repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
imcgreer/rapala
ninetyprime/detchar.py
2
18782
#!/usr/bin/env python import os,sys from glob import glob import numpy as np import fitsio import multiprocessing from functools import partial from scipy.ndimage.filters import gaussian_filter from astropy.stats import sigma_clip from astropy.table import Table,vstack from bokpipe.bokoscan import extract_overscan,fit_overscan,overscan_subtract from bokpipe.bokproc import ampOrder from bokpipe.bokutil import stats_region,array_clip,array_stats import matplotlib.pyplot as plt from matplotlib import ticker def _data2arr(data,minVal=0,maxVal=65335,clip=True): arr = np.ma.masked_array(data.astype(np.float32), mask=((data<minVal)|(data>maxVal))) return array_clip(arr,clip_iters=2,clip_sig=5.0) def _open_fits(f): try: return fitsio.FITS(f) except IOError: return fitsio.FITS(f+'.fz') def calc_gain_rdnoise(biases,flats): rv = [] s = stats_region('amp_corner_ccdcenter_1024') for files in zip(biases[:-1],biases[1:],flats[:-1],flats[1:]): ff = [_open_fits(f) for f in files] data = np.empty(1,dtype=[('bias1','S35'),('bias2','S35'), ('flat1','S35'),('flat2','S35'), ('biasADU','f4',16),('flatADU','f4',16), ('biasRmsADU','f4',16),('flatRmsADU','f4',16), ('gain','f4',16),('rdnoise','f4',16)]) data['bias1'] = os.path.basename(files[0]) data['bias2'] = os.path.basename(files[1]) data['flat1'] = os.path.basename(files[2]) data['flat2'] = os.path.basename(files[3]) skip = False for ext in range(1,17): try: bias1,bias2 = [ _data2arr(f[ext].read()[s],100,5000) for f in ff[:2]] flat1,flat2 = [ _data2arr(f[ext].read()[s],100,50000) for f in ff[2:] ] except: print 'failed with ',ff skip = True break _B1 = bias1.mean() _B2 = bias2.mean() _F1 = flat1.mean() _F2 = flat2.mean() if ext==1 and (np.abs(_F1-_F2)/_F1) > 0.05: # a very large jump in the flat field value will throw # this calculation off, restrict it to 5% variation skip = True break try: varF1F2 = (flat1-flat2).var() varB1B2 = (bias1-bias2).var() except: # some images have wrong format... data['gain'][0,ext-1] = -1 data['rdnoise'][0,ext-1] = -1 continue # equations from end of sec 4.3 (pg 73) of Howell 2006 gain = ( (_F1 + _F2) - (_B1 + _B2) ) / (varF1F2 - varB1B2) rdnoise = gain * np.sqrt(varB1B2/2) data['biasADU'][0,ext-1] = _B1 data['flatADU'][0,ext-1] = _F1 data['biasRmsADU'][0,ext-1] = bias1.std() data['flatRmsADU'][0,ext-1] = flat1.std() data['gain'][0,ext-1] = gain data['rdnoise'][0,ext-1] = rdnoise if not skip: rv.append(data) return np.concatenate(rv) def fastreadout_analysis(): datadir = get_BASS_datadir() getims = lambda f1,f2: [os.path.join(datadir,'20150205', 'd7058.%04d.fits.gz'%f) for f in range(f1,f2+1)] # bias_std_fns = getims(1,10) bias_oscan_fns = getims(11,20) bias_fast_fns = getims(21,30) flat_fastlo_fns = getims(31,40) flat_fasthi_fns = getims(41,50) flat_stdhi_fns = getims(51,60) flat_stdlo_fns = getims(61,62) x1,x2 = 300,-300 y1,y2 = 300,-300 # det = {} for readmode in ['standard','fast']: det[readmode] = { 'gain':np.zeros((16,9)), 'readnoise':np.zeros((16,9)), } if readmode == 'standard': biases = bias_std_fns flats = flat_stdhi_fns else: biases = bias_fast_fns flats = flat_fasthi_fns j = 0 for b1fn,b2fn,f1fn,f2fn in zip(biases[:-1],biases[1:], flats[:-1],flats[1:]): bias1fits = fits.open(b1fn) bias2fits = fits.open(b2fn) flat1fits = fits.open(f1fn) flat2fits = fits.open(f2fn) for ext in range(1,17): bias1 = sigma_clip(bias1fits[ext].data[y1:y2,x1:x2]) bias2 = sigma_clip(bias2fits[ext].data[y1:y2,x1:x2]) flat1 = sigma_clip(flat1fits[ext].data[y1:y2,x1:x2]) flat2 = sigma_clip(flat2fits[ext].data[y1:y2,x1:x2]) _B1 = bias1.mean() _B2 = bias2.mean() _F1 = flat1.mean() _F2 = flat2.mean() varF1F2 = (flat1-flat2).var() varB1B2 = (bias1-bias2).var() # equations from end of sec 4.3 (pg 73) of Howell 2006 gain = ( (_F1 + _F2) - (_B1 + _B2) ) / (varF1F2 - varB1B2) rdnoise = gain * np.sqrt(varB1B2/2) det[readmode]['gain'][ext-1,j] = gain det[readmode]['readnoise'][ext-1,j] = rdnoise print readmode,j,ext,gain,rdnoise,_F1 j += 1 return det def dump_fastmode_analysis(det): print ' '*10,'%6s %6s %6s ' % ('','gain',''), print '%6s %6s %6s ' % ('','rdnoise','') print ' '*10,'%6s %6s %6s ' % ('std','fast','ratio'), print '%6s %6s %6s' % ('std','fast','ratio') for i in range(16): print 'chip #%2d ' % (i+1), for p in ['gain','readnoise']: v1 = sigma_clip(det['standard'][p][i]) v2 = sigma_clip(det['fast'][p][i]) print '%6.2f %6.2f %6.3f ' % \ (v1.mean(),v2.mean(),v2.mean()/v1.mean()), print def plot_fastmode_analysis(det): for p in ['gain','readnoise']: plt.figure(figsize=(7.5,9.5)) plt.subplots_adjust(0.03,0.03,0.98,0.98) for i in range(16): plt.subplot(4,4,i+1) for mode in ['standard','fast']: v = det[mode][p][i] eta = {'gain':0.01,'readnoise':0.05}[p] bins = np.arange(v.min()-eta,v.max()+2*eta,eta) plt.hist(v,bins,histtype='step') def find_cal_sequences(log,min_len=5): # frameIndex isn't actually a straight table index, but rather a unique # id. adding a running index makes the group sorting much clearer. t = Table(log).group_by('utDir') t['ii'] = np.arange(len(t)) calseqs = {'zero':[],'flat':[],'zero_and_flat':[]} for ut in t.groups: iscal = np.where((ut['imType']=='zero')|(ut['imType']=='flat'))[0] if len(iscal)==0: continue # this wouldn't work if someone changed the filter in the middle # of a bias sequence... not worth worrying about ut_type = ut[iscal].group_by(['imType','filter','expTime']) for utt in ut_type.groups: if len(utt) < min_len: continue imType = utt['imType'][0] ii = np.arange(len(utt)) seqs = np.split(ii,1+np.where(np.diff(utt['frameIndex'])>1)[0]) seqs = [ np.array(utt['ii'][s]) for s in seqs if len(s) >= min_len ] calseqs[imType].extend(seqs) # bias/flat sequences taken in succession, for gain/RN calculation # kind of hacky, just look for a set of flats taken roughly close to # each set of biases (as in, within 20 minutes) max_deltat_minutes = 20. mjdk = 'mjd' if 'mjd' in t.colnames else 'mjdStart' bias_times = np.array([ t[mjdk][s[0]] for s in calseqs['zero'] ]) flat_times = np.array([ t[mjdk][s[0]] for s in calseqs['flat'] ]) if len(flat_times) > 0: for bt,bs in zip(bias_times,calseqs['zero']): j = np.argmin(np.abs(bt-flat_times)) if 24*60*np.abs(bt-flat_times[j]) < max_deltat_minutes: calseqs['zero_and_flat'].append((bs,calseqs['flat'][j])) return calseqs def bias_checks(bias,overscan=False): i = 0 rv = np.zeros(1,dtype=[('fileName','S35'), ('sliceMeanAdu','f4',(16,)), ('sliceRmsAdu','f4',(16,)), ('sliceRangeAdu','f4',(16,)), ('dropFlag','i4',(16,)), ('residualMeanAdu','f4',(16,)), ('residualRmsAdu','f4',(16,))]) fn = os.path.basename(bias).replace('.fz','').replace('.fits','') print 'checking ',fn rv['fileName'][i] = fn fits = _open_fits(bias) if len(fits[1:]) != 16: print 'ERROR: %s has %d img extensions' % (fn,len(fits[1:])) return rv for j,hdu in enumerate(fits[1:]): imNum = 'IM%d' % ampOrder[j] try: data = hdu.read().astype(np.float32) hdr = hdu.read_header() except: print 'ERROR: failed to read %s[%d]'%(fn,j+1) continue if overscan: _data,oscan_cols,oscan_rows = extract_overscan(data,hdr) #colbias = fit_overscan(oscan_cols,**kwargs) if oscan_rows is not None: rowbias = fit_overscan(oscan_rows,along='rows', method='cubic_spline') cslice = sigma_clip(data[-22:-2:,2:-22], iters=1,sigma=3.0,axis=0) else: cslice = None # No row overscan to check bottomslice = data[5:10,-16:-2].mean(axis=0) middleslice = data[100:110,-16:-2].mean(axis=0) else: cslice = sigma_clip(data[1032:1048,2:-22],iters=1,sigma=3.0,axis=0) bottomslice = data[5:10,1000:1014].mean(axis=0) middleslice = data[100:110,1000:1014].mean(axis=0) if cslice is not None: cslice = cslice.mean(axis=0) cslice = gaussian_filter(cslice,17) rv['sliceMeanAdu'][i,j] = cslice.mean() rv['sliceRmsAdu'][i,j] = cslice.std() rv['sliceRangeAdu'][i,j] = cslice.max() - cslice.min() if np.median(middleslice-bottomslice) > 15: print 'found drop in ',bias,j rv['dropFlag'][i,j] = 1 bias_residual = overscan_subtract(data,hdr) s = stats_region('amp_central_quadrant') mn,sd = array_stats(bias_residual[s],method='mean',rms=True, clip_sig=5.0,clip_iters=2) rv['residualMeanAdu'][i,j] = mn rv['residualRmsAdu'][i,j] = sd return rv def quick_parallel(fun,input,nproc,**kwargs): if nproc > 1: fun_with_args = partial(fun,**kwargs) p = multiprocessing.Pool(nproc) rv = p.map(fun_with_args,input) p.close() p.join() else: # instead of creating a 1-process pool just run the sequence rv = [ fun(x,**kwargs) for x in input ] return np.concatenate(rv) def run_qa(log,logFits,datadir,nproc=1,dogainrn=True,dobitcheck=True, nsplit=0,nrun=0): imType = np.char.rstrip(log['imType']) fileNames = np.char.rstrip(log['fileName']) utDirs = np.char.rstrip(log['utDir']) filePaths = np.char.add(np.char.add(utDirs,'/'),fileNames) filePaths = np.char.add(np.char.add(datadir,filePaths),'.fits') calseqs = find_cal_sequences(log) for imtype in calseqs: print 'found %d %s sequences' % (len(calseqs[imtype]),imtype) # # empirical gain/readnoise calculation # if dogainrn: for bi,fi in calseqs['zero_and_flat']: biases = filePaths[bi] flats = filePaths[fi] # skip the first image in each sequence gainrdnoise = calc_gain_rdnoise(biases[1:],flats[1:]) logFits.write(gainrdnoise,extname='GAINRN') # # bit integrity check # if dobitcheck and len(calseqs['flat'])>0: flats = filePaths[np.concatenate(calseqs['flat'])] nbits = 8 bitbit = np.zeros(len(flats),dtype=[('fileName','S35'), ('bitFreq','f4',(16,nbits))]) for i,flat in enumerate(flats): fn = os.path.basename(flat).replace('.fz','').replace('.fits','') bitbit['fileName'][i] = fn fits = _open_fits(flat) for j,hdu in enumerate(fits[1:]): imNum = 'IM%d' % ampOrder[j] data = hdu.read().astype(np.int32) npix = float(data.size) for bit in range(nbits): nbit = np.sum((data&(1<<bit))>0) bitbit['bitFreq'][i,j,bit] = nbit/npix print 'flat ',i,' out of ',len(flats) logFits.write(bitbit,extname='BITCHK') # # bias ramps # if len(calseqs['zero'])>0: # this checks for bias features using the image region of biases, # used to check that the overscan feature search works correctly biases = filePaths[np.concatenate(calseqs['zero'])] biasrmp = quick_parallel(bias_checks,biases,nproc,overscan=False) logFits.write(biasrmp,extname='BIASCHK') ii = np.where((imType=='zero')|(imType=='object'))[0] if nsplit > 0: print 'splits: ',ii[0],len(ii), ii = np.array_split(ii,nsplit)[nrun] print ii[0],len(ii) print 'checking overscans for ',len(ii),' images' images = filePaths[ii] biasrmp = quick_parallel(bias_checks,images,nproc,overscan=True) biasrmp = np.lib.recfunctions.append_fields(biasrmp,'imType',imType[ii], dtypes=imType.dtype) logFits.write(biasrmp,extname='OSCANCHK') def run_nightly_checks(utdir,logdir,datadir,redo=False): from bokpipe.bokobsdb import generate_log print 'running nightly check on ',utdir logf = os.path.join(logdir,'log_ut%s.fits' % os.path.basename(utdir)) if os.path.exists(logf): # assume that if log file exists processing is already done if not redo: return else: # start the file over log = fitsio.read(logf,1) os.remove(logf) logFits = fitsio.FITS(logf,'rw') logFits.write(log) else: generate_log([utdir],logf) logFits = fitsio.FITS(logf,'rw') log = logFits[1].read() run_qa(log,logFits,datadir) logFits.close() def _reportfig_init8(): fig = plt.figure(figsize=(7.5,9.5)) fig.subplots_adjust(0.1,0.025,0.95,0.975,0.35,0.3) return fig def gainrn_report(data,outf,utbreaks=None,save=True): plot_fields = [ ('biasADU',(700,1200), 'biasRmsADU',(2,10)), ('flatADU',(1e4,6e4), 'flatRmsADU',(0,600)), ('gain',(0,3), 'rdnoise',(0,15)), ] for i in range(len(data)): outf.write('%4d %s %s %s %s\n' % (i,data['bias1'][i],data['bias2'][i], data['flat1'][i],data['flat2'][i])) outf.write('\n') for fields in plot_fields: fig = _reportfig_init8() f1,fr1,f2,fr2 = fields for i in range(4): ax1 = fig.add_subplot(4,2,i+1) ax2 = fig.add_subplot(4,2,i+1+4) for utb in utbreaks: for ax in [ax1,ax2]: ax.axvline(utb,c='gray',ls=':',lw=0.5) for j in range(4): ax1.plot(data[f1][:,4*i+j],label='IM%d'%ampOrder[4*i+j]) ax2.plot(data[f2][:,4*i+j],label='IM%d'%ampOrder[4*i+j]) ax1.legend(ncol=4,frameon=False,fontsize=9,columnspacing=1.0) ax2.legend(ncol=4,frameon=False,fontsize=9,columnspacing=1.0) ax1.set_ylim(*fr1) ax2.set_ylim(*fr2) ax1.set_ylabel(f1+' CCD%d'%(i+1),size=11) ax2.set_ylabel(f2+' CCD%d'%(i+1),size=11) for f in [f1,f2]: for j in range(4): outf.write('%-12s CCD%d\n' % (f,j+1)) for i in range(len(data)): outf.write('%4d ' % (i)) for k in range(4): outf.write('%8.2f '%data[f][i,4*j+k]) outf.write('\n') outf.write('\n') if save: plt.savefig('bass_summary_%s.png'%f1[:4]) def _reportfig_init16(): fig = plt.figure(figsize=(7.5,9.5)) fig.subplots_adjust(0.1,0.025,0.95,0.975,0.35,0.3) return fig def bit_report(data,outf,utbreaks=None,save=True): fig = _reportfig_init16() for i in range(16): ax = fig.add_subplot(4,4,i+1) if utbreaks is not None: for utb in utbreaks: ax.axvline(utb,c='gray',ls=':',lw=0.5) haslab = False # suppresses a warning message for j in range(6): l = 'bit%d'%j if j//2==i else None if l is not None: haslab = True ax.plot(data['bitFreq'][:,i,j],label=l) for n in range(data['bitFreq'].shape[0]): outf.write('%s ' % data['fileName'][n]) outf.write(('%.3f '*6) % tuple(data['bitFreq'][n,i,:6])) outf.write('\n') if haslab: ax.legend(ncol=2,frameon=False,fontsize=8,columnspacing=1.0) ax.set_ylim(0.35,0.65) ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.01)) if save: plt.savefig('bass_summary_%s.png'%'bits') def calc_overheads(logdata): logdata = Table(logdata) mjdk = 'mjd' if 'mjd' in logdata.colnames else 'mjdStart' dt = np.diff(logdata[mjdk])*24*3600 - logdata['expTime'][:-1] imt = {'zero':0,'dark':1,'flat':2,'object':3} imts = [imt[img['imType'].strip()] for img in logdata[:-1]] return imts,logdata[mjdk][:-1],dt def overhead_report(oheads): if type(oheads) is str: oheads = np.loadtxt(oheads,unpack=True) imt,mjd,dt = oheads imt = imt.astype(np.int32) plt.scatter(mjd,dt,c=np.choose(imt,['gray','black','cyan','blue'])) def combined_report(logdir,utdates): if utdates is None: utdates = '*' logfiles = sorted(glob(os.path.join(logdir,'log_ut%s.fits'%utdates))) print logfiles data1,data2 = [],[] utbreaks1,utbreaks2 = [0,],[0,] oheads = [] for i,logf in enumerate(logfiles): fits = fitsio.FITS(logf) try: data1.append(Table(fits[2].read())) utbreaks1.append(len(data1[-1])+utbreaks1[-1]) except: pass try: data2.append(Table(fits[3].read())) utbreaks2.append(len(data2[-1])+utbreaks2[-1]) except: pass log = fits[1].read() oheads.append(calc_overheads(log)) data1 = vstack(data1) data2 = vstack(data2) oheads = np.hstack(oheads) np.savetxt('bass_overheads.txt',oheads.transpose()) with open('bass_summary.txt','w') as outf: gainrn_report(data1,outf,utbreaks1[1:]) bit_report(data2,outf,utbreaks2[1:]) if __name__=='__main__': import argparse plt.ioff() parser = argparse.ArgumentParser() parser.add_argument("-n","--nightly",action='store_true', help="run nightly processing") parser.add_argument("-r","--report",action='store_true', help="make nightly report") parser.add_argument("-d","--datadir",type=str, default="/data/primefocus/bass/", help="top-level data directory") parser.add_argument("-l","--logdir",type=str, default="/home/mcgreer/basslogs/", help="log file directory") parser.add_argument("-o","--output",type=str, default="bassqa.fits", help="output file") parser.add_argument("--logfile",type=str, help="input log file") parser.add_argument("--nogainrn",action='store_true', help="skip gain/readnoise calc (SLOW)") parser.add_argument("--nobitcheck",action='store_true', help="skip bit integrity check") parser.add_argument("--nproc",type=int,default=1, help="set number of processes to run [default 1]") parser.add_argument("-R","--redo",action='store_true', help="ignore existing data and redo") parser.add_argument("--numsplit",type=int,default=0, help="number of chunks to split data into [none]") parser.add_argument("--splitnum",type=int,default=0, help="which chunk number to run") parser.add_argument("-u","--utdate",type=str, help="restrict UT date") args = parser.parse_args() # if args.utdate is not None: utdirs = sorted(glob(os.path.join(args.datadir,args.utdate))) else: utdirs = sorted(glob(os.path.join(args.datadir,'201?????'))) if args.nightly: for utdir in utdirs: if args.logfile: log = fitsio.read(args.logfile,1) if os.path.exists(args.output): os.remove(args.output) logFits = fitsio.FITS(args.output,'rw') logFits.write(None) run_qa(log,logFits,args.datadir,nproc=args.nproc, dogainrn=(not args.nogainrn), dobitcheck=(not args.nobitcheck), nsplit=args.numsplit,nrun=args.splitnum) logFits.close() # if this isn't here multiprocess gets stuck in an infinite # loop... why? sys.exit(0) else: run_nightly_checks(utdir,args.logdir,args.datadir, redo=args.redo) if args.report: combined_report(args.logdir,args.utdate)
bsd-3-clause
micahhausler/pandashells
pandashells/test/module_checker_lib_tests.py
7
1443
#! /usr/bin/env python from unittest import TestCase from pandashells.lib.module_checker_lib import check_for_modules from pandashells.lib import module_checker_lib from mock import patch class ModuleCheckerTests(TestCase): def setUp(self): module_checker_lib.CMD_DICT['fakemodule1'] = 'pip install fakemodule1' module_checker_lib.CMD_DICT['fakemodule2'] = 'pip install fakemodule2' module_checker_lib.CMD_DICT['os'] = 'part of standard module' def test_check_for_modules_unrecognized(self): """ check_for_modules() raises error when module is unrecognized """ with self.assertRaises(ValueError): check_for_modules(['not_a_module']) @patch('pandashells.lib.module_checker_lib.importlib.import_module') def test_check_for_modules_no_modules(self, import_module_mock): """ check_for_modules() does nothing when module list is empty """ check_for_modules([]) self.assertFalse(import_module_mock.called) def test_check_for_modules_existing_module(self): """ check_for_modules() successfully finds existing module """ check_for_modules(['os']) def test_check_for_modules_bad(self): """ check_for_modules() correctly identifies missing modules """ with self.assertRaises(ImportError): check_for_modules(['fakemodule1', 'fakemodule2'])
bsd-2-clause
volodymyrss/3ML
threeML/catalogs/Swift.py
1
10812
import numpy as np import pandas as pd import re import urllib2 import astropy.table as astro_table from threeML.catalogs.VirtualObservatoryCatalog import VirtualObservatoryCatalog from threeML.exceptions.custom_exceptions import custom_warnings from threeML.config.config import threeML_config from threeML.io.get_heasarc_table_as_pandas import get_heasarc_table_as_pandas from threeML.io.rich_display import display import astropy.time as astro_time _gcn_match = re.compile("^\d{4}GCN\D?\.*(\d*)\.*\d\D$") _trigger_name_match = re.compile("^GRB \d{6}[A-Z]$") class SwiftGRBCatalog(VirtualObservatoryCatalog): def __init__(self, update=False): """ The Swift GRB catalog. Search for GRBs by trigger number, location, T90, and date range. :param update: force update the XML VO table """ self._update = update super(SwiftGRBCatalog, self).__init__('swiftgrb', threeML_config['catalogs']['Swift']['Swift GRB catalog'], 'Swift GRB catalog') # collect all the instruments also seeing the GRBs self._build_other_obs_instruments() def apply_format(self, table): new_table = table['name', 'ra', 'dec', 'trigger_time', 'redshift', 'bat_t90', 'bat_detection', 'xrt_detection', 'xrt_flare', 'uvot_detection', 'radio_detection', 'opt_detection' ] new_table['ra'].format = '5.3f' new_table['dec'].format = '5.3f' return new_table.group_by('trigger_time') def _get_vo_table_from_source(self): self._vo_dataframe = get_heasarc_table_as_pandas('swiftgrb', update=self._update, cache_time_days=1.) def _source_is_valid(self, source): warn_string = "The trigger %s is not valid. Must be in the form GRB080916009" % source match = _trigger_name_match.match(source) if match is None: custom_warnings.warn(warn_string) answer = False else: answer = True return answer def _build_other_obs_instruments(self): """ builds a list of all the other instruments that observed Swift GRBs :return: """ obs_inst_ = map(np.unique, [np.asarray(self._vo_dataframe.other_obs), np.asarray(self._vo_dataframe.other_obs2), np.asarray(self._vo_dataframe.other_obs3), np.asarray(self._vo_dataframe.other_obs4)]) self._other_observings_instruments = filter(lambda x: x != '', np.unique(np.concatenate(obs_inst_))) @property def other_observing_instruments(self): return self._other_observings_instruments def query_other_observing_instruments(self, *instruments): """ search for observations that were also seen by the requested instrument. to see what instruments are available, use the .other_observing_instruments call :param instruments: other instruments :return: """ all_queries = [] for instrument in instruments: assert instrument in self._other_observings_instruments, "Other instrument choices include %s" % ( ' ,'.join(self._other_observings_instruments)) query_string = ' other_obs == "%s" | other_obs2 == "%s" |other_obs3 == "%s" |other_obs4 == "%s"' %tuple([instrument]*4) result = self._vo_dataframe.query(query_string) all_queries.append(result) query_results = pd.concat(all_queries) table = astro_table.Table.from_pandas(query_results) name_column = astro_table.Column(name='name', data=query_results.index) table.add_column(name_column, index=0) out = self.apply_format(table) self._last_query_results = query_results return out @staticmethod def _get_fermiGBM_trigger_number_from_gcn(gcn_url): """ this is a custom function that parses GBM GCNs to find the burst number that can later be used to download GBM data. It contains a lot of regex statements to handle the variability in the GCNs :param gcn_url: url to gbm gcn :return: """ data = urllib2.urlopen(gcn_url) string = ''.join(data.readlines()).replace('\n', '') try: trigger_number = re.search("trigger *\d* */ *(\d{9}|\d{6}\.\d{3})", string).group(1).replace('.', '') except(AttributeError): try: trigger_number = re.search("GBM *(\d{9}|\d{6}\.\d{3}), *trigger *\d*", string).group(1).replace('.', '') except(AttributeError): try: trigger_number = re.search("trigger *\d* *, *trigcat *(\d{9}|\d{6}\.\d{3})", string).group( 1).replace('.', '') except(AttributeError): try: trigger_number = re.search("trigger *.* */ *\D{0,3}(\d{9}|\d{6}\.\d{3})", string).group( 1).replace('.', '') except(AttributeError): try: trigger_number = re.search("Trigger number*.* */ *GRB *(\d{9}|\d{6}\.\d{3})", string).group( 1).replace('.', '') except(AttributeError): trigger_number = None return trigger_number def get_other_observation_information(self): """ returns a structured pandas table containing the other observing instruments, their GCNs and if obtainable, their trigger numbers/ data identifiers. Currently, the trigger number is only obtained for Fermi-LAT-GBM. :return: """ assert self._last_query_results is not None, "You have to run a query before getting observing information" # Loop over the table and build a source for each entry sources = {} for name, row in self._last_query_results.T.iteritems(): # First we want to get the the detectors used in the SCAT file obs_instrument = {} for obs in ['xrt', 'uvot', 'bat', 'opt', 'radio']: obs_detection = "%s_detection" % obs if obs in ['xrt', 'uvot', 'bat']: obs_ref = "%s_pos_ref" % obs else: obs_ref = "%s_ref" % obs detect = row[obs_detection] if detect == 'Y': # or detect== 'U': observed = True else: observed = False if observed: reference = self._parse_redshift_reference(row[obs_ref]) #gcn = "https://gcn.gsfc.nasa.gov/gcn3/%s.gcn3" % gcn_number info = {'reference': reference, 'observed': detect} else: info = {'GCN': None, 'observed': detect} obs_instrument[obs] = info sources[name] = obs_instrument sources = pd.concat(map(pd.DataFrame, sources.values()), keys=sources.keys()) return sources def get_other_instrument_information(self): """ Return the detectors used for spectral analysis as well as their background intervals. Peak flux and fluence intervals are also returned as well as best fit models :return: observing information dataframe indexed by source """ assert self._last_query_results is not None, "You have to run a query before getting observing information" sources = {} for name, row in self._last_query_results.T.iteritems(): obs_instrument = {} # loop over the observation indices for obs in range(1, 5): if obs == 1: obs_base = "other_obs" else: obs_base = "other_obs%d" % obs obs_ref = "%s_ref" % obs_base obs = row[obs_base] # this means that nothing in this column saw the grb if obs == '': observed = False else: observed = True if observed: # if we saw it then lets get the GCN gcn_number = _gcn_match.search(row[obs_ref]).group(1) # gcn_number = filter(lambda x: x != '', row[obs_ref].split('.'))[1] # make the URL gcn = "https://gcn.gsfc.nasa.gov/gcn3/%s.gcn3" % gcn_number # just for Fermi GBM, lets get the trigger number # TODO: add more instruments if obs == 'Fermi-GBM': info = {'GCN': gcn, 'trigger number': self._get_fermiGBM_trigger_number_from_gcn(str(gcn))} else: info = {'GCN': gcn, 'trigger number': None} obs_instrument[obs] = info sources[name] = obs_instrument # build the data frame sources = pd.concat(map(pd.DataFrame, sources.values()), keys=sources.keys()) display(sources) return sources def get_redshift(self): """ Get the redshift and redshift type from the searched sources :return: """ assert self._last_query_results is not None, "You have to run a query before getting observing information" redshift_df = (self._last_query_results.loc[:,['redshift','redshift_err','redshift_type','redshift_ref']]).copy(deep=True) redshift_df = redshift_df.rename(columns={"redshift": "z", "redshift_err": "z err",'redshift_type': 'z type','redshift_ref':'reference'}) redshift_df['reference'] = redshift_df['reference'].apply(self._parse_redshift_reference) return redshift_df @staticmethod def _parse_redshift_reference(reference): if reference == '': url = None elif 'GCN' in reference: gcn_number = _gcn_match.search(reference).group(1) url = "https://gcn.gsfc.nasa.gov/gcn3/%s.gcn3" % gcn_number else: url = "http://adsabs.harvard.edu/abs/%s" % reference return url
bsd-3-clause
marcocaccin/scikit-learn
sklearn/metrics/cluster/unsupervised.py
230
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
PatrickChrist/scikit-learn
sklearn/covariance/tests/test_covariance.py
142
11068
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) print(np.amin(mahal_dist), np.amax(mahal_dist)) assert(np.amin(mahal_dist) > 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
jardians/sp17-i524
project/S17-IR-P012/code/binarize.py
21
1096
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Apr 4 15:56:31 2017 I524 Project: OCR Preprocessing Binarization @author: saber """ import numpy as np import cv2 import matplotlib.pyplot as plt image_path = 'sample1.png' image_arr = cv2.imread(image_path, 0) plt.figure(1) plt.subplot(311) # Plot histogram of data plt.hist(image_arr.flatten()) hist, bin_centers = np.histogram(image_arr) weight1 = np.cumsum(hist) weight2 = np.cumsum(hist[::-1])[::-1] mean1 = np.cumsum(hist * bin_centers[1:]) / weight1 mean2 = np.cumsum((hist * bin_centers[1:]) / weight2[::-1])[::-1] variance12 = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:])**2 idx = np.argmax(variance12) threshold = bin_centers[:-1][idx] img_bin = np.zeros(image_arr.shape) for i in range(image_arr.shape[0]): for j in range(image_arr.shape[1]): if image_arr[i, j] > threshold: img_bin[i, j] = 255 else: img_bin[i, j] = 0 #plt.imshow(image_arr) #plt.imshow(img_bin) plt.subplot(312) plt.imshow(image_arr, 'gray') plt.subplot(313) plt.imshow(img_bin, 'gray')
apache-2.0
deprecated/nebulio
nebulio/tests/test_composite.py
1
3402
"""Tests for composite filter """ from __future__ import (print_function, absolute_import, division, unicode_literals) import os import pytest import numpy as np import nebulio import pysynphot from nebulio.tests.utils import this_func_name from matplotlib import pyplot as plt def plot_filterset(fs): title = this_func_name(2) fig, ax = plt.subplots() # Plot each bandpass for bp in fs.bandpasses: ax.plot(bp.wave, bp.T, '-', label=bp.fname) for emline in fs.emlines: if emline.fwhm_kms is not None: for wav0, strength, fwhm in zip(emline.wave, emline.intensity, emline.fwhm_angstrom): gauss = pysynphot.GaussianSource(1.0, wav0, fwhm) ax.plot(gauss.wave, strength*gauss.flux*fs.bandpasses[0].T.max()/(emline.intensity[0]*gauss.flux.max()), label='{:.2f} A'.format(wav0)) ax.set_title(title) ax.set_xlim(min([bp.wav0 - bp.Wj for bp in fs.bandpasses[:2]]), max([bp.wav0 + bp.Wj for bp in fs.bandpasses[:2]])) ax.legend() plotfile = os.path.join("plots", '{}.pdf'.format(this_func_name(2))) fig.savefig(plotfile) def plot_composite_bandpass(cbp, emline=None): title = this_func_name(2) fig, ax = plt.subplots() # Plot the composite bandpass ax.plot(cbp.wave, cbp.T, '-', label='composite') # Plot the individual constituent bandpasses for bp in cbp.bandpasses: ax.plot(bp.wave, bp.T, '-', label=bp.fname) # Plot Gaussian profiles of all components of emission line multiplet if emline is not None: if emline.fwhm_kms is not None: title += ' {}, V = {:.1f} km/s, W = {:.1f} km/s'.format( emline.lineid, emline.velocity, emline.fwhm_kms) for wav0, strength, fwhm in zip(emline.wave, emline.intensity, emline.fwhm_angstrom): gauss = pysynphot.GaussianSource(1.0, wav0, fwhm) ax.plot(gauss.wave, gauss.flux*cbp.T.max()/gauss.flux.max(), label='{:.2f} A'.format(wav0)) ax.set_xlim(cbp.wav0 - cbp.Wj, cbp.wav0 + cbp.Wj) ax.set_title(title) ax.legend() plotfile = os.path.join("plots", '{}.pdf'.format(this_func_name(2))) fig.savefig(plotfile) def test_twin_sii_filter(): fnames = ['wfc3,uvis1,FQ672N', 'wfc3,uvis1,FQ674N'] cbp = nebulio.CompositeBandpass(fnames) sii_doublet = nebulio.EmissionLine("[S II] 6724", velocity=25.0, fwhm_kms=40.0) plot_composite_bandpass(cbp, sii_doublet) assert cbp.Wj*cbp.Tm == np.sum([bp.Wj*bp.Tm for bp in cbp.bandpasses]) def test_filterset_with_composite_sii(): fs = nebulio.Filterset( bpnames=[['wfc3,uvis1,FQ672N', 'wfc3,uvis1,FQ674N'], "wfc3,uvis1,F673N", "wfc3,uvis1,F547M"], lineids=['[S II] 6724', '[S II] 6724'], velocity=25.0, fwhm_kms=20.0 ) print(fs.__dict__) plot_filterset(fs) assert True # what to test? def test_filterset_with_nii_ha(): fs = nebulio.Filterset( bpnames=["wfc3,uvis1,F658N", "wfc3,uvis1,F656N", "wfc3,uvis1,F547M"], lineids=['[N II] 6583', 'H I 6563'], velocity=25.0, fwhm_kms=20.0 ) print(fs.__dict__) plot_filterset(fs) assert True # what to test?
mit
TK-TarunW/ecosystem
spark-2.0.2-bin-hadoop2.7/python/pyspark/sql/context.py
3
22432
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings if sys.version >= '3': basestring = unicode = str from pyspark import since from pyspark.rdd import ignore_unicode_prefix from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, StringType from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext", "HiveContext", "UDFRegistration"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. :param sparkContext: The :class:`SparkContext` backing this SQLContext. :param sparkSession: The :class:`SparkSession` around which this SQLContext wraps. :param jsqlContext: An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. """ _instantiatedContext = None @ignore_unicode_prefix def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): """Creates a new SQLContext. >>> from datetime import datetime >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession(sparkContext) if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if SQLContext._instantiatedContext is None: SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @classmethod @since(1.6) def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext @since(1.6) def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self.sparkSession.newSession()) @since(1.3) def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value) @ignore_unicode_prefix @since(1.3) def getConf(self, key, defaultValue=None): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is not None, return defaultValue. If the key is not set and defaultValue is None, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue) @property @since("1.3.1") def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ return UDFRegistration(self) @since(1.4) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) @ignore_unicode_prefix @since(1.2) def registerFunction(self, name, f, returnType=StringType()): """Registers a python function (including lambda function) as a UDF so it can be used in SQL statements. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not given it default to a string and conversion will automatically be done. For any other return type, the produced object must match the specified type. :param name: name of the UDF :param f: python function :param returnType: a :class:`pyspark.sql.types.DataType` object >>> sqlContext.registerFunction("stringLengthString", lambda x: len(x)) >>> sqlContext.sql("SELECT stringLengthString('test')").collect() [Row(stringLengthString(test)=u'4')] >>> from pyspark.sql.types import IntegerType >>> sqlContext.registerFunction("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] >>> from pyspark.sql.types import IntegerType >>> sqlContext.udf.register("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] """ self.sparkSession.catalog.registerFunction(name, f, returnType) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) @since(1.3) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or :class:`pyspark.sql.types.StringType`, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. :class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a :class:`pyspark.sql.types.StringType` or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a :class:`pyspark.sql.types.StringType` after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. .. versionchanged:: 2.0.1 Added verifySchema. >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) @since(1.3) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) @since(1.6) def dropTempTable(self, tableName): """ Remove the temp table from catalog. >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) @since(1.3) def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options) @ignore_unicode_prefix @since(1.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return self.sparkSession.sql(sqlQuery) @since(1.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) @ignore_unicode_prefix @since(1.3) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). :param dbName: string, name of the database to use. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(tableName=u'table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) @since(1.3) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property @since(1.4) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Experimental. :return: :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Experimental. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) class HiveContext(SQLContext): """A variant of Spark SQL that integrates with data stored in Hive. Configuration for Hive is read from ``hive-site.xml`` on the classpath. It supports running both SQL and HiveQL commands. :param sparkContext: The SparkContext to wrap. :param jhiveContext: An optional JVM Scala HiveContext. If set, we do not instantiate a new :class:`HiveContext` in the JVM, instead we make all calls to this object. .. note:: Deprecated in 2.0.0. Use SparkSession.builder.enableHiveSupport().getOrCreate(). """ warnings.warn( "HiveContext is deprecated in Spark 2.0.0. Please use " + "SparkSession.builder.enableHiveSupport().getOrCreate() instead.", DeprecationWarning) def __init__(self, sparkContext, jhiveContext=None): if jhiveContext is None: sparkSession = SparkSession.builder.enableHiveSupport().getOrCreate() else: sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) @classmethod def _createForTesting(cls, sparkContext): """(Internal use only) Create a new HiveContext for testing. All test code that touches HiveContext *must* go through this method. Otherwise, you may end up launching multiple derby instances and encounter with incredibly confusing error messages. """ jsc = sparkContext._jsc.sc() jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) return cls(sparkContext, jtestHive) def refreshTable(self, tableName): """Invalidate and refresh all the cached the metadata of the given table. For performance reasons, Spark SQL or the external data source library it uses might cache certain metadata about a table, such as the location of blocks. When those change outside of Spark SQL, users should call this function to invalidate the cache. """ self._ssql_ctx.refreshTable(tableName) class UDFRegistration(object): """Wrapper for user-defined function registration.""" def __init__(self, sqlContext): self.sqlContext = sqlContext def register(self, name, f, returnType=StringType()): return self.sqlContext.registerFunction(name, f, returnType) register.__doc__ = SQLContext.registerFunction.__doc__ def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},' '"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", ' '"field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
apache-2.0
cfei18/incubator-airflow
airflow/contrib/hooks/bigquery_hook.py
2
63861
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import time from builtins import range from past.builtins import basestring from airflow import AirflowException from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from airflow.utils.log.logging_mixin import LoggingMixin from apiclient.discovery import HttpError, build from googleapiclient import errors from pandas_gbq.gbq import \ _check_google_client_version as gbq_check_google_client_version from pandas_gbq import read_gbq from pandas_gbq.gbq import \ _test_google_api_imports as gbq_test_google_api_imports from pandas_gbq.gbq import GbqConnector class BigQueryHook(GoogleCloudBaseHook, DbApiHook, LoggingMixin): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None, use_legacy_sql=True): super(BigQueryHook, self).__init__( gcp_conn_id=bigquery_conn_id, delegate_to=delegate_to) self.use_legacy_sql = use_legacy_sql def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection( service=service, project_id=project, use_legacy_sql=self.use_legacy_sql) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build( 'bigquery', 'v2', http=http_authorized, cache_discovery=False) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, sql, parameters=None, dialect=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param sql: The BigQuery SQL to execute. :type sql: string :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL defaults to use `self.use_legacy_sql` if not specified :type dialect: string in {'legacy', 'standard'} """ if dialect is None: dialect = 'legacy' if self.use_legacy_sql else 'standard' return read_gbq(sql, project_id=self._get_field('project'), dialect=dialect, verbose=False) def table_exists(self, project_id, dataset_id, table_id): """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: string :param dataset_id: The name of the dataset in which to look for the table. :type dataset_id: string :param table_id: The name of the table to check the existence of. :type table_id: string """ service = self.get_service() try: service.tables().get( projectId=project_id, datasetId=dataset_id, tableId=table_id).execute() return True except errors.HttpError as e: if e.resp['status'] == '404': return False raise class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False, dialect='legacy'): super(BigQueryPandasConnector, self).__init__(project_id) gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id, use_legacy_sql=True): self.service = service self.project_id = project_id self.use_legacy_sql = use_legacy_sql self.running_job_id = None def create_empty_table(self, project_id, dataset_id, table_id, schema_fields=None, time_partitioning={} ): """ Creates a new, empty table in the dataset. :param project_id: The project to create the table into. :type project_id: str :param dataset_id: The dataset to create the table into. :type dataset_id: str :param table_id: The Name of the table to be created. :type table_id: str :param schema_fields: If set, the schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schema **Example**: :: schema_fields=[{"name": "emp_name", "type": "STRING", "mode": "REQUIRED"}, {"name": "salary", "type": "INTEGER", "mode": "NULLABLE"}] :type schema_fields: list :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. .. seealso:: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#timePartitioning :type time_partitioning: dict :return: """ project_id = project_id if project_id is not None else self.project_id table_resource = { 'tableReference': { 'tableId': table_id } } if schema_fields: table_resource['schema'] = {'fields': schema_fields} if time_partitioning: table_resource['timePartitioning'] = time_partitioning self.log.info('Creating Table %s:%s.%s', project_id, dataset_id, table_id) try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute() self.log.info('Table created successfully: %s:%s.%s', project_id, dataset_id, table_id) except HttpError as err: raise AirflowException( 'BigQuery job failed. Error was: {}'.format(err.content) ) def create_external_table(self, external_project_dataset_table, schema_fields, source_uris, source_format='CSV', autodetect=False, compression='NONE', ignore_unknown_values=False, max_bad_records=0, skip_leading_rows=0, field_delimiter=',', quote_character=None, allow_quoted_newlines=False, allow_jagged_rows=False, src_fmt_configs={} ): """ Creates a new external table in the dataset with the data in Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource for more details about these parameters. :param external_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table name to create external table. If <project> is not included, project will be the project defined in the connection json. :type external_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param autodetect: Try to detect schema and format options automatically. Any option specified explicitly will be honored. :type autodetect: bool :param compression: [Optional] The compression type of the data source. Possible values include GZIP and NONE. The default value is NONE. This setting is ignored for Google Cloud Bigtable, Google Cloud Datastore backups and Avro formats. :type compression: string :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict """ project_id, dataset_id, external_table_id = \ _split_tablename(table_input=external_project_dataset_table, default_project_id=self.project_id, var_name='external_project_dataset_table') # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#externalDataConfiguration.sourceFormat source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) compression = compression.upper() allowed_compressions = ['NONE', 'GZIP'] if compression not in allowed_compressions: raise ValueError("{0} is not a valid compression format. " "Please use one of the following types: {1}" .format(compression, allowed_compressions)) table_resource = { 'externalDataConfiguration': { 'autodetect': autodetect, 'sourceFormat': source_format, 'sourceUris': source_uris, 'compression': compression, 'ignoreUnknownValues': ignore_unknown_values }, 'tableReference': { 'projectId': project_id, 'datasetId': dataset_id, 'tableId': external_table_id, } } if schema_fields: table_resource['externalDataConfiguration'].update({ 'schema': { 'fields': schema_fields } }) self.log.info('Creating external table: %s', external_project_dataset_table) if max_bad_records: table_resource['externalDataConfiguration']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'quote_character' not in src_fmt_configs: src_fmt_configs['quote'] = quote_character if 'allowQuotedNewlines' not in src_fmt_configs: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines if 'allowJaggedRows' not in src_fmt_configs: src_fmt_configs['allowJaggedRows'] = allow_jagged_rows src_fmt_to_param_mapping = { 'CSV': 'csvOptions', 'GOOGLE_SHEETS': 'googleSheetsOptions' } src_fmt_to_configs_mapping = { 'csvOptions': [ 'allowJaggedRows', 'allowQuotedNewlines', 'fieldDelimiter', 'skipLeadingRows', 'quote' ], 'googleSheetsOptions': ['skipLeadingRows'] } if source_format in src_fmt_to_param_mapping.keys(): valid_configs = src_fmt_to_configs_mapping[ src_fmt_to_param_mapping[source_format] ] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } table_resource['externalDataConfiguration'][src_fmt_to_param_mapping[ source_format]] = src_fmt_configs try: self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource ).execute() self.log.info('External table created successfully: %s', external_project_dataset_table) except HttpError as err: raise Exception( 'BigQuery job failed. Error was: {}'.format(err.content) ) def run_query(self, bql=None, sql=None, destination_dataset_table=False, write_disposition='WRITE_EMPTY', allow_large_results=False, flatten_results=False, udf_config=False, use_legacy_sql=None, maximum_billing_tier=None, maximum_bytes_billed=None, create_disposition='CREATE_IF_NEEDED', query_params=None, schema_update_options=(), priority='INTERACTIVE', time_partitioning={}): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: (Deprecated. Use `sql` parameter instead) The BigQuery SQL to execute. :type bql: string :param sql: The BigQuery SQL to execute. :type sql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :type destination_dataset_table: string :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: string :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param flatten_results: If true and query uses legacy SQL dialect, flattens all nested and repeated fields in the query results. ``allowLargeResults`` must be true if this is set to false. For standard SQL queries, this flag is ignored and results are never flattened. :type flatten_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). If `None`, defaults to `self.use_legacy_sql`. :type use_legacy_sql: boolean :type udf_config: list :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: integer :param maximum_bytes_billed: Limits the bytes billed for this job. Queries that will have bytes billed beyond this limit will fail (without incurring a charge). If unspecified, this will be set to your project default. :type maximum_bytes_billed: float :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: string :param query_params a dictionary containing query parameter types and values, passed to BigQuery :type query_params: dict :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the query job. :type schema_update_options: tuple :param priority: Specifies a priority for the query. Possible values include INTERACTIVE and BATCH. The default value is INTERACTIVE. :type priority: string :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. Note that 'field' is not available in conjunction with dataset.table$partition. :type time_partitioning: dict """ # TODO remove `bql` in Airflow 2.0 - Jira: [AIRFLOW-2513] sql = bql if sql is None else sql if bql: import warnings warnings.warn('Deprecated parameter `bql` used in ' '`BigQueryBaseCursor.run_query` ' 'Use `sql` parameter instead to pass the sql to be ' 'executed. `bql` parameter is deprecated and ' 'will be removed in a future version of ' 'Airflow.', category=DeprecationWarning) if sql is None: raise TypeError('`BigQueryBaseCursor.run_query` missing 1 required ' 'positional argument: `sql`') # BigQuery also allows you to define how you want a table's schema to change # as a side effect of a query job # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset( set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options)) if use_legacy_sql is None: use_legacy_sql = self.use_legacy_sql configuration = { 'query': { 'query': sql, 'useLegacySql': use_legacy_sql, 'maximumBillingTier': maximum_billing_tier, 'maximumBytesBilled': maximum_bytes_billed, 'priority': priority } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'flattenResults': flatten_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) if query_params: if self.use_legacy_sql: raise ValueError("Query paramaters are not allowed when using " "legacy SQL") else: configuration['query']['queryParameters'] = query_params time_partitioning = _cleanse_time_partitioning( destination_dataset_table, time_partitioning ) if time_partitioning: configuration['query'].update({ 'timePartitioning': time_partitioning }) if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options)) configuration['query'][ 'schemaUpdateOptions'] = schema_update_options return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ([ source_project_dataset_tables ] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=',', max_bad_records=0, quote_character=None, ignore_unknown_values=False, allow_quoted_newlines=False, allow_jagged_rows=False, schema_update_options=(), src_fmt_configs={}, time_partitioning={}): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table>($<partition>) BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. If a partition is specified the operator will automatically append the data, create a new partition or create a new DAY partitioned table. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param ignore_unknown_values: [Optional] Indicates if BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. :type ignore_unknown_values: bool :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the load job. :type schema_update_options: tuple :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict :param time_partitioning: configure optional time partitioning fields i.e. partition by field, type and expiration as per API specifications. Note that 'field' is not available in conjunction with dataset.table$partition. :type time_partitioning: dict """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat source_format = source_format.upper() allowed_formats = [ "CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP", "PARQUET" ] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset( set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options)) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, 'ignoreUnknownValues': ignore_unknown_values } } time_partitioning = _cleanse_time_partitioning( destination_project_dataset_table, time_partitioning ) if time_partitioning: configuration['load'].update({ 'timePartitioning': time_partitioning }) if schema_fields: configuration['load']['schema'] = {'fields': schema_fields} if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError("schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'.") else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options)) configuration['load'][ 'schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if 'ignoreUnknownValues' not in src_fmt_configs: src_fmt_configs['ignoreUnknownValues'] = ignore_unknown_values if quote_character is not None: src_fmt_configs['quote'] = quote_character if allow_quoted_newlines: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines src_fmt_to_configs_mapping = { 'CSV': [ 'allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote' ], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'PARQUET': ['autodetect', 'ignoreUnknownValues'], 'AVRO': [], } valid_configs = src_fmt_to_configs_mapping[source_format] src_fmt_configs = { k: v for k, v in src_fmt_configs.items() if k in valid_configs } configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = {'configuration': configuration} # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() self.running_job_id = query_reply['jobReference']['jobId'] # Wait for query to finish. keep_polling_job = True while (keep_polling_job): try: job = jobs.get( projectId=self.project_id, jobId=self.running_job_id).execute() if (job['status']['state'] == 'DONE'): keep_polling_job = False # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'. format(job['status']['errorResult'], job)) else: self.log.info('Waiting for job to complete : %s, %s', self.project_id, self.running_job_id) time.sleep(5) except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error, waiting for job to complete: %s', err.resp.status, self.running_job_id) time.sleep(5) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return self.running_job_id def poll_job_complete(self, job_id): jobs = self.service.jobs() try: job = jobs.get(projectId=self.project_id, jobId=job_id).execute() if (job['status']['state'] == 'DONE'): return True except HttpError as err: if err.resp.status in [500, 503]: self.log.info( '%s: Retryable error while polling job with id %s', err.resp.status, job_id) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return False def cancel_query(self): """ Cancel all started queries that have not yet completed """ jobs = self.service.jobs() if (self.running_job_id and not self.poll_job_complete(self.running_job_id)): self.log.info('Attempting to cancel job : %s, %s', self.project_id, self.running_job_id) jobs.cancel( projectId=self.project_id, jobId=self.running_job_id).execute() else: self.log.info('No running BigQuery jobs to cancel.') return # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while (polling_attempts < max_polling_attempts and not job_complete): polling_attempts = polling_attempts + 1 job_complete = self.poll_job_complete(self.running_job_id) if (job_complete): self.log.info('Job successfully canceled: %s, %s', self.project_id, self.running_job_id) elif (polling_attempts == max_polling_attempts): self.log.info( "Stopping polling due to timeout. Job with id %s " "has not completed cancel and may or may not finish.", self.running_job_id) else: self.log.info('Waiting for canceled job with id %s to finish.', self.running_job_id) time.sleep(5) def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, selected_fields=None, page_token=None, start_index=None): """ Get the data of a given dataset.table and optionally with selected columns. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if selected_fields: optional_params['selectedFields'] = selected_fields if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return (self.service.tabledata().list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params).execute()) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() self.log.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception('Table deletion failed. Table does not exist.') else: self.log.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list( projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update self.log.info('Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update( projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert self.log.info('Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert( projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project=None, view_project=None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get( projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource[ 'access'] if 'access' in source_dataset_resource else [] view_access = { 'view': { 'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table } } # check to see if the view we want to add already exists. if view_access not in access: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch( projectId=source_project, datasetId=source_dataset, body={ 'access': access }).execute() else: # if view is already in access, do nothing. self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id, use_legacy_sql=True): super(BigQueryCursor, self).__init__( service=service, project_id=project_id, use_legacy_sql=use_legacy_sql) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ sql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(sql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param seq_of_parameters: List of dictionary parameters to substitute into the query. :type seq_of_parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = (self.service.jobs().getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token).execute()) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER': return int(string_field) elif bq_type == 'FLOAT' or bq_type == 'TIMESTAMP': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) if table_input.count('.') + table_input.count(':') > 3: raise Exception(('{var}Use either : or . to specify project ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(('{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}').format( var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ("{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception( ('{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}').format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: log = LoggingMixin().log log.info('Project not included in {var}: {input}; ' 'using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id def _cleanse_time_partitioning(destination_dataset_table, time_partitioning_in): # if it is a partitioned table ($ is in the table name) add partition load option time_partitioning_out = {} if destination_dataset_table and '$' in destination_dataset_table: assert not time_partitioning_in.get('field'), ( "Cannot specify field partition and partition name " "(dataset.table$partition) at the same time" ) time_partitioning_out['type'] = 'DAY' time_partitioning_out.update(time_partitioning_in) return time_partitioning_out
apache-2.0
maythapk/sklearn_pycon2014
notebooks/fig_code/svm_gui.py
47
11549
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('key_press_event', self.onkeypress) canvas.mpl_connect('key_release_event', self.onkeyrelease) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.shift_down = False self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onkeypress(self, event): if event.key == "shift": self.shift_down = True def onkeyrelease(self, event): if event.key == "shift": self.shift_down = False def onclick(self, event): if event.xdata and event.ydata: if self.shift_down or event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) elif event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
manterd/myPhyloDB
functions/analysis/anova_graphs.py
1
80391
import datetime from django.http import HttpResponse import logging import json import numpy as np import pandas as pd from pyper import * from scipy import stats import zipfile from database.models import Sample import functions LOG_FILENAME = 'error_log.txt' pd.set_option('display.max_colwidth', -1) def getCatUnivData(request, RID, stops, PID): try: while True: # why is this looped? if request.is_ajax(): # Get variables from web page allJson = request.body.split('&')[0] all = json.loads(allJson) functions.setBase(RID, 'Step 1 of 4: Selecting your chosen meta-variables...') selectAll = int(all["selectAll"]) keggAll = int(all["keggAll"]) nzAll = int(all["nzAll"]) sig_only = int(all["sig_only"]) metaValsCat = all['metaValsCat'] metaIDsCat = all['metaIDsCat'] metaValsQuant = all['metaValsQuant'] metaIDsQuant = all['metaIDsQuant'] treeType = int(all['treeType']) DepVar = int(all["DepVar"]) # Create meta-variable DataFrame, final sample list, final category and quantitative field lists based on tree selections savedDF, metaDF, finalSampleIDs, catFields, remCatFields, quantFields, catValues, quantValues = functions.getMetaDF(request.user, metaValsCat, metaIDsCat, metaValsQuant, metaIDsQuant, DepVar, levelDep=True) allFields = catFields + quantFields if not catFields: error = "Selected categorical variable(s) contain only one level.\nPlease select different variable(s)." myDict = {'error': error} res = json.dumps(myDict) return HttpResponse(res, content_type='application/json') if not finalSampleIDs: error = "No valid samples were contained in your final dataset.\nPlease select different variable(s)." myDict = {'error': error} res = json.dumps(myDict) return HttpResponse(res, content_type='application/json') result = '' result += 'Categorical variables selected by user: ' + ", ".join(catFields + remCatFields) + '\n' result += 'Categorical variables not included in the statistical analysis (contains only 1 level): ' + ", ".join(remCatFields) + '\n' result += 'Quantitative variables selected by user: ' + ", ".join(quantFields) + '\n' result += '===============================================\n\n' functions.setBase(RID, 'Step 1 of 4: Selecting your chosen meta-variables...done') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # # END VALIDATE # START QUERY functions.setBase(RID, 'Step 2 of 4: Selecting your chosen taxa or KEGG level...') # filter otus based on user settings remUnclass = all['remUnclass'] remZeroes = all['remZeroes'] perZeroes = int(all['perZeroes']) filterData = all['filterData'] filterPer = int(all['filterPer']) filterMeth = int(all['filterMeth']) mapTaxa = all['map_taxa'] finalDF = pd.DataFrame() allDF = pd.DataFrame() if treeType == 1: if selectAll == 0 or selectAll == 8: taxaString = all["taxa"] taxaDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(taxaString) filteredDF = savedDF.copy() else: taxaDict = '' filteredDF = functions.filterDF(savedDF, DepVar, selectAll, remUnclass, remZeroes, perZeroes, filterData, filterPer, filterMeth) finalDF, missingList = functions.getTaxaDF(selectAll, taxaDict, filteredDF, metaDF, allFields, DepVar, RID, stops, PID) if selectAll == 8: result += '\nThe following PGPRs were not detected: ' + ", ".join(missingList) + '\n' result += '===============================================\n' if treeType == 2: keggDict = '' if keggAll == 0: keggString = all["kegg"] keggDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(keggString) finalDF, allDF = functions.getKeggDF(keggAll, keggDict, savedDF, metaDF, DepVar, mapTaxa, RID, stops, PID) if treeType == 3: keggDict = '' if nzAll == 0: keggString = all["nz"] keggDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(keggString) finalDF, allDF = functions.getNZDF(nzAll, keggDict, savedDF, metaDF, DepVar, mapTaxa, RID, stops, PID) if finalDF.empty: error = "Selected taxa were not found in your selected samples." myDict = {'error': error} res = json.dumps(myDict) return HttpResponse(res, content_type='application/json') # make sure column types are correct finalDF[catFields] = finalDF[catFields].astype(str) finalDF[quantFields] = finalDF[quantFields].astype(float) # transform Y, if requested transform = int(all["transform"]) finalDF = functions.transformDF(transform, DepVar, finalDF) # save location info to session myDir = 'myPhyloDB/media/temp/anova/' if not os.path.exists(myDir): os.makedirs(myDir) path = str(myDir) + str(RID) + '.biom' functions.imploding_panda(path, treeType, DepVar, finalSampleIDs, metaDF, finalDF) functions.setBase(RID, 'Step 2 of 4: Selecting your chosen taxa or KEGG level...done') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # # END QUERY # START STATS functions.setBase(RID, 'Step 3 of 4: Performing statistical test...') finalDict = {} seriesList = [] xAxisDict = {} yAxisDict = {} if os.name == 'nt': r = R(RCMD="R/R-Portable/App/R-Portable/bin/R.exe", use_pandas=True) else: r = R(RCMD="R/R-Linux/bin/R", use_pandas=True) functions.setBase(RID, 'Verifying R packages...missing packages are being installed') # R packages from cran r("list.of.packages <- c('lsmeans', 'ggplot2', 'RColorBrewer', 'ggthemes')") r("new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,'Package'])]") print r("if (length(new.packages)) install.packages(new.packages, repos='http://cran.us.r-project.org', dependencies=T)") functions.setBase(RID, 'Step 3 of 4: Performing statistical test...') print r("library(lsmeans)") print r("library(ggplot2)") print r("library(ggthemes)") print r("library(RColorBrewer)") print r('source("R/myFunctions/myFunctions.R")') # R graph r.assign('finalDF', finalDF) colorVal = all['colorVal'] if colorVal != 'None': r.assign('colorVal', colorVal) else: r.assign('colorVal', 'rank_name') xVal = all['xVal'] if xVal != 'None': r.assign('xVal', xVal) else: r.assign('xVal', catFields[0]) gridVal_X = all['gridVal_X'] r.assign('gridVal_X', gridVal_X) gridVal_Y = all['gridVal_Y'] r.assign('gridVal_Y', gridVal_Y) if DepVar == 0: r('DepVar <- "abund"') elif DepVar == 1: r('DepVar <- "rel_abund"') elif DepVar == 2: r('DepVar <- "rich"') elif DepVar == 3: r('DepVar <- "diversity"') elif DepVar == 4: r('DepVar <- "abund_16S"') if gridVal_X == 'None' and gridVal_Y == 'None': r("gDF <- data.frame(x=finalDF[,paste(xVal)], y=finalDF[,paste(DepVar)], \ myFill=finalDF[,paste(colorVal)])") r("gDF <- aggregate(gDF[, 'y'], list(gDF$x, gDF$myFill), mean)") r("names(gDF) <- c('x', 'myFill', 'y')") elif gridVal_X != 'None' and gridVal_Y == 'None': r("gDF <- data.frame(x=finalDF[,paste(xVal)], y=finalDF[,paste(DepVar)], \ gridVal_X=finalDF[,paste(gridVal_X)], \ myFill=finalDF[,paste(colorVal)])") r("gDF <- aggregate(gDF[, 'y'], list(gDF$x, gDF$myFill, gDF$gridVal_X), mean)") r("names(gDF) <- c('x', 'myFill', 'gridVal_X', 'y')") elif gridVal_X == 'None' and gridVal_Y != 'None': r("gDF <- data.frame(x=finalDF[,paste(xVal)], y=finalDF[,paste(DepVar)], \ gridVal_Y=finalDF[,paste(gridVal_Y)], \ myFill=finalDF[,paste(colorVal)])") r("gDF <- aggregate(gDF[, 'y'], list(gDF$x, gDF$myFill, gDF$gridVal_Y), mean)") r("names(gDF) <- c('x', 'myFill', 'gridVal_Y', 'y')") elif gridVal_X != 'None' and gridVal_Y != 'None': r("gDF <- data.frame(x=finalDF[,paste(xVal)], y=finalDF[,paste(DepVar)], \ gridVal_X=finalDF[,paste(gridVal_X)], gridVal_Y=finalDF[,paste(gridVal_Y)], \ myFill=finalDF[,paste(colorVal)])") r("gDF <- aggregate(gDF[, 'y'], list(gDF$x, gDF$myFill, gDF$gridVal_X, gDF$gridVal_Y), mean)") r("names(gDF) <- c('x', 'myFill', 'gridVal_X', 'gridVal_Y', 'y')") r("p <- ggplot(gDF, aes(x=x, y=y, fill=myFill))") r("p <- p + geom_bar(stat='identity', position='stack')") if gridVal_X != 'None' and gridVal_Y == 'None': r("p <- p + facet_grid(. ~ gridVal_X)") r("p <- p + theme(strip.text.x=element_text(size=10, colour='blue', angle=0))") elif gridVal_X == 'None' and gridVal_Y != 'None': r("p <- p + facet_grid(gridVal_Y ~ .)") r("p <- p + theme(strip.text.y=element_text(size=10, colour='blue', angle=90))") elif gridVal_X != 'None' and gridVal_Y != 'None': r("p <- p + facet_grid(gridVal_Y ~ gridVal_X)") r("p <- p + theme(strip.text.x=element_text(size=10, colour='blue', angle=0))") r("p <- p + theme(strip.text.y=element_text(size=10, colour='blue', angle=90))") r("p <- p + theme(strip.text.x=element_text(size=10, colour='blue', angle=0))") r("p <- p + theme(strip.text.y=element_text(size=10, colour='blue', angle=90))") palette = all['palette'] r.assign('palette', palette) if palette == 'gdocs': r('pal <- gdocs_pal()(20)') elif palette == 'hc': r('pal <- hc_pal()(10)') elif palette == 'Set1': r('pal <- brewer.pal(8, "Set1")') elif palette == 'Set2': r('pal <- brewer.pal(8, "Set2")') elif palette == 'Set3': r('pal <- brewer.pal(12, "Set3")') elif palette == 'Paired': r('pal <- brewer.pal(12, "Paired")') elif palette == 'Dark2': r('pal <- brewer.pal(12, "Dark2")') elif palette == 'Accent': r('pal <- brewer.pal(12, "Accent")') r('nColors <- length(pal)') r("p <- p + scale_fill_manual(values=rep(pal, ceiling(nlevels(gDF$myFill)/nColors)))") r("p <- p + theme(legend.text=element_text(size=7))") r("p <- p + theme(axis.text.x=element_text(angle=45, vjust=1, hjust=1))") r("p <- p + theme(legend.title=element_blank())") r("p <- p + theme(legend.position='bottom')") r("p <- p + guides(fill=guide_legend(ncol=8))") if DepVar == 0: r("p <- p + ylab('Abundance') + xlab('')") elif DepVar == 1: r("p <- p + ylab('Relative Abundance') + xlab('')") elif DepVar == 2: r("p <- p + ylab('OTU Richness') + xlab('')") elif DepVar == 3: r("p <- p + ylab('OTU Diversity') + xlab('')") elif DepVar == 4: r("p <- p + ylab('Total Abundance') + xlab('')") path = "myPhyloDB/media/temp/anova/Rplots" if not os.path.exists(path): os.makedirs(path) r.assign("path", path) r.assign("RID", RID) r("file <- paste(path, '/', RID, '.anova.pdf', sep='')") r("p <- set_panel_size(p, height=unit(2.9, 'in'), width=unit(2.9, 'in'))") r("nlev <- nlevels(as.factor(gDF$gridVal_X))") r('if (nlev == 0) { \ myWidth <- 11 \ } else { \ myWidth <- 3*nlev+4 \ }') r("nlev <- nlevels(as.factor(gDF$gridVal_Y))") r("nRow <- ceiling(nlevels(gDF$myFill)/8)") r('if (nlev == 0) { \ myHeight <- 8 \ } else { \ myHeight <- 2+(3*nlev)+(1*nRow) \ }') r("ggsave(filename=file, plot=p, units='in', height=myHeight, width=myWidth, limitsize=F)") # group DataFrame by each taxa level selected grouped1 = finalDF.groupby(['rank_name', 'rank_id']) pValDict = {} counter = 1 for name1, group1 in grouped1: D = '' r.assign("df", group1) trtString = " * ".join(allFields) if DepVar == 0: anova_string = "fit <- aov(df$abund ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 1: anova_string = "fit <- aov(df$rel_abund ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 2: anova_string = "fit <- aov(df$rich ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 3: anova_string = "fit <- aov(df$diversity ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 4: anova_string = "fit <- aov(df$abund_16S ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") aov = r("summary(fit)") pString = r("summary(fit)[[1]][['Pr(>F)']]") tempStuff = pString.split(' ') pList = [] for part in tempStuff: try: pList.append(float(part)) except Exception: pass if pList: p_val = min(pList) tempStuff = aov.split('\n') for part in tempStuff: if part != tempStuff[0]: D += part + '\n' fList = [] for part in tempStuff: if part != tempStuff[0] and part != tempStuff[1]: part = part.replace('\r', '') part1 = part.split(' ') if part1[0] == 'Residuals': break if part1[0] not in fList: fList.append(part1[0]) # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # D += "\nLSmeans & Tukey's HSD post-hoc test:\n\n" if len(quantFields) == 0: for i in fList: hsd_string = "lsm <- lsmeans(fit, list(pairwise ~ " + str(i) + "))" r.assign("cmd", hsd_string) r("eval(parse(text=cmd))") r("options(width=5000)") table = r("lsm") tempStuff = table.split('\n') for i in xrange(len(tempStuff)): if i > 0: D += tempStuff[i] + '\n' else: for i in fList: if i not in quantFields: hsd_string = "lsm <- lsmeans(fit, list(pairwise ~ " + str(i) + "))" r.assign("cmd", hsd_string) r("eval(parse(text=cmd))") r("options(width=5000)") table = r("lsm") tempStuff = table.split('\n') for i in xrange(len(tempStuff)): if i > 0: D += tempStuff[i] + '\n' # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # else: p_val = 1.0 D = 'ANOVA cannot be performed, please check that you have more than one treatment level and appropriate replication.\n' pValDict[name1] = p_val result += 'Name: ' + str(name1[0]) + '\n' result += 'ID: ' + str(name1[1]) + '\n' if DepVar == 0: result += 'Dependent Variable: Abundance' + '\n' elif DepVar == 1: result += 'Dependent Variable: Relative Abundance' + '\n' elif DepVar == 2: result += 'Dependent Variable: OTU Richness' + '\n' elif DepVar == 3: result += 'Dependent Variable: OTU Diversity' + '\n' elif DepVar == 4: result += 'Dependent Variable: Total Abundance' + '\n' result += '\nANCOVA table:\n' D = D.decode('utf-8') result += D + '\n' result += '===============================================\n' result += '\n\n\n\n' taxa_no = len(grouped1) functions.setBase(RID, 'Step 3 of 4: Performing statistical test...taxa ' + str(counter) + ' of ' + str(taxa_no) + ' is complete!') counter += 1 # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # functions.setBase(RID, 'Step 3 of 4: Performing statistical test...done!') # END STATS # START GRAPH functions.setBase(RID, 'Step 4 of 4: Formatting graph data for display...') grouped1 = finalDF.groupby(['rank_name', 'rank_id']) for name1, group1 in grouped1: dataList = [] errorList = [] pValue = pValDict[name1] if sig_only == 0: if DepVar == 0: mean = group1.groupby(catFields)['abund'].mean() se = group1.groupby(catFields)['abund'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 1: mean = group1.groupby(catFields)['rel_abund'].mean() se = group1.groupby(catFields)['rel_abund'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 2: mean = group1.groupby(catFields)['rich'].mean() se = group1.groupby(catFields)['rich'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 3: mean = group1.groupby(catFields)['diversity'].mean() se = group1.groupby(catFields)['diversity'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 4: mean = group1.groupby(catFields)['abund_16S'].mean() se = group1.groupby(catFields)['abund_16S'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] seriesDict = {} seriesDict['name'] = name1 seriesDict['type'] = 'column' seriesDict['data'] = dataList seriesList.append(seriesDict) seriesDict = {} seriesDict['name'] = name1 seriesDict['type'] = 'errorbar' seriesDict['visible'] = False seriesDict['data'] = errorList seriesList.append(seriesDict) elif sig_only == 1: if pValue < 0.05: if DepVar == 0: mean = group1.groupby(catFields)['abund'].mean() se = group1.groupby(catFields)['abund'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 1: mean = group1.groupby(catFields)['rel_abund'].mean() se = group1.groupby(catFields)['rel_abund'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 2: mean = group1.groupby(catFields)['rich'].mean() se = group1.groupby(catFields)['rich'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 3: mean = group1.groupby(catFields)['diversity'].mean() se = group1.groupby(catFields)['diversity'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] elif DepVar == 4: mean = group1.groupby(catFields)['abund_16S'].mean() se = group1.groupby(catFields)['abund_16S'].std() se.fillna(0, inplace=True) high = [x + y for x, y in zip(mean, se)] low = [x - y for x, y in zip(mean, se)] dataList = list(mean) errorTuple = zip(low, high) errorList = [list(elem) for elem in errorTuple] seriesDict = {} seriesDict['name'] = name1 seriesDict['type'] = 'column' seriesDict['data'] = dataList seriesList.append(seriesDict) seriesDict = {} seriesDict['name'] = name1 seriesDict['type'] = 'errorbar' seriesDict['visible'] = False seriesDict['data'] = errorList seriesList.append(seriesDict) # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # ''' catFieldsList = [] for i in catFields: catFieldsList.append(len(group1.groupby(i))) catFields = [x for (y, x) in sorted(zip(catFieldsList, catFields))] ''' if DepVar == 0: grouped2 = group1.groupby(catFields)['abund'].mean() elif DepVar == 1: grouped2 = group1.groupby(catFields)['rel_abund'].mean() elif DepVar == 4: grouped2 = group1.groupby(catFields)['abund_16S'].mean() elif DepVar == 2: grouped2 = group1.groupby(catFields)['rich'].mean() elif DepVar == 3: grouped2 = group1.groupby(catFields)['diversity'].mean() else: raise Exception("Something went horribly wrong") if catFields.__len__() == 1: xAxisDict['categories'] = grouped2.index.values.tolist() else: g2indexvals = grouped2.index.values level = g2indexvals[0].__len__() labelTree = recLabels(g2indexvals, level) xAxisDict['categories'] = labelTree['categories'] # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # yTitle = {} if DepVar == 0: yTitle['text'] = 'Abundance' elif DepVar == 1: yTitle['text'] = 'Relative Abundance' elif DepVar == 2: yTitle['text'] = 'OTU Richness' elif DepVar == 3: yTitle['text'] = 'OTU Diversity' elif DepVar == 4: yTitle['text'] = 'Total Abundance' yTitle['style'] = {'fontSize': '18px', 'fontWeight': 'bold'} if transform != 0: tname = { '1': "Ln", '2': "Log10", '3': "Sqrt", '4': "Logit", '5': "Arcsin" } yTitle['text'] = tname[str(transform)] + "(" + str(yTitle['text']) + ")" yAxisDict['title'] = yTitle xStyleDict = {'style': {'fontSize': '14px'}, 'rotation': 0} xAxisDict['labels'] = xStyleDict yStyleDict = {'style': {'fontSize': '14px'}} yAxisDict['labels'] = yStyleDict finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict finalDict['text'] = result if not seriesList: finalDict['empty'] = 0 else: finalDict['empty'] = 1 functions.setBase(RID, 'Step 4 of 4: Formatting graph data for display...done!') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # # datatable of taxa mapped to selected kegg orthologies if not treeType == 1 and mapTaxa == 'yes': myDir = 'myPhyloDB/media/temp/anova/' fileName = str(myDir) + 'Mapped_Taxa.csv' allDF.to_csv(fileName) myDir = 'myPhyloDB/media/temp/anova/' fileName2 = str(myDir) + 'Mapped_Taxa.gz' zf = zipfile.ZipFile(fileName2, "w", zipfile.ZIP_DEFLATED, allowZip64=True) zf.write(fileName, 'Mapped_Taxa.csv') zf.close() finalDict['resType'] = 'res' finalDict['error'] = 'none' res = json.dumps(finalDict) return HttpResponse(res, content_type='application/json') except Exception as e: if not stops[PID] == RID: logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG,) myDate = "\nDate: " + str(datetime.datetime.now()) + "\n" logging.exception(myDate) myDict = {} myDict['error'] = "There was an error during your analysis:\nError: " + str(e.message) + "\nTimestamp: " + str(datetime.datetime.now()) res = json.dumps(myDict) return HttpResponse(res, content_type='application/json') def recLabels(lists, level): if lists.__len__() == 0: return {} first = lists splitset = [] for i in range(0, level): children = [] parents = [] for set in first: children.append(set[set.__len__()-1]) parents.append(set[0:set.__len__()-1]) first = parents splitset.append(children) return makeLabels(" ", splitset) def makeLabels(name, list): retDict = {} if list.__len__() == 1: # final layer retDict['name'] = name retDict['categories'] = list[0] return retDict # change here children = [] first = list[list.__len__()-1][0] iter = 0 start = 0 for stuff in list[list.__len__()-1]: if stuff != first: sublist = [] for otherstuff in list[0:list.__len__()-1]: sublist.append(otherstuff[start:iter]) children.append(makeLabels(first, sublist)) first = stuff start = iter iter += 1 # Repeat else condition at the end of the list sublist = [] for otherstuff in list[0:list.__len__()-1]: sublist.append(otherstuff[start:iter]) children.append(makeLabels(first, sublist)) retDict['name'] = name retDict['categories'] = children return retDict def getQuantUnivData(request, RID, stops, PID): try: while True: if request.is_ajax(): # Get variables from web page allJson = request.body.split('&')[0] all = json.loads(allJson) functions.setBase(RID, 'Step 1 of 4: Selecting your chosen meta-variables...') selectAll = int(all["selectAll"]) keggAll = int(all["keggAll"]) nzAll = int(all["nzAll"]) sig_only = int(all["sig_only"]) # Select samples and meta-variables from savedDF metaValsCat = all['metaValsCat'] metaIDsCat = all['metaIDsCat'] metaValsQuant = all['metaValsQuant'] metaIDsQuant = all['metaIDsQuant'] treeType = int(all['treeType']) DepVar = int(all["DepVar"]) # Create meta-variable DataFrame, final sample list, final category and quantitative field lists based on tree selections savedDF, metaDF, finalSampleIDs, catFields, remCatFields, quantFields, catValues, quantValues = functions.getMetaDF(request.user, metaValsCat, metaIDsCat, metaValsQuant, metaIDsQuant, DepVar, levelDep=True) allFields = catFields + quantFields if not finalSampleIDs: error = "No valid samples were contained in your final dataset.\nPlease select different variable(s)." myDict = {'error': error} res = json.dumps(myDict) return HttpResponse(res, content_type='application/json') result = '' result += 'Categorical variables selected by user: ' + ", ".join(catFields + remCatFields) + '\n' result += 'Categorical variables not included in the statistical analysis (contains only 1 level): ' + ", ".join(remCatFields) + '\n' result += 'Quantitative variables selected by user: ' + ", ".join(quantFields) + '\n' result += '===============================================\n\n' functions.setBase(RID, 'Step 1 of 4: Selecting your chosen meta-variables...done') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # functions.setBase(RID, 'Step 2 of 4: Selecting your chosen taxa or kegg level...') # filter otus based on user settings remUnclass = all['remUnclass'] remZeroes = all['remZeroes'] perZeroes = int(all['perZeroes']) filterData = all['filterData'] filterPer = int(all['filterPer']) filterMeth = int(all['filterMeth']) mapTaxa = all['map_taxa'] finalDF = pd.DataFrame() allDF = pd.DataFrame() if treeType == 1: if selectAll == 0 or selectAll == 8: taxaString = all["taxa"] taxaDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(taxaString) filteredDF = savedDF.copy() else: taxaDict = '' filteredDF = functions.filterDF(savedDF, DepVar, selectAll, remUnclass, remZeroes, perZeroes, filterData, filterPer, filterMeth) finalDF, missingList = functions.getTaxaDF(selectAll, taxaDict, filteredDF, metaDF, allFields, DepVar, RID, stops, PID) if selectAll == 8: result += '\nThe following PGPRs were not detected: ' + ", ".join(missingList) + '\n' result += '===============================================\n' if treeType == 2: keggDict = '' if keggAll == 0: keggString = all["kegg"] keggDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(keggString) finalDF, allDF = functions.getKeggDF(keggAll, keggDict, savedDF, metaDF, DepVar, mapTaxa, RID, stops, PID) if treeType == 3: keggDict = '' if nzAll == 0: keggString = all["nz"] keggDict = json.JSONDecoder(object_pairs_hook=functions.multidict).decode(keggString) finalDF, allDF = functions.getNZDF(nzAll, keggDict, savedDF, metaDF, DepVar, mapTaxa, RID, stops, PID) # make sure column types are correct finalDF[catFields] = finalDF[catFields].astype(str) finalDF[quantFields] = finalDF[quantFields].astype(float) # transform Y, if requested transform = int(all["transform"]) finalDF = functions.transformDF(transform, DepVar, finalDF) # save location info to session myDir = 'myPhyloDB/media/temp/anova/' if not os.path.exists(myDir): os.makedirs(myDir) path = str(myDir) + str(RID) + '.biom' functions.imploding_panda(path, treeType, DepVar, finalSampleIDs, metaDF, finalDF) functions.setBase(RID, 'Step 2 of 4: Selecting your chosen taxa or KEGG level...done') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # functions.setBase(RID, 'Step 3 of 4: Performing statistical test...!') finalDict = {} # group DataFrame by each taxa level selected shapes = ['circle', 'square', 'triangle', 'triangle-down', 'diamond'] if os.name == 'nt': r = R(RCMD="R/R-Portable/App/R-Portable/bin/R.exe", use_pandas=True) else: r = R(RCMD="R/R-Linux/bin/R", use_pandas=True) functions.setBase(RID, 'Verifying R packages...missing packages are being installed') # R packages from cran r("list.of.packages <- c('ggplot2', 'RColorBrewer', 'ggthemes')") r("new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,'Package'])]") print r("if (length(new.packages)) install.packages(new.packages, repos='http://cran.us.r-project.org', dependencies=T)") functions.setBase(RID, 'Step 3 of 4: Performing statistical test...') print r("library(ggplot2)") print r("library(ggthemes)") print r("library(RColorBrewer)") print r('source("R/myFunctions/myFunctions.R")') # R graph r.assign('finalDF', finalDF) colorVal = all['colorVal'] if colorVal == 'None': r("colorTrt <- c('All')") else: r.assign("colorVal", colorVal) r("colorTrt <- as.factor(finalDF[,paste(colorVal)])") r.assign('xVal', quantFields[0]) gridVal_X = all['gridVal_X'] if gridVal_X == 'None': r("gridTrt_X <- c('All')") else: r.assign("gridVal_X", gridVal_X) r("gridTrt_X <- as.factor(finalDF[,paste(gridVal_X)])") gridVal_Y = all['gridVal_Y'] if gridVal_Y == 'None': r("gridTrt_Y <- c('All')") else: r.assign("gridVal_Y", gridVal_Y) r("gridTrt_Y <- as.factor(finalDF[,paste(gridVal_Y)])") shapeVal = all['shapeVal'] if shapeVal == 'None': r("shapeTrt <- c('All')") else: r.assign("shapeVal", shapeVal) r("shapeTrt <- as.factor(finalDF[,paste(shapeVal)])") if DepVar == 0: r('DepVar <- "abund"') elif DepVar == 1: r('DepVar <- "rel_abund"') elif DepVar == 2: r('DepVar <- "rich"') elif DepVar == 3: r('DepVar <- "diversity"') elif DepVar == 4: r('DepVar <- "abund_16S"') r("gDF <- data.frame(x=finalDF[,paste(xVal)], y=finalDF[,paste(DepVar)], \ gridVal_X=gridTrt_X, gridVal_Y=gridTrt_Y, \ myColor=colorTrt, myShape=shapeTrt)") r("p <- ggplot(gDF, aes(x=x, y=y, fill=factor(myColor), shape=factor(myShape)) )") r("p <- p + geom_point(size=4)") if gridVal_X != 'None' and gridVal_Y == 'None': r("p <- p + facet_grid(. ~ gridVal_X)") elif gridVal_X == 'None' and gridVal_Y != 'None': r("p <- p + facet_grid(gridVal_Y ~ .)") elif gridVal_X != 'None' and gridVal_Y != 'None': r("p <- p + facet_grid(gridVal_Y ~ gridVal_X)") r("p <- p + theme(strip.text.x=element_text(size=10, colour='blue', angle=0))") r("p <- p + theme(strip.text.y=element_text(size=10, colour='blue', angle=90))") palette = all['palette'] r.assign('palette', palette) if palette == 'gdocs': r('pal <- gdocs_pal()(20)') elif palette == 'hc': r('pal <- hc_pal()(10)') elif palette == 'Set1': r('pal <- brewer.pal(8, "Set1")') elif palette == 'Set2': r('pal <- brewer.pal(8, "Set2")') elif palette == 'Set3': r('pal <- brewer.pal(12, "Set3")') elif palette == 'Paired': r('pal <- brewer.pal(12, "Paired")') elif palette == 'Dark2': r('pal <- brewer.pal(12, "Dark2")') elif palette == 'Accent': r('pal <- brewer.pal(12, "Accent")') r('nColors <- length(pal)') r('number <- nlevels(gDF$myColor)') r('colors <- rep(pal, length.out=number) ') r("p <- p + scale_fill_manual(name='', values=colors, guide=guide_legend(override.aes=list(shape=21)))") r('number <- nlevels(gDF$myShape)') r('shapes <- rep(c(21, 22, 23, 24, 25), length.out=number) ') r("p <- p + scale_shape_manual(name='', values=shapes)") r("p <- p + theme(legend.text=element_text(size=7))") r("p <- p + theme(legend.position='bottom')") r("my.formula <- y ~ x") r("p <- p + geom_smooth(method='lm', se=T, color='black', formula=my.formula)") if DepVar == 0: r("p <- p + ylab('Abundance') + xlab(paste(xVal))") elif DepVar == 1: r("p <- p + ylab('Relative Abundance') + xlab(paste(xVal))") elif DepVar == 2: r("p <- p + ylab('OTU Richness') + xlab(paste(xVal))") elif DepVar == 3: r("p <- p + ylab('OTU Diversity') + xlab(paste(xVal))") elif DepVar == 4: r("p <- p + ylab('Total Abundance') + xlab(paste(xVal))") path = "myPhyloDB/media/temp/anova/Rplots" if not os.path.exists(path): os.makedirs(path) r.assign("path", path) r.assign("RID", RID) r("file <- paste(path, '/', RID, '.anova.pdf', sep='')") r("p <- set_panel_size(p, height=unit(2.9, 'in'), width=unit(2.9, 'in'))") r("nlev <- nlevels(as.factor(gDF$gridVal_X))") r('if (nlev == 0) { \ myWidth <- 8 \ } else { \ myWidth <- min(3*nlev+4, 50) \ }') r("nlev <- nlevels(as.factor(gDF$gridVal_Y))") r('if (nlev == 0) { \ myHeight <- 8 \ } else { \ myHeight <- min(3*nlev+4, 50) \ }') r("ggsave(filename=file, plot=p, units='in', height=myHeight, width=myWidth, limitsize=F)") pValDict = {} counter = 1 catLevels = len(set(catValues)) grouped1 = finalDF.groupby(['rank_name', 'rank_id']) for name1, group1 in grouped1: D = '' r.assign("df", group1) trtString = " * ".join(allFields) if DepVar == 0: anova_string = "fit <- lm(abund ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 1: anova_string = "fit <- lm(rel_abund ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 2: anova_string = "fit <- lm(rich ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 3: anova_string = "fit <- lm(diversity ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") elif DepVar == 4: anova_string = "fit <- lm(abund_16S ~ " + str(trtString) + ", data=df)" r.assign("cmd", anova_string) r("eval(parse(text=cmd))") # calculate predicted scores (full model) pred_string = "df$pred <- predict(fit, df)" r.assign("cmd", pred_string) r("eval(parse(text=cmd))") r("options(width=5000)") r("aov <- anova(fit)") aov = r("aov") tempStuff = aov.split('\n') for i in xrange(len(tempStuff)): if i >= 4: D += tempStuff[i] + '\n' fit = r("summary(fit)") tempStuff = fit.split('\n') for i in xrange(len(tempStuff)): if i >= 8: D += tempStuff[i] + '\n' r("p_vals <- summary(fit)$coefficients[,4]") p_vals = r.get("p_vals") if not np.isnan(p_vals).any(): p_value = min(p_vals) pValDict[name1] = p_value else: pValDict[name1] = np.nan result += 'Name: ' + str(name1[0]) + '\n' result += 'ID: ' + str(name1[1]) + '\n' if DepVar == 0: result += 'Dependent Variable: Abundance' + '\n' elif DepVar == 1: result += 'Dependent Variable: Relative Abundance' + '\n' elif DepVar == 2: result += 'Dependent Variable: OTU Richness' + '\n' elif DepVar == 3: result += 'Dependent Variable: OTU Diversity' + '\n' elif DepVar == 4: result += 'Dependent Variable: Total Abundance' + '\n' result += '\nANCOVA table:\n' D = D.decode('utf-8') result += D + '\n' result += '===============================================\n' result += '\n\n\n\n' taxa_no = len(grouped1) functions.setBase(RID, 'Step 3 of 4: Performing statistical test...taxa ' + str(counter) + ' of ' + str(taxa_no) + ' is complete!') counter += 1 # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # functions.setBase(RID, 'Step 3 of 4: Performing statistical test...done!') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # functions.setBase(RID, 'Step 4 of 4: Formatting graph data for display...') finalDF['sample_name'] = '' for index, row in finalDF.iterrows(): val = Sample.objects.get(sampleid=row['sampleid']).sample_name finalDF.loc[index, 'sample_name'] = val shapes_idx = 0 seriesList = [] grouped1 = finalDF.groupby(['rank_name', 'rank_id']) for name1, group1 in grouped1: pValue = pValDict[name1] if sig_only == 0: if catLevels > 1: grouped2 = group1.groupby(catFields) for name2, group2 in grouped2: dataList = [] x = [] y = [] if DepVar == 0: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['abund'].values.astype(float).tolist() elif DepVar == 1: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['rel_abund'].values.astype(float).tolist() elif DepVar == 2: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['rich'].values.astype(float).tolist() elif DepVar == 3: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['diversity'].values.astype(float).tolist() elif DepVar == 4: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['abund_16S'].values.astype(float).tolist() if DepVar == 0: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund']) dataList.append(dataDict) elif DepVar == 1: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rel_abund']) dataList.append(dataDict) elif DepVar == 2: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rich']) dataList.append(dataDict) elif DepVar == 3: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['diversity']) dataList.append(dataDict) elif DepVar == 4: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund_16S']) dataList.append(dataDict) seriesDict = {} seriesDict['turboThreshold'] = 0 seriesDict['type'] = 'scatter' seriesDict['name'] = str(name1[0]) + ": " + str(name2) seriesDict['data'] = dataList markerDict = {} markerDict['symbol'] = shapes[shapes_idx] seriesDict['marker'] = markerDict seriesDict['data'] = dataList seriesList.append(seriesDict) slp, inter, r_value, p, std_err = stats.linregress(x, y) min_y = float(slp*min(x) + inter) max_y = float(slp*max(x) + inter) slope = "%0.3f" % slp intercept = "%0.3f" % inter r_sq = r_value * r_value r_square = "%0.3f" % r_sq regrList = [] regrList.append([float(min(x)), min_y]) regrList.append([float(max(x)), max_y]) regrDict = {} regrDict['type'] = 'line' sup2 = u"\u00B2" regrDict['name'] = 'y = ' + str(slope) + 'x' + ' + ' + str(intercept) + '; R' + sup2 + ' = ' + str(r_square) regrDict['data'] = regrList regrDict['color'] = 'black' markerDict = {} markerDict['enabled'] = False regrDict['marker'] = markerDict seriesList.append(regrDict) shapes_idx += 1 if shapes_idx >= len(shapes): shapes_idx = 0 else: # if catLevel <=1 dataList = [] x = [] y = [] if DepVar == 0: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['abund'].values.astype(float).tolist() elif DepVar == 1: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['rel_abund'].values.astype(float).tolist() elif DepVar == 2: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['rich'].values.astype(float).tolist() elif DepVar == 3: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['diversity'].values.astype(float).tolist() elif DepVar == 4: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['abund_16S'].values.astype(float).tolist() if DepVar == 0: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund']) dataList.append(dataDict) elif DepVar == 1: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rel_abund']) dataList.append(dataDict) elif DepVar == 2: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rich']) dataList.append(dataDict) elif DepVar == 3: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['diversity']) dataList.append(dataDict) elif DepVar == 4: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund_16S']) dataList.append(dataDict) seriesDict = {} seriesDict['turboThreshold'] = 0 seriesDict['type'] = 'scatter' seriesDict['name'] = str(name1[0]) seriesDict['data'] = dataList markerDict = {} markerDict['symbol'] = shapes[shapes_idx] seriesDict['marker'] = markerDict seriesDict['data'] = dataList seriesList.append(seriesDict) slp, inter, r_value, p, std_err = stats.linregress(x, y) min_y = float(slp*min(x) + inter) max_y = float(slp*max(x) + inter) slope = "%0.3f" % slp intercept = "%0.3f" % inter r_sq = r_value * r_value r_square = "%0.3f" % r_sq regrList = [] regrList.append([float(min(x)), min_y]) regrList.append([float(max(x)), max_y]) regrDict = {} regrDict['type'] = 'line' sup2 = u"\u00B2" regrDict['name'] = 'y = ' + str(slope) + 'x' + ' + ' + str(intercept) + '; R' + sup2 + ' = ' + str(r_square) regrDict['data'] = regrList regrDict['color'] = 'black' markerDict = {} markerDict['enabled'] = False regrDict['marker'] = markerDict seriesList.append(regrDict) elif sig_only == 1: if pValue < 0.05: if catLevels > 1: grouped2 = group1.groupby(catFields) for name2, group2 in grouped2: dataList = [] x = [] y = [] if DepVar == 0: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['abund'].values.astype(float).tolist() elif DepVar == 1: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['rel_abund'].values.astype(float).tolist() elif DepVar == 2: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['rich'].values.astype(float).tolist() elif DepVar == 3: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['diversity'].values.astype(float).tolist() elif DepVar == 4: x = group2[quantFields[0]].values.astype(float).tolist() y = group2['abund_16S'].values.astype(float).tolist() if DepVar == 0: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund']) dataList.append(dataDict) elif DepVar == 1: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rel_abund']) dataList.append(dataDict) elif DepVar == 2: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rich']) dataList.append(dataDict) elif DepVar == 3: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['diversity']) dataList.append(dataDict) elif DepVar == 4: for index, row in group2.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund_16S']) dataList.append(dataDict) seriesDict = {} seriesDict['turboThreshold'] = 0 seriesDict['type'] = 'scatter' seriesDict['name'] = str(name1[0]) + ": " + str(name2) seriesDict['data'] = dataList markerDict = {} markerDict['symbol'] = shapes[shapes_idx] seriesDict['marker'] = markerDict seriesDict['data'] = dataList seriesList.append(seriesDict) slp, inter, r_value, p, std_err = stats.linregress(x, y) min_y = float(slp*min(x) + inter) max_y = float(slp*max(x) + inter) slope = "%0.3f" % slp intercept = "%0.3f" % inter r_sq = r_value * r_value r_square = "%0.3f" % r_sq regrList = [] regrList.append([float(min(x)), min_y]) regrList.append([float(max(x)), max_y]) regrDict = {} regrDict['type'] = 'line' regrDict['name'] = 'y = ' + str(slope) + 'x' + ' + ' + str(intercept) + '; R2 = ' + str(r_square) regrDict['data'] = regrList regrDict['color'] = 'black' markerDict = {} markerDict['enabled'] = False regrDict['marker'] = markerDict seriesList.append(regrDict) shapes_idx += 1 if shapes_idx >= len(shapes): shapes_idx = 0 else: # if catLevel <=1 dataList = [] x = [] y = [] if DepVar == 0: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['abund'].values.astype(float).tolist() elif DepVar == 1: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['rel_abund'].values.astype(float).tolist() elif DepVar == 2: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['rich'].values.astype(float).tolist() elif DepVar == 3: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['diversity'].values.astype(float).tolist() elif DepVar == 4: x = group1[quantFields[0]].values.astype(float).tolist() y = group1['abund_16S'].values.astype(float).tolist() if DepVar == 0: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund']) dataList.append(dataDict) elif DepVar == 1: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rel_abund']) dataList.append(dataDict) elif DepVar == 2: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['rich']) dataList.append(dataDict) elif DepVar == 3: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['diversity']) dataList.append(dataDict) elif DepVar == 4: for index, row in group1.iterrows(): dataDict = {} dataDict['name'] = row['sample_name'] dataDict['x'] = float(row[quantFields[0]]) dataDict['y'] = float(row['abund_16S']) dataList.append(dataDict) seriesDict = {} seriesDict['turboThreshold'] = 0 seriesDict['type'] = 'scatter' seriesDict['name'] = str(name1[0]) seriesDict['data'] = dataList markerDict = {} markerDict['symbol'] = shapes[shapes_idx] seriesDict['marker'] = markerDict seriesDict['data'] = dataList seriesList.append(seriesDict) slp, inter, r_value, p, std_err = stats.linregress(x, y) min_y = float(slp*min(x) + inter) max_y = float(slp*max(x) + inter) slope = "%0.3f" % slp intercept = "%0.3f" % inter r_sq = r_value * r_value r_square = "%0.3f" % r_sq regrList = [] regrList.append([float(min(x)), min_y]) regrList.append([float(max(x)), max_y]) regrDict = {} regrDict['type'] = 'line' regrDict['name'] = 'y = ' + str(slope) + 'x' + ' + ' + str(intercept) + '; R2 = ' + str(r_square) regrDict['data'] = regrList regrDict['color'] = 'black' markerDict = {} markerDict['enabled'] = False regrDict['marker'] = markerDict seriesList.append(regrDict) # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # xAxisDict = {} xTitle = {} xTitle['text'] = quantFields[0] xTitle['style'] = {'fontSize': '18px', 'fontWeight': 'bold'} xAxisDict['title'] = xTitle yAxisDict = {} yTitle = {} if DepVar == 0: yTitle['text'] = 'Abundance' elif DepVar == 1: yTitle['text'] = 'Relative Abundance' elif DepVar == 2: yTitle['text'] = 'OTU Richness' elif DepVar == 3: yTitle['text'] = 'OTU Diversity' elif DepVar == 4: yTitle['text'] = 'Total Abundance' yAxisDict['title'] = yTitle if transform != 0: tname = { '1': "Ln", '2': "Log10", '3': "Sqrt", '4': "Logit", '5': "Arcsin" } yTitle['text'] = tname[str(transform)] + "(" + str(yTitle['text']) + ")" yTitle['style'] = {'fontSize': '18px', 'fontWeight': 'bold'} yAxisDict['title'] = yTitle styleDict = {'style': {'fontSize': '14px'}} xAxisDict['labels'] = styleDict yAxisDict['labels'] = styleDict finalDict['series'] = seriesList finalDict['xAxis'] = xAxisDict finalDict['yAxis'] = yAxisDict if not seriesList: finalDict['empty'] = 0 else: finalDict['empty'] = 1 functions.setBase(RID, 'Step 4 of 4: Formatting graph data for display...done!') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # if stops[PID] == RID: res = '' return HttpResponse(res, content_type='application/json') # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\ # # datatable of taxa mapped to selected kegg orthologies if not treeType == 1 and mapTaxa == 'yes': records = allDF.values.tolist() finalDict['taxData'] = json.dumps(records) columns = allDF.columns.values.tolist() finalDict['taxColumns'] = json.dumps(columns) finalDict['resType'] = 'res' finalDict['text'] = result finalDict['error'] = 'none' res = json.dumps(finalDict) return HttpResponse(res, content_type='application/json') except Exception as e: if not stops[PID] == RID: logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG,) myDate = "\nDate: " + str(datetime.datetime.now()) + "\n" logging.exception(myDate) myDict = {} myDict['error'] = "There was an error during your analysis:\nError: " + str(e.message) + "\nTimestamp: " + str(datetime.datetime.now()) res = json.dumps(myDict) return HttpResponse(res, content_type='application/json')
gpl-3.0
mne-tools/mne-tools.github.io
0.22/_downloads/f553cfe58e70a6f3fbc4e55fbf53ba56/plot_time_frequency_erds.py
5
5389
""" =============================== Compute and visualize ERDS maps =============================== This example calculates and displays ERDS maps of event-related EEG data. ERDS (sometimes also written as ERD/ERS) is short for event-related desynchronization (ERD) and event-related synchronization (ERS) [1]_. Conceptually, ERD corresponds to a decrease in power in a specific frequency band relative to a baseline. Similarly, ERS corresponds to an increase in power. An ERDS map is a time/frequency representation of ERD/ERS over a range of frequencies [2]_. ERDS maps are also known as ERSP (event-related spectral perturbation) [3]_. We use a public EEG BCI data set containing two different motor imagery tasks available at PhysioNet. The two tasks are imagined hand and feet movement. Our goal is to generate ERDS maps for each of the two tasks. First, we load the data and create epochs of 5s length. The data sets contain multiple channels, but we will only consider the three channels C3, Cz, and C4. We compute maps containing frequencies ranging from 2 to 35Hz. We map ERD to red color and ERS to blue color, which is the convention in many ERDS publications. Finally, we perform cluster-based permutation tests to estimate significant ERDS values (corrected for multiple comparisons within channels). References ---------- .. [1] G. Pfurtscheller, F. H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology 110(11), 1842-1857, 1999. .. [2] B. Graimann, J. E. Huggins, S. P. Levine, G. Pfurtscheller. Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clinical Neurophysiology 113(1), 43-47, 2002. .. [3] S. Makeig. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology 86(4), 283-293, 1993. """ # Authors: Clemens Brunner <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import eegbci from mne.io import concatenate_raws, read_raw_edf from mne.time_frequency import tfr_multitaper from mne.stats import permutation_cluster_1samp_test as pcluster_test from mne.viz.utils import center_cmap # load and preprocess data #################################################### subject = 1 # use data from subject 1 runs = [6, 10, 14] # use only hand and feet motor imagery runs fnames = eegbci.load_data(subject, runs) raws = [read_raw_edf(f, preload=True) for f in fnames] raw = concatenate_raws(raws) raw.rename_channels(lambda x: x.strip('.')) # remove dots from channel names events, _ = mne.events_from_annotations(raw, event_id=dict(T1=2, T2=3)) picks = mne.pick_channels(raw.info["ch_names"], ["C3", "Cz", "C4"]) # epoch data ################################################################## tmin, tmax = -1, 4 # define epochs around events (in s) event_ids = dict(hands=2, feet=3) # map event IDs to tasks epochs = mne.Epochs(raw, events, event_ids, tmin - 0.5, tmax + 0.5, picks=picks, baseline=None, preload=True) # compute ERDS maps ########################################################### freqs = np.arange(2, 36, 1) # frequencies from 2-35Hz n_cycles = freqs # use constant t/f resolution vmin, vmax = -1, 1.5 # set min and max ERDS values in plot baseline = [-1, 0] # baseline interval (in s) cmap = center_cmap(plt.cm.RdBu, vmin, vmax) # zero maps to white kwargs = dict(n_permutations=100, step_down_p=0.05, seed=1, buffer_size=None, out_type='mask') # for cluster test # Run TF decomposition overall epochs tfr = tfr_multitaper(epochs, freqs=freqs, n_cycles=n_cycles, use_fft=True, return_itc=False, average=False, decim=2) tfr.crop(tmin, tmax) tfr.apply_baseline(baseline, mode="percent") for event in event_ids: # select desired epochs for visualization tfr_ev = tfr[event] fig, axes = plt.subplots(1, 4, figsize=(12, 4), gridspec_kw={"width_ratios": [10, 10, 10, 1]}) for ch, ax in enumerate(axes[:-1]): # for each channel # positive clusters _, c1, p1, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=1, **kwargs) # negative clusters _, c2, p2, _ = pcluster_test(tfr_ev.data[:, ch, ...], tail=-1, **kwargs) # note that we keep clusters with p <= 0.05 from the combined clusters # of two independent tests; in this example, we do not correct for # these two comparisons c = np.stack(c1 + c2, axis=2) # combined clusters p = np.concatenate((p1, p2)) # combined p-values mask = c[..., p <= 0.05].any(axis=-1) # plot TFR (ERDS map with masking) tfr_ev.average().plot([ch], vmin=vmin, vmax=vmax, cmap=(cmap, False), axes=ax, colorbar=False, show=False, mask=mask, mask_style="mask") ax.set_title(epochs.ch_names[ch], fontsize=10) ax.axvline(0, linewidth=1, color="black", linestyle=":") # event if ch != 0: ax.set_ylabel("") ax.set_yticklabels("") fig.colorbar(axes[0].images[-1], cax=axes[-1]) fig.suptitle("ERDS ({})".format(event)) fig.show()
bsd-3-clause
ssorgatem/qiime
qiime/make_2d_plots.py
9
23540
#!/usr/bin/env python # File created on 09 Feb 2010 # file make_2d_plots.py __author__ = "Jesse Stombaugh and Micah Hamady" __copyright__ = "Copyright 2011, The QIIME Project" # remember to add yourself __credits__ = ["Jesse Stombaugh", "Jose Antonio Navas Molina"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jesse Stombaugh" __email__ = "[email protected]" import re from matplotlib import use use('Agg', warn=False) from matplotlib.pylab import * from matplotlib.cbook import iterable, is_string_like from matplotlib.patches import Ellipse from matplotlib.font_manager import FontProperties from string import strip from numpy import array, asarray, ndarray from time import strftime from random import choice from qiime.util import summarize_pcoas, isarray, qiime_system_call from qiime.parse import group_by_field, group_by_fields, parse_coords from qiime.colors import data_color_order, data_colors, \ get_group_colors, data_colors, iter_color_groups from qiime.sort import natsort from tempfile import mkdtemp import os import numpy SCREE_TABLE_HTML = """<table cellpadding=0 cellspacing=0 border=1> <tr><th align=center colspan=3 border=0>Scree plot</th></tr> <tr> <td class=normal align=center border=0>%s</td> </tr> </table> <br><br>""" TABLE_HTML = """<table cellpadding=0 cellspacing=0 border=1> <tr><th align=center colspan=3 border=0>%s</th></tr> <tr> <td class=normal align=center border=0>%s</td> <td class=normal align=center border=0>%s</td> <td class=normal align=center border=0>%s</td> </tr> </table> <br><br>""" PAGE_HTML = """ <html> <head> <style type="text/css"> .normal { color: black; font-family:Arial,Verdana; font-size:12; font-weight:normal;} </style> <script type="text/javascript" src="js/overlib.js"></script> <title>%s</title> </head> <body> <div id="overDiv" style="position:absolute; visibility:hidden; z-index:1000;">\ </div> %s </body> </html> """ IMG_SRC = """<img src="%s" border=0 />""" DOWNLOAD_LINK = """<a href="%s" >%s</a>""" AREA_SRC = """<AREA shape="circle" coords="%d,%d,5" href="#%s" \ onmouseover="return overlib('%s');" onmouseout="return nd();">\n""" IMG_MAP_SRC = """<img src="%s" border="0" ismap usemap="#points%s" width="%d" \ height="%d" />\n""" MAP_SRC = """ <MAP name="points%s"> %s </MAP> """ shape = [ 's', # : square 'o', # : circle '^', # : triangle up '>', # : triangle right 'v', # : triangle down '<', # : triangle left 'd', # : diamond 'p', # : pentagon 'h', # : hexagon ] ''' data_colors={'blue':'#0000FF','lime':'#00FF00','red':'#FF0000', \ 'aqua':'#00FFFF','fuchsia':'#FF00FF','yellow':'#FFFF00', \ 'green':'#008000','maroon':'#800000','teal':'#008080', \ 'purple':'#800080','olive':'#808000', \ 'silver':'#C0C0C0','gray':'#808080'} ''' default_colors = ['blue', 'lime', 'red', 'aqua', 'fuchsia', 'yellow', 'green', 'maroon', 'teal', 'purple', 'olive', 'silver', 'gray'] # This function used to live in make_3d_plots.py but in the Boulder sk-bio # code sprint it got moved here to remove the 3D files. def get_coord(coord_fname, method="IQR"): """Opens and returns coords location matrix and metadata. Also two spread matrices (+/-) if passed a dir of coord files. If only a single coord file, spread matrices are returned as None. """ if not os.path.isdir(coord_fname): try: coord_f = open(coord_fname, 'U') except (TypeError, IOError): raise MissingFileError('Coord file required for this analysis') coord_header, coords, eigvals, pct_var = parse_coords(coord_f) return [coord_header, coords, eigvals, pct_var, None, None] else: master_pcoa, support_pcoas = load_pcoa_files(coord_fname) # get Summary statistics coords, coords_low, coords_high, eigval_average, coord_header = \ summarize_pcoas(master_pcoa, support_pcoas, method=method) pct_var = master_pcoa[3] # should be getting this from an average # make_3d_plots expects coord_header to be a python list coord_header = list(master_pcoa[0]) return ( [coord_header, coords, eigval_average, pct_var, coords_low, coords_high] ) def make_line_plot( dir_path, data_file_link, background_color, label_color, xy_coords, props, x_len=8, y_len=4, draw_axes=False, generate_eps=True): """ Write a line plot xy_coords: a dict of form {series_label:([x data], [y data], point_marker, color)} (code adapted from Micah Hamady's code) """ rc('font', size='8') rc('axes', linewidth=.5, edgecolor=label_color) rc('axes', labelsize=8) rc('xtick', labelsize=8) rc('ytick', labelsize=8) fig = figure(figsize=(x_len, y_len)) mtitle = props.get("title", "Groups") x_label = props.get("xlabel", "X") y_label = props.get("ylabel", "Y") title('%s' % mtitle, fontsize='10', color=label_color) xlabel(x_label, fontsize='8', color=label_color) ylabel(y_label, fontsize='8', color=label_color) sorted_keys = sorted(xy_coords.keys()) labels = [] for s_label in sorted_keys: s_data = xy_coords[s_label] c = s_data[3] m = s_data[2] plot(s_data[0], s_data[1], c=c, marker=m, label=s_label, linewidth=.1, ms=5, alpha=1.0) fp = FontProperties() fp.set_size('8') legend(prop=fp, loc=0) show() img_name = 'scree_plot.png' savefig( os.path.join(dir_path, img_name), dpi=80, facecolor=background_color) # Create zipped eps files eps_link = "" if generate_eps: eps_img_name = str('scree_plot.eps') savefig(os.path.join(dir_path, eps_img_name), format='eps') out, err, retcode = qiime_system_call( "gzip -f " + os.path.join(dir_path, eps_img_name)) eps_link = DOWNLOAD_LINK % ((os.path.join(data_file_link, eps_img_name) + ".gz"), "Download Figure") return os.path.join(data_file_link, img_name), eps_link def draw_scree_graph(dir_path, data_file_link, background_color, label_color, generate_eps, data): """Draw scree plot (code adapted from Micah Hamady's code) """ dimensions = len(data['coord'][3]) props = {} props["title"] = "PCoA Scree Plot (First %s dimensions)" % dimensions props["ylabel"] = "Fraction of Variance" props["xlabel"] = "Principal component" xy_coords = {} x_points = [x for x in range(dimensions)] c_data = [float(x) / 100.0 for x in data['coord'][3]] xy_coords['Variance'] = (x_points, c_data, 'o', 'r') cum_var = [c_data[0]] for ix in range(dimensions - 1): cum_var.append(cum_var[ix] + c_data[ix + 1]) xy_coords['Cumulative variance'] = (x_points, cum_var, 's', 'b') img_src, eps_link = make_line_plot( dir_path, data_file_link, background_color, label_color, xy_coords=xy_coords, props=props, x_len=4.5, y_len=4.5, generate_eps=generate_eps) return IMG_SRC % img_src, eps_link def make_interactive_scatter(plot_label, dir_path, data_file_link, background_color, label_color, sample_location, alpha, xy_coords, props, x_len=8, y_len=4, size=10, draw_axes=False, generate_eps=True): """Write interactive plot xy_coords: a dict of form {series_label:([x data], [y data], \ [xy point label],[color])} """ my_axis = None rc('font', size='8') rc('patch', linewidth=0) rc('axes', linewidth=.5, edgecolor=label_color) rc('axes', labelsize=8) rc('xtick', labelsize=8, color=label_color) rc('ytick', labelsize=8, color=label_color) sc_plot = draw_scatterplot(props, xy_coords, x_len, y_len, size, background_color, label_color, sample_location, alpha) mtitle = props.get("title", "Groups") x_label = props.get("xlabel", "X") y_label = props.get("ylabel", "Y") title('%s' % mtitle, fontsize='10', color=label_color) xlabel(x_label, fontsize='8', color=label_color) ylabel(y_label, fontsize='8', color=label_color) show() if draw_axes: axvline(linewidth=.5, x=0, color=label_color) axhline(linewidth=.5, y=0, color=label_color) if my_axis is not None: axis(my_axis) img_name = x_label[0:3] + '_vs_' + y_label[0:3] + '_plot.png' savefig(os.path.join(dir_path, img_name), dpi=80, facecolor=background_color) # Create zipped eps files eps_link = "" if generate_eps: eps_img_name = str(x_label[0:3] + 'vs' + y_label[0:3] + 'plot.eps') savefig(os.path.join(dir_path, eps_img_name), format='eps') out, err, retcode = qiime_system_call( "gzip -f " + os.path.join(dir_path, eps_img_name)) eps_link = DOWNLOAD_LINK % ((os.path.join(data_file_link, eps_img_name) + ".gz"), "Download Figure") all_cids, all_xcoords, all_ycoords = transform_xy_coords( xy_coords, sc_plot) xmap, img_height, img_width = generate_xmap( x_len, y_len, all_cids, all_xcoords, all_ycoords) points_id = plot_label + x_label[2:3] + y_label[2:3] return IMG_MAP_SRC % (os.path.join(data_file_link, img_name), points_id, img_width, img_height), MAP_SRC % \ (points_id, ''.join(xmap)), eps_link def generate_xmap(x_len, y_len, all_cids, all_xcoords, all_ycoords): """Generates the html interactive image map""" # Determine figure height and width""" img_height = x_len * 80 img_width = y_len * 80 # Write html script which allows for mouseover of labels xmap = [] for cid, x, y in zip(all_cids, all_xcoords, all_ycoords): xmap.append(AREA_SRC % (x, img_height - y, cid, cid)) return xmap, img_height, img_width def draw_scatterplot(props, xy_coords, x_len, y_len, size, background_color, label_color, sample_location, alpha): """Create scatterplot figure""" fig = figure(figsize=(x_len, y_len)) xPC = int(props['xlabel'][2:3]) yPC = int(props['ylabel'][2:3]) sorted_keys = xy_coords.keys() scatters = {} size_ct = shape_ct = 0 xPC = xPC - 1 yPC = yPC - 1 # Iterate through coords and add points to the scatterplot for s_label in sorted_keys: s_data = xy_coords[s_label] if s_data[0] == []: pass else: c = s_data[3] m = s_data[4][0] ax = fig.add_subplot(111, axisbg=background_color) # set tick colors and width for line in ax.yaxis.get_ticklines(): # line is a matplotlib.lines.Line2D instance line.set_color(label_color) line.set_markeredgewidth(1) for line in ax.xaxis.get_ticklines(): # line is a matplotlib.lines.Line2D instance line.set_color(label_color) line.set_markeredgewidth(1) if isarray(s_data[5][0]) and isarray(s_data[6][0]) and \ isarray(s_data[7][0]): matrix_low = s_data[5][0] matrix_high = s_data[6][0] ellipse_ave = s_data[7][0] ellipse_x = [ellipse_ave[sample_location[s_label], xPC]] ellipse_y = [ellipse_ave[sample_location[s_label], yPC]] width = [fabs(matrix_high[sample_location[s_label], xPC] - matrix_low[sample_location[s_label], xPC])] height = [fabs(matrix_high[sample_location[s_label], yPC] - matrix_low[sample_location[s_label], yPC])] sc_plot = scatter_ellipse(ax, ellipse_x, ellipse_y, width, height, c=c, a=0.0, alpha=alpha) sc_plot.scatter(ellipse_x, ellipse_y, c=c, marker=m, alpha=1.0) else: sc_plot = ax.scatter(s_data[0], s_data[1], c=c, marker=m, alpha=1.0, s=size, linewidth=1, edgecolor=c) size_ct += 1 shape_ct += 1 scatters[s_label] = sc_plot return sc_plot def transform_xy_coords(xy_coords, sc_plot): """Transform the coords from the scatterplot into coords that can be \ referenced in the html page""" sorted_keys = xy_coords.keys() all_cids = [] all_xcoords = [] all_ycoords = [] sc_plot.set_transform(sc_plot.axes.transData) trans = sc_plot.get_transform() for s_label in sorted_keys: s_data = xy_coords[s_label] if s_data[0] == []: pass else: icoords = trans.transform(zip(s_data[0], s_data[1])) xcoords, ycoords = zip(*icoords) all_cids.extend(s_data[2]) all_xcoords.extend(xcoords) all_ycoords.extend(ycoords) return all_cids, all_xcoords, all_ycoords def draw_pcoa_graph(plot_label, dir_path, data_file_link, coord_1, coord_2, coord_1r, coord_2r, mat_ave, sample_location, data, prefs, groups, colors, background_color, label_color, data_colors, data_color_order, generate_eps=True, pct_variation_below_one=False): """Draw PCoA graphs""" coords, pct_var = convert_coord_data_to_dict(data) mapping = data['map'] if coord_1 not in coords: raise ValueError("Principal coordinate: %s not available." % coord_1) if coord_2 not in coords: raise ValueError("Principal coordinate: %s not available." % coord_2) # Handle matplotlib scale bug when all coords are 0.0 if not len([x for x in map(float, coords[coord_2]) if x != 0.0]): for ix in range(len(coords[coord_2])): coords[coord_2][ix] = '1e-255' if not len([x for x in map(float, coords[coord_1]) if x != 0.0]): for ix in range(len(coords[coord_1])): coords[coord_1][ix] = '1e-255' # Write figure labels pct_exp1 = float(pct_var[coord_1]) pct_exp2 = float(pct_var[coord_2]) if float(pct_var['1']) < 1 and not pct_variation_below_one: pct_exp1 *= 100 pct_exp2 *= 100 props = {} props["title"] = "PCoA - PC%s vs PC%s" % (coord_1, coord_2) props["ylabel"] = "PC%s - Percent variation explained %.2f%%" \ % (coord_2, pct_exp2) props["xlabel"] = "PC%s - Percent variation explained %.2f%%" \ % (coord_1, pct_exp1) labels = coords['pc vector number'] p1 = map(float, coords[coord_2]) p2 = map(float, coords[coord_1]) if isarray(coord_1r) and isarray(coord_2r) and isarray(mat_ave): p1r = coord_2r p2r = coord_1r else: p1r = None p2r = None mat_ave = None if len(p1) != len(p2): raise ValueError("Principal coordinate vectors unequal length.") p1d = dict(zip(labels, p1)) p2d = dict(zip(labels, p2)) alpha = data['alpha'] xy_coords = extract_and_color_xy_coords( p1d, p2d, p1r, p2r, mat_ave, colors, data_colors, groups, coords) img_src, img_map, eps_link = make_interactive_scatter( plot_label, dir_path, data_file_link, background_color, label_color, sample_location, alpha, xy_coords=xy_coords, props=props, x_len=4.5, y_len=4.5, size=20, draw_axes=True, generate_eps=generate_eps) return img_src + img_map, eps_link def extract_and_color_xy_coords( p1d, p2d, p1dr, p2dr, mat_ave, colors, data_colors, groups, coords): """Extract coords from appropriate columns and attach their \ corresponding colors based on the group""" xy_coords = {} shape_ct = 0 for group_name, ids in (groups.items()): x = 0 color = data_colors[colors[group_name]].toHex() m = shape[shape_ct % len(shape)] shape_ct += 1 for id_ in (ids): cur_labs = [] cur_x = [] cur_y = [] cur_color = [] cur_shape = [] cur_1r = [] cur_2r = [] new_mat_ave = [] if id_ in coords['pc vector number']: cur_labs.append(id_ + ': ' + group_name) cur_x.append(p2d[id_]) cur_y.append(p1d[id_]) cur_color.append(color) cur_shape.append(m) if isarray(p2dr) and isarray(p1dr) and isarray(mat_ave): cur_1r.append(p1dr) cur_2r.append(p2dr) new_mat_ave.append(mat_ave) else: cur_1r = [None] cur_2r = [None] new_mat_ave = [None] xy_coords["%s" % id_] = (cur_x, cur_y, cur_labs, cur_color, cur_shape, cur_1r, cur_2r, new_mat_ave) return xy_coords def create_html_filename(coord_filename, name_ending): """Generate html filename using the given coord filename""" outpath = coord_filename.split('/')[-1] + name_ending return outpath def convert_coord_data_to_dict(data): """Convert the coord data into a dictionary""" coord_header = data['coord'][0] coords = data['coord'][1] pct_var = data['coord'][3] coords_dict = {} pct_var_dict = {} coords_dict['pc vector number'] = coord_header for x in range(len(coords)): coords_dict[str(x + 1)] = coords[0:, x] pct_var_dict[str(x + 1)] = pct_var[x] return coords_dict, pct_var_dict def write_html_file(out_table, outpath): """Write 2D plots into an html file""" page_out = PAGE_HTML % (outpath, out_table) out = open(outpath, "w+") out.write(page_out) out.close() def generate_2d_plots(prefs, data, html_dir_path, data_dir_path, filename, background_color, label_color, generate_scree, pct_variation_below_one): """Generate interactive 2D scatterplots""" coord_tups = [("1", "2"), ("3", "2"), ("1", "3")] mapping = data['map'] out_table = '' # Iterate through prefs and generate html files for each colorby option # Sort by the column name first sample_location = {} groups_and_colors = iter_color_groups(mapping, prefs) groups_and_colors = list(groups_and_colors) for i in range(len(groups_and_colors)): labelname = groups_and_colors[i][0] groups = groups_and_colors[i][1] colors = groups_and_colors[i][2] data_colors = groups_and_colors[i][3] data_color_order = groups_and_colors[i][4] data_file_dir_path = mkdtemp(dir=data_dir_path) new_link = os.path.split(data_file_dir_path) data_file_link = os.path.join('.', os.path.split(new_link[-2])[-1], new_link[-1]) new_col_name = labelname img_data = {} plot_label = labelname if 'support_pcoas' in data: matrix_average, matrix_low, matrix_high, eigval_average, m_names = \ summarize_pcoas(data['coord'], data['support_pcoas'], method=data['ellipsoid_method']) data['coord'] = \ (m_names, matrix_average, data['coord'][2], data['coord'][3]) for i in range(len(m_names)): sample_location[m_names[i]] = i else: matrix_average = None matrix_low = None matrix_high = None eigval_average = None m_names = None iterator = 0 for coord_tup in coord_tups: if isarray(matrix_low) and isarray(matrix_high) and \ isarray(matrix_average): coord_1r = asarray(matrix_low) coord_2r = asarray(matrix_high) mat_ave = asarray(matrix_average) else: coord_1r = None coord_2r = None mat_ave = None sample_location = None coord_1, coord_2 = coord_tup img_data[coord_tup] = draw_pcoa_graph( plot_label, data_file_dir_path, data_file_link, coord_1, coord_2, coord_1r, coord_2r, mat_ave, sample_location, data, prefs, groups, colors, background_color, label_color, data_colors, data_color_order, generate_eps=True, pct_variation_below_one=pct_variation_below_one) out_table += TABLE_HTML % (labelname, "<br>".join(img_data[("1", "2")]), "<br>".join(img_data[("3", "2")]), "<br>".join(img_data[("1", "3")])) if generate_scree: data_file_dir_path = mkdtemp(dir=data_dir_path) new_link = os.path.split(data_file_dir_path) data_file_link = os.path.join( '.', os.path.split(new_link[-2])[-1], new_link[-1]) img_src, download_link = draw_scree_graph( data_file_dir_path, data_file_link, background_color, label_color, generate_eps=True, data=data) out_table += SCREE_TABLE_HTML % ("<br>".join((img_src, download_link))) outfile = create_html_filename(filename, '.html') outfile = os.path.join(html_dir_path, outfile) write_html_file(out_table, outfile) def scatter_ellipse(axis_ob, x, y, w, h, c='b', a=0.0, alpha=0.5): """ SCATTER_ELLIPSE(x, y, w=None, h=None, c='b', a=0.0) Make a scatter plot of x versus y with ellipses surrounding the center point. w and h represent the width and height of the ellipse that surround each x,y coordinate. They are arrays of the same length as x or y. c is a color and can be a single color format string or an length(x) array of intensities which will be mapped by the colormap jet. a is the angle or rotation in degrees of each ellipse (anti-clockwise). It is also an array of the same length as x or y or a single value to be iterated over all points. """ if not axis_ob._hold: axis_ob.cla() if not iterable(a): a = [a] * len(x) if not iterable(alpha): alpha = [alpha] * len(x) if len(c) != len(x): raise ValueError('c and x are not equal lengths') if len(w) != len(x): raise ValueError('w and x are not equal lengths') if len(h) != len(x): raise ValueError('h and x are not equal lengths') if len(a) != len(x): raise ValueError('a and x are not equal lengths') # if len(alpha)!=len(x): # raise ValueError, 'alpha and x are not equal lengths' patches = [] for thisX, thisY, thisW, thisH, thisC, thisA, thisAl in \ zip(x, y, w, h, c, a, alpha): ellip = Ellipse((thisX, thisY), width=thisW, height=thisH, angle=thisA) ellip.set_facecolor(thisC) ellip.set_alpha(thisAl) axis_ob.add_patch(ellip) patches.append(ellip) axis_ob.autoscale_view() return axis_ob
gpl-2.0
OSSHealth/ghdata
workers/release_worker/release_worker.py
1
11703
#SPDX-License-Identifier: MIT import logging, os, sys, time, requests, json from datetime import datetime from multiprocessing import Process, Queue from urllib.parse import urlparse import pandas as pd import sqlalchemy as s from sqlalchemy import MetaData from sqlalchemy.ext.automap import automap_base from workers.worker_base import Worker #TODO - fully edit to match releases class ReleaseWorker(Worker): """ Worker that collects Repository Releases data from the Github API and stores it in our database. :param task: most recent task the broker added to the worker's queue :param config: holds info like api keys, descriptions, and database connection strings """ def __init__(self, config={}): worker_type = "release_worker" # Define what this worker can be given and know how to interpret given = [['github_url']] models = ['releases'] # Define the tables needed to insert, update, or delete on data_tables = ['releases'] operations_tables = ['worker_history', 'worker_job'] # Run the general worker initialization super().__init__(worker_type, config, given, models, data_tables, operations_tables) # Define data collection info self.tool_source = 'Release Worker' self.tool_version = '1.0.0' self.data_source = 'GitHub API' def get_release_inf(self, repo_id, release, tag_only): if not tag_only: name = "" if release['author']['name'] is None else release['author']['name'] company = "" if release['author']['company'] is None else release['author']['company'] author = name + '_' + company release_inf = { 'release_id': release['id'], 'repo_id': repo_id, 'release_name': release['name'], 'release_description': release['description'], 'release_author': author, 'release_created_at': release['createdAt'], 'release_published_at': release['publishedAt'], 'release_updated_at': release['updatedAt'], 'release_is_draft': release['isDraft'], 'release_is_prerelease': release['isPrerelease'], 'release_tag_name': release['tagName'], 'release_url': release['url'], 'tag_only': tag_only, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } else: if 'tagger' in release['target']: if 'name' in release['target']['tagger']: name = release['target']['tagger']['name'] else: name = "" if 'email' in release['target']['tagger']: email = '_' + release['target']['tagger']['email'] else: email = "" author = name + email if 'date' in release['target']['tagger']: date = release['target']['tagger']['date'] else: date = "" else: author = "" date = "" release_inf = { 'release_id': release['id'], 'repo_id': repo_id, 'release_name': release['name'], 'release_author': author, 'release_tag_name': release['name'], 'tag_only': tag_only, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if date: release_inf['release_created_at'] = date return release_inf def insert_release(self, task, repo_id, owner, release, tag_only = False): # Get current table values release_id_data_sql = s.sql.text(""" SELECT releases.release_id FROM releases WHERE repo_id = :repo_id """) self.logger.info(f'Getting release table values with the following PSQL query: \n{release_id_data_sql}\n') release_id_data = pd.read_sql(release_id_data_sql, self.db, params={'repo_id': repo_id}) release_id_data = release_id_data.apply(lambda x: x.str.strip()) # Put all data together in format of the table self.logger.info(f'Inserting release for repo with id:{repo_id}, owner:{owner}, release name:{release["name"]}\n') release_inf = self.get_release_inf(repo_id, release, tag_only) if release_id_data.size > 0 and release['id'] in release_id_data.values: result = self.db.execute(self.releases_table.update().where( self.releases_table.c.release_id==release['id']).values(release_inf)) self.logger.info(f"Release {release['id']} updated into releases table\n") else: result = self.db.execute(self.releases_table.insert().values(release_inf)) self.logger.info(f"Release {release['id']} inserted into releases table\n") self.logger.info(f"Primary Key inserted into releases table: {result.inserted_primary_key}\n") self.results_counter += 1 self.logger.info(f"Inserted info for {owner}/{repo_id}/{release['name']}\n") #Register this task as completed self.register_task_completion(task, repo_id, "releases") return def get_query(self, owner, repo, tag_only): if not tag_only: query = """ { repository(owner:"%s", name:"%s"){ id releases(orderBy: {field: CREATED_AT, direction: ASC}, last: %d) { edges { node { name publishedAt createdAt description id isDraft isPrerelease tagName url updatedAt author { name company } } } } } } """ % (owner, repo, 10) else: query = """ { repository(owner:"%s", name:"%s"){ id refs(refPrefix: "refs/tags/", last: %d){ edges { node { name id target { ... on Tag { tagger { name email date } } } } } } } } """ % (owner, repo, 10) return query def fetch_data(self, task, repo_id, tag_only = False): github_url = task['given']['github_url'] self.logger.info("Beginning filling the releases model for repo: " + github_url + "\n") owner, repo = self.get_owner_repo(github_url) url = 'https://api.github.com/graphql' query = self.get_query(owner, repo, tag_only) # Hit the graphql endpoint and retry 3 times in case of failure num_attempts = 0 success = False while num_attempts < 3: self.logger.info("Hitting endpoint: {} ...\n".format(url)) r = requests.post(url, json={'query': query}, headers=self.headers) self.update_gh_rate_limit(r) try: data = r.json() except: data = json.loads(json.dumps(r.text)) if 'errors' in data: self.logger.info("Error!: {}".format(data['errors'])) if data['errors'][0]['message'] == 'API rate limit exceeded': self.update_gh_rate_limit(r) continue if 'data' in data: success = True data = data['data']['repository'] break else: self.logger.info("Request returned a non-data dict: {}\n".format(data)) if data['message'] == 'Not Found': self.logger.info("Github repo was not found or does not exist for endpoint: {}\n".format(url)) break if data['message'] == 'You have triggered an abuse detection mechanism. Please wait a few minutes before you try again.': self.update_gh_rate_limit(r, temporarily_disable=True) continue if data['message'] == 'Bad credentials': self.update_gh_rate_limit(r, bad_credentials=True) continue num_attempts += 1 if not success: self.register_task_failure(task, repo_id, "Failed to hit endpoint: {}".format(url)) return data['owner'] = owner return data def releases_model(self, task, repo_id): data = self.fetch_data(task, repo_id) self.logger.info("repository value is: {}\n".format(data)) if 'releases' in data: if 'edges' in data['releases'] and data['releases']['edges']: for n in data['releases']['edges']: if 'node' in n: release = n['node'] self.insert_release(task, repo_id, data['owner'], release) else: self.logger.info("There's no release to insert. Current node is not available in releases: {}\n".format(n)) elif 'edges' in data['releases'] and not data['releases']['edges']: self.logger.info("Searching for tags instead of releases...") data = self.fetch_data(task, repo_id, True) self.logger.info("refs value is: {}\n".format(data)) if 'refs' in data: if 'edges' in data['refs']: for n in data['refs']['edges']: if 'node' in n: release = n['node'] self.insert_release(task, repo_id, data['owner'], release, True) else: self.logger.info("There's no release to insert. Current node is not available in releases: {}\n".format(n)) else: self.logger.info("There are no releases to insert for current repository: {}\n".format(data)) else: self.logger.info("There are no refs in data: {}\n".format(data)) else: self.logger.info("There are no releases to insert for current repository: {}\n".format(data)) else: self.logger.info("Graphql response does not contain repository: {}\n".format(data))
mit
mueller-lab/PyFRAP
pyfrp/modules/pyfrp_sim_module.py
2
23865
#===================================================================================================================================== #Copyright #===================================================================================================================================== #Copyright (C) 2014 Alexander Blaessle, Patrick Mueller and the Friedrich Miescher Laboratory of the Max Planck Society #This software is distributed under the terms of the GNU General Public License. #This file is part of PyFRAP. #PyFRAP is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. #=========================================================================================================================================================================== #Module Description #=========================================================================================================================================================================== """Simulaton module for PyFRAP toolbox. Handles simulating FRAP experiments and all necessary functions to do so, such as * Handling initial conditions. * Mimicing bleaching effects. * Experiment simulation. """ #=========================================================================================================================================================================== #Improting necessary modules #=========================================================================================================================================================================== #PDE Toolbox from fipy import * #Numpy/Scipy import numpy as np import scipy.interpolate as interp import scipy.ndimage.interpolation as ndi #matplotlib import matplotlib.pyplot as plt #Misc import time import sys #PyFRAP Modules import pyfrp_plot_module import pyfrp_integration_module import pyfrp_misc_module from pyfrp_term_module import * import pyfrp_idx_module #=========================================================================================================================================================================== #Module Functions #=========================================================================================================================================================================== def simulateReactDiff(simulation,signal=None,embCount=None,showProgress=True,debug=False): r"""Simulates reaction diffusion equation goverining FRAP experiment. Performs the following steps: * Resets ``simVecs`` of all ROIs. * If not generated yet, generates mesh (should never be the case!) * Initializes PDE with Neumann boundary conditions resulting in the problem: .. math:: \partial_t c = D \nabla^2 c - k_1 c + k_2, where :math:`k_1` is the degradation rate and :math:`k_2` the production rate. * Applies initial conditions defined in ``simulation.ICmode``. * Simulates FRAP experimment. Args: simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. Keyword Args: signal (PyQt4.QtCore.pyqtSignal): PyQT signal to send progress to GUI. embCount (int): Counter of counter process if multiple datasets are analyzed. debug (bool): Print final debugging messages and show debugging plots. showProgress (bool): Show simulation progress. Returns: pyfrp.subclasses.pyfrp_simulation.simulation: Updated simulation object. """ #Stepping and timescale timeStepDuration = simulation.tvecSim[1]-simulation.tvecSim[0] #Reset simulation vecs for r in simulation.embryo.ROIs: r.resetSimVec() #Empty list to put simulation values in vals=[] print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" print "Starting simulation" print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" startTimeTotal=time.clock() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Mesh Generation #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ startTimeMesh=time.clock() if simulation.mesh.mesh==None: printWarning('No mesh has been generated yet!') a=raw_input('Do you want to generate a mesh now?[Y/N]') if a=='Y': simulation.mesh.genMesh() print "Mesh created in", time.clock()-startTimeMesh else: print 'Cannot run simulation without mesh, will abort.' return simulation timeMesh=time.clock()-startTimeMesh print "Mesh created after", time.clock()-startTimeTotal #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Initialization of PDE #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Create solution variable phi = CellVariable(name = "solution variable",mesh = simulation.mesh.mesh,value = 0.) #Apply initial conditions if simulation.ICmode==0: phi = applyROIBasedICs(phi,simulation) elif simulation.ICmode==1: phi = applyRadialICs(phi,simulation,debug=debug) elif simulation.ICmode==2: phi=applyImperfectICs(phi,simulation,simulation.embryo.geometry.getCenter(),100.,simulation.embryo.sliceHeightPx) elif simulation.ICmode==3: phi=applyInterpolatedICs(phi,simulation,debug=False) elif simulation.ICmode==4: phi=applyIdealICs(phi,simulation,bleachedROI=simulation.bleachedROI,valOut=simulation.valOut) #Remember ICs simulation.IC=np.asarray(phi.value).copy() #Defining Type of equation eq = TransientTerm() == DiffusionTerm(coeff=simulation.D)+simulation.prod-simulation.degr*phi #Defining BCs #Note: BCs are Neumann boundaries by default #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Calculating initial concentrations #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for r in simulation.embryo.ROIs: r.getSimConc(phi,append=True) if simulation.saveSim: vals.append(np.asarray(phi.value).copy()) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Solving PDE #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Keeping track of time startTimeSim=time.clock() avgTime=0 stepTime=0 #Choose solver if simulation.solver=="LU": mySolver = LinearLUSolver(iterations=simulation.iterations, tolerance=simulation.tolerance) elif simulation.solver=="PCG": mySolver = LinearPCGSolver(tolerance=simulation.tolerance,iterations=simulation.iterations) for step in range(simulation.stepsSim-1): #Compute timestep duration timeStepDuration=simulation.tvecSim[step+1]-simulation.tvecSim[step] #Solve PDE in this Step stepStart=time.clock() eq.solve(var=phi,dt=timeStepDuration,solver=mySolver) stepTime=stepTime+(time.clock()-stepStart) #Compute concentration avgStart=time.clock() for r in simulation.embryo.ROIs: r.getSimConc(phi,append=True) avgTime=avgTime+(time.clock()-avgStart) #Save simulation array if necessary if simulation.saveSim: vals.append(np.asarray(phi.value).copy()) #Print Progress if showProgress: currPerc=int(100*step/float(simulation.stepsSim)) if signal==None: sys.stdout.write("\r%d%%" %currPerc) sys.stdout.flush() else: if embCount==None: signal.emit(currPerc) else: signal.emit(currPerc,embCount) print "Step time: ", stepTime, " in %:", stepTime/(time.clock()-startTimeSim)*100 print "Avg time: ", avgTime, " in %:", avgTime/(time.clock()-startTimeSim)*100 print "Simulation done after", time.clock()-startTimeTotal #Save to simulation object only if simulation.saveSim: simulation.vals=list(vals) return simulation def rerunReactDiff(simulation,signal=None,embCount=None,showProgress=True,debug=False): """Reruns simulation by extracting values from ``simulation.vals``. Performs the following steps: * Resets ``simVecs`` of all ROIs. * Extracts values per ROI from ``simulation.vals``. .. note:: Only works if simulation has been run before with ``saveSim`` enabled. Args: simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. Keyword Args: signal (PyQt4.QtCore.pyqtSignal): PyQT signal to send progress to GUI. embCount (int): Counter of counter process if multiple datasets are analyzed. debug (bool): Print final debugging messages and show debugging plots. showProgress (bool): Show simulation progress. Returns: pyfrp.subclasses.pyfrp_simulation.simulation: Updated simulation object. """ #Check if can be rerun if len(simulation.vals)==0: printWarning("Values have not been saved for this simulation. Turn on saveSim to do that. Won't do anything for now.") return simulation #Reset simulation vecs for r in simulation.embryo.ROIs: r.resetSimVec() #Loop through vals for i,val in enumerate(simulation.vals): for r in simulation.embryo.ROIs: r.getSimConc(val,append=True) #Print Progress if showProgress: currPerc=int(100*i/float(len(simulation.vals))) if signal==None: sys.stdout.write("\r%d%%" %currPerc) sys.stdout.flush() else: if embCount==None: signal.emit(currPerc) else: signal.emit(currPerc,embCount) return simulation def applyROIBasedICs(phi,simulation): """Applies ROI-based initial conditions. First sets concentration on all mesh nodes equal to `simulation.embryo.analysis.concRim`. Afterwards, mesh nodes get assigned the value of the first entry ``dataVec`` of the ROI covering them. Note: If a mesh node is covered by two ROIs, will assign the value of the ROI that is last in embryo's ``ROIs`` list. See also :py:func:`pyfrp.subclasses.pyfrp_simulation.setICMode`. Args: phi (fipy.CellVariable): PDE solution variable. simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. Returns: fipy.CellVariable: Updated solution variable. """ phi.setValue(simulation.embryo.analysis.concRim) for r in simulation.embryo.ROIs: phi.value[r.meshIdx]=r.dataVec[0] def applyIdealICs(phi,simulation,bleachedROI=None,valOut=None): """Applies ideal initial conditions. That is, everything falling inside the bleached ROI in x-y-direction will be set its initial dataVec value, everything else will be set equal to valOut. .. note:: The ``bleachedROI`` and valOut are often stored inside the simulation object. If those two cannot be found, will try to find a ROI called *Bleached Square* for the bleached ROI and set valOut to ``concRim``. If this again fails, will return error. Args: phi (fipy.CellVariable): PDE solution variable. simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. Keyword Args: bleachedROI (pyfrp.subclasses.pyfrp_ROI.ROI): Bleached ROI. valOut (float): Value to be assigned outside of bleached ROI. Returns: fipy.CellVariable: Updated solution variable. """ if bleachedROI==None: bleachedROI=simulation.embryo.getROIByName("Bleached Square") if bleachedROI==None: printError("No bleachedROI can be found in applyIdealICs.") return phi if valOut==None: if simulation.embryo.analysis.concRim!=None: valOut=simulation.embryo.analysis.concRim else: printError("No bleachedROI can be found in applyIdealICs.") return phi #Set all values in mesh to valOut phi.setValue(valOut) #Find indices of all nodes that lie inside bleachedROI in x-y-direction x,y,z=simulation.mesh.getCellCenters() ind=bleachedROI.checkXYInside(np.asarray(x),np.asarray(y)) #Set these nodes equal to first dataVec entry phi.value[ind]=bleachedROI.dataVec[0] return phi def applyRadialICs(phi,simulation,radSteps=15,debug=False): """Applies radially averaged image data to solution variable as IC. .. note:: Will use ``embryo.geometry.center`` as center circle and the maximum distant pixel from the center as maximum radius. Args: phi (fipy.CellVariable): PDE solution variable. simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. radSteps (int): Number of radial levels. debug (bool): Print debugging messages. Returns: fipy.CellVariable: Updated solution variable. """ #Adjust center so histogram works for 'quad' if 'quad' in simulation.embryo.analysis.process.keys(): center=[0,0] else: center=simulation.ICimg,simulation.embryo.geometry.getCenter() #Compute radial histogram of IC image maxR=pyfrp_img_module.dist(center,[simulation.ICimg.shape[0],simulation.ICimg.shape[0]]) bins,binsMid,histY,binY=pyfrp_img_module.radialImgHist(simulation.ICimg,nbins=radSteps,byMean=True,maxR=maxR) #Set center to actual center of geometry center=simulation.ICimg,simulation.embryo.geometry.getCenter() #Apply value of most outer bin to all nodes phi.setValue(binY[-1]) #Loop through all bins and apply values from outside to inside binsY=binsY.reverse() bins=bins.reverse() for i in range(len(binY)): phi.setValue(binY[i], where=(x-center[0])**2+(y-center[1])**2 < bins[i]**2) if debug: print "Applied concentration", binY[i], " to all nodes with radius <", bins[i] return phi def applyInterpolatedICs(phi,simulation,matchWithMaster=True,debug=False,fixNeg=True,fillICWithConcRim=True): """Interpolates initial conditions onto mesh. Uses a bivarariate spline interpolation (http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.interpolate.RectBivariateSpline.html) to generate an interpolation function of the IC image. Then applies interpolated values to solution variable ``phi`` if mesh nodes are inside image and masterROI. If not, will apply rim concentration. .. note:: If no rim concentration has been calculated (for example through running the data analysis) applyInterpolatedICs will try to compute ``concRim`` by itself. For this it will take the mean concentration outside of bleached square but inside ``masterROI``. .. note:: The bleached square used here is not defined as a ``ROI`` object here, but rather through the properties ``embryo.sideLengthBleachedPx`` and ``embryo.offsetBleachedPx``. This might change in future versions. Args: phi (fipy.CellVariable): PDE solution variable. simulation (pyfrp.subclasses.pyfrp_simulation.simulation): Simulation object. Keyword Args: matchWithMaster (bool): Match interpolation indices with ``masterROI`` indices. debug (bool): Print debugging messages. Returns: fipy.CellVariable: Updated solution variable. """ #Get image resolution and center of geometry res=simulation.ICimg.shape[0] center=simulation.embryo.geometry.getCenter() #Define x/y coordinates of interpolation if 'quad' in simulation.embryo.analysis.process.keys(): #Shift everything by center to fit with the mesh xInt = np.arange(center[0]+1, center[0]+res+1, 1) yInt = np.arange(center[1]+1, center[1]+res+1, 1) else: xInt = np.arange(1, res+1, 1) yInt = np.arange(1, res+1, 1) #Getting cell centers x,y,z=simulation.mesh.getCellCenters() #Finding outer rim concentration if simulation.embryo.analysis.concRim==None: printWarning('concRim is not analyzed yet. Will use concentration outside of bleached region as approximation') #Grab offset and sidelength offset=simulation.embryo.offsetBleachedPx sidelength=simulation.embryo.sideLengthBleachedPx #Get indices outside of bleached square but inside masterROI indXSqu,indYSqu=pyfrp_idx_module.getSquareIdxImg(simulation.embryo.offsetBleachedPx,simulation.embryo.sideLengthBleachedPx,simulation.embryo.dataResPx) masterROI=simulation.embryo.getMasterROI() indX=pyfrp_misc_module.complValsSimple(masterROI.imgIdxX,indXSqu) indY=pyfrp_misc_module.complValsSimple(masterROI.imgIdxX,indYSqu) if 'quad' in simulation.embryo.analysis.process.keys(): img=pyfrp_img_module.unflipQuad(np.flipud(simulation.ICimg)) else: img=simulation.ICimg concRim=pyfrp_img_module.meanConc(img[indX,indY]) print 'Approximate concRim = ', concRim else: concRim=simulation.embryo.analysis.concRim if fillICWithConcRim: masterROI=simulation.embryo.getMasterROI() ICimg=concRim*np.ones(simulation.ICimg.shape) ICimg[masterROI.imgIdxX,masterROI.imgIdxY]=simulation.ICimg[masterROI.imgIdxX,masterROI.imgIdxY] else: ICimg=simulation.ICimg.copy() #Generate interpolation function f=interp.RectBivariateSpline(xInt, yInt, ICimg.T, bbox=[None, None, None, None], kx=3, ky=3, s=0) #Set all values of solution variable to concRim phi.setValue(concRim) #Get Offset of image and check which nodes are inside image if 'quad' in simulation.embryo.analysis.process.keys(): offset=[simulation.embryo.dataResPx/2,simulation.embryo.dataResPx/2] ins=pyfrp_idx_module.checkInsideImg(x,y,simulation.embryo.dataResPx/2,offset=offset) else: offset=[0,0] ins=pyfrp_idx_module.checkInsideImg(x,y,simulation.embryo.dataResPx,offset=offset) #Convert into indices ind=np.arange(len(x)) ind=ind[np.where(ins)[0]] """NOTE: I think we need to match here indices inside image with the one of master ROI, so we don't apply values outside of masterROI (generally just background) to nodes that lie INSIDE image, but OUTSIDE of masterROI. """ if matchWithMaster: masterROI=simulation.embryo.getMasterROI() xnew=np.asarray(x)[ind] ynew=np.asarray(y)[ind] ins=masterROI.checkXYInside(xnew,ynew) ind=np.asarray(ind) ind=ind[np.where(ins)[0]] ind=list(ind) #Apply interpolation try: phi.value[ind]=f.ev(x[ind],y[ind]) except IndexError: if debug: printNote("Changed index array to nparray b/c of IndexError.") ind=np.array(ind) phi.value[ind]=f.ev(x[ind],y[ind]) #Fix negative values if selected if fixNeg: phi=fixNegValues(phi) return phi def fixNegValues(phi,minVal=None): """Fixes negative values in solution variable. Interpolation sometimes returns negative values if gradients are really steep. Will apply ``minVal`` to such nodes. If ``minVal==None``, will take smallest non-negative value of solution value. """ if minVal==None: minVal=min(phi.value[np.where(phi.value>=0)[0]]) phi.value[np.where(phi.value<0)[0]]=minVal return phi def sigmoidBleachingFct(x,y,z,center,rJump,sliceHeight,maxVal=1.,maxMinValPerc=0.25,minMinValPerc=0.25,rate=0.1): r"""Generates sigmoid scaling function for imperfect bleaching at coordinates x/y/z. The idea behind the sigmoid function is: * Through scattering and other effects, the bleached window becomes blurry in larger depths, resulting in a radial sigmoid scaling function around ``center``. * Similarly, bleaching intensity increases with depth. Thus, a linear term controls the values close to ``center`` of the sigmoid function. Bleaching closer to the laser than the imaged height will be rendered stronger, while bleaching effects below will be decreased by *bumping up* the bleached window. However, only until some threshold is reached. The sigmoid function is given by: .. math:: s(r,z) = v_{\mathrm{min}}(z)+(v_{\mathrm{max}}-v_{\mathrm{min}}(z))\frac{1}{1+\exp(-\rho(r-r_\mathrm{Jump}))}, where :math:`\rho` is the sigmoid slope given by ``rate``, :math:`r_\mathrm{Jump}` is the radius from ``center`` at which sigmoid function has its **jump**, given by ``rJump`` and :math:`r` the radius of coordinate ``[x,y]`` from ``center``. :math:`v_{\mathrm{min}}(z)` is a linear function describing how strong the bleaching is dependent on the depth :math:`z` given by .. math:: v_{\mathrm{min}}(z) = \frac{v_{\mathrm{max}} - v_{\mathrm{max. bleach}}}{h_s} z + v_{\mathrm{max. bleach}}, where :math:`v_{\mathrm{max}}` is the value of the sigmoid function far from ``center``, :math:`v_{\mathrm{max. bleach}}` is the strongest expected bleaching value (mostly at :math:`z=0`) and :math:`h_s` is the height of the imaging slice, given by ``sliceHeight``. The maximum rate of bleaching :math:`v_{\mathrm{max. bleach}}` is computed by: .. math:: v_{\mathrm{max. bleach}} = (1-p_{\mathrm{max. bleach}})v_{\mathrm{max}}, where :math:`p_{\mathrm{max. bleach}}` is the percentage of maximum expected bleaching compared to the values in the imaging height, given by ``maxMinValPerc``. That is, by how much has the laser power already decreased on its way from entry point of the sample to the imaging height. For sample depths deeper than the imaging height, bleaching is expected to be decrease in intensity, thus the bleached area is getting **bumped up**. To avoid bumping the bleached area by too much, eventually even resulting in the bleached area having a higher concentration than the area outside, the sigmoid function has a cut-off: If values of :math:`s(r,z)` pass .. math:: v_{\mathrm{min. bleach}} = (1+p_{\mathrm{min. bleach}})v_{\mathrm{max}}, where :math:`p_{\mathrm{min. bleach}}` is the percentage of bleaching to cut-off, then we set .. math:: s(r,z) = v_{\mathrm{min. bleach}}, ultimately resulting in a scaling function given by .. math:: s(r,z) = \left\{\begin{array}{cc} v_{\mathrm{min}}(z)+(v_{\mathrm{max}}-v_{\mathrm{min}}(z))\frac{1}{1+\exp(-\rho(r-r_\mathrm{Jump}))} & \mbox{ if } s(r,z) <= v_{\mathrm{min. bleach}} , \\ v_{\mathrm{min. bleach}} & \mbox{ else } \end{array} \right. .. image:: ../imgs/pyfrp_sim_module/sigmoidFct.png Args: x (numpy.ndarray): x-coordinates. y (numpy.ndarray): y-coordinates. z (numpy.ndarray): z-coordinates. center (list): Center of bleaching. rJump (float): Radius from center where sigmoid jump is expected. sliceHeight (float): Height at which dataset was recorded. Keyword Args: maxVal (float): Value of sigmoid function outside of bleached region. maxMinValPerc (float): Percentage of maximum bleaching intensity. minMinValPerc (float): Percentage of minimum bleaching intensity. rate (float): Rate at which sigmoid increases. Returns: numpy.ndarray: """ #Calculate linear equation describing how strong bleaching effect decreases as z increases maxMinVal=(1-maxMinValPerc)*maxVal m=(maxVal-maxMinVal)/sliceHeight b=maxMinVal minVal=m*z+b #Compute distance from center for each point r=np.sqrt((x-center[0])**2+(y-center[1])**2) #Compute sigmoid function sigm=minVal+(maxVal-minVal)/(1+np.exp(-rate*(r-rJump))) #Compute cut-off, so we do not amplifiy the bleached region minMinVal=(1+minMinValPerc)*maxVal sigm[np.where(sigm>minMinVal)]=minMinVal return sigm,r def applyImperfectICs(phi,simulation,center,rJump,sliceHeight,maxVal=1.,maxMinValPerc=0.25,minMinValPerc=None,rate=0.1,matchWithMaster=True,debug=False): """Mimic imperfect bleaching through cone approximation, return phi. .. warning:: Not working in current version. Will be integrated in further versions again. """ phi = applyInterpolatedICs(phi,simulation,matchWithMaster=matchWithMaster,debug=debug) #Get cell coordinates x,y,z=simulation.mesh.getCellCenters() x=np.asarray(x) y=np.asarray(y) z=np.asarray(z) #Compute by how much if minMinValPerc==None: r=np.sqrt((x-center[0])**2+(y-center[1])**2) inVal=np.mean(phi.value[np.where(r<rJump)]) outVal=np.mean(phi.value[np.where(r>=rJump)]) minMinValPerc=inVal/outVal #Compute sigmoid function sigm,r = sigmoidBleachingFct(x,y,z,center,rJump,sliceHeight,maxVal=1.,maxMinValPerc=maxMinValPerc,minMinValPerc=minMinValPerc,rate=rate) #Multiplicate solution variable with sigmoid function phi.value = phi.value * sigm return phi
gpl-3.0
jereze/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
navigator8972/ensemble_ioc
PyMDP.py
1
20197
""" A simple module for solving model-based MDP problem Discrete state/action space, known transition matrix... A simplified python version similar to the one in Drake toolkit (https://github.com/RobotLocomotion/drake) """ import numpy as np import matplotlib.pyplot as plt from scipy.sparse import csr_matrix import PyMDP_Utils as utils class DynamicalSystem: """ A class to define a dynamical system: might be discrete time or continous time... """ def __init__(self, is_ct=True): self.is_ct_ = is_ct # self.sysfunc_ = sysfunc #a system function accepts state and control and # #return derivative/next state, possibly with higher order stuff return def Dynamics(self, x, u, t=None, parms=None): print 'Calling base class dynamics...' return def IsGoalState(self, x): print 'Base class function to decide if this is the goal state' return False def RandomSelectFeasibleState(self, x): print 'Base class function to select a random feasible state' return False class MarkovDecisionProcess: def __init__(self, S=None, A=None, T=None, C=None, gamma=1.0): self.S_ = S # states: if multiple dimension, then S[:, i] is state i self.A_ = A # actions: if multiple dimension, then A[:, i] is action i self.T_ = T # transition: T[k][i, j] = P(s_{n+1}=s[:, j] | s_{n}=s[:, i], a_{n}=[:, k]) self.C_ = C # cost: cost C(s(:, i), a(:, k)) being at state i and taking action k self.gamma_ = gamma #discounted rate self.sub2ind_ = None # for mapping multiple dimensional discrete state to flattened state space return def MakeSub2Ind(self, xbins): """ function to generate a fast mapping from the vector of indices of dimensions to the flattened state space """ nskip = np.concatenate([[1], np.cumprod([len(xbins[i]) for i in range(len(xbins)-1)])]) self.sub2ind_ = lambda subinds: np.sum(nskip*np.array(subinds)) return self.sub2ind_ def MakeXDigitize(self, xbins): """ function to generate a mapping from a continous x to its digitized state according to the bins """ #the first one will not be used effective_xbins = [xbin[1:] for xbin in xbins] self.xdigitize_ = lambda x: [np.digitize([dim], bin)[0] for dim, bin in zip(x, effective_xbins)] self.xdigitize_dim_ = lambda x, dim_idx: np.digitize([x[dim_idx]], effective_xbins[dim_idx])[0] return self.xdigitize_, self.xdigitize_dim_ def DiscretizeSystem(self, sys, costfunc, xbins, ubins, options=dict()): #check system is_ct = sys.is_ct_ #check dimension if not isinstance(xbins, list): #convert to multi-dimension case self.xbins_ = [xbins] else: self.xbins_ = xbins if not isinstance(ubins, list): self.ubins_ = [ubins] else: self.ubins_ = ubins self.state_dim_ = len(self.xbins_) self.ctrl_dim = len(self.ubins_) if 'dt' not in options: self.dt_ = 1.0 else: self.dt_ = options['dt'] if 'wrap_flag' not in options: self.wrap_flag_ = False * np.ones(self.state_dim_) else: self.wrap_flag_ = options['wrap_flag'] wrap_idx = np.where(self.wrap_flag_==True)[0] xmin = np.array([bin[0] for bin in self.xbins_]) xmax = np.array([bin[-1] for bin in self.xbins_]) #construct grids #state Sgrid = np.meshgrid(*self.xbins_) #for each dim, need to reshape to a long 1-d array self.S_ = np.array([np.reshape(dim, (1, -1))[0] for dim in Sgrid]) #action Agrid = np.meshgrid(*self.ubins_) self.A_ = np.array([np.reshape(dim, (1, -1))[0] for dim in Agrid]) self.num_state_ = self.S_.shape[1] self.num_action_ = self.A_.shape[1] #prepare the transition matrix # self.T_ = csr_matrix([np.zeros([self.num_state_, self.num_state_]) for dim_ix in range(self.num_action_)]) # self.T_ = [csr_matrix(np.zeros([self.num_state_, self.num_state_])) for dim_ix in range(self.num_action_)] self.T_ = [np.zeros([self.num_state_, self.num_state_]) for dim_ix in range(self.num_action_)] #prepare cost function self.C_ = np.zeros([self.num_state_, self.num_action_]) #inline function to search index in reshaped state #offset for sub2ind sub2ind = self.MakeSub2Ind(self.xbins_) xdigitize, xdigitize_dim = self.MakeXDigitize(self.xbins_) print 'Constructing transition matrix...' #vectorize this to increase the efficiency if possible... for action_idx in range(self.num_action_): for state_idx in range(self.num_state_): if is_ct: # the system must be an update equation x_new = sys.Dynamics(self.S_[:, state_idx], self.A_[:, action_idx]) if np.isinf(costfunc(self.S_[:, state_idx], self.A_[:, action_idx], sys)) or np.isnan(costfunc(self.S_[:, state_idx], self.A_[:, action_idx], sys)): print self.S_[:, state_idx], self.A_[:, action_idx] else: self.C_[state_idx, action_idx] = sys.dt_ * costfunc(self.S_[:, state_idx], self.A_[:, action_idx], sys) if isinstance(x_new, list): #contains both expected state and diagonal Gaussian noise... x_new_mu = x_new[0] x_new_sig = x_new[1] if len(x_new_mu) != len(x_new_sig): print 'Inconsistent length of state and noise vector...' return #wrap x_new if needed, this is useful for state variable like angular position x_new_mu[wrap_idx] = np.mod(x_new_mu[wrap_idx] - xmin[wrap_idx], xmax[wrap_idx] - xmin[wrap_idx]) + xmin[wrap_idx] x_new_mu_idx = xdigitize(x_new_mu) x_new_mu_digitized_state = self.S_[:, sub2ind(x_new_mu_idx)] coeff_lst = [] involved_states = [] for dim_idx in range(len(x_new_mu)): tmp_x_new_mu_idx = [idx for idx in x_new_mu_idx] #for each dim, try to crawl the grid #find lower bound, use the interval [-2*sigma, 2*sigma] #how to wrap here? or just truncate the shape of gaussian?... x_new_mu_tmp_min = np.array(x_new_mu) x_new_mu_tmp_max = np.array(x_new_mu) x_new_mu_tmp_min[dim_idx] += -2*x_new_sig[dim_idx] x_new_mu_tmp_max[dim_idx] += 2*x_new_sig[dim_idx] min_idx = xdigitize_dim(x_new_mu_tmp_min, dim_idx) max_idx = xdigitize_dim(x_new_mu_tmp_max, dim_idx) for step_idx in range(min_idx, max_idx+1): tmp_x_new_mu_idx[dim_idx] = step_idx #get the index of involved state involved_state_idx = sub2ind(tmp_x_new_mu_idx) involved_states.append(involved_state_idx) coeff_lst.append(np.exp(-np.linalg.norm(((self.S_[:, involved_state_idx] - x_new_mu_digitized_state)/x_new_sig))**2)) coeff_lst = coeff_lst / np.sum(coeff_lst) #assign transition probability for each state for coeff, involved_state_idx in zip(coeff_lst.tolist(), involved_states): self.T_[action_idx][state_idx, involved_state_idx] += coeff else: #only updated state is available, need to map it to the grid #add Baryinterpolation? #wrap x_new if needed, this is useful for state variable like angular position x_new[wrap_idx] = np.mod(x_new[wrap_idx] - xmin[wrap_idx], xmax[wrap_idx] - xmin[wrap_idx]) + xmin[wrap_idx] #barycentricinterpolation... indices, coeffs = utils.BarycentricInterpolation(self.xbins_, np.array([x_new])) for i in range(len(indices[0])): self.T_[action_idx][state_idx, int(indices[0, i])] = coeffs[0, i] else: #discrete state dynamical system... #for discrete state dynamics, take the direct returned states and associated probability x_new_lst = sys.Dynamics(self.S_[:, state_idx], self.A_[:, action_idx]) self.C_[state_idx, action_idx] = costfunc(self.S_[:, state_idx], self.A_[:, action_idx], sys) for x_new in x_new_lst: #get index of x_new x_new_idx = xdigitize(x_new[0]) state_new_idx = sub2ind(x_new_idx) self.T_[action_idx][state_idx, state_new_idx] = x_new[1] #check the T matrix # for action_idx in range(self.num_action_): # if np.isinf(self.T_[action_idx]).any(): # print action_idx # print np.isinf(self.T_[action_idx]) return def ValueIteration(self, converged=.01, drawFunc=None, detail=False): J = np.zeros(self.num_state_) err = np.inf n_itrs = 0 #prepare detailed result if necessary... if detail: res = dict() hist = [] #vertical stack Tstack = np.vstack(self.T_) print 'Start Value Iteration...' ax = None while err > converged: Jold = np.array(J) #<hyin/Apr-14th-2015> note the reshape sequence of dot result J = np.amin(self.C_ + self.gamma_*np.reshape(Tstack.dot(J), (self.num_action_, self.num_state_)).transpose(), axis=1) # print 'iterating...' # if np.isinf(J).any() or np.isinf(Tstack).any(): # print np.isinf(J), np.isinf(Tstack) err = np.amax(np.abs(Jold-J)) if detail: #record current itr, J, Q, err tmp_rec = dict() curr_Q = self.ActionValueFuncFromValueFunc(J) tmp_rec['value_func'] = J tmp_rec['action_value_func'] = curr_Q tmp_rec['error'] = err hist.append(tmp_rec) print 'Iteration:', n_itrs, 'Error:', err n_itrs+=1 if drawFunc is not None: ax = drawFunc(self, J, ax) if detail: res['value_opt'] = hist[-1]['value_func'] res['action_value_opt'] = hist[-1]['action_value_func'] res['history'] = hist return res else: return J def ActionValueFuncFromValueFunc(self, J_opt): """ Get Q action value function from optimal value function """ def ActionValueValueIteration(T, C, J): Q = T.dot(C + self.gamma_*J) return Q Q_opt = [ActionValueValueIteration(self.T_[action_idx], self.C_[:, action_idx], J_opt) for action_idx in range(self.num_action_)] return Q_opt def ChooseOptimalActionFromQFunc(self, Q, state_idx): #helper function to choose optimal action from Q function #enumerate q values for all possible actions q = [Q[i][state_idx] for i in range(self.num_action_)] Q_min = min(q) count = q.count(Q_min) if count > 1: best = [i for i in range(self.num_action_) if q[i]==Q_min] action_idx = np.random.choice(best) else: action_idx = q.index(Q_min) return action_idx def QLearningSarsa(self, sys, epsilon=0.2, alpha=0.05, max_itrs=5000, drawFunc=None, detail=False): """ learn Q from a dynamically learned policy alpha - learning rate max_itrs - number of steps to explore only support discrete state dynamical system """ n_time_reach_goal = 0 n_choose_optimal_action = 0 n_steps_to_reach_goal = 0 Q = [np.ones(self.num_state_)*0 for i in range(self.num_action_)] err = np.inf n_itrs = 0 #prepare detailed result if necessary... if detail: res = dict() hist = [] sub2ind = self.MakeSub2Ind(self.xbins_) xdigitize, xdigitize_dim = self.MakeXDigitize(self.xbins_) #generate a random initial state x = sys.RandomSelectFeasibleState() x_idx = xdigitize(x) state_idx = sub2ind(x_idx) #generate an action according to the epsilon greedy policy explore_dice = np.random.random_sample() if explore_dice < epsilon: #choose a random action action_idx = np.random.randint(low=0, high=self.num_action_) else: #greedy under current Q function action_idx = self.ChooseOptimalActionFromQFunc(Q, state_idx) n_choose_optimal_action += 1 while n_itrs < max_itrs: #follow dynamics to get x_new, note the discrete dynamics returns #an array of new states and their associated probability x_new_lst = sys.Dynamics(self.S_[:, state_idx], self.A_[:, action_idx]) c = self.C_[state_idx, action_idx] # print 'c:', c x_new_prob = [x_new[1] for x_new in x_new_lst] x_new_dice = np.argmax(np.random.multinomial(1, x_new_prob, size=1)) x_new = x_new_lst[x_new_dice][0] x_new_idx = xdigitize(x_new) state_new_idx = sub2ind(x_new_idx) explore_dice_new = np.random.random_sample() if explore_dice_new < epsilon: #choose a random action action_new_idx = np.random.randint(low=0, high=self.num_action_) else: #greedy under current Q function action_new_idx = self.ChooseOptimalActionFromQFunc(Q, state_new_idx) # print 'Choose current optimal action!', action_new_idx n_choose_optimal_action += 1 #update curr Q value for current state index and action index if Q[action_idx][state_idx] == np.inf: Q[action_idx][state_idx] = c else: Q[action_idx][state_idx] += alpha*(c + self.gamma_*Q[action_new_idx][state_new_idx] - Q[action_idx][state_idx]) #check if new state is a terminal one... if sys.IsGoalState(x_new): # print 'Used ', n_steps_to_reach_goal, ' to reach the goal.' # raw_input() n_steps_to_reach_goal=0 n_time_reach_goal += 1 # raw_input() #zero costs for x_new as it is the goal state for action_idx in range(self.num_action_): Q[action_idx][state_new_idx] = 0.0 #a new random state x = sys.RandomSelectFeasibleState() x_idx = xdigitize(x) state_idx = sub2ind(x_idx) explore_dice = np.random.random_sample() if explore_dice < epsilon: #choose a random action action_idx = np.random.randint(low=0, high=self.num_action_) else: #greedy under current Q function action_idx = self.ChooseOptimalActionFromQFunc(Q, state_idx) # print 'Choose current optimal action!', action_idx n_choose_optimal_action += 1 else: state_idx = state_new_idx action_idx = action_new_idx if detail: tmp_rec = dict() tmp_rec['action_value_func'] = np.array(Q, copy=True) hist.append(tmp_rec) print 'Iteration:', n_itrs n_itrs+=1 n_steps_to_reach_goal+=1 print 'Times of reaching the goal:', n_time_reach_goal print 'Times of choosing optimal action', n_choose_optimal_action if detail: res['action_value_opt'] = hist[-1]['action_value_func'] res['history'] = hist return res else: return Q return def QLearningEpsilonGreedy(self, sys, epsilon=0.2, alpha=0.05, max_itrs=5000, drawFunc=None, detail=False): """ learn Q given an initial guess and epsilon greedy policy epsilon - probability to deviate from the greedy policy to explore alpha - learning rate max_itrs - number of steps to explore only support discrete state dynamical system """ Q = [np.ones(self.num_state_)*0 for i in range(self.num_action_)] err = np.inf n_itrs = 0 #prepare detailed result if necessary... if detail: res = dict() hist = [] sub2ind = self.MakeSub2Ind(self.xbins_) xdigitize, xdigitize_dim = self.MakeXDigitize(self.xbins_) #generate a random initial state x = sys.RandomSelectFeasibleState() x_idx = xdigitize(x) state_idx = sub2ind(x_idx) while n_itrs < max_itrs: #generate an action according to the epsilon greedy policy #throw a dice explore_dice = np.random.random_sample() if explore_dice < epsilon: #choose a random action action_idx = np.random.randint(low=0, high=self.num_action_) else: #greedy under current Q function action_idx = self.ChooseOptimalActionFromQFunc(Q, state_idx) #follow dynamics to get x_new, note the discrete dynamics returns #an array of new states and their associated probability x_new_lst = sys.Dynamics(self.S_[:, state_idx], self.A_[:, action_idx]) c = self.C_[state_idx, action_idx] x_new_prob = [x_new[1] for x_new in x_new_lst] print 'x_new_prob:', x_new_prob x_new_dice = np.argmax(np.random.multinomial(1, x_new_prob, size=1)) x_new = x_new_lst[x_new_dice][0] print 'x_new:', x_new x_new_idx = xdigitize(x_new) state_new_idx = sub2ind(x_new_idx) #update curr Q value for current state index and action index if Q[action_idx][state_idx] == np.inf: Q[action_idx][state_idx] = c else: Q[action_idx][state_idx] += alpha*(c + self.gamma_*min([Q[i][state_new_idx] for i in range(self.num_action_)]) - Q[action_idx][state_idx]) #check if new state is a terminal one... if sys.IsGoalState(x_new): #zero costs for x_new as it is the goal state for action_idx in range(self.num_action_): Q[action_idx][state_new_idx] = 0.0 #a new random state x = sys.RandomSelectFeasibleState() x_idx = xdigitize(x) state_idx = sub2ind(x_idx) else: state_idx = state_new_idx if detail: tmp_rec = dict() tmp_rec['action_value_func'] = np.array(Q, copy=True) hist.append(tmp_rec) print 'Iteration:', n_itrs n_itrs+=1 if detail: res['action_value_opt'] = hist[-1]['action_value_func'] res['history'] = hist return res else: return Q
bsd-2-clause
miishke/dot_files
jupyter_notebook/ipython_notebook_config.py
1
24745
# Configuration file for ipython-notebook. c = get_config() c.NotebookApp.browser = u'/usr/bin/chromium-browser %s --incognito' #------------------------------------------------------------------------------ # NotebookApp configuration #------------------------------------------------------------------------------ # NotebookApp will inherit config from: BaseIPythonApplication, Application # Whether to overwrite existing config files when copying # c.NotebookApp.overwrite = False # The number of additional ports to try if the specified port is not available. # c.NotebookApp.port_retries = 50 # The IP address the notebook server will listen on. # c.NotebookApp.ip = 'localhost' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.NotebookApp.verbose_crash = False # Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library IPython uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX source. # c.NotebookApp.enable_mathjax = True # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.NotebookApp.extra_config_file = '' # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.NotebookApp.copy_config_files = False # Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server # machine, or overriding individual files in the IPython # c.NotebookApp.extra_static_paths = [] # The date format used by logging formatters for %(asctime)s # c.NotebookApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # The url for MathJax.js. # c.NotebookApp.mathjax_url = '' # Specify what command to use to invoke a web browser when opening the notebook. # If not specified, the default browser will be determined by the `webbrowser` # standard library module, which allows setting of the BROWSER environment # variable to override it. # c.NotebookApp.browser = '' # Set the Access-Control-Allow-Credentials: true header # c.NotebookApp.allow_credentials = False # The full path to an SSL/TLS certificate file. # c.NotebookApp.certfile = '' # The Logging format template # c.NotebookApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # Whether to open in a browser after starting. The specific browser used is # platform dependent and determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser (NotebookApp.browser) # configuration option. # c.NotebookApp.open_browser = True # Use a regular expression for the Access-Control-Allow-Origin header # # Requests from an origin matching the expression will get replies with: # # Access-Control-Allow-Origin: origin # # where `origin` is the origin of the request. # # Ignored if allow_origin is set. # c.NotebookApp.allow_origin_pat = '' # The full path to a private key file for usage with SSL/TLS. # c.NotebookApp.keyfile = '' # The random bytes used to secure cookies. By default this is a new random # number every time you start the Notebook. Set it to a value in a config file # to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). # c.NotebookApp.cookie_secret = b'' # Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headerssent by the upstream reverse proxy. Necessary if the proxy handles # SSL # c.NotebookApp.trust_xheaders = False # Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from IPython.lib import passwd; passwd() # # The string should be of the form type:salt:hashed-password. # c.NotebookApp.password = '' # The base URL for the notebook server. # # Leading and trailing slashes can be omitted, and will automatically be added. # c.NotebookApp.base_url = '/' # Set the log level by value or name. # c.NotebookApp.log_level = 30 # The IPython profile to use. # c.NotebookApp.profile = 'default' # The port the notebook server will listen on. # c.NotebookApp.port = 8888 # Set the Access-Control-Allow-Origin header # # Use '*' to allow any origin to access your server. # # Takes precedence over allow_origin_pat. # c.NotebookApp.allow_origin = '' # Supply overrides for the tornado.web.Application that the IPython notebook # uses. # c.NotebookApp.webapp_settings = {} # The notebook manager class to use. # c.NotebookApp.notebook_manager_class = 'IPython.html.services.notebooks.filenbmanager.FileNotebookManager' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.NotebookApp.ipython_dir = '' # The directory to use for notebooks and kernels. # c.NotebookApp.notebook_dir = '/home/uranus/Dropbox/PYTHON/IPnb' # DEPRECATED use base_url # c.NotebookApp.base_project_url = '/' # paths for Javascript extensions. By default, this is just # IPYTHONDIR/nbextensions # c.NotebookApp.nbextensions_path = [] # # c.NotebookApp.file_to_run = '' # Supply extra arguments that will be passed to Jinja environment. # c.NotebookApp.jinja_environment_options = {} #------------------------------------------------------------------------------ # IPKernelApp configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # IPKernelApp will inherit config from: BaseIPythonApplication, Application, # InteractiveShellApp # Whether to overwrite existing config files when copying # c.IPKernelApp.overwrite = False # Configure matplotlib for interactive use with the default matplotlib backend. # c.IPKernelApp.matplotlib = None # set the shell (ROUTER) port [default: random] # c.IPKernelApp.shell_port = 0 # Set the IP or interface on which the kernel will listen. # c.IPKernelApp.ip = '' # redirect stdout to the null device # c.IPKernelApp.no_stdout = False # # c.IPKernelApp.transport = 'tcp' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.IPKernelApp.verbose_crash = False # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.IPKernelApp.connection_file = '' # set the control (ROUTER) port [default: random] # c.IPKernelApp.control_port = 0 # The IPython profile to use. # c.IPKernelApp.profile = 'default' # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.IPKernelApp.extra_config_file = '' # redirect stderr to the null device # c.IPKernelApp.no_stderr = False # # c.IPKernelApp.parent_appname = '' # Execute the given command string. # c.IPKernelApp.code_to_run = '' # set the iopub (PUB) port [default: random] # c.IPKernelApp.iopub_port = 0 # The date format used by logging formatters for %(asctime)s # c.IPKernelApp.log_datefmt = '%Y-%m-%d %H:%M:%S' # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.IPKernelApp.copy_config_files = False # The importstring for the DisplayHook factory # c.IPKernelApp.displayhook_class = 'IPython.kernel.zmq.displayhook.ZMQDisplayHook' # List of files to run at IPython startup. # c.IPKernelApp.exec_files = [] # The Logging format template # c.IPKernelApp.log_format = '[%(name)s]%(highlevel)s %(message)s' # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.IPKernelApp.hide_initial_ns = True # kill this process if its parent dies. On Windows, the argument specifies the # HANDLE of the parent process, otherwise it is simply boolean. # c.IPKernelApp.parent_handle = 0 # The importstring for the OutStream factory # c.IPKernelApp.outstream_class = 'IPython.kernel.zmq.iostream.OutStream' # set the stdin (ROUTER) port [default: random] # c.IPKernelApp.stdin_port = 0 # set the heartbeat port [default: random] # c.IPKernelApp.hb_port = 0 # ONLY USED ON WINDOWS Interrupt this process when the parent is signaled. # c.IPKernelApp.interrupt = 0 # Set the log level by value or name. # c.IPKernelApp.log_level = 30 # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.IPKernelApp.pylab_import_all = True # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'none', # 'osx', 'pyglet', 'qt', 'qt4', 'tk', 'wx'). # c.IPKernelApp.gui = None # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This options can also be specified through the environment # variable IPYTHONDIR. # c.IPKernelApp.ipython_dir = '' # A list of dotted module names of IPython extensions to load. # c.IPKernelApp.extensions = [] # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.IPKernelApp.pylab = None # Whether to create profile dir if it doesn't exist # c.IPKernelApp.auto_create = False # The Kernel subclass to be used. # # This should allow easy re-use of the IPKernelApp entry point to configure and # launch kernels other than IPython's own. # c.IPKernelApp.kernel_class = 'IPython.kernel.zmq.ipkernel.Kernel' # Run the module as a script. # c.IPKernelApp.module_to_run = '' # dotted module name of an IPython extension to load. # c.IPKernelApp.extra_extension = '' # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.IPKernelApp.exec_PYTHONSTARTUP = True # lines of code to run at IPython startup. # c.IPKernelApp.exec_lines = [] # A file to be run # c.IPKernelApp.file_to_run = '' #------------------------------------------------------------------------------ # ZMQInteractiveShell configuration #------------------------------------------------------------------------------ # A subclass of InteractiveShell for ZMQ. # ZMQInteractiveShell will inherit config from: InteractiveShell # The name of the logfile to use. # c.ZMQInteractiveShell.logfile = '' # Don't call post-execute functions that have failed in the past. # c.ZMQInteractiveShell.disable_failing_post_execute = False # Automatically call the pdb debugger after every exception. # c.ZMQInteractiveShell.pdb = False # # c.ZMQInteractiveShell.quiet = False # Deprecated, use PromptManager.justify # c.ZMQInteractiveShell.prompts_pad_left = True # # c.ZMQInteractiveShell.separate_out2 = '' # # c.ZMQInteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # # c.ZMQInteractiveShell.separate_in = '\n' # # c.ZMQInteractiveShell.xmode = 'Context' # Deprecated, use PromptManager.in_template # c.ZMQInteractiveShell.prompt_in1 = 'In [\\#]: ' # # c.ZMQInteractiveShell.history_length = 10000 # # c.ZMQInteractiveShell.readline_remove_delims = '-/~' # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.ZMQInteractiveShell.color_info = True # Start logging to the default log file. # c.ZMQInteractiveShell.logstart = False # # c.ZMQInteractiveShell.separate_out = '' # Start logging to the given file in append mode. # c.ZMQInteractiveShell.logappend = '' # # c.ZMQInteractiveShell.debug = False # Save multi-line entries as one entry in readline history # c.ZMQInteractiveShell.multiline_history = True # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.ZMQInteractiveShell.cache_size = 1000 # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). deep_reload() # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.ZMQInteractiveShell.deep_reload = False # # c.ZMQInteractiveShell.object_info_string_level = 0 # # c.ZMQInteractiveShell.ipython_dir = '' # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.ZMQInteractiveShell.ast_node_interactivity = 'last_expr' # Set the color scheme (NoColor, Linux, or LightBG). # c.ZMQInteractiveShell.colors = 'Linux' # Enable magic commands to be called without the leading %. # c.ZMQInteractiveShell.automagic = True # Deprecated, use PromptManager.in2_template # c.ZMQInteractiveShell.prompt_in2 = ' .\\D.: ' # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.ZMQInteractiveShell.ast_transformers = [] # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.ZMQInteractiveShell.autocall = 0 # Show rewritten input, e.g. for autocall. # c.ZMQInteractiveShell.show_rewritten_input = True # # c.ZMQInteractiveShell.wildcards_case_sensitive = True # Deprecated, use PromptManager.out_template # c.ZMQInteractiveShell.prompt_out = 'Out[\\#]: ' #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # KernelManager will inherit config from: ConnectionFileMixin # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, IPython does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the IPython command # line. # c.KernelManager.kernel_cmd = [] # Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.KernelManager.ip = '' # # c.KernelManager.transport = 'tcp' # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = '' #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = 'json' # path to file containing execution key. # c.Session.keyfile = '' # Debug output in the Session # c.Session.debug = False # The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. # c.Session.packer = 'json' # Username for the Session. Default is your system username. # c.Session.username = 'uranus' # Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. # c.Session.signature_scheme = 'hmac-sha256' # The UUID identifying this session. # c.Session.session = '' # execution key, for extra authentication. # c.Session.key = b'' # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {} # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 #------------------------------------------------------------------------------ # InlineBackend configuration #------------------------------------------------------------------------------ # An object to store configuration of the inline backend. # Close all figures at the end of each cell. # # When True, ensures that each cell starts with no active figures, but it also # means that one must keep track of references in order to edit or redraw # figures in subsequent cells. This mode is ideal for the notebook, where # residual plots from other cells might be surprising. # # When False, one must call figure() to create new figures. This means that # gcf() and getfigs() can reference figures created in other cells, and the # active figure can continue to be edited with pylab/pyplot methods that # reference the current active figure. This mode facilitates iterative editing # of figures, and behaves most consistently with other matplotlib backends, but # figure barriers between cells must be explicit. # c.InlineBackend.close_figures = True # A set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. # c.InlineBackend.figure_formats = {'png'} # Extra kwargs to be passed to fig.canvas.print_figure. # # Logical examples include: bbox_inches, quality (for jpeg figures), etc. # c.InlineBackend.print_figure_kwargs = {'bbox_inches': 'tight'} # The figure format to enable (deprecated use `figure_formats` instead) # c.InlineBackend.figure_format = '' # Subset of matplotlib rcParams that should be different for the inline backend. # c.InlineBackend.rc = {'font.size': 10, 'savefig.dpi': 72, 'figure.figsize': (6.0, 4.0), 'figure.facecolor': (1, 1, 1, 0), 'figure.edgecolor': (1, 1, 1, 0), 'figure.subplot.bottom': 0.125} #------------------------------------------------------------------------------ # MappingKernelManager configuration #------------------------------------------------------------------------------ # A KernelManager that handles notebook mapping and HTTP error handling # MappingKernelManager will inherit config from: MultiKernelManager # The kernel manager class. This is configurable to allow subclassing of the # KernelManager for customized behavior. # c.MappingKernelManager.kernel_manager_class = 'IPython.kernel.ioloop.IOLoopKernelManager' # # c.MappingKernelManager.root_dir = '/home/uranus/Dropbox/PYTHON/IPnb' #------------------------------------------------------------------------------ # NotebookManager configuration #------------------------------------------------------------------------------ # Glob patterns to hide in file and directory listings. # c.NotebookManager.hide_globs = ['__pycache__'] #------------------------------------------------------------------------------ # FileNotebookManager configuration #------------------------------------------------------------------------------ # FileNotebookManager will inherit config from: NotebookManager # Glob patterns to hide in file and directory listings. # c.FileNotebookManager.hide_globs = ['__pycache__'] # # c.FileNotebookManager.notebook_dir = '/home/uranus/Dropbox/PYTHON/IPnb' # The directory name in which to keep notebook checkpoints # # This is a path relative to the notebook's own directory. # # By default, it is .ipynb_checkpoints # c.FileNotebookManager.checkpoint_dir = '.ipynb_checkpoints' # Automatically create a Python script when saving the notebook. # # For easier use of import, %run and %load across notebooks, a <notebook- # name>.py script will be created next to any <notebook-name>.ipynb on each # save. This can also be set with the short `--script` flag. # c.FileNotebookManager.save_script = False #------------------------------------------------------------------------------ # NotebookNotary configuration #------------------------------------------------------------------------------ # A class for computing and verifying notebook signatures. # The hashing algorithm used to sign notebooks. # c.NotebookNotary.algorithm = 'sha256' # The secret key with which notebooks are signed. # c.NotebookNotary.secret = b'' # The file where the secret key is stored. # c.NotebookNotary.secret_file = ''
bsd-2-clause
etkirsch/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
neerajvashistha/pa-dude
lib/python2.7/site-packages/nltk/probability.py
8
83570
# -*- coding: utf-8 -*- # Natural Language Toolkit: Probability and Statistics # # Copyright (C) 2001-2015 NLTK Project # Author: Edward Loper <[email protected]> # Steven Bird <[email protected]> (additions) # Trevor Cohn <[email protected]> (additions) # Peter Ljunglöf <[email protected]> (additions) # Liang Dong <[email protected]> (additions) # Geoffrey Sampson <[email protected]> (additions) # Ilia Kurenkov <[email protected]> (additions) # # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Classes for representing and processing probabilistic information. The ``FreqDist`` class is used to encode "frequency distributions", which count the number of times that each outcome of an experiment occurs. The ``ProbDistI`` class defines a standard interface for "probability distributions", which encode the probability of each outcome for an experiment. There are two types of probability distribution: - "derived probability distributions" are created from frequency distributions. They attempt to model the probability distribution that generated the frequency distribution. - "analytic probability distributions" are created directly from parameters (such as variance). The ``ConditionalFreqDist`` class and ``ConditionalProbDistI`` interface are used to encode conditional distributions. Conditional probability distributions can be derived or analytic; but currently the only implementation of the ``ConditionalProbDistI`` interface is ``ConditionalProbDist``, a derived distribution. """ from __future__ import print_function, unicode_literals import math import random import warnings import array from operator import itemgetter from collections import defaultdict from functools import reduce from nltk import compat from nltk.compat import Counter from nltk.internals import raise_unorderable_types _NINF = float('-1e300') ##////////////////////////////////////////////////////// ## Frequency Distributions ##////////////////////////////////////////////////////// @compat.python_2_unicode_compatible class FreqDist(Counter): """ A frequency distribution for the outcomes of an experiment. A frequency distribution records the number of times each outcome of an experiment has occurred. For example, a frequency distribution could be used to record the frequency of each word type in a document. Formally, a frequency distribution can be defined as a function mapping from each sample to the number of times that sample occurred as an outcome. Frequency distributions are generally constructed by running a number of experiments, and incrementing the count for a sample every time it is an outcome of an experiment. For example, the following code will produce a frequency distribution that encodes how often each word occurs in a text: >>> from nltk.tokenize import word_tokenize >>> from nltk.probability import FreqDist >>> sent = 'This is an example sentence' >>> fdist = FreqDist() >>> for word in word_tokenize(sent): ... fdist[word.lower()] += 1 An equivalent way to do this is with the initializer: >>> fdist = FreqDist(word.lower() for word in word_tokenize(sent)) """ def __init__(self, samples=None): """ Construct a new frequency distribution. If ``samples`` is given, then the frequency distribution will be initialized with the count of each object in ``samples``; otherwise, it will be initialized to be empty. In particular, ``FreqDist()`` returns an empty frequency distribution; and ``FreqDist(samples)`` first creates an empty frequency distribution, and then calls ``update`` with the list ``samples``. :param samples: The samples to initialize the frequency distribution with. :type samples: Sequence """ Counter.__init__(self, samples) def N(self): """ Return the total number of sample outcomes that have been recorded by this FreqDist. For the number of unique sample values (or bins) with counts greater than zero, use ``FreqDist.B()``. :rtype: int """ return sum(self.values()) def B(self): """ Return the total number of sample values (or "bins") that have counts greater than zero. For the total number of sample outcomes recorded, use ``FreqDist.N()``. (FreqDist.B() is the same as len(FreqDist).) :rtype: int """ return len(self) def hapaxes(self): """ Return a list of all samples that occur once (hapax legomena) :rtype: list """ return [item for item in self if self[item] == 1] def Nr(self, r, bins=None): return self.r_Nr(bins)[r] def r_Nr(self, bins=None): """ Return the dictionary mapping r to Nr, the number of samples with frequency r, where Nr > 0. :type bins: int :param bins: The number of possible sample outcomes. ``bins`` is used to calculate Nr(0). In particular, Nr(0) is ``bins-self.B()``. If ``bins`` is not specified, it defaults to ``self.B()`` (so Nr(0) will be 0). :rtype: int """ _r_Nr = defaultdict(int) for count in self.values(): _r_Nr[count] += 1 # Special case for Nr[0]: _r_Nr[0] = bins - self.B() if bins is not None else 0 return _r_Nr def _cumulative_frequencies(self, samples): """ Return the cumulative frequencies of the specified samples. If no samples are specified, all counts are returned, starting with the largest. :param samples: the samples whose frequencies should be returned. :type samples: any :rtype: list(float) """ cf = 0.0 for sample in samples: cf += self[sample] yield cf # slightly odd nomenclature freq() if FreqDist does counts and ProbDist does probs, # here, freq() does probs def freq(self, sample): """ Return the frequency of a given sample. The frequency of a sample is defined as the count of that sample divided by the total number of sample outcomes that have been recorded by this FreqDist. The count of a sample is defined as the number of times that sample outcome was recorded by this FreqDist. Frequencies are always real numbers in the range [0, 1]. :param sample: the sample whose frequency should be returned. :type sample: any :rtype: float """ if self.N() == 0: return 0 return float(self[sample]) / self.N() def max(self): """ Return the sample with the greatest number of outcomes in this frequency distribution. If two or more samples have the same number of outcomes, return one of them; which sample is returned is undefined. If no outcomes have occurred in this frequency distribution, return None. :return: The sample with the maximum number of outcomes in this frequency distribution. :rtype: any or None """ if len(self) == 0: raise ValueError('A FreqDist must have at least one sample before max is defined.') return self.most_common(1)[0][0] def plot(self, *args, **kwargs): """ Plot samples from the frequency distribution displaying the most frequent sample first. If an integer parameter is supplied, stop after this many samples have been plotted. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param title: The title for the graph :type title: str :param cumulative: A flag to specify whether the plot is cumulative (default = False) :type title: bool """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') if len(args) == 0: args = [len(self)] samples = [item for item, _ in self.most_common(*args)] cumulative = _get_kwarg(kwargs, 'cumulative', False) if cumulative: freqs = list(self._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" else: freqs = [self[sample] for sample in samples] ylabel = "Counts" # percents = [f * 100 for f in freqs] only in ProbDist? pylab.grid(True, color="silver") if not "linewidth" in kwargs: kwargs["linewidth"] = 2 if "title" in kwargs: pylab.title(kwargs["title"]) del kwargs["title"] pylab.plot(freqs, **kwargs) pylab.xticks(range(len(samples)), [compat.text_type(s) for s in samples], rotation=90) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show() def tabulate(self, *args, **kwargs): """ Tabulate the given samples from the frequency distribution (cumulative), displaying the most frequent sample first. If an integer parameter is supplied, stop after this many samples have been plotted. :param samples: The samples to plot (default is all samples) :type samples: list """ if len(args) == 0: args = [len(self)] samples = [item for item, _ in self.most_common(*args)] cumulative = _get_kwarg(kwargs, 'cumulative', False) if cumulative: freqs = list(self._cumulative_frequencies(samples)) else: freqs = [self[sample] for sample in samples] # percents = [f * 100 for f in freqs] only in ProbDist? for i in range(len(samples)): print("%4s" % samples[i], end=' ') print() for i in range(len(samples)): print("%4d" % freqs[i], end=' ') print() def copy(self): """ Create a copy of this frequency distribution. :rtype: FreqDist """ return self.__class__(self) def __le__(self, other): if not isinstance(other, FreqDist): raise_unorderable_types("<=", self, other) return set(self).issubset(other) and all(self[key] <= other[key] for key in self) # @total_ordering doesn't work here, since the class inherits from a builtin class __ge__ = lambda self, other: not self <= other or self == other __lt__ = lambda self, other: self <= other and not self == other __gt__ = lambda self, other: not self <= other def __repr__(self): """ Return a string representation of this FreqDist. :rtype: string """ return self.pformat() def pprint(self, maxlen=10, stream=None): """ Print a string representation of this FreqDist to 'stream' :param maxlen: The maximum number of items to print :type maxlen: int :param stream: The stream to print to. stdout by default """ print(self.pformat(maxlen=maxlen), file=stream) def pformat(self, maxlen=10): """ Return a string representation of this FreqDist. :param maxlen: The maximum number of items to display :type maxlen: int :rtype: string """ items = ['{0!r}: {1!r}'.format(*item) for item in self.most_common(maxlen)] if len(self) > maxlen: items.append('...') return 'FreqDist({{{0}}})'.format(', '.join(items)) def __str__(self): """ Return a string representation of this FreqDist. :rtype: string """ return '<FreqDist with %d samples and %d outcomes>' % (len(self), self.N()) ##////////////////////////////////////////////////////// ## Probability Distributions ##////////////////////////////////////////////////////// class ProbDistI(object): """ A probability distribution for the outcomes of an experiment. A probability distribution specifies how likely it is that an experiment will have any given outcome. For example, a probability distribution could be used to predict the probability that a token in a document will have a given type. Formally, a probability distribution can be defined as a function mapping from samples to nonnegative real numbers, such that the sum of every number in the function's range is 1.0. A ``ProbDist`` is often used to model the probability distribution of the experiment used to generate a frequency distribution. """ SUM_TO_ONE = True """True if the probabilities of the samples in this probability distribution will always sum to one.""" def __init__(self): if self.__class__ == ProbDistI: raise NotImplementedError("Interfaces can't be instantiated") def prob(self, sample): """ Return the probability for a given sample. Probabilities are always real numbers in the range [0, 1]. :param sample: The sample whose probability should be returned. :type sample: any :rtype: float """ raise NotImplementedError() def logprob(self, sample): """ Return the base 2 logarithm of the probability for a given sample. :param sample: The sample whose probability should be returned. :type sample: any :rtype: float """ # Default definition, in terms of prob() p = self.prob(sample) return (math.log(p, 2) if p != 0 else _NINF) def max(self): """ Return the sample with the greatest probability. If two or more samples have the same probability, return one of them; which sample is returned is undefined. :rtype: any """ raise NotImplementedError() def samples(self): """ Return a list of all samples that have nonzero probabilities. Use ``prob`` to find the probability of each sample. :rtype: list """ raise NotImplementedError() # cf self.SUM_TO_ONE def discount(self): """ Return the ratio by which counts are discounted on average: c*/c :rtype: float """ return 0.0 # Subclasses should define more efficient implementations of this, # where possible. def generate(self): """ Return a randomly selected sample from this probability distribution. The probability of returning each sample ``samp`` is equal to ``self.prob(samp)``. """ p = random.random() p_init = p for sample in self.samples(): p -= self.prob(sample) if p <= 0: return sample # allow for some rounding error: if p < .0001: return sample # we *should* never get here if self.SUM_TO_ONE: warnings.warn("Probability distribution %r sums to %r; generate()" " is returning an arbitrary sample." % (self, p_init-p)) return random.choice(list(self.samples())) @compat.python_2_unicode_compatible class UniformProbDist(ProbDistI): """ A probability distribution that assigns equal probability to each sample in a given set; and a zero probability to all other samples. """ def __init__(self, samples): """ Construct a new uniform probability distribution, that assigns equal probability to each sample in ``samples``. :param samples: The samples that should be given uniform probability. :type samples: list :raise ValueError: If ``samples`` is empty. """ if len(samples) == 0: raise ValueError('A Uniform probability distribution must '+ 'have at least one sample.') self._sampleset = set(samples) self._prob = 1.0/len(self._sampleset) self._samples = list(self._sampleset) def prob(self, sample): return (self._prob if sample in self._sampleset else 0) def max(self): return self._samples[0] def samples(self): return self._samples def __repr__(self): return '<UniformProbDist with %d samples>' % len(self._sampleset) @compat.python_2_unicode_compatible class RandomProbDist(ProbDistI): """ Generates a random probability distribution whereby each sample will be between 0 and 1 with equal probability (uniform random distribution. Also called a continuous uniform distribution). """ def __init__(self, samples): if len(samples) == 0: raise ValueError('A probability distribution must '+ 'have at least one sample.') self._probs = self.unirand(samples) self._samples = list(self._probs.keys()) @classmethod def unirand(cls, samples): """ The key function that creates a randomized initial distribution that still sums to 1. Set as a dictionary of prob values so that it can still be passed to MutableProbDist and called with identical syntax to UniformProbDist """ randrow = [random.random() for i in range(len(samples))] total = sum(randrow) for i, x in enumerate(randrow): randrow[i] = x/total total = sum(randrow) if total != 1: #this difference, if present, is so small (near NINF) that it #can be subtracted from any element without risking probs not (0 1) randrow[-1] -= total - 1 return dict((s, randrow[i]) for i, s in enumerate(samples)) def prob(self, sample): return self._probs.get(sample, 0) def samples(self): return self._samples def __repr__(self): return '<RandomUniformProbDist with %d samples>' %len(self._probs) @compat.python_2_unicode_compatible class DictionaryProbDist(ProbDistI): """ A probability distribution whose probabilities are directly specified by a given dictionary. The given dictionary maps samples to probabilities. """ def __init__(self, prob_dict=None, log=False, normalize=False): """ Construct a new probability distribution from the given dictionary, which maps values to probabilities (or to log probabilities, if ``log`` is true). If ``normalize`` is true, then the probability values are scaled by a constant factor such that they sum to 1. If called without arguments, the resulting probability distribution assigns zero probability to all values. """ self._prob_dict = (prob_dict.copy() if prob_dict is not None else {}) self._log = log # Normalize the distribution, if requested. if normalize: if len(prob_dict) == 0: raise ValueError('A DictionaryProbDist must have at least one sample ' + 'before it can be normalized.') if log: value_sum = sum_logs(list(self._prob_dict.values())) if value_sum <= _NINF: logp = math.log(1.0/len(prob_dict), 2) for x in prob_dict: self._prob_dict[x] = logp else: for (x, p) in self._prob_dict.items(): self._prob_dict[x] -= value_sum else: value_sum = sum(self._prob_dict.values()) if value_sum == 0: p = 1.0/len(prob_dict) for x in prob_dict: self._prob_dict[x] = p else: norm_factor = 1.0/value_sum for (x, p) in self._prob_dict.items(): self._prob_dict[x] *= norm_factor def prob(self, sample): if self._log: return (2**(self._prob_dict[sample]) if sample in self._prob_dict else 0) else: return self._prob_dict.get(sample, 0) def logprob(self, sample): if self._log: return self._prob_dict.get(sample, _NINF) else: if sample not in self._prob_dict: return _NINF elif self._prob_dict[sample] == 0: return _NINF else: return math.log(self._prob_dict[sample], 2) def max(self): if not hasattr(self, '_max'): self._max = max((p,v) for (v,p) in self._prob_dict.items())[1] return self._max def samples(self): return self._prob_dict.keys() def __repr__(self): return '<ProbDist with %d samples>' % len(self._prob_dict) @compat.python_2_unicode_compatible class MLEProbDist(ProbDistI): """ The maximum likelihood estimate for the probability distribution of the experiment used to generate a frequency distribution. The "maximum likelihood estimate" approximates the probability of each sample as the frequency of that sample in the frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the maximum likelihood estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. """ self._freqdist = freqdist def freqdist(self): """ Return the frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._freqdist def prob(self, sample): return self._freqdist.freq(sample) def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ return '<MLEProbDist based on %d samples>' % self._freqdist.N() @compat.python_2_unicode_compatible class LidstoneProbDist(ProbDistI): """ The Lidstone estimate for the probability distribution of the experiment used to generate a frequency distribution. The "Lidstone estimate" is parameterized by a real number *gamma*, which typically ranges from 0 to 1. The Lidstone estimate approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as ``c+gamma)/(N+B*gamma)``. This is equivalent to adding *gamma* to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ SUM_TO_ONE = False def __init__(self, freqdist, gamma, bins=None): """ Use the Lidstone estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type gamma: float :param gamma: A real number used to parameterize the estimate. The Lidstone estimate is equivalent to adding *gamma* to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ if (bins == 0) or (bins is None and freqdist.N() == 0): name = self.__class__.__name__[:-8] raise ValueError('A %s probability distribution ' % name + 'must have at least one bin.') if (bins is not None) and (bins < freqdist.B()): name = self.__class__.__name__[:-8] raise ValueError('\nThe number of bins in a %s distribution ' % name + '(%d) must be greater than or equal to\n' % bins + 'the number of bins in the FreqDist used ' + 'to create it (%d).' % freqdist.B()) self._freqdist = freqdist self._gamma = float(gamma) self._N = self._freqdist.N() if bins is None: bins = freqdist.B() self._bins = bins self._divisor = self._N + bins * gamma if self._divisor == 0.0: # In extreme cases we force the probability to be 0, # which it will be, since the count will be 0: self._gamma = 0 self._divisor = 1 def freqdist(self): """ Return the frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._freqdist def prob(self, sample): c = self._freqdist[sample] return (c + self._gamma) / self._divisor def max(self): # For Lidstone distributions, probability is monotonic with # frequency, so the most probable sample is the one that # occurs most frequently. return self._freqdist.max() def samples(self): return self._freqdist.keys() def discount(self): gb = self._gamma * self._bins return gb / (self._N + gb) def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<LidstoneProbDist based on %d samples>' % self._freqdist.N() @compat.python_2_unicode_compatible class LaplaceProbDist(LidstoneProbDist): """ The Laplace estimate for the probability distribution of the experiment used to generate a frequency distribution. The "Laplace estimate" approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as *(c+1)/(N+B)*. This is equivalent to adding one to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the Laplace estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ LidstoneProbDist.__init__(self, freqdist, 1, bins) def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ return '<LaplaceProbDist based on %d samples>' % self._freqdist.N() @compat.python_2_unicode_compatible class ELEProbDist(LidstoneProbDist): """ The expected likelihood estimate for the probability distribution of the experiment used to generate a frequency distribution. The "expected likelihood estimate" approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as *(c+0.5)/(N+B/2)*. This is equivalent to adding 0.5 to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the expected likelihood estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ LidstoneProbDist.__init__(self, freqdist, 0.5, bins) def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<ELEProbDist based on %d samples>' % self._freqdist.N() @compat.python_2_unicode_compatible class HeldoutProbDist(ProbDistI): """ The heldout estimate for the probability distribution of the experiment used to generate two frequency distributions. These two frequency distributions are called the "heldout frequency distribution" and the "base frequency distribution." The "heldout estimate" uses uses the "heldout frequency distribution" to predict the probability of each sample, given its frequency in the "base frequency distribution". In particular, the heldout estimate approximates the probability for a sample that occurs *r* times in the base distribution as the average frequency in the heldout distribution of all samples that occur *r* times in the base distribution. This average frequency is *Tr[r]/(Nr[r].N)*, where: - *Tr[r]* is the total count in the heldout distribution for all samples that occur *r* times in the base distribution. - *Nr[r]* is the number of samples that occur *r* times in the base distribution. - *N* is the number of outcomes recorded by the heldout frequency distribution. In order to increase the efficiency of the ``prob`` member function, *Tr[r]/(Nr[r].N)* is precomputed for each value of *r* when the ``HeldoutProbDist`` is created. :type _estimate: list(float) :ivar _estimate: A list mapping from *r*, the number of times that a sample occurs in the base distribution, to the probability estimate for that sample. ``_estimate[r]`` is calculated by finding the average frequency in the heldout distribution of all samples that occur *r* times in the base distribution. In particular, ``_estimate[r]`` = *Tr[r]/(Nr[r].N)*. :type _max_r: int :ivar _max_r: The maximum number of times that any sample occurs in the base distribution. ``_max_r`` is used to decide how large ``_estimate`` must be. """ SUM_TO_ONE = False def __init__(self, base_fdist, heldout_fdist, bins=None): """ Use the heldout estimate to create a probability distribution for the experiment used to generate ``base_fdist`` and ``heldout_fdist``. :type base_fdist: FreqDist :param base_fdist: The base frequency distribution. :type heldout_fdist: FreqDist :param heldout_fdist: The heldout frequency distribution. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ self._base_fdist = base_fdist self._heldout_fdist = heldout_fdist # The max number of times any sample occurs in base_fdist. self._max_r = base_fdist[base_fdist.max()] # Calculate Tr, Nr, and N. Tr = self._calculate_Tr() r_Nr = base_fdist.r_Nr(bins) Nr = [r_Nr[r] for r in range(self._max_r+1)] N = heldout_fdist.N() # Use Tr, Nr, and N to compute the probability estimate for # each value of r. self._estimate = self._calculate_estimate(Tr, Nr, N) def _calculate_Tr(self): """ Return the list *Tr*, where *Tr[r]* is the total count in ``heldout_fdist`` for all samples that occur *r* times in ``base_fdist``. :rtype: list(float) """ Tr = [0.0] * (self._max_r+1) for sample in self._heldout_fdist: r = self._base_fdist[sample] Tr[r] += self._heldout_fdist[sample] return Tr def _calculate_estimate(self, Tr, Nr, N): """ Return the list *estimate*, where *estimate[r]* is the probability estimate for any sample that occurs *r* times in the base frequency distribution. In particular, *estimate[r]* is *Tr[r]/(N[r].N)*. In the special case that *N[r]=0*, *estimate[r]* will never be used; so we define *estimate[r]=None* for those cases. :rtype: list(float) :type Tr: list(float) :param Tr: the list *Tr*, where *Tr[r]* is the total count in the heldout distribution for all samples that occur *r* times in base distribution. :type Nr: list(float) :param Nr: The list *Nr*, where *Nr[r]* is the number of samples that occur *r* times in the base distribution. :type N: int :param N: The total number of outcomes recorded by the heldout frequency distribution. """ estimate = [] for r in range(self._max_r+1): if Nr[r] == 0: estimate.append(None) else: estimate.append(Tr[r]/(Nr[r]*N)) return estimate def base_fdist(self): """ Return the base frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._base_fdist def heldout_fdist(self): """ Return the heldout frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._heldout_fdist def samples(self): return self._base_fdist.keys() def prob(self, sample): # Use our precomputed probability estimate. r = self._base_fdist[sample] return self._estimate[r] def max(self): # Note: the Heldout estimation is *not* necessarily monotonic; # so this implementation is currently broken. However, it # should give the right answer *most* of the time. :) return self._base_fdist.max() def discount(self): raise NotImplementedError() def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ s = '<HeldoutProbDist: %d base samples; %d heldout samples>' return s % (self._base_fdist.N(), self._heldout_fdist.N()) @compat.python_2_unicode_compatible class CrossValidationProbDist(ProbDistI): """ The cross-validation estimate for the probability distribution of the experiment used to generate a set of frequency distribution. The "cross-validation estimate" for the probability of a sample is found by averaging the held-out estimates for the sample in each pair of frequency distributions. """ SUM_TO_ONE = False def __init__(self, freqdists, bins): """ Use the cross-validation estimate to create a probability distribution for the experiment used to generate ``freqdists``. :type freqdists: list(FreqDist) :param freqdists: A list of the frequency distributions generated by the experiment. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ self._freqdists = freqdists # Create a heldout probability distribution for each pair of # frequency distributions in freqdists. self._heldout_probdists = [] for fdist1 in freqdists: for fdist2 in freqdists: if fdist1 is not fdist2: probdist = HeldoutProbDist(fdist1, fdist2, bins) self._heldout_probdists.append(probdist) def freqdists(self): """ Return the list of frequency distributions that this ``ProbDist`` is based on. :rtype: list(FreqDist) """ return self._freqdists def samples(self): # [xx] nb: this is not too efficient return set(sum([list(fd) for fd in self._freqdists], [])) def prob(self, sample): # Find the average probability estimate returned by each # heldout distribution. prob = 0.0 for heldout_probdist in self._heldout_probdists: prob += heldout_probdist.prob(sample) return prob/len(self._heldout_probdists) def discount(self): raise NotImplementedError() def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<CrossValidationProbDist: %d-way>' % len(self._freqdists) @compat.python_2_unicode_compatible class WittenBellProbDist(ProbDistI): """ The Witten-Bell estimate of a probability distribution. This distribution allocates uniform probability mass to as yet unseen events by using the number of events that have only been seen once. The probability mass reserved for unseen events is equal to *T / (N + T)* where *T* is the number of observed event types and *N* is the total number of observed events. This equates to the maximum likelihood estimate of a new type event occurring. The remaining probability mass is discounted such that all probability estimates sum to one, yielding: - *p = T / Z (N + T)*, if count = 0 - *p = c / (N + T)*, otherwise """ def __init__(self, freqdist, bins=None): """ Creates a distribution of Witten-Bell probability estimates. This distribution allocates uniform probability mass to as yet unseen events by using the number of events that have only been seen once. The probability mass reserved for unseen events is equal to *T / (N + T)* where *T* is the number of observed event types and *N* is the total number of observed events. This equates to the maximum likelihood estimate of a new type event occurring. The remaining probability mass is discounted such that all probability estimates sum to one, yielding: - *p = T / Z (N + T)*, if count = 0 - *p = c / (N + T)*, otherwise The parameters *T* and *N* are taken from the ``freqdist`` parameter (the ``B()`` and ``N()`` values). The normalizing factor *Z* is calculated using these values along with the ``bins`` parameter. :param freqdist: The frequency counts upon which to base the estimation. :type freqdist: FreqDist :param bins: The number of possible event types. This must be at least as large as the number of bins in the ``freqdist``. If None, then it's assumed to be equal to that of the ``freqdist`` :type bins: int """ assert bins is None or bins >= freqdist.B(),\ 'bins parameter must not be less than %d=freqdist.B()' % freqdist.B() if bins is None: bins = freqdist.B() self._freqdist = freqdist self._T = self._freqdist.B() self._Z = bins - self._freqdist.B() self._N = self._freqdist.N() # self._P0 is P(0), precalculated for efficiency: if self._N==0: # if freqdist is empty, we approximate P(0) by a UniformProbDist: self._P0 = 1.0 / self._Z else: self._P0 = self._T / float(self._Z * (self._N + self._T)) def prob(self, sample): # inherit docs from ProbDistI c = self._freqdist[sample] return (c / float(self._N + self._T) if c != 0 else self._P0) def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def freqdist(self): return self._freqdist def discount(self): raise NotImplementedError() def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<WittenBellProbDist based on %d samples>' % self._freqdist.N() ##////////////////////////////////////////////////////// ## Good-Turing Probability Distributions ##////////////////////////////////////////////////////// # Good-Turing frequency estimation was contributed by Alan Turing and # his statistical assistant I.J. Good, during their collaboration in # the WWII. It is a statistical technique for predicting the # probability of occurrence of objects belonging to an unknown number # of species, given past observations of such objects and their # species. (In drawing balls from an urn, the 'objects' would be balls # and the 'species' would be the distinct colors of the balls (finite # but unknown in number). # # Good-Turing method calculates the probability mass to assign to # events with zero or low counts based on the number of events with # higher counts. It does so by using the adjusted count *c\**: # # - *c\* = (c + 1) N(c + 1) / N(c)* for c >= 1 # - *things with frequency zero in training* = N(1) for c == 0 # # where *c* is the original count, *N(i)* is the number of event types # observed with count *i*. We can think the count of unseen as the count # of frequency one (see Jurafsky & Martin 2nd Edition, p101). # # This method is problematic because the situation ``N(c+1) == 0`` # is quite common in the original Good-Turing estimation; smoothing or # interpolation of *N(i)* values is essential in practice. # # Bill Gale and Geoffrey Sampson present a simple and effective approach, # Simple Good-Turing. As a smoothing curve they simply use a power curve: # # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic # relationship) # # They estimate a and b by simple linear regression technique on the # logarithmic form of the equation: # # log Nr = a + b*log(r) # # However, they suggest that such a simple curve is probably only # appropriate for high values of r. For low values of r, they use the # measured Nr directly. (see M&S, p.213) # # Gale and Sampson propose to use r while the difference between r and # r* is 1.96 greater than the standard deviation, and switch to r* if # it is less or equal: # # |r - r*| > 1.96 * sqrt((r + 1)^2 (Nr+1 / Nr^2) (1 + Nr+1 / Nr)) # # The 1.96 coefficient correspond to a 0.05 significance criterion, # some implementations can use a coefficient of 1.65 for a 0.1 # significance criterion. # ##////////////////////////////////////////////////////// ## Simple Good-Turing Probablity Distributions ##////////////////////////////////////////////////////// @compat.python_2_unicode_compatible class SimpleGoodTuringProbDist(ProbDistI): """ SimpleGoodTuring ProbDist approximates from frequency to frequency of frequency into a linear line under log space by linear regression. Details of Simple Good-Turing algorithm can be found in: - Good Turing smoothing without tears" (Gale & Sampson 1995), Journal of Quantitative Linguistics, vol. 2 pp. 217-237. - "Speech and Language Processing (Jurafsky & Martin), 2nd Edition, Chapter 4.5 p103 (log(Nc) = a + b*log(c)) - http://www.grsampson.net/RGoodTur.html Given a set of pair (xi, yi), where the xi denotes the frequency and yi denotes the frequency of frequency, we want to minimize their square variation. E(x) and E(y) represent the mean of xi and yi. - slope: b = sigma ((xi-E(x)(yi-E(y))) / sigma ((xi-E(x))(xi-E(x))) - intercept: a = E(y) - b.E(x) """ SUM_TO_ONE = False def __init__(self, freqdist, bins=None): """ :param freqdist: The frequency counts upon which to base the estimation. :type freqdist: FreqDist :param bins: The number of possible event types. This must be larger than the number of bins in the ``freqdist``. If None, then it's assumed to be equal to ``freqdist``.B() + 1 :type bins: int """ assert bins is None or bins > freqdist.B(),\ 'bins parameter must not be less than %d=freqdist.B()+1' % (freqdist.B()+1) if bins is None: bins = freqdist.B() + 1 self._freqdist = freqdist self._bins = bins r, nr = self._r_Nr() self.find_best_fit(r, nr) self._switch(r, nr) self._renormalize(r, nr) def _r_Nr_non_zero(self): r_Nr = self._freqdist.r_Nr() del r_Nr[0] return r_Nr def _r_Nr(self): """ Split the frequency distribution in two list (r, Nr), where Nr(r) > 0 """ nonzero = self._r_Nr_non_zero() if not nonzero: return [], [] return zip(*sorted(nonzero.items())) def find_best_fit(self, r, nr): """ Use simple linear regression to tune parameters self._slope and self._intercept in the log-log space based on count and Nr(count) (Work in log space to avoid floating point underflow.) """ # For higher sample frequencies the data points becomes horizontal # along line Nr=1. To create a more evident linear model in log-log # space, we average positive Nr values with the surrounding zero # values. (Church and Gale, 1991) if not r or not nr: # Empty r or nr? return zr = [] for j in range(len(r)): i = (r[j-1] if j > 0 else 0) k = (2 * r[j] - i if j == len(r) - 1 else r[j+1]) zr_ = 2.0 * nr[j] / (k - i) zr.append(zr_) log_r = [math.log(i) for i in r] log_zr = [math.log(i) for i in zr] xy_cov = x_var = 0.0 x_mean = 1.0 * sum(log_r) / len(log_r) y_mean = 1.0 * sum(log_zr) / len(log_zr) for (x, y) in zip(log_r, log_zr): xy_cov += (x - x_mean) * (y - y_mean) x_var += (x - x_mean)**2 self._slope = (xy_cov / x_var if x_var != 0 else 0.0) if self._slope >= -1: warnings.warn('SimpleGoodTuring did not find a proper best fit ' 'line for smoothing probabilities of occurrences. ' 'The probability estimates are likely to be ' 'unreliable.') self._intercept = y_mean - self._slope * x_mean def _switch(self, r, nr): """ Calculate the r frontier where we must switch from Nr to Sr when estimating E[Nr]. """ for i, r_ in enumerate(r): if len(r) == i + 1 or r[i+1] != r_ + 1: # We are at the end of r, or there is a gap in r self._switch_at = r_ break Sr = self.smoothedNr smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_) unsmooth_r_star = 1.0 * (r_ + 1) * nr[i+1] / nr[i] std = math.sqrt(self._variance(r_, nr[i], nr[i+1])) if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std: self._switch_at = r_ break def _variance(self, r, nr, nr_1): r = float(r) nr = float(nr) nr_1 = float(nr_1) return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr) def _renormalize(self, r, nr): """ It is necessary to renormalize all the probability estimates to ensure a proper probability distribution results. This can be done by keeping the estimate of the probability mass for unseen items as N(1)/N and renormalizing all the estimates for previously seen items (as Gale and Sampson (1995) propose). (See M&S P.213, 1999) """ prob_cov = 0.0 for r_, nr_ in zip(r, nr): prob_cov += nr_ * self._prob_measure(r_) if prob_cov: self._renormal = (1 - self._prob_measure(0)) / prob_cov def smoothedNr(self, r): """ Return the number of samples with count r. :param r: The amount of frequency. :type r: int :rtype: float """ # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic # relationship) # Estimate a and b by simple linear regression technique on # the logarithmic form of the equation: log Nr = a + b*log(r) return math.exp(self._intercept + self._slope * math.log(r)) def prob(self, sample): """ Return the sample's probability. :param sample: sample of the event :type sample: str :rtype: float """ count = self._freqdist[sample] p = self._prob_measure(count) if count == 0: if self._bins == self._freqdist.B(): p = 0.0 else: p = p / (1.0 * self._bins - self._freqdist.B()) else: p = p * self._renormal return p def _prob_measure(self, count): if count == 0 and self._freqdist.N() == 0 : return 1.0 elif count == 0 and self._freqdist.N() != 0: return 1.0 * self._freqdist.Nr(1) / self._freqdist.N() if self._switch_at > count: Er_1 = 1.0 * self._freqdist.Nr(count+1) Er = 1.0 * self._freqdist.Nr(count) else: Er_1 = self.smoothedNr(count+1) Er = self.smoothedNr(count) r_star = (count + 1) * Er_1 / Er return r_star / self._freqdist.N() def check(self): prob_sum = 0.0 for i in range(0, len(self._Nr)): prob_sum += self._Nr[i] * self._prob_measure(i) / self._renormal print("Probability Sum:", prob_sum) #assert prob_sum != 1.0, "probability sum should be one!" def discount(self): """ This function returns the total mass of probability transfers from the seen samples to the unseen samples. """ return 1.0 * self.smoothedNr(1) / self._freqdist.N() def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def freqdist(self): return self._freqdist def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<SimpleGoodTuringProbDist based on %d samples>'\ % self._freqdist.N() class MutableProbDist(ProbDistI): """ An mutable probdist where the probabilities may be easily modified. This simply copies an existing probdist, storing the probability values in a mutable dictionary and providing an update method. """ def __init__(self, prob_dist, samples, store_logs=True): """ Creates the mutable probdist based on the given prob_dist and using the list of samples given. These values are stored as log probabilities if the store_logs flag is set. :param prob_dist: the distribution from which to garner the probabilities :type prob_dist: ProbDist :param samples: the complete set of samples :type samples: sequence of any :param store_logs: whether to store the probabilities as logarithms :type store_logs: bool """ self._samples = samples self._sample_dict = dict((samples[i], i) for i in range(len(samples))) self._data = array.array(str("d"), [0.0]) * len(samples) for i in range(len(samples)): if store_logs: self._data[i] = prob_dist.logprob(samples[i]) else: self._data[i] = prob_dist.prob(samples[i]) self._logs = store_logs def samples(self): # inherit documentation return self._samples def prob(self, sample): # inherit documentation i = self._sample_dict.get(sample) if i is None: return 0.0 return (2**(self._data[i]) if self._logs else self._data[i]) def logprob(self, sample): # inherit documentation i = self._sample_dict.get(sample) if i is None: return float('-inf') return (self._data[i] if self._logs else math.log(self._data[i], 2)) def update(self, sample, prob, log=True): """ Update the probability for the given sample. This may cause the object to stop being the valid probability distribution - the user must ensure that they update the sample probabilities such that all samples have probabilities between 0 and 1 and that all probabilities sum to one. :param sample: the sample for which to update the probability :type sample: any :param prob: the new probability :type prob: float :param log: is the probability already logged :type log: bool """ i = self._sample_dict.get(sample) assert i is not None if self._logs: self._data[i] = (prob if log else math.log(prob, 2)) else: self._data[i] = (2**(prob) if log else prob) ##///////////////////////////////////////////////////// ## Kneser-Ney Probability Distribution ##////////////////////////////////////////////////////// # This method for calculating probabilities was introduced in 1995 by Reinhard # Kneser and Hermann Ney. It was meant to improve the accuracy of language # models that use backing-off to deal with sparse data. The authors propose two # ways of doing so: a marginal distribution constraint on the back-off # distribution and a leave-one-out distribution. For a start, the first one is # implemented as a class below. # # The idea behind a back-off n-gram model is that we have a series of # frequency distributions for our n-grams so that in case we have not seen a # given n-gram during training (and as a result have a 0 probability for it) we # can 'back off' (hence the name!) and try testing whether we've seen the # n-1-gram part of the n-gram in training. # # The novelty of Kneser and Ney's approach was that they decided to fiddle # around with the way this latter, backed off probability was being calculated # whereas their peers seemed to focus on the primary probability. # # The implementation below uses one of the techniques described in their paper # titled "Improved backing-off for n-gram language modeling." In the same paper # another technique is introduced to attempt to smooth the back-off # distribution as well as the primary one. There is also a much-cited # modification of this method proposed by Chen and Goodman. # # In order for the implementation of Kneser-Ney to be more efficient, some # changes have been made to the original algorithm. Namely, the calculation of # the normalizing function gamma has been significantly simplified and # combined slightly differently with beta. None of these changes affect the # nature of the algorithm, but instead aim to cut out unnecessary calculations # and take advantage of storing and retrieving information in dictionaries # where possible. @compat.python_2_unicode_compatible class KneserNeyProbDist(ProbDistI): """ Kneser-Ney estimate of a probability distribution. This is a version of back-off that counts how likely an n-gram is provided the n-1-gram had been seen in training. Extends the ProbDistI interface, requires a trigram FreqDist instance to train on. Optionally, a different from default discount value can be specified. The default discount is set to 0.75. """ def __init__(self, freqdist, bins=None, discount=0.75): """ :param freqdist: The trigram frequency distribution upon which to base the estimation :type freqdist: FreqDist :param bins: Included for compatibility with nltk.tag.hmm :type bins: int or float :param discount: The discount applied when retrieving counts of trigrams :type discount: float (preferred, but can be set to int) """ if not bins: self._bins = freqdist.B() else: self._bins = bins self._D = discount # cache for probability calculation self._cache = {} # internal bigram and trigram frequency distributions self._bigrams = defaultdict(int) self._trigrams = freqdist # helper dictionaries used to calculate probabilities self._wordtypes_after = defaultdict(float) self._trigrams_contain = defaultdict(float) self._wordtypes_before = defaultdict(float) for w0, w1, w2 in freqdist: self._bigrams[(w0,w1)] += freqdist[(w0, w1, w2)] self._wordtypes_after[(w0,w1)] += 1 self._trigrams_contain[w1] += 1 self._wordtypes_before[(w1,w2)] += 1 def prob(self, trigram): # sample must be a triple if len(trigram) != 3: raise ValueError('Expected an iterable with 3 members.') trigram = tuple(trigram) w0, w1, w2 = trigram if trigram in self._cache: return self._cache[trigram] else: # if the sample trigram was seen during training if trigram in self._trigrams: prob = (self._trigrams[trigram] - self.discount())/self._bigrams[(w0, w1)] # else if the 'rougher' environment was seen during training elif (w0,w1) in self._bigrams and (w1,w2) in self._wordtypes_before: aftr = self._wordtypes_after[(w0, w1)] bfr = self._wordtypes_before[(w1, w2)] # the probability left over from alphas leftover_prob = ((aftr * self.discount()) / self._bigrams[(w0, w1)]) # the beta (including normalization) beta = bfr /(self._trigrams_contain[w1] - aftr) prob = leftover_prob * beta # else the sample was completely unseen during training else: prob = 0.0 self._cache[trigram] = prob return prob def discount(self): """ Return the value by which counts are discounted. By default set to 0.75. :rtype: float """ return self._D def set_discount(self, discount): """ Set the value by which counts are discounted to the value of discount. :param discount: the new value to discount counts by :type discount: float (preferred, but int possible) :rtype: None """ self._D = discount def samples(self): return self._trigrams.keys() def max(self): return self._trigrams.max() def __repr__(self): ''' Return a string representation of this ProbDist :rtype: str ''' return '<KneserNeyProbDist based on {0} trigrams'.format(self._trigrams.N()) ##////////////////////////////////////////////////////// ## Probability Distribution Operations ##////////////////////////////////////////////////////// def log_likelihood(test_pdist, actual_pdist): if (not isinstance(test_pdist, ProbDistI) or not isinstance(actual_pdist, ProbDistI)): raise ValueError('expected a ProbDist.') # Is this right? return sum(actual_pdist.prob(s) * math.log(test_pdist.prob(s), 2) for s in actual_pdist) def entropy(pdist): probs = (pdist.prob(s) for s in pdist.samples()) return -sum(p * math.log(p,2) for p in probs) ##////////////////////////////////////////////////////// ## Conditional Distributions ##////////////////////////////////////////////////////// @compat.python_2_unicode_compatible class ConditionalFreqDist(defaultdict): """ A collection of frequency distributions for a single experiment run under different conditions. Conditional frequency distributions are used to record the number of times each sample occurred, given the condition under which the experiment was run. For example, a conditional frequency distribution could be used to record the frequency of each word (type) in a document, given its length. Formally, a conditional frequency distribution can be defined as a function that maps from each condition to the FreqDist for the experiment under that condition. Conditional frequency distributions are typically constructed by repeatedly running an experiment under a variety of conditions, and incrementing the sample outcome counts for the appropriate conditions. For example, the following code will produce a conditional frequency distribution that encodes how often each word type occurs, given the length of that word type: >>> from nltk.probability import ConditionalFreqDist >>> from nltk.tokenize import word_tokenize >>> sent = "the the the dog dog some other words that we do not care about" >>> cfdist = ConditionalFreqDist() >>> for word in word_tokenize(sent): ... condition = len(word) ... cfdist[condition][word] += 1 An equivalent way to do this is with the initializer: >>> cfdist = ConditionalFreqDist((len(word), word) for word in word_tokenize(sent)) The frequency distribution for each condition is accessed using the indexing operator: >>> cfdist[3] FreqDist({'the': 3, 'dog': 2, 'not': 1}) >>> cfdist[3].freq('the') 0.5 >>> cfdist[3]['dog'] 2 When the indexing operator is used to access the frequency distribution for a condition that has not been accessed before, ``ConditionalFreqDist`` creates a new empty FreqDist for that condition. """ def __init__(self, cond_samples=None): """ Construct a new empty conditional frequency distribution. In particular, the count for every sample, under every condition, is zero. :param cond_samples: The samples to initialize the conditional frequency distribution with :type cond_samples: Sequence of (condition, sample) tuples """ defaultdict.__init__(self, FreqDist) if cond_samples: for (cond, sample) in cond_samples: self[cond][sample] += 1 def __reduce__(self): kv_pairs = ((cond, self[cond]) for cond in self.conditions()) return (self.__class__, (), None, None, kv_pairs) def conditions(self): """ Return a list of the conditions that have been accessed for this ``ConditionalFreqDist``. Use the indexing operator to access the frequency distribution for a given condition. Note that the frequency distributions for some conditions may contain zero sample outcomes. :rtype: list """ return list(self.keys()) def N(self): """ Return the total number of sample outcomes that have been recorded by this ``ConditionalFreqDist``. :rtype: int """ return sum(fdist.N() for fdist in compat.itervalues(self)) def plot(self, *args, **kwargs): """ Plot the given samples from the conditional frequency distribution. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param samples: The samples to plot :type samples: list :param title: The title for the graph :type title: str :param conditions: The conditions to plot (default is all) :type conditions: list """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') cumulative = _get_kwarg(kwargs, 'cumulative', False) conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions())) title = _get_kwarg(kwargs, 'title', '') samples = _get_kwarg(kwargs, 'samples', sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted if not "linewidth" in kwargs: kwargs["linewidth"] = 2 for condition in conditions: if cumulative: freqs = list(self[condition]._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" legend_loc = 'lower right' else: freqs = [self[condition][sample] for sample in samples] ylabel = "Counts" legend_loc = 'upper right' # percents = [f * 100 for f in freqs] only in ConditionalProbDist? kwargs['label'] = "%s" % condition pylab.plot(freqs, *args, **kwargs) pylab.legend(loc=legend_loc) pylab.grid(True, color="silver") pylab.xticks(range(len(samples)), [compat.text_type(s) for s in samples], rotation=90) if title: pylab.title(title) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show() def tabulate(self, *args, **kwargs): """ Tabulate the given samples from the conditional frequency distribution. :param samples: The samples to plot :type samples: list :param title: The title for the graph :type title: str :param conditions: The conditions to plot (default is all) :type conditions: list """ cumulative = _get_kwarg(kwargs, 'cumulative', False) conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions())) samples = _get_kwarg(kwargs, 'samples', sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted condition_size = max(len("%s" % c) for c in conditions) print(' ' * condition_size, end=' ') for s in samples: print("%4s" % s, end=' ') print() for c in conditions: print("%*s" % (condition_size, c), end=' ') if cumulative: freqs = list(self[c]._cumulative_frequencies(samples)) else: freqs = [self[c][sample] for sample in samples] for f in freqs: print("%4d" % f, end=' ') print() # @total_ordering doesn't work here, since the class inherits from a builtin class def __le__(self, other): if not isinstance(other, ConditionalFreqDist): raise_unorderable_types("<=", self, other) return set(self.conditions()).issubset(other.conditions()) \ and all(self[c] <= other[c] for c in self.conditions()) def __lt__(self, other): if not isinstance(other, ConditionalFreqDist): raise_unorderable_types("<", self, other) return self <= other and self != other def __ge__(self, other): if not isinstance(other, ConditionalFreqDist): raise_unorderable_types(">=", self, other) return other <= self def __gt__(self, other): if not isinstance(other, ConditionalFreqDist): raise_unorderable_types(">", self, other) return other < self def __repr__(self): """ Return a string representation of this ``ConditionalFreqDist``. :rtype: str """ return '<ConditionalFreqDist with %d conditions>' % len(self) @compat.python_2_unicode_compatible class ConditionalProbDistI(dict): """ A collection of probability distributions for a single experiment run under different conditions. Conditional probability distributions are used to estimate the likelihood of each sample, given the condition under which the experiment was run. For example, a conditional probability distribution could be used to estimate the probability of each word type in a document, given the length of the word type. Formally, a conditional probability distribution can be defined as a function that maps from each condition to the ``ProbDist`` for the experiment under that condition. """ def __init__(self): raise NotImplementedError("Interfaces can't be instantiated") def conditions(self): """ Return a list of the conditions that are represented by this ``ConditionalProbDist``. Use the indexing operator to access the probability distribution for a given condition. :rtype: list """ return list(self.keys()) def __repr__(self): """ Return a string representation of this ``ConditionalProbDist``. :rtype: str """ return '<%s with %d conditions>' % (type(self).__name__, len(self)) class ConditionalProbDist(ConditionalProbDistI): """ A conditional probability distribution modeling the experiments that were used to generate a conditional frequency distribution. A ConditionalProbDist is constructed from a ``ConditionalFreqDist`` and a ``ProbDist`` factory: - The ``ConditionalFreqDist`` specifies the frequency distribution for each condition. - The ``ProbDist`` factory is a function that takes a condition's frequency distribution, and returns its probability distribution. A ``ProbDist`` class's name (such as ``MLEProbDist`` or ``HeldoutProbDist``) can be used to specify that class's constructor. The first argument to the ``ProbDist`` factory is the frequency distribution that it should model; and the remaining arguments are specified by the ``factory_args`` parameter to the ``ConditionalProbDist`` constructor. For example, the following code constructs a ``ConditionalProbDist``, where the probability distribution for each condition is an ``ELEProbDist`` with 10 bins: >>> from nltk.corpus import brown >>> from nltk.probability import ConditionalFreqDist >>> from nltk.probability import ConditionalProbDist, ELEProbDist >>> cfdist = ConditionalFreqDist(brown.tagged_words()[:5000]) >>> cpdist = ConditionalProbDist(cfdist, ELEProbDist, 10) >>> cpdist['passed'].max() 'VBD' >>> cpdist['passed'].prob('VBD') 0.423... """ def __init__(self, cfdist, probdist_factory, *factory_args, **factory_kw_args): """ Construct a new conditional probability distribution, based on the given conditional frequency distribution and ``ProbDist`` factory. :type cfdist: ConditionalFreqDist :param cfdist: The ``ConditionalFreqDist`` specifying the frequency distribution for each condition. :type probdist_factory: class or function :param probdist_factory: The function or class that maps a condition's frequency distribution to its probability distribution. The function is called with the frequency distribution as its first argument, ``factory_args`` as its remaining arguments, and ``factory_kw_args`` as keyword arguments. :type factory_args: (any) :param factory_args: Extra arguments for ``probdist_factory``. These arguments are usually used to specify extra properties for the probability distributions of individual conditions, such as the number of bins they contain. :type factory_kw_args: (any) :param factory_kw_args: Extra keyword arguments for ``probdist_factory``. """ self._probdist_factory = probdist_factory self._factory_args = factory_args self._factory_kw_args = factory_kw_args for condition in cfdist: self[condition] = probdist_factory(cfdist[condition], *factory_args, **factory_kw_args) def __missing__(self, key): self[key] = self._probdist_factory(FreqDist(), *self._factory_args, **self._factory_kw_args) return self[key] class DictionaryConditionalProbDist(ConditionalProbDistI): """ An alternative ConditionalProbDist that simply wraps a dictionary of ProbDists rather than creating these from FreqDists. """ def __init__(self, probdist_dict): """ :param probdist_dict: a dictionary containing the probdists indexed by the conditions :type probdist_dict: dict any -> probdist """ self.update(probdist_dict) def __missing__(self, key): self[key] = DictionaryProbDist() return self[key] ##////////////////////////////////////////////////////// ## Adding in log-space. ##////////////////////////////////////////////////////// # If the difference is bigger than this, then just take the bigger one: _ADD_LOGS_MAX_DIFF = math.log(1e-30, 2) def add_logs(logx, logy): """ Given two numbers ``logx`` = *log(x)* and ``logy`` = *log(y)*, return *log(x+y)*. Conceptually, this is the same as returning ``log(2**(logx)+2**(logy))``, but the actual implementation avoids overflow errors that could result from direct computation. """ if (logx < logy + _ADD_LOGS_MAX_DIFF): return logy if (logy < logx + _ADD_LOGS_MAX_DIFF): return logx base = min(logx, logy) return base + math.log(2**(logx-base) + 2**(logy-base), 2) def sum_logs(logs): return (reduce(add_logs, logs[1:], logs[0]) if len(logs) != 0 else _NINF) ##////////////////////////////////////////////////////// ## Probabilistic Mix-in ##////////////////////////////////////////////////////// class ProbabilisticMixIn(object): """ A mix-in class to associate probabilities with other classes (trees, rules, etc.). To use the ``ProbabilisticMixIn`` class, define a new class that derives from an existing class and from ProbabilisticMixIn. You will need to define a new constructor for the new class, which explicitly calls the constructors of both its parent classes. For example: >>> from nltk.probability import ProbabilisticMixIn >>> class A: ... def __init__(self, x, y): self.data = (x,y) ... >>> class ProbabilisticA(A, ProbabilisticMixIn): ... def __init__(self, x, y, **prob_kwarg): ... A.__init__(self, x, y) ... ProbabilisticMixIn.__init__(self, **prob_kwarg) See the documentation for the ProbabilisticMixIn ``constructor<__init__>`` for information about the arguments it expects. You should generally also redefine the string representation methods, the comparison methods, and the hashing method. """ def __init__(self, **kwargs): """ Initialize this object's probability. This initializer should be called by subclass constructors. ``prob`` should generally be the first argument for those constructors. :param prob: The probability associated with the object. :type prob: float :param logprob: The log of the probability associated with the object. :type logprob: float """ if 'prob' in kwargs: if 'logprob' in kwargs: raise TypeError('Must specify either prob or logprob ' '(not both)') else: ProbabilisticMixIn.set_prob(self, kwargs['prob']) elif 'logprob' in kwargs: ProbabilisticMixIn.set_logprob(self, kwargs['logprob']) else: self.__prob = self.__logprob = None def set_prob(self, prob): """ Set the probability associated with this object to ``prob``. :param prob: The new probability :type prob: float """ self.__prob = prob self.__logprob = None def set_logprob(self, logprob): """ Set the log probability associated with this object to ``logprob``. I.e., set the probability associated with this object to ``2**(logprob)``. :param logprob: The new log probability :type logprob: float """ self.__logprob = logprob self.__prob = None def prob(self): """ Return the probability associated with this object. :rtype: float """ if self.__prob is None: if self.__logprob is None: return None self.__prob = 2**(self.__logprob) return self.__prob def logprob(self): """ Return ``log(p)``, where ``p`` is the probability associated with this object. :rtype: float """ if self.__logprob is None: if self.__prob is None: return None self.__logprob = math.log(self.__prob, 2) return self.__logprob class ImmutableProbabilisticMixIn(ProbabilisticMixIn): def set_prob(self, prob): raise ValueError('%s is immutable' % self.__class__.__name__) def set_logprob(self, prob): raise ValueError('%s is immutable' % self.__class__.__name__) ## Helper function for processing keyword arguments def _get_kwarg(kwargs, key, default): if key in kwargs: arg = kwargs[key] del kwargs[key] else: arg = default return arg ##////////////////////////////////////////////////////// ## Demonstration ##////////////////////////////////////////////////////// def _create_rand_fdist(numsamples, numoutcomes): """ Create a new frequency distribution, with random samples. The samples are numbers from 1 to ``numsamples``, and are generated by summing two numbers, each of which has a uniform distribution. """ import random fdist = FreqDist() for x in range(numoutcomes): y = (random.randint(1, (1 + numsamples) // 2) + random.randint(0, numsamples // 2)) fdist[y] += 1 return fdist def _create_sum_pdist(numsamples): """ Return the true probability distribution for the experiment ``_create_rand_fdist(numsamples, x)``. """ fdist = FreqDist() for x in range(1, (1 + numsamples) // 2 + 1): for y in range(0, numsamples // 2 + 1): fdist[x+y] += 1 return MLEProbDist(fdist) def demo(numsamples=6, numoutcomes=500): """ A demonstration of frequency distributions and probability distributions. This demonstration creates three frequency distributions with, and uses them to sample a random process with ``numsamples`` samples. Each frequency distribution is sampled ``numoutcomes`` times. These three frequency distributions are then used to build six probability distributions. Finally, the probability estimates of these distributions are compared to the actual probability of each sample. :type numsamples: int :param numsamples: The number of samples to use in each demo frequency distributions. :type numoutcomes: int :param numoutcomes: The total number of outcomes for each demo frequency distribution. These outcomes are divided into ``numsamples`` bins. :rtype: None """ # Randomly sample a stochastic process three times. fdist1 = _create_rand_fdist(numsamples, numoutcomes) fdist2 = _create_rand_fdist(numsamples, numoutcomes) fdist3 = _create_rand_fdist(numsamples, numoutcomes) # Use our samples to create probability distributions. pdists = [ MLEProbDist(fdist1), LidstoneProbDist(fdist1, 0.5, numsamples), HeldoutProbDist(fdist1, fdist2, numsamples), HeldoutProbDist(fdist2, fdist1, numsamples), CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples), SimpleGoodTuringProbDist(fdist1), SimpleGoodTuringProbDist(fdist1, 7), _create_sum_pdist(numsamples), ] # Find the probability of each sample. vals = [] for n in range(1,numsamples+1): vals.append(tuple([n, fdist1.freq(n)] + [pdist.prob(n) for pdist in pdists])) # Print the results in a formatted table. print(('%d samples (1-%d); %d outcomes were sampled for each FreqDist' % (numsamples, numsamples, numoutcomes))) print('='*9*(len(pdists)+2)) FORMATSTR = ' FreqDist '+ '%8s '*(len(pdists)-1) + '| Actual' print(FORMATSTR % tuple(repr(pdist)[1:9] for pdist in pdists[:-1])) print('-'*9*(len(pdists)+2)) FORMATSTR = '%3d %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f' for val in vals: print(FORMATSTR % val) # Print the totals for each column (should all be 1.0) zvals = list(zip(*vals)) sums = [sum(val) for val in zvals[1:]] print('-'*9*(len(pdists)+2)) FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f' print(FORMATSTR % tuple(sums)) print('='*9*(len(pdists)+2)) # Display the distributions themselves, if they're short enough. if len("%s" % fdist1) < 70: print(' fdist1: %s' % fdist1) print(' fdist2: %s' % fdist2) print(' fdist3: %s' % fdist3) print() print('Generating:') for pdist in pdists: fdist = FreqDist(pdist.generate() for i in range(5000)) print('%20s %s' % (pdist.__class__.__name__[:20], ("%s" % fdist)[:55])) print() def gt_demo(): from nltk import corpus emma_words = corpus.gutenberg.words('austen-emma.txt') fd = FreqDist(emma_words) sgt = SimpleGoodTuringProbDist(fd) print('%18s %8s %14s' \ % ("word", "freqency", "SimpleGoodTuring")) fd_keys_sorted=(key for key, value in sorted(fd.items(), key=lambda item: item[1], reverse=True)) for key in fd_keys_sorted: print('%18s %8d %14e' \ % (key, fd[key], sgt.prob(key))) if __name__ == '__main__': demo(6, 10) demo(5, 5000) gt_demo() __all__ = ['ConditionalFreqDist', 'ConditionalProbDist', 'ConditionalProbDistI', 'CrossValidationProbDist', 'DictionaryConditionalProbDist', 'DictionaryProbDist', 'ELEProbDist', 'FreqDist', 'SimpleGoodTuringProbDist', 'HeldoutProbDist', 'ImmutableProbabilisticMixIn', 'LaplaceProbDist', 'LidstoneProbDist', 'MLEProbDist', 'MutableProbