, n_init=1) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_predict_equal_labels(): km = KMeans(random_state=13, n_jobs=1, n_init=1, max_iter=1) km.fit(X) assert_array_equal(km.predict(X), km.labels_) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1) def test_x_squared_norms_init_centroids(): """Test that x_squared_norms can be None in _init_centroids""" from sklearn.cluster.k_means_ import _init_centroids X_norms = np.sum(X**2, axis=1) precompute = _init_centroids( X, 3, "k-means++", random_state=0, x_squared_norms=X_norms) assert_array_equal( precompute, _init_centroids(X, 3, "k-means++", random_state=0)) def test_max_iter_error(): km = KMeans(max_iter=-1) assert_raise_message(ValueError, 'Number of iterations should be', km.fit, X)
bsd-3-clause
cphyc/matplotlib-label-lines
labellines/test.py
1
7046
import warnings from datetime import datetime import matplotlib.pyplot as plt import numpy as np import pytest from matplotlib.dates import UTC, DateFormatter, DayLocator from matplotlib.testing import setup from numpy.testing import assert_raises from .core import labelLine, labelLines @pytest.fixture() def setupMpl(): setup() plt.clf() @pytest.mark.mpl_image_compare def test_linspace(setupMpl): x = np.linspace(0, 1) K = [1, 2, 4] for k in K: plt.plot(x, np.sin(k * x), label=rf"$f(x)=\sin({k} x)$") labelLines(plt.gca().get_lines(), zorder=2.5) plt.xlabel("$x$") plt.ylabel("$f(x)$") return plt.gcf() @pytest.mark.mpl_image_compare def test_ylogspace(setupMpl): x = np.linspace(0, 1) K = [1, 2, 4] for k in K: plt.plot(x, np.exp(k * x), label=r"$f(x)=\exp(%s x)$" % k) plt.yscale("log") labelLines(plt.gca().get_lines(), zorder=2.5) plt.xlabel("$x$") plt.ylabel("$f(x)$") return plt.gcf() @pytest.mark.mpl_image_compare def test_xlogspace(setupMpl): x = np.linspace(0, 1) K = [1, 2, 4] for k in K: plt.plot(10 ** x, k * x, label=r"$f(x)=%s x$" % k) plt.xscale("log") labelLines(plt.gca().get_lines(), zorder=2.5) plt.xlabel("$x$") plt.ylabel("$f(x)$") return plt.gcf() @pytest.mark.mpl_image_compare def test_xylogspace(setupMpl): x = np.geomspace(1e-1, 1e1) K = np.arange(-5, 5, 2) for k in K: plt.plot(x, x ** k, label=rf"$f(x)=x^{{{k}}}$") plt.xscale("log") plt.yscale("log") labelLines(plt.gca().get_lines(), zorder=2.5) plt.xlabel("$x$") plt.ylabel("$f(x)$") return plt.gcf() @pytest.mark.mpl_image_compare def test_align(setupMpl): x = np.linspace(0, 2 * np.pi) y = np.sin(x) lines = plt.plot(x, y, label=r"$\sin(x)$") labelLines(lines, align=False) return plt.gcf() @pytest.mark.mpl_image_compare def test_labels_range(setupMpl): x = np.linspace(0, 1) plt.plot(x, np.sin(x), label=r"$\sin x$") plt.plot(x, np.cos(x), label=r"$\cos x$") labelLines(plt.gca().get_lines(), xvals=(0, 0.5)) return plt.gcf() @pytest.mark.mpl_image_compare def test_dateaxis_naive(setupMpl): dates = [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3)] plt.plot(dates, [0, 5, 3], label="apples") plt.plot(dates, [3, 6, 2], label="banana") ax = plt.gca() ax.xaxis.set_major_locator(DayLocator()) ax.xaxis.set_major_formatter(DateFormatter("%Y-%m-%d")) labelLines(ax.get_lines()) return plt.gcf() @pytest.mark.mpl_image_compare def test_dateaxis_advanced(setupMpl): dates = [ datetime(2018, 11, 1, tzinfo=UTC), datetime(2018, 11, 2, tzinfo=UTC), datetime(2018, 11, 5, tzinfo=UTC), datetime(2018, 11, 3, tzinfo=UTC), ] plt.plot(dates, [0, 5, 3, 0], label="apples") plt.plot(dates, [3, 6, 2, 1], label="banana") ax = plt.gca() ax.xaxis.set_major_locator(DayLocator()) ax.xaxis.set_major_formatter(DateFormatter("%Y-%m-%d")) labelLines(ax.get_lines()) return plt.gcf() @pytest.mark.mpl_image_compare def test_polar(setupMpl): t = np.linspace(0, 2 * np.pi, num=128) plt.plot(np.cos(t), np.sin(t), label="$1/1$") plt.plot(np.cos(t), np.sin(2 * t), label="$1/2$") plt.plot(np.cos(3 * t), np.sin(t), label="$3/1$") ax = plt.gca() labelLines(ax.get_lines()) return plt.gcf() @pytest.mark.mpl_image_compare def test_non_uniform_and_negative_spacing(setupMpl): x = [1, -2, -3, 2, -4, -3] plt.plot(x, [1, 2, 3, 4, 2, 1], ".-", label="apples") plt.plot(x, [6, 5, 4, 2, 5, 5], "o-", label="banana") ax = plt.gca() labelLines(ax.get_lines()) return plt.gcf() @pytest.mark.mpl_image_compare def test_errorbar(setupMpl): x = np.linspace(0, 1, 20) y = x ** 0.5 dy = x plt.errorbar(x, y, yerr=dy, label=r"$\sqrt{x}\pm x$") y = x ** 3 dy = x plt.errorbar(x, y, yerr=dy, label=r"$x^3\pm x$") ax = plt.gca() labelLines(ax.get_lines()) return plt.gcf() def test_nan_warning(): x = np.array([0, 1, 2, 3]) y = np.array([np.nan, np.nan, 0, 1]) line = plt.plot(x, y, label="test")[0] with warnings.catch_warnings(record=True) as w: labelLine(line, 0.5) assert issubclass(w[-1].category, UserWarning) assert "could not be annotated" in str(w[-1].message) with warnings.catch_warnings(record=True) as w: labelLine(line, 2.5) assert len(w) == 0 def test_nan_failure(): x = np.array([0, 1]) y = np.array([np.nan, np.nan]) line = plt.plot(x, y, label="test")[0] with assert_raises(Exception): labelLine(line, 0.5) @pytest.mark.mpl_image_compare def test_label_range(setupMpl): x = np.linspace(0, 1) line = plt.plot(x, x ** 2)[0] # This should fail with assert_raises(Exception): labelLine(line, -1) with assert_raises(Exception): labelLine(line, 2) # This should work labelLine(line, 0.5) return plt.gcf() @pytest.mark.mpl_image_compare def test_negative_spacing(setupMpl): x = np.linspace(1, -1) y = x ** 2 line = plt.plot(x, y)[0] # Should not throw an error labelLine(line, 0.2, label="Test") return plt.gcf() @pytest.mark.mpl_image_compare def test_label_datetime_plot(setupMpl): plt.clf() # data from the chinook database of iTunes music sales x = np.array( [ "2009-01-31T00:00:00.000000000", "2009-02-28T00:00:00.000000000", "2009-03-31T00:00:00.000000000", "2009-04-30T00:00:00.000000000", "2009-06-30T00:00:00.000000000", "2009-09-30T00:00:00.000000000", "2009-10-31T00:00:00.000000000", "2009-11-30T00:00:00.000000000", ], dtype="datetime64[ns]", ) y = np.array([13.86, 14.85, 28.71, 42.57, 61.38, 76.23, 77.22, 81.18]) line = plt.plot_date(x, y, "-")[0] plt.xticks(rotation=45) # should not throw an error xlabel = datetime(2009, 3, 15) labelLine(line, xlabel, "USA") plt.tight_layout() return plt.gcf() def test_yoffset(setupMpl): x = np.linspace(0, 1) for yoffset in ([-0.5, 0.5], 1, 1.2): # try lists # try int # try float plt.clf() ax = plt.gca() ax.plot(x, np.sin(x) * 10, label=r"$\sin x$") ax.plot(x, np.cos(x) * 10, label=r"$\cos x$") lines = ax.get_lines() labelLines( lines, xvals=(0.2, 0.7), align=False, yoffsets=yoffset, bbox={"alpha": 0} ) @pytest.mark.mpl_image_compare def test_outline(setupMpl): x = np.linspace(-2, 2) plt.ylim(-1, 5) plt.xlim(-2, 2) for dy, xlabel, w in zip( np.linspace(-1, 1, 5), np.linspace(-1.5, 1.5, 5), np.linspace(0, 16, 5), ): y = x ** 2 + dy (line,) = plt.plot(x, y, label=f"width={w}") labelLine(line, xlabel, outline_width=w, outline_color="gray") return plt.gcf()
mit
ThomasMiconi/htmresearch
projects/union_pooling/experiments/union_sdr_overlap/plot_experiment.py
12
4519
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import argparse import csv import os import sys import matplotlib.pyplot as plt import numpy from htmresearch.support import data_utils _OVERLAPS_FILE_NAME = "/overlaps.csv" def main(inputPath, csvOutputPath, imgOutputPath): # remove existing /overlaps.csv if present if os.path.exists(csvOutputPath + _OVERLAPS_FILE_NAME): os.remove(csvOutputPath + _OVERLAPS_FILE_NAME) if not os.path.exists(csvOutputPath): os.makedirs(csvOutputPath) if not os.path.exists(imgOutputPath): os.makedirs(imgOutputPath) print "Computing Union SDR overlap between SDR traces in following dir:" print inputPath + "\n" filesAll = os.listdir(inputPath) files = [] for _ in xrange(len(filesAll)): if filesAll[_].find('unionSdrTrace') != -1: files.append(filesAll[_]) if len(files) != 2: print "Found {0} files at input path {1} - Requires exactly 2.".format( len(files), inputPath) sys.exit(1) pathNoLearn = inputPath + "/" + files[0] pathLearn = inputPath + "/" + files[1] print "Comparing files..." print pathLearn print pathNoLearn + "\n" # Load source A with open(pathLearn, "rU") as fileA: csvReader = csv.reader(fileA) dataA = [line for line in csvReader] unionSizeA = [len(datum) for datum in dataA] # Load source B with open(pathNoLearn, "rU") as fileB: csvReader = csv.reader(fileB) dataB = [line for line in csvReader] unionSizeB = [len(datum) for datum in dataB] assert len(dataA) == len(dataB) # To display all plots on the same y scale yRangeMax = 1.05 * max(max(unionSizeA), max(unionSizeB)) # Plot union size for data A x = [i for i in xrange(len(dataA))] stdDevs = None title = "Union Size with Learning vs. Time" data_utils.getErrorbarFigure(title, x, unionSizeA, stdDevs, "Time", "Union Size", yRangeMax=yRangeMax) figPath = "{0}/{1}.png".format(imgOutputPath, title) plt.savefig(figPath, bbox_inches="tight") # Plot union size for data B and save image title = "Union Size without Learning vs. Time" data_utils.getErrorbarFigure(title, x, unionSizeB, stdDevs, "Time", "Union Size", yRangeMax=yRangeMax) figPath = "{0}/{1}.png".format(imgOutputPath, title) plt.savefig(figPath, bbox_inches="tight") with open(csvOutputPath + _OVERLAPS_FILE_NAME, "wb") as outputFile: csvWriter = csv.writer(outputFile) overlaps = [getOverlap(dataA[i], dataB[i]) for i in xrange(len(dataA))] csvWriter.writerow(overlaps) outputFile.flush() # Plot overlap and save image title = "Learn-NoLearn Union SDR Overlap vs. Time" data_utils.getErrorbarFigure(title, x, overlaps, stdDevs, "Time","Overlap", yRangeMax=yRangeMax) figPath = "{0}/{1}.png".format(imgOutputPath, title) plt.savefig(figPath, bbox_inches="tight") raw_input("Press any key to exit...") def getOverlap(listA, listB): arrayA = numpy.array(listA) arrayB = numpy.array(listB) intersection = numpy.intersect1d(arrayA, arrayB) return len(intersection) def _getArgs(): """ Parses and returns command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument("--input", help="Path to unionSdrTrace .csv files") parser.add_argument("--csvOutput", help="Path for csv output.") parser.add_argument("--imgOutput", help="Path for image output.") return parser.parse_args() if __name__ == "__main__": args = _getArgs() main(args.input, args.csvOutput, args.imgOutput)
agpl-3.0
aolindahl/polarization-monitor
offline_viewer_2.py
1
17029
# -*- coding: utf-8 -*- """ Created on Wed Apr 22 15:32:02 2015 @author: Anton O Lindahl """ import h5py import numpy as np import matplotlib.pyplot as plt import lmfit import sys import os.path sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/aolPyModules') import cookie_box from BurningDetectors_V6 import projector proj = projector() plt.ion() h5_names = ['data/amom0115_5_1.h5', 'data/amom0115_16_0.h5', 'data/amom0115_25_0.h5'] h5_names = ['data/amom0115_31_0.h5'] photo_roi = [[240, 250]]*16 photo_roi_1 = [[237, 241]]*16 photo_roi_2 = [[242.5, 250]]*16 auger_roi = [[215, 220]]*16 traces = {} average_traces = {} time_scales = {} photo_roi_slices = {} photo_bg_slices = {} photo_roi_1_slices = {} photo_roi_2_slices = {} photo_bg_slices = {} photo_bg_1_slices = {} photo_bg_2_slices = {} auger_roi_slices = {} fee_mean = {} fee_valid = {} fee = {} auger_sum = {} auger_signals_average = {} photo_signals_average_corrected = {} bg_factors = {} photo_signals_corrected = {} auger_signals = {} auger_signals_average = {} auger_factors = {} photo_signals_average_corrected = {} photo_signals_1_average_corrected = {} photo_signals_2_average_corrected = {} bg_factors = {} bg_1_factors = {} bg_2_factors = {} photo_signals = {} photo_signals_1 = {} photo_signals_2 = {} photo_bg = {} photo_bg_1 = {} photo_bg_2 = {} photo_signals_corrected = {} photo_signals_1_corrected = {} photo_signals_2_corrected = {} bg_fit_coeffs = {} runs = [] for h5_name in h5_names: run = int(h5_name.split('_')[1]) runs.append(run) traces[run] = [] average_traces[run] = [] time_scales[run] = [] photo_roi_slices[run] = [] auger_roi_slices[run] = [] photo_bg_slices[run] = [] photo_signals_corrected[run] = [] bg_factors[run] = [] photo_roi_1_slices[run] = [] photo_roi_2_slices[run] = [] auger_roi_slices[run] = [] photo_bg_slices[run] = [] photo_bg_1_slices[run] = [] photo_bg_2_slices[run] = [] photo_bg[run] = [] photo_bg_1[run] = [] photo_bg_2[run] = [] photo_signals[run] = [] photo_signals_1[run] = [] photo_signals_2[run] = [] photo_signals_corrected[run] = [] photo_signals_1_corrected[run] = [] photo_signals_2_corrected[run] = [] auger_signals[run] = [] bg_factors[run] = [] bg_1_factors[run] = [] bg_2_factors[run] = [] bg_fit_coeffs[run] = [] # with h5py.File(h5_name, 'r+') as h5_file: h5_file = h5py.File(h5_name, 'r+') valid = np.zeros(h5_file['fee'].len(), dtype=bool) hits = h5_file.attrs.get('n_events_set') valid[:hits] = 1 fee[run] = h5_file['fee'][:, 2:].mean(axis=1) valid *= np.isfinite(fee[run]) * (fee[run] > 0.005) fee_valid[run] = fee[run][valid] fee_mean[run] = fee_valid[run].mean() for i in range(16): traces[run].append( h5_file['time_amplitudes/det_{}'.format(i)].value[valid, :]) average_traces[run].append(np.average(traces[run][i], axis=0) / np.mean(fee_mean[run])) # average_traces[run].append(np.average( # h5_file['time_amplitudes/det_{}'.format(i)].value[valid, :], # axis=0) * 1e3) time_scales[run].append( h5_file['time_scales/det_{}'.format(i)].value * 1e3) photo_roi_slices[run].append( slice(time_scales[run][i].searchsorted(photo_roi[i][0]), time_scales[run][i].searchsorted(photo_roi[i][1], side='right'))) photo_roi_1_slices[run].append( slice(time_scales[run][i].searchsorted(photo_roi_1[i][0]), time_scales[run][i].searchsorted(photo_roi_1[i][1], side='right'))) photo_roi_2_slices[run].append( slice(time_scales[run][i].searchsorted(photo_roi_2[i][0]), time_scales[run][i].searchsorted(photo_roi_2[i][1], side='right'))) photo_bg_slices[run].append(slice(photo_roi_slices[run][i].start - 30, photo_roi_slices[run][i].start)) photo_bg_1_slices[run].append( slice(photo_roi_1_slices[run][i].start - 10, photo_roi_1_slices[run][i].start)) photo_bg_2_slices[run].append( slice(photo_roi_2_slices[run][i].start - 5, photo_roi_2_slices[run][i].start)) bg_fit_coeffs[run].append(np.polyfit( time_scales[run][i][photo_bg_slices[run][i]], average_traces[run][i][photo_bg_slices[run][i]], 1)) bg_factors[run].append( np.polyval(bg_fit_coeffs[run][i], time_scales[run][i][photo_roi_slices[run][i]]).sum() / np.polyval(bg_fit_coeffs[run][i], time_scales[run][i][photo_bg_slices[run][i]]).sum()) # bg_factors[run].append((photo_roi_slices[run][i].stop - # photo_roi_slices[run][i].start) / # (photo_bg_slices[run][i].stop - # photo_bg_slices[run][i].start)) bg_1_factors[run].append((photo_roi_1_slices[run][i].stop - photo_roi_1_slices[run][i].start) / (photo_bg_1_slices[run][i].stop - photo_bg_1_slices[run][i].start)) bg_2_factors[run].append((photo_roi_2_slices[run][i].stop - photo_roi_2_slices[run][i].start) / (photo_bg_2_slices[run][i].stop - photo_bg_2_slices[run][i].start)) auger_roi_slices[run].append( slice(time_scales[run][i].searchsorted(auger_roi[i][0]), time_scales[run][i].searchsorted(auger_roi[i][1], side='right'))) photo_signals[run].append( traces[run][i][:, photo_roi_slices[run][i]].sum(axis=1)) photo_bg[run].append( traces[run][i][:, photo_bg_slices[run][i]].sum(axis=1) * bg_factors[run][i]) photo_signals_corrected[run].append( photo_signals[run][i] - photo_bg[run][i]) photo_signals_1[run].append( traces[run][i][:, photo_roi_1_slices[run][i]].sum(axis=1)) photo_bg_1[run].append( traces[run][i][:, photo_bg_1_slices[run][i]].sum(axis=1) * bg_1_factors[run][i]) photo_signals_1_corrected[run].append( photo_signals_1[run][i] - photo_bg_1[run][i]) photo_signals_2[run].append( traces[run][i][:, photo_roi_2_slices[run][i]].sum(axis=1)) photo_bg_2[run].append( traces[run][i][:, photo_bg_2_slices[run][i]].sum(axis=1) * bg_2_factors[run][i]) photo_signals_2_corrected[run].append( photo_signals_2[run][i] - photo_bg_2[run][i]) auger_signals[run].append( traces[run][i][:, auger_roi_slices[run][i]].sum(axis=1)) photo_signals_average_corrected[run] = np.average( photo_signals_corrected[run], axis=1) photo_signals_1_average_corrected[run] = np.average( photo_signals_1_corrected[run], axis=1) photo_signals_2_average_corrected[run] = np.average( photo_signals_2_corrected[run], axis=1) auger_signals_average[run] = np.average( auger_signals[run], axis=1) auger_factors[run] = (auger_signals_average[run].max() / auger_signals_average[run]) auger_sum[run] = np.sum(auger_signals_average[run]) # %% Signal tests # #sig_min = -0.5 #sig_max = 4 #n_sig_bins = 2**7 #sig_ax = np.linspace(sig_min, sig_max, 2 * n_sig_bins + 1)[1::2] # #n_rows = int(np.floor(np.sqrt(float(len(runs))))) #n_cols = int(np.ceil(float(len(runs))/n_rows)) # #sig_level_fig = plt.figure('Signal levels') #sig_level_fig.clf() #sig_level_fig, sig_level_axis_array = plt.subplots(n_rows*2, n_cols, # num='Signal levels') #det = 4 #for i_run, run in enumerate(runs): # ax = sig_level_axis_array.flatten()[i_run] # ax.set_title('run {}'.format(run)) # ax.hist(photo_signals[run][det], n_sig_bins, (sig_min, sig_max)) # ax.hist(photo_bg[run][det], n_sig_bins, (sig_min, sig_max)) # ax.hist(photo_signals_corrected[run][det], n_sig_bins, (sig_min, sig_max)) # # ax = sig_level_axis_array.flatten()[i_run + len(runs)] # ax.plot(fee_valid[run], photo_signals_corrected[run][det], '.') # ax.plot(fee_valid[run], auger_signals[run][det], '.') #sig_level_fig.tight_layout() # %% Trace plots try: trace_plot = plt.figure('Trace plot') trace_plot.clf() except: pass trace_plot, trace_axis_array = plt.subplots(4, 4, sharex=True, sharey=True, num='Trace plot') for i_run, run in enumerate(runs): for i, ax in enumerate(trace_axis_array.flatten()): ax.plot(time_scales[run][i], average_traces[run][i], '-{}'.format('byc'[i_run]), label='{} {} deg'.format(run, 22.5*i)) ax.plot(time_scales[run][i][auger_roi_slices[run][i]], average_traces[run][i][auger_roi_slices[run][i]], '.g') if run != 31: ax.plot(time_scales[run][i][photo_roi_slices[run][i]], average_traces[run][i][photo_roi_slices[run][i]], '.r') ax.plot(time_scales[run][i][photo_bg_slices[run][i]], average_traces[run][i][photo_bg_slices[run][i]], '.m') # ax.plot(time_scales[run][i], # np.polyval(bg_fit_coeffs[run][i], time_scales[run][i]), # 'm') else: ax.plot(time_scales[run][i][photo_roi_1_slices[run][i]], average_traces[run][i][photo_roi_1_slices[run][i]], '.r') ax.plot(time_scales[run][i][photo_bg_1_slices[run][i]], average_traces[run][i][photo_bg_1_slices[run][i]], '.m') ax.plot(time_scales[run][i][photo_roi_2_slices[run][i]], average_traces[run][i][photo_roi_2_slices[run][i]], '.y') ax.plot(time_scales[run][i][photo_bg_2_slices[run][i]], average_traces[run][i][photo_bg_2_slices[run][i]], '.c') if i % 4: plt.setp(ax.get_yticklabels(), visible=False) else: ax.set_ylabel('signal (mV)') if i / 4 < 3: plt.setp(ax.get_xticklabels(), visible=False) else: ax.set_xlabel('time (ns)') ax.grid(True) ax.legend(loc='best', fontsize='x-small', ncol=1) # ax.set_title('Run {}'.format(run)) ax.set_xlim(200, 260) plt.tight_layout() # %% try: angular_plot = plt.figure('Angular') angular_plot.clf() except: pass angular_plot, angular_axis_array = plt.subplots(1, 3, subplot_kw={'polar': True}, num='Angular', figsize=(8, 10)) phi = cookie_box.phi_rad phi_line = np.linspace(0, 2*np.pi, 2**8) norm_params = cookie_box.initial_params() norm_params['A'].value = 1 norm_params['beta'].value = 2 norm_params['beta'].vary = False norm_params['tilt'].value = 0 norm_params['tilt'].vary = False norm_params['linear'].value = 1 norm_params['linear'].vary = False #lmfit.minimize(cookie_box.model_function, norm_params, # args=(phi, # photo_signals_average_corrected[5] * auger_factors[5])) #beta2_factors = (cookie_box.model_function(norm_params, phi) / # (photo_signals_average_corrected[5] * auger_factors[5])) I_fit = np.ones(16, dtype=bool) #I_fit[[4, 5, 11, 12]] = 0 proj.setFitMask(I_fit) full_falctors = {} for ax, run in zip(angular_axis_array, runs): # signal_factors = beta2_factors # signal_factors = auger_factors[run] * beta2_factors signal_factors = auger_factors[run] ax.plot(phi, auger_signals_average[run], 'gx', label='auger raw') ax.plot(phi, auger_signals_average[run] * signal_factors, 'gs', label='auger scaled') ax.plot(phi, photo_signals_average_corrected[run], 'rx', label='photo raw') ax.plot(phi, photo_signals_average_corrected[run] * signal_factors, 'ro', label='photo scaled') params = cookie_box.initial_params() params['beta'].vary = False params['A'].value, params['linear'].value, params['tilt'].value = \ proj.solve(photo_signals_average_corrected[run] * signal_factors, 2) res = lmfit.minimize(cookie_box.model_function, params, args=(phi[I_fit], (photo_signals_average_corrected[run] * signal_factors)[I_fit])) lmfit.report_fit(params) ax.plot(phi_line, cookie_box.model_function(params, phi_line), 'm', label='fit') ax.set_title('Run {}'.format(run)) ax.legend(loc='upper right', fontsize='x-small') angular_plot.tight_layout() # ax.plot(phi, photo_signals_average_corrected[run] * factors, 'ro') # %% Run 31 polar if 31 in traces.keys(): run = 31 signal_factors = auger_factors[run] fig31 = plt.figure(run) fig31.clf() ax = plt.subplot(131, polar=True) ax.plot(phi, auger_signals_average[run], 'gx', label='auger raw') ax.plot(phi, auger_signals_average[run] * signal_factors, 'gs', label='auger scaled') ax.legend(loc='best', fontsize='small') ax.set_title('run31 augers') params = cookie_box.initial_params() params['beta'].vary = False params['A'].value, params['linear'].value, params['tilt'].value = \ proj.solve(photo_signals_1_average_corrected[run] * signal_factors, 2) lmfit.minimize(cookie_box.model_function, params, args=(phi[I_fit], (photo_signals_1_average_corrected[run] * signal_factors)[I_fit])) ax = plt.subplot(132, polar=True) ax.plot(phi, photo_signals_1_average_corrected[run], 'rx', label='photo 1 raw') ax.plot(phi, photo_signals_1_average_corrected[run] * signal_factors, 'ro', label='photo 1 scaled') ax.plot(phi_line, cookie_box.model_function(params, phi_line), 'm', label='fit {:.3} lin {:.3} circ'.format( params['linear'].value, np.sqrt(1 - params['linear'].value**2))) ax.legend(loc='best', fontsize='small') ax.set_title('run31 first photoline (high energy)') params['A'].value, params['linear'].value, params['tilt'].value = \ proj.solve(photo_signals_2_average_corrected[run] * signal_factors, 2) lmfit.minimize(cookie_box.model_function, params, args=(phi[I_fit], (photo_signals_2_average_corrected[run] * signal_factors)[I_fit])) ax = plt.subplot(133, polar=True) ax.plot(phi, photo_signals_2_average_corrected[run], 'yx', label='photo 2 raw') ax.plot(phi, photo_signals_2_average_corrected[run] * signal_factors, 'yo', label='photo 2 scaled') ax.plot(phi_line, cookie_box.model_function(params, phi_line), 'm', label='fit {:.3} lin {:.3} circ'.format( params['linear'].value, np.sqrt(1 - params['linear'].value**2))) ax.legend(loc='best', fontsize='small') ax.set_title('run31 second photoline (low energy)') fig31.tight_layout() # %% #try: # pol_prog_fig = plt.figure('Polar progression') # pol_prog_fig.clf() #except: # pass # #n_rows = int(np.floor(np.sqrt(float(len(runs))))) #n_cols = int(np.ceil(float(len(runs))/n_rows)) # #pol_prog_fig, pol_prog_axis_array = plt.subplots(n_rows, n_cols, # subplot_kw={'polar': True}, # num='Polar progression') # #for ax, run in zip(pol_prog_axis_array.flatten(), runs): # ax.set_title('Run {}'.format(run)) # ax.plot(phi, photo_signals_average_corrected[run], 'rx') ## ax.plot(phi, photo_signals_average_corrected[run] * beta2_factors, 'ro') # # params = cookie_box.initial_params() # params['beta'].vary = False ## params['A'].value, params['linear'].value, params['tilt'].value = \ ## proj.solve(photo_signals_average_corrected[run] * beta2_factors, 2) ## res = lmfit.minimize(cookie_box.model_function, params, ## args=(phi[I_fit], ## (photo_signals_average_corrected[run] * ## beta2_factors)[I_fit])) # # ax.plot(phi_line, cookie_box.model_function(params, phi_line), 'm') # # print 'Run {}'.format(run) # lmfit.report_fit(params) # #plt.tight_layout()
gpl-2.0
jaidevd/scikit-learn
sklearn/neural_network/tests/test_rbm.py
225
6278
import sys import re import numpy as np from scipy.sparse import csc_matrix, csr_matrix, lil_matrix from sklearn.utils.testing import (assert_almost_equal, assert_array_equal, assert_true) from sklearn.datasets import load_digits from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.neural_network import BernoulliRBM from sklearn.utils.validation import assert_all_finite np.seterr(all='warn') Xdigits = load_digits().data Xdigits -= Xdigits.min() Xdigits /= Xdigits.max() def test_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, n_iter=7, random_state=9) rbm.fit(X) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) # in-place tricks shouldn't have modified X assert_array_equal(X, Xdigits) def test_partial_fit(): X = Xdigits.copy() rbm = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=20, random_state=9) n_samples = X.shape[0] n_batches = int(np.ceil(float(n_samples) / rbm.batch_size)) batch_slices = np.array_split(X, n_batches) for i in range(7): for batch in batch_slices: rbm.partial_fit(batch) assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0) assert_array_equal(X, Xdigits) def test_transform(): X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=16, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) Xt1 = rbm1.transform(X) Xt2 = rbm1._mean_hiddens(X) assert_array_equal(Xt1, Xt2) def test_small_sparse(): # BernoulliRBM should work on small sparse matrices. X = csr_matrix(Xdigits[:4]) BernoulliRBM().fit(X) # no exception def test_small_sparse_partial_fit(): for sparse in [csc_matrix, csr_matrix]: X_sparse = sparse(Xdigits[:100]) X = Xdigits[:100].copy() rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1, batch_size=10, random_state=9) rbm1.partial_fit(X_sparse) rbm2.partial_fit(X) assert_almost_equal(rbm1.score_samples(X).mean(), rbm2.score_samples(X).mean(), decimal=0) def test_sample_hiddens(): rng = np.random.RandomState(0) X = Xdigits[:100] rbm1 = BernoulliRBM(n_components=2, batch_size=5, n_iter=5, random_state=42) rbm1.fit(X) h = rbm1._mean_hiddens(X[0]) hs = np.mean([rbm1._sample_hiddens(X[0], rng) for i in range(100)], 0) assert_almost_equal(h, hs, decimal=1) def test_fit_gibbs(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] # from the same input rng = np.random.RandomState(42) X = np.array([[0.], [1.]]) rbm1 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) # you need that much iters rbm1.fit(X) assert_almost_equal(rbm1.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm1.gibbs(X), X) return rbm1 def test_fit_gibbs_sparse(): # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from # the same input even when the input is sparse, and test against non-sparse rbm1 = test_fit_gibbs() rng = np.random.RandomState(42) from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm2 = BernoulliRBM(n_components=2, batch_size=2, n_iter=42, random_state=rng) rbm2.fit(X) assert_almost_equal(rbm2.components_, np.array([[0.02649814], [0.02009084]]), decimal=4) assert_almost_equal(rbm2.gibbs(X), X.toarray()) assert_almost_equal(rbm1.components_, rbm2.components_) def test_gibbs_smoke(): # Check if we don't get NaNs sampling the full digits dataset. # Also check that sampling again will yield different results. X = Xdigits rbm1 = BernoulliRBM(n_components=42, batch_size=40, n_iter=20, random_state=42) rbm1.fit(X) X_sampled = rbm1.gibbs(X) assert_all_finite(X_sampled) X_sampled2 = rbm1.gibbs(X) assert_true(np.all((X_sampled != X_sampled2).max(axis=1))) def test_score_samples(): # Test score_samples (pseudo-likelihood) method. # Assert that pseudo-likelihood is computed without clipping. # See Fabian's blog, http://bit.ly/1iYefRk rng = np.random.RandomState(42) X = np.vstack([np.zeros(1000), np.ones(1000)]) rbm1 = BernoulliRBM(n_components=10, batch_size=2, n_iter=10, random_state=rng) rbm1.fit(X) assert_true((rbm1.score_samples(X) < -300).all()) # Sparse vs. dense should not affect the output. Also test sparse input # validation. rbm1.random_state = 42 d_score = rbm1.score_samples(X) rbm1.random_state = 42 s_score = rbm1.score_samples(lil_matrix(X)) assert_almost_equal(d_score, s_score) # Test numerical stability (#2785): would previously generate infinities # and crash with an exception. with np.errstate(under='ignore'): rbm1.score_samples([np.arange(1000) * 100]) def test_rbm_verbose(): rbm = BernoulliRBM(n_iter=2, verbose=10) old_stdout = sys.stdout sys.stdout = StringIO() try: rbm.fit(Xdigits) finally: sys.stdout = old_stdout def test_sparse_and_verbose(): # Make sure RBM works with sparse input when verbose=True old_stdout = sys.stdout sys.stdout = StringIO() from scipy.sparse import csc_matrix X = csc_matrix([[0.], [1.]]) rbm = BernoulliRBM(n_components=2, batch_size=2, n_iter=1, random_state=42, verbose=True) try: rbm.fit(X) s = sys.stdout.getvalue() # make sure output is sound assert_true(re.match(r"\[BernoulliRBM\] Iteration 1," r" pseudo-likelihood = -?(\d)+(\.\d+)?," r" time = (\d|\.)+s", s)) finally: sys.stdout = old_stdout
bsd-3-clause
jaredleekatzman/DeepSurv
experiments/scripts/deepsurv_run.py
1
6839
import argparse from collections import defaultdict import pandas as pd import numpy as np import h5py import uuid import copy import json import sys, os sys.path.append("/DeepSurv/deepsurv") import deep_surv # Force matplotlib to not use any Xwindows backend. import matplotlib matplotlib.use('Agg') import viz import utils from deepsurv_logger import TensorboardLogger import time localtime = time.localtime() TIMESTRING = time.strftime("%m%d%Y%M", localtime) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('experiment', help="name of the experiment that is being run") parser.add_argument('model', help='Model .json file to load') parser.add_argument('dataset', help='.h5 File containing the train/valid/test datasets') parser.add_argument('--update_fn',help='Which lasagne optimizer to use (ie. sgd, adam, rmsprop)', default='sgd') parser.add_argument('--plot_error', action="store_true", help="If arg present, plot absolute error plots") parser.add_argument('--treatment_idx', default=None, type=int, help='(Optional) column index of treatment variable in dataset. If present, run treatment visualizations.') parser.add_argument('--results_dir', help="Output directory to save results (model weights, visualizations)", default=None) parser.add_argument('--weights', help='(Optional) Weights .h5 File', default=None) parser.add_argument('--num_epochs', type=int, default=500, help="Number of epochs to train for. Default: 500") return parser.parse_args() def evaluate_model(model, dataset, bootstrap = False): def mse(model): def deepsurv_mse(x, hr, **kwargs): hr_pred = np.squeeze(model.predict_risk(x)) return ((hr_pred - hr) ** 2).mean() return deepsurv_mse metrics = {} # Calculate c_index metrics['c_index'] = model.get_concordance_index(**dataset) if bootstrap: metrics['c_index_bootstrap'] = utils.bootstrap_metric(model.get_concordance_index, dataset) # Calcualte MSE if 'hr' in dataset: metrics['mse'] = mse(model)(**dataset) if bootstrap: metrics['mse_bootstrap'] = utils.bootstrap_metric(mse(model), dataset) return metrics def save_risk_surface_visualizations(model, dataset, norm_vals, output_dir, plot_error, experiment, trt_idx): if experiment == 'linear': clim = (-3,3) elif experiment == 'gaussian' or experiment == 'treatment': clim = (-1,1) else: clim = (0,1) risk_fxn = lambda x: np.squeeze(model.predict_risk(x)) color_output_file = os.path.join(output_dir, "deep_viz_color_" + TIMESTRING + ".pdf") viz.plot_experiment_scatters(risk_fxn, dataset, norm_vals = norm_vals, output_file=color_output_file, figsize=(4,3), clim=clim, plot_error = plot_error, trt_idx = trt_idx) bw_output_file = os.path.join(output_dir, "deep_viz_bw_" + TIMESTRING + ".pdf") viz.plot_experiment_scatters(risk_fxn, dataset, norm_vals = norm_vals, output_file=bw_output_file, figsize=(4,3), clim=clim, cmap='gray', plot_error = plot_error, trt_idx = trt_idx) def save_treatment_rec_visualizations(model, dataset, output_dir, trt_i = 1, trt_j = 0, trt_idx = 0): trt_values = np.unique(dataset['x'][:,trt_idx]) print("Recommending treatments:", trt_values) rec_trt = model.recommend_treatment(dataset['x'], trt_i, trt_j, trt_idx) rec_trt = np.squeeze((rec_trt < 0).astype(np.int32)) rec_dict = utils.calculate_recs_and_antirecs(rec_trt, true_trt = trt_idx, dataset = dataset) output_file = os.path.join(output_dir, '_'.join(['deepsurv',TIMESTRING, 'rec_surv.pdf'])) print(output_file) viz.plot_survival_curves(experiment_name = 'DeepSurv', output_file=output_file, **rec_dict) def save_model(model, output_file): model.save_weights(output_file) if __name__ == '__main__': args = parse_args() print("Arguments:",args) # Load Dataset print("Loading datasets: " + args.dataset) datasets = utils.load_datasets(args.dataset) norm_vals = { 'mean' : datasets['train']['x'].mean(axis =0), 'std' : datasets['train']['x'].std(axis=0) } # Train Model # TODO standardize location of logs + results => have them go into same directory with same UUID of experiment tensor_log_dir = "/shared/data/logs/tensorboard_" + str(args.dataset) + "_" + str(uuid.uuid4()) logger = TensorboardLogger("experiments.deep_surv", tensor_log_dir, update_freq = 10) model = deep_surv.load_model_from_json(args.model, args.weights) if 'valid' in datasets: valid_data = datasets['valid'] else: valid_data = None metrics = model.train(datasets['train'], valid_data, n_epochs = args.num_epochs, logger=logger, update_fn = utils.get_optimizer_from_str(args.update_fn), validation_frequency = 100) # Evaluate Model with open(args.model, 'r') as fp: json_model = fp.read() hyperparams = json.loads(json_model) train_data = datasets['train'] if hyperparams['standardize']: train_data = utils.standardize_dataset(train_data, norm_vals['mean'], norm_vals['std']) metrics = evaluate_model(model, train_data) print("Training metrics: " + str(metrics)) if 'valid' in datasets: valid_data = datasets['valid'] if hyperparams['standardize']: valid_data = utils.standardize_dataset(valid_data, norm_vals['mean'], norm_vals['std']) metrics = evaluate_model(model, valid_data) print("Valid metrics: " + str(metrics)) if 'test' in datasets: test_dataset = utils.standardize_dataset(datasets['test'], norm_vals['mean'], norm_vals['std']) metrics = evaluate_model(model, test_dataset, bootstrap=True) print("Test metrics: " + str(metrics)) if 'viz' in datasets: print("Saving Visualizations") save_risk_surface_visualizations(model, datasets['viz'], norm_vals = norm_vals, output_dir=args.results_dir, plot_error = args.plot_error, experiment = args.experiment, trt_idx= args.treatment_idx) if 'test' in datasets and args.treatment_idx is not None: print("Calculating treatment recommendation survival curvs") # We use the test dataset because these experiments don't have a viz dataset save_treatment_rec_visualizations(model, test_dataset, output_dir=args.results_dir, trt_idx = args.treatment_idx) if args.results_dir: _, model_str = os.path.split(args.model) output_file = os.path.join(args.results_dir,"models") + model_str + str(uuid.uuid4()) + ".h5" print("Saving model parameters to output file", output_file) save_model(model, output_file) exit(0)
mit
plotly/python-api
packages/python/plotly/plotly/figure_factory/_scatterplot.py
2
44834
from __future__ import absolute_import import six from plotly import exceptions, optional_imports import plotly.colors as clrs from plotly.figure_factory import utils from plotly.graph_objs import graph_objs from plotly.subplots import make_subplots pd = optional_imports.get_module("pandas") DIAG_CHOICES = ["scatter", "histogram", "box"] VALID_COLORMAP_TYPES = ["cat", "seq"] def endpts_to_intervals(endpts): """ Returns a list of intervals for categorical colormaps Accepts a list or tuple of sequentially increasing numbers and returns a list representation of the mathematical intervals with these numbers as endpoints. For example, [1, 6] returns [[-inf, 1], [1, 6], [6, inf]] :raises: (PlotlyError) If input is not a list or tuple :raises: (PlotlyError) If the input contains a string :raises: (PlotlyError) If any number does not increase after the previous one in the sequence """ length = len(endpts) # Check if endpts is a list or tuple if not (isinstance(endpts, (tuple)) or isinstance(endpts, (list))): raise exceptions.PlotlyError( "The intervals_endpts argument must " "be a list or tuple of a sequence " "of increasing numbers." ) # Check if endpts contains only numbers for item in endpts: if isinstance(item, str): raise exceptions.PlotlyError( "The intervals_endpts argument " "must be a list or tuple of a " "sequence of increasing " "numbers." ) # Check if numbers in endpts are increasing for k in range(length - 1): if endpts[k] >= endpts[k + 1]: raise exceptions.PlotlyError( "The intervals_endpts argument " "must be a list or tuple of a " "sequence of increasing " "numbers." ) else: intervals = [] # add -inf to intervals intervals.append([float("-inf"), endpts[0]]) for k in range(length - 1): interval = [] interval.append(endpts[k]) interval.append(endpts[k + 1]) intervals.append(interval) # add +inf to intervals intervals.append([endpts[length - 1], float("inf")]) return intervals def hide_tick_labels_from_box_subplots(fig): """ Hides tick labels for box plots in scatterplotmatrix subplots. """ boxplot_xaxes = [] for trace in fig["data"]: if trace["type"] == "box": # stores the xaxes which correspond to boxplot subplots # since we use xaxis1, xaxis2, etc, in plotly.py boxplot_xaxes.append("xaxis{}".format(trace["xaxis"][1:])) for xaxis in boxplot_xaxes: fig["layout"][xaxis]["showticklabels"] = False def validate_scatterplotmatrix(df, index, diag, colormap_type, **kwargs): """ Validates basic inputs for FigureFactory.create_scatterplotmatrix() :raises: (PlotlyError) If pandas is not imported :raises: (PlotlyError) If pandas dataframe is not inputted :raises: (PlotlyError) If pandas dataframe has <= 1 columns :raises: (PlotlyError) If diagonal plot choice (diag) is not one of the viable options :raises: (PlotlyError) If colormap_type is not a valid choice :raises: (PlotlyError) If kwargs contains 'size', 'color' or 'colorscale' """ if not pd: raise ImportError( "FigureFactory.scatterplotmatrix requires " "a pandas DataFrame." ) # Check if pandas dataframe if not isinstance(df, pd.core.frame.DataFrame): raise exceptions.PlotlyError( "Dataframe not inputed. Please " "use a pandas dataframe to pro" "duce a scatterplot matrix." ) # Check if dataframe is 1 column or less if len(df.columns) <= 1: raise exceptions.PlotlyError( "Dataframe has only one column. To " "use the scatterplot matrix, use at " "least 2 columns." ) # Check that diag parameter is a valid selection if diag not in DIAG_CHOICES: raise exceptions.PlotlyError( "Make sure diag is set to " "one of {}".format(DIAG_CHOICES) ) # Check that colormap_types is a valid selection if colormap_type not in VALID_COLORMAP_TYPES: raise exceptions.PlotlyError( "Must choose a valid colormap type. " "Either 'cat' or 'seq' for a cate" "gorical and sequential colormap " "respectively." ) # Check for not 'size' or 'color' in 'marker' of **kwargs if "marker" in kwargs: FORBIDDEN_PARAMS = ["size", "color", "colorscale"] if any(param in kwargs["marker"] for param in FORBIDDEN_PARAMS): raise exceptions.PlotlyError( "Your kwargs dictionary cannot " "include the 'size', 'color' or " "'colorscale' key words inside " "the marker dict since 'size' is " "already an argument of the " "scatterplot matrix function and " "both 'color' and 'colorscale " "are set internally." ) def scatterplot(dataframe, headers, diag, size, height, width, title, **kwargs): """ Refer to FigureFactory.create_scatterplotmatrix() for docstring Returns fig for scatterplotmatrix without index """ dim = len(dataframe) fig = make_subplots(rows=dim, cols=dim, print_grid=False) trace_list = [] # Insert traces into trace_list for listy in dataframe: for listx in dataframe: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram(x=listx, showlegend=False) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box(y=listx, name=None, showlegend=False) else: if "marker" in kwargs: kwargs["marker"]["size"] = size trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", showlegend=False, **kwargs ) trace_list.append(trace) else: trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", marker=dict(size=size), showlegend=False, **kwargs ) trace_list.append(trace) trace_index = 0 indices = range(1, dim + 1) for y_index in indices: for x_index in indices: fig.append_trace(trace_list[trace_index], y_index, x_index) trace_index += 1 # Insert headers into the figure for j in range(dim): xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j) fig["layout"][xaxis_key].update(title=headers[j]) for j in range(dim): yaxis_key = "yaxis{}".format(1 + (dim * j)) fig["layout"][yaxis_key].update(title=headers[j]) fig["layout"].update(height=height, width=width, title=title, showlegend=True) hide_tick_labels_from_box_subplots(fig) return fig def scatterplot_dict( dataframe, headers, diag, size, height, width, title, index, index_vals, endpts, colormap, colormap_type, **kwargs ): """ Refer to FigureFactory.create_scatterplotmatrix() for docstring Returns fig for scatterplotmatrix with both index and colormap picked. Used if colormap is a dictionary with index values as keys pointing to colors. Forces colormap_type to behave categorically because it would not make sense colors are assigned to each index value and thus implies that a categorical approach should be taken """ theme = colormap dim = len(dataframe) fig = make_subplots(rows=dim, cols=dim, print_grid=False) trace_list = [] legend_param = 0 # Work over all permutations of list pairs for listy in dataframe: for listx in dataframe: # create a dictionary for index_vals unique_index_vals = {} for name in index_vals: if name not in unique_index_vals: unique_index_vals[name] = [] # Fill all the rest of the names into the dictionary for name in sorted(unique_index_vals.keys()): new_listx = [] new_listy = [] for j in range(len(index_vals)): if index_vals[j] == name: new_listx.append(listx[j]) new_listy.append(listy[j]) # Generate trace with VISIBLE icon if legend_param == 1: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[name]), showlegend=True ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[name]), showlegend=True, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = theme[name] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, showlegend=True, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, marker=dict(size=size, color=theme[name]), showlegend=True, **kwargs ) # Generate trace with INVISIBLE icon else: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[name]), showlegend=False, ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[name]), showlegend=False, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = theme[name] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, showlegend=False, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, marker=dict(size=size, color=theme[name]), showlegend=False, **kwargs ) # Push the trace into dictionary unique_index_vals[name] = trace trace_list.append(unique_index_vals) legend_param += 1 trace_index = 0 indices = range(1, dim + 1) for y_index in indices: for x_index in indices: for name in sorted(trace_list[trace_index].keys()): fig.append_trace(trace_list[trace_index][name], y_index, x_index) trace_index += 1 # Insert headers into the figure for j in range(dim): xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j) fig["layout"][xaxis_key].update(title=headers[j]) for j in range(dim): yaxis_key = "yaxis{}".format(1 + (dim * j)) fig["layout"][yaxis_key].update(title=headers[j]) hide_tick_labels_from_box_subplots(fig) if diag == "histogram": fig["layout"].update( height=height, width=width, title=title, showlegend=True, barmode="stack" ) return fig else: fig["layout"].update(height=height, width=width, title=title, showlegend=True) return fig def scatterplot_theme( dataframe, headers, diag, size, height, width, title, index, index_vals, endpts, colormap, colormap_type, **kwargs ): """ Refer to FigureFactory.create_scatterplotmatrix() for docstring Returns fig for scatterplotmatrix with both index and colormap picked """ # Check if index is made of string values if isinstance(index_vals[0], str): unique_index_vals = [] for name in index_vals: if name not in unique_index_vals: unique_index_vals.append(name) n_colors_len = len(unique_index_vals) # Convert colormap to list of n RGB tuples if colormap_type == "seq": foo = clrs.color_parser(colormap, clrs.unlabel_rgb) foo = clrs.n_colors(foo[0], foo[1], n_colors_len) theme = clrs.color_parser(foo, clrs.label_rgb) if colormap_type == "cat": # leave list of colors the same way theme = colormap dim = len(dataframe) fig = make_subplots(rows=dim, cols=dim, print_grid=False) trace_list = [] legend_param = 0 # Work over all permutations of list pairs for listy in dataframe: for listx in dataframe: # create a dictionary for index_vals unique_index_vals = {} for name in index_vals: if name not in unique_index_vals: unique_index_vals[name] = [] c_indx = 0 # color index # Fill all the rest of the names into the dictionary for name in sorted(unique_index_vals.keys()): new_listx = [] new_listy = [] for j in range(len(index_vals)): if index_vals[j] == name: new_listx.append(listx[j]) new_listy.append(listy[j]) # Generate trace with VISIBLE icon if legend_param == 1: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[c_indx]), showlegend=True, ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[c_indx]), showlegend=True, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = theme[c_indx] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, showlegend=True, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, marker=dict(size=size, color=theme[c_indx]), showlegend=True, **kwargs ) # Generate trace with INVISIBLE icon else: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[c_indx]), showlegend=False, ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[c_indx]), showlegend=False, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = theme[c_indx] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, showlegend=False, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=name, marker=dict(size=size, color=theme[c_indx]), showlegend=False, **kwargs ) # Push the trace into dictionary unique_index_vals[name] = trace if c_indx >= (len(theme) - 1): c_indx = -1 c_indx += 1 trace_list.append(unique_index_vals) legend_param += 1 trace_index = 0 indices = range(1, dim + 1) for y_index in indices: for x_index in indices: for name in sorted(trace_list[trace_index].keys()): fig.append_trace(trace_list[trace_index][name], y_index, x_index) trace_index += 1 # Insert headers into the figure for j in range(dim): xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j) fig["layout"][xaxis_key].update(title=headers[j]) for j in range(dim): yaxis_key = "yaxis{}".format(1 + (dim * j)) fig["layout"][yaxis_key].update(title=headers[j]) hide_tick_labels_from_box_subplots(fig) if diag == "histogram": fig["layout"].update( height=height, width=width, title=title, showlegend=True, barmode="stack", ) return fig elif diag == "box": fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig else: fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig else: if endpts: intervals = utils.endpts_to_intervals(endpts) # Convert colormap to list of n RGB tuples if colormap_type == "seq": foo = clrs.color_parser(colormap, clrs.unlabel_rgb) foo = clrs.n_colors(foo[0], foo[1], len(intervals)) theme = clrs.color_parser(foo, clrs.label_rgb) if colormap_type == "cat": # leave list of colors the same way theme = colormap dim = len(dataframe) fig = make_subplots(rows=dim, cols=dim, print_grid=False) trace_list = [] legend_param = 0 # Work over all permutations of list pairs for listy in dataframe: for listx in dataframe: interval_labels = {} for interval in intervals: interval_labels[str(interval)] = [] c_indx = 0 # color index # Fill all the rest of the names into the dictionary for interval in intervals: new_listx = [] new_listy = [] for j in range(len(index_vals)): if interval[0] < index_vals[j] <= interval[1]: new_listx.append(listx[j]) new_listy.append(listy[j]) # Generate trace with VISIBLE icon if legend_param == 1: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[c_indx]), showlegend=True, ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[c_indx]), showlegend=True, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size (kwargs["marker"]["color"]) = theme[c_indx] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=str(interval), showlegend=True, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=str(interval), marker=dict(size=size, color=theme[c_indx]), showlegend=True, **kwargs ) # Generate trace with INVISIBLE icon else: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=new_listx, marker=dict(color=theme[c_indx]), showlegend=False, ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=new_listx, name=None, marker=dict(color=theme[c_indx]), showlegend=False, ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size (kwargs["marker"]["color"]) = theme[c_indx] trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=str(interval), showlegend=False, **kwargs ) else: trace = graph_objs.Scatter( x=new_listx, y=new_listy, mode="markers", name=str(interval), marker=dict(size=size, color=theme[c_indx]), showlegend=False, **kwargs ) # Push the trace into dictionary interval_labels[str(interval)] = trace if c_indx >= (len(theme) - 1): c_indx = -1 c_indx += 1 trace_list.append(interval_labels) legend_param += 1 trace_index = 0 indices = range(1, dim + 1) for y_index in indices: for x_index in indices: for interval in intervals: fig.append_trace( trace_list[trace_index][str(interval)], y_index, x_index ) trace_index += 1 # Insert headers into the figure for j in range(dim): xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j) fig["layout"][xaxis_key].update(title=headers[j]) for j in range(dim): yaxis_key = "yaxis{}".format(1 + (dim * j)) fig["layout"][yaxis_key].update(title=headers[j]) hide_tick_labels_from_box_subplots(fig) if diag == "histogram": fig["layout"].update( height=height, width=width, title=title, showlegend=True, barmode="stack", ) return fig elif diag == "box": fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig else: fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig else: theme = colormap # add a copy of rgb color to theme if it contains one color if len(theme) <= 1: theme.append(theme[0]) color = [] for incr in range(len(theme)): color.append([1.0 / (len(theme) - 1) * incr, theme[incr]]) dim = len(dataframe) fig = make_subplots(rows=dim, cols=dim, print_grid=False) trace_list = [] legend_param = 0 # Run through all permutations of list pairs for listy in dataframe: for listx in dataframe: # Generate trace with VISIBLE icon if legend_param == 1: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=listx, marker=dict(color=theme[0]), showlegend=False ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=listx, marker=dict(color=theme[0]), showlegend=False ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = index_vals kwargs["marker"]["colorscale"] = color kwargs["marker"]["showscale"] = True trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", showlegend=False, **kwargs ) else: trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", marker=dict( size=size, color=index_vals, colorscale=color, showscale=True, ), showlegend=False, **kwargs ) # Generate trace with INVISIBLE icon else: if (listx == listy) and (diag == "histogram"): trace = graph_objs.Histogram( x=listx, marker=dict(color=theme[0]), showlegend=False ) elif (listx == listy) and (diag == "box"): trace = graph_objs.Box( y=listx, marker=dict(color=theme[0]), showlegend=False ) else: if "marker" in kwargs: kwargs["marker"]["size"] = size kwargs["marker"]["color"] = index_vals kwargs["marker"]["colorscale"] = color kwargs["marker"]["showscale"] = False trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", showlegend=False, **kwargs ) else: trace = graph_objs.Scatter( x=listx, y=listy, mode="markers", marker=dict( size=size, color=index_vals, colorscale=color, showscale=False, ), showlegend=False, **kwargs ) # Push the trace into list trace_list.append(trace) legend_param += 1 trace_index = 0 indices = range(1, dim + 1) for y_index in indices: for x_index in indices: fig.append_trace(trace_list[trace_index], y_index, x_index) trace_index += 1 # Insert headers into the figure for j in range(dim): xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j) fig["layout"][xaxis_key].update(title=headers[j]) for j in range(dim): yaxis_key = "yaxis{}".format(1 + (dim * j)) fig["layout"][yaxis_key].update(title=headers[j]) hide_tick_labels_from_box_subplots(fig) if diag == "histogram": fig["layout"].update( height=height, width=width, title=title, showlegend=True, barmode="stack", ) return fig elif diag == "box": fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig else: fig["layout"].update( height=height, width=width, title=title, showlegend=True ) return fig def create_scatterplotmatrix( df, index=None, endpts=None, diag="scatter", height=500, width=500, size=6, title="Scatterplot Matrix", colormap=None, colormap_type="cat", dataframe=None, headers=None, index_vals=None, **kwargs ): """ Returns data for a scatterplot matrix; **deprecated**, use instead the plotly.graph_objects trace :class:`plotly.graph_objects.Splom`. :param (array) df: array of the data with column headers :param (str) index: name of the index column in data array :param (list|tuple) endpts: takes an increasing sequece of numbers that defines intervals on the real line. They are used to group the entries in an index of numbers into their corresponding interval and therefore can be treated as categorical data :param (str) diag: sets the chart type for the main diagonal plots. The options are 'scatter', 'histogram' and 'box'. :param (int|float) height: sets the height of the chart :param (int|float) width: sets the width of the chart :param (float) size: sets the marker size (in px) :param (str) title: the title label of the scatterplot matrix :param (str|tuple|list|dict) colormap: either a plotly scale name, an rgb or hex color, a color tuple, a list of colors or a dictionary. An rgb color is of the form 'rgb(x, y, z)' where x, y and z belong to the interval [0, 255] and a color tuple is a tuple of the form (a, b, c) where a, b and c belong to [0, 1]. If colormap is a list, it must contain valid color types as its members. If colormap is a dictionary, all the string entries in the index column must be a key in colormap. In this case, the colormap_type is forced to 'cat' or categorical :param (str) colormap_type: determines how colormap is interpreted. Valid choices are 'seq' (sequential) and 'cat' (categorical). If 'seq' is selected, only the first two colors in colormap will be considered (when colormap is a list) and the index values will be linearly interpolated between those two colors. This option is forced if all index values are numeric. If 'cat' is selected, a color from colormap will be assigned to each category from index, including the intervals if endpts is being used :param (dict) **kwargs: a dictionary of scatterplot arguments The only forbidden parameters are 'size', 'color' and 'colorscale' in 'marker' Example 1: Vanilla Scatterplot Matrix >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> # Create dataframe >>> df = pd.DataFrame(np.random.randn(10, 2), ... columns=['Column 1', 'Column 2']) >>> # Create scatterplot matrix >>> fig = create_scatterplotmatrix(df) >>> fig.show() Example 2: Indexing a Column >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> # Create dataframe with index >>> df = pd.DataFrame(np.random.randn(10, 2), ... columns=['A', 'B']) >>> # Add another column of strings to the dataframe >>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple', ... 'grape', 'pear', 'pear', 'apple', 'pear']) >>> # Create scatterplot matrix >>> fig = create_scatterplotmatrix(df, index='Fruit', size=10) >>> fig.show() Example 3: Styling the Diagonal Subplots >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> # Create dataframe with index >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['A', 'B', 'C', 'D']) >>> # Add another column of strings to the dataframe >>> df['Fruit'] = pd.Series(['apple', 'apple', 'grape', 'apple', 'apple', ... 'grape', 'pear', 'pear', 'apple', 'pear']) >>> # Create scatterplot matrix >>> fig = create_scatterplotmatrix(df, diag='box', index='Fruit', height=1000, ... width=1000) >>> fig.show() Example 4: Use a Theme to Style the Subplots >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> # Create dataframe with random data >>> df = pd.DataFrame(np.random.randn(100, 3), ... columns=['A', 'B', 'C']) >>> # Create scatterplot matrix using a built-in >>> # Plotly palette scale and indexing column 'A' >>> fig = create_scatterplotmatrix(df, diag='histogram', index='A', ... colormap='Blues', height=800, width=800) >>> fig.show() Example 5: Example 4 with Interval Factoring >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> # Create dataframe with random data >>> df = pd.DataFrame(np.random.randn(100, 3), ... columns=['A', 'B', 'C']) >>> # Create scatterplot matrix using a list of 2 rgb tuples >>> # and endpoints at -1, 0 and 1 >>> fig = create_scatterplotmatrix(df, diag='histogram', index='A', ... colormap=['rgb(140, 255, 50)', ... 'rgb(170, 60, 115)', '#6c4774', ... (0.5, 0.1, 0.8)], ... endpts=[-1, 0, 1], height=800, width=800) >>> fig.show() Example 6: Using the colormap as a Dictionary >>> from plotly.graph_objs import graph_objs >>> from plotly.figure_factory import create_scatterplotmatrix >>> import numpy as np >>> import pandas as pd >>> import random >>> # Create dataframe with random data >>> df = pd.DataFrame(np.random.randn(100, 3), ... columns=['Column A', ... 'Column B', ... 'Column C']) >>> # Add new color column to dataframe >>> new_column = [] >>> strange_colors = ['turquoise', 'limegreen', 'goldenrod'] >>> for j in range(100): ... new_column.append(random.choice(strange_colors)) >>> df['Colors'] = pd.Series(new_column, index=df.index) >>> # Create scatterplot matrix using a dictionary of hex color values >>> # which correspond to actual color names in 'Colors' column >>> fig = create_scatterplotmatrix( ... df, diag='box', index='Colors', ... colormap= dict( ... turquoise = '#00F5FF', ... limegreen = '#32CD32', ... goldenrod = '#DAA520' ... ), ... colormap_type='cat', ... height=800, width=800 ... ) >>> fig.show() """ # TODO: protected until #282 if dataframe is None: dataframe = [] if headers is None: headers = [] if index_vals is None: index_vals = [] validate_scatterplotmatrix(df, index, diag, colormap_type, **kwargs) # Validate colormap if isinstance(colormap, dict): colormap = clrs.validate_colors_dict(colormap, "rgb") elif ( isinstance(colormap, six.string_types) and "rgb" not in colormap and "#" not in colormap ): if colormap not in clrs.PLOTLY_SCALES.keys(): raise exceptions.PlotlyError( "If 'colormap' is a string, it must be the name " "of a Plotly Colorscale. The available colorscale " "names are {}".format(clrs.PLOTLY_SCALES.keys()) ) else: # TODO change below to allow the correct Plotly colorscale colormap = clrs.colorscale_to_colors(clrs.PLOTLY_SCALES[colormap]) # keep only first and last item - fix later colormap = [colormap[0]] + [colormap[-1]] colormap = clrs.validate_colors(colormap, "rgb") else: colormap = clrs.validate_colors(colormap, "rgb") if not index: for name in df: headers.append(name) for name in headers: dataframe.append(df[name].values.tolist()) # Check for same data-type in df columns utils.validate_dataframe(dataframe) figure = scatterplot( dataframe, headers, diag, size, height, width, title, **kwargs ) return figure else: # Validate index selection if index not in df: raise exceptions.PlotlyError( "Make sure you set the index " "input variable to one of the " "column names of your " "dataframe." ) index_vals = df[index].values.tolist() for name in df: if name != index: headers.append(name) for name in headers: dataframe.append(df[name].values.tolist()) # check for same data-type in each df column utils.validate_dataframe(dataframe) utils.validate_index(index_vals) # check if all colormap keys are in the index # if colormap is a dictionary if isinstance(colormap, dict): for key in colormap: if not all(index in colormap for index in index_vals): raise exceptions.PlotlyError( "If colormap is a " "dictionary, all the " "names in the index " "must be keys." ) figure = scatterplot_dict( dataframe, headers, diag, size, height, width, title, index, index_vals, endpts, colormap, colormap_type, **kwargs ) return figure else: figure = scatterplot_theme( dataframe, headers, diag, size, height, width, title, index, index_vals, endpts, colormap, colormap_type, **kwargs ) return figure
mit
xyguo/scikit-learn
sklearn/kernel_ridge.py
31
6552
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
dsquareindia/scikit-learn
sklearn/feature_extraction/tests/test_text.py
39
36062
from __future__ import unicode_literals import warnings from sklearn.feature_extraction.text import strip_tags from sklearn.feature_extraction.text import strip_accents_unicode from sklearn.feature_extraction.text import strip_accents_ascii from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.base import clone import numpy as np from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_raises from sklearn.utils.random import choice from sklearn.utils.testing import (assert_equal, assert_false, assert_true, assert_not_equal, assert_almost_equal, assert_in, assert_less, assert_greater, assert_warns_message, assert_raise_message, clean_warning_registry, SkipTest) from collections import defaultdict, Mapping from functools import partial import pickle from io import StringIO JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) NOTJUNK_FOOD_DOCS = ( "the salad celeri copyright", "the salad salad sparkling water copyright", "the the celeri celeri copyright", "the tomato tomato salad water", "the tomato salad water copyright", ) ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS def uppercase(s): return strip_accents_unicode(s).upper() def strip_eacute(s): return s.replace('\xe9', 'e') def split_tokenize(s): return s.split() def lazy_analyze(s): return ['the_ultimate_feature'] def test_strip_accents(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_unicode(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_unicode(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '\u0627' # simple halef assert_equal(strip_accents_unicode(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_unicode(a), expected) def test_to_ascii(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_ascii(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_ascii(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '' # halef has no direct ascii match assert_equal(strip_accents_ascii(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_ascii(a), expected) def test_word_analyzer_unigrams(): for Vectorizer in (CountVectorizer, HashingVectorizer): wa = Vectorizer(strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon'] assert_equal(wa(text), expected) text = "This is a test, really.\n\n I met Harry yesterday." expected = ['this', 'is', 'test', 'really', 'met', 'harry', 'yesterday'] assert_equal(wa(text), expected) wa = Vectorizer(input='file').build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['this', 'is', 'test', 'with', 'file', 'like', 'object'] assert_equal(wa(text), expected) # with custom preprocessor wa = Vectorizer(preprocessor=uppercase).build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " " c'\xe9tait pas tr\xeas bon.") expected = ['AI', 'MANGE', 'DU', 'KANGOUROU', 'CE', 'MIDI', 'ETAIT', 'PAS', 'TRES', 'BON'] assert_equal(wa(text), expected) # with custom tokenizer wa = Vectorizer(tokenizer=split_tokenize, strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ["j'ai", 'mange', 'du', 'kangourou', 'ce', 'midi,', "c'etait", 'pas', 'tres', 'bon.'] assert_equal(wa(text), expected) def test_word_analyzer_unigrams_and_bigrams(): wa = CountVectorizer(analyzer="word", strip_accents='unicode', ngram_range=(1, 2)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon', 'ai mange', 'mange du', 'du kangourou', 'kangourou ce', 'ce midi', 'midi etait', 'etait pas', 'pas tres', 'tres bon'] assert_equal(wa(text), expected) def test_unicode_decode_error(): # decode_error default to strict, so this should fail # First, encode (as bytes) a unicode string. text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." text_bytes = text.encode('utf-8') # Then let the Analyzer try to decode it as ascii. It should fail, # because we have given it an incorrect encoding. wa = CountVectorizer(ngram_range=(1, 2), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, wa, text_bytes) ca = CountVectorizer(analyzer='char', ngram_range=(3, 6), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, ca, text_bytes) def test_char_ngram_analyzer(): cnga = CountVectorizer(analyzer='char', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon" expected = ["j'a", "'ai", 'ai ', 'i m', ' ma'] assert_equal(cnga(text)[:5], expected) expected = ['s tres', ' tres ', 'tres b', 'res bo', 'es bon'] assert_equal(cnga(text)[-5:], expected) text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) expected = [' yeste', 'yester', 'esterd', 'sterda', 'terday'] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char', ngram_range=(3, 6)).build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) def test_char_wb_ngram_analyzer(): cnga = CountVectorizer(analyzer='char_wb', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = [' th', 'thi', 'his', 'is ', ' thi'] assert_equal(cnga(text)[:5], expected) expected = ['yester', 'esterd', 'sterda', 'terday', 'erday '] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char_wb', ngram_range=(3, 6)).build_analyzer() text = StringIO("A test with a file-like object!") expected = [' a ', ' te', 'tes', 'est', 'st ', ' tes'] assert_equal(cnga(text)[:6], expected) def test_countvectorizer_custom_vocabulary(): vocab = {"pizza": 0, "beer": 1} terms = set(vocab.keys()) # Try a few of the supported types. for typ in [dict, list, iter, partial(defaultdict, int)]: v = typ(vocab) vect = CountVectorizer(vocabulary=v) vect.fit(JUNK_FOOD_DOCS) if isinstance(v, Mapping): assert_equal(vect.vocabulary_, vocab) else: assert_equal(set(vect.vocabulary_), terms) X = vect.transform(JUNK_FOOD_DOCS) assert_equal(X.shape[1], len(terms)) def test_countvectorizer_custom_vocabulary_pipeline(): what_we_like = ["pizza", "beer"] pipe = Pipeline([ ('count', CountVectorizer(vocabulary=what_we_like)), ('tfidf', TfidfTransformer())]) X = pipe.fit_transform(ALL_FOOD_DOCS) assert_equal(set(pipe.named_steps['count'].vocabulary_), set(what_we_like)) assert_equal(X.shape[1], len(what_we_like)) def test_countvectorizer_custom_vocabulary_repeated_indeces(): vocab = {"pizza": 0, "beer": 0} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("vocabulary contains repeated indices", str(e).lower()) def test_countvectorizer_custom_vocabulary_gap_index(): vocab = {"pizza": 1, "beer": 2} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("doesn't contain index", str(e).lower()) def test_countvectorizer_stop_words(): cv = CountVectorizer() cv.set_params(stop_words='english') assert_equal(cv.get_stop_words(), ENGLISH_STOP_WORDS) cv.set_params(stop_words='_bad_str_stop_') assert_raises(ValueError, cv.get_stop_words) cv.set_params(stop_words='_bad_unicode_stop_') assert_raises(ValueError, cv.get_stop_words) stoplist = ['some', 'other', 'words'] cv.set_params(stop_words=stoplist) assert_equal(cv.get_stop_words(), set(stoplist)) def test_countvectorizer_empty_vocabulary(): try: vect = CountVectorizer(vocabulary=[]) vect.fit(["foo"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) try: v = CountVectorizer(max_df=1.0, stop_words="english") # fit on stopwords only v.fit(["to be or not to be", "and me too", "and so do you"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) def test_fit_countvectorizer_twice(): cv = CountVectorizer() X1 = cv.fit_transform(ALL_FOOD_DOCS[:5]) X2 = cv.fit_transform(ALL_FOOD_DOCS[5:]) assert_not_equal(X1.shape[1], X2.shape[1]) def test_tf_idf_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # this is robust to features with only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) def test_tfidf_no_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # the lack of smoothing make IDF fragile in the presence of feature with # only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') clean_warning_registry() with warnings.catch_warnings(record=True) as w: 1. / np.array([0.]) numpy_provides_div0_warning = len(w) == 1 in_warning_message = 'divide by zero' tfidf = assert_warns_message(RuntimeWarning, in_warning_message, tr.fit_transform, X).toarray() if not numpy_provides_div0_warning: raise SkipTest("Numpy does not provide div 0 warnings.") def test_sublinear_tf(): X = [[1], [2], [3]] tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None) tfidf = tr.fit_transform(X).toarray() assert_equal(tfidf[0], 1) assert_greater(tfidf[1], tfidf[0]) assert_greater(tfidf[2], tfidf[1]) assert_less(tfidf[1], 2) assert_less(tfidf[2], 3) def test_vectorizer(): # raw documents as an iterator train_data = iter(ALL_FOOD_DOCS[:-1]) test_data = [ALL_FOOD_DOCS[-1]] n_train = len(ALL_FOOD_DOCS) - 1 # test without vocabulary v1 = CountVectorizer(max_df=0.5) counts_train = v1.fit_transform(train_data) if hasattr(counts_train, 'tocsr'): counts_train = counts_train.tocsr() assert_equal(counts_train[0, v1.vocabulary_["pizza"]], 2) # build a vectorizer v1 with the same vocabulary as the one fitted by v1 v2 = CountVectorizer(vocabulary=v1.vocabulary_) # compare that the two vectorizer give the same output on the test sample for v in (v1, v2): counts_test = v.transform(test_data) if hasattr(counts_test, 'tocsr'): counts_test = counts_test.tocsr() vocabulary = v.vocabulary_ assert_equal(counts_test[0, vocabulary["salad"]], 1) assert_equal(counts_test[0, vocabulary["tomato"]], 1) assert_equal(counts_test[0, vocabulary["water"]], 1) # stop word from the fixed list assert_false("the" in vocabulary) # stop word found automatically by the vectorizer DF thresholding # words that are high frequent across the complete corpus are likely # to be not informative (either real stop words of extraction # artifacts) assert_false("copyright" in vocabulary) # not present in the sample assert_equal(counts_test[0, vocabulary["coke"]], 0) assert_equal(counts_test[0, vocabulary["burger"]], 0) assert_equal(counts_test[0, vocabulary["beer"]], 0) assert_equal(counts_test[0, vocabulary["pizza"]], 0) # test tf-idf t1 = TfidfTransformer(norm='l1') tfidf = t1.fit(counts_train).transform(counts_train).toarray() assert_equal(len(t1.idf_), len(v1.vocabulary_)) assert_equal(tfidf.shape, (n_train, len(v1.vocabulary_))) # test tf-idf with new data tfidf_test = t1.transform(counts_test).toarray() assert_equal(tfidf_test.shape, (len(test_data), len(v1.vocabulary_))) # test tf alone t2 = TfidfTransformer(norm='l1', use_idf=False) tf = t2.fit(counts_train).transform(counts_train).toarray() assert_equal(t2.idf_, None) # test idf transform with unlearned idf vector t3 = TfidfTransformer(use_idf=True) assert_raises(ValueError, t3.transform, counts_train) # test idf transform with incompatible n_features X = [[1, 1, 5], [1, 1, 0]] t3.fit(X) X_incompt = [[1, 3], [1, 3]] assert_raises(ValueError, t3.transform, X_incompt) # L1-normalized term frequencies sum to one assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train) # test the direct tfidf vectorizer # (equivalent to term count vectorizer + tfidf transformer) train_data = iter(ALL_FOOD_DOCS[:-1]) tv = TfidfVectorizer(norm='l1') tv.max_df = v1.max_df tfidf2 = tv.fit_transform(train_data).toarray() assert_false(tv.fixed_vocabulary_) assert_array_almost_equal(tfidf, tfidf2) # test the direct tfidf vectorizer with new data tfidf_test2 = tv.transform(test_data).toarray() assert_array_almost_equal(tfidf_test, tfidf_test2) # test transform on unfitted vectorizer with empty vocabulary v3 = CountVectorizer(vocabulary=None) assert_raises(ValueError, v3.transform, train_data) # ascii preprocessor? v3.set_params(strip_accents='ascii', lowercase=False) assert_equal(v3.build_preprocessor(), strip_accents_ascii) # error on bad strip_accents param v3.set_params(strip_accents='_gabbledegook_', preprocessor=None) assert_raises(ValueError, v3.build_preprocessor) # error with bad analyzer type v3.set_params = '_invalid_analyzer_type_' assert_raises(ValueError, v3.build_analyzer) def test_tfidf_vectorizer_setters(): tv = TfidfVectorizer(norm='l2', use_idf=False, smooth_idf=False, sublinear_tf=False) tv.norm = 'l1' assert_equal(tv._tfidf.norm, 'l1') tv.use_idf = True assert_true(tv._tfidf.use_idf) tv.smooth_idf = True assert_true(tv._tfidf.smooth_idf) tv.sublinear_tf = True assert_true(tv._tfidf.sublinear_tf) def test_hashing_vectorizer(): v = HashingVectorizer() X = v.transform(ALL_FOOD_DOCS) token_nnz = X.nnz assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # By default the hashed values receive a random sign and l2 normalization # makes the feature values bounded assert_true(np.min(X.data) > -1) assert_true(np.min(X.data) < 0) assert_true(np.max(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0) # Check vectorization with some non-default parameters v = HashingVectorizer(ngram_range=(1, 2), non_negative=True, norm='l1') X = v.transform(ALL_FOOD_DOCS) assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # ngrams generate more non zeros ngrams_nnz = X.nnz assert_true(ngrams_nnz > token_nnz) assert_true(ngrams_nnz < 2 * token_nnz) # makes the feature values bounded assert_true(np.min(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0) def test_feature_names(): cv = CountVectorizer(max_df=0.5) # test for Value error on unfitted/empty vocabulary assert_raises(ValueError, cv.get_feature_names) X = cv.fit_transform(ALL_FOOD_DOCS) n_samples, n_features = X.shape assert_equal(len(cv.vocabulary_), n_features) feature_names = cv.get_feature_names() assert_equal(len(feature_names), n_features) assert_array_equal(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water'], feature_names) for idx, name in enumerate(feature_names): assert_equal(idx, cv.vocabulary_.get(name)) def test_vectorizer_max_features(): vec_factories = ( CountVectorizer, TfidfVectorizer, ) expected_vocabulary = set(['burger', 'beer', 'salad', 'pizza']) expected_stop_words = set([u'celeri', u'tomato', u'copyright', u'coke', u'sparkling', u'water', u'the']) for vec_factory in vec_factories: # test bounded number of extracted features vectorizer = vec_factory(max_df=0.6, max_features=4) vectorizer.fit(ALL_FOOD_DOCS) assert_equal(set(vectorizer.vocabulary_), expected_vocabulary) assert_equal(vectorizer.stop_words_, expected_stop_words) def test_count_vectorizer_max_features(): # Regression test: max_features didn't work correctly in 0.14. cv_1 = CountVectorizer(max_features=1) cv_3 = CountVectorizer(max_features=3) cv_None = CountVectorizer(max_features=None) counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) features_1 = cv_1.get_feature_names() features_3 = cv_3.get_feature_names() features_None = cv_None.get_feature_names() # The most common feature is "the", with frequency 7. assert_equal(7, counts_1.max()) assert_equal(7, counts_3.max()) assert_equal(7, counts_None.max()) # The most common feature should be the same assert_equal("the", features_1[np.argmax(counts_1)]) assert_equal("the", features_3[np.argmax(counts_3)]) assert_equal("the", features_None[np.argmax(counts_None)]) def test_vectorizer_max_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', max_df=1.0) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) vect.max_df = 1 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) def test_vectorizer_min_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', min_df=1) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.min_df = 2 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdt} ignored assert_equal(len(vect.vocabulary_.keys()), 2) # {ae} remain assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 4) vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdet} ignored assert_equal(len(vect.vocabulary_.keys()), 1) # {a} remains assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 5) def test_count_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = CountVectorizer(analyzer='char', max_df=1.0) X = vect.fit_transform(test_data).toarray() assert_array_equal(['a', 'b', 'c', 'd', 'e'], vect.get_feature_names()) assert_array_equal([[3, 1, 1, 0, 0], [1, 2, 0, 1, 1]], X) # using boolean features, we can fetch the binary occurrence info # instead. vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True) X = vect.fit_transform(test_data).toarray() assert_array_equal([[1, 1, 1, 0, 0], [1, 1, 0, 1, 1]], X) # check the ability to change the dtype vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True, dtype=np.float32) X_sparse = vect.fit_transform(test_data) assert_equal(X_sparse.dtype, np.float32) def test_hashed_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = HashingVectorizer(analyzer='char', non_negative=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X[0:1].data), 3) assert_equal(np.max(X[1:2].data), 2) assert_equal(X.dtype, np.float64) # using boolean features, we can fetch the binary occurrence info # instead. vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X.data), 1) assert_equal(X.dtype, np.float64) # check the ability to change the dtype vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None, dtype=np.float64) X = vect.transform(test_data) assert_equal(X.dtype, np.float64) def test_vectorizer_inverse_transform(): # raw documents data = ALL_FOOD_DOCS for vectorizer in (TfidfVectorizer(), CountVectorizer()): transformed_data = vectorizer.fit_transform(data) inversed_data = vectorizer.inverse_transform(transformed_data) analyze = vectorizer.build_analyzer() for doc, inversed_terms in zip(data, inversed_data): terms = np.sort(np.unique(analyze(doc))) inversed_terms = np.sort(np.unique(inversed_terms)) assert_array_equal(terms, inversed_terms) # Test that inverse_transform also works with numpy arrays transformed_data = transformed_data.toarray() inversed_data2 = vectorizer.inverse_transform(transformed_data) for terms, terms2 in zip(inversed_data, inversed_data2): assert_array_equal(np.sort(terms), np.sort(terms2)) def test_count_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.2, random_state=0) pipeline = Pipeline([('vect', CountVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'svc__loss': ('hinge', 'squared_hinge') } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) def test_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.1, random_state=0) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'vect__norm': ('l1', 'l2'), 'svc__loss': ('hinge', 'squared_hinge'), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) assert_equal(best_vectorizer.norm, 'l2') assert_false(best_vectorizer.fixed_vocabulary_) def test_vectorizer_pipeline_cross_validation(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) cv_scores = cross_val_score(pipeline, data, target, cv=3) assert_array_equal(cv_scores, [1., 1., 1.]) def test_vectorizer_unicode(): # tests that the count vectorizer works with cyrillic. document = ( "\xd0\x9c\xd0\xb0\xd1\x88\xd0\xb8\xd0\xbd\xd0\xbd\xd0\xbe\xd0" "\xb5 \xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb5\xd0\xbd\xd0\xb8\xd0" "\xb5 \xe2\x80\x94 \xd0\xbe\xd0\xb1\xd1\x88\xd0\xb8\xd1\x80\xd0\xbd" "\xd1\x8b\xd0\xb9 \xd0\xbf\xd0\xbe\xd0\xb4\xd1\x80\xd0\xb0\xd0\xb7" "\xd0\xb4\xd0\xb5\xd0\xbb \xd0\xb8\xd1\x81\xd0\xba\xd1\x83\xd1\x81" "\xd1\x81\xd1\x82\xd0\xb2\xd0\xb5\xd0\xbd\xd0\xbd\xd0\xbe\xd0\xb3" "\xd0\xbe \xd0\xb8\xd0\xbd\xd1\x82\xd0\xb5\xd0\xbb\xd0\xbb\xd0" "\xb5\xd0\xba\xd1\x82\xd0\xb0, \xd0\xb8\xd0\xb7\xd1\x83\xd1\x87" "\xd0\xb0\xd1\x8e\xd1\x89\xd0\xb8\xd0\xb9 \xd0\xbc\xd0\xb5\xd1\x82" "\xd0\xbe\xd0\xb4\xd1\x8b \xd0\xbf\xd0\xbe\xd1\x81\xd1\x82\xd1\x80" "\xd0\xbe\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f \xd0\xb0\xd0\xbb\xd0\xb3" "\xd0\xbe\xd1\x80\xd0\xb8\xd1\x82\xd0\xbc\xd0\xbe\xd0\xb2, \xd1\x81" "\xd0\xbf\xd0\xbe\xd1\x81\xd0\xbe\xd0\xb1\xd0\xbd\xd1\x8b\xd1\x85 " "\xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb0\xd1\x82\xd1\x8c\xd1\x81\xd1" "\x8f.") vect = CountVectorizer() X_counted = vect.fit_transform([document]) assert_equal(X_counted.shape, (1, 15)) vect = HashingVectorizer(norm=None, non_negative=True) X_hashed = vect.transform([document]) assert_equal(X_hashed.shape, (1, 2 ** 20)) # No collisions on such a small dataset assert_equal(X_counted.nnz, X_hashed.nnz) # When norm is None and non_negative, the tokens are counted up to # collisions assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data)) def test_tfidf_vectorizer_with_fixed_vocabulary(): # non regression smoke test for inheritance issues vocabulary = ['pizza', 'celeri'] vect = TfidfVectorizer(vocabulary=vocabulary) X_1 = vect.fit_transform(ALL_FOOD_DOCS) X_2 = vect.transform(ALL_FOOD_DOCS) assert_array_almost_equal(X_1.toarray(), X_2.toarray()) assert_true(vect.fixed_vocabulary_) def test_pickling_vectorizer(): instances = [ HashingVectorizer(), HashingVectorizer(norm='l1'), HashingVectorizer(binary=True), HashingVectorizer(ngram_range=(1, 2)), CountVectorizer(), CountVectorizer(preprocessor=strip_tags), CountVectorizer(analyzer=lazy_analyze), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS), TfidfVectorizer(), TfidfVectorizer(analyzer=lazy_analyze), TfidfVectorizer().fit(JUNK_FOOD_DOCS), ] for orig in instances: s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_equal(copy.get_params(), orig.get_params()) assert_array_equal( copy.fit_transform(JUNK_FOOD_DOCS).toarray(), orig.fit_transform(JUNK_FOOD_DOCS).toarray()) def test_countvectorizer_vocab_sets_when_pickling(): # ensure that vocabulary of type set is coerced to a list to # preserve iteration ordering after deserialization rng = np.random.RandomState(0) vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water']) for x in range(0, 100): vocab_set = set(choice(vocab_words, size=5, replace=False, random_state=rng)) cv = CountVectorizer(vocabulary=vocab_set) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_equal(cv.get_feature_names(), unpickled_cv.get_feature_names()) def test_countvectorizer_vocab_dicts_when_pickling(): rng = np.random.RandomState(0) vocab_words = np.array(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water']) for x in range(0, 100): vocab_dict = dict() words = choice(vocab_words, size=5, replace=False, random_state=rng) for y in range(0, 5): vocab_dict[words[y]] = y cv = CountVectorizer(vocabulary=vocab_dict) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_equal(cv.get_feature_names(), unpickled_cv.get_feature_names()) def test_stop_words_removal(): # Ensure that deleting the stop_words_ attribute doesn't affect transform fitted_vectorizers = ( TfidfVectorizer().fit(JUNK_FOOD_DOCS), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS) ) for vect in fitted_vectorizers: vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray() vect.stop_words_ = None stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray() delattr(vect, 'stop_words_') stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray() assert_array_equal(stop_None_transform, vect_transform) assert_array_equal(stop_del_transform, vect_transform) def test_pickling_transformer(): X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS) orig = TfidfTransformer().fit(X) s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_array_equal( copy.fit_transform(X).toarray(), orig.fit_transform(X).toarray()) def test_non_unique_vocab(): vocab = ['a', 'b', 'c', 'a', 'a'] vect = CountVectorizer(vocabulary=vocab) assert_raises(ValueError, vect.fit, []) def test_hashingvectorizer_nan_in_docs(): # np.nan can appear when using pandas to load text fields from a csv file # with missing values. message = "np.nan is an invalid document, expected byte or unicode string." exception = ValueError def func(): hv = HashingVectorizer() hv.fit_transform(['hello world', np.nan, 'hello hello']) assert_raise_message(exception, message, func) def test_tfidfvectorizer_binary(): # Non-regression test: TfidfVectorizer used to ignore its "binary" param. v = TfidfVectorizer(binary=True, use_idf=False, norm=None) assert_true(v.binary) X = v.fit_transform(['hello world', 'hello hello']).toarray() assert_array_equal(X.ravel(), [1, 1, 1, 0]) X2 = v.transform(['hello world', 'hello hello']).toarray() assert_array_equal(X2.ravel(), [1, 1, 1, 0]) def test_tfidfvectorizer_export_idf(): vect = TfidfVectorizer(use_idf=True) vect.fit(JUNK_FOOD_DOCS) assert_array_almost_equal(vect.idf_, vect._tfidf.idf_) def test_vectorizer_vocab_clone(): vect_vocab = TfidfVectorizer(vocabulary=["the"]) vect_vocab_clone = clone(vect_vocab) vect_vocab.fit(ALL_FOOD_DOCS) vect_vocab_clone.fit(ALL_FOOD_DOCS) assert_equal(vect_vocab_clone.vocabulary_, vect_vocab.vocabulary_) def test_vectorizer_string_object_as_input(): message = ("Iterable over raw text documents expected, " "string object received.") for vec in [CountVectorizer(), TfidfVectorizer(), HashingVectorizer()]: assert_raise_message( ValueError, message, vec.fit_transform, "hello world!") assert_raise_message( ValueError, message, vec.fit, "hello world!") assert_raise_message( ValueError, message, vec.transform, "hello world!")
bsd-3-clause
hanjiepan/LEAP
visi2ms.py
1
12276
""" visi2ms.py: write visibility to an MS file Copyright (C) 2017 Hanjie Pan This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Correspondence concerning LEAP should be addressed as follows: Email: hanjie [Dot] pan [At] epfl [Dot] ch Postal address: EPFL-IC-LCAV Station 14 1015 Lausanne Switzerland """ from __future__ import division import subprocess import sys import re import os import numpy as np from astropy.io import fits from astropy import units from astropy.coordinates import SkyCoord from astropy.wcs import WCS import matplotlib if os.environ.get('DISPLAY') is None: matplotlib.use('Agg') import matplotlib.pyplot as plt if sys.version_info[0] > 2: sys.exit('Sorry casacore only runs on Python 2.') else: from casacore import tables as casa_tables def run_wsclean(ms_file, channel_range=(0, 1), mgain=0.7, FoV=5, max_iter=1000, auto_threshold=3, threshold=None, output_img_size=512, intermediate_size=1024, output_name_prefix='highres', quiet=False, run_cs=False, cs_gain=0.1): """ run wsclean algorithm for a given measurement set (ms file). :param ms_file: name of the measurement set :param channel_range: frequency channel range. The first one is inclusive but the second one is exclusive, i.e., (0, 1) select channel0 only. :param mgain: gain for the CLEAN iteration :param FoV: field of view (in degree). Default 5 degree :param max_iter: maximum number of iterations of the CLEAN algorithm :param output_img_size: output image size :param intermediate_size: intermediate image size (must be no smaller than output_img_size) :param output_name_prefix: prefix for various outputs from wsclean :return: """ if quiet: wsclean_mode = 'wsclean -quiet' print('Running wsclean ...') else: wsclean_mode = 'wsclean' assert output_img_size <= intermediate_size pixel_size = FoV * 3600 / output_img_size # in arcsecond if run_cs: wsclean_mode += ' -iuwt -gain {cs_gain} '.format(cs_gain=cs_gain) bash_cmd = '{wsclean} ' \ '-size {intermediate_size} {intermediate_size} ' \ '-trim {output_img_size} {output_img_size} ' \ '-scale {pixel_size}asec ' \ '-name {output_name_prefix} ' \ '-datacolumn DATA ' \ '-channelrange {freq_channel_min} {freq_channel_max} ' \ '-niter {max_iter} ' \ '-mgain {mgain} ' \ '-pol I ' \ '-weight briggs 0.0 ' \ '-weighting-rank-filter 3 '.format( wsclean=wsclean_mode, intermediate_size=intermediate_size, output_img_size=output_img_size, pixel_size=repr(pixel_size), output_name_prefix=output_name_prefix, freq_channel_min=channel_range[0], freq_channel_max=channel_range[1], max_iter=max_iter, mgain=mgain, auto_threshold=auto_threshold ) if threshold is None: bash_cmd += '-auto-threshold {auto_threshold} '.format(auto_threshold=auto_threshold) else: bash_cmd += '-threshold {threshold} '.format(threshold=threshold) bash_cmd += '{ms_file} '.format(ms_file=ms_file) # run wsclean exitcode = subprocess.call(bash_cmd, shell=True) return exitcode def convert_clean_outputs(clean_output_prefix, result_image_prefix, result_data_prefix, fig_file_format='png', dpi=600): """ convert the FITS images from wsclean to numpy array :param clean_output_prefix: prefix of wsCLEAN outputs :param result_image_prefix: prefix to be used for the converted numpy array :return: """ # CLEAN point sources based one '-model.fits' with fits.open(clean_output_prefix + '-model.fits') as handle: # FITS data src_model = handle[0].data.squeeze() # CLEANed image with fits.open(clean_output_prefix + '-image.fits') as handle: # handle.info() # FITS header info. img_header = handle['PRIMARY'].header # convert to world coordinate w = WCS(img_header) num_pixel_RA = img_header['NAXIS1'] num_pixel_DEC = img_header['NAXIS2'] RA_mesh, DEC_mesh = np.meshgrid(np.arange(num_pixel_RA) + 1, np.arange(num_pixel_DEC) + 1) pixcard = np.column_stack((RA_mesh.flatten('F'), DEC_mesh.flatten('F'))) RA_DEC_plt = w.dropaxis(3).dropaxis(2).all_pix2world(pixcard, 1) RA_plt_grid = np.reshape(RA_DEC_plt[:, 0], (-1, num_pixel_RA), order='F') DEC_plt_grid = np.reshape(RA_DEC_plt[:, 1], (-1, num_pixel_DEC), order='F') # FITS data img_data = handle[0].data.squeeze() # dirty image with fits.open(clean_output_prefix + '-dirty.fits') as handle: dirty_img = handle[0].data.squeeze() plt.figure(figsize=(5, 4), dpi=300).add_subplot(111) plt.gca().locator_params(axis='x', nbins=6) plt.pcolormesh(RA_plt_grid, DEC_plt_grid, img_data, shading='gouraud', cmap='Spectral_r') plt.xlabel('RA (J2000)') plt.ylabel('DEC (J2000)') plt.gca().invert_xaxis() xlabels_original = plt.gca().get_xticks().tolist() ylabels_original = plt.gca().get_yticks().tolist() plt.close() # in degree, minute, and second representation xlabels_hms_all = [] for lable_idx, xlabels_original_loop in enumerate(xlabels_original): xlabels_original_loop = float(xlabels_original_loop) xlabels_dms = SkyCoord( ra=xlabels_original_loop, dec=0, unit=units.degree ).to_string('hmsdms').split(' ')[0] xlabels_dms = list(filter(None, re.split('[hms]+', xlabels_dms))) if lable_idx == 1: xlabels_dms = ( u'{0}h{1}m{2}s' ).format(xlabels_dms[0], xlabels_dms[1], xlabels_dms[2]) else: xlabels_dms = ( u'{0}m{1}s' ).format(xlabels_dms[1], xlabels_dms[2]) xlabels_hms_all.append(xlabels_dms) ylabels_all = [(u'{0:.2f}' + u'\u00B0').format(ylabels_loop) for ylabels_loop in ylabels_original] # use the re-formatted ticklabels to plot the figure again plt.figure(figsize=(5, 4), dpi=300).add_subplot(111) plt.pcolormesh(RA_plt_grid, DEC_plt_grid, img_data, shading='gouraud', cmap='Spectral_r') plt.xlabel('RA (J2000)') plt.ylabel('DEC (J2000)') plt.gca().invert_xaxis() plt.gca().set_xticklabels(xlabels_hms_all, fontsize=9) plt.gca().set_yticklabels(ylabels_all, fontsize=9) plt.axis('image') file_name = result_image_prefix + '-image.' + fig_file_format plt.savefig(filename=file_name, format=fig_file_format, dpi=dpi, transparent=True) plt.close() plt.figure(figsize=(5, 4), dpi=300).add_subplot(111) plt.pcolormesh(RA_plt_grid, DEC_plt_grid, dirty_img, shading='gouraud', cmap='Spectral_r') plt.xlabel('RA (J2000)') plt.ylabel('DEC (J2000)') plt.gca().invert_xaxis() plt.gca().set_xticklabels(xlabels_hms_all, fontsize=9) plt.gca().set_yticklabels(ylabels_all, fontsize=9) plt.axis('image') file_name = result_image_prefix + '-dirty.' + fig_file_format plt.savefig(filename=file_name, format=fig_file_format, dpi=dpi, transparent=True) plt.close() # save image data as well as plotting axis labels ''' here we flip the x-axis. in radioastronomy, the convention is that RA (the x-axis) DECREASES from left to right. By flipping the x-axis, RA INCREASES from left to right. ''' CLEAN_data_file = result_data_prefix + '-CLEAN_data.npz' np.savez( CLEAN_data_file, x_plt_CLEAN_rad=np.radians(RA_plt_grid), y_plt_CLEAN_rad=np.radians(DEC_plt_grid), img_clean=img_data, img_dirty=dirty_img, src_model=src_model, xlabels_hms_all=xlabels_hms_all, ylabels_dms_all=ylabels_all ) return CLEAN_data_file def update_visi_msfile(reference_ms_file, modified_ms_file, visi, antenna1_idx, antenna2_idx, num_station): """ update a reference ms file with a new visibility data :param reference_ms_file: the original ms file :param modified_ms_file: the modified ms file with the updated visibilities :param visi: new visibilities to be put in the copied ms file :param antenna1_idx: coordinate of the first antenna of the visibility measurements :param antenna2_idx: coordinate of the second antenna of the visibility measurements :return: """ print('Copying table for modifications ...') casa_tables.tablecopy(reference_ms_file, modified_ms_file) print('Modifying visibilities in the new table ...') with casa_tables.table(modified_ms_file, readonly=False, ack=False) as modified_table: # swap axis so that: # axis 0: cross-correlation index; # axis 1: subband index; # axis 2: STI index visi = np.swapaxes(visi, 1, 2) num_bands, num_sti = visi.shape[1:] row_count = 0 for sti_count in range(num_sti): visi_loop = np.zeros((num_station, num_station, num_bands), dtype=complex) visi_loop[antenna1_idx, antenna2_idx, :] = visi[:, :, sti_count] # so that axis 0: subband index; # axis 1: cross-correlation index1 # axis 2: cross-corrleation index2 visi_loop = visi_loop.swapaxes(2, 0).swapaxes(2, 1) for station2 in range(num_station): for station1 in range(station2 + 1): # dimension: num_subband x 4 (4 different polarisations: XX, XY, YX, YY) visi_station1_station2 = modified_table.getcell('DATA', rownr=row_count) visi_station1_station2[:num_bands, :] = \ visi_loop[:, station1, station2][:, np.newaxis] # visi_station1_station2[:, :] = \ # visi_loop[:, station1, station2][:, np.newaxis] # update visibility in the table modified_table.putcell('DATA', rownr=row_count, value=visi_station1_station2) flag_station1_station2 = modified_table.getcell('FLAG', rownr=row_count) flag_station1_station2[:num_bands, :] = False modified_table.putcell('FLAG', rownr=row_count, value=flag_station1_station2) row_count += 1 assert modified_table.nrows() == row_count # sanity check if __name__ == '__main__': # for testing purposes reference_ms_file = '/home/hpa/Documents/Data/BOOTES24_SB180-189.2ch8s_SIM_every50th.ms' modified_ms_file = '/home/hpa/Documents/Data/BOOTES24_SB180-189.2ch8s_SIM_every50th_modi.ms' num_station = 24 num_sti = 63 num_bands = 1 visi = np.random.randn(num_station * (num_station - 1), num_sti, num_bands) + \ 1j * np.random.randn(num_station * (num_station - 1), num_sti, num_bands) mask_mtx = (1 - np.eye(num_station, dtype=int)).astype(bool) antenna2_idx, antenna1_idx = np.meshgrid(np.arange(num_station), np.arange(num_station)) antenna1_idx = np.extract(mask_mtx, antenna1_idx) antenna2_idx = np.extract(mask_mtx, antenna2_idx) update_visi_msfile(reference_ms_file, modified_ms_file, visi, antenna1_idx, antenna2_idx, num_station)
gpl-3.0
SummaLabs/DLS
app/backend-test/core_convertors/run02_test_kerasModel2DLS.py
1
1111
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' import os os.environ['THEANO_FLAGS'] = "device=cpu" import glob import json import networkx as nx import matplotlib.pyplot as plt from pprint import pprint from app.backend.core.models.convertors import keras2dls ######################################### pathWithDatasets='../../../data-test/test_caffe_models' pathOutModels='../../../data/network/saved' ######################################### if __name__ == '__main__': lstModelsPaths = glob.glob('%s/*-kerasmodel.json' % pathWithDatasets) pprint(lstModelsPaths) # for ii,pp in enumerate(lstModelsPaths): theFinalDLSModel = keras2dls.convertKeras2DLS(pp, graphvizLayout='dot') foutModel=os.path.abspath('%s/%s_converted.json' % (pathOutModels, os.path.splitext(os.path.basename(pp))[0])) print ('[%d/%d] convert: %s --> [%s]' % (ii, len(lstModelsPaths), os.path.basename(pp), foutModel)) with open(foutModel, 'w') as f: f.write(json.dumps(theFinalDLSModel, indent=4)) # nx.draw(theGraph, theGraphPos) # plt.show()
mit
pyrolysis/kinetic_schemes
plot_primary.py
2
10358
""" Plot wood conversion and tar yield as mass fraction of original wood. Only primary reactions from various kinetic pyrolysis schemes are considered. References: See comments in the function file for references to a particular kinetic scheme. """ import numpy as np import matplotlib.pyplot as py import functions as fn # Parameters # ------------------------------------------------------------------------------ T = 773 # temperature for rate constants, K dt = 0.005 # time step, delta t tmax = 25 # max time, s t = np.linspace(0, tmax, num=tmax/dt) # time vector nt = len(t) # total number of time steps # Products from Wood Kinetic Schemes # ------------------------------------------------------------------------------ # store concentrations from primary reactions on a mass basis as kg/m^3 # row = concentration calculated from a particular kinetic scheme # column = concentration at time step wood = np.ones((13, nt)) # wood concentration array tar = np.zeros((13, nt)) # tar concentration array # products from primary reactions of Blasi 1993, Blasi 2001, Chan 1985, # Font 1990, Janse 2000, Koufopanos 199, Liden 1988, Papadikis 2010, # Sadhukhan 2009, Thurner 1981 for i in range(1, nt): wood[0, i], _, tar[0, i], _ = fn.blasi(wood[0, i-1], 0, tar[0, i-1], 0, T, dt) wood[1, i], _, tar[1, i], _ = fn.blasibranca(wood[1, i-1], 0, tar[1, i-1], 0, T, dt) wood[2, i], _, tar[2, i], _, _, _ = fn.chan(wood[2, i-1], 0, tar[2, i-1], 0, 0, 0, T, dt) wood[3, i], _, tar[3, i], _ = fn.font1(wood[3, i-1], 0, tar[3, i-1], 0, T, dt) wood[4, i], _, tar[4, i], _ = fn.font2(wood[4, i-1], 0, tar[4, i-1], 0, T, dt) wood[5, i], _, tar[5, i], _ = fn.janse(wood[5, i-1], 0, tar[5, i-1], 0, T, dt) wood[6, i], _, _, _, _ = fn.koufopanos(wood[6, i-1], 0, 0, 0, 0, T, dt) wood[7, i], _, tar[7, i], _ = fn.liden(wood[7, i-1], 0, tar[7, i-1], 0, T, dt) wood[8, i], _, tar[8, i], _ = fn.papadikis(wood[8, i-1], 0, tar[8, i-1], 0, T, dt) wood[9, i], _, _, _, _ = fn.sadhukhan(wood[9, i-1], 0, 0, 0, 0, T, dt) wood[10, i], _, tar[10, i], _ = fn.thurner(wood[10, i-1], 0, tar[10, i-1], 0, T, dt) # Products from Ranzi 2014 Kinetic Scheme # ------------------------------------------------------------------------------ # weight percent (%) cellulose, hemicellulose, lignin for beech wood wtcell = 48 wthemi = 28 wtlig = 24 # arrays for Ranzi main groups and products as mass fractions, (-) pmcell, pcell = fn.ranzicell(1, wtcell, T, dt, nt) # cellulose pmhemi, phemi = fn.ranzihemi(1, wthemi, T, dt, nt) # hemicellulose pmligc, pligc = fn.ranziligc(1, wtlig, T, dt, nt) # lignin-c pmligh, pligh = fn.ranziligh(1, wtlig, T, dt, nt) # lignin-h pmligo, pligo = fn.ranziligo(1, wtlig, T, dt, nt) # lignin-o # chemical species from Ranzi as mass fraction, (-) co = pcell[0] + phemi[0] + pligc[0] + pligh[0] + pligo[0] # CO co2 = pcell[1] + phemi[1] + pligc[1] + pligh[1] + pligo[1] # CO2 ch2o = pcell[2] + phemi[2] + pligc[2] + pligh[2] + pligo[2] # CH2O hcooh = pcell[3] + phemi[3] + pligc[3] + pligh[3] + pligo[3] # HCOOH ch3oh = pcell[4] + phemi[4] + pligc[4] + pligh[4] + pligo[4] # CH3OH ch4 = pcell[5] + phemi[5] + pligc[5] + pligh[5] + pligo[5] # CH4 glyox = pcell[6] + phemi[6] + pligc[6] + pligh[6] + pligo[6] # Glyox (C2H2O2) c2h4 = pcell[7] + phemi[7] + pligc[7] + pligh[7] + pligo[7] # C2H4 c2h4o = pcell[8] + phemi[8] + pligc[8] + pligh[8] + pligo[8] # C2H4O haa = pcell[9] + phemi[9] + pligc[9] + pligh[9] + pligo[9] # HAA (C2H4O2) c2h5oh = pcell[10] + phemi[10] + pligc[10] + pligh[10] + pligo[10] # C2H5OH c3h6o = pcell[11] + phemi[11] + pligc[11] + pligh[11] + pligo[11] # C3H6O xyl = pcell[12] + phemi[12] + pligc[12] + pligh[12] + pligo[12] # Xylose (C5H10O5) c6h6o = pcell[13] + phemi[13] + pligc[13] + pligh[13] + pligo[13] # C6H6O hmfu = pcell[14] + phemi[14] + pligc[14] + pligh[14] + pligo[14] # HMFU (C6H6O3) lvg = pcell[15] + phemi[15] + pligc[15] + pligh[15] + pligo[15] # LVG (C6H10O2) coum = pcell[16] + phemi[16] + pligc[16] + pligh[16] + pligo[16] # p-Coumaryl (C9H10O2) fe2macr = pcell[17] + phemi[17] + pligc[17] + pligh[17] + pligo[17] # FE2MACR (C11H12O4) h2 = pcell[18] + phemi[18] + pligc[18] + pligh[18] + pligo[18] # H2 h2o = pcell[19] + phemi[19] + pligc[19] + pligh[19] + pligo[19] # H2O char = pcell[20] + phemi[20] + pligc[20] + pligh[20] + pligo[20] # Char # groups from Ranzi for wood and tar as mass fraction, (-) wood_ranzi = pmcell[0] + pmhemi[0] + pmligc[0] + pmligh[0] + pmligo[0] tar_ranzi = ch2o + hcooh + ch3oh + glyox + c2h4o + haa + c2h5oh + c3h6o + xyl + c6h6o + hmfu + lvg + coum + fe2macr wood[11] = wood_ranzi tar[11] = tar_ranzi # Products from Miller and Bellan 1997 Kinetic Scheme # ------------------------------------------------------------------------------ # composition of beech wood from Table 2 in paper wtcell = 0.48 # cellulose mass fraction, (-) wthemi = 0.28 # hemicellulose mass fraction, (-) wtlig = 0.24 # lignin mass fraction, (-) cella = np.ones(nt)*wtcell hemia = np.ones(nt)*wthemi liga = np.ones(nt)*wtlig tar1, tar2, tar3 = np.zeros(nt), np.zeros(nt), np.zeros(nt) for i in range(1, nt): cella[i], _, tar1[i], _ = fn.millercell_noR1(cella[i-1], 0, tar1[i-1], 0, T, dt) hemia[i], _, tar2[i], _ = fn.millerhemi_noR1(hemia[i-1], 0, tar2[i-1], 0, T, dt) liga[i], _, tar3[i], _ = fn.millerlig_noR1(liga[i-1], 0, tar3[i-1], 0, T, dt) wood[12] = cella + hemia + liga tar[12] = tar1 + tar2 + tar3 # Plot Results # ------------------------------------------------------------------------------ py.ion() py.close('all') def despine(): # remove top, right axis and tick marks ax = py.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) py.tick_params(axis='both', bottom='off', top='off', left='off', right='off') py.figure(1) py.plot(t, wood[0], lw=2, label='Blasi 1993') py.plot(t, wood[1], lw=2, label='Blasi 2001') py.plot(t, wood[2], lw=2, label='Chan 1985') py.plot(t, wood[3], lw=2, label='Font1 1990') py.plot(t, wood[4], lw=2, label='Font2 1990') py.plot(t, wood[5], lw=2, label='Janse 2000') py.plot(t, wood[6], lw=2, label='Koufopanos 2000') py.plot(t, wood[7], '--', lw=2, label='Liden 1988') py.plot(t, wood[8], 'o', mec='g', mew=1, markevery=200, label='Papadikis 2010') py.plot(t, wood[9], '--', lw=2, label='Sadhukhan 2009') py.plot(t, wood[10], 'yo', mec='y', mew=1, markevery=200, label='Thurner 1981') py.plot(t, wood[11], '--', lw=2, label='Ranzi 2014') py.plot(t, wood[12], '--', lw=2, label='Miller 1997') py.title('Primary reactions at T = {} K'.format(T)) py.xlabel('Time (s)') py.ylabel('Wood Conversion (mass fraction)') py.legend(loc='best', numpoints=1, fontsize=11, frameon=False) py.grid() despine() py.figure(2) py.plot(t, tar[0], lw=2, label='Blasi 1993') py.plot(t, tar[1], lw=2, label='Blasi 2001') py.plot(t, tar[2], lw=2, label='Chan 1985') py.plot(t, tar[3], lw=2, label='Font1 1990') py.plot(t, tar[4], lw=2, label='Font2 1990') py.plot(t, tar[5], lw=2, label='Janse 2000') py.plot(t, tar[7], lw=2, label='Liden 1988') py.plot(t, tar[8], 'o', mew=1, markevery=200, label='Papadikis 2010') py.plot(t, tar[10], 'ro', mec='r', markevery=200, label='Thurner 1981') py.plot(t, tar[11], '--', lw=2, label='Ranzi 2014') py.plot(t, tar[11]+h2o, '--', lw=2, label='Ranzi 2014 + H2O') py.plot(t, tar[12], '--', lw=2, label='Miller 1997') py.title('Primary reactions at T = {} K'.format(T)) py.xlabel('Time (s)') py.ylabel('Tar Yield (mass fraction)') py.legend(loc='best', numpoints=1, fontsize=11, frameon=False) py.grid() despine() # plots for black and white figures # note Blasi 1993 and Thurner 1981 have same wood conversion and tar yields # note Chan 1985 and Papadikis 2010 have same wood conversion and tar yields py.figure(3) py.plot(t, wood[0], c='k', ls='-', label='Blasi 1993, Thurner 1981') py.plot(t, wood[1], c='k', ls='-', marker='s', markevery=200, label='Blasi 2001') py.plot(t, wood[2], c='k', ls='--', label='Chan 1985, Papadikis 2010') py.plot(t, wood[3], c='k', ls=':', lw=2, label='Font1 1990') py.plot(t, wood[4], c='k', ls=':', lw=2, marker='o', markevery=200, label='Font2 1990') py.plot(t, wood[5], c='k', ls='-', marker='v', markevery=200, label='Janse 2000') py.plot(t, wood[6], c='k', ls='--', marker='v', markevery=200, label='Koufopanos 2000') py.plot(t, wood[7], c='k', ls='-', marker='*', markevery=200, label='Liden 1988') # py.plot(t, wood[8], c='k', ls='-', marker='s', markevery=200, label='Papadikis 2010') py.plot(t, wood[9], c='k', ls='--', marker='s', markevery=200, label='Sadhukhan 2009') # py.plot(t, wood[10], c='k', ls='', marker='^', markevery=200, label='Thurner 1981') py.plot(t, wood[11], c='k', ls='-', marker='x', markevery=200, label='Ranzi 2014') py.plot(t, wood[12], c='k', ls='-', marker='p', markevery=200, label='Miller 1997') # py.title('Primary reactions at T = {} K'.format(T)) py.xlabel('Time (s)') py.ylabel('Wood Conversion (mass fraction)') py.legend(loc='best', ncol=2, numpoints=1, fontsize=11, frameon=False) despine() py.figure(4) py.plot(t, tar[0], c='k', ls='-', label='Blasi 1993, Thurner 1981') py.plot(t, tar[1], c='k', ls='-', marker='s', markevery=200, label='Blasi 2001') py.plot(t, tar[2], c='k', ls='--', label='Chan 1985, Papadikis 2010') py.plot(t, tar[3], c='k', ls=':', lw=2, label='Font1 1990') py.plot(t, tar[4], c='k', ls=':', lw=2, marker='o', markevery=200, label='Font2 1990') py.plot(t, tar[5], c='k', ls='-', marker='v', markevery=200, label='Janse 2000') py.plot(t, tar[7], c='k', ls='-', marker='*', markevery=200, label='Liden 1988') # py.plot(t, tar[8], c='k', ls='', marker='s', markevery=200, label='Papadikis 2010') # py.plot(t, tar[10], c='k', ls='', marker='^', markevery=200, label='Thurner 1981') py.plot(t, tar[11], c='k', ls='-', marker='x', markevery=200, label='Ranzi 2014') py.plot(t, tar[11]+h2o, c='k', ls='-', marker='+', markevery=200, label='Ranzi 2014 + H2O') py.plot(t, tar[12], c='k', ls='-', marker='p', markevery=200, label='Miller 1997') # py.title('Primary reactions at T = {} K'.format(T)) py.xlabel('Time (s)') py.ylabel('Tar Yield (mass fraction)') py.legend(loc='best', ncol=2, numpoints=1, fontsize=11, frameon=False) despine()
mit
laurentgo/arrow
python/pyarrow/tests/test_array.py
1
83167
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from collections.abc import Iterable import datetime import decimal import hypothesis as h import hypothesis.strategies as st import itertools import pickle import pytest import struct import sys import weakref import numpy as np try: import pickle5 except ImportError: pickle5 = None import pyarrow as pa import pyarrow.tests.strategies as past def test_total_bytes_allocated(): assert pa.total_allocated_bytes() == 0 def test_weakref(): arr = pa.array([1, 2, 3]) wr = weakref.ref(arr) assert wr() is not None del arr assert wr() is None def test_getitem_NULL(): arr = pa.array([1, None, 2]) assert arr[1].as_py() is None assert arr[1].is_valid is False assert isinstance(arr[1], pa.Int64Scalar) def test_constructor_raises(): # This could happen by wrong capitalization. # ARROW-2638: prevent calling extension class constructors directly with pytest.raises(TypeError): pa.Array([1, 2]) def test_list_format(): arr = pa.array([[1], None, [2, 3, None]]) result = arr.to_string() expected = """\ [ [ 1 ], null, [ 2, 3, null ] ]""" assert result == expected def test_string_format(): arr = pa.array(['', None, 'foo']) result = arr.to_string() expected = """\ [ "", null, "foo" ]""" assert result == expected def test_long_array_format(): arr = pa.array(range(100)) result = arr.to_string(window=2) expected = """\ [ 0, 1, ... 98, 99 ]""" assert result == expected def test_binary_format(): arr = pa.array([b'\x00', b'', None, b'\x01foo', b'\x80\xff']) result = arr.to_string() expected = """\ [ 00, , null, 01666F6F, 80FF ]""" assert result == expected def test_binary_total_values_length(): arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], type='binary') large_arr = pa.array([b'0000', None, b'11111', b'222222', b'3333333'], type='large_binary') assert arr.total_values_length == 22 assert arr.slice(1, 3).total_values_length == 11 assert large_arr.total_values_length == 22 assert large_arr.slice(1, 3).total_values_length == 11 def test_to_numpy_zero_copy(): arr = pa.array(range(10)) np_arr = arr.to_numpy() # check for zero copy (both arrays using same memory) arrow_buf = arr.buffers()[1] assert arrow_buf.address == np_arr.ctypes.data arr = None import gc gc.collect() # Ensure base is still valid assert np_arr.base is not None expected = np.arange(10) np.testing.assert_array_equal(np_arr, expected) def test_to_numpy_unsupported_types(): # ARROW-2871: Some primitive types are not yet supported in to_numpy bool_arr = pa.array([True, False, True]) with pytest.raises(ValueError): bool_arr.to_numpy() result = bool_arr.to_numpy(zero_copy_only=False) expected = np.array([True, False, True]) np.testing.assert_array_equal(result, expected) null_arr = pa.array([None, None, None]) with pytest.raises(ValueError): null_arr.to_numpy() result = null_arr.to_numpy(zero_copy_only=False) expected = np.array([None, None, None], dtype=object) np.testing.assert_array_equal(result, expected) arr = pa.array([1, 2, None]) with pytest.raises(ValueError, match="with 1 nulls"): arr.to_numpy() def test_to_numpy_writable(): arr = pa.array(range(10)) np_arr = arr.to_numpy() # by default not writable for zero-copy conversion with pytest.raises(ValueError): np_arr[0] = 10 np_arr2 = arr.to_numpy(zero_copy_only=False, writable=True) np_arr2[0] = 10 assert arr[0].as_py() == 0 # when asking for writable, cannot do zero-copy with pytest.raises(ValueError): arr.to_numpy(zero_copy_only=True, writable=True) @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) def test_to_numpy_datetime64(unit): arr = pa.array([1, 2, 3], pa.timestamp(unit)) expected = np.array([1, 2, 3], dtype="datetime64[{}]".format(unit)) np_arr = arr.to_numpy() np.testing.assert_array_equal(np_arr, expected) @pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns']) def test_to_numpy_timedelta64(unit): arr = pa.array([1, 2, 3], pa.duration(unit)) expected = np.array([1, 2, 3], dtype="timedelta64[{}]".format(unit)) np_arr = arr.to_numpy() np.testing.assert_array_equal(np_arr, expected) def test_to_numpy_dictionary(): # ARROW-7591 arr = pa.array(["a", "b", "a"]).dictionary_encode() expected = np.array(["a", "b", "a"], dtype=object) np_arr = arr.to_numpy(zero_copy_only=False) np.testing.assert_array_equal(np_arr, expected) @pytest.mark.pandas def test_to_pandas_zero_copy(): import gc arr = pa.array(range(10)) for i in range(10): series = arr.to_pandas() assert sys.getrefcount(series) == 2 series = None # noqa assert sys.getrefcount(arr) == 2 for i in range(10): arr = pa.array(range(10)) series = arr.to_pandas() arr = None gc.collect() # Ensure base is still valid # Because of py.test's assert inspection magic, if you put getrefcount # on the line being examined, it will be 1 higher than you expect base_refcount = sys.getrefcount(series.values.base) assert base_refcount == 2 series.sum() @pytest.mark.nopandas @pytest.mark.pandas def test_asarray(): # ensure this is tested both when pandas is present or not (ARROW-6564) arr = pa.array(range(4)) # The iterator interface gives back an array of Int64Value's np_arr = np.asarray([_ for _ in arr]) assert np_arr.tolist() == [0, 1, 2, 3] assert np_arr.dtype == np.dtype('O') assert type(np_arr[0]) == pa.lib.Int64Value # Calling with the arrow array gives back an array with 'int64' dtype np_arr = np.asarray(arr) assert np_arr.tolist() == [0, 1, 2, 3] assert np_arr.dtype == np.dtype('int64') # An optional type can be specified when calling np.asarray np_arr = np.asarray(arr, dtype='str') assert np_arr.tolist() == ['0', '1', '2', '3'] # If PyArrow array has null values, numpy type will be changed as needed # to support nulls. arr = pa.array([0, 1, 2, None]) assert arr.type == pa.int64() np_arr = np.asarray(arr) elements = np_arr.tolist() assert elements[:3] == [0., 1., 2.] assert np.isnan(elements[3]) assert np_arr.dtype == np.dtype('float64') # DictionaryType data will be converted to dense numpy array arr = pa.DictionaryArray.from_arrays( pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c'])) np_arr = np.asarray(arr) assert np_arr.dtype == np.dtype('object') assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b'] @pytest.mark.parametrize('ty', [ None, pa.null(), pa.int8(), pa.string() ]) def test_nulls(ty): arr = pa.nulls(3, type=ty) expected = pa.array([None, None, None], type=ty) assert len(arr) == 3 assert arr.equals(expected) if ty is None: assert arr.type == pa.null() else: assert arr.type == ty def test_array_from_scalar(): today = datetime.date.today() now = datetime.datetime.now() oneday = datetime.timedelta(days=1) cases = [ (None, 1, pa.array([None])), (None, 10, pa.nulls(10)), (-1, 3, pa.array([-1, -1, -1], type=pa.int64())), (2.71, 2, pa.array([2.71, 2.71], type=pa.float64())), ("string", 4, pa.array(["string"] * 4)), ( pa.scalar(8, type=pa.uint8()), 17, pa.array([8] * 17, type=pa.uint8()) ), (pa.scalar(None), 3, pa.array([None, None, None])), (pa.scalar(True), 11, pa.array([True] * 11)), (today, 2, pa.array([today] * 2)), (now, 10, pa.array([now] * 10)), (now.time(), 9, pa.array([now.time()] * 9)), (oneday, 4, pa.array([oneday] * 4)), (False, 9, pa.array([False] * 9)), ([1, 2], 2, pa.array([[1, 2], [1, 2]])), ( pa.scalar([-1, 3], type=pa.large_list(pa.int8())), 5, pa.array([[-1, 3]] * 5, type=pa.large_list(pa.int8())) ), ({'a': 1, 'b': 2}, 3, pa.array([{'a': 1, 'b': 2}] * 3)) ] for value, size, expected in cases: arr = pa.repeat(value, size) assert len(arr) == size assert arr.equals(expected) if expected.type == pa.null(): assert arr.null_count == size else: assert arr.null_count == 0 def test_array_from_dictionary_scalar(): dictionary = ['foo', 'bar', 'baz'] arr = pa.DictionaryArray.from_arrays([2, 1, 2, 0], dictionary=dictionary) result = pa.repeat(arr[0], 5) expected = pa.DictionaryArray.from_arrays([2] * 5, dictionary=dictionary) assert result.equals(expected) result = pa.repeat(arr[3], 5) expected = pa.DictionaryArray.from_arrays([0] * 5, dictionary=dictionary) assert result.equals(expected) def test_array_getitem(): arr = pa.array(range(10, 15)) lst = arr.to_pylist() for idx in range(-len(arr), len(arr)): assert arr[idx].as_py() == lst[idx] for idx in range(-2 * len(arr), -len(arr)): with pytest.raises(IndexError): arr[idx] for idx in range(len(arr), 2 * len(arr)): with pytest.raises(IndexError): arr[idx] def test_array_slice(): arr = pa.array(range(10)) sliced = arr.slice(2) expected = pa.array(range(2, 10)) assert sliced.equals(expected) sliced2 = arr.slice(2, 4) expected2 = pa.array(range(2, 6)) assert sliced2.equals(expected2) # 0 offset assert arr.slice(0).equals(arr) # Slice past end of array assert len(arr.slice(len(arr))) == 0 with pytest.raises(IndexError): arr.slice(-1) # Test slice notation assert arr[2:].equals(arr.slice(2)) assert arr[2:5].equals(arr.slice(2, 3)) assert arr[-5:].equals(arr.slice(len(arr) - 5)) n = len(arr) for start in range(-n * 2, n * 2): for stop in range(-n * 2, n * 2): assert arr[start:stop].to_pylist() == arr.to_pylist()[start:stop] def test_array_slice_negative_step(): # ARROW-2714 np_arr = np.arange(20) arr = pa.array(np_arr) chunked_arr = pa.chunked_array([arr]) cases = [ slice(None, None, -1), slice(None, 6, -2), slice(10, 6, -2), slice(8, None, -2), slice(2, 10, -2), slice(10, 2, -2), slice(None, None, 2), slice(0, 10, 2), ] for case in cases: result = arr[case] expected = pa.array(np_arr[case]) assert result.equals(expected) result = pa.record_batch([arr], names=['f0'])[case] expected = pa.record_batch([expected], names=['f0']) assert result.equals(expected) result = chunked_arr[case] expected = pa.chunked_array([np_arr[case]]) assert result.equals(expected) def test_array_diff(): # ARROW-6252 arr1 = pa.array(['foo'], type=pa.utf8()) arr2 = pa.array(['foo', 'bar', None], type=pa.utf8()) arr3 = pa.array([1, 2, 3]) arr4 = pa.array([[], [1], None], type=pa.list_(pa.int64())) assert arr1.diff(arr1) == '' assert arr1.diff(arr2) == ''' @@ -1, +1 @@ +"bar" +null ''' assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' assert arr1.diff(arr3).strip() == '# Array types differed: string vs int64' assert arr1.diff(arr4).strip() == ('# Array types differed: string vs ' 'list<item: int64>') def test_array_iter(): arr = pa.array(range(10)) for i, j in zip(range(10), arr): assert i == j.as_py() assert isinstance(arr, Iterable) def test_struct_array_slice(): # ARROW-2311: slicing nested arrays needs special care ty = pa.struct([pa.field('a', pa.int8()), pa.field('b', pa.float32())]) arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5}, {'a': 5, 'b': 6.5}] def test_array_factory_invalid_type(): class MyObject: pass arr = np.array([MyObject()]) with pytest.raises(ValueError): pa.array(arr) def test_array_ref_to_ndarray_base(): arr = np.array([1, 2, 3]) refcount = sys.getrefcount(arr) arr2 = pa.array(arr) # noqa assert sys.getrefcount(arr) == (refcount + 1) def test_array_eq(): # ARROW-2150 / ARROW-9445: we define the __eq__ behavior to be # data equality (not element-wise equality) arr1 = pa.array([1, 2, 3], type=pa.int32()) arr2 = pa.array([1, 2, 3], type=pa.int32()) arr3 = pa.array([1, 2, 3], type=pa.int64()) assert (arr1 == arr2) is True assert (arr1 != arr2) is False assert (arr1 == arr3) is False assert (arr1 != arr3) is True def test_array_from_buffers(): values_buf = pa.py_buffer(np.int16([4, 5, 6, 7])) nulls_buf = pa.py_buffer(np.uint8([0b00001101])) arr = pa.Array.from_buffers(pa.int16(), 4, [nulls_buf, values_buf]) assert arr.type == pa.int16() assert arr.to_pylist() == [4, None, 6, 7] arr = pa.Array.from_buffers(pa.int16(), 4, [None, values_buf]) assert arr.type == pa.int16() assert arr.to_pylist() == [4, 5, 6, 7] arr = pa.Array.from_buffers(pa.int16(), 3, [nulls_buf, values_buf], offset=1) assert arr.type == pa.int16() assert arr.to_pylist() == [None, 6, 7] with pytest.raises(TypeError): pa.Array.from_buffers(pa.int16(), 3, ['', ''], offset=1) def test_string_binary_from_buffers(): array = pa.array(["a", None, "b", "c"]) buffers = array.buffers() copied = pa.StringArray.from_buffers( len(array), buffers[1], buffers[2], buffers[0], array.null_count, array.offset) assert copied.to_pylist() == ["a", None, "b", "c"] binary_copy = pa.Array.from_buffers(pa.binary(), len(array), array.buffers(), array.null_count, array.offset) assert binary_copy.to_pylist() == [b"a", None, b"b", b"c"] copied = pa.StringArray.from_buffers( len(array), buffers[1], buffers[2], buffers[0]) assert copied.to_pylist() == ["a", None, "b", "c"] sliced = array[1:] buffers = sliced.buffers() copied = pa.StringArray.from_buffers( len(sliced), buffers[1], buffers[2], buffers[0], -1, sliced.offset) assert copied.to_pylist() == [None, "b", "c"] assert copied.null_count == 1 # Slice but exclude all null entries so that we don't need to pass # the null bitmap. sliced = array[2:] buffers = sliced.buffers() copied = pa.StringArray.from_buffers( len(sliced), buffers[1], buffers[2], None, -1, sliced.offset) assert copied.to_pylist() == ["b", "c"] assert copied.null_count == 0 @pytest.mark.parametrize('list_type_factory', [pa.list_, pa.large_list]) def test_list_from_buffers(list_type_factory): ty = list_type_factory(pa.int16()) array = pa.array([[0, 1, 2], None, [], [3, 4, 5]], type=ty) assert array.type == ty buffers = array.buffers() with pytest.raises(ValueError): # No children pa.Array.from_buffers(ty, 4, [None, buffers[1]]) child = pa.Array.from_buffers(pa.int16(), 6, buffers[2:]) copied = pa.Array.from_buffers(ty, 4, buffers[:2], children=[child]) assert copied.equals(array) with pytest.raises(ValueError): # too many children pa.Array.from_buffers(ty, 4, [None, buffers[1]], children=[child, child]) def test_struct_from_buffers(): ty = pa.struct([pa.field('a', pa.int16()), pa.field('b', pa.utf8())]) array = pa.array([{'a': 0, 'b': 'foo'}, None, {'a': 5, 'b': ''}], type=ty) buffers = array.buffers() with pytest.raises(ValueError): # No children pa.Array.from_buffers(ty, 3, [None, buffers[1]]) children = [pa.Array.from_buffers(pa.int16(), 3, buffers[1:3]), pa.Array.from_buffers(pa.utf8(), 3, buffers[3:])] copied = pa.Array.from_buffers(ty, 3, buffers[:1], children=children) assert copied.equals(array) with pytest.raises(ValueError): # not enough many children pa.Array.from_buffers(ty, 3, [buffers[0]], children=children[:1]) def test_struct_from_arrays(): a = pa.array([4, 5, 6], type=pa.int64()) b = pa.array(["bar", None, ""]) c = pa.array([[1, 2], None, [3, None]]) expected_list = [ {'a': 4, 'b': 'bar', 'c': [1, 2]}, {'a': 5, 'b': None, 'c': None}, {'a': 6, 'b': '', 'c': [3, None]}, ] # From field names arr = pa.StructArray.from_arrays([a, b, c], ["a", "b", "c"]) assert arr.type == pa.struct( [("a", a.type), ("b", b.type), ("c", c.type)]) assert arr.to_pylist() == expected_list with pytest.raises(ValueError): pa.StructArray.from_arrays([a, b, c], ["a", "b"]) arr = pa.StructArray.from_arrays([], []) assert arr.type == pa.struct([]) assert arr.to_pylist() == [] # From fields fa = pa.field("a", a.type, nullable=False) fb = pa.field("b", b.type) fc = pa.field("c", c.type) arr = pa.StructArray.from_arrays([a, b, c], fields=[fa, fb, fc]) assert arr.type == pa.struct([fa, fb, fc]) assert not arr.type[0].nullable assert arr.to_pylist() == expected_list with pytest.raises(ValueError): pa.StructArray.from_arrays([a, b, c], fields=[fa, fb]) arr = pa.StructArray.from_arrays([], fields=[]) assert arr.type == pa.struct([]) assert arr.to_pylist() == [] # Inconsistent fields fa2 = pa.field("a", pa.int32()) with pytest.raises(ValueError, match="int64 vs int32"): pa.StructArray.from_arrays([a, b, c], fields=[fa2, fb, fc]) def test_dictionary_from_numpy(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) mask = np.array([False, False, True, False, False, False]) d1 = pa.DictionaryArray.from_arrays(indices, dictionary) d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) assert d1.indices.to_pylist() == indices.tolist() assert d1.indices.to_pylist() == indices.tolist() assert d1.dictionary.to_pylist() == dictionary.tolist() assert d2.dictionary.to_pylist() == dictionary.tolist() for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] if mask[i]: assert d2[i].as_py() is None else: assert d2[i].as_py() == dictionary[indices[i]] def test_dictionary_from_boxed_arrays(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) iarr = pa.array(indices) darr = pa.array(dictionary) d1 = pa.DictionaryArray.from_arrays(iarr, darr) assert d1.indices.to_pylist() == indices.tolist() assert d1.dictionary.to_pylist() == dictionary.tolist() for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] def test_dictionary_from_arrays_boundscheck(): indices1 = pa.array([0, 1, 2, 0, 1, 2]) indices2 = pa.array([0, -1, 2]) indices3 = pa.array([0, 1, 2, 3]) dictionary = pa.array(['foo', 'bar', 'baz']) # Works fine pa.DictionaryArray.from_arrays(indices1, dictionary) with pytest.raises(pa.ArrowException): pa.DictionaryArray.from_arrays(indices2, dictionary) with pytest.raises(pa.ArrowException): pa.DictionaryArray.from_arrays(indices3, dictionary) # If we are confident that the indices are "safe" we can pass safe=False to # disable the boundschecking pa.DictionaryArray.from_arrays(indices2, dictionary, safe=False) def test_dictionary_indices(): # https://issues.apache.org/jira/browse/ARROW-6882 indices = pa.array([0, 1, 2, 0, 1, 2]) dictionary = pa.array(['foo', 'bar', 'baz']) arr = pa.DictionaryArray.from_arrays(indices, dictionary) arr.indices.validate(full=True) @pytest.mark.parametrize(('list_array_type', 'list_type_factory'), [(pa.ListArray, pa.list_), (pa.LargeListArray, pa.large_list)]) def test_list_from_arrays(list_array_type, list_type_factory): offsets_arr = np.array([0, 2, 5, 8], dtype='i4') offsets = pa.array(offsets_arr, type='int32') pyvalues = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] values = pa.array(pyvalues, type='binary') result = list_array_type.from_arrays(offsets, values) expected = pa.array([pyvalues[:2], pyvalues[2:5], pyvalues[5:8]], type=list_type_factory(pa.binary())) assert result.equals(expected) # With nulls offsets = [0, None, 2, 6] values = [b'a', b'b', b'c', b'd', b'e', b'f'] result = list_array_type.from_arrays(offsets, values) expected = pa.array([values[:2], None, values[2:]], type=list_type_factory(pa.binary())) assert result.equals(expected) # Another edge case offsets2 = [0, 2, None, 6] result = list_array_type.from_arrays(offsets2, values) expected = pa.array([values[:2], values[2:], None], type=list_type_factory(pa.binary())) assert result.equals(expected) # raise on invalid array offsets = [1, 3, 10] values = np.arange(5) with pytest.raises(ValueError): list_array_type.from_arrays(offsets, values) # Non-monotonic offsets offsets = [0, 3, 2, 6] values = list(range(6)) result = list_array_type.from_arrays(offsets, values) with pytest.raises(ValueError): result.validate(full=True) def test_map_from_arrays(): offsets_arr = np.array([0, 2, 5, 8], dtype='i4') offsets = pa.array(offsets_arr, type='int32') pykeys = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] pyitems = list(range(len(pykeys))) pypairs = list(zip(pykeys, pyitems)) pyentries = [pypairs[:2], pypairs[2:5], pypairs[5:8]] keys = pa.array(pykeys, type='binary') items = pa.array(pyitems, type='i4') result = pa.MapArray.from_arrays(offsets, keys, items) expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) assert result.equals(expected) # With nulls offsets = [0, None, 2, 6] pykeys = [b'a', b'b', b'c', b'd', b'e', b'f'] pyitems = [1, 2, 3, None, 4, 5] pypairs = list(zip(pykeys, pyitems)) pyentries = [pypairs[:2], None, pypairs[2:]] keys = pa.array(pykeys, type='binary') items = pa.array(pyitems, type='i4') result = pa.MapArray.from_arrays(offsets, keys, items) expected = pa.array(pyentries, type=pa.map_(pa.binary(), pa.int32())) assert result.equals(expected) # check invalid usage offsets = [0, 1, 3, 5] keys = np.arange(5) items = np.arange(5) _ = pa.MapArray.from_arrays(offsets, keys, items) # raise on invalid offsets with pytest.raises(ValueError): pa.MapArray.from_arrays(offsets + [6], keys, items) # raise on length of keys != items with pytest.raises(ValueError): pa.MapArray.from_arrays(offsets, keys, np.concatenate([items, items])) # raise on keys with null keys_with_null = list(keys)[:-1] + [None] assert len(keys_with_null) == len(items) with pytest.raises(ValueError): pa.MapArray.from_arrays(offsets, keys_with_null, items) def test_fixed_size_list_from_arrays(): values = pa.array(range(12), pa.int64()) result = pa.FixedSizeListArray.from_arrays(values, 4) assert result.to_pylist() == [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] assert result.type.equals(pa.list_(pa.int64(), 4)) # raise on invalid values / list_size with pytest.raises(ValueError): pa.FixedSizeListArray.from_arrays(values, -4) with pytest.raises(ValueError): # array with list size 0 cannot be constructed with from_arrays pa.FixedSizeListArray.from_arrays(pa.array([], pa.int64()), 0) with pytest.raises(ValueError): # length of values not multiple of 5 pa.FixedSizeListArray.from_arrays(values, 5) def test_union_from_dense(): binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') int64 = pa.array([1, 2, 3], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') value_offsets = pa.array([1, 0, 0, 2, 1, 2, 3], type='int32') py_value = [b'b', 1, b'a', b'c', 2, 3, b'd'] def check_result(result, expected_field_names, expected_type_codes, expected_type_code_values): result.validate(full=True) actual_field_names = [result.type[i].name for i in range(result.type.num_fields)] assert actual_field_names == expected_field_names assert result.type.mode == "dense" assert result.type.type_codes == expected_type_codes assert result.to_pylist() == py_value assert expected_type_code_values.equals(result.type_codes) assert value_offsets.equals(result.offsets) assert result.field(0).equals(binary) assert result.field(1).equals(int64) with pytest.raises(KeyError): result.field(-1) with pytest.raises(KeyError): result.field(2) # without field names and type codes check_result(pa.UnionArray.from_dense(types, value_offsets, [binary, int64]), expected_field_names=['0', '1'], expected_type_codes=[0, 1], expected_type_code_values=types) # with field names check_result(pa.UnionArray.from_dense(types, value_offsets, [binary, int64], ['bin', 'int']), expected_field_names=['bin', 'int'], expected_type_codes=[0, 1], expected_type_code_values=types) # with type codes check_result(pa.UnionArray.from_dense(logical_types, value_offsets, [binary, int64], type_codes=[11, 13]), expected_field_names=['0', '1'], expected_type_codes=[11, 13], expected_type_code_values=logical_types) # with field names and type codes check_result(pa.UnionArray.from_dense(logical_types, value_offsets, [binary, int64], ['bin', 'int'], [11, 13]), expected_field_names=['bin', 'int'], expected_type_codes=[11, 13], expected_type_code_values=logical_types) # Bad type ids arr = pa.UnionArray.from_dense(logical_types, value_offsets, [binary, int64]) with pytest.raises(pa.ArrowInvalid): arr.validate(full=True) arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64], type_codes=[11, 13]) with pytest.raises(pa.ArrowInvalid): arr.validate(full=True) # Offset larger than child size bad_offsets = pa.array([0, 0, 1, 2, 1, 2, 4], type='int32') arr = pa.UnionArray.from_dense(types, bad_offsets, [binary, int64]) with pytest.raises(pa.ArrowInvalid): arr.validate(full=True) def test_union_from_sparse(): binary = pa.array([b'a', b' ', b'b', b'c', b' ', b' ', b'd'], type='binary') int64 = pa.array([0, 1, 0, 0, 2, 3, 0], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') logical_types = pa.array([11, 13, 11, 11, 13, 13, 11], type='int8') py_value = [b'a', 1, b'b', b'c', 2, 3, b'd'] def check_result(result, expected_field_names, expected_type_codes, expected_type_code_values): result.validate(full=True) assert result.to_pylist() == py_value actual_field_names = [result.type[i].name for i in range(result.type.num_fields)] assert actual_field_names == expected_field_names assert result.type.mode == "sparse" assert result.type.type_codes == expected_type_codes assert expected_type_code_values.equals(result.type_codes) assert result.field(0).equals(binary) assert result.field(1).equals(int64) with pytest.raises(pa.ArrowTypeError): result.offsets with pytest.raises(KeyError): result.field(-1) with pytest.raises(KeyError): result.field(2) # without field names and type codes check_result(pa.UnionArray.from_sparse(types, [binary, int64]), expected_field_names=['0', '1'], expected_type_codes=[0, 1], expected_type_code_values=types) # with field names check_result(pa.UnionArray.from_sparse(types, [binary, int64], ['bin', 'int']), expected_field_names=['bin', 'int'], expected_type_codes=[0, 1], expected_type_code_values=types) # with type codes check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], type_codes=[11, 13]), expected_field_names=['0', '1'], expected_type_codes=[11, 13], expected_type_code_values=logical_types) # with field names and type codes check_result(pa.UnionArray.from_sparse(logical_types, [binary, int64], ['bin', 'int'], [11, 13]), expected_field_names=['bin', 'int'], expected_type_codes=[11, 13], expected_type_code_values=logical_types) # Bad type ids arr = pa.UnionArray.from_sparse(logical_types, [binary, int64]) with pytest.raises(pa.ArrowInvalid): arr.validate(full=True) arr = pa.UnionArray.from_sparse(types, [binary, int64], type_codes=[11, 13]) with pytest.raises(pa.ArrowInvalid): arr.validate(full=True) # Invalid child length with pytest.raises(pa.ArrowInvalid): arr = pa.UnionArray.from_sparse(logical_types, [binary, int64[1:]]) def test_union_array_slice(): # ARROW-2314 arr = pa.UnionArray.from_sparse(pa.array([0, 0, 1, 1], type=pa.int8()), [pa.array(["a", "b", "c", "d"]), pa.array([1, 2, 3, 4])]) assert arr[1:].to_pylist() == ["b", 3, 4] binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') int64 = pa.array([1, 2, 3], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32') arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64]) lst = arr.to_pylist() for i in range(len(arr)): for j in range(i, len(arr)): assert arr[i:j].to_pylist() == lst[i:j] def _check_cast_case(case, *, safe=True, check_array_construction=True): in_data, in_type, out_data, out_type = case if isinstance(out_data, pa.Array): assert out_data.type == out_type expected = out_data else: expected = pa.array(out_data, type=out_type) # check casting an already created array if isinstance(in_data, pa.Array): assert in_data.type == in_type in_arr = in_data else: in_arr = pa.array(in_data, type=in_type) casted = in_arr.cast(out_type, safe=safe) casted.validate(full=True) assert casted.equals(expected) # constructing an array with out type which optionally involves casting # for more see ARROW-1949 if check_array_construction: in_arr = pa.array(in_data, type=out_type, safe=safe) assert in_arr.equals(expected) def test_cast_integers_safe(): safe_cases = [ (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='i4'), pa.int32()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='f8'), pa.float64()) ] for case in safe_cases: _check_cast_case(case) unsafe_cases = [ (np.array([50000], dtype='i4'), 'int32', 'int16'), (np.array([70000], dtype='i4'), 'int32', 'uint16'), (np.array([-1], dtype='i4'), 'int32', 'uint16'), (np.array([50000], dtype='u2'), 'uint16', 'int16') ] for in_data, in_type, out_type in unsafe_cases: in_arr = pa.array(in_data, type=in_type) with pytest.raises(pa.ArrowInvalid): in_arr.cast(out_type) def test_cast_none(): # ARROW-3735: Ensure that calling cast(None) doesn't segfault. arr = pa.array([1, 2, 3]) with pytest.raises(ValueError): arr.cast(None) def test_cast_list_to_primitive(): # ARROW-8070: cast segfaults on unsupported cast from list<binary> to utf8 arr = pa.array([[1, 2], [3, 4]]) with pytest.raises(NotImplementedError): arr.cast(pa.int8()) arr = pa.array([[b"a", b"b"], [b"c"]], pa.list_(pa.binary())) with pytest.raises(NotImplementedError): arr.cast(pa.binary()) def test_slice_chunked_array_zero_chunks(): # ARROW-8911 arr = pa.chunked_array([], type='int8') assert arr.num_chunks == 0 result = arr[:] assert result.equals(arr) # Do not crash arr[:5] def test_cast_chunked_array(): arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])] carr = pa.chunked_array(arrays) target = pa.float64() casted = carr.cast(target) expected = pa.chunked_array([x.cast(target) for x in arrays]) assert casted.equals(expected) def test_cast_chunked_array_empty(): # ARROW-8142 for typ1, typ2 in [(pa.dictionary(pa.int8(), pa.string()), pa.string()), (pa.int64(), pa.int32())]: arr = pa.chunked_array([], type=typ1) result = arr.cast(typ2) expected = pa.chunked_array([], type=typ2) assert result.equals(expected) def test_chunked_array_data_warns(): with pytest.warns(FutureWarning): res = pa.chunked_array([[]]).data assert isinstance(res, pa.ChunkedArray) def test_cast_integers_unsafe(): # We let NumPy do the unsafe casting unsafe_cases = [ (np.array([50000], dtype='i4'), 'int32', np.array([50000], dtype='i2'), pa.int16()), (np.array([70000], dtype='i4'), 'int32', np.array([70000], dtype='u2'), pa.uint16()), (np.array([-1], dtype='i4'), 'int32', np.array([-1], dtype='u2'), pa.uint16()), (np.array([50000], dtype='u2'), pa.uint16(), np.array([50000], dtype='i2'), pa.int16()) ] for case in unsafe_cases: _check_cast_case(case, safe=False) def test_floating_point_truncate_safe(): safe_cases = [ (np.array([1.0, 2.0, 3.0], dtype='float32'), 'float32', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([1.0, 2.0, 3.0], dtype='float64'), 'float64', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([-10.0, 20.0, -30.0], dtype='float64'), 'float64', np.array([-10, 20, -30], dtype='i4'), pa.int32()), ] for case in safe_cases: _check_cast_case(case, safe=True) def test_floating_point_truncate_unsafe(): unsafe_cases = [ (np.array([1.1, 2.2, 3.3], dtype='float32'), 'float32', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([1.1, 2.2, 3.3], dtype='float64'), 'float64', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([-10.1, 20.2, -30.3], dtype='float64'), 'float64', np.array([-10, 20, -30], dtype='i4'), pa.int32()), ] for case in unsafe_cases: # test safe casting raises with pytest.raises(pa.ArrowInvalid, match='truncated'): _check_cast_case(case, safe=True) # test unsafe casting truncates _check_cast_case(case, safe=False) def test_decimal_to_int_safe(): safe_cases = [ ( [decimal.Decimal("123456"), None, decimal.Decimal("-912345")], pa.decimal128(32, 5), [123456, None, -912345], pa.int32() ), ( [decimal.Decimal("1234"), None, decimal.Decimal("-9123")], pa.decimal128(19, 10), [1234, None, -9123], pa.int16() ), ( [decimal.Decimal("123"), None, decimal.Decimal("-91")], pa.decimal128(19, 10), [123, None, -91], pa.int8() ), ] for case in safe_cases: _check_cast_case(case) _check_cast_case(case, safe=True) def test_decimal_to_int_value_out_of_bounds(): out_of_bounds_cases = [ ( np.array([ decimal.Decimal("1234567890123"), None, decimal.Decimal("-912345678901234") ]), pa.decimal128(32, 5), [1912276171, None, -135950322], pa.int32() ), ( [decimal.Decimal("123456"), None, decimal.Decimal("-912345678")], pa.decimal128(32, 5), [-7616, None, -19022], pa.int16() ), ( [decimal.Decimal("1234"), None, decimal.Decimal("-9123")], pa.decimal128(32, 5), [-46, None, 93], pa.int8() ), ] for case in out_of_bounds_cases: # test safe casting raises with pytest.raises(pa.ArrowInvalid, match='Integer value out of bounds'): _check_cast_case(case) # XXX `safe=False` can be ignored when constructing an array # from a sequence of Python objects (ARROW-8567) _check_cast_case(case, safe=False, check_array_construction=False) def test_decimal_to_int_non_integer(): non_integer_cases = [ ( [ decimal.Decimal("123456.21"), None, decimal.Decimal("-912345.13") ], pa.decimal128(32, 5), [123456, None, -912345], pa.int32() ), ( [decimal.Decimal("1234.134"), None, decimal.Decimal("-9123.1")], pa.decimal128(19, 10), [1234, None, -9123], pa.int16() ), ( [decimal.Decimal("123.1451"), None, decimal.Decimal("-91.21")], pa.decimal128(19, 10), [123, None, -91], pa.int8() ), ] for case in non_integer_cases: # test safe casting raises msg_regexp = 'Rescaling decimal value would cause data loss' with pytest.raises(pa.ArrowInvalid, match=msg_regexp): _check_cast_case(case) _check_cast_case(case, safe=False) def test_decimal_to_decimal(): arr = pa.array( [decimal.Decimal("1234.12"), None], type=pa.decimal128(19, 10) ) result = arr.cast(pa.decimal128(15, 6)) expected = pa.array( [decimal.Decimal("1234.12"), None], type=pa.decimal128(15, 6) ) assert result.equals(expected) with pytest.raises(pa.ArrowInvalid, match='Rescaling decimal value would cause data loss'): result = arr.cast(pa.decimal128(9, 1)) result = arr.cast(pa.decimal128(9, 1), safe=False) expected = pa.array( [decimal.Decimal("1234.1"), None], type=pa.decimal128(9, 1) ) assert result.equals(expected) with pytest.raises(pa.ArrowInvalid, match='Decimal value does not fit in precision'): result = arr.cast(pa.decimal128(5, 2)) def test_safe_cast_nan_to_int_raises(): arr = pa.array([np.nan, 1.]) with pytest.raises(pa.ArrowInvalid, match='truncated'): arr.cast(pa.int64(), safe=True) def test_cast_signed_to_unsigned(): safe_cases = [ (np.array([0, 1, 2, 3], dtype='i1'), pa.uint8(), np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), (np.array([0, 1, 2, 3], dtype='i2'), pa.uint16(), np.array([0, 1, 2, 3], dtype='u2'), pa.uint16()) ] for case in safe_cases: _check_cast_case(case) def test_cast_from_null(): in_data = [None] * 3 in_type = pa.null() out_types = [ pa.null(), pa.uint8(), pa.float16(), pa.utf8(), pa.binary(), pa.binary(10), pa.list_(pa.int16()), pa.list_(pa.int32(), 4), pa.large_list(pa.uint8()), pa.decimal128(19, 4), pa.timestamp('us'), pa.timestamp('us', tz='UTC'), pa.timestamp('us', tz='Europe/Paris'), pa.duration('us'), pa.struct([pa.field('a', pa.int32()), pa.field('b', pa.list_(pa.int8())), pa.field('c', pa.string())]), ] for out_type in out_types: _check_cast_case((in_data, in_type, in_data, out_type)) out_types = [ pa.dictionary(pa.int32(), pa.string()), pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE), pa.union([pa.field('a', pa.binary(10)), pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE), ] in_arr = pa.array(in_data, type=pa.null()) for out_type in out_types: with pytest.raises(NotImplementedError): in_arr.cast(out_type) def test_cast_string_to_number_roundtrip(): cases = [ (pa.array(["1", "127", "-128"]), pa.array([1, 127, -128], type=pa.int8())), (pa.array([None, "18446744073709551615"]), pa.array([None, 18446744073709551615], type=pa.uint64())), ] for in_arr, expected in cases: casted = in_arr.cast(expected.type, safe=True) casted.validate(full=True) assert casted.equals(expected) casted_back = casted.cast(in_arr.type, safe=True) casted_back.validate(full=True) assert casted_back.equals(in_arr) def test_cast_dictionary(): arr = pa.DictionaryArray.from_arrays( pa.array([0, 1, None], type=pa.int32()), pa.array(["foo", "bar"])) assert arr.cast(pa.string()).equals(pa.array(["foo", "bar", None])) with pytest.raises(pa.ArrowInvalid): # Shouldn't crash (ARROW-7077) arr.cast(pa.int32()) def test_view(): # ARROW-5992 arr = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) expected = pa.array(['foo', 'bar', 'baz'], type=pa.binary()) assert arr.view(pa.binary()).equals(expected) assert arr.view('binary').equals(expected) def test_unique_simple(): cases = [ (pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3])), (pa.array(['foo', None, 'bar', 'foo']), pa.array(['foo', None, 'bar'])), (pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), pa.array(['foo', None, 'bar'], pa.large_binary())), ] for arr, expected in cases: result = arr.unique() assert result.equals(expected) result = pa.chunked_array([arr]).unique() assert result.equals(expected) def test_value_counts_simple(): cases = [ (pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3]), pa.array([2, 2, 2], type=pa.int64())), (pa.array(['foo', None, 'bar', 'foo']), pa.array(['foo', None, 'bar']), pa.array([2, 1, 1], type=pa.int64())), (pa.array(['foo', None, 'bar', 'foo'], pa.large_binary()), pa.array(['foo', None, 'bar'], pa.large_binary()), pa.array([2, 1, 1], type=pa.int64())), ] for arr, expected_values, expected_counts in cases: for arr_in in (arr, pa.chunked_array([arr])): result = arr_in.value_counts() assert result.type.equals( pa.struct([pa.field("values", arr.type), pa.field("counts", pa.int64())])) assert result.field("values").equals(expected_values) assert result.field("counts").equals(expected_counts) def test_unique_value_counts_dictionary_type(): indices = pa.array([3, 0, 0, 0, 1, 1, 3, 0, 1, 3, 0, 1]) dictionary = pa.array(['foo', 'bar', 'baz', 'qux']) arr = pa.DictionaryArray.from_arrays(indices, dictionary) unique_result = arr.unique() expected = pa.DictionaryArray.from_arrays(indices.unique(), dictionary) assert unique_result.equals(expected) result = arr.value_counts() result.field('values').equals(unique_result) result.field('counts').equals(pa.array([3, 5, 4], type='int64')) def test_dictionary_encode_simple(): cases = [ (pa.array([1, 2, 3, None, 1, 2, 3]), pa.DictionaryArray.from_arrays( pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), [1, 2, 3])), (pa.array(['foo', None, 'bar', 'foo']), pa.DictionaryArray.from_arrays( pa.array([0, None, 1, 0], type='int32'), ['foo', 'bar'])), (pa.array(['foo', None, 'bar', 'foo'], type=pa.large_binary()), pa.DictionaryArray.from_arrays( pa.array([0, None, 1, 0], type='int32'), pa.array(['foo', 'bar'], type=pa.large_binary()))), ] for arr, expected in cases: result = arr.dictionary_encode() assert result.equals(expected) result = pa.chunked_array([arr]).dictionary_encode() assert result.num_chunks == 1 assert result.chunk(0).equals(expected) result = pa.chunked_array([], type=arr.type).dictionary_encode() assert result.num_chunks == 0 assert result.type == expected.type def test_dictionary_encode_sliced(): cases = [ (pa.array([1, 2, 3, None, 1, 2, 3])[1:-1], pa.DictionaryArray.from_arrays( pa.array([0, 1, None, 2, 0], type='int32'), [2, 3, 1])), (pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'])[1:-1], pa.DictionaryArray.from_arrays( pa.array([0, 1, 0], type='int32'), ['foo', 'bar'])), (pa.array([None, 'foo', 'bar', 'foo', 'xyzzy'], type=pa.large_string())[1:-1], pa.DictionaryArray.from_arrays( pa.array([0, 1, 0], type='int32'), pa.array(['foo', 'bar'], type=pa.large_string()))), ] for arr, expected in cases: result = arr.dictionary_encode() assert result.equals(expected) result = pa.chunked_array([arr]).dictionary_encode() assert result.num_chunks == 1 assert result.type == expected.type assert result.chunk(0).equals(expected) result = pa.chunked_array([], type=arr.type).dictionary_encode() assert result.num_chunks == 0 assert result.type == expected.type # ARROW-9143 dictionary_encode after slice was segfaulting array = pa.array(['foo', 'bar', 'baz']) array.slice(1).dictionary_encode() def test_dictionary_encode_zero_length(): # User-facing experience of ARROW-7008 arr = pa.array([], type=pa.string()) encoded = arr.dictionary_encode() assert len(encoded.dictionary) == 0 encoded.validate(full=True) def test_cast_time32_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int32'), type=pa.time32('s')) expected = pa.array([0, 1, 2], type='i4') result = arr.cast('i4') assert result.equals(expected) def test_cast_time64_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.time64('us')) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_cast_timestamp_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.timestamp('us')) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_cast_date32_to_int(): arr = pa.array([0, 1, 2], type='i4') result1 = arr.cast('date32') result2 = result1.cast('i4') expected1 = pa.array([ datetime.date(1970, 1, 1), datetime.date(1970, 1, 2), datetime.date(1970, 1, 3) ]).cast('date32') assert result1.equals(expected1) assert result2.equals(arr) def test_cast_duration_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.duration('us')) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_cast_binary_to_utf8(): binary_arr = pa.array([b'foo', b'bar', b'baz'], type=pa.binary()) utf8_arr = binary_arr.cast(pa.utf8()) expected = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) assert utf8_arr.equals(expected) non_utf8_values = [('mañana').encode('utf-16-le')] non_utf8_binary = pa.array(non_utf8_values) assert non_utf8_binary.type == pa.binary() with pytest.raises(ValueError): non_utf8_binary.cast(pa.string()) non_utf8_all_null = pa.array(non_utf8_values, mask=np.array([True]), type=pa.binary()) # No error casted = non_utf8_all_null.cast(pa.string()) assert casted.null_count == 1 def test_cast_date64_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.date64()) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_date64_from_builtin_datetime(): val1 = datetime.datetime(2000, 1, 1, 12, 34, 56, 123456) val2 = datetime.datetime(2000, 1, 1) result = pa.array([val1, val2], type='date64') result2 = pa.array([val1.date(), val2.date()], type='date64') assert result.equals(result2) as_i8 = result.view('int64') assert as_i8[0].as_py() == as_i8[1].as_py() @pytest.mark.parametrize(('ty', 'values'), [ ('bool', [True, False, True]), ('uint8', range(0, 255)), ('int8', range(0, 128)), ('uint16', range(0, 10)), ('int16', range(0, 10)), ('uint32', range(0, 10)), ('int32', range(0, 10)), ('uint64', range(0, 10)), ('int64', range(0, 10)), ('float', [0.0, 0.1, 0.2]), ('double', [0.0, 0.1, 0.2]), ('string', ['a', 'b', 'c']), ('binary', [b'a', b'b', b'c']), (pa.binary(3), [b'abc', b'bcd', b'cde']) ]) def test_cast_identities(ty, values): arr = pa.array(values, type=ty) assert arr.cast(ty).equals(arr) pickle_test_parametrize = pytest.mark.parametrize( ('data', 'typ'), [ ([True, False, True, True], pa.bool_()), ([1, 2, 4, 6], pa.int64()), ([1.0, 2.5, None], pa.float64()), (['a', None, 'b'], pa.string()), ([], None), ([[1, 2], [3]], pa.list_(pa.int64())), ([[4, 5], [6]], pa.large_list(pa.int16())), ([['a'], None, ['b', 'c']], pa.list_(pa.string())), ([(1, 'a'), (2, 'c'), None], pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())])) ] ) @pickle_test_parametrize def test_array_pickle(data, typ): # Allocate here so that we don't have any Arrow data allocated. # This is needed to ensure that allocator tests can be reliable. array = pa.array(data, type=typ) for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): result = pickle.loads(pickle.dumps(array, proto)) assert array.equals(result) def test_array_pickle_dictionary(): # not included in the above as dictionary array cannot be created with # the pa.array function array = pa.DictionaryArray.from_arrays([0, 1, 2, 0, 1], ['a', 'b', 'c']) for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): result = pickle.loads(pickle.dumps(array, proto)) assert array.equals(result) @h.given( past.arrays( past.all_types, size=st.integers(min_value=0, max_value=10) ) ) def test_pickling(arr): data = pickle.dumps(arr) restored = pickle.loads(data) assert arr.equals(restored) @pickle_test_parametrize def test_array_pickle5(data, typ): # Test zero-copy pickling with protocol 5 (PEP 574) picklemod = pickle5 or pickle if pickle5 is None and picklemod.HIGHEST_PROTOCOL < 5: pytest.skip("need pickle5 package or Python 3.8+") array = pa.array(data, type=typ) addresses = [buf.address if buf is not None else 0 for buf in array.buffers()] for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] pickled = picklemod.dumps(array, proto, buffer_callback=buffers.append) result = picklemod.loads(pickled, buffers=buffers) assert array.equals(result) result_addresses = [buf.address if buf is not None else 0 for buf in result.buffers()] assert result_addresses == addresses @pytest.mark.parametrize( 'narr', [ np.arange(10, dtype=np.int64), np.arange(10, dtype=np.int32), np.arange(10, dtype=np.int16), np.arange(10, dtype=np.int8), np.arange(10, dtype=np.uint64), np.arange(10, dtype=np.uint32), np.arange(10, dtype=np.uint16), np.arange(10, dtype=np.uint8), np.arange(10, dtype=np.float64), np.arange(10, dtype=np.float32), np.arange(10, dtype=np.float16), ] ) def test_to_numpy_roundtrip(narr): arr = pa.array(narr) assert narr.dtype == arr.to_numpy().dtype np.testing.assert_array_equal(narr, arr.to_numpy()) np.testing.assert_array_equal(narr[:6], arr[:6].to_numpy()) np.testing.assert_array_equal(narr[2:], arr[2:].to_numpy()) np.testing.assert_array_equal(narr[2:6], arr[2:6].to_numpy()) def test_array_uint64_from_py_over_range(): arr = pa.array([2 ** 63], type=pa.uint64()) expected = pa.array(np.array([2 ** 63], dtype='u8')) assert arr.equals(expected) def test_array_conversions_no_sentinel_values(): arr = np.array([1, 2, 3, 4], dtype='int8') refcount = sys.getrefcount(arr) arr2 = pa.array(arr) # noqa assert sys.getrefcount(arr) == (refcount + 1) assert arr2.type == 'int8' arr3 = pa.array(np.array([1, np.nan, 2, 3, np.nan, 4], dtype='float32'), type='float32') assert arr3.type == 'float32' assert arr3.null_count == 0 def test_time32_time64_from_integer(): # ARROW-4111 result = pa.array([1, 2, None], type=pa.time32('s')) expected = pa.array([datetime.time(second=1), datetime.time(second=2), None], type=pa.time32('s')) assert result.equals(expected) result = pa.array([1, 2, None], type=pa.time32('ms')) expected = pa.array([datetime.time(microsecond=1000), datetime.time(microsecond=2000), None], type=pa.time32('ms')) assert result.equals(expected) result = pa.array([1, 2, None], type=pa.time64('us')) expected = pa.array([datetime.time(microsecond=1), datetime.time(microsecond=2), None], type=pa.time64('us')) assert result.equals(expected) result = pa.array([1000, 2000, None], type=pa.time64('ns')) expected = pa.array([datetime.time(microsecond=1), datetime.time(microsecond=2), None], type=pa.time64('ns')) assert result.equals(expected) def test_binary_string_pandas_null_sentinels(): # ARROW-6227 def _check_case(ty): arr = pa.array(['string', np.nan], type=ty, from_pandas=True) expected = pa.array(['string', None], type=ty) assert arr.equals(expected) _check_case('binary') _check_case('utf8') def test_pandas_null_sentinels_raise_error(): # ARROW-6227 cases = [ ([None, np.nan], 'null'), (['string', np.nan], 'binary'), (['string', np.nan], 'utf8'), (['string', np.nan], 'large_binary'), (['string', np.nan], 'large_utf8'), ([b'string', np.nan], pa.binary(6)), ([True, np.nan], pa.bool_()), ([decimal.Decimal('0'), np.nan], pa.decimal128(12, 2)), ([0, np.nan], pa.date32()), ([0, np.nan], pa.date32()), ([0, np.nan], pa.date64()), ([0, np.nan], pa.time32('s')), ([0, np.nan], pa.time64('us')), ([0, np.nan], pa.timestamp('us')), ([0, np.nan], pa.duration('us')), ] for case, ty in cases: # Both types of exceptions are raised. May want to clean that up with pytest.raises((ValueError, TypeError)): pa.array(case, type=ty) # from_pandas option suppresses failure result = pa.array(case, type=ty, from_pandas=True) assert result.null_count == (1 if ty != 'null' else 2) @pytest.mark.pandas def test_pandas_null_sentinels_index(): # ARROW-7023 - ensure that when passing a pandas Index, "from_pandas" # semantics are used import pandas as pd idx = pd.Index([1, 2, np.nan], dtype=object) result = pa.array(idx) expected = pa.array([1, 2, np.nan], from_pandas=True) assert result.equals(expected) def test_array_from_numpy_datetimeD(): arr = np.array([None, datetime.date(2017, 4, 4)], dtype='datetime64[D]') result = pa.array(arr) expected = pa.array([None, datetime.date(2017, 4, 4)], type=pa.date32()) assert result.equals(expected) @pytest.mark.parametrize(('dtype', 'type'), [ ('datetime64[s]', pa.timestamp('s')), ('datetime64[ms]', pa.timestamp('ms')), ('datetime64[us]', pa.timestamp('us')), ('datetime64[ns]', pa.timestamp('ns')) ]) def test_array_from_numpy_datetime(dtype, type): data = [ None, datetime.datetime(2017, 4, 4, 12, 11, 10), datetime.datetime(2018, 1, 1, 0, 2, 0) ] # from numpy array arr = pa.array(np.array(data, dtype=dtype)) expected = pa.array(data, type=type) assert arr.equals(expected) # from list of numpy scalars arr = pa.array(list(np.array(data, dtype=dtype))) assert arr.equals(expected) def test_array_from_different_numpy_datetime_units_raises(): data = [ None, datetime.datetime(2017, 4, 4, 12, 11, 10), datetime.datetime(2018, 1, 1, 0, 2, 0) ] s = np.array(data, dtype='datetime64[s]') ms = np.array(data, dtype='datetime64[ms]') data = list(s[:2]) + list(ms[2:]) with pytest.raises(pa.ArrowNotImplementedError): pa.array(data) @pytest.mark.parametrize('unit', ['ns', 'us', 'ms', 's']) def test_array_from_list_of_timestamps(unit): n = np.datetime64('NaT', unit) x = np.datetime64('2017-01-01 01:01:01.111111111', unit) y = np.datetime64('2018-11-22 12:24:48.111111111', unit) a1 = pa.array([n, x, y]) a2 = pa.array([n, x, y], type=pa.timestamp(unit)) assert a1.type == a2.type assert a1.type.unit == unit assert a1[0] == a2[0] def test_array_from_timestamp_with_generic_unit(): n = np.datetime64('NaT') x = np.datetime64('2017-01-01 01:01:01.111111111') y = np.datetime64('2018-11-22 12:24:48.111111111') with pytest.raises(pa.ArrowNotImplementedError, match='Unbound or generic datetime64 time unit'): pa.array([n, x, y]) @pytest.mark.parametrize(('dtype', 'type'), [ ('timedelta64[s]', pa.duration('s')), ('timedelta64[ms]', pa.duration('ms')), ('timedelta64[us]', pa.duration('us')), ('timedelta64[ns]', pa.duration('ns')) ]) def test_array_from_numpy_timedelta(dtype, type): data = [ None, datetime.timedelta(1), datetime.timedelta(0, 1) ] # from numpy array np_arr = np.array(data, dtype=dtype) arr = pa.array(np_arr) assert isinstance(arr, pa.DurationArray) assert arr.type == type expected = pa.array(data, type=type) assert arr.equals(expected) assert arr.to_pylist() == data # from list of numpy scalars arr = pa.array(list(np.array(data, dtype=dtype))) assert arr.equals(expected) assert arr.to_pylist() == data def test_array_from_numpy_timedelta_incorrect_unit(): # generic (no unit) td = np.timedelta64(1) for data in [[td], np.array([td])]: with pytest.raises(NotImplementedError): pa.array(data) # unsupported unit td = np.timedelta64(1, 'M') for data in [[td], np.array([td])]: with pytest.raises(NotImplementedError): pa.array(data) def test_array_from_numpy_ascii(): arr = np.array(['abcde', 'abc', ''], dtype='|S5') arrow_arr = pa.array(arr) assert arrow_arr.type == 'binary' expected = pa.array(['abcde', 'abc', ''], type='binary') assert arrow_arr.equals(expected) mask = np.array([False, True, False]) arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', None, ''], type='binary') assert arrow_arr.equals(expected) # Strided variant arr = np.array(['abcde', 'abc', ''] * 5, dtype='|S5')[::2] mask = np.array([False, True, False] * 5)[::2] arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], type='binary') assert arrow_arr.equals(expected) # 0 itemsize arr = np.array(['', '', ''], dtype='|S0') arrow_arr = pa.array(arr) expected = pa.array(['', '', ''], type='binary') assert arrow_arr.equals(expected) def test_array_from_numpy_unicode(): dtypes = ['<U5', '>U5'] for dtype in dtypes: arr = np.array(['abcde', 'abc', ''], dtype=dtype) arrow_arr = pa.array(arr) assert arrow_arr.type == 'utf8' expected = pa.array(['abcde', 'abc', ''], type='utf8') assert arrow_arr.equals(expected) mask = np.array([False, True, False]) arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', None, ''], type='utf8') assert arrow_arr.equals(expected) # Strided variant arr = np.array(['abcde', 'abc', ''] * 5, dtype=dtype)[::2] mask = np.array([False, True, False] * 5)[::2] arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], type='utf8') assert arrow_arr.equals(expected) # 0 itemsize arr = np.array(['', '', ''], dtype='<U0') arrow_arr = pa.array(arr) expected = pa.array(['', '', ''], type='utf8') assert arrow_arr.equals(expected) def test_array_string_from_non_string(): # ARROW-5682 - when converting to string raise on non string-like dtype with pytest.raises(TypeError): pa.array(np.array([1, 2, 3]), type=pa.string()) def test_array_string_from_all_null(): # ARROW-5682 vals = np.array([None, None], dtype=object) arr = pa.array(vals, type=pa.string()) assert arr.null_count == 2 vals = np.array([np.nan, np.nan], dtype='float64') # by default raises, but accept as all-null when from_pandas=True with pytest.raises(TypeError): pa.array(vals, type=pa.string()) arr = pa.array(vals, type=pa.string(), from_pandas=True) assert arr.null_count == 2 def test_array_from_masked(): ma = np.ma.array([1, 2, 3, 4], dtype='int64', mask=[False, False, True, False]) result = pa.array(ma) expected = pa.array([1, 2, None, 4], type='int64') assert expected.equals(result) with pytest.raises(ValueError, match="Cannot pass a numpy masked array"): pa.array(ma, mask=np.array([True, False, False, False])) def test_array_from_shrunken_masked(): ma = np.ma.array([0], dtype='int64') result = pa.array(ma) expected = pa.array([0], type='int64') assert expected.equals(result) def test_array_from_invalid_dim_raises(): msg = "only handle 1-dimensional arrays" arr2d = np.array([[1, 2, 3], [4, 5, 6]]) with pytest.raises(ValueError, match=msg): pa.array(arr2d) arr0d = np.array(0) with pytest.raises(ValueError, match=msg): pa.array(arr0d) def test_array_from_strided_bool(): # ARROW-6325 arr = np.ones((3, 2), dtype=bool) result = pa.array(arr[:, 0]) expected = pa.array([True, True, True]) assert result.equals(expected) result = pa.array(arr[0, :]) expected = pa.array([True, True]) assert result.equals(expected) def test_boolean_true_count_false_count(): # ARROW-9145 arr = pa.array([True, True, None, False, None, True] * 1000) assert arr.true_count == 3000 assert arr.false_count == 1000 def test_buffers_primitive(): a = pa.array([1, 2, None, 4], type=pa.int16()) buffers = a.buffers() assert len(buffers) == 2 null_bitmap = buffers[0].to_pybytes() assert 1 <= len(null_bitmap) <= 64 # XXX this is varying assert bytearray(null_bitmap)[0] == 0b00001011 # Slicing does not affect the buffers but the offset a_sliced = a[1:] buffers = a_sliced.buffers() a_sliced.offset == 1 assert len(buffers) == 2 null_bitmap = buffers[0].to_pybytes() assert 1 <= len(null_bitmap) <= 64 # XXX this is varying assert bytearray(null_bitmap)[0] == 0b00001011 assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4) a = pa.array(np.int8([4, 5, 6])) buffers = a.buffers() assert len(buffers) == 2 # No null bitmap from Numpy int array assert buffers[0] is None assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6) a = pa.array([b'foo!', None, b'bar!!']) buffers = a.buffers() assert len(buffers) == 3 null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 offsets = buffers[1].to_pybytes() assert struct.unpack('4i', offsets) == (0, 4, 4, 9) values = buffers[2].to_pybytes() assert values == b'foo!bar!!' def test_buffers_nested(): a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) buffers = a.buffers() assert len(buffers) == 4 # The parent buffers null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 offsets = buffers[1].to_pybytes() assert struct.unpack('4i', offsets) == (0, 2, 2, 6) # The child buffers null_bitmap = buffers[2].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00110111 values = buffers[3].to_pybytes() assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5) a = pa.array([(42, None), None, (None, 43)], type=pa.struct([pa.field('a', pa.int8()), pa.field('b', pa.int16())])) buffers = a.buffers() assert len(buffers) == 5 # The parent buffer null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 # The child buffers: 'a' null_bitmap = buffers[1].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000001 values = buffers[2].to_pybytes() assert struct.unpack('bxx', values) == (42,) # The child buffers: 'b' null_bitmap = buffers[3].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000100 values = buffers[4].to_pybytes() assert struct.unpack('4xh', values) == (43,) def test_nbytes_sizeof(): a = pa.array(np.array([4, 5, 6], dtype='int64')) assert a.nbytes == 8 * 3 assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes a = pa.array([1, None, 3], type='int64') assert a.nbytes == 8*3 + 1 assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) assert a.nbytes == 1 + 4 * 4 + 1 + 6 * 8 assert sys.getsizeof(a) >= object.__sizeof__(a) + a.nbytes def test_invalid_tensor_constructor_repr(): # ARROW-2638: prevent calling extension class constructors directly with pytest.raises(TypeError): repr(pa.Tensor([1])) def test_invalid_tensor_construction(): with pytest.raises(TypeError): pa.Tensor() @pytest.mark.parametrize(('offset_type', 'list_type_factory'), [(pa.int32(), pa.list_), (pa.int64(), pa.large_list)]) def test_list_array_flatten(offset_type, list_type_factory): typ2 = list_type_factory( list_type_factory( pa.int64() ) ) arr2 = pa.array([ None, [ [1, None, 2], None, [3, 4] ], [], [ [], [5, 6], None ], [ [7, 8] ] ], type=typ2) offsets2 = pa.array([0, 0, 3, 3, 6, 7], type=offset_type) typ1 = list_type_factory(pa.int64()) arr1 = pa.array([ [1, None, 2], None, [3, 4], [], [5, 6], None, [7, 8] ], type=typ1) offsets1 = pa.array([0, 3, 3, 5, 5, 7, 7, 9], type=offset_type) arr0 = pa.array([ 1, None, 2, 3, 4, 5, 6, 7, 8 ], type=pa.int64()) assert arr2.flatten().equals(arr1) assert arr2.offsets.equals(offsets2) assert arr2.values.equals(arr1) assert arr1.flatten().equals(arr0) assert arr1.offsets.equals(offsets1) assert arr1.values.equals(arr0) assert arr2.flatten().flatten().equals(arr0) assert arr2.values.values.equals(arr0) @pytest.mark.parametrize(('offset_type', 'list_type_factory'), [(pa.int32(), pa.list_), (pa.int64(), pa.large_list)]) def test_list_value_parent_indices(offset_type, list_type_factory): arr = pa.array( [ [0, 1, 2], None, [], [3, 4] ], type=list_type_factory(pa.int32())) expected = pa.array([0, 0, 0, 3, 3], type=offset_type) assert arr.value_parent_indices().equals(expected) @pytest.mark.parametrize(('offset_type', 'list_type_factory'), [(pa.int32(), pa.list_), (pa.int64(), pa.large_list)]) def test_list_value_lengths(offset_type, list_type_factory): arr = pa.array( [ [0, 1, 2], None, [], [3, 4] ], type=list_type_factory(pa.int32())) expected = pa.array([3, None, 0, 2], type=offset_type) assert arr.value_lengths().equals(expected) @pytest.mark.parametrize('list_type_factory', [pa.list_, pa.large_list]) def test_list_array_flatten_non_canonical(list_type_factory): # Non-canonical list array (null elements backed by non-empty sublists) typ = list_type_factory(pa.int64()) arr = pa.array([[1], [2, 3], [4, 5, 6]], type=typ) buffers = arr.buffers()[:2] buffers[0] = pa.py_buffer(b"\x05") # validity bitmap arr = arr.from_buffers(arr.type, len(arr), buffers, children=[arr.values]) assert arr.to_pylist() == [[1], None, [4, 5, 6]] assert arr.offsets.to_pylist() == [0, 1, 3, 6] flattened = arr.flatten() flattened.validate(full=True) assert flattened.type == typ.value_type assert flattened.to_pylist() == [1, 4, 5, 6] # .values is the physical values array (including masked elements) assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] @pytest.mark.parametrize('klass', [pa.ListArray, pa.LargeListArray]) def test_list_array_values_offsets_sliced(klass): # ARROW-7301 arr = klass.from_arrays(offsets=[0, 3, 4, 6], values=[1, 2, 3, 4, 5, 6]) assert arr.values.to_pylist() == [1, 2, 3, 4, 5, 6] assert arr.offsets.to_pylist() == [0, 3, 4, 6] # sliced -> values keeps referring to full values buffer, but offsets is # sliced as well so the offsets correctly point into the full values array # sliced -> flatten() will return the sliced value array. arr2 = arr[1:] assert arr2.values.to_pylist() == [1, 2, 3, 4, 5, 6] assert arr2.offsets.to_pylist() == [3, 4, 6] assert arr2.flatten().to_pylist() == [4, 5, 6] i = arr2.offsets[0].as_py() j = arr2.offsets[1].as_py() assert arr2[0].as_py() == arr2.values[i:j].to_pylist() == [4] def test_fixed_size_list_array_flatten(): typ2 = pa.list_(pa.list_(pa.int64(), 2), 3) arr2 = pa.array([ [ [1, 2], [3, 4], [5, 6], ], None, [ [7, None], None, [8, 9] ], ], type=typ2) assert arr2.type.equals(typ2) typ1 = pa.list_(pa.int64(), 2) arr1 = pa.array([ [1, 2], [3, 4], [5, 6], None, None, None, [7, None], None, [8, 9] ], type=typ1) assert arr1.type.equals(typ1) assert arr2.flatten().equals(arr1) typ0 = pa.int64() arr0 = pa.array([ 1, 2, 3, 4, 5, 6, None, None, None, None, None, None, 7, None, None, None, 8, 9, ], type=typ0) assert arr0.type.equals(typ0) assert arr1.flatten().equals(arr0) assert arr2.flatten().flatten().equals(arr0) def test_struct_array_flatten(): ty = pa.struct([pa.field('x', pa.int16()), pa.field('y', pa.float32())]) a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) xs, ys = a.flatten() assert xs.type == pa.int16() assert ys.type == pa.float32() assert xs.to_pylist() == [1, 3, 5] assert ys.to_pylist() == [2.5, 4.5, 6.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [3, 5] assert ys.to_pylist() == [4.5, 6.5] a = pa.array([(1, 2.5), None, (3, 4.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, None, 3] assert ys.to_pylist() == [2.5, None, 4.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [None, 3] assert ys.to_pylist() == [None, 4.5] a = pa.array([(1, None), (2, 3.5), (None, 4.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, 2, None] assert ys.to_pylist() == [None, 3.5, 4.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [2, None] assert ys.to_pylist() == [3.5, 4.5] a = pa.array([(1, None), None, (None, 2.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, None, None] assert ys.to_pylist() == [None, None, 2.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [None, None] assert ys.to_pylist() == [None, 2.5] def test_struct_array_field(): ty = pa.struct([pa.field('x', pa.int16()), pa.field('y', pa.float32())]) a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) x0 = a.field(0) y0 = a.field(1) x1 = a.field(-2) y1 = a.field(-1) x2 = a.field('x') y2 = a.field('y') assert isinstance(x0, pa.lib.Int16Array) assert isinstance(y1, pa.lib.FloatArray) assert x0.equals(pa.array([1, 3, 5], type=pa.int16())) assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32())) assert x0.equals(x1) assert x0.equals(x2) assert y0.equals(y1) assert y0.equals(y2) for invalid_index in [None, pa.int16()]: with pytest.raises(TypeError): a.field(invalid_index) for invalid_index in [3, -3]: with pytest.raises(IndexError): a.field(invalid_index) for invalid_name in ['z', '']: with pytest.raises(KeyError): a.field(invalid_name) def test_empty_cast(): types = [ pa.null(), pa.bool_(), pa.int8(), pa.int16(), pa.int32(), pa.int64(), pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64(), pa.float16(), pa.float32(), pa.float64(), pa.date32(), pa.date64(), pa.binary(), pa.binary(length=4), pa.string(), ] for (t1, t2) in itertools.product(types, types): try: # ARROW-4766: Ensure that supported types conversion don't segfault # on empty arrays of common types pa.array([], type=t1).cast(t2) except (pa.lib.ArrowNotImplementedError, pa.ArrowInvalid): continue def test_nested_dictionary_array(): dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) list_arr = pa.ListArray.from_arrays([0, 2, 3], dict_arr) assert list_arr.to_pylist() == [['a', 'b'], ['a']] dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) dict_arr2 = pa.DictionaryArray.from_arrays([0, 1, 2, 1, 0], dict_arr) assert dict_arr2.to_pylist() == ['a', 'b', 'a', 'b', 'a'] def test_array_from_numpy_str_utf8(): # ARROW-3890 -- in Python 3, NPY_UNICODE arrays are produced, but in Python # 2 they are NPY_STRING (binary), so we must do UTF-8 validation vec = np.array(["toto", "tata"]) vec2 = np.array(["toto", "tata"], dtype=object) arr = pa.array(vec, pa.string()) arr2 = pa.array(vec2, pa.string()) expected = pa.array(["toto", "tata"]) assert arr.equals(expected) assert arr2.equals(expected) # with mask, separate code path mask = np.array([False, False], dtype=bool) arr = pa.array(vec, pa.string(), mask=mask) assert arr.equals(expected) # UTF8 validation failures vec = np.array([('mañana').encode('utf-16-le')]) with pytest.raises(ValueError): pa.array(vec, pa.string()) with pytest.raises(ValueError): pa.array(vec, pa.string(), mask=np.array([False])) @pytest.mark.large_memory def test_numpy_binary_overflow_to_chunked(): # ARROW-3762, ARROW-5966 # 2^31 + 1 bytes values = [b'x'] unicode_values = ['x'] # Make 10 unique 1MB strings then repeat then 2048 times unique_strings = { i: b'x' * ((1 << 20) - 1) + str(i % 10).encode('utf8') for i in range(10) } unicode_unique_strings = {i: x.decode('utf8') for i, x in unique_strings.items()} values += [unique_strings[i % 10] for i in range(1 << 11)] unicode_values += [unicode_unique_strings[i % 10] for i in range(1 << 11)] for case, ex_type in [(values, pa.binary()), (unicode_values, pa.utf8())]: arr = np.array(case) arrow_arr = pa.array(arr) arr = None assert isinstance(arrow_arr, pa.ChunkedArray) assert arrow_arr.type == ex_type # Split up into 16MB chunks. 128 * 16 = 2048, so 129 assert arrow_arr.num_chunks == 129 value_index = 0 for i in range(arrow_arr.num_chunks): chunk = arrow_arr.chunk(i) for val in chunk: assert val.as_py() == case[value_index] value_index += 1 @pytest.mark.large_memory def test_list_child_overflow_to_chunked(): vals = [['x' * 1024]] * ((2 << 20) + 1) with pytest.raises(ValueError, match="overflowed"): pa.array(vals) def test_infer_type_masked(): # ARROW-5208 ty = pa.infer_type(['foo', 'bar', None, 2], mask=[False, False, False, True]) assert ty == pa.utf8() # all masked ty = pa.infer_type(['foo', 'bar', None, 2], mask=np.array([True, True, True, True])) assert ty == pa.null() # length 0 assert pa.infer_type([], mask=[]) == pa.null() def test_array_masked(): # ARROW-5208 arr = pa.array([4, None, 4, 3.], mask=np.array([False, True, False, True])) assert arr.type == pa.int64() # ndarray dtype=object argument arr = pa.array(np.array([4, None, 4, 3.], dtype="O"), mask=np.array([False, True, False, True])) assert arr.type == pa.int64() def test_array_from_large_pyints(): # ARROW-5430 with pytest.raises(OverflowError): # too large for int64 so dtype must be explicitly provided pa.array([int(2 ** 63)]) def test_array_protocol(): class MyArray: def __init__(self, data): self.data = data def __arrow_array__(self, type=None): return pa.array(self.data, type=type) arr = MyArray(np.array([1, 2, 3], dtype='int64')) result = pa.array(arr) expected = pa.array([1, 2, 3], type=pa.int64()) assert result.equals(expected) result = pa.array(arr, type=pa.int64()) expected = pa.array([1, 2, 3], type=pa.int64()) assert result.equals(expected) result = pa.array(arr, type=pa.float64()) expected = pa.array([1, 2, 3], type=pa.float64()) assert result.equals(expected) # raise error when passing size or mask keywords with pytest.raises(ValueError): pa.array(arr, mask=np.array([True, False, True])) with pytest.raises(ValueError): pa.array(arr, size=3) # ensure the return value is an Array class MyArrayInvalid: def __init__(self, data): self.data = data def __arrow_array__(self, type=None): return np.array(self.data) arr = MyArrayInvalid(np.array([1, 2, 3], dtype='int64')) with pytest.raises(TypeError): pa.array(arr) # ARROW-7066 - allow ChunkedArray output class MyArray2: def __init__(self, data): self.data = data def __arrow_array__(self, type=None): return pa.chunked_array([self.data], type=type) arr = MyArray2(np.array([1, 2, 3], dtype='int64')) result = pa.array(arr) expected = pa.chunked_array([[1, 2, 3]], type=pa.int64()) assert result.equals(expected) def test_concat_array(): concatenated = pa.concat_arrays( [pa.array([1, 2]), pa.array([3, 4])]) assert concatenated.equals(pa.array([1, 2, 3, 4])) def test_concat_array_different_types(): with pytest.raises(pa.ArrowInvalid): pa.concat_arrays([pa.array([1]), pa.array([2.])]) @pytest.mark.pandas def test_to_pandas_timezone(): # https://issues.apache.org/jira/browse/ARROW-6652 arr = pa.array([1, 2, 3], type=pa.timestamp('s', tz='Europe/Brussels')) s = arr.to_pandas() assert s.dt.tz is not None arr = pa.chunked_array([arr]) s = arr.to_pandas() assert s.dt.tz is not None
apache-2.0
Winand/pandas
pandas/core/indexes/frozen.py
20
4619
""" frozen (immutable) data structures to support MultiIndexing These are used for: - .names (FrozenList) - .levels & .labels (FrozenNDArray) """ import numpy as np from pandas.core.base import PandasObject from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.io.formats.printing import pprint_thing class FrozenList(PandasObject, list): """ Container that doesn't allow setting item *but* because it's technically non-hashable, will be used for lookups, appropriately, etc. """ # Sidenote: This has to be of type list, otherwise it messes up PyTables # typechecks def __add__(self, other): if isinstance(other, tuple): other = list(other) return self.__class__(super(FrozenList, self).__add__(other)) __iadd__ = __add__ # Python 2 compat def __getslice__(self, i, j): return self.__class__(super(FrozenList, self).__getslice__(i, j)) def __getitem__(self, n): # Python 3 compat if isinstance(n, slice): return self.__class__(super(FrozenList, self).__getitem__(n)) return super(FrozenList, self).__getitem__(n) def __radd__(self, other): if isinstance(other, tuple): other = list(other) return self.__class__(other + list(self)) def __eq__(self, other): if isinstance(other, (tuple, FrozenList)): other = list(other) return super(FrozenList, self).__eq__(other) __req__ = __eq__ def __mul__(self, other): return self.__class__(super(FrozenList, self).__mul__(other)) __imul__ = __mul__ def __reduce__(self): return self.__class__, (list(self),) def __hash__(self): return hash(tuple(self)) def _disabled(self, *args, **kwargs): """This method will not function because object is immutable.""" raise TypeError("'%s' does not support mutable operations." % self.__class__.__name__) def __unicode__(self): return pprint_thing(self, quote_strings=True, escape_chars=('\t', '\r', '\n')) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, str(self)) __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled pop = append = extend = remove = sort = insert = _disabled class FrozenNDArray(PandasObject, np.ndarray): # no __array_finalize__ for now because no metadata def __new__(cls, data, dtype=None, copy=False): if copy is None: copy = not isinstance(data, FrozenNDArray) res = np.array(data, dtype=dtype, copy=copy).view(cls) return res def _disabled(self, *args, **kwargs): """This method will not function because object is immutable.""" raise TypeError("'%s' does not support mutable operations." % self.__class__) __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled put = itemset = fill = _disabled def _shallow_copy(self): return self.view() def values(self): """returns *copy* of underlying array""" arr = self.view(np.ndarray).copy() return arr def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ prepr = pprint_thing(self, escape_chars=('\t', '\r', '\n'), quote_strings=True) return "%s(%s, dtype='%s')" % (type(self).__name__, prepr, self.dtype) def searchsorted(self, v, side='left', sorter=None): """ Find indices where elements of v should be inserted in a to maintain order. For full documentation, see `numpy.searchsorted` See Also -------- numpy.searchsorted : equivalent function """ # we are much more performant if the searched # indexer is the same type as the array # this doesn't matter for int64, but DOES # matter for smaller int dtypes # https://github.com/numpy/numpy/issues/5370 try: v = self.dtype.type(v) except: pass return super(FrozenNDArray, self).searchsorted( v, side=side, sorter=sorter) def _ensure_frozen(array_like, categories, copy=False): array_like = coerce_indexer_dtype(array_like, categories) array_like = array_like.view(FrozenNDArray) if copy: array_like = array_like.copy() return array_like
bsd-3-clause
iismd17/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
UNR-AERIAL/scikit-learn
sklearn/linear_model/tests/test_bayes.py
299
1770
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2)
bsd-3-clause
ibab/tensorflow
tensorflow/examples/skflow/text_classification_save_restore.py
9
3724
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from sklearn import metrics import pandas import tensorflow as tf from tensorflow.contrib import learn ### Training data # Downloads, unpacks and reads DBpedia dataset. dbpedia = learn.datasets.load_dataset('dbpedia') X_train, y_train = pandas.DataFrame(dbpedia.train.data)[1], pandas.Series(dbpedia.train.target) X_test, y_test = pandas.DataFrame(dbpedia.test.data)[1], pandas.Series(dbpedia.test.target) ### Process vocabulary MAX_DOCUMENT_LENGTH = 10 vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) X_train = np.array(list(vocab_processor.fit_transform(X_train))) X_test = np.array(list(vocab_processor.transform(X_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) ### Models EMBEDDING_SIZE = 50 def average_model(X, y): word_vectors = learn.ops.categorical_variable(X, n_classes=n_words, embedding_size=EMBEDDING_SIZE, name='words') features = tf.reduce_max(word_vectors, reduction_indices=1) return learn.models.logistic_regression(features, y) def rnn_model(X, y): """Recurrent neural network model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = learn.ops.categorical_variable(X, n_classes=n_words, embedding_size=EMBEDDING_SIZE, name='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = learn.ops.split_squeeze(1, MAX_DOCUMENT_LENGTH, word_vectors) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.nn.rnn_cell.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.nn.rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for logistic # regression over output classes. return learn.models.logistic_regression(encoding, y) model_path = '/tmp/skflow_examples/text_classification' if os.path.exists(model_path): classifier = learn.TensorFlowEstimator.restore(model_path) else: classifier = learn.TensorFlowEstimator(model_fn=rnn_model, n_classes=15, steps=100, optimizer='Adam', learning_rate=0.01, continue_training=True) # Continuously train for 1000 steps while True: try: classifier.fit(X_train, y_train) except KeyboardInterrupt: classifier.save(model_path) break # Predict on test set score = metrics.accuracy_score(y_test, classifier.predict(X_test)) print('Accuracy: {0:f}'.format(score))
apache-2.0
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/scipy/cluster/hierarchy.py
3
91486
""" ======================================================== Hierarchical clustering (:mod:`scipy.cluster.hierarchy`) ======================================================== .. currentmodule:: scipy.cluster.hierarchy These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation. .. autosummary:: :toctree: generated/ fcluster fclusterdata leaders These are routines for agglomerative clustering. .. autosummary:: :toctree: generated/ linkage single complete average weighted centroid median ward These routines compute statistics on hierarchies. .. autosummary:: :toctree: generated/ cophenet from_mlab_linkage inconsistent maxinconsts maxdists maxRstat to_mlab_linkage Routines for visualizing flat clusters. .. autosummary:: :toctree: generated/ dendrogram These are data structures and routines for representing hierarchies as tree objects. .. autosummary:: :toctree: generated/ ClusterNode leaves_list to_tree These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments. .. autosummary:: :toctree: generated/ is_valid_im is_valid_linkage is_isomorphic is_monotonic correspond num_obs_linkage Utility routines for plotting: .. autosummary:: :toctree: generated/ set_link_color_palette References ---------- .. [1] "Statistics toolbox." API Reference Documentation. The MathWorks. http://www.mathworks.com/access/helpdesk/help/toolbox/stats/. Accessed October 1, 2007. .. [2] "Hierarchical clustering." API Reference Documentation. The Wolfram Research, Inc. http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/ HierarchicalClustering.html. Accessed October 1, 2007. .. [3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969. .. [4] Ward Jr, JH. "Hierarchical grouping to optimize an objective function." Journal of the American Statistical Association. 58(301): pp. 236--44. 1963. .. [5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika. 32(2): pp. 241--54. 1966. .. [6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp. 855--60. 1962. .. [7] Batagelj, V. "Comparing resemblance measures." Journal of Classification. 12: pp. 73--90. 1995. .. [8] Sokal, RR and Michener, CD. "A statistical method for evaluating systematic relationships." Scientific Bulletins. 38(22): pp. 1409--38. 1958. .. [9] Edelbrock, C. "Mixture model tests of hierarchical clustering algorithms: the problem of classifying everybody." Multivariate Behavioral Research. 14: pp. 367--84. 1979. .. [10] Jain, A., and Dubes, R., "Algorithms for Clustering Data." Prentice-Hall. Englewood Cliffs, NJ. 1988. .. [11] Fisher, RA "The use of multiple measurements in taxonomic problems." Annals of Eugenics, 7(2): 179-188. 1936 * MATLAB and MathWorks are registered trademarks of The MathWorks, Inc. * Mathematica is a registered trademark of The Wolfram Research, Inc. """ from __future__ import division, print_function, absolute_import # Copyright (C) Damian Eads, 2007-2008. New BSD License. # hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com) # # Author: Damian Eads # Date: September 22, 2007 # # Copyright (c) 2007, 2008, Damian Eads # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # - Neither the name of the author nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import warnings import numpy as np from . import _hierarchy import scipy.spatial.distance as distance from scipy._lib.six import string_types from scipy._lib.six import xrange _cpy_non_euclid_methods = {'single': 0, 'complete': 1, 'average': 2, 'weighted': 6} _cpy_euclid_methods = {'centroid': 3, 'median': 4, 'ward': 5} _cpy_linkage_methods = set(_cpy_non_euclid_methods.keys()).union( set(_cpy_euclid_methods.keys())) __all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet', 'correspond', 'dendrogram', 'fcluster', 'fclusterdata', 'from_mlab_linkage', 'inconsistent', 'is_isomorphic', 'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders', 'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts', 'median', 'num_obs_linkage', 'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree', 'ward', 'weighted', 'distance'] def _warning(s): warnings.warn('scipy.cluster: %s' % s, stacklevel=3) def _copy_array_if_base_present(a): """ Copies the array if its base points to a parent array. """ if a.base is not None: return a.copy() elif np.issubsctype(a, np.float32): return np.array(a, dtype=np.double) else: return a def _copy_arrays_if_base_present(T): """ Accepts a tuple of arrays T. Copies the array T[i] if its base array points to an actual array. Otherwise, the reference is just copied. This is useful if the arrays are being passed to a C function that does not do proper striding. """ l = [_copy_array_if_base_present(a) for a in T] return l def _randdm(pnts): """ Generates a random distance matrix stored in condensed form. A pnts * (pnts - 1) / 2 sized vector is returned. """ if pnts >= 2: D = np.random.rand(pnts * (pnts - 1) / 2) else: raise ValueError("The number of points in the distance matrix " "must be at least 2.") return D def single(y): """ Performs single/min/nearest linkage on the condensed distance matrix ``y`` Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray The linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='single', metric='euclidean') def complete(y): """ Performs complete/max/farthest point linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage """ return linkage(y, method='complete', metric='euclidean') def average(y): """ Performs average/UPGMA linkage on a condensed distance matrix Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='average', metric='euclidean') def weighted(y): """ Performs weighted/WPGMA linkage on the condensed distance matrix. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray The upper triangular of the distance matrix. The result of ``pdist`` is returned in this form. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage : for advanced creation of hierarchical clusterings. """ return linkage(y, method='weighted', metric='euclidean') def centroid(y): """ Performs centroid/UPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = centroid(y)`` Performs centroid/UPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = centroid(X)`` Performs centroid/UPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See ``linkage`` for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray A linkage matrix containing the hierarchical clustering. See the ``linkage`` function documentation for more information on its structure. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='centroid', metric='euclidean') def median(y): """ Performs median/WPGMC linkage. See ``linkage`` for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = median(y)`` Performs median/WPGMC linkage on the condensed distance matrix ``y``. See ``linkage`` for more information on the return structure and algorithm. 2. ``Z = median(X)`` Performs median/WPGMC linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='median', metric='euclidean') def ward(y): """ Performs Ward's linkage on a condensed or redundant distance matrix. See linkage for more information on the return structure and algorithm. The following are common calling conventions: 1. ``Z = ward(y)`` Performs Ward's linkage on the condensed distance matrix ``Z``. See linkage for more information on the return structure and algorithm. 2. ``Z = ward(X)`` Performs Ward's linkage on the observation matrix ``X`` using Euclidean distance as the distance metric. See linkage for more information on the return structure and algorithm. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. See Also -------- linkage: for advanced creation of hierarchical clusterings. """ return linkage(y, method='ward', metric='euclidean') def linkage(y, method='single', metric='euclidean'): """ Performs hierarchical/agglomerative clustering on the condensed distance matrix y. y must be a :math:`{n \\choose 2}` sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function. A 4 by :math:`(n-1)` matrix ``Z`` is returned. At the :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A cluster with an index less than :math:`n` corresponds to one of the :math:`n` original observations. The distance between clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The fourth value ``Z[i, 3]`` represents the number of original observations in the newly formed cluster. The following linkage methods are used to compute the distance :math:`d(s, t)` between two clusters :math:`s` and :math:`t`. The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters :math:`s` and :math:`t` from this forest are combined into a single cluster :math:`u`, :math:`s` and :math:`t` are removed from the forest, and :math:`u` is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root. A distance matrix is maintained at each iteration. The ``d[i,j]`` entry corresponds to the distance between cluster :math:`i` and :math:`j` in the original forest. At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest. Suppose there are :math:`|u|` original observations :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in cluster :math:`v`. Recall :math:`s` and :math:`t` are combined to form cluster :math:`u`. Let :math:`v` be any remaining cluster in the forest that is not :math:`u`. The following are methods for calculating the distance between the newly formed cluster :math:`u` and each :math:`v`. * method='single' assigns .. math:: d(u,v) = \\min(dist(u[i],v[j])) for all points :math:`i` in cluster :math:`u` and :math:`j` in cluster :math:`v`. This is also known as the Nearest Point Algorithm. * method='complete' assigns .. math:: d(u, v) = \\max(dist(u[i],v[j])) for all points :math:`i` in cluster u and :math:`j` in cluster :math:`v`. This is also known by the Farthest Point Algorithm or Voor Hees Algorithm. * method='average' assigns .. math:: d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])} {(|u|*|v|)} for all points :math:`i` and :math:`j` where :math:`|u|` and :math:`|v|` are the cardinalities of clusters :math:`u` and :math:`v`, respectively. This is also called the UPGMA algorithm. * method='weighted' assigns .. math:: d(u,v) = (dist(s,v) + dist(t,v))/2 where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA) * method='centroid' assigns .. math:: dist(s,t) = ||c_s-c_t||_2 where :math:`c_s` and :math:`c_t` are the centroids of clusters :math:`s` and :math:`t`, respectively. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the new centroid is computed over all the original objects in clusters :math:`s` and :math:`t`. The distance then becomes the Euclidean distance between the centroid of :math:`u` and the centroid of a remaining cluster :math:`v` in the forest. This is also known as the UPGMC algorithm. * method='median' assigns :math:`d(s,t)` like the ``centroid`` method. When two clusters :math:`s` and :math:`t` are combined into a new cluster :math:`u`, the average of centroids s and t give the new centroid :math:`u`. This is also known as the WPGMC algorithm. * method='ward' uses the Ward variance minimization algorithm. The new entry :math:`d(u,v)` is computed as follows, .. math:: d(u,v) = \\sqrt{\\frac{|v|+|s|} {T}d(v,s)^2 + \\frac{|v|+|t|} {T}d(v,t)^2 - \\frac{|v|} {T}d(s,t)^2} where :math:`u` is the newly joined cluster consisting of clusters :math:`s` and :math:`t`, :math:`v` is an unused cluster in the forest, :math:`T=|v|+|s|+|t|`, and :math:`|*|` is the cardinality of its argument. This is also known as the incremental algorithm. Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version. Parameters ---------- y : ndarray A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that ``pdist`` returns. Alternatively, a collection of :math:`m` observation vectors in n dimensions may be passed as an :math:`m` by :math:`n` array. method : str, optional The linkage algorithm to use. See the ``Linkage Methods`` section below for full descriptions. metric : str or function, optional The distance metric to use. See the ``distance.pdist`` function for a list of valid distance metrics. The customized distance can also be used. See the ``distance.pdist`` function for details. Returns ------- Z : ndarray The hierarchical clustering encoded as a linkage matrix. """ if not isinstance(method, string_types): raise TypeError("Argument 'method' must be a string.") y = _convert_to_double(np.asarray(y, order='c')) s = y.shape if len(s) == 1: distance.is_valid_y(y, throw=True, name='y') d = distance.num_obs_y(y) if method not in _cpy_non_euclid_methods: raise ValueError("Valid methods when the raw observations are " "omitted are 'single', 'complete', 'weighted', " "and 'average'.") # Since the C code does not support striding using strides. [y] = _copy_arrays_if_base_present([y]) Z = np.zeros((d - 1, 4)) if method == 'single': _hierarchy.slink(y, Z, int(d)) else: _hierarchy.linkage(y, Z, int(d), int(_cpy_non_euclid_methods[method])) elif len(s) == 2: X = y n = s[0] if method not in _cpy_linkage_methods: raise ValueError('Invalid method: %s' % method) if method in _cpy_non_euclid_methods: dm = distance.pdist(X, metric) Z = np.zeros((n - 1, 4)) if method == 'single': _hierarchy.slink(dm, Z, n) else: _hierarchy.linkage(dm, Z, n, int(_cpy_non_euclid_methods[method])) elif method in _cpy_euclid_methods: if metric != 'euclidean': raise ValueError(("Method '%s' requires the distance metric " "to be euclidean") % method) dm = distance.pdist(X, metric) Z = np.zeros((n - 1, 4)) _hierarchy.linkage(dm, Z, n, int(_cpy_euclid_methods[method])) return Z class ClusterNode: """ A tree node class for representing a cluster. Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters. The to_tree function converts a matrix returned by the linkage function into an easy-to-use tree representation. See Also -------- to_tree : for converting a linkage matrix ``Z`` into a tree object. """ def __init__(self, id, left=None, right=None, dist=0, count=1): if id < 0: raise ValueError('The id must be non-negative.') if dist < 0: raise ValueError('The distance must be non-negative.') if (left is None and right is not None) or \ (left is not None and right is None): raise ValueError('Only full or proper binary trees are permitted.' ' This node has one child.') if count < 1: raise ValueError('A cluster must contain at least one original ' 'observation.') self.id = id self.left = left self.right = right self.dist = dist if self.left is None: self.count = count else: self.count = left.count + right.count def get_id(self): """ The identifier of the target node. For ``0 <= i < n``, `i` corresponds to original observation i. For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed at iteration ``i-n``. Returns ------- id : int The identifier of the target node. """ return self.id def get_count(self): """ The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf, 1 is returned. Returns ------- get_count : int The number of leaf nodes below the target node. """ return self.count def get_left(self): """ Return a reference to the left child tree object. Returns ------- left : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.left def get_right(self): """ Returns a reference to the right child tree object. Returns ------- right : ClusterNode The left child of the target node. If the node is a leaf, None is returned. """ return self.right def is_leaf(self): """ Returns True if the target node is a leaf. Returns ------- leafness : bool True if the target node is a leaf node. """ return self.left is None def pre_order(self, func=(lambda x: x.id)): """ Performs pre-order traversal without recursive function calls. When a leaf node is first encountered, ``func`` is called with the leaf node as its argument, and its result is appended to the list. For example, the statement:: ids = root.pre_order(lambda x: x.id) returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right. Parameters ---------- func : function Applied to each leaf ClusterNode object in the pre-order traversal. Given the i'th leaf node in the pre-ordeR traversal ``n[i]``, the result of func(n[i]) is stored in L[i]. If not provided, the index of the original observation to which the node corresponds is used. Returns ------- L : list The pre-order traversal. """ # Do a preorder traversal, caching the result. To avoid having to do # recursion, we'll store the previous index we've visited in a vector. n = self.count curNode = [None] * (2 * n) lvisited = set() rvisited = set() curNode[0] = self k = 0 preorder = [] while k >= 0: nd = curNode[k] ndid = nd.id if nd.is_leaf(): preorder.append(func(nd)) k = k - 1 else: if ndid not in lvisited: curNode[k + 1] = nd.left lvisited.add(ndid) k = k + 1 elif ndid not in rvisited: curNode[k + 1] = nd.right rvisited.add(ndid) k = k + 1 # If we've visited the left and right of this non-leaf # node already, go up in the tree. else: k = k - 1 return preorder _cnode_bare = ClusterNode(0) _cnode_type = type(ClusterNode) def to_tree(Z, rd=False): """ Converts a hierarchical clustering encoded in the matrix ``Z`` (by linkage) into an easy-to-use tree object. The reference r to the root ClusterNode object is returned. Each ClusterNode object has a left, right, dist, id, and count attribute. The left and right attributes point to ClusterNode objects that were combined to generate the cluster. If both are None then the ClusterNode object is a leaf node, its count must be 1, and its distance is meaningless but set to 0. Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of the functions in this library. Parameters ---------- Z : ndarray The linkage matrix in proper form (see the ``linkage`` function documentation). rd : bool, optional When False, a reference to the root ClusterNode object is returned. Otherwise, a tuple (r,d) is returned. ``r`` is a reference to the root node while ``d`` is a dictionary mapping cluster ids to ClusterNode references. If a cluster id is less than n, then it corresponds to a singleton cluster (leaf node). See ``linkage`` for more information on the assignment of cluster ids to clusters. Returns ------- L : list The pre-order traversal. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # The number of original objects is equal to the number of rows minus # 1. n = Z.shape[0] + 1 # Create a list full of None's to store the node objects d = [None] * (n * 2 - 1) # Create the nodes corresponding to the n original objects. for i in xrange(0, n): d[i] = ClusterNode(i) nd = None for i in xrange(0, n - 1): fi = int(Z[i, 0]) fj = int(Z[i, 1]) if fi > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 0') % fi) if fj > i + n: raise ValueError(('Corrupt matrix Z. Index to derivative cluster ' 'is used before it is formed. See row %d, ' 'column 1') % fj) nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2]) # ^ id ^ left ^ right ^ dist if Z[i, 3] != nd.count: raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is ' 'incorrect.') % i) d[n + i] = nd if rd: return (nd, d) else: return nd def _convert_to_bool(X): if X.dtype != np.bool: X = X.astype(np.bool) if not X.flags.contiguous: X = X.copy() return X def _convert_to_double(X): if X.dtype != np.double: X = X.astype(np.double) if not X.flags.contiguous: X = X.copy() return X def cophenet(Z, Y=None): """ Calculates the cophenetic distances between each observation in the hierarchical clustering defined by the linkage ``Z``. Suppose ``p`` and ``q`` are original observations in disjoint clusters ``s`` and ``t``, respectively and ``s`` and ``t`` are joined by a direct parent cluster ``u``. The cophenetic distance between observations ``i`` and ``j`` is simply the distance between clusters ``s`` and ``t``. Parameters ---------- Z : ndarray The hierarchical clustering encoded as an array (see ``linkage`` function). Y : ndarray (optional) Calculates the cophenetic correlation coefficient ``c`` of a hierarchical clustering defined by the linkage matrix `Z` of a set of :math:`n` observations in :math:`m` dimensions. `Y` is the condensed distance matrix from which `Z` was generated. Returns ------- c : ndarray The cophentic correlation distance (if ``y`` is passed). d : ndarray The cophenetic distance matrix in condensed form. The :math:`ij` th entry is the cophenetic distance between original observations :math:`i` and :math:`j`. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 zz = np.zeros((n * (n - 1)) // 2, dtype=np.double) # Since the C code does not support striding using strides. # The dimensions are used instead. Z = _convert_to_double(Z) _hierarchy.cophenetic_distances(Z, zz, int(n)) if Y is None: return zz Y = np.asarray(Y, order='c') distance.is_valid_y(Y, throw=True, name='Y') z = zz.mean() y = Y.mean() Yy = Y - y Zz = zz - z numerator = (Yy * Zz) denomA = Yy ** 2 denomB = Zz ** 2 c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum())) return (c, zz) def inconsistent(Z, d=2): """ Calculates inconsistency statistics on a linkage. Note: This function behaves similarly to the MATLAB(TM) inconsistent function. Parameters ---------- Z : ndarray The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical clustering). See ``linkage`` documentation for more information on its form. d : int, optional The number of links up to `d` levels below each non-singleton cluster. Returns ------- R : ndarray A :math:`(n-1)` by 5 matrix where the ``i``'th row contains the link statistics for the non-singleton cluster ``i``. The link statistics are computed over the link heights for links :math:`d` levels below the cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard deviation of the link heights, respectively; ``R[i,2]`` is the number of links included in the calculation; and ``R[i,3]`` is the inconsistency coefficient, .. math:: \\frac{\\mathtt{Z[i,2]}-\\mathtt{R[i,0]}} {R[i,1]} """ Z = np.asarray(Z, order='c') Zs = Z.shape is_valid_linkage(Z, throw=True, name='Z') if (not d == np.floor(d)) or d < 0: raise ValueError('The second argument d must be a nonnegative ' 'integer value.') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) n = Zs[0] + 1 R = np.zeros((n - 1, 4), dtype=np.double) _hierarchy.inconsistent(Z, R, int(n), int(d)) return R def from_mlab_linkage(Z): """ Converts a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module. The conversion does two things: * the indices are converted from ``1..N`` to ``0..(N-1)`` form, and * a fourth column Z[:,3] is added where Z[i,3] is represents the number of original observations (leaves) in the non-singleton cluster i. This function is useful when loading in linkages from legacy data files generated by MATLAB. Parameters ---------- Z : ndarray A linkage matrix generated by MATLAB(TM). Returns ------- ZS : ndarray A linkage matrix compatible with this library. """ Z = np.asarray(Z, dtype=np.double, order='c') Zs = Z.shape # If it's empty, return it. if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() if len(Zs) != 2: raise ValueError("The linkage array must be rectangular.") # If it contains no rows, return it. if Zs[0] == 0: return Z.copy() Zpart = Z.copy() if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]: raise ValueError('The format of the indices is not 1..N') Zpart[:, 0:2] -= 1.0 CS = np.zeros((Zs[0],), dtype=np.double) _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1) return np.hstack([Zpart, CS.reshape(Zs[0], 1)]) def to_mlab_linkage(Z): """ Converts a linkage matrix to a MATLAB(TM) compatible one. Converts a linkage matrix ``Z`` generated by the linkage function of this module to a MATLAB(TM) compatible one. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. Parameters ---------- Z : ndarray A linkage matrix generated by this library. Returns ------- to_mlab_linkage : ndarray A linkage matrix compatible with MATLAB(TM)'s hierarchical clustering functions. The return linkage matrix has the last column removed and the cluster indices are converted to ``1..N`` indexing. """ Z = np.asarray(Z, order='c', dtype=np.double) Zs = Z.shape if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0): return Z.copy() is_valid_linkage(Z, throw=True, name='Z') ZP = Z[:, 0:3].copy() ZP[:, 0:2] += 1.0 return ZP def is_monotonic(Z): """ Returns True if the linkage passed is monotonic. The linkage is monotonic if for every cluster :math:`s` and :math:`t` joined, the distance between them is no less than the distance between any previously joined clusters. Parameters ---------- Z : ndarray The linkage matrix to check for monotonicity. Returns ------- b : bool A boolean indicating whether the linkage is monotonic. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') # We expect the i'th value to be greater than its successor. return (Z[1:, 2] >= Z[:-1, 2]).all() def is_valid_im(R, warning=False, throw=False, name=None): """Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 numpy array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ R = np.asarray(R, order='c') valid = True name_str = "%r " % name if name else '' try: if type(R) != np.ndarray: raise TypeError('Variable %spassed as inconsistency matrix is not ' 'a numpy array.' % name_str) if R.dtype != np.double: raise TypeError('Inconsistency matrix %smust contain doubles ' '(double).' % name_str) if len(R.shape) != 2: raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. ' 'be two-dimensional).' % name_str) if R.shape[1] != 4: raise ValueError('Inconsistency matrix %smust have 4 columns.' % name_str) if R.shape[0] < 1: raise ValueError('Inconsistency matrix %smust have at least one ' 'row.' % name_str) if (R[:, 0] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height means.' % name_str) if (R[:, 1] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height standard deviations.' % name_str) if (R[:, 2] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'counts.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def is_valid_linkage(Z, warning=False, throw=False, name=None): """ Checks the validity of a linkage matrix. A linkage matrix is valid if it is a two dimensional ndarray (type double) with :math:`n` rows and 4 columns. The first two columns must contain indices between 0 and :math:`2n-1`. For a given row ``i``, :math:`0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1` and :math:`0 \\leq Z[i,1] \\leq i+n-1` (i.e. a cluster cannot join another cluster unless the cluster being joined has been generated.) Parameters ---------- Z : array_like Linkage matrix. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True iff the inconsistency matrix is valid. """ Z = np.asarray(Z, order='c') valid = True name_str = "%r " % name if name else '' try: if type(Z) != np.ndarray: raise TypeError('Passed linkage argument %sis not a valid array.' % name_str) if Z.dtype != np.double: raise TypeError('Linkage matrix %smust contain doubles.' % name_str) if len(Z.shape) != 2: raise ValueError('Linkage matrix %smust have shape=2 (i.e. be ' 'two-dimensional).' % name_str) if Z.shape[1] != 4: raise ValueError('Linkage matrix %smust have 4 columns.' % name_str) if Z.shape[0] == 0: raise ValueError('Linkage must be computed on at least two ' 'observations.') n = Z.shape[0] if n > 1: if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()): raise ValueError('Linkage %scontains negative indices.' % name_str) if (Z[:, 2] < 0).any(): raise ValueError('Linkage %scontains negative distances.' % name_str) if (Z[:, 3] < 0).any(): raise ValueError('Linkage %scontains negative counts.' % name_str) if _check_hierarchy_uses_cluster_before_formed(Z): raise ValueError('Linkage %suses non-singleton cluster before ' 'it is formed.' % name_str) if _check_hierarchy_uses_cluster_more_than_once(Z): raise ValueError('Linkage %suses the same cluster more than once.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid def _check_hierarchy_uses_cluster_before_formed(Z): n = Z.shape[0] + 1 for i in xrange(0, n - 1): if Z[i, 0] >= n + i or Z[i, 1] >= n + i: return True return False def _check_hierarchy_uses_cluster_more_than_once(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]: return True chosen.add(Z[i, 0]) chosen.add(Z[i, 1]) return False def _check_hierarchy_not_all_clusters_used(Z): n = Z.shape[0] + 1 chosen = set([]) for i in xrange(0, n - 1): chosen.add(int(Z[i, 0])) chosen.add(int(Z[i, 1])) must_chosen = set(range(0, 2 * n - 2)) return len(must_chosen.difference(chosen)) > 0 def num_obs_linkage(Z): """ Returns the number of original observations of the linkage matrix passed. Parameters ---------- Z : ndarray The linkage matrix on which to perform the operation. Returns ------- n : int The number of original observations in the linkage. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') return (Z.shape[0] + 1) def correspond(Z, Y): """ Checks for correspondence between linkage and condensed distance matrices They must have the same number of original observations for the check to succeed. This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that must correspond to the same set of original observations. Parameters ---------- Z : array_like The linkage matrix to check for correspondence. Y : array_like The condensed distance matrix to check for correspondence. Returns ------- b : bool A boolean indicating whether the linkage matrix and distance matrix could possibly correspond to one another. """ is_valid_linkage(Z, throw=True) distance.is_valid_y(Y, throw=True) Z = np.asarray(Z, order='c') Y = np.asarray(Y, order='c') return distance.num_obs_y(Y) == num_obs_linkage(Z) def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None): """ Forms flat clusters from the hierarchical clustering defined by the linkage matrix ``Z``. Parameters ---------- Z : ndarray The hierarchical clustering encoded with the matrix returned by the `linkage` function. t : float The threshold to apply when forming flat clusters. criterion : str, optional The criterion to use in forming flat clusters. This can be any of the following values: ``inconsistent`` : If a cluster node and all its descendants have an inconsistent value less than or equal to `t` then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default) ``distance`` : Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than `t`. ``maxclust`` : Finds a minimum threshold ``r`` so that the cophenetic distance between any two original observations in the same flat cluster is no more than ``r`` and no more than `t` flat clusters are formed. ``monocrit`` : Forms a flat cluster from a cluster node c with index i when ``monocrit[j] <= t``. For example, to threshold on the maximum mean distance as computed in the inconsistency matrix R with a threshold of 0.8 do: MR = maxRstat(Z, R, 3) cluster(Z, t=0.8, criterion='monocrit', monocrit=MR) ``maxclust_monocrit`` : Forms a flat cluster from a non-singleton cluster node ``c`` when ``monocrit[i] <= r`` for all cluster indices ``i`` below and including ``c``. ``r`` is minimized such that no more than ``t`` flat clusters are formed. monocrit must be monotonic. For example, to minimize the threshold t on maximum inconsistency values so that no more than 3 flat clusters are formed, do: MI = maxinconsts(Z, R) cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI) depth : int, optional The maximum depth to perform the inconsistency calculation. It has no meaning for the other criteria. Default is 2. R : ndarray, optional The inconsistency matrix to use for the 'inconsistent' criterion. This matrix is computed if not provided. monocrit : ndarray, optional An array of length n-1. `monocrit[i]` is the statistics upon which non-singleton i is thresholded. The monocrit vector must be monotonic, i.e. given a node c with index i, for all node indices j corresponding to nodes below c, `monocrit[i] >= monocrit[j]`. Returns ------- fcluster : ndarray An array of length n. T[i] is the flat cluster number to which original observation i belongs. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 T = np.zeros((n,), dtype='i') # Since the C code does not support striding using strides. # The dimensions are used instead. [Z] = _copy_arrays_if_base_present([Z]) if criterion == 'inconsistent': if R is None: R = inconsistent(Z, depth) else: R = np.asarray(R, order='c') is_valid_im(R, throw=True, name='R') # Since the C code does not support striding using strides. # The dimensions are used instead. [R] = _copy_arrays_if_base_present([R]) _hierarchy.cluster_in(Z, R, T, float(t), int(n)) elif criterion == 'distance': _hierarchy.cluster_dist(Z, T, float(t), int(n)) elif criterion == 'maxclust': _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t)) elif criterion == 'monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n)) elif criterion == 'maxclust_monocrit': [monocrit] = _copy_arrays_if_base_present([monocrit]) _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t)) else: raise ValueError('Invalid cluster formation criterion: %s' % str(criterion)) return T def fclusterdata(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None): """ Cluster observation data using a given metric. Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with `t` as the cut-off threshold. A one-dimensional array T of length n is returned. T[i] is the index of the flat cluster to which the original observation i belongs. Parameters ---------- X : (N, M) ndarray N by M data matrix with N observations in M dimensions. t : float The threshold to apply when forming flat clusters. criterion : str, optional Specifies the criterion for forming flat clusters. Valid values are 'inconsistent' (default), 'distance', or 'maxclust' cluster formation algorithms. See `fcluster` for descriptions. metric : str, optional The distance metric for calculating pairwise distances. See `distance.pdist` for descriptions and linkage to verify compatibility with the linkage method. depth : int, optional The maximum depth for the inconsistency calculation. See `inconsistent` for more information. method : str, optional The linkage method to use (single, complete, average, weighted, median centroid, ward). See `linkage` for more information. Default is "single". R : ndarray, optional The inconsistency matrix. It will be computed if necessary if it is not passed. Returns ------- fclusterdata : ndarray A vector of length n. T[i] is the flat cluster number to which original observation i belongs. Notes ----- This function is similar to the MATLAB function clusterdata. """ X = np.asarray(X, order='c', dtype=np.double) if type(X) != np.ndarray or len(X.shape) != 2: raise TypeError('The observation matrix X must be an n by m numpy ' 'array.') Y = distance.pdist(X, metric=metric) Z = linkage(Y, method=method) if R is None: R = inconsistent(Z, d=depth) else: R = np.asarray(R, order='c') T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t) return T def leaves_list(Z): """ Returns a list of leaf node ids The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage matrix. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. `Z` is a linkage matrix. See ``linkage`` for more information. Returns ------- leaves_list : ndarray The list of leaf node ids. """ Z = np.asarray(Z, order='c') is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 ML = np.zeros((n,), dtype='i') [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.prelist(Z, ML, int(n)) return ML # Maps number of leaves to text size. # # p <= 20, size="12" # 20 < p <= 30, size="10" # 30 < p <= 50, size="8" # 50 < p <= np.inf, size="6" _dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5} _drotation = {20: 0, 40: 45, np.inf: 90} _dtextsortedkeys = list(_dtextsizes.keys()) _dtextsortedkeys.sort() _drotationsortedkeys = list(_drotation.keys()) _drotationsortedkeys.sort() def _remove_dups(L): """ Removes duplicates AND preserves the original order of the elements. The set class is not guaranteed to do this. """ seen_before = set([]) L2 = [] for i in L: if i not in seen_before: seen_before.add(i) L2.append(i) return L2 def _get_tick_text_size(p): for k in _dtextsortedkeys: if p <= k: return _dtextsizes[k] def _get_tick_rotation(p): for k in _drotationsortedkeys: if p <= k: return _drotation[k] def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=None, leaf_rotation=None, contraction_marks=None, ax=None, above_threshold_color='b'): # Import matplotlib here so that it's not imported unless dendrograms # are plotted. Raise an informative error if importing fails. try: # if an axis is provided, don't use pylab at all if ax is None: import matplotlib.pylab import matplotlib.patches import matplotlib.collections except ImportError: raise ImportError("You must install the matplotlib library to plot the dendrogram. Use no_plot=True to calculate the dendrogram without plotting.") if ax is None: ax = matplotlib.pylab.gca() # if we're using pylab, we want to trigger a draw at the end trigger_redraw = True else: trigger_redraw = False # Independent variable plot width ivw = len(ivl) * 10 # Depenendent variable plot height dvw = mh + mh * 0.05 ivticks = np.arange(5, len(ivl) * 10 + 5, 10) if orientation == 'top': ax.set_ylim([0, dvw]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(ivticks) ax.xaxis.set_ticks_position('bottom') # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) leaf_rot = float(_get_tick_rotation(len(ivl))) if (leaf_rotation is None) else leaf_rotation leaf_font = float(_get_tick_text_size(len(ivl))) if (leaf_font_size is None) else leaf_font_size ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font) elif orientation == 'bottom': ax.set_ylim([dvw, 0]) ax.set_xlim([0, ivw]) xlines = icoords ylines = dcoords if no_labels: ax.set_xticks([]) ax.set_xticklabels([]) else: ax.set_xticks(ivticks) ax.xaxis.set_ticks_position('top') # Make the tick marks invisible because they cover up the links for line in ax.get_xticklines(): line.set_visible(False) leaf_rot = float(_get_tick_rotation(len(ivl))) if (leaf_rotation is None) else leaf_rotation leaf_font = float(_get_tick_text_size(len(ivl))) if (leaf_font_size is None) else leaf_font_size ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font) elif orientation == 'left': ax.set_xlim([0, dvw]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(ivticks) ax.yaxis.set_ticks_position('left') # Make the tick marks invisible because they cover up the # links for line in ax.get_yticklines(): line.set_visible(False) leaf_font = float(_get_tick_text_size(len(ivl))) if (leaf_font_size is None) else leaf_font_size if leaf_rotation is not None: ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font) else: ax.set_yticklabels(ivl, size=leaf_font) elif orientation == 'right': ax.set_xlim([dvw, 0]) ax.set_ylim([0, ivw]) xlines = dcoords ylines = icoords if no_labels: ax.set_yticks([]) ax.set_yticklabels([]) else: ax.set_yticks(ivticks) ax.yaxis.set_ticks_position('right') # Make the tick marks invisible because they cover up the links for line in ax.get_yticklines(): line.set_visible(False) leaf_font = float(_get_tick_text_size(len(ivl))) if (leaf_font_size is None) else leaf_font_size if leaf_rotation is not None: ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font) else: ax.set_yticklabels(ivl, size=leaf_font) # Let's use collections instead. This way there is a separate legend # item for each tree grouping, rather than stupidly one for each line # segment. colors_used = _remove_dups(color_list) color_to_lines = {} for color in colors_used: color_to_lines[color] = [] for (xline, yline, color) in zip(xlines, ylines, color_list): color_to_lines[color].append(list(zip(xline, yline))) colors_to_collections = {} # Construct the collections. for color in colors_used: coll = matplotlib.collections.LineCollection(color_to_lines[color], colors=(color,)) colors_to_collections[color] = coll # Add all the groupings below the color threshold. for color in colors_used: if color != above_threshold_color: ax.add_collection(colors_to_collections[color]) # If there is a grouping of links above the color threshold, # it should go last. if above_threshold_color in colors_to_collections: ax.add_collection(colors_to_collections[above_threshold_color]) if contraction_marks is not None: if orientation in ('left', 'right'): for (x, y) in contraction_marks: e = matplotlib.patches.Ellipse((y, x), width=dvw / 100, height=1.0) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if orientation in ('top', 'bottom'): for (x, y) in contraction_marks: e = matplotlib.patches.Ellipse((x, y), width=1.0, height=dvw / 100) ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(0.5) e.set_facecolor('k') if trigger_redraw: matplotlib.pylab.draw_if_interactive() _link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k'] def set_link_color_palette(palette): """ Set list of matplotlib color codes for dendrogram color_threshold. Parameters ---------- palette : list A list of matplotlib color codes. The order of the color codes is the order in which the colors are cycled through when color thresholding in the dendrogram. """ if type(palette) not in (list, tuple): raise TypeError("palette must be a list or tuple") _ptypes = [isinstance(p, string_types) for p in palette] if False in _ptypes: raise TypeError("all palette list elements must be color strings") for i in list(_link_line_colors): _link_line_colors.remove(i) _link_line_colors.extend(list(palette)) def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=True, no_plot=False, no_labels=False, color_list=None, leaf_font_size=None, leaf_rotation=None, leaf_label_func=None, no_leaves=False, show_contracted=False, link_color_func=None, ax=None, above_threshold_color='b'): """ Plots the hierarchical clustering as a dendrogram. The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton cluster and its children. The height of the top of the U-link is the distance between its children clusters. It is also the cophenetic distance between original observations in the two children clusters. It is expected that the distances in Z[:,2] be monotonic, otherwise crossings appear in the dendrogram. Parameters ---------- Z : ndarray The linkage matrix encoding the hierarchical clustering to render as a dendrogram. See the ``linkage`` function for more information on the format of ``Z``. p : int, optional The ``p`` parameter for ``truncate_mode``. truncate_mode : str, optional The dendrogram can be hard to read when the original observation matrix from which the linkage is derived is large. Truncation is used to condense the dendrogram. There are several modes: ``None/'none'`` No truncation is performed (Default). ``'lastp'`` The last ``p`` non-singleton formed in the linkage are the only non-leaf nodes in the linkage; they correspond to rows ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are contracted into leaf nodes. ``'mlab'`` This corresponds to MATLAB(TM) behavior. (not implemented yet) ``'level'/'mtica'`` No more than ``p`` levels of the dendrogram tree are displayed. This corresponds to Mathematica(TM) behavior. color_threshold : double, optional For brevity, let :math:`t` be the ``color_threshold``. Colors all the descendent links below a cluster node :math:`k` the same color if :math:`k` is the first node below the cut threshold :math:`t`. All links connecting nodes with distances greater than or equal to the threshold are colored blue. If :math:`t` is less than or equal to zero, all nodes are colored blue. If ``color_threshold`` is None or 'default', corresponding with MATLAB(TM) behavior, the threshold is set to ``0.7*max(Z[:,2])``. get_leaves : bool, optional Includes a list ``R['leaves']=H`` in the result dictionary. For each :math:`i`, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. orientation : str, optional The direction to plot the dendrogram, which can be any of the following strings: ``'top'`` Plots the root at the top, and plot descendent links going downwards. (default). ``'bottom'`` Plots the root at the bottom, and plot descendent links going upwards. ``'left'`` Plots the root at the left, and plot descendent links going right. ``'right'`` Plots the root at the right, and plot descendent links going left. labels : ndarray, optional By default ``labels`` is None so the index of the original observation is used to label the leaf nodes. Otherwise, this is an :math:`n` -sized list (or tuple). The ``labels[i]`` value is the text to put under the :math:`i` th leaf node only if it corresponds to an original observation and not a non-singleton cluster. count_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum number of original objects in its cluster is plotted first. ``'descendent'`` The child with the maximum number of original objects in its cluster is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. distance_sort : str or bool, optional For each node n, the order (visually, from left-to-right) n's two descendent links are plotted is determined by this parameter, which can be any of the following values: ``False`` Nothing is done. ``'ascending'`` or ``True`` The child with the minimum distance between its direct descendents is plotted first. ``'descending'`` The child with the maximum distance between its direct descendents is plotted first. Note ``distance_sort`` and ``count_sort`` cannot both be True. show_leaf_counts : bool, optional When True, leaf nodes representing :math:`k>1` original observation are labeled with the number of observations they contain in parentheses. no_plot : bool, optional When True, the final rendering is not performed. This is useful if only the data structures computed for the rendering are needed or if matplotlib is not available. no_labels : bool, optional When True, no labels appear next to the leaf nodes in the rendering of the dendrogram. leaf_rotation : double, optional Specifies the angle (in degrees) to rotate the leaf labels. When unspecified, the rotation is based on the number of nodes in the dendrogram (default is 0). leaf_font_size : int, optional Specifies the font size (in points) of the leaf labels. When unspecified, the size based on the number of nodes in the dendrogram. leaf_label_func : lambda or function, optional When leaf_label_func is a callable function, for each leaf with cluster index :math:`k < 2n-1`. The function is expected to return a string with the label for the leaf. Indices :math:`k < n` correspond to original observations while indices :math:`k \\geq n` correspond to non-singleton clusters. For example, to label singletons with their node id and non-singletons with their id, count, and inconsistency coefficient, simply do: >>> # First define the leaf label function. >>> def llf(id): ... if id < n: ... return str(id) ... else: >>> return '[%d %d %1.2f]' % (id, count, R[n-id,3]) >>> >>> # The text for the leaf nodes is going to be big so force >>> # a rotation of 90 degrees. >>> dendrogram(Z, leaf_label_func=llf, leaf_rotation=90) show_contracted : bool, optional When True the heights of non-singleton nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf node. This really is only useful when truncation is used (see ``truncate_mode`` parameter). link_color_func : callable, optional If given, `link_color_function` is called with each non-singleton id corresponding to each U-shaped link it will paint. The function is expected to return the color to paint the link, encoded as a matplotlib color string code. For example: >>> dendrogram(Z, link_color_func=lambda k: colors[k]) colors the direct links below each untruncated non-singleton node ``k`` using ``colors[k]``. ax : matplotlib Axes instance, optional If None and `no_plot` is not True, the dendrogram will be plotted on the current axes. Otherwise if `no_plot` is not True the dendrogram will be plotted on the given ``Axes`` instance. This can be useful if the dendrogram is part of a more complex figure. above_threshold_color : str, optional This matplotlib color string sets the color of the links above the color_threshold. The default is 'b'. Returns ------- R : dict A dictionary of data structures computed to render the dendrogram. Its has the following keys: ``'color_list'`` A list of color names. The k'th element represents the color of the k'th link. ``'icoord'`` and ``'dcoord'`` Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]`` where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]`` where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``. ``'ivl'`` A list of labels corresponding to the leaf nodes. ``'leaves'`` For each i, ``H[i] == j``, cluster node ``j`` appears in position ``i`` in the left-to-right traversal of the leaves, where :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the ``i``-th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster. """ # Features under consideration. # # ... = dendrogram(..., leaves_order=None) # # Plots the leaves in the order specified by a vector of # original observation indices. If the vector contains duplicates # or results in a crossing, an exception will be thrown. Passing # None orders leaf nodes based on the order they appear in the # pre-order traversal. Z = np.asarray(Z, order='c') if orientation not in ["top", "left", "bottom", "right"]: raise ValueError("orientation must be one of 'top', 'left', " "'bottom', or 'right'") is_valid_linkage(Z, throw=True, name='Z') Zs = Z.shape n = Zs[0] + 1 if type(p) in (int, float): p = int(p) else: raise TypeError('The second argument must be a number') if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None): raise ValueError('Invalid truncation mode.') if truncate_mode == 'lastp' or truncate_mode == 'mlab': if p > n or p == 0: p = n if truncate_mode == 'mtica' or truncate_mode == 'level': if p <= 0: p = np.inf if get_leaves: lvs = [] else: lvs = None icoord_list = [] dcoord_list = [] color_list = [] current_color = [0] currently_below_threshold = [False] if no_leaves: ivl = None else: ivl = [] if color_threshold is None or \ (isinstance(color_threshold, string_types) and color_threshold == 'default'): color_threshold = max(Z[:, 2]) * 0.7 R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl, 'leaves': lvs, 'color_list': color_list} if show_contracted: contraction_marks = [] else: contraction_marks = None _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=2 * n - 2, iv=0.0, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) if not no_plot: mh = max(Z[:, 2]) _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation, no_labels, color_list, leaf_font_size=leaf_font_size, leaf_rotation=leaf_rotation, contraction_marks=contraction_marks, ax=ax, above_threshold_color=above_threshold_color) return R def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) # If leaf node labels are to be displayed... if ivl is not None: # If a leaf_label_func has been provided, the label comes from the # string returned from the leaf_label_func, which is a function # passed to dendrogram. if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: # Otherwise, if the dendrogram caller has passed a labels list # for the leaf nodes, use it. if labels is not None: ivl.append(labels[int(i - n)]) else: # Otherwise, use the id as the label for the leaf.x ivl.append(str(int(i))) def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts): # If the leaf id structure is not None and is a list then the caller # to dendrogram has indicated that cluster id's corresponding to the # leaf nodes should be recorded. if lvs is not None: lvs.append(int(i)) if ivl is not None: if leaf_label_func: ivl.append(leaf_label_func(int(i))) else: if show_leaf_counts: ivl.append("(" + str(int(Z[i - n, 3])) + ")") else: ivl.append("") def _append_contraction_marks(Z, iv, i, n, contraction_marks): _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks): if i >= n: contraction_marks.append((iv, Z[i - n, 2])) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks) _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks) def _dendrogram_calculate_info(Z, p, truncate_mode, color_threshold=np.inf, get_leaves=True, orientation='top', labels=None, count_sort=False, distance_sort=False, show_leaf_counts=False, i=-1, iv=0.0, ivl=[], n=0, icoord_list=[], dcoord_list=[], lvs=None, mhr=False, current_color=[], color_list=[], currently_below_threshold=[], leaf_label_func=None, level=0, contraction_marks=None, link_color_func=None, above_threshold_color='b'): """ Calculates the endpoints of the links as well as the labels for the the dendrogram rooted at the node with index i. iv is the independent variable value to plot the left-most leaf node below the root node i (if orientation='top', this would be the left-most x value where the plotting of this root node i and its descendents should begin). ivl is a list to store the labels of the leaf nodes. The leaf_label_func is called whenever ivl != None, labels == None, and leaf_label_func != None. When ivl != None and labels != None, the labels list is used only for labeling the leaf nodes. When ivl == None, no labels are generated for leaf nodes. When get_leaves==True, a list of leaves is built as they are visited in the dendrogram. Returns a tuple with l being the independent variable coordinate that corresponds to the midpoint of cluster to the left of cluster i if i is non-singleton, otherwise the independent coordinate of the leaf node if i is a leaf node. Returns ------- A tuple (left, w, h, md), where: * left is the independent variable coordinate of the center of the the U of the subtree * w is the amount of space used for the subtree (in independent variable units) * h is the height of the subtree in dependent variable units * md is the max(Z[*,2]) for all nodes * below and including the target node. """ if n == 0: raise ValueError("Invalid singleton cluster count n.") if i == -1: raise ValueError("Invalid root cluster index i.") if truncate_mode == 'lastp': # If the node is a leaf node but corresponds to a non-single cluster, # it's label is either the empty string or the number of original # observations belonging to cluster i. if i < 2 * n - p and i >= n: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mtica', 'level'): if i > n and level > p: d = Z[i - n, 2] _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels, show_leaf_counts) if contraction_marks is not None: _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks) return (iv + 5.0, 10.0, 0.0, d) elif i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) elif truncate_mode in ('mlab',): pass # Otherwise, only truncate if we have a leaf node. # # If the truncate_mode is mlab, the linkage has been modified # with the truncated tree. # # Only place leaves if they correspond to original observations. if i < n: _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func, i, labels) return (iv + 5.0, 10.0, 0.0, 0.0) # !!! Otherwise, we don't have a leaf node, so work on plotting a # non-leaf node. # Actual indices of a and b aa = int(Z[i - n, 0]) ab = int(Z[i - n, 1]) if aa > n: # The number of singletons below cluster a na = Z[aa - n, 3] # The distance between a's two direct children. da = Z[aa - n, 2] else: na = 1 da = 0.0 if ab > n: nb = Z[ab - n, 3] db = Z[ab - n, 2] else: nb = 1 db = 0.0 if count_sort == 'ascending' or count_sort == True: # If a has a count greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if na > nb: # The cluster index to draw to the left (ua) will be ab # and the one to draw to the right (ub) will be aa ua = ab ub = aa else: ua = aa ub = ab elif count_sort == 'descending': # If a has a count less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if na > nb: ua = aa ub = ab else: ua = ab ub = aa elif distance_sort == 'ascending' or distance_sort == True: # If a has a distance greater than b, it and its descendents should # be drawn to the right. Otherwise, to the left. if da > db: ua = ab ub = aa else: ua = aa ub = ab elif distance_sort == 'descending': # If a has a distance less than or equal to b, it and its # descendents should be drawn to the left. Otherwise, to # the right. if da > db: ua = aa ub = ab else: ua = ab ub = aa else: ua = aa ub = ab # Updated iv variable and the amount of space used. (uiva, uwa, uah, uamd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ua, iv=iv, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) h = Z[i - n, 2] if h >= color_threshold or color_threshold <= 0: c = above_threshold_color if currently_below_threshold[0]: current_color[0] = (current_color[0] + 1) % len(_link_line_colors) currently_below_threshold[0] = False else: currently_below_threshold[0] = True c = _link_line_colors[current_color[0]] (uivb, uwb, ubh, ubmd) = \ _dendrogram_calculate_info( Z=Z, p=p, truncate_mode=truncate_mode, color_threshold=color_threshold, get_leaves=get_leaves, orientation=orientation, labels=labels, count_sort=count_sort, distance_sort=distance_sort, show_leaf_counts=show_leaf_counts, i=ub, iv=iv + uwa, ivl=ivl, n=n, icoord_list=icoord_list, dcoord_list=dcoord_list, lvs=lvs, current_color=current_color, color_list=color_list, currently_below_threshold=currently_below_threshold, leaf_label_func=leaf_label_func, level=level + 1, contraction_marks=contraction_marks, link_color_func=link_color_func, above_threshold_color=above_threshold_color) max_dist = max(uamd, ubmd, h) icoord_list.append([uiva, uiva, uivb, uivb]) dcoord_list.append([uah, h, h, ubh]) if link_color_func is not None: v = link_color_func(int(i)) if not isinstance(v, string_types): raise TypeError("link_color_func must return a matplotlib " "color string!") color_list.append(v) else: color_list.append(c) return (((uiva + uivb) / 2), uwa + uwb, h, max_dist) def is_isomorphic(T1, T2): """ Determines if two different cluster assignments are equivalent. Parameters ---------- T1 : array_like An assignment of singleton cluster ids to flat cluster ids. T2 : array_like An assignment of singleton cluster ids to flat cluster ids. Returns ------- b : bool Whether the flat cluster assignments `T1` and `T2` are equivalent. """ T1 = np.asarray(T1, order='c') T2 = np.asarray(T2, order='c') if type(T1) != np.ndarray: raise TypeError('T1 must be a numpy array.') if type(T2) != np.ndarray: raise TypeError('T2 must be a numpy array.') T1S = T1.shape T2S = T2.shape if len(T1S) != 1: raise ValueError('T1 must be one-dimensional.') if len(T2S) != 1: raise ValueError('T2 must be one-dimensional.') if T1S[0] != T2S[0]: raise ValueError('T1 and T2 must have the same number of elements.') n = T1S[0] d = {} for i in xrange(0, n): if T1[i] in d: if d[T1[i]] != T2[i]: return False else: d[T1[i]] = T2[i] return True def maxdists(Z): """ Returns the maximum distance between any non-singleton cluster. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. Returns ------- maxdists : ndarray A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents the maximum distance between any cluster (including singletons) below and including the node with index i. More specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the set of all node indices below and including node i. """ Z = np.asarray(Z, order='c', dtype=np.double) is_valid_linkage(Z, throw=True, name='Z') n = Z.shape[0] + 1 MD = np.zeros((n - 1,)) [Z] = _copy_arrays_if_base_present([Z]) _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n)) return MD def maxinconsts(Z, R): """ Returns the maximum inconsistency coefficient for each non-singleton cluster and its descendents. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : ndarray The inconsistency matrix. Returns ------- MI : ndarray A monotonic ``(n-1)``-sized numpy array of doubles. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') n = Z.shape[0] + 1 if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") MI = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3) return MI def maxRstat(Z, R, i): """ Returns the maximum statistic for each non-singleton cluster and its descendents. Parameters ---------- Z : array_like The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. R : array_like The inconsistency matrix. i : int The column of `R` to use as the statistic. Returns ------- MR : ndarray Calculates the maximum statistic for the i'th column of the inconsistency matrix `R` for each non-singleton cluster node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where ``Q(j)`` the set of all node ids corresponding to nodes below and including ``j``. """ Z = np.asarray(Z, order='c') R = np.asarray(R, order='c') is_valid_linkage(Z, throw=True, name='Z') is_valid_im(R, throw=True, name='R') if type(i) is not int: raise TypeError('The third argument must be an integer.') if i < 0 or i > 3: raise ValueError('i must be an integer between 0 and 3 inclusive.') if Z.shape[0] != R.shape[0]: raise ValueError("The inconsistency matrix and linkage matrix each " "have a different number of rows.") n = Z.shape[0] + 1 MR = np.zeros((n - 1,)) [Z, R] = _copy_arrays_if_base_present([Z, R]) _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i) return MR def leaders(Z, T): """ Returns the root nodes in a hierarchical clustering. Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector ``T``. See the ``fcluster`` function for more information on the format of ``T``. For each flat cluster :math:`j` of the :math:`k` flat clusters represented in the n-sized flat cluster assignment vector ``T``, this function finds the lowest cluster node :math:`i` in the linkage tree Z such that: * leaf descendents belong only to flat cluster j (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where :math:`S(i)` is the set of leaf ids of leaf nodes descendent with cluster node :math:`i`) * there does not exist a leaf that is not descendent with :math:`i` that also belongs to cluster :math:`j` (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If this condition is violated, ``T`` is not a valid cluster assignment vector, and an exception will be thrown. Parameters ---------- Z : ndarray The hierarchical clustering encoded as a matrix. See ``linkage`` for more information. T : ndarray The flat cluster assignment vector. Returns ------- L : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. ``L[j]=i`` is the linkage cluster node id that is the leader of flat cluster with id M[j]. If ``i < n``, ``i`` corresponds to an original observation, otherwise it corresponds to a non-singleton cluster. For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with id 8's leader is linkage node 2. M : ndarray The leader linkage node id's stored as a k-element 1-D array where ``k`` is the number of flat clusters found in ``T``. This allows the set of flat cluster ids to be any arbitrary set of ``k`` integers. """ Z = np.asarray(Z, order='c') T = np.asarray(T, order='c') if type(T) != np.ndarray or T.dtype != 'i': raise TypeError('T must be a one-dimensional numpy array of integers.') is_valid_linkage(Z, throw=True, name='Z') if len(T) != Z.shape[0] + 1: raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') Cl = np.unique(T) kk = len(Cl) L = np.zeros((kk,), dtype='i') M = np.zeros((kk,), dtype='i') n = Z.shape[0] + 1 [Z, T] = _copy_arrays_if_base_present([Z, T]) s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n)) if s >= 0: raise ValueError(('T is not a valid assignment vector. Error found ' 'when examining linkage node %d (< 2n-1).') % s) return (L, M) # These are test functions to help me test the leaders function. def _leaders_test(Z, T): tr = to_tree(Z) _leaders_test_recurs_mark(tr, T) return tr def _leader_identify(tr, T): if tr.is_leaf(): return T[tr.id] else: left = tr.get_left() right = tr.get_right() lfid = _leader_identify(left, T) rfid = _leader_identify(right, T) print('ndid: %d lid: %d lfid: %d rid: %d rfid: %d' % (tr.get_id(), left.get_id(), lfid, right.get_id(), rfid)) if lfid != rfid: if lfid != -1: print('leader: %d with tag %d' % (left.id, lfid)) if rfid != -1: print('leader: %d with tag %d' % (right.id, rfid)) return -1 else: return lfid def _leaders_test_recurs_mark(tr, T): if tr.is_leaf(): tr.asgn = T[tr.id] else: tr.asgn = -1 _leaders_test_recurs_mark(tr.left, T) _leaders_test_recurs_mark(tr.right, T)
gpl-2.0
mdhaber/scipy
scipy/stats/__init__.py
7
12444
""" .. _statsrefmanual: ========================================== Statistical functions (:mod:`scipy.stats`) ========================================== .. currentmodule:: scipy.stats This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more. Statistics is a very large area, and there are topics that are out of scope for SciPy and are covered by other packages. Some of the most important ones are: - `statsmodels <https://www.statsmodels.org/stable/index.html>`__: regression, linear models, time series analysis, extensions to topics also covered by ``scipy.stats``. - `Pandas <https://pandas.pydata.org/>`__: tabular data, time series functionality, interfaces to other statistical languages. - `PyMC3 <https://docs.pymc.io/>`__: Bayesian statistical modeling, probabilistic machine learning. - `scikit-learn <https://scikit-learn.org/>`__: classification, regression, model selection. - `Seaborn <https://seaborn.pydata.org/>`__: statistical data visualization. - `rpy2 <https://rpy2.github.io/>`__: Python to R bridge. Probability distributions ========================= Each univariate distribution is an instance of a subclass of `rv_continuous` (`rv_discrete` for discrete distributions): .. autosummary:: :toctree: generated/ rv_continuous rv_discrete rv_histogram Continuous distributions ------------------------ .. autosummary:: :toctree: generated/ alpha -- Alpha anglit -- Anglit arcsine -- Arcsine argus -- Argus beta -- Beta betaprime -- Beta Prime bradford -- Bradford burr -- Burr (Type III) burr12 -- Burr (Type XII) cauchy -- Cauchy chi -- Chi chi2 -- Chi-squared cosine -- Cosine crystalball -- Crystalball dgamma -- Double Gamma dweibull -- Double Weibull erlang -- Erlang expon -- Exponential exponnorm -- Exponentially Modified Normal exponweib -- Exponentiated Weibull exponpow -- Exponential Power f -- F (Snecdor F) fatiguelife -- Fatigue Life (Birnbaum-Saunders) fisk -- Fisk foldcauchy -- Folded Cauchy foldnorm -- Folded Normal genlogistic -- Generalized Logistic gennorm -- Generalized normal genpareto -- Generalized Pareto genexpon -- Generalized Exponential genextreme -- Generalized Extreme Value gausshyper -- Gauss Hypergeometric gamma -- Gamma gengamma -- Generalized gamma genhalflogistic -- Generalized Half Logistic genhyperbolic -- Generalized Hyperbolic geninvgauss -- Generalized Inverse Gaussian gilbrat -- Gilbrat gompertz -- Gompertz (Truncated Gumbel) gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I gumbel_l -- Left Sided Gumbel, etc. halfcauchy -- Half Cauchy halflogistic -- Half Logistic halfnorm -- Half Normal halfgennorm -- Generalized Half Normal hypsecant -- Hyperbolic Secant invgamma -- Inverse Gamma invgauss -- Inverse Gaussian invweibull -- Inverse Weibull johnsonsb -- Johnson SB johnsonsu -- Johnson SU kappa4 -- Kappa 4 parameter kappa3 -- Kappa 3 parameter ksone -- Distribution of Kolmogorov-Smirnov one-sided test statistic kstwo -- Distribution of Kolmogorov-Smirnov two-sided test statistic kstwobign -- Limiting Distribution of scaled Kolmogorov-Smirnov two-sided test statistic. laplace -- Laplace laplace_asymmetric -- Asymmetric Laplace levy -- Levy levy_l levy_stable logistic -- Logistic loggamma -- Log-Gamma loglaplace -- Log-Laplace (Log Double Exponential) lognorm -- Log-Normal loguniform -- Log-Uniform lomax -- Lomax (Pareto of the second kind) maxwell -- Maxwell mielke -- Mielke's Beta-Kappa moyal -- Moyal nakagami -- Nakagami ncx2 -- Non-central chi-squared ncf -- Non-central F nct -- Non-central Student's T norm -- Normal (Gaussian) norminvgauss -- Normal Inverse Gaussian pareto -- Pareto pearson3 -- Pearson type III powerlaw -- Power-function powerlognorm -- Power log normal powernorm -- Power normal rdist -- R-distribution rayleigh -- Rayleigh rice -- Rice recipinvgauss -- Reciprocal Inverse Gaussian semicircular -- Semicircular skewcauchy -- Skew Cauchy skewnorm -- Skew normal studentized_range -- Studentized Range t -- Student's T trapezoid -- Trapezoidal triang -- Triangular truncexpon -- Truncated Exponential truncnorm -- Truncated Normal tukeylambda -- Tukey-Lambda uniform -- Uniform vonmises -- Von-Mises (Circular) vonmises_line -- Von-Mises (Line) wald -- Wald weibull_min -- Minimum Weibull (see Frechet) weibull_max -- Maximum Weibull (see Frechet) wrapcauchy -- Wrapped Cauchy Multivariate distributions -------------------------- .. autosummary:: :toctree: generated/ multivariate_normal -- Multivariate normal distribution matrix_normal -- Matrix normal distribution dirichlet -- Dirichlet wishart -- Wishart invwishart -- Inverse Wishart multinomial -- Multinomial distribution special_ortho_group -- SO(N) group ortho_group -- O(N) group unitary_group -- U(N) group random_correlation -- random correlation matrices multivariate_t -- Multivariate t-distribution multivariate_hypergeom -- Multivariate hypergeometric distribution Discrete distributions ---------------------- .. autosummary:: :toctree: generated/ bernoulli -- Bernoulli betabinom -- Beta-Binomial binom -- Binomial boltzmann -- Boltzmann (Truncated Discrete Exponential) dlaplace -- Discrete Laplacian geom -- Geometric hypergeom -- Hypergeometric logser -- Logarithmic (Log-Series, Series) nbinom -- Negative Binomial nchypergeom_fisher -- Fisher's Noncentral Hypergeometric nchypergeom_wallenius -- Wallenius's Noncentral Hypergeometric nhypergeom -- Negative Hypergeometric planck -- Planck (Discrete Exponential) poisson -- Poisson randint -- Discrete Uniform skellam -- Skellam yulesimon -- Yule-Simon zipf -- Zipf (Zeta) zipfian -- Zipfian An overview of statistical functions is given below. Many of these functions have a similar version in `scipy.stats.mstats` which work for masked arrays. Summary statistics ================== .. autosummary:: :toctree: generated/ describe -- Descriptive statistics gmean -- Geometric mean hmean -- Harmonic mean kurtosis -- Fisher or Pearson kurtosis mode -- Modal value moment -- Central moment skew -- Skewness kstat -- kstatvar -- tmean -- Truncated arithmetic mean tvar -- Truncated variance tmin -- tmax -- tstd -- tsem -- variation -- Coefficient of variation find_repeats trim_mean gstd -- Geometric Standard Deviation iqr sem bayes_mvs mvsdist entropy differential_entropy median_absolute_deviation median_abs_deviation bootstrap Frequency statistics ==================== .. autosummary:: :toctree: generated/ cumfreq itemfreq percentileofscore scoreatpercentile relfreq .. autosummary:: :toctree: generated/ binned_statistic -- Compute a binned statistic for a set of data. binned_statistic_2d -- Compute a 2-D binned statistic for a set of data. binned_statistic_dd -- Compute a d-D binned statistic for a set of data. Correlation functions ===================== .. autosummary:: :toctree: generated/ f_oneway alexandergovern pearsonr spearmanr pointbiserialr kendalltau weightedtau somersd linregress siegelslopes theilslopes multiscale_graphcorr Statistical tests ================= .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_ind_from_stats ttest_rel chisquare cramervonmises cramervonmises_2samp power_divergence kstest ks_1samp ks_2samp epps_singleton_2samp mannwhitneyu tiecorrect rankdata ranksums wilcoxon kruskal friedmanchisquare brunnermunzel combine_pvalues jarque_bera page_trend_test .. autosummary:: :toctree: generated/ ansari bartlett levene shapiro anderson anderson_ksamp binom_test binomtest fligner median_test mood skewtest kurtosistest normaltest Quasi-Monte Carlo ================= .. toctree:: :maxdepth: 4 stats.qmc Masked statistics functions =========================== .. toctree:: stats.mstats Other statistical functionality =============================== Transformations --------------- .. autosummary:: :toctree: generated/ boxcox boxcox_normmax boxcox_llf yeojohnson yeojohnson_normmax yeojohnson_llf obrientransform sigmaclip trimboth trim1 zmap zscore Statistical distances --------------------- .. autosummary:: :toctree: generated/ wasserstein_distance energy_distance Random variate generation / CDF Inversion ========================================= .. autosummary:: :toctree: generated/ rvs_ratio_uniforms NumericalInverseHermite Circular statistical functions ------------------------------ .. autosummary:: :toctree: generated/ circmean circvar circstd Contingency table functions --------------------------- .. autosummary:: :toctree: generated/ chi2_contingency contingency.crosstab contingency.expected_freq contingency.margins contingency.relative_risk contingency.association fisher_exact barnard_exact boschloo_exact Plot-tests ---------- .. autosummary:: :toctree: generated/ ppcc_max ppcc_plot probplot boxcox_normplot yeojohnson_normplot Univariate and multivariate kernel density estimation ----------------------------------------------------- .. autosummary:: :toctree: generated/ gaussian_kde Warnings used in :mod:`scipy.stats` ----------------------------------- .. autosummary:: :toctree: generated/ F_onewayConstantInputWarning F_onewayBadInputSizesWarning PearsonRConstantInputWarning PearsonRNearConstantInputWarning SpearmanRConstantInputWarning """ from .stats import * from .distributions import * from .morestats import * from ._binomtest import binomtest from ._binned_statistic import * from .kde import gaussian_kde from . import mstats from . import qmc from ._multivariate import * from . import contingency from .contingency import chi2_contingency from ._bootstrap import bootstrap from ._entropy import * from ._hypotests import * from ._rvs_sampling import rvs_ratio_uniforms, NumericalInverseHermite from ._page_trend_test import page_trend_test from ._mannwhitneyu import mannwhitneyu __all__ = [s for s in dir() if not s.startswith("_")] # Remove dunders. from scipy._lib._testutils import PytestTester test = PytestTester(__name__) del PytestTester
bsd-3-clause
n7jti/kaggle
DigitRecognizer/digitr2.py
1
1717
#!/usr/bin/python from scipy import * import numpy as np from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn import metrics from sklearn import svm import time import pickle def load (): # Load a csv of floats: #train = np.genfromtxt("data/train.csv", delimiter=",", skip_header=1) #y_train = train[:,0].astype(int) #x_train = train[:,1:] npzfile = np.load('data/bindata.npz') x = npzfile['x'] y = npzfile['y'].astype(int) #test = np.genfromtxt("data/test.csv", delimiter=",", skip_header=1) #x_test = test return y, x def main (): print 'starting', time.asctime(time.localtime()) start = time.clock() y, x, = load(); # split into a training and testing set # x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5) x_train = x[0:20000,:] y_train = y[0:20000] x_test = x[20000:40000,:] y_test = y[20000:40000] # Set the parameters by cross-validation C=10 gamma=1e-7 clf = svm.SVC(C=C, gamma=gamma) # We learn the digits on the first half of the digits clf.fit(x_train, y_train) # Pickle the model! outf = open('model.pkl', 'wb') pickle.dump(clf, outf) outf.close() # Now predict the value of the digit on the second half: y_true, y_pred = y_test, clf.predict(x_test) print("Classification report for classifier %s:\n%s\n" % (clf, metrics.classification_report(y_true, y_pred))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_true, y_pred)) stop = time.clock() print 'elapsed:', stop - start if __name__ == "__main__": main()
apache-2.0
trankmichael/scikit-learn
sklearn/utils/__init__.py
132
14185
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric, DataConversionWarning) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality"""
bsd-3-clause
IQuOD/AutoQC
analyse-results.py
1
24741
import csv, getopt, json, pandas, sys, ast import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from util import dbutils, main def read_qc_groups(filename='qctest_groups.csv'): # Read a csv file containing information on QC test groups. # The program returns a dictionary containing the information # from csv file. csvfile = open(filename) groupinfo = csv.reader(csvfile) # Create empty lists for each type of group. groupdefinition = {'Remove above reject':[], 'Remove below reject':[], 'Remove rejected levels':[], 'Remove profile':[], 'Optional':[], 'At least one from group':{}} # Fill out the lists. for i, spec in enumerate(groupinfo): if i == 0: continue # Miss the header line. if spec[1] in groupdefinition: # For the 'at least one from group' rule we maintain lists of # the tests in each group. if spec[1] == 'At least one from group': if spec[0] in groupdefinition[spec[1]]: groupdefinition[spec[1]][spec[0]].append(spec[2]) else: groupdefinition[spec[1]][spec[0]] = [spec[2]] else: # Other rules have a list of the tests that fall into them. groupdefinition[spec[1]].append(spec[2]) else: raise NameError('Rule not recognised: ', spec) csvfile.close() return groupdefinition def return_cost(costratio, tpr, fpr): # Return cost function. # Inputs are: # costratio - 2 element iterable used to define the cost function; roughly # they define the minimum required gradient of the ROC curve # with the first giving the gradient at the start, the second # the gradient at the end. Suggested values: to get a compromise # set of QC tests, define costratio = [2.5, 1.0]; to get a # conservative set of QC tests, define costratio = [10.0, 10.0]. # tpr - True positive rate to get the cost for. # fpr - False positive rate to get the cost for. # Returns: the cost function value. costratio1 = costratio[0] costratio2 = costratio[1] theta1 = np.arctan(costratio1) theta2 = np.arctan(costratio2) cost1 = (100.0 - tpr) * np.cos(theta1) + fpr * np.sin(theta1) cost2 = (100.0 - tpr) * np.cos(theta2) + fpr * np.sin(theta2) cost = (100.0 - tpr) / 100.0 * cost1 + tpr / 100.0 * cost2 return cost def find_roc(table, targetdb, costratio=[2.5, 1.0], filter_on_wire_break_test=False, filter_from_file_spec=True, enforce_types_of_check=True, n_profiles_to_analyse=np.iinfo(np.int32).max, n_combination_iterations=0, with_reverses=False, effectiveness_ratio=2.0, improve_threshold=1.0, verbose=True, plot_roc=True, write_roc=True, mark_training=False): ''' Generates a ROC curve from the database data in table by maximising the gradient of the ROC curve. It will combine different tests together and invert the results of tests if requested. costratio - two element iterable that defines how the ROC curve is developed. Higher numbers gives a ROC curve with lower false rates; the two elements allows control over the shape of the ROC curve near the start and end. E.g. [2.5, 1.0]. filter_on_wire_break_test - filter out the impact of XBT wire breaks from results. filter_from_file_spec - use specification from file to choose filtering. enforce_types_of_check - use specification from file on particular types of checks to use. n_profiles_to_analyse - restrict the number of profiles extracted from the database. n_combination_iterations - AND tests together; restricted to max of 2 as otherwise number of tests gets very large. with_reverses - if True, a copy of each test with inverted results is made. effectiveness_ratio - will give a warning if TPR / FPR is less than this value. improve_threshold - ignores tests if they do not results in a change in true positive rate (in %) of at least this amount. verbose - if True, will print a lot of messages to screen. plot_roc - if True, will save an image of the ROC to roc.png. write_roc - if True, will save the ROC data to roc.json. ''' # Read QC test specifications if required. groupdefinition = {} if filter_from_file_spec or enforce_types_of_check: groupdefinition = read_qc_groups() # Read data from database into a pandas data frame. df = dbutils.db_to_df(table = table, targetdb = targetdb, filter_on_wire_break_test = filter_on_wire_break_test, filter_on_tests = groupdefinition, n_to_extract = n_profiles_to_analyse, pad=2, XBTbelow=True) # Drop nondiscriminating tests nondiscrim = [] cols = list(df.columns) for c in cols: if len(pandas.unique(df[c])) == 1: nondiscrim.append(c) if verbose: print(c + ' is nondiscriminating and will be removed') cols = [t for t in cols if t not in nondiscrim] df = df[cols] print(list(df)) testNames = df.columns[2:].values.tolist() if verbose: print('Number of profiles is: ', len(df.index)) print('Number of quality checks to process is: ', len(testNames)) # mark chosen profiles as part of the training set all_uids = main.dbinteract('SELECT uid from ' + table + ';', targetdb=targetdb) if mark_training: for uid in all_uids: uid = uid[0] is_training = int(uid in df['uid'].astype(int).to_numpy()) query = "UPDATE " + table + " SET training=" + str(is_training) + " WHERE uid=" + str(uid) + ";" main.dbinteract(query, targetdb=targetdb) # Convert to numpy structures and make inverse versions of tests if required. # Any test with true positive rate of zero is discarded. truth = df['Truth'].to_numpy() tests = [] names = [] tprs = [] fprs = [] if with_reverses: reverselist = [False, True] else: reverselist = [False] for i, testname in enumerate(testNames): for reversal in reverselist: results = df[testname].to_numpy() != reversal tpr, fpr, fnr, tnr = main.calcRates(results, truth) if tpr > 0.0: tests.append(results) if reversal: addtext = 'r' else: addtext = '' names.append(addtext + testname) tprs.append(tpr) fprs.append(fpr) del df # No further need for the data frame. if verbose: print('Number of quality checks after adding reverses and removing zero TPR was: ', len(names)) # Create storage to hold the roc curve. cumulative = truth.copy() cumulative[:] = False currenttpr = 0.0 currentfpr = 0.0 r_fprs = [] # The false positive rate for each ROC point. r_tprs = [] # True positive rate for each ROC point. testcomb = [] # The QC test that was added at each ROC point. groupsel = [] # Set to True if the ROC point was from an enforced group. # Pre-select some tests if required. if enforce_types_of_check: if verbose: print('Enforcing types of checks') while len(groupdefinition['At least one from group']) > 0: bestchoice = '' bestgroup = '' bestdist = np.sqrt(100.0**2 + 100.0**2) besti = -1 for key in groupdefinition['At least one from group']: for testname in groupdefinition['At least one from group'][key]: # Need to check that the test exists - it may have been removed # if it was non-discriminating. if testname in names: for itest, name in enumerate(names): if name == testname: cumulativenew = np.logical_or(cumulative, tests[itest]) tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth) newdist = return_cost(costratio, tpr, fpr) print(' ', tpr, fpr, newdist, bestdist, testname) if newdist == bestdist: if verbose: print(' ' + bestchoice + ' and ' + testname + ' have the same results and the first is kept') elif newdist < bestdist: bestchoice = testname bestdist = newdist besti = itest bestgroup = key else: if verbose: print(' ' + testname + ' not found and so was skipped') if bestchoice == '': print('WARNING no suitable tests in group "' + key + '", skipping') del groupdefinition['At least one from group'][key] else: if verbose: print(' ' + bestchoice + ' was selected from group ' + bestgroup) if fprs[besti] > 0: if tprs[besti] / fprs[besti] < effectiveness_ratio: print('WARNING - ' + bestchoice + ' TPR / FPR is below the effectiveness ratio limit: ', tprs[besti] / fprs[besti], effectiveness_ratio) cumulative = np.logical_or(cumulative, tests[besti]) currenttpr, currentfpr, fnr, tnr = main.calcRates(cumulative, truth) testcomb.append(names[besti]) r_fprs.append(currentfpr) r_tprs.append(currenttpr) groupsel.append(True) # Once a test has been added, it can be deleted so that it is not considered again. del names[besti] del tests[besti] del fprs[besti] del tprs[besti] del groupdefinition['At least one from group'][bestgroup] print('ROC point from enforced group: ', currenttpr, currentfpr, testcomb[-1], bestgroup) # Make combinations of the single checks and store. assert n_combination_iterations <= 2, 'Setting n_combination_iterations > 2 results in a very large number of combinations' if verbose: print('Starting construction of combinations with number of iterations: ', n_combination_iterations) for its in range(n_combination_iterations): ntests = len(names) for i in range(ntests - 1): if verbose: print('Processing iteration ', its + 1, ' out of ', n_combination_iterations, ' step ', i + 1, ' out of ', ntests - 1, ' with number of tests now ', len(names)) for j in range(i + 1, ntests): # Create the name for this combination. newname = ('&').join(sorted((names[i] + '&' + names[j]).split('&'))) if newname in names: continue # Do not keep multiple copies of the same combination. results = np.logical_and(tests[i], tests[j]) tpr, fpr, fnr, tnr = main.calcRates(results, truth) if tpr > 0.0: tests.append(results) tprs.append(tpr) fprs.append(fpr) names.append(newname) if verbose: print('Completed generation of tests, now constructing roc from number of tests: ', len(names)) # Create roc. used = np.zeros(len(names), dtype=bool) overallbest = return_cost(costratio, tpr, fpr) keepgoing = True while keepgoing: keepgoing = False besti = -1 bestcost = overallbest bestncomb = 100000 bestdtpr = 0 bestdfpr = 100000 for i in range(len(names)): if used[i]: continue cumulativenew = np.logical_or(cumulative, tests[i]) tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth) dtpr = tpr - currenttpr dfpr = fpr - currentfpr newcost = return_cost(costratio, tpr, fpr) newbest = False if newcost <= bestcost and dtpr >= improve_threshold and dtpr > 0.0: # If cost is better than found previously, use it else if it is # the same then decide if to use it or not. if newcost < bestcost: newbest = True elif dtpr >= bestdtpr: if dtpr > bestdtpr: newbest = True elif len(names[i].split('&')) < bestncomb: newbest = True if newbest: besti = i bestcost = newcost bestncomb = len(names[i].split('&')) bestdtpr = dtpr bestdfpr = dfpr if besti >= 0: keepgoing = True used[besti] = True overallbest = bestcost cumulative = np.logical_or(cumulative, tests[besti]) currenttpr, currentfpr, fnr, tnr = main.calcRates(cumulative, truth) testcomb.append(names[besti]) r_fprs.append(currentfpr) r_tprs.append(currenttpr) groupsel.append(False) print('ROC point: ', currenttpr, currentfpr, names[besti], overallbest) if plot_roc: plt.plot(r_fprs, r_tprs, 'k') for i in range(len(r_fprs)): if groupsel[i]: colour = 'r' else: colour = 'b' plt.plot(r_fprs[i], r_tprs[i], colour + 'o') plt.xlim(0, 100) plt.ylim(0, 100) plt.xlabel('False positive rate (%)') plt.ylabel('True positive rate (%)') plt.savefig(plot_roc) plt.close() if write_roc: f = open(write_roc, 'w') r = {} r['tpr'] = r_tprs r['fpr'] = r_fprs r['tests'] = testcomb r['groupsel'] = groupsel json.dump(r, f) f.close() def find_roc_ordered(table, targetdb, costratio=[2.5, 1.0], n_profiles_to_analyse=np.iinfo(np.int32).max, improve_threshold=1.0, verbose=True, plot_roc=True, write_roc=True, levelbased=False, mark_training=False): ''' Finds optimal tests to include in a QC set. table - the database table to read; targetdb - the datable file; n_profiles_to_analyse - how many profiles to read from the database; improve_threshold - how much improvement in true positive rate is needed for a test to be accepted once all groups have been done; verbose - controls whether messages on progress are output; plot_roc - controls is a plot is generated; write_roc - controls whether a text file is generated; levelbased - controls whether the database is re-read on each iteration of the processing; if False then profiles are not considered again once an accepted test has flagged them; if True, the levels that are flagged are removed so other problems in the profile can be used to determine the best quality control checks to use. ''' # Check that the options make sense. if levelbased: assert mark_training == False, 'Cannot use mark_training with levelbased' # Define the order of tests. ordering = ['Location', 'Range', 'Climatology', 'Increasing depth', 'Constant values', 'Spike or step', 'Gradient', 'Density'] # Read QC test specifications. groupdefinition = read_qc_groups() # Create results list. qclist = [] keepgoing = True iit = 0 while keepgoing: if iit < len(ordering): grouptofind = ordering[iit] else: grouptofind = 'any' if verbose: print('-- Iteration ', iit + 1, ' to find test of type ', grouptofind) if (iit == 0) or levelbased: if verbose: print('---- Running database read') # Read data from database into a pandas data frame. df = dbutils.db_to_df(table = table, targetdb = targetdb, filter_on_wire_break_test = False, filter_on_tests = groupdefinition, n_to_extract = n_profiles_to_analyse, pad=2, XBTbelow=True) # mark chosen profiles as part of the training set if mark_training: all_uids = main.dbinteract('SELECT uid from ' + table + ';', targetdb=targetdb) for uid in all_uids: uid = uid[0] is_training = int(uid in df['uid'].astype(int).to_numpy()) query = "UPDATE " + table + " SET training=" + str(is_training) + " WHERE uid=" + str(uid) + ";" main.dbinteract(query, targetdb=targetdb) # Drop nondiscriminating tests i.e. those that flag all or none # of the profiles. nondiscrim = [] cols = list(df.columns) for c in cols: if len(pandas.unique(df[c])) == 1: nondiscrim.append(c) if verbose: print(c + ' is nondiscriminating and will be removed') cols = [t for t in cols if t not in nondiscrim] df = df[cols] testNames = df.columns[2:].values.tolist() # Convert to numpy structures and save copy if first iteration. truth = df['Truth'].to_numpy() tests = [] for i, tn in enumerate(testNames): results = df[tn].to_numpy() tests.append(results) cumulative = truth.copy() cumulative[:] = False if iit == 0: alltruth = df['Truth'].to_numpy() alltests = [] for i, tn in enumerate(testNames): results = df[tn].to_numpy() alltests.append(results) allnames = testNames.copy() del df # No further need for the data frame. # Try to select a QC check to add to the set. if verbose: print('---- Selecting the QC check') if grouptofind == 'any': testnamestosearch = testNames else: testnamestosearch = groupdefinition['At least one from group'][grouptofind] # Find the best choice from all the QC tests in this group. bestchoice = '' bestcost = return_cost(costratio, 0.0, 100.0) for tn in testnamestosearch: if tn in qclist: continue for itest, name in enumerate(testNames): if name == tn: cumulativenew = np.logical_or(cumulative, tests[itest]) tpr, fpr, fnr, tnr = main.calcRates(cumulativenew, truth) newcost = return_cost(costratio, tpr, fpr) if verbose: print(' ', tpr, fpr, newcost, bestcost, name) if newcost == bestcost: if verbose: print(' ' + bestchoice + ' and ' + name + ' have the same results and the first is kept') elif newcost < bestcost: bestchoice = name bestcost = newcost besti = itest besttpr = tpr # If selecting from any test, need to ensure that it is worth keeping. if grouptofind == 'any' and bestchoice != '': ctpr, cfpr, cfnr, ctnr = main.calcRates(cumulative, truth) currentcost = return_cost(costratio, ctpr, cfpr) if (currentcost < bestcost or (besttpr - ctpr) < improve_threshold): bestchoice = '' # Record the choice that is made. if bestchoice == '': if verbose: print('WARNING: no suitable tests in group "' + grouptofind + '", skipping') if grouptofind == 'any': if verbose: print('End of QC test selection') keepgoing = False else: if verbose: print(' ' + bestchoice + ' was selected from group ' + grouptofind) cumulative = np.logical_or(cumulative, tests[besti]) qclist.append(bestchoice) groupdefinition['Remove rejected levels'].append(bestchoice) # Increment iit to move on to the next group. iit += 1 # Create roc. cumulative = alltruth.copy() cumulative[:] = False r_fprs = [] r_tprs = [] for tn in qclist: found = False for itest, name in enumerate(allnames): if tn == name: cumulative = np.logical_or(cumulative, alltests[itest]) tpr, fpr, fnr, tnr = main.calcRates(cumulative, alltruth) r_fprs.append(fpr) r_tprs.append(tpr) print('ROC point: ', tpr, fpr, tn) found = True assert found, 'Error in constructing ROC' if plot_roc: plt.plot(r_fprs, r_tprs, 'k') for i in range(len(r_fprs)): colour = 'b' plt.plot(r_fprs[i], r_tprs[i], colour + 'o') plt.xlim(0, 100) plt.ylim(0, 100) plt.xlabel('False positive rate (%)') plt.ylabel('True positive rate (%)') plt.savefig(plot_roc) plt.close() if write_roc: f = open(write_roc, 'w') r = {} r['tpr'] = r_tprs r['fpr'] = r_fprs r['tests'] = qclist json.dump(r, f) f.close() if __name__ == '__main__': # parse options options, remainder = getopt.getopt(sys.argv[1:], 't:d:n:c:o:p:hslm') targetdb = 'iquod.db' dbtable = 'iquod' outfile = False plotfile = False samplesize = None costratio = [5.0, 5.0] ordered = False levelbased = False mark_training = False for opt, arg in options: if opt == '-d': dbtable = arg if opt == '-t': targetdb = arg if opt == '-n': samplesize = int(arg) if opt == '-c': costratio = ast.literal_eval(arg) if opt == '-o': outfile = arg if opt == '-p': plotfile = arg if opt == '-s': ordered = True if opt == '-l': levelbased = True if opt == '-m': mark_training = True if opt == '-h': print('usage:') print('-d <db table name to read from>') print('-t <name of db file>') print('-n <number of profiles to consider>') print('-c <cost ratio array>') print('-s Find QC tests in a predefined sequence') print('-l If -s, remove only QCed out levels not profiles on each step') print('-m If -m, profiles used to generate the ROC will be marked') print('-o <filename to write json results out to>') print('-p <filename to write roc plot out to>') print('-h print this help message and quit') if samplesize is None: print('please provide a sample size to consider with the -n flag') print('-h to print usage') if ordered: find_roc_ordered(table=dbtable, targetdb=targetdb, n_profiles_to_analyse=samplesize, costratio=costratio, plot_roc=plotfile, write_roc=outfile, levelbased=levelbased, mark_training=mark_training) else: find_roc(table=dbtable, targetdb=targetdb, n_profiles_to_analyse=samplesize, costratio=costratio, plot_roc=plotfile, write_roc=outfile, mark_training=mark_training)
mit
BhallaLab/moose-full
moose-examples/snippets/stimtable.py
2
3419
# stimtable.py --- # # Filename: stimtable.py # Description: # Author: Subhasis Ray # Maintainer: # Created: Wed May 8 18:51:07 2013 (+0530) # Version: # Last-Updated: Mon May 27 21:15:36 2013 (+0530) # By: subha # Update #: 124 # URL: # Keywords: # Compatibility: # # # Commentary: # # # # # Change log: # # # # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth # Floor, Boston, MA 02110-1301, USA. # # # Code: """Example of StimulusTable using Poisson random numbers. Creates a StimulusTable and assigns it signal representing events in a Poisson process. The output of the StimTable is sent to a DiffAmp object for buffering and then recorded in a regular table. """ import numpy as np from matplotlib import pyplot as plt import moose from moose import utils def stimulus_table_demo(): model = moose.Neutral('/model') data = moose.Neutral('/data') # This is the stimulus generator stimtable = moose.StimulusTable('/model/stim') recorded = moose.Table('/data/stim') moose.connect(recorded, 'requestOut', stimtable, 'getOutputValue') simtime = 100 simdt = 1e-3 # Inter-stimulus-intervals with rate=20/s rate = 20 np.random.seed(1) # ensure repeatability isi = np.random.exponential(rate, int(simtime/rate)) # The stimulus times are the cumulative sum of the inter-stimulus intervals. stimtimes = np.cumsum(isi) # Select only stimulus times that are within simulation time - # this may leave out some possible stimuli at the end, but the # exoected number of Poisson events within simtime is # simtime/rate. stimtimes = stimtimes[stimtimes < simtime] ts = np.arange(0, simtime, simdt) # Find the indices of table entries corresponding to time of stimulus stimidx = np.searchsorted(ts, stimtimes) stim = np.zeros(len(ts)) # Since linear interpolation is forced, we need at least three # consecutive entries to have same value to get correct # magnitude. And still we shall be off by at least one time step. indices = np.concatenate((stimidx-1, stimidx, stimidx+1)) stim[indices] = 1.0 stimtable.vector = stim stimtable.stepSize = 0 # This forces use of current time as x value for interpolation stimtable.stopTime = simtime moose.setClock(0, simdt) moose.useClock(0, '/model/##,/data/##', 'process') moose.reinit() moose.start(simtime) plt.plot(np.linspace(0, simtime, len(recorded.vector)), recorded.vector, 'r-+', label='generated stimulus') plt.plot(ts, stim, 'b-x', label='originally assigned values') plt.ylim((-1, 2)) plt.legend() plt.title('Exmaple of StimulusTable') plt.show() if __name__ == '__main__': stimulus_table_demo() # # stimtable.py ends here
gpl-2.0
fartashf/cleverhans
cleverhans_tutorials/mnist_tutorial_cw.py
2
9527
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from six.moves import xrange import tensorflow as tf from tensorflow.python.platform import flags import logging import os from cleverhans.attacks import CarliniWagnerL2 from cleverhans.utils import pair_visual, grid_visual, AccuracyReport from cleverhans.utils import set_log_level from cleverhans.utils_mnist import data_mnist from cleverhans.utils_tf import model_train, model_eval, tf_model_load from cleverhans_tutorials.tutorial_models import make_basic_cnn FLAGS = flags.FLAGS def mnist_tutorial_cw(train_start=0, train_end=60000, test_start=0, test_end=10000, viz_enabled=True, nb_epochs=6, batch_size=128, nb_classes=10, source_samples=10, learning_rate=0.001, attack_iterations=100, model_path=os.path.join("models", "mnist"), targeted=True): """ MNIST tutorial for Carlini and Wagner's attack :param train_start: index of first training set example :param train_end: index of last training set example :param test_start: index of first test set example :param test_end: index of last test set example :param viz_enabled: (boolean) activate plots of adversarial examples :param nb_epochs: number of epochs to train model :param batch_size: size of training batches :param nb_classes: number of output classes :param source_samples: number of test inputs to attack :param learning_rate: learning rate for training :param model_path: path to the model file :param targeted: should we run a targeted attack? or untargeted? :return: an AccuracyReport object """ # Object used to keep track of (and return) key accuracies report = AccuracyReport() # MNIST-specific dimensions img_rows = 28 img_cols = 28 channels = 1 # Set TF random seed to improve reproducibility tf.set_random_seed(1234) # Create TF session sess = tf.Session() print("Created TensorFlow session.") set_log_level(logging.DEBUG) # Get MNIST test data X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end) # Define input TF placeholder x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels)) y = tf.placeholder(tf.float32, shape=(None, nb_classes)) # Define TF model graph model = make_basic_cnn() preds = model(x) print("Defined TensorFlow model graph.") ########################################################################### # Training the model using TensorFlow ########################################################################### # Train an MNIST model train_params = { 'nb_epochs': nb_epochs, 'batch_size': batch_size, 'learning_rate': learning_rate, 'train_dir': os.path.join(*os.path.split(model_path)[:-1]), 'filename': os.path.split(model_path)[-1] } rng = np.random.RandomState([2017, 8, 30]) # check if we've trained before, and if we have, use that pre-trained model if os.path.exists(model_path + ".meta"): tf_model_load(sess, model_path) else: model_train(sess, x, y, preds, X_train, Y_train, args=train_params, save=os.path.exists("models"), rng=rng) # Evaluate the accuracy of the MNIST model on legitimate test examples eval_params = {'batch_size': batch_size} accuracy = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params) assert X_test.shape[0] == test_end - test_start, X_test.shape print('Test accuracy on legitimate test examples: {0}'.format(accuracy)) report.clean_train_clean_eval = accuracy ########################################################################### # Craft adversarial examples using Carlini and Wagner's approach ########################################################################### nb_adv_per_sample = str(nb_classes - 1) if targeted else '1' print('Crafting ' + str(source_samples) + ' * ' + nb_adv_per_sample + ' adversarial examples') print("This could take some time ...") # Instantiate a CW attack object cw = CarliniWagnerL2(model, back='tf', sess=sess) if viz_enabled: assert source_samples == nb_classes idxs = [np.where(np.argmax(Y_test, axis=1) == i)[0][0] for i in range(nb_classes)] if targeted: if viz_enabled: # Initialize our array for grid visualization grid_shape = (nb_classes, nb_classes, img_rows, img_cols, channels) grid_viz_data = np.zeros(grid_shape, dtype='f') adv_inputs = np.array( [[instance] * nb_classes for instance in X_test[idxs]], dtype=np.float32) else: adv_inputs = np.array( [[instance] * nb_classes for instance in X_test[:source_samples]], dtype=np.float32) one_hot = np.zeros((nb_classes, nb_classes)) one_hot[np.arange(nb_classes), np.arange(nb_classes)] = 1 adv_inputs = adv_inputs.reshape( (source_samples * nb_classes, img_rows, img_cols, 1)) adv_ys = np.array([one_hot] * source_samples, dtype=np.float32).reshape((source_samples * nb_classes, nb_classes)) yname = "y_target" else: if viz_enabled: # Initialize our array for grid visualization grid_shape = (nb_classes, 2, img_rows, img_cols, channels) grid_viz_data = np.zeros(grid_shape, dtype='f') adv_inputs = X_test[idxs] else: adv_inputs = X_test[:source_samples] adv_ys = None yname = "y" cw_params = {'binary_search_steps': 1, yname: adv_ys, 'max_iterations': attack_iterations, 'learning_rate': 0.1, 'batch_size': source_samples * nb_classes if targeted else source_samples, 'initial_const': 10} adv = cw.generate_np(adv_inputs, **cw_params) eval_params = {'batch_size': np.minimum(nb_classes, source_samples)} if targeted: adv_accuracy = model_eval( sess, x, y, preds, adv, adv_ys, args=eval_params) else: if viz_enabled: adv_accuracy = 1 - \ model_eval(sess, x, y, preds, adv, Y_test[ idxs], args=eval_params) else: adv_accuracy = 1 - \ model_eval(sess, x, y, preds, adv, Y_test[ :source_samples], args=eval_params) if viz_enabled: for j in range(nb_classes): if targeted: for i in range(nb_classes): grid_viz_data[i, j] = adv[i * nb_classes + j] else: grid_viz_data[j, 0] = adv_inputs[j] grid_viz_data[j, 1] = adv[j] print(grid_viz_data.shape) print('--------------------------------------') # Compute the number of adversarial examples that were successfully found print('Avg. rate of successful adv. examples {0:.4f}'.format(adv_accuracy)) report.clean_train_adv_eval = 1. - adv_accuracy # Compute the average distortion introduced by the algorithm percent_perturbed = np.mean(np.sum((adv - adv_inputs)**2, axis=(1, 2, 3))**.5) print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed)) # Close TF session sess.close() # Finally, block & display a grid of all the adversarial examples if viz_enabled: import matplotlib.pyplot as plt _ = grid_visual(grid_viz_data) return report def main(argv=None): mnist_tutorial_cw(viz_enabled=FLAGS.viz_enabled, nb_epochs=FLAGS.nb_epochs, batch_size=FLAGS.batch_size, nb_classes=FLAGS.nb_classes, source_samples=FLAGS.source_samples, learning_rate=FLAGS.learning_rate, attack_iterations=FLAGS.attack_iterations, model_path=FLAGS.model_path, targeted=FLAGS.targeted) if __name__ == '__main__': flags.DEFINE_boolean('viz_enabled', True, 'Visualize adversarial ex.') flags.DEFINE_integer('nb_epochs', 6, 'Number of epochs to train model') flags.DEFINE_integer('batch_size', 128, 'Size of training batches') flags.DEFINE_integer('nb_classes', 10, 'Number of output classes') flags.DEFINE_integer('source_samples', 10, 'Nb of test inputs to attack') flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training') flags.DEFINE_string('model_path', os.path.join("models", "mnist"), 'Path to save or load the model file') flags.DEFINE_boolean('attack_iterations', 100, 'Number of iterations to run attack; 1000 is good') flags.DEFINE_boolean('targeted', True, 'Run the tutorial in targeted mode?') tf.app.run()
mit
TomAugspurger/pandas
pandas/tests/indexes/categorical/test_constructors.py
3
5372
import numpy as np import pytest from pandas import Categorical, CategoricalDtype, CategoricalIndex, Index import pandas._testing as tm class TestCategoricalIndexConstructors: def test_construction(self): ci = CategoricalIndex(list("aabbca"), categories=list("abcd"), ordered=False) categories = ci.categories result = Index(ci) tm.assert_index_equal(result, ci, exact=True) assert not result.ordered result = Index(ci.values) tm.assert_index_equal(result, ci, exact=True) assert not result.ordered # empty result = CategoricalIndex(categories=categories) tm.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal(result.codes, np.array([], dtype="int8")) assert not result.ordered # passing categories result = CategoricalIndex(list("aabbca"), categories=categories) tm.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8") ) c = Categorical(list("aabbca")) result = CategoricalIndex(c) tm.assert_index_equal(result.categories, Index(list("abc"))) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8") ) assert not result.ordered result = CategoricalIndex(c, categories=categories) tm.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8") ) assert not result.ordered ci = CategoricalIndex(c, categories=list("abcd")) result = CategoricalIndex(ci) tm.assert_index_equal(result.categories, Index(categories)) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, 2, 0], dtype="int8") ) assert not result.ordered result = CategoricalIndex(ci, categories=list("ab")) tm.assert_index_equal(result.categories, Index(list("ab"))) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, -1, 0], dtype="int8") ) assert not result.ordered result = CategoricalIndex(ci, categories=list("ab"), ordered=True) tm.assert_index_equal(result.categories, Index(list("ab"))) tm.assert_numpy_array_equal( result.codes, np.array([0, 0, 1, 1, -1, 0], dtype="int8") ) assert result.ordered result = CategoricalIndex(ci, categories=list("ab"), ordered=True) expected = CategoricalIndex( ci, categories=list("ab"), ordered=True, dtype="category" ) tm.assert_index_equal(result, expected, exact=True) # turn me to an Index result = Index(np.array(ci)) assert isinstance(result, Index) assert not isinstance(result, CategoricalIndex) def test_construction_with_dtype(self): # specify dtype ci = CategoricalIndex(list("aabbca"), categories=list("abc"), ordered=False) result = Index(np.array(ci), dtype="category") tm.assert_index_equal(result, ci, exact=True) result = Index(np.array(ci).tolist(), dtype="category") tm.assert_index_equal(result, ci, exact=True) # these are generally only equal when the categories are reordered ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False) result = Index(np.array(ci), dtype="category").reorder_categories(ci.categories) tm.assert_index_equal(result, ci, exact=True) # make sure indexes are handled expected = CategoricalIndex([0, 1, 2], categories=[0, 1, 2], ordered=True) idx = Index(range(3)) result = CategoricalIndex(idx, categories=idx, ordered=True) tm.assert_index_equal(result, expected, exact=True) def test_construction_empty_with_bool_categories(self): # see GH#22702 cat = CategoricalIndex([], categories=[True, False]) categories = sorted(cat.categories.tolist()) assert categories == [False, True] def test_construction_with_categorical_dtype(self): # construction with CategoricalDtype # GH#18109 data, cats, ordered = "a a b b".split(), "c b a".split(), True dtype = CategoricalDtype(categories=cats, ordered=ordered) result = CategoricalIndex(data, dtype=dtype) expected = CategoricalIndex(data, categories=cats, ordered=ordered) tm.assert_index_equal(result, expected, exact=True) # GH#19032 result = Index(data, dtype=dtype) tm.assert_index_equal(result, expected, exact=True) # error when combining categories/ordered and dtype kwargs msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalIndex(data, categories=cats, dtype=dtype) with pytest.raises(ValueError, match=msg): Index(data, categories=cats, dtype=dtype) with pytest.raises(ValueError, match=msg): CategoricalIndex(data, ordered=ordered, dtype=dtype) with pytest.raises(ValueError, match=msg): Index(data, ordered=ordered, dtype=dtype)
bsd-3-clause
NunoEdgarGub1/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
yt-project/unyt
unyt/__init__.py
1
4014
""" The unyt package. Note that the symbols defined in :mod:`unyt.physical_constants` and :mod:`unyt.unit_symbols` are importable from this module. For example:: >>> from unyt import km, clight >>> print((km/clight).to('ns')) 3335.64095198152 ns In addition, the following functions and classes are importable from the top-level ``unyt`` namespace: * :func:`unyt.array.loadtxt` * :func:`unyt.array.savetxt` * :func:`unyt.test` * :func:`unyt.array.uconcatenate` * :func:`unyt.array.ucross` * :func:`unyt.array.udot` * :func:`unyt.array.uhstack` * :func:`unyt.array.uintersect1d` * :func:`unyt.array.unorm` * :func:`unyt.array.ustack` * :func:`unyt.array.uunion1d` * :func:`unyt.array.uvstack` * :class:`unyt.array.unyt_array` * :class:`unyt.array.unyt_quantity` * :func:`unyt.unit_object.define_unit` * :class:`unyt.unit_object.Unit` * :class:`unyt.unit_registry.UnitRegistry` * :class:`unyt.unit_systems.UnitSystem` * :func:`unyt.testing.assert_allclose_units` * :func:`unyt.array.allclose_units` * :func:`unyt.dimensions.accepts` * :func:`unyt.dimensions.returns` """ # ----------------------------------------------------------------------------- # Copyright (c) 2018, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the LICENSE file, distributed with this software. # ----------------------------------------------------------------------------- try: import numpy as np try: from pkg_resources import parse_version npv = np.__version__ if parse_version(npv) < parse_version("1.13.0"): # pragma: no cover raise RuntimeError( "The unyt package requires NumPy 1.13 or newer but NumPy %s " "is installed" % npv ) del parse_version, npv except ImportError: # pragma: no cover # setuptools isn't installed so we don't try to check version numbers pass del np except ImportError: # pragma: no cover raise RuntimeError("The unyt package requires numpy but numpy is not installed.") try: import sympy del sympy except ImportError: # pragma: no cover raise RuntimeError("The unyt package requires sympy but sympy is not installed.") from ._version import get_versions from unyt import unit_symbols from unyt import physical_constants from unyt.array import ( # NOQA: F401 loadtxt, savetxt, uconcatenate, ucross, udot, uhstack, uintersect1d, unorm, ustack, uunion1d, uvstack, unyt_array, unyt_quantity, allclose_units, ) from unyt.unit_object import Unit, define_unit # NOQA: F401 from unyt.unit_registry import UnitRegistry # NOQA: F401 from unyt.unit_systems import UnitSystem # NOQA: F401 from unyt.testing import assert_allclose_units # NOQA: F401 from unyt.dimensions import accepts, returns # NOQA: F401 try: from unyt.mpl_interface import matplotlib_support # NOQA: F401 except ImportError: pass else: matplotlib_support = matplotlib_support() # function to only import quantities into this namespace # we go through the trouble of doing this instead of "import *" # to avoid including extraneous variables (e.g. floating point # constants used to *construct* a physical constant) in this namespace def import_units(module, namespace): """Import Unit objects from a module into a namespace""" for key, value in module.__dict__.items(): if isinstance(value, (unyt_quantity, Unit)): namespace[key] = value import_units(unit_symbols, globals()) import_units(physical_constants, globals()) del import_units __version__ = get_versions()["version"] del get_versions def test(): # pragma: no cover """Execute the unit tests on an installed copy of unyt. Note that this function requires pytest to run. If pytest is not installed this function will raise ImportError. """ import pytest import os pytest.main([os.path.dirname(os.path.abspath(__file__))])
bsd-3-clause
heli522/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
GarmanGroup/RABDAM
tests/test_bnet_calculation.py
1
8856
# RABDAM # Copyright (C) 2020 Garman Group, University of Oxford # This file is part of RABDAM. # RABDAM is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # RABDAM is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # You should have received a copy of the GNU Lesser General # Public License along with this program. If not, see # <http://www.gnu.org/licenses/>. # An outer layer to the pipeline scripts. Depending upon the flags specified # in the command line input, this script will run either the complete / a # subsection of the pipeline. # python -m unittest tests/test_bnet_calculation.py import os import unittest from rabdam.Subroutines.CalculateBDamage import rabdam class TestClass(unittest.TestCase): def test_bnet_values(self): """ Checks that RABDAM calculates expected Bnet values for a selection of PDB entries """ import os import requests import shutil import pandas as pd exp_bnet_dict = {'2O2X': 3.300580966, '4EZF': 3.193514624, '4MWU': 3.185476349, '4MOV': 3.144130191, '3NBM': 3.141821366, '1GW1': 3.105626889, '4EWE': 3.08241654, '3F1P': 3.060628186, '3IV0': 3.054440912, '4ZWV': 3.017330004, '1T2I': 3.004830448, '3LX3': 2.962424378, '5P4N': 2.916582486, '5MAA': 2.91219352, '1E73': 2.850203561, '1YKI': 2.797739814, '4WA4': 2.720540993, '3V2J': 2.669599635, '3CUI': 2.666605946, '4XLA': 2.624366813, '4DUK': 2.854175949, '3V38': 2.500984382, '1VJF': 2.496374854, '5IO2': 2.467587911, '5CM7': 2.44869046, '2EHU': 2.448290431, '5JOW': 2.439619791, '2C54': 2.379224017, '4GZK': 2.349526276, '2NUM': 2.326904729, '5FYO': 2.319618192, '4ODK': 2.304354685, '6EV4': 2.302433369, '5P5U': 2.288966997, '3VHV': 2.285877338, '4JCK': 2.27150332, '5EKM': 2.258574341, '3H4O': 2.231817033, '5JIG': 2.247664542, '2H5S': 2.206850226, '4M5I': 2.169405117, '1Y59': 2.138787261, '4C45': 2.131256276, '5F90': 2.11287042, '4NI3': 2.088735516, '4Z6N': 2.083743584, '5M2G': 2.06566475, '5ER6': 2.05707889, '4R0X': 2.006996308, '5LLG': 1.981501196, '1FCX': 1.976990791, '5M90': 1.96542442, '3NJK': 1.955577757, '5CWG': 1.949818624, '2P7O': 1.921138477, '5SZC': 1.962633169, '2I0K': 1.901555841, '4RDK': 1.886900766, '5MA0': 1.877853781, '4C1E': 1.877575448, '5EJ3': 1.875439995, '2WUG': 1.87334953, '4MPY': 1.842338963, '4OTZ': 1.835716553, '4IOO': 1.828349113, '4Z6O': 1.800528596, '4ZOT': 1.799163077, '5PHB': 1.783879628, '3UJC': 1.747894856, '4FR8': 1.738876799, '5PH8': 1.736825591, '5UPM': 1.736663507, '3MWX': 1.733132746, '4KDX': 1.729650659, '3WH5': 1.717975404, '4P04': 1.714107945, '5Y90': 1.695283923, '4H31': 1.674014779, '5HJE': 1.662869176, '4YKK': 1.653894709, '1Q0F': 1.646880018, '5JP6': 1.629246723, '1X7Y': 1.618817315, '4ZC8': 1.60606196, '5EPE': 1.604407869, '4ZS9': 1.582398487, '5VNX': 1.543824945, '5IHV': 1.542271159, '5J90': 1.526469901, '4K6W': 1.520316883, '3PBC': 1.512738972, '5CMB': 1.504620762, '4PSC': 1.491796934, '5UPN': 1.477252783, '4XLZ': 1.473298738, '4XGY': 1.465885549, '5M4G': 1.400219288, '3A54': 1.319587779} if not os.path.isdir('tests/temp_files/'): os.mkdir('tests/temp_files/') for code, exp_bnet in exp_bnet_dict.items(): # Checks cif file cif_text = requests.get('https://files.rcsb.org/view/%s.cif' % code) with open('tests/temp_files/%s.cif' % code, 'w') as f: f.write(cif_text.text) rabdam_run = rabdam( pathToInput='%s/tests/temp_files/%s.cif' % (os.getcwd(), code), outputDir='%s/tests/temp_files/' % os.getcwd(), batchRun=True, overwrite=True, PDT=7, windowSize=0.02, protOrNA='protein', HETATM=False, removeAtoms=[], addAtoms=[], highlightAtoms=[], createOrigpdb=False, createAUpdb=False, createUCpdb=False, createAUCpdb=False, createTApdb=False ) rabdam_run.rabdam_dataframe(test=True) rabdam_run.rabdam_analysis( output_options=['csv', 'pdb', 'cif', 'kde', 'bnet', 'summary'] ) bnet_df = pd.read_pickle('tests/temp_files/Logfiles/Bnet_protein.pkl') act_bnet_cif = bnet_df['Bnet'].tolist()[-1] self.assertEqual(round(exp_bnet, 7), round(act_bnet_cif, 7)) os.remove('tests/temp_files/%s.cif' % code) os.remove('tests/temp_files/Logfiles/Bnet_protein.pkl') # Checks PDB file pdb_text = requests.get('https://files.rcsb.org/view/%s.pdb' % code) with open('tests/temp_files/%s.pdb' % code, 'w') as f: f.write(pdb_text.text) rabdam_run = rabdam( pathToInput='%s/tests/temp_files/%s.pdb' % (os.getcwd(), code), outputDir='%s/tests/temp_files/' % os.getcwd(), batchRun=True, overwrite=True, PDT=7, windowSize=0.02, protOrNA='protein', HETATM=False, removeAtoms=[], addAtoms=[], highlightAtoms=[], createOrigpdb=False, createAUpdb=False, createUCpdb=False, createAUCpdb=False, createTApdb=False ) rabdam_run.rabdam_dataframe(test=True) rabdam_run.rabdam_analysis( output_options=['csv', 'pdb', 'cif', 'kde', 'bnet', 'summary'] ) bnet_df = pd.read_pickle( '%s/tests/temp_files/Logfiles/Bnet_protein.pkl' % os.getcwd() ) act_bnet_pdb = bnet_df['Bnet'].tolist()[-1] self.assertEqual(round(exp_bnet, 7), round(act_bnet_pdb, 7)) os.remove('tests/temp_files/%s.pdb' % code) os.remove('tests/temp_files/Logfiles/Bnet_protein.pkl') shutil.rmtree('tests/temp_files/')
lgpl-3.0
saketkc/hatex
2019_Spring/CSCI-572/HW05/CSCI572_HW5/dash_app.py
1
4154
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import dash_table as dt import solr import pandas as pd CRAWL_DATA_DIR = "/media/rna/yahoo_crawl_data/Yahoo-20190406T235503Z-001/Yahoo/yahoo" CRAWL_CSV_MAP = "/media/rna/yahoo_crawl_data/Yahoo-20190406T235503Z-001/Yahoo/URLtoHTML_yahoo_news.csv" SOLR_CONNECTION_URL = "http://nucleus.usc.edu:8983/solr/myexample" FILENAME_TO_URL_DF = pd.read_csv(CRAWL_CSV_MAP) COLUMNS = ["Title", "URL", "ID", "Description"] SOLR = solr.SolrConnection(SOLR_CONNECTION_URL) external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] def Table(dataframe): rows = [] for i in range(len(dataframe)): row = [] for col in dataframe.columns: value = dataframe.iloc[i][col] # update this depending on which # columns you want to show links for # and what you want those links to be if col == "URL" or col == "Title": cell = html.Td(html.A(href=value, children=value)) else: cell = html.Td(children=value) row.append(cell) rows.append(html.Tr(row)) return html.Table( # Header [html.Tr([html.Th(col) for col in dataframe.columns])] + rows ) # app = dash.Dash() app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.css.append_css({"external_url": "https://codepen.io/chriddyp/pen/dZVMbK.css"}) app.layout = html.Div( children=[ html.H1(children="Yahoo Solr Client"), # html.Div( # children=""" # Yahoo Solr Client. # """ # ), html.Label("Search term: "), dcc.Input(id="search-term", value="", type="text"), dcc.Dropdown( id="search-option", options=[ {"label": "Lucene (Solr Default)", "value": "solr"}, {"label": "PageRank", "value": "pageRank"}, ], value="solr", style={"width": "50%", "font-family": "Droid Serif"}, ), html.Button(id="submit", type="submit", children="Submit", n_clicks=0), html.Div(id="results"), ] ) def write_search_results( table, search_term, search_option="solr", path="/media/dna/github/hatex/2019_Spring/CSCI-572/HW04/search_results", ): table[["URL"]].to_csv( "{}/{}.{}.tsv".format(path, search_term, search_option), index=False, header=True, ) @app.callback( Output(component_id="results", component_property="children"), [ Input("search-term", "value"), Input("search-option", "value"), Input("submit", "n_clicks"), ], ) def update_output_div(search_term, search_option, n_clicks): if search_option == "solr": response = SOLR.query(search_term) else: response = SOLR.query(search_term.strip(), sort="pageRankFile desc") data = [] for hit in response.results: filename = hit["id"].replace(CRAWL_DATA_DIR, "")[1:] url = FILENAME_TO_URL_DF[FILENAME_TO_URL_DF.filename == filename].URL.iloc[0] url_text = url # "<a href='{0}'>{0}</a>".format(url) try: description = hit["description"] except KeyError: description = "" record = { "Title": hit["title"], "ID": hit["id"], "Description": description, "URL": url_text, } data.append(record) table = dt.DataTable( columns=[{"name": column, "id": column} for column in COLUMNS], id="results-table", data=data, style_data={"whiteSpace": "normal"}, css=[ { "selector": ".dash-cell div.dash-cell-value", "rule": "display: inline; white-space: inherit; overflow: inherit; text-overflow: inherit;", } ], ) df = pd.DataFrame(data) write_search_results(df, search_term, search_option) return Table(df) if __name__ == "__main__": app.run_server(host="nucleus.usc.edu", debug=True)
mit
Takonan/csc411_a3
utils.py
1
30931
from scipy.io import loadmat from scipy import signal import numpy as np import matplotlib.pyplot as plt import theano import yaml from keras.models import * def remove_mean(inputs): """ Remove the mean of each individual images. Assumes that the inputs is Nx1xRxC, where N is number of examples, and R,C is dimension of image """ # Flatten inputs = np.reshape(inputs, (inputs.shape[0], inputs.shape[1]*inputs.shape[2]*inputs.shape[3])) inputs_mean = inputs.mean(axis=1) # Average for each row. Dimension = N rows inputs_mean = inputs_mean.reshape(inputs_mean.shape[0], 1) # Make inputs_mean Nx1 inputs_mean = np.tile(inputs_mean, inputs.shape[1]) # Make inputs_mean NxD inputs -= inputs_mean inputs = np.reshape(inputs, (inputs.shape[0], 1,32,32)) return inputs def zca_whitening(inputs, epsilon=0.1): """ Assumes that the inputs is a Nx1xRxC, where N is number of examples, and R,C is dimension of image epsilon is Whitening constant, it prevents division by zero. Output: ZCAMatrix. Multiply this with the inputs (shape(1,dimension)) Based on: http://ufldl.stanford.edu/wiki/index.php/Implementing_PCA/Whitening http://stackoverflow.com/questions/31528800/how-to-implement-zca-whitening-python """ inputs = np.reshape(inputs, (inputs.shape[0], inputs.shape[1]*inputs.shape[2]*inputs.shape[3])) sigma = np.dot(inputs.T, inputs)/inputs.shape[0] #Correlation matrix U,S,V = np.linalg.svd(sigma) #Singular Value Decomposition # print sigma.shape # print U.shape # print S.shape # print V.shape # print np.diag(1.0/np.sqrt(S + epsilon)).shape ZCAMatrix = np.dot(np.dot(U, np.diag(1.0/np.sqrt(S + epsilon))), U.T) #ZCA Whitening matrix return ZCAMatrix #Data whitening def preprocess_images(inputs): """ Assumes input is a N X D (ex N x 1024) array of image data. Applies: - Reshape for CNN (N X 1 X 32 x 32) - Convert to FloatX - Normalizing to 0-1 range (/255) - Remove mean for each example Returns a N X 1 X 32 X 32 array """ inputs = inputs.reshape(inputs.shape[0], 1, 32,32) # For CNN model inputs = inputs.astype(theano.config.floatX) print "Normalizing to 0-1 range for input..." inputs /= 255 print "Removing mean for each example in input..." inputs = remove_mean(inputs) return inputs def save_output_csv(filename, pred): """Save the prediction in a filename.""" with open(filename, 'w') as f_result: f_result.write('Id,Prediction\n') for i, y in enumerate(pred, 1): f_result.write('{},{}\n'.format(i,y)) num_entries = 1253 for i in range(len(pred)+1, num_entries+1): f_result.write('{},{}\n'.format(i,0)) return def region_std(source,rec_size): # Compute the standard deviation in the 2*rec_size + 1 x 2*rec_size+1 square around each pixel row, col = source.shape output = np.zeros(source.shape) for r in range(row): for c in range(col): output[r,c] = np.std(source[max(0,r-rec_size):min(row,r+rec_size+1),max(0,c-rec_size):min(col,c+rec_size+1)]) return output def ShowMeans(means): """Show the cluster centers as images.""" plt.figure() # HC: Removed '1' inside figure so it creates a new figure each time. plt.clf() for i in xrange(means.shape[0]): plt.subplot(1, means.shape[0], i+1) plt.imshow(means[i,0,:,:], cmap=plt.cm.gray) plt.draw() plt.show() # HC: Added show line # raw_input('Press Enter.') def load_public_test(): """ Loads the labeled data images, targets, and identities (sorted). """ # Load the public test set data = loadmat('public_test_images.mat') images = data['public_test_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 # Load the hidden test set data = loadmat('hidden_test_images.mat') # Append the hidden test set to the public test set images = np.append(images, data['hidden_test_images'].T, axis=0) inputs = np.transpose(images, (0, 2, 1)) inputs = inputs[:, :, ::-1] inputs = inputs.reshape(images.shape[0], images.shape[1]*images.shape[2]) return inputs def load_data_with_identity(include_mirror=False): """ Loads the labeled data images, targets, and identities (sorted). """ data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] targets = targets_sort[:,0] # Sort the images temp = np.append(images,identities,1) inputs_sort = temp[temp[:,-1].argsort()] inputs = inputs_sort[:,0:-1] # Return sorted identities: identities = inputs_sort[:,-1] return inputs, targets, identities def load_data_with_identity_uniform(include_mirror=False): """ Loads the labeled data images, targets, and identities (sorted). Makes sure that the number of examples for each label is somewhat similar by deleting 4's and 7's target examples before returning. Keeps the first ~315 examples. """ data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Get the images into the desired form: num_examples x 32 x 32 (and face is rotated in proper orientation) images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # Sort the array based on the tr_labels # Sort the identities temp = np.append(identities,targets,1) identities_sort = temp[temp[:,1].argsort()] identities = identities_sort[:,0] # Sort the images temp = np.append(images,targets,1) images_sort = temp[temp[:,-1].argsort()] images = images_sort[:,0:-1] # Return sorted targets: targets = images_sort[:,-1] # Throw away some of the ones where the labels are 4 and 7 indices_4 = np.where(targets == 4) # Index values where targets[indices_4] == 4 start_index = 316 # Start index of where to delete the 4's end_index = indices_4[0][-1] + 1 targets = np.delete(targets, indices_4[0][start_index:end_index]) images = np.delete(images, indices_4[0][start_index:end_index], axis=0) # Delete the rows specified by indices_4[0][start:end] identities = np.delete(identities, indices_4[0][start_index:end_index]) # Throw away some of the 7's indices_7 = np.where(targets == 7) # Index values where targets[indices_4] == 4 start_index = 316 # Start index of where to delete the 4's end_index = indices_7[0][-1] + 1 targets = np.delete(targets, indices_7[0][start_index:end_index]) images = np.delete(images, indices_7[0][start_index:end_index], axis=0) identities = np.delete(identities, indices_7[0][start_index:end_index]) print "Images shape: ", images.shape print "Targets shape: ", targets.shape print "identities shape: ", identities.shape # Generate a mirrored version if necessary: if include_mirror: # Unflatten the images images = images.reshape(images.shape[0], 32, 32) # Created mirrored instances mirrored_faces = images[:,:,::-1] images = np.append(images, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) return images, targets, identities def reload_data_with_identity_normalized(): """ Reloads the normalized data. Include mirror. """ inputs = np.load('labeled_inputs_normalized.npy') targets = np.load('labeled_targets_normalized.npy') identities = np.load('labeled_identities_normalized.npy') return inputs, targets, identities def load_data_with_identity_normalized(include_mirror=False): """ Loads the labeled data images, targets, and identities (sorted) and normalize the intensities of each image. """ data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Preprocess the data to normalize intensities for i in range(images.shape[0]): filt = np.array([[1,2,1],[2,4,2],[1,2,1]]) gaussian = filt.astype(float)/filt.sum() gaussian_filter = signal.convolve2d(images[i,:,:], gaussian, boundary='symm', mode='same') std_filter = region_std(images[i,:,:],1) final = (images[i,:,:] - gaussian_filter).astype(float)/std_filter final = (((final/np.amax(final))+1)*128).astype(int) images[i,:,:] = final[:,:] print 'Done image ', i # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] targets = targets_sort[:,0] # Sort the images temp = np.append(images,identities,1) inputs_sort = temp[temp[:,-1].argsort()] inputs = inputs_sort[:,0:-1] # Return sorted identities: identities = inputs_sort[:,-1] outfile = open('labeled_inputs_normalized.npy','w') np.save(outfile,inputs) outfile.close() outfile = open('labeled_targets_normalized.npy','w') np.save(outfile,targets) outfile.close() outfile = open('labeled_identities_normalized.npy','w') np.save(outfile,identities) outfile.close() return inputs, targets, identities def load_data(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) valid_targets = targets_sort[0:num_unlabeled,0] train_targets = targets_sort[(num_unlabeled + 1):,0] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] valid_inputs = images_sort[0:num_unlabeled,0:-1] # Tested that the -1 omits the identity last column train_inputs = images_sort[(num_unlabeled + 1):,0:-1] return train_inputs, train_targets, valid_inputs, valid_targets def load_data_with_test(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # # Sort the array based on the tr_identities # # Sort the targets # temp = np.append(targets,identities,1) # targets_sort = temp[temp[:,1].argsort()] # num_unlabeled = sum(targets_sort[:,1] == -1) # valid_targets = targets_sort[0:num_unlabeled,0] # test_targets = targets_sort[(num_unlabeled + 1):2*num_unlabeled,0] # train_targets = targets_sort[(2*num_unlabeled + 1):,0] # # Sort the images # temp = np.append(images,identities,1) # images_sort = temp[temp[:,-1].argsort()] # valid_inputs = images_sort[0:num_unlabeled,0:-1] # Tested that the -1 omits the identity last column # test_inputs = images_sort[(num_unlabeled + 1):2*num_unlabeled,0:-1] # train_inputs = images_sort[(2*num_unlabeled + 1):,0:-1] # DEBUG: Only use half of the unlabeled identity for validation # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) valid_targets = targets_sort[0:num_unlabeled/2,0] test_targets = targets_sort[(num_unlabeled/2 + 1):num_unlabeled,0] train_targets = targets_sort[(num_unlabeled + 1):,0] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] valid_inputs = images_sort[0:num_unlabeled/2,0:-1] # Tested that the -1 omits the identity last column test_inputs = images_sort[(num_unlabeled/2 + 1):num_unlabeled,0:-1] train_inputs = images_sort[(num_unlabeled + 1):,0:-1] # End debug return train_inputs, train_targets, valid_inputs, valid_targets, test_inputs, test_targets def reload_data_with_test_normalized(): # Only load the original training data set that has intensity normalized train_inputs = np.load('train_inputs.npy') train_targets = np.load('train_targets.npy') valid_inputs = np.load('valid_inputs.npy') valid_targets = np.load('valid_targets.npy') test_inputs = np.load('test_inputs.npy') test_targets = np.load('test_targets.npy') return train_inputs, train_targets, valid_inputs, valid_targets, test_inputs, test_targets def load_data_with_test_normalized(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Preprocess the data to normalize intensities for i in range(images.shape[0]): # ShowMeans(images[i:(i+1)]) # print images[i,:,:] # print "ith image shape: ", images[i,:,:].shape filt = np.array([[1,2,1],[2,4,2],[1,2,1]]) gaussian = filt.astype(float)/filt.sum() gaussian_filter = signal.convolve2d(images[i,:,:], gaussian, boundary='symm', mode='same') # print "Gaussian filter:" # print gaussian_filter std_filter = region_std(images[i,:,:],1) # print "std_filter:" # print std_filter final = (images[i,:,:] - gaussian_filter).astype(float)/std_filter # print "Final:" # print final # print 'final image shape: ', final.shape # print "Largest and smallest value in final:", np.amax(final), np.amin(final) final = (((final/np.amax(final))+1)*128).astype(int) images[i,:,:] = final[:,:] # print images[i,:,:] # # Output STD # output_std = np.zeros((1,32,32)) # output_std[0,:,:] = std_filter[:,:] # # print output_std.shape # ShowMeans(output_std) # # Output gaussian: # output = np.zeros((1,32,32)) # output[0,:,:] = gaussian_filter[:,:] # ShowMeans(output) # ShowMeans(images[i:(i+1)]) print 'Done image ', i # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # # Sort the array based on the tr_identities # # Sort the targets # temp = np.append(targets,identities,1) # targets_sort = temp[temp[:,1].argsort()] # num_unlabeled = sum(targets_sort[:,1] == -1) # valid_targets = targets_sort[0:num_unlabeled,0] # test_targets = targets_sort[(num_unlabeled + 1):2*num_unlabeled,0] # train_targets = targets_sort[(2*num_unlabeled + 1):,0] # # Sort the images # temp = np.append(images,identities,1) # images_sort = temp[temp[:,-1].argsort()] # valid_inputs = images_sort[0:num_unlabeled,0:-1] # Tested that the -1 omits the identity last column # test_inputs = images_sort[(num_unlabeled + 1):2*num_unlabeled,0:-1] # train_inputs = images_sort[(2*num_unlabeled + 1):,0:-1] # DEBUG: Only use half of the unlabeled identity for validation # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) valid_targets = targets_sort[0:num_unlabeled/2,0] test_targets = targets_sort[(num_unlabeled/2 + 1):num_unlabeled,0] train_targets = targets_sort[(num_unlabeled + 1):,0] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] valid_inputs = images_sort[0:num_unlabeled/2,0:-1] # Tested that the -1 omits the identity last column test_inputs = images_sort[(num_unlabeled/2 + 1):num_unlabeled,0:-1] train_inputs = images_sort[(num_unlabeled + 1):,0:-1] # End debug return train_inputs, train_targets, valid_inputs, valid_targets, test_inputs, test_targets def load_data_with_test_32x32(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # # Sort the array based on the tr_identities # # Sort the targets # temp = np.append(targets,identities,1) # targets_sort = temp[temp[:,1].argsort()] # num_unlabeled = sum(targets_sort[:,1] == -1) # valid_targets = targets_sort[0:num_unlabeled,0] # test_targets = targets_sort[(num_unlabeled + 1):2*num_unlabeled,0] # train_targets = targets_sort[(2*num_unlabeled + 1):,0] # # Sort the images # temp = np.append(images,identities,1) # images_sort = temp[temp[:,-1].argsort()] # valid_inputs = images_sort[0:num_unlabeled,0:-1] # Tested that the -1 omits the identity last column # test_inputs = images_sort[(num_unlabeled + 1):2*num_unlabeled,0:-1] # train_inputs = images_sort[(2*num_unlabeled + 1):,0:-1] # DEBUG: Only use half of the unlabeled identity for validation # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) valid_targets = targets_sort[0:num_unlabeled/2,0] test_targets = targets_sort[(num_unlabeled/2 + 1):num_unlabeled,0] train_targets = targets_sort[(num_unlabeled + 1):,0] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] print data['tr_images'].T.shape[1], data['tr_images'].T.shape[2] images_sort = images_sort[:,0:-1].reshape(images.shape[0], data['tr_images'].T.shape[1], data['tr_images'].T.shape[2]) valid_inputs = images_sort[0:num_unlabeled/2,:,:] # Tested that the -1 omits the identity last column test_inputs = images_sort[(num_unlabeled/2 + 1):num_unlabeled,:,:] train_inputs = images_sort[(num_unlabeled + 1):,:,:] # End debug return train_inputs, train_targets, valid_inputs, valid_targets, test_inputs, test_targets def load_data_one_of_k(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) temp = np.zeros((temp.shape[0], 7)) for i in range(temp.shape[0]): temp[i][targets_sort[i,0]-1] = 1 valid_targets = temp[0:num_unlabeled,:] train_targets = temp[(num_unlabeled+1):,:] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] valid_inputs = images_sort[0:num_unlabeled,0:-1] # Tested that the -1 omits the identity last column train_inputs = images_sort[(num_unlabeled + 1):,0:-1] return train_inputs, train_targets, valid_inputs, valid_targets def load_data_with_test_one_of_k(include_mirror=False): data = loadmat('labeled_images.mat') images = data['tr_images'].T # Transpose so the number of images is in first dimension: 2925, 32, 32 targets = data['tr_labels'] identities = data['tr_identity'] # Generate a mirrored version if necessary: if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) identities = np.append(identities, identities,0) targets = np.append(targets, targets,0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten the 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) # targets = np.squeeze(data['tr_labels']) # DEBUG: Only use half of the unlabeled identity for validation # Sort the array based on the tr_identities # Sort the targets temp = np.append(targets,identities,1) targets_sort = temp[temp[:,1].argsort()] num_unlabeled = sum(targets_sort[:,1] == -1) temp = np.zeros((temp.shape[0], 7)) for i in range(temp.shape[0]): temp[i][targets_sort[i,0]-1] = 1 valid_targets = temp[0:num_unlabeled/2,:] test_targets = temp[(num_unlabeled/2+1):num_unlabeled,:] train_targets = temp[(num_unlabeled+1):,:] # Sort the images temp = np.append(images,identities,1) images_sort = temp[temp[:,-1].argsort()] valid_inputs = images_sort[0:num_unlabeled/2,0:-1] # Tested that the -1 omits the identity last column test_inputs = images_sort[(num_unlabeled/2 + 1):num_unlabeled,0:-1] train_inputs = images_sort[(num_unlabeled + 1):,0:-1] # End debug return train_inputs, train_targets, valid_inputs, valid_targets, test_inputs, test_targets def load_unlabeled_data(include_mirror=False): data = loadmat('unlabeled_images.mat') images = data['unlabeled_images'].T if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Flatten 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) return images def load_unlabeled_data_normalized(include_mirror=False): data = loadmat('unlabeled_images.mat') images = data['unlabeled_images'].T if include_mirror: mirrored_faces = np.transpose(images, (0,2,1)) rotated_faces = mirrored_faces[:,:,::-1] images = np.append(rotated_faces, mirrored_faces, 0) else: images = np.transpose(images, (0,2,1))[:,:,::-1] # Preprocess the data to normalize intensities for i in range(images.shape[0]): filt = np.array([[1,4,7,4,1],[4,16,26,16,4],[7,26,41,26,7],[4,16,26,16,4],[1,4,7,4,1]]) gaussian = filt.astype(float)/filt.sum() gaussian_filter = signal.convolve2d(images[i,:,:], gaussian, boundary='symm', mode='same') std_filter = region_std(images[i,:,:],2) final = (images[i,:,:] - gaussian_filter).astype(float)/std_filter final = (((final/np.amax(final))+1)*128).astype(int) images[i,:,:] = final[:,:] print 'Done image ', i # Flatten 32x32 to 1024 1D images = images.reshape(images.shape[0], images.shape[1]*images.shape[2]) outfile = open('unlabeled_normalized.npy','w') np.save(outfile,images) outfile.close() return images def reload_unlabeled_data_normalized(include_mirror=False): # Just load from the data that's been pre-processed images = np.load('unlabeled_normalized.npy') return images def NN_bag_predict_unlabeled(model_checkpoint='model.yaml', weights_checkpoint='NNweights_', num_models=8, useZCA=True): # Perform predictions of unlabeled images based on a majority vote scheme of all NNs from k fold cross validation, leave out the first fold because of low performance model_stream = file(model_checkpoint, 'r') test_model = model_from_yaml(yaml.safe_load(model_stream)) # Load and preprocess test set x_test = load_public_test() x_test = x_test.reshape(x_test.shape[0], 1, 32, 32) x_test = preprocess_images(x_test) if useZCA: ZCAMatrix = np.load('ZCAMatrix.npy') x_test = np.dot(x_test.reshape(x_test.shape[0],x_test.shape[1]*x_test.shape[2]*x_test.shape[3]),ZCAMatrix) x_test = x_test.reshape(x_test.shape[0], 1, 32,32) print "Processed test input with ZCAMatrix" print "Finished loading test model" predictions = np.zeros((x_test.shape[0], num_models), dtype=int) agg_pred = np.zeros((x_test.shape[0], ), dtype=int) for i in np.arange(1, num_models): test_model.load_weights(weights_checkpoint + "{:d}.h5".format(i)) predictions[:, i] = (test_model.predict_classes(x_test) + 1).astype(int) predictions = predictions.astype(int) print predictions for i in np.arange(x_test.shape[0]): agg_pred[i] += np.argmax(np.bincount(predictions[i, :])) print agg_pred save_output_csv("bagged_CNN_test_predictions.csv", agg_pred) return def plot_training_loss_accuracy(data='training_stats.npy'): training_score = np.load(data) non_zero_indices = np.nonzero(training_score[:,0])[0] start_index = non_zero_indices[0] end_index = non_zero_indices[-1] nb_epoch = end_index # Not training_score.shape[0] anymore plt.plot(xrange(nb_epoch), training_score[start_index:end_index,0], label='Training loss') plt.plot(xrange(nb_epoch), training_score[start_index:end_index,2], label='Validation loss') plt.legend() plt.title('Training and Validation Cross Entropy Loss Vs. Epoch') plt.xlabel('Number of epochs') plt.ylabel('Cross entropy loss') plt.savefig('train_loss_vs_epoch.png', dpi=200) plt.figure() plt.plot(xrange(nb_epoch), training_score[start_index:end_index,1], label='Training accuracy') plt.plot(xrange(nb_epoch), training_score[start_index:end_index,3], label='Validation accuracy') plt.legend(loc=4) plt.title('Training and Validation Accuracy Vs. Epoch') plt.xlabel('Number of epochs') plt.ylabel('Accuracy') plt.savefig('train_acc_vs_epoch.png', dpi=200) def plot_kfold_validation_accuracy(data='fold_val_acc.npy'): mean_acc_vec = np.zeros((4, 2)) max_acc_vec = np.zeros((4, 2)) i = 0 for x in xrange(3, 11, 2): print '{:d}fold_val_acc.npy'.format(x) fold_acc = np.load('{:d}fold_val_acc.npy'.format(x)) mean_acc_vec[i][0] = x max_acc_vec[i][0] = x mean_acc_vec[i][1] = fold_acc.mean() max_acc_vec[i][1] = fold_acc.max() print fold_acc.mean() print fold_acc.max() i += 1 print mean_acc_vec print max_acc_vec plt.figure plt.plot(mean_acc_vec[:,0], mean_acc_vec[:,1], label='Avg Validation accuracy') plt.plot(max_acc_vec[:,0], max_acc_vec[:,1], label='Max Validation accuracy') plt.legend(loc=4) plt.title('Validation Accuracy Vs Number of Folds') plt.xlabel('Number of folds') plt.ylabel('Validation accuracy') plt.savefig('train_acc_vs_fold.png', dpi=200)
bsd-3-clause
chrsrds/scikit-learn
sklearn/metrics/classification.py
1
91448
"""Metrics to assess performance on classification task given class prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Jatin Shah <[email protected]> # Saurabh Jha <[email protected]> # Bernardo Stein <[email protected]> # Shangwu Yao <[email protected]> # License: BSD 3 clause import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from ..preprocessing import LabelBinarizer from ..preprocessing import LabelEncoder from ..utils import assert_all_finite from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..exceptions import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = {type_true, type_pred} if y_type == {"binary", "multiclass"}: y_type = {"multiclass"} if len(y_type) > 1: raise ValueError("Classification metrics can't handle a mix of {0} " "and {1} targets".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type == "binary": unique_values = np.union1d(y_true, y_pred) if len(unique_values) > 2: y_type = "multiclass" if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the fraction of correctly classified samples (float), else returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_score`` function. Examples -------- >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> import numpy as np >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) check_consistent_length(y_true, y_pred, sample_weight) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None, sample_weight=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Thus in binary classification, the count of true negatives is :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is :math:`C_{1,1}` and false positives is :math:`C_{0,1}`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_ (Wikipedia and other references may use a different convention for axes) Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) In the binary case, we can extract true positives, etc as follows: >>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel() >>> (tn, fp, fn, tp) (0, 2, 1, 1) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if np.all([l not in y_true for l in labels]): raise ValueError("At least one label specified must be in y_true") if sample_weight is None: sample_weight = np.ones(y_true.shape[0], dtype=np.int64) else: sample_weight = np.asarray(sample_weight) check_consistent_length(y_true, y_pred, sample_weight) n_labels = labels.size label_to_ind = {y: x for x, y in enumerate(labels)} # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] # also eliminate weights of eliminated items sample_weight = sample_weight[ind] # Choose the accumulator dtype to always have high precision if sample_weight.dtype.kind in {'i', 'u', 'b'}: dtype = np.int64 else: dtype = np.float64 CM = coo_matrix((sample_weight, (y_true, y_pred)), shape=(n_labels, n_labels), dtype=dtype, ).toarray() return CM def multilabel_confusion_matrix(y_true, y_pred, sample_weight=None, labels=None, samplewise=False): """Compute a confusion matrix for each class or sample .. versionadded:: 0.21 Compute class-wise (default) or sample-wise (samplewise=True) multilabel confusion matrix to evaluate the accuracy of a classification, and output confusion matrices for each class or sample. In multilabel confusion matrix :math:`MCM`, the count of true negatives is :math:`MCM_{:,0,0}`, false negatives is :math:`MCM_{:,1,0}`, true positives is :math:`MCM_{:,1,1}` and false positives is :math:`MCM_{:,0,1}`. Multiclass data will be treated as if binarized under a one-vs-rest transformation. Returned confusion matrices will be in the order of sorted unique labels in the union of (y_true, y_pred). Read more in the :ref:`User Guide <multilabel_confusion_matrix>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix of shape (n_samples, n_outputs) or (n_samples,) Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix of shape (n_samples, n_outputs) or (n_samples,) Estimated targets as returned by a classifier sample_weight : array-like of shape = (n_samples,), optional Sample weights labels : array-like A list of classes or column indices to select some (or to force inclusion of classes absent from the data) samplewise : bool, default=False In the multilabel case, this calculates a confusion matrix per sample Returns ------- multi_confusion : array, shape (n_outputs, 2, 2) A 2x2 confusion matrix corresponding to each output in the input. When calculating class-wise multi_confusion (default), then n_outputs = n_labels; when calculating sample-wise multi_confusion (samplewise=True), n_outputs = n_samples. If ``labels`` is defined, the results will be returned in the order specified in ``labels``, otherwise the results will be returned in sorted order by default. See also -------- confusion_matrix Notes ----- The multilabel_confusion_matrix calculates class-wise or sample-wise multilabel confusion matrices, and in multiclass tasks, labels are binarized under a one-vs-rest way; while confusion_matrix calculates one confusion matrix for confusion between every two classes. Examples -------- Multilabel-indicator case: >>> import numpy as np >>> from sklearn.metrics import multilabel_confusion_matrix >>> y_true = np.array([[1, 0, 1], ... [0, 1, 0]]) >>> y_pred = np.array([[1, 0, 0], ... [0, 1, 1]]) >>> multilabel_confusion_matrix(y_true, y_pred) array([[[1, 0], [0, 1]], <BLANKLINE> [[1, 0], [0, 1]], <BLANKLINE> [[0, 1], [1, 0]]]) Multiclass case: >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> multilabel_confusion_matrix(y_true, y_pred, ... labels=["ant", "bird", "cat"]) array([[[3, 1], [0, 2]], <BLANKLINE> [[5, 0], [1, 0]], <BLANKLINE> [[2, 1], [1, 2]]]) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) check_consistent_length(y_true, y_pred, sample_weight) if y_type not in ("binary", "multiclass", "multilabel-indicator"): raise ValueError("%s is not supported" % y_type) present_labels = unique_labels(y_true, y_pred) if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) if y_true.ndim == 1: if samplewise: raise ValueError("Samplewise metrics are not available outside of " "multilabel classification.") le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = np.bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = np.bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = np.bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] else: sum_axis = 1 if samplewise else 0 # All labels are index integers for multilabel. # Select labels: if not np.array_equal(labels, present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels) for ' 'multilabel targets. ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels) for ' 'multilabel targets. ' 'Got %d < 0' % np.min(labels)) if n_labels is not None: y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) fp = pred_sum - tp_sum fn = true_sum - tp_sum tp = tp_sum if sample_weight is not None and samplewise: sample_weight = np.array(sample_weight) tp = np.array(tp) fp = np.array(fp) fn = np.array(fn) tn = sample_weight * y_true.shape[1] - tp - fp - fn elif sample_weight is not None: tn = sum(sample_weight) - tp - fp - fn elif samplewise: tn = y_true.shape[1] - tp - fp - fn else: tn = y_true.shape[0] - tp - fp - fn return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2) def cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None): r"""Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1]_, a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]_. Read more in the :ref:`User Guide <cohen_kappa>`. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. weights : str, optional Weighting type to calculate the score. None means no weighted; "linear" means linear weighted; "quadratic" means quadratic weighted. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] `R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistics 34(4):555-596. <https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2>`_ .. [3] `Wikipedia entry for the Cohen's kappa. <https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ """ confusion = confusion_matrix(y1, y2, labels=labels, sample_weight=sample_weight) n_classes = confusion.shape[0] sum0 = np.sum(confusion, axis=0) sum1 = np.sum(confusion, axis=1) expected = np.outer(sum0, sum1) / np.sum(sum0) if weights is None: w_mat = np.ones([n_classes, n_classes], dtype=np.int) w_mat.flat[:: n_classes + 1] = 0 elif weights == "linear" or weights == "quadratic": w_mat = np.zeros([n_classes, n_classes], dtype=np.int) w_mat += np.arange(n_classes) if weights == "linear": w_mat = np.abs(w_mat - w_mat.T) else: w_mat = (w_mat - w_mat.T) ** 2 else: raise ValueError("Unknown kappa weighting type.") k = np.sum(w_mat * confusion) / np.sum(w_mat * expected) return 1 - k def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score .. deprecated:: 0.21 This is deprecated to be removed in 0.23, since its handling of binary and multiclass inputs was broken. `jaccard_score` has an API that is consistent with precision_score, f_score, etc. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <https://en.wikipedia.org/wiki/Jaccard_index>`_ """ warnings.warn('jaccard_similarity_score has been deprecated and replaced ' 'with jaccard_score. It will be removed in version 0.23. ' 'This implementation has surprising behavior for binary ' 'and multiclass classification tasks.', DeprecationWarning) # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) check_consistent_length(y_true, y_pred, sample_weight) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def jaccard_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float (if average is not None) or array of floats, shape =\ [n_unique_labels] See also -------- accuracy_score, f_score, multilabel_confusion_matrix Notes ----- :func:`jaccard_score` may be a poor metric if there are no positives for some samples or classes. Jaccard is undefined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning. References ---------- .. [1] `Wikipedia entry for the Jaccard index <https://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_score >>> y_true = np.array([[0, 1, 1], ... [1, 1, 0]]) >>> y_pred = np.array([[1, 1, 1], ... [1, 0, 0]]) In the binary case: >>> jaccard_score(y_true[0], y_pred[0]) 0.6666... In the multilabel case: >>> jaccard_score(y_true, y_pred, average='samples') 0.5833... >>> jaccard_score(y_true, y_pred, average='macro') 0.6666... >>> jaccard_score(y_true, y_pred, average=None) array([0.5, 0.5, 1. ]) In the multiclass case: >>> y_pred = [0, 2, 1, 2] >>> y_true = [0, 1, 2, 2] >>> jaccard_score(y_true, y_pred, average=None) array([1. , 0. , 0.33...]) """ labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) samplewise = average == 'samples' MCM = multilabel_confusion_matrix(y_true, y_pred, sample_weight=sample_weight, labels=labels, samplewise=samplewise) numerator = MCM[:, 1, 1] denominator = MCM[:, 1, 1] + MCM[:, 0, 1] + MCM[:, 1, 0] if average == 'micro': numerator = np.array([numerator.sum()]) denominator = np.array([denominator.sum()]) jaccard = _prf_divide(numerator, denominator, 'jaccard', 'true or predicted', average, ('jaccard',)) if average is None: return jaccard if average == 'weighted': weights = MCM[:, 1, 0] + MCM[:, 1, 1] if not np.any(weights): # numerator is 0, and warning should have already been issued weights = None elif average == 'samples' and sample_weight is not None: weights = sample_weight else: weights = None return np.average(jaccard, weights=weights) def matthews_corrcoef(y_true, y_pred, sample_weight=None): """Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Binary and multiclass labels are supported. Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. sample_weight : array-like of shape = [n_samples], default None Sample weights. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <https://doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ .. [3] `Gorodkin, (2004). Comparing two K-category assignments by a K-category correlation coefficient <https://www.sciencedirect.com/science/article/pii/S1476927104000799>`_ .. [4] `Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN Error Measures in MultiClass Prediction <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) check_consistent_length(y_true, y_pred, sample_weight) if y_type not in {"binary", "multiclass"}: raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight) t_sum = C.sum(axis=1, dtype=np.float64) p_sum = C.sum(axis=0, dtype=np.float64) n_correct = np.trace(C, dtype=np.float64) n_samples = p_sum.sum() cov_ytyp = n_correct * n_samples - np.dot(t_sum, p_sum) cov_ypyp = n_samples ** 2 - np.dot(p_sum, p_sum) cov_ytyt = n_samples ** 2 - np.dot(t_sum, t_sum) mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp) if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> import numpy as np >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending on the ``average`` parameter. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. See also -------- fbeta_score, precision_recall_fscore_support, jaccard_score, multilabel_confusion_matrix References ---------- .. [1] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') 0.26... >>> f1_score(y_true, y_pred, average='micro') 0.33... >>> f1_score(y_true, y_pred, average='weighted') 0.26... >>> f1_score(y_true, y_pred, average=None) array([0.8, 0. , 0. ]) Notes ----- When ``true positive + false positive == 0`` or ``true positive + false negative == 0``, f-score returns 0 and raises ``UndefinedMetricWarning``. """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of recall in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> +inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. See also -------- precision_recall_fscore_support, multilabel_confusion_matrix References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) array([0.71..., 0. , 0. ]) Notes ----- When ``true positive + false positive == 0`` or ``true positive + false negative == 0``, f-score returns 0 and raises ``UndefinedMetricWarning``. """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ mask = denominator == 0.0 denominator = denominator.copy() denominator[mask] = 1 # avoid infs/nans result = numerator / denominator if not np.any(mask): return result # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def _check_set_wise_labels(y_true, y_pred, average, labels, pos_label): """Validation associated with set-wise metrics Returns identified labels """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary': if y_type == 'binary': if pos_label not in present_labels: if len(present_labels) >= 2: raise ValueError("pos_label=%r is not a valid label: " "%r" % (pos_label, present_labels)) labels = [pos_label] else: average_options = list(average_options) if y_type == 'multiclass': average_options.remove('samples') raise ValueError("Target is %s but average='binary'. Please " "choose another average setting, one of %r." % (y_type, average_options)) elif pos_label not in (None, 1): warnings.warn("Note that pos_label (set to %r) is ignored when " "average != 'binary' (got %r). You may use " "labels=[pos_label] to specify a single positive class." % (pos_label, average), UserWarning) return labels def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] recall : float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] support : int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <https://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) (array([0. , 0. , 0.66...]), array([0., 0., 1.]), array([0. , 0. , 0.8]), array([2, 2, 2])) Notes ----- When ``true positive + false positive == 0``, precision is undefined; When ``true positive + false negative == 0``, recall is undefined. In such cases, the metric will be set to 0, as will f-score, and ``UndefinedMetricWarning`` will be raised. """ if beta < 0: raise ValueError("beta should be >=0 in the F-beta score") labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) # Calculate tp_sum, pred_sum, true_sum ### samplewise = average == 'samples' MCM = multilabel_confusion_matrix(y_true, y_pred, sample_weight=sample_weight, labels=labels, samplewise=samplewise) tp_sum = MCM[:, 1, 1] pred_sum = tp_sum + MCM[:, 0, 1] true_sum = tp_sum + MCM[:, 1, 0] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta ** 2 # Divide, and on zero-division, set scores to 0 and warn: precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) if np.isposinf(beta): f_score = recall else: # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero denom = beta2 * precision + recall denom[denom == 0.] = 1 # avoid division by 0 f_score = (1 + beta2) * precision * recall / denom # Average the results if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. See also -------- precision_recall_fscore_support, multilabel_confusion_matrix Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') 0.22... >>> precision_score(y_true, y_pred, average='micro') 0.33... >>> precision_score(y_true, y_pred, average='weighted') 0.22... >>> precision_score(y_true, y_pred, average=None) array([0.66..., 0. , 0. ]) Notes ----- When ``true positive + false positive == 0``, precision returns 0 and raises ``UndefinedMetricWarning``. """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'`` and the data is binary. If the data are multiclass or multilabel, this will be ignored; setting ``labels=[pos_label]`` and ``average != 'binary'`` will report scores for that label only. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. See also -------- precision_recall_fscore_support, balanced_accuracy_score, multilabel_confusion_matrix Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') 0.33... >>> recall_score(y_true, y_pred, average='micro') 0.33... >>> recall_score(y_true, y_pred, average='weighted') 0.33... >>> recall_score(y_true, y_pred, average=None) array([1., 0., 0.]) Notes ----- When ``true positive + false negative == 0``, recall returns 0 and raises ``UndefinedMetricWarning``. """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def balanced_accuracy_score(y_true, y_pred, sample_weight=None, adjusted=False): """Compute the balanced accuracy The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is defined as the average of recall obtained on each class. The best value is 1 and the worst value is 0 when ``adjusted=False``. Read more in the :ref:`User Guide <balanced_accuracy_score>`. Parameters ---------- y_true : 1d array-like Ground truth (correct) target values. y_pred : 1d array-like Estimated targets as returned by a classifier. sample_weight : array-like of shape = [n_samples], optional Sample weights. adjusted : bool, default=False When true, the result is adjusted for chance, so that random performance would score 0, and perfect performance scores 1. Returns ------- balanced_accuracy : float See also -------- recall_score, roc_auc_score Notes ----- Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to :func:`accuracy_score` with class-balanced sample weights, and shares desirable properties with the binary case. See the :ref:`User Guide <balanced_accuracy_score>`. References ---------- .. [1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010). The balanced accuracy and its posterior distribution. Proceedings of the 20th International Conference on Pattern Recognition, 3121-24. .. [2] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, (2015). `Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies <https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_. Examples -------- >>> from sklearn.metrics import balanced_accuracy_score >>> y_true = [0, 1, 0, 0, 1, 0] >>> y_pred = [0, 1, 0, 0, 0, 1] >>> balanced_accuracy_score(y_true, y_pred) 0.625 """ C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight) with np.errstate(divide='ignore', invalid='ignore'): per_class = np.diag(C) / C.sum(axis=1) if np.any(np.isnan(per_class)): warnings.warn('y_pred contains classes not in y_true') per_class = per_class[~np.isnan(per_class)] score = np.mean(per_class) if adjusted: n_classes = len(per_class) chance = 1 / n_classes score -= chance score /= 1 - chance return score def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values. When ``output_dict`` is ``True``, this will be ignored and the returned values will not be rounded. output_dict : bool (default = False) If True, return output as dict Returns ------- report : string / dict Text summary of the precision, recall, F1 score for each class. Dictionary returned if output_dict is True. Dictionary has the following structure:: {'label 1': {'precision':0.5, 'recall':1.0, 'f1-score':0.67, 'support':1}, 'label 2': { ... }, ... } The reported averages include macro average (averaging the unweighted mean per label), weighted average (averaging the support-weighted mean per label), sample average (only for multilabel classification) and micro average (averaging the total true positives, false negatives and false positives) it is only shown for multi-label or multi-class with a subset of classes because it is accuracy otherwise. See also:func:`precision_recall_fscore_support` for more details on averages. Note that in binary classification, recall of the positive class is also known as "sensitivity"; recall of the negative class is "specificity". See also -------- precision_recall_fscore_support, confusion_matrix, multilabel_confusion_matrix Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> accuracy 0.60 5 macro avg 0.50 0.56 0.49 5 weighted avg 0.70 0.60 0.61 5 <BLANKLINE> >>> y_pred = [1, 1, 0] >>> y_true = [1, 1, 1] >>> print(classification_report(y_true, y_pred, labels=[1, 2, 3])) precision recall f1-score support <BLANKLINE> 1 1.00 0.67 0.80 3 2 0.00 0.00 0.00 0 3 0.00 0.00 0.00 0 <BLANKLINE> micro avg 1.00 0.67 0.80 3 macro avg 0.33 0.22 0.27 3 weighted avg 1.00 0.67 0.80 3 <BLANKLINE> """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) labels_given = True if labels is None: labels = unique_labels(y_true, y_pred) labels_given = False else: labels = np.asarray(labels) # labelled micro average micro_is_accuracy = ((y_type == 'multiclass' or y_type == 'binary') and (not labels_given or (set(labels) == set(unique_labels(y_true, y_pred))))) if target_names is not None and len(labels) != len(target_names): if labels_given: warnings.warn( "labels size, {0}, does not match size of target_names, {1}" .format(len(labels), len(target_names)) ) else: raise ValueError( "Number of classes, {0}, does not match size of " "target_names, {1}. Try specifying the labels " "parameter".format(len(labels), len(target_names)) ) if target_names is None: target_names = ['%s' % l for l in labels] headers = ["precision", "recall", "f1-score", "support"] # compute per-class results without averaging p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) rows = zip(target_names, p, r, f1, s) if y_type.startswith('multilabel'): average_options = ('micro', 'macro', 'weighted', 'samples') else: average_options = ('micro', 'macro', 'weighted') if output_dict: report_dict = {label[0]: label[1:] for label in rows} for label, scores in report_dict.items(): report_dict[label] = dict(zip(headers, [i.item() for i in scores])) else: longest_last_line_heading = 'weighted avg' name_width = max(len(cn) for cn in target_names) width = max(name_width, len(longest_last_line_heading), digits) head_fmt = '{:>{width}s} ' + ' {:>9}' * len(headers) report = head_fmt.format('', *headers, width=width) report += '\n\n' row_fmt = '{:>{width}s} ' + ' {:>9.{digits}f}' * 3 + ' {:>9}\n' for row in rows: report += row_fmt.format(*row, width=width, digits=digits) report += '\n' # compute all applicable averages for average in average_options: if average.startswith('micro') and micro_is_accuracy: line_heading = 'accuracy' else: line_heading = average + ' avg' # compute averages with specified averaging method avg_p, avg_r, avg_f1, _ = precision_recall_fscore_support( y_true, y_pred, labels=labels, average=average, sample_weight=sample_weight) avg = [avg_p, avg_r, avg_f1, np.sum(s)] if output_dict: report_dict[line_heading] = dict( zip(headers, [i.item() for i in avg])) else: if line_heading == 'accuracy': row_fmt_accuracy = '{:>{width}s} ' + \ ' {:>9.{digits}}' * 2 + ' {:>9.{digits}f}' + \ ' {:>9}\n' report += row_fmt_accuracy.format(line_heading, '', '', *avg[2:], width=width, digits=digits) else: report += row_fmt.format(line_heading, *avg, width=width, digits=digits) if output_dict: if 'accuracy' in report_dict.keys(): report_dict['accuracy'] = report_dict['accuracy']['precision'] return report_dict else: return report def hamming_loss(y_true, y_pred, labels=None, sample_weight=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. labels : array, shape = [n_labels], optional (default='deprecated') Integer array of labels. If not provided, labels will be inferred from y_true and y_pred. .. versionadded:: 0.18 .. deprecated:: 0.21 This parameter ``labels`` is deprecated in version 0.21 and will be removed in version 0.23. Hamming loss uses ``y_true.shape[1]`` for the number of labels when y_true is binary label indicators, so it is unnecessary for the user to specify. sample_weight : array-like of shape = [n_samples], optional Sample weights. .. versionadded:: 0.18 Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss corresponds to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function, when `normalize` parameter is set to True. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does not entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes only the individual labels. The Hamming loss is upperbounded by the subset zero-one loss, when `normalize` parameter is set to True. It is always between 0 and 1, lower being better. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> import numpy as np >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) check_consistent_length(y_true, y_pred, sample_weight) if labels is not None: warnings.warn("The labels parameter is unused. It was" " deprecated in version 0.21 and" " will be removed in version 0.23", DeprecationWarning) if sample_weight is None: weight_average = 1. else: weight_average = np.mean(sample_weight) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred, sample_weight=sample_weight) return (n_differences / (y_true.shape[0] * y_true.shape[1] * weight_average)) elif y_type in ["binary", "multiclass"]: return _weighted_sum(y_true != y_pred, sample_weight, normalize=True) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. The log loss is only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,) Predicted probabilities, as returned by a classifier's predict_proba method. If ``y_pred.shape = (n_samples,)`` the probabilities provided are assumed to be that of the positive class. The labels in ``y_pred`` are assumed to be ordered alphabetically, as done by :class:`preprocessing.LabelBinarizer`. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. labels : array-like, optional (default=None) If not provided, labels will be inferred from y_true. If ``labels`` is ``None`` and ``y_pred`` has shape (n_samples,) the labels are assumed to be binary and are inferred from ``y_true``. .. versionadded:: 0.18 Returns ------- loss : float Examples -------- >>> from sklearn.metrics import log_loss >>> log_loss(["spam", "ham", "ham", "spam"], ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ y_pred = check_array(y_pred, ensure_2d=False) check_consistent_length(y_pred, y_true, sample_weight) lb = LabelBinarizer() if labels is not None: lb.fit(labels) else: lb.fit(y_true) if len(lb.classes_) == 1: if labels is None: raise ValueError('y_true contains only one label ({0}). Please ' 'provide the true labels explicitly through the ' 'labels argument.'.format(lb.classes_[0])) else: raise ValueError('The labels array needs to contain at least two ' 'labels for log_loss, ' 'got {0}.'.format(lb.classes_)) transformed_labels = lb.transform(y_true) if transformed_labels.shape[1] == 1: transformed_labels = np.append(1 - transformed_labels, transformed_labels, axis=1) # Clipping y_pred = np.clip(y_pred, eps, 1 - eps) # If y_pred is of single dimension, assume y_true to be binary # and then check. if y_pred.ndim == 1: y_pred = y_pred[:, np.newaxis] if y_pred.shape[1] == 1: y_pred = np.append(1 - y_pred, y_pred, axis=1) # Check if dimensions are consistent. transformed_labels = check_array(transformed_labels) if len(lb.classes_) != y_pred.shape[1]: if labels is None: raise ValueError("y_true and y_pred contain different number of " "classes {0}, {1}. Please provide the true " "labels explicitly through the labels argument. " "Classes found in " "y_true: {2}".format(transformed_labels.shape[1], y_pred.shape[1], lb.classes_)) else: raise ValueError('The number of classes in labels is different ' 'from that in y_pred. Classes found in ' 'labels: {0}'.format(lb.classes_)) # Renormalize y_pred /= y_pred.sum(axis=1)[:, np.newaxis] loss = -(transformed_labels * np.log(y_pred)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(random_state=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) 0.30... In the multiclass case: >>> import numpy as np >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC() >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. np.clip(losses, 0, None, out=losses) return np.average(losses, weights=sample_weight) def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier loss is composed of refinement loss and calibration loss. The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int or str, default=None Label of the positive class. Defaults to the greater label unless y_true is all 0 or all -1 in which case pos_label defaults to 1. Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) 0.037... >>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham") 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- .. [1] `Wikipedia entry for the Brier score. <https://en.wikipedia.org/wiki/Brier_score>`_ """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) assert_all_finite(y_true) assert_all_finite(y_prob) check_consistent_length(y_true, y_prob, sample_weight) labels = np.unique(y_true) if len(labels) > 2: raise ValueError("Only binary classification is supported. " "Labels in y_true: %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") # if pos_label=None, when y_true is in {-1, 1} or {0, 1}, # pos_labe is set to 1 (consistent with precision_recall_curve/roc_curve), # otherwise pos_label is set to the greater label # (different from precision_recall_curve/roc_curve, # the purpose is to keep backward compatibility). if pos_label is None: if (np.array_equal(labels, [0]) or np.array_equal(labels, [-1])): pos_label = 1 else: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
bsd-3-clause
jstoxrocky/statsmodels
statsmodels/tsa/arima_process.py
26
30878
'''ARMA process and estimation with scipy.signal.lfilter 2009-09-06: copied from try_signal.py reparameterized same as signal.lfilter (positive coefficients) Notes ----- * pretty fast * checked with Monte Carlo and cross comparison with statsmodels yule_walker for AR numbers are close but not identical to yule_walker not compared to other statistics packages, no degrees of freedom correction * ARMA(2,2) estimation (in Monte Carlo) requires longer time series to estimate parameters without large variance. There might be different ARMA parameters with similar impulse response function that cannot be well distinguished with small samples (e.g. 100 observations) * good for one time calculations for entire time series, not for recursive prediction * class structure not very clean yet * many one-liners with scipy.signal, but takes time to figure out usage * missing result statistics, e.g. t-values, but standard errors in examples * no criteria for choice of number of lags * no constant term in ARMA process * no integration, differencing for ARIMA * written without textbook, works but not sure about everything briefly checked and it looks to be standard least squares, see below * theoretical autocorrelation function of general ARMA Done, relatively easy to guess solution, time consuming to get theoretical test cases, example file contains explicit formulas for acovf of MA(1), MA(2) and ARMA(1,1) * two names for lag polynomials ar = rhoy, ma = rhoe ? Properties: Judge, ... (1985): The Theory and Practise of Econometrics BigJudge p. 237ff: If the time series process is a stationary ARMA(p,q), then minimizing the sum of squares is asymptoticaly (as T-> inf) equivalent to the exact Maximum Likelihood Estimator Because Least Squares conditional on the initial information does not use all information, in small samples exact MLE can be better. Without the normality assumption, the least squares estimator is still consistent under suitable conditions, however not efficient Author: josefpktd License: BSD ''' from __future__ import print_function from statsmodels.compat.python import range import numpy as np from scipy import signal, optimize, linalg def arma_generate_sample(ar, ma, nsample, sigma=1, distrvs=np.random.randn, burnin=0): """ Generate a random sample of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nsample : int length of simulated time series sigma : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped Returns ------- sample : array sample of ARMA process given by ar, ma of length nsample Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -arparams] # add zero-lag and negate >>> ma = np.r_[1, maparams] # add zero-lag >>> y = sm.tsa.arma_generate_sample(ar, ma, 250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ #TODO: unify with ArmaProcess method eta = sigma * distrvs(nsample+burnin) return signal.lfilter(ma, ar, eta)[burnin:] def arma_acovf(ar, ma, nobs=10): '''theoretical autocovariance function of ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acovf Returns ------- acovf : array autocovariance of ARMA process given by ar, ma See Also -------- arma_acf acovf Notes ----- Tries to do some crude numerical speed improvements for cases with high persistance. However, this algorithm is slow if the process is highly persistent and only a few autocovariances are desired. ''' #increase length of impulse response for AR closer to 1 #maybe cheap/fast enough to always keep nobs for ir large if np.abs(np.sum(ar)-1) > 0.9: nobs_ir = max(1000, 2 * nobs) # no idea right now how large is needed else: nobs_ir = max(100, 2 * nobs) # no idea right now ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #better save than sorry (?), I have no idea about the required precision #only checked for AR(1) while ir[-1] > 5*1e-5: nobs_ir *= 10 ir = arma_impulse_response(ar, ma, nobs=nobs_ir) #again no idea where the speed break points are: if nobs_ir > 50000 and nobs < 1001: acovf = np.array([np.dot(ir[:nobs-t], ir[t:nobs]) for t in range(nobs)]) else: acovf = np.correlate(ir, ir, 'full')[len(ir)-1:] return acovf[:nobs] def arma_acf(ar, ma, nobs=10): '''theoretical autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned acf Returns ------- acf : array autocorrelation of ARMA process given by ar, ma See Also -------- arma_acovf acf acovf ''' acovf = arma_acovf(ar, ma, nobs) return acovf/acovf[0] def arma_pacf(ar, ma, nobs=10): '''partial autocorrelation function of an ARMA process Parameters ---------- ar : array_like, 1d coefficient for autoregressive lag polynomial, including zero lag ma : array_like, 1d coefficient for moving-average lag polynomial, including zero lag nobs : int number of terms (lags plus zero lag) to include in returned pacf Returns ------- pacf : array partial autocorrelation of ARMA process given by ar, ma Notes ----- solves yule-walker equation for each lag order up to nobs lags not tested/checked yet ''' apacf = np.zeros(nobs) acov = arma_acf(ar, ma, nobs=nobs+1) apacf[0] = 1. for k in range(2, nobs+1): r = acov[:k] apacf[k-1] = linalg.solve(linalg.toeplitz(r[:-1]), r[1:])[-1] return apacf def arma_periodogram(ar, ma, worN=None, whole=0): '''periodogram for ARMA process given by lag-polynomials ar and ma Parameters ---------- ar : array_like autoregressive lag-polynomial with leading 1 and lhs sign ma : array_like moving average lag-polynomial with leading 1 worN : {None, int}, optional option for scipy.signal.freqz (read "w or N") If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN whole : {0,1}, optional options for scipy.signal.freqz Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi. Returns ------- w : array frequencies sd : array periodogram, spectral density Notes ----- Normalization ? This uses signal.freqz, which does not use fft. There is a fft version somewhere. ''' w, h = signal.freqz(ma, ar, worN=worN, whole=whole) sd = np.abs(h)**2/np.sqrt(2*np.pi) if np.sum(np.isnan(h)) > 0: # this happens with unit root or seasonal unit root' print('Warning: nan in frequency response h, maybe a unit root') return w, sd def arma_impulse_response(ar, ma, nobs=100): '''get the impulse response function (MA representation) for ARMA process Parameters ---------- ma : array_like, 1d moving average lag polynomial ar : array_like, 1d auto regressive lag polynomial nobs : int number of observations to calculate Returns ------- ir : array, 1d impulse response function with nobs elements Notes ----- This is the same as finding the MA representation of an ARMA(p,q). By reversing the role of ar and ma in the function arguments, the returned result is the AR representation of an ARMA(p,q), i.e ma_representation = arma_impulse_response(ar, ma, nobs=100) ar_representation = arma_impulse_response(ma, ar, nobs=100) fully tested against matlab Examples -------- AR(1) >>> arma_impulse_response([1.0, -0.8], [1.], nobs=10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) this is the same as >>> 0.8**np.arange(10) array([ 1. , 0.8 , 0.64 , 0.512 , 0.4096 , 0.32768 , 0.262144 , 0.2097152 , 0.16777216, 0.13421773]) MA(2) >>> arma_impulse_response([1.0], [1., 0.5, 0.2], nobs=10) array([ 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) ARMA(1,2) >>> arma_impulse_response([1.0, -0.8], [1., 0.5, 0.2], nobs=10) array([ 1. , 1.3 , 1.24 , 0.992 , 0.7936 , 0.63488 , 0.507904 , 0.4063232 , 0.32505856, 0.26004685]) ''' impulse = np.zeros(nobs) impulse[0] = 1. return signal.lfilter(ma, ar, impulse) #alias, easier to remember arma2ma = arma_impulse_response #alias, easier to remember def arma2ar(ar, ma, nobs=100): '''get the AR representation of an ARMA process Parameters ---------- ar : array_like, 1d auto regressive lag polynomial ma : array_like, 1d moving average lag polynomial nobs : int number of observations to calculate Returns ------- ar : array, 1d coefficients of AR lag polynomial with nobs elements ` Notes ----- This is just an alias for ``ar_representation = arma_impulse_response(ma, ar, nobs=100)`` fully tested against matlab Examples -------- ''' return arma_impulse_response(ma, ar, nobs=nobs) #moved from sandbox.tsa.try_fi def ar2arma(ar_des, p, q, n=20, mse='ar', start=None): '''find arma approximation to ar process This finds the ARMA(p,q) coefficients that minimize the integrated squared difference between the impulse_response functions (MA representation) of the AR and the ARMA process. This does currently not check whether the MA lagpolynomial of the ARMA process is invertible, neither does it check the roots of the AR lagpolynomial. Parameters ---------- ar_des : array_like coefficients of original AR lag polynomial, including lag zero p, q : int length of desired ARMA lag polynomials n : int number of terms of the impuls_response function to include in the objective function for the approximation mse : string, 'ar' not used yet, Returns ------- ar_app, ma_app : arrays coefficients of the AR and MA lag polynomials of the approximation res : tuple result of optimize.leastsq Notes ----- Extension is possible if we want to match autocovariance instead of impulse response function. TODO: convert MA lag polynomial, ma_app, to be invertible, by mirroring roots outside the unit intervall to ones that are inside. How do we do this? ''' #p,q = pq def msear_err(arma, ar_des): ar, ma = np.r_[1, arma[:p-1]], np.r_[1, arma[p-1:]] ar_approx = arma_impulse_response(ma, ar, n) ## print(ar,ma) ## print(ar_des.shape, ar_approx.shape) ## print(ar_des) ## print(ar_approx) return (ar_des - ar_approx) # ((ar - ar_approx)**2).sum() if start is None: arma0 = np.r_[-0.9 * np.ones(p-1), np.zeros(q-1)] else: arma0 = start res = optimize.leastsq(msear_err, arma0, ar_des, maxfev=5000) #print(res) arma_app = np.atleast_1d(res[0]) ar_app = np.r_[1, arma_app[:p-1]], ma_app = np.r_[1, arma_app[p-1:]] return ar_app, ma_app, res def lpol2index(ar): '''remove zeros from lagpolynomial, squeezed representation with index Parameters ---------- ar : array_like coefficients of lag polynomial Returns ------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ''' ar = np.asarray(ar) index = np.nonzero(ar)[0] coeffs = ar[index] return coeffs, index def index2lpol(coeffs, index): '''expand coefficients to lag poly Parameters ---------- coeffs : array non-zero coefficients of lag polynomial index : array index (lags) of lagpolynomial with non-zero elements ar : array_like coefficients of lag polynomial Returns ------- ar : array_like coefficients of lag polynomial ''' n = max(index) ar = np.zeros(n) ar[index] = coeffs return ar #moved from sandbox.tsa.try_fi def lpol_fima(d, n=20): '''MA representation of fractional integration .. math:: (1-L)^{-d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ma : array coefficients of lag polynomial ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) return np.exp(gammaln(d+j) - gammaln(j+1) - gammaln(d)) #moved from sandbox.tsa.try_fi def lpol_fiar(d, n=20): '''AR representation of fractional integration .. math:: (1-L)^{d} for |d|<0.5 or |d|<1 (?) Parameters ---------- d : float fractional power n : int number of terms to calculate, including lag zero Returns ------- ar : array coefficients of lag polynomial Notes: first coefficient is 1, negative signs except for first term, ar(L)*x_t ''' #hide import inside function until we use this heavily from scipy.special import gammaln j = np.arange(n) ar = - np.exp(gammaln(-d+j) - gammaln(j+1) - gammaln(-d)) ar[0] = 1 return ar #moved from sandbox.tsa.try_fi def lpol_sdiff(s): '''return coefficients for seasonal difference (1-L^s) just a trivial convenience function Parameters ---------- s : int number of periods in season Returns ------- sdiff : list, length s+1 ''' return [1] + [0]*(s-1) + [-1] def deconvolve(num, den, n=None): """Deconvolves divisor out of signal, division of polynomials for n terms calculates den^{-1} * num Parameters ---------- num : array_like signal or lag polynomial denom : array_like coefficients of lag polynomial (linear filter) n : None or int number of terms of quotient Returns ------- quot : array quotient or filtered series rem : array remainder Notes ----- If num is a time series, then this applies the linear filter den^{-1}. If both num and den are both lagpolynomials, then this calculates the quotient polynomial for n terms and also returns the remainder. This is copied from scipy.signal.signaltools and added n as optional parameter. """ num = np.atleast_1d(num) den = np.atleast_1d(den) N = len(num) D = len(den) if D > N and n is None: quot = [] rem = num else: if n is None: n = N-D+1 input = np.zeros(n, float) input[0] = 1 quot = signal.lfilter(num, den, input) num_approx = signal.convolve(den, quot, mode='full') if len(num) < len(num_approx): # 1d only ? num = np.concatenate((num, np.zeros(len(num_approx)-len(num)))) rem = num - num_approx return quot, rem class ArmaProcess(object): """ Represent an ARMA process for given lag-polynomials This is a class to bring together properties of the process. It does not do any estimation or statistical analysis. Parameters ---------- ar : array_like, 1d Coefficient for autoregressive lag polynomial, including zero lag. See the notes for some information about the sign. ma : array_like, 1d Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. See example. Notes ----- As mentioned above, both the AR and MA components should include the coefficient on the zero-lag. This is typically 1. Further, due to the conventions used in signal processing used in signal.lfilter vs. conventions in statistics for ARMA processes, the AR paramters should have the opposite sign of what you might expect. See the examples below. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> ar = np.r_[1, -ar] # add zero-lag and negate >>> ma = np.r_[1, ma] # add zero-lag >>> arma_process = sm.tsa.ArmaProcess(ar, ma) >>> arma_process.isstationary True >>> arma_process.isinvertible True >>> y = arma_process.generate_sample(250) >>> model = sm.tsa.ARMA(y, (2, 2)).fit(trend='nc', disp=0) >>> model.params array([ 0.79044189, -0.23140636, 0.70072904, 0.40608028]) """ # maybe needs special handling for unit roots def __init__(self, ar, ma, nobs=100): self.ar = np.asarray(ar) self.ma = np.asarray(ma) self.arcoefs = -self.ar[1:] self.macoefs = self.ma[1:] self.arpoly = np.polynomial.Polynomial(self.ar) self.mapoly = np.polynomial.Polynomial(self.ma) self.nobs = nobs @classmethod def from_coeffs(cls, arcoefs, macoefs, nobs=100): """ Create ArmaProcess instance from coefficients of the lag-polynomials Parameters ---------- arcoefs : array-like Coefficient for autoregressive lag polynomial, not including zero lag. The sign is inverted to conform to the usual time series representation of an ARMA process in statistics. See the class docstring for more information. macoefs : array-like Coefficient for moving-average lag polynomial, including zero lag nobs : int, optional Length of simulated time series. Used, for example, if a sample is generated. """ return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) @classmethod def from_estimation(cls, model_results, nobs=None): """ Create ArmaProcess instance from ARMA estimation results Parameters ---------- model_results : ARMAResults instance A fitted model nobs : int, optional If None, nobs is taken from the results """ arcoefs = model_results.arparams macoefs = model_results.maparams nobs = nobs or model_results.nobs return cls(np.r_[1, -arcoefs], np.r_[1, macoefs], nobs=nobs) def __mul__(self, oth): if isinstance(oth, self.__class__): ar = (self.arpoly * oth.arpoly).coef ma = (self.mapoly * oth.mapoly).coef else: try: aroth, maoth = oth arpolyoth = np.polynomial.Polynomial(aroth) mapolyoth = np.polynomial.Polynomial(maoth) ar = (self.arpoly * arpolyoth).coef ma = (self.mapoly * mapolyoth).coef except: print('other is not a valid type') raise return self.__class__(ar, ma, nobs=self.nobs) def __repr__(self): return 'ArmaProcess(%r, %r, nobs=%d)' % (self.ar.tolist(), self.ma.tolist(), self.nobs) def __str__(self): return 'ArmaProcess\nAR: %r\nMA: %r' % (self.ar.tolist(), self.ma.tolist()) def acovf(self, nobs=None): nobs = nobs or self.nobs return arma_acovf(self.ar, self.ma, nobs=nobs) acovf.__doc__ = arma_acovf.__doc__ def acf(self, nobs=None): nobs = nobs or self.nobs return arma_acf(self.ar, self.ma, nobs=nobs) acf.__doc__ = arma_acf.__doc__ def pacf(self, nobs=None): nobs = nobs or self.nobs return arma_pacf(self.ar, self.ma, nobs=nobs) pacf.__doc__ = arma_pacf.__doc__ def periodogram(self, nobs=None): nobs = nobs or self.nobs return arma_periodogram(self.ar, self.ma, worN=nobs) periodogram.__doc__ = arma_periodogram.__doc__ def impulse_response(self, nobs=None): nobs = nobs or self.nobs return arma_impulse_response(self.ar, self.ma, worN=nobs) impulse_response.__doc__ = arma_impulse_response.__doc__ def arma2ma(self, nobs=None): nobs = nobs or self.nobs return arma2ma(self.ar, self.ma, nobs=nobs) arma2ma.__doc__ = arma2ma.__doc__ def arma2ar(self, nobs=None): nobs = nobs or self.nobs return arma2ar(self.ar, self.ma, nobs=nobs) arma2ar.__doc__ = arma2ar.__doc__ @property def arroots(self): """ Roots of autoregressive lag-polynomial """ return self.arpoly.roots() @property def maroots(self): """ Roots of moving average lag-polynomial """ return self.mapoly.roots() @property def isstationary(self): '''Arma process is stationary if AR roots are outside unit circle Returns ------- isstationary : boolean True if autoregressive roots are outside unit circle ''' if np.all(np.abs(self.arroots) > 1): return True else: return False @property def isinvertible(self): '''Arma process is invertible if MA roots are outside unit circle Returns ------- isinvertible : boolean True if moving average roots are outside unit circle ''' if np.all(np.abs(self.maroots) > 1): return True else: return False def invertroots(self, retnew=False): '''make MA polynomial invertible by inverting roots inside unit circle Parameters ---------- retnew : boolean If False (default), then return the lag-polynomial as array. If True, then return a new instance with invertible MA-polynomial Returns ------- manew : array new invertible MA lag-polynomial, returned if retnew is false. wasinvertible : boolean True if the MA lag-polynomial was already invertible, returned if retnew is false. armaprocess : new instance of class If retnew is true, then return a new instance with invertible MA-polynomial ''' #TODO: variable returns like this? pr = self.ma_roots() insideroots = np.abs(pr) < 1 if insideroots.any(): pr[np.abs(pr) < 1] = 1./pr[np.abs(pr) < 1] pnew = np.polynomial.Polynomial.fromroots(pr) mainv = pnew.coef/pnew.coef[0] wasinvertible = False else: mainv = self.ma wasinvertible = True if retnew: return self.__class__(self.ar, mainv, nobs=self.nobs) else: return mainv, wasinvertible def generate_sample(self, nsample=100, scale=1., distrvs=None, axis=0, burnin=0): '''generate ARMA samples Parameters ---------- nsample : int or tuple of ints If nsample is an integer, then this creates a 1d timeseries of length size. If nsample is a tuple, then the timeseries is along axis. All other axis have independent arma samples. scale : float standard deviation of noise distrvs : function, random number generator function that generates the random numbers, and takes sample size as argument default: np.random.randn TODO: change to size argument burnin : integer (default: 0) to reduce the effect of initial conditions, burnin observations at the beginning of the sample are dropped axis : int See nsample. Returns ------- rvs : ndarray random sample(s) of arma process Notes ----- Should work for n-dimensional with time series along axis, but not tested yet. Processes are sampled independently. ''' if distrvs is None: distrvs = np.random.normal if np.ndim(nsample) == 0: nsample = [nsample] if burnin: #handle burin time for nd arrays #maybe there is a better trick in scipy.fft code newsize = list(nsample) newsize[axis] += burnin newsize = tuple(newsize) fslice = [slice(None)]*len(newsize) fslice[axis] = slice(burnin, None, None) fslice = tuple(fslice) else: newsize = tuple(nsample) fslice = tuple([slice(None)]*np.ndim(newsize)) eta = scale * distrvs(size=newsize) return signal.lfilter(self.ma, self.ar, eta, axis=axis)[fslice] __all__ = ['arma_acf', 'arma_acovf', 'arma_generate_sample', 'arma_impulse_response', 'arma2ar', 'arma2ma', 'deconvolve', 'lpol2index', 'index2lpol'] if __name__ == '__main__': # Simulate AR(1) #-------------- # ar * y = ma * eta ar = [1, -0.8] ma = [1.0] # generate AR data eta = 0.1 * np.random.randn(1000) yar1 = signal.lfilter(ar, ma, eta) print("\nExample 0") arest = ARIMAProcess(yar1) rhohat, cov_x, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat) print(cov_x) print("\nExample 1") ar = [1.0, -0.8] ma = [1.0, 0.5] y1 = arest.generate_sample(ar,ma,1000,0.1) arest = ARIMAProcess(y1) rhohat1, cov_x1, infodict, mesg, ier = arest.fit((1,0,1)) print(rhohat1) print(cov_x1) err1 = arest.errfn(x=y1) print(np.var(err1)) import statsmodels.api as sm print(sm.regression.yule_walker(y1, order=2, inv=True)) print("\nExample 2") nsample = 1000 ar = [1.0, -0.6, -0.1] ma = [1.0, 0.3, 0.2] y2 = ARIMA.generate_sample(ar,ma,nsample,0.1) arest2 = ARIMAProcess(y2) rhohat2, cov_x2, infodict, mesg, ier = arest2.fit((1,0,2)) print(rhohat2) print(cov_x2) err2 = arest.errfn(x=y2) print(np.var(err2)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,0,2)) print(rhohat2a) print(cov_x2a) err2a = arest.errfn(x=y2) print(np.var(err2a)) print(arest2.rhoy) print(arest2.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y2, order=2, inv=True)) print("\nExample 20") nsample = 1000 ar = [1.0]#, -0.8, -0.4] ma = [1.0, 0.5, 0.2] y3 = ARIMA.generate_sample(ar,ma,nsample,0.01) arest20 = ARIMAProcess(y3) rhohat3, cov_x3, infodict, mesg, ier = arest20.fit((2,0,0)) print(rhohat3) print(cov_x3) err3 = arest20.errfn(x=y3) print(np.var(err3)) print(np.sqrt(np.dot(err3,err3)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) rhohat3a, cov_x3a, infodict, mesg, ier = arest20.fit((0,0,2)) print(rhohat3a) print(cov_x3a) err3a = arest20.errfn(x=y3) print(np.var(err3a)) print(np.sqrt(np.dot(err3a,err3a)/nsample)) print(arest20.rhoy) print(arest20.rhoe) print("true") print(ar) print(ma) print(sm.regression.yule_walker(y3, order=2, inv=True)) print("\nExample 02") nsample = 1000 ar = [1.0, -0.8, 0.4] #-0.8, -0.4] ma = [1.0]#, 0.8, 0.4] y4 = ARIMA.generate_sample(ar,ma,nsample) arest02 = ARIMAProcess(y4) rhohat4, cov_x4, infodict, mesg, ier = arest02.fit((2,0,0)) print(rhohat4) print(cov_x4) err4 = arest02.errfn(x=y4) print(np.var(err4)) sige = np.sqrt(np.dot(err4,err4)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4))) print(np.sqrt(np.diag(cov_x4))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) rhohat4a, cov_x4a, infodict, mesg, ier = arest02.fit((0,0,2)) print(rhohat4a) print(cov_x4a) err4a = arest02.errfn(x=y4) print(np.var(err4a)) sige = np.sqrt(np.dot(err4a,err4a)/nsample) print(sige) print(sige * np.sqrt(np.diag(cov_x4a))) print(np.sqrt(np.diag(cov_x4a))) print(arest02.rhoy) print(arest02.rhoe) print("true") print(ar) print(ma) import statsmodels.api as sm print(sm.regression.yule_walker(y4, order=2, method='mle', inv=True)) import matplotlib.pyplot as plt plt.plot(arest2.forecast()[-100:]) #plt.show() ar1, ar2 = ([1, -0.4], [1, 0.5]) ar2 = [1, -1] lagpolyproduct = np.convolve(ar1, ar2) print(deconvolve(lagpolyproduct, ar2, n=None)) print(signal.deconvolve(lagpolyproduct, ar2)) print(deconvolve(lagpolyproduct, ar2, n=10))
bsd-3-clause
jakereimer/pipeline
python/pipeline/utils/mask_classification.py
5
11400
""" Mask classification functions. """ import numpy as np def classify_manual(masks, template): """ Opens a GUI that lets you manually classify masks into any of the valid types. :param np.array masks: 3-d array of masks (num_masks, image_height, image_width) :param np.array template: Image used as background to help with mask classification. """ import matplotlib.pyplot as plt import seaborn as sns mask_types= [] plt.ioff() for mask in masks: ir = mask.sum(axis=1) > 0 ic = mask.sum(axis=0) > 0 il, jl = [max(np.min(np.where(i)[0]) - 10, 0) for i in [ir, ic]] ih, jh = [min(np.max(np.where(i)[0]) + 10, len(i)) for i in [ir, ic]] tmp_mask = np.array(mask[il:ih, jl:jh]) with sns.axes_style('white'): fig, ax = plt.subplots(1, 3, sharex=True, sharey=True, figsize=(10, 3)) ax[0].imshow(template[il:ih, jl:jh], cmap=plt.cm.get_cmap('gray')) ax[1].imshow(template[il:ih, jl:jh], cmap=plt.cm.get_cmap('gray')) tmp_mask[tmp_mask == 0] = np.NaN ax[1].matshow(tmp_mask, cmap=plt.cm.get_cmap('viridis'), alpha=0.5, zorder=10) ax[2].matshow(tmp_mask, cmap=plt.cm.get_cmap('viridis')) for a in ax: a.set_aspect(1) a.axis('off') fig.tight_layout() fig.canvas.manager.window.wm_geometry("+250+250") fig.suptitle('S(o)ma, A(x)on, (D)endrite, (N)europil, (A)rtifact or (U)nknown?') def on_button(event): if event.key == 'o': mask_types.append('soma') plt.close(fig) elif event.key == 'x': mask_types.append('axon') plt.close(fig) elif event.key == 'd': mask_types.append('dendrite') plt.close(fig) elif event.key == 'n': mask_types.append('neuropil') plt.close(fig) elif event.key == 'a': mask_types.append('artifact') plt.close(fig) elif event.key == 'u': mask_types.append('unknown') plt.close(fig) fig.canvas.mpl_connect('key_press_event', on_button) plt.show() sns.reset_orig() return mask_types def classify_manual_extended(masks,template1,template2,template3,template4,template5,traces1,traces2,movie,threshold=80,window=3): """ Opens a GUI that lets you manually classify masks into any of the valid types. :param np.array masks: 3-d array of masks (num_masks, image_height, image_width) :param np.array template1: Image used as background to help with mask classification. :param np.array template2: Image used as background to help with mask classification. :param np.array template3: Image used as background to help with mask classification. :param np.array template4: Image used as background to help with mask classification. :param np.array template5: Series of 7 images used as background to help with mask classification. :param np.array traces1: 2-d array of mask activity plotted and used to highlight high activity frames (num_masks,num_frames) :param np.array traces2: 2-d array of mask activity, plotted (num_masks,num_frames) :param np.array movie: 3-d array of motion corrected imaging frames (image_height, image_width, num_frames) :param float threshold: percentile between 0 and 100 used to plot inner versus outer mask :param int window: odd number indicating width of window used in median filter of trace 1 searching for high activity frames """ import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns from scipy import signal mask_types= [] plt.ioff() for mask, trace1, trace2 in zip(masks, traces1, traces2): with sns.axes_style('white'): fig, axes = plt.subplots(4, 7, figsize(30, 20)) ir = mask.sum(axis=1) > 0 ic = mask.sum(axis=1) > 0 il, jl = [max(np.min(np.where(i)[0]) - 10, 0) for i in [ir, ic]] ih, jh = [min(np.max(np.where(i)[0]) + 10, len(i)) for i in [ir, ic]] plot_mask = np.array(mask[il:ih, jl:jh]) for ax,template in zip(axes[0][:6], [plot_mask, template1, template2-template1, template1, template4, template3, template3*template1]): ax.matshow(template[il:ih, jl:jh], cmap=cm.get_cmap('gray')) ax.contour(plot_mask, np.percentile(mask[mask>0], threshold), linewidths=0.8, colors='w') ax.contour(plot_mask, [0.01], linewidths=0.8, colors='w') ax.set_aspect(1) ax.axis('off') for ax,template in zip(axes[1], template5): ax.matshow(template[il:ih, jl:jh], cmap=cm.get_cmap('gray')) ax.contour(plot_mask, np.percentile(mask[mask > 0], threshold), linewidths=0.8, colors='w') ax.contour(plot_mask, [0.01], linewidths=0.8, colors='w') ax.set_aspect(1) ax.axis('off') filt_trace = signal.medfilt(trace1, window) idx = detect_peaks(filt_trace, mpd=len(trace1)/window) centers = np.flip(sorted(np.stack([idx, filt_trace[idx]]).T, key=lambda x: x[1]))[:7] for ax,center in zip(axes[3], sorted(centers, key=lambda x: x[0])[:][0]): frame = np.max(movie[0][:, :, int(center-window/2):int(center+window/2+.5)]) ax.matshow(frame[il:ih, jl:jh], cmap=cm.get_cmap('gray')) ax.contour(plot_mask, np.percentile(mask[mask > 0], threshold), linewidths=0.8, colors='w') ax.contour(plot_mask, [0.01], linewidths=0.8, colors='w') ax.set_aspect(1) ax.axis('off') trace1_ax = plt.subplot(8, 1, 5) trace1_ax.plot(trace1) trace1_ax.plot(centers, trace1[[int(center) for center in centers]], 'or') trace2_ax = plt.subplot(8, 1, 6) trace2_ax.plot(trace2) fig.tight_layout() fig.canvas.manager.window.wm_geometry("+250+250") fig.suptitle('S(o)ma, A(x)on, (D)endrite, (N)europil, (A)rtifact or (U)nknown?') def on_button(event): if event.key == 'o': mask_types.append('soma') plt.close(fig) elif event.key == 'x': mask_types.append('axon') plt.close(fig) elif event.key == 'd': mask_types.append('dendrite') plt.close(fig) elif event.key == 'n': mask_types.append('neuropil') plt.close(fig) elif event.key == 'a': mask_types.append('artifact') plt.close(fig) elif event.key == 'u': mask_types.append('unknown') plt.close(fig) fig.canvas.mpl_connect('key_press_event', on_button) plt.show() sns.reset_orig() return mask_types def detect_peaks(x, mph=None, mpd=1, threshold=0, edge='rising', kpsh=False, valley=False, show=False, ax=None): """Detect peaks in data based on their amplitude and other features. Parameters ---------- x : 1D array_like data. mph : {None, number}, optional (default = None) detect peaks that are greater than minimum peak height. mpd : positive integer, optional (default = 1) detect peaks that are at least separated by minimum peak distance (in number of data). threshold : positive number, optional (default = 0) detect peaks (valleys) that are greater (smaller) than `threshold` in relation to their immediate neighbors. edge : {None, 'rising', 'falling', 'both'}, optional (default = 'rising') for a flat peak, keep only the rising edge ('rising'), only the falling edge ('falling'), both edges ('both'), or don't detect a flat peak (None). kpsh : bool, optional (default = False) keep peaks with same height even if they are closer than `mpd`. valley : bool, optional (default = False) if True (1), detect valleys (local minima) instead of peaks. show : bool, optional (default = False) if True (1), plot data in matplotlib figure. ax : a matplotlib.axes.Axes instance, optional (default = None). Returns ------- ind : 1D array_like indeces of the peaks in `x`. Notes ----- The detection of valleys instead of peaks is performed internally by simply negating the data: `ind_valleys = detect_peaks(-x)` The function can handle NaN's See this IPython Notebook [1]_. References ---------- .. [1] http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/DetectPeaks.ipynb __author__ = "Marcos Duarte, https://github.com/demotu/BMC" __version__ = "1.0.4" __license__ = "MIT" """ x = np.atleast_1d(x).astype('float64') if x.size < 3: return np.array([], dtype=int) if valley: x = -x # find indices of all peaks dx = x[1:] - x[:-1] # handle NaN's indnan = np.where(np.isnan(x))[0] if indnan.size: x[indnan] = np.inf dx[np.where(np.isnan(dx))[0]] = np.inf ine, ire, ife = np.array([[], [], []], dtype=int) if not edge: ine = np.where((np.hstack((dx, 0)) < 0) & (np.hstack((0, dx)) > 0))[0] else: if edge.lower() in ['rising', 'both']: ire = np.where((np.hstack((dx, 0)) <= 0) & (np.hstack((0, dx)) > 0))[0] if edge.lower() in ['falling', 'both']: ife = np.where((np.hstack((dx, 0)) < 0) & (np.hstack((0, dx)) >= 0))[0] ind = np.unique(np.hstack((ine, ire, ife))) # handle NaN's if ind.size and indnan.size: # NaN's and values close to NaN's cannot be peaks ind = ind[np.in1d(ind, np.unique(np.hstack((indnan, indnan - 1, indnan + 1))), invert=True)] # first and last values of x cannot be peaks if ind.size and ind[0] == 0: ind = ind[1:] if ind.size and ind[-1] == x.size - 1: ind = ind[:-1] # remove peaks < minimum peak height if ind.size and mph is not None: ind = ind[x[ind] >= mph] # remove peaks - neighbors < threshold if ind.size and threshold > 0: dx = np.min(np.vstack([x[ind] - x[ind - 1], x[ind] - x[ind + 1]]), axis=0) ind = np.delete(ind, np.where(dx < threshold)[0]) # detect small peaks closer than minimum peak distance if ind.size and mpd > 1: ind = ind[np.argsort(x[ind])][::-1] # sort ind by peak height idel = np.zeros(ind.size, dtype=bool) for i in range(ind.size): if not idel[i]: # keep peaks with the same height if kpsh is True idel = idel | (ind >= ind[i] - mpd) & (ind <= ind[i] + mpd) \ & (x[ind[i]] > x[ind] if kpsh else True) idel[i] = 0 # Keep current peak # remove the small peaks and sort back the indices by their occurrence ind = np.sort(ind[~idel]) if show: if indnan.size: x[indnan] = np.nan if valley: x = -x _plot(x, mph, mpd, threshold, edge, valley, ax, ind) return ind
lgpl-3.0
winklerand/pandas
pandas/tests/io/parser/test_textreader.py
1
12995
# -*- coding: utf-8 -*- """ Tests the TextReader class in parsers.pyx, which is integral to the C engine in parsers.py """ import pytest from pandas.compat import StringIO, BytesIO, map from pandas import compat import os import sys from numpy import nan import numpy as np from pandas import DataFrame from pandas.io.parsers import (read_csv, TextFileReader) from pandas.util.testing import assert_frame_equal import pandas.util.testing as tm from pandas._libs.parsers import TextReader import pandas._libs.parsers as parser class TestTextReader(object): def setup_method(self, method): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def test_file_handle(self): try: f = open(self.csv1, 'rb') reader = TextReader(f) result = reader.read() # noqa finally: f.close() def test_string_filename(self): reader = TextReader(self.csv1, header=None) reader.read() def test_file_handle_mmap(self): try: f = open(self.csv1, 'rb') reader = TextReader(f, memory_map=True, header=None) reader.read() finally: f.close() def test_StringIO(self): with open(self.csv1, 'rb') as f: text = f.read() src = BytesIO(text) reader = TextReader(src, header=None) reader.read() def test_string_factorize(self): # should this be optional? data = 'a\nb\na\nb\na' reader = TextReader(StringIO(data), header=None) result = reader.read() assert len(set(map(id, result[0]))) == 2 def test_skipinitialspace(self): data = ('a, b\n' 'a, b\n' 'a, b\n' 'a, b') reader = TextReader(StringIO(data), skipinitialspace=True, header=None) result = reader.read() tm.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a', 'a'], dtype=np.object_)) tm.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b', 'b'], dtype=np.object_)) def test_parse_booleans(self): data = 'True\nFalse\nTrue\nTrue' reader = TextReader(StringIO(data), header=None) result = reader.read() assert result[0].dtype == np.bool_ def test_delimit_whitespace(self): data = 'a b\na\t\t "b"\n"a"\t \t b' reader = TextReader(StringIO(data), delim_whitespace=True, header=None) result = reader.read() tm.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a'], dtype=np.object_)) tm.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b'], dtype=np.object_)) def test_embedded_newline(self): data = 'a\n"hello\nthere"\nthis' reader = TextReader(StringIO(data), header=None) result = reader.read() expected = np.array(['a', 'hello\nthere', 'this'], dtype=np.object_) tm.assert_numpy_array_equal(result[0], expected) def test_euro_decimal(self): data = '12345,67\n345,678' reader = TextReader(StringIO(data), delimiter=':', decimal=',', header=None) result = reader.read() expected = np.array([12345.67, 345.678]) tm.assert_almost_equal(result[0], expected) def test_integer_thousands(self): data = '123,456\n12,500' reader = TextReader(StringIO(data), delimiter=':', thousands=',', header=None) result = reader.read() expected = np.array([123456, 12500], dtype=np.int64) tm.assert_almost_equal(result[0], expected) def test_integer_thousands_alt(self): data = '123.456\n12.500' reader = TextFileReader(StringIO(data), delimiter=':', thousands='.', header=None) result = reader.read() expected = DataFrame([123456, 12500]) tm.assert_frame_equal(result, expected) @tm.capture_stderr def test_skip_bad_lines(self): # too many lines, see #2430 for why data = ('a:b:c\n' 'd:e:f\n' 'g:h:i\n' 'j:k:l:m\n' 'l:m:n\n' 'o:p:q:r') reader = TextReader(StringIO(data), delimiter=':', header=None) pytest.raises(parser.ParserError, reader.read) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=False) result = reader.read() expected = {0: np.array(['a', 'd', 'g', 'l'], dtype=object), 1: np.array(['b', 'e', 'h', 'm'], dtype=object), 2: np.array(['c', 'f', 'i', 'n'], dtype=object)} assert_array_dicts_equal(result, expected) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=True) reader.read() val = sys.stderr.getvalue() assert 'Skipping line 4' in val assert 'Skipping line 6' in val def test_header_not_enough_lines(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2) header = reader.header expected = [['a', 'b', 'c']] assert header == expected recs = reader.read() expected = {0: np.array([1, 4], dtype=np.int64), 1: np.array([2, 5], dtype=np.int64), 2: np.array([3, 6], dtype=np.int64)} assert_array_dicts_equal(recs, expected) # not enough rows pytest.raises(parser.ParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_header_not_enough_lines_as_recarray(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2, as_recarray=True) header = reader.header expected = [['a', 'b', 'c']] assert header == expected recs = reader.read() expected = {'a': np.array([1, 4], dtype=np.int64), 'b': np.array([2, 5], dtype=np.int64), 'c': np.array([3, 6], dtype=np.int64)} assert_array_dicts_equal(expected, recs) # not enough rows pytest.raises(parser.ParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_escapechar(self): data = ('\\"hello world\"\n' '\\"hello world\"\n' '\\"hello world\"') reader = TextReader(StringIO(data), delimiter=',', header=None, escapechar='\\') result = reader.read() expected = {0: np.array(['"hello world"'] * 3, dtype=object)} assert_array_dicts_equal(result, expected) def test_eof_has_eol(self): # handling of new line at EOF pass def test_na_substitution(self): pass def test_numpy_string_dtype(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S5,i4') result = reader.read() assert result[0].dtype == 'S5' ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaaa'], dtype='S5') assert (result[0] == ex_values).all() assert result[1].dtype == 'i4' reader = _make_reader(dtype='S4') result = reader.read() assert result[0].dtype == 'S4' ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') assert (result[0] == ex_values).all() assert result[1].dtype == 'S4' def test_numpy_string_dtype_as_recarray(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S4', as_recarray=True) result = reader.read() assert result['0'].dtype == 'S4' ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') assert (result['0'] == ex_values).all() assert result['1'].dtype == 'S4' def test_pass_dtype(self): data = """\ one,two 1,a 2,b 3,c 4,d""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(dtype={'one': 'u1', 1: 'S1'}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'S1' reader = _make_reader(dtype={'one': np.uint8, 1: object}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'O' reader = _make_reader(dtype={'one': np.dtype('u1'), 1: np.dtype('O')}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'O' def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(usecols=(1, 2)) result = reader.read() exp = _make_reader().read() assert len(result) == 2 assert (result[1] == exp[1]).all() assert (result[2] == exp[2]).all() def test_cr_delimited(self): def _test(text, **kwargs): nice_text = text.replace('\r', '\r\n') result = TextReader(StringIO(text), **kwargs).read() expected = TextReader(StringIO(nice_text), **kwargs).read() assert_array_dicts_equal(result, expected) data = 'a,b,c\r1,2,3\r4,5,6\r7,8,9\r10,11,12' _test(data, delimiter=',') data = 'a b c\r1 2 3\r4 5 6\r7 8 9\r10 11 12' _test(data, delim_whitespace=True) data = 'a,b,c\r1,2,3\r4,5,6\r,88,9\r10,11,12' _test(data, delimiter=',') sample = ('A,B,C,D,E,F,G,H,I,J,K,L,M,N,O\r' 'AAAAA,BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0\r' ',BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0') _test(sample, delimiter=',') data = 'A B C\r 2 3\r4 5 6' _test(data, delim_whitespace=True) data = 'A B C\r2 3\r4 5 6' _test(data, delim_whitespace=True) def test_empty_field_eof(self): data = 'a,b,c\n1,2,3\n4,,' result = TextReader(StringIO(data), delimiter=',').read() expected = {0: np.array([1, 4], dtype=np.int64), 1: np.array(['2', ''], dtype=object), 2: np.array(['3', ''], dtype=object)} assert_array_dicts_equal(result, expected) # GH5664 a = DataFrame([['b'], [nan]], columns=['a'], index=['a', 'c']) b = DataFrame([[1, 1, 1, 0], [1, 1, 1, 0]], columns=list('abcd'), index=[1, 1]) c = DataFrame([[1, 2, 3, 4], [6, nan, nan, nan], [8, 9, 10, 11], [13, 14, nan, nan]], columns=list('abcd'), index=[0, 5, 7, 12]) for _ in range(100): df = read_csv(StringIO('a,b\nc\n'), skiprows=0, names=['a'], engine='c') assert_frame_equal(df, a) df = read_csv(StringIO('1,1,1,1,0\n' * 2 + '\n' * 2), names=list("abcd"), engine='c') assert_frame_equal(df, b) df = read_csv(StringIO('0,1,2,3,4\n5,6\n7,8,9,10,11\n12,13,14'), names=list('abcd'), engine='c') assert_frame_equal(df, c) def test_empty_csv_input(self): # GH14867 df = read_csv(StringIO(), chunksize=20, header=None, names=['a', 'b', 'c']) assert isinstance(df, TextFileReader) def assert_array_dicts_equal(left, right): for k, v in compat.iteritems(left): assert tm.assert_numpy_array_equal(np.asarray(v), np.asarray(right[k]))
bsd-3-clause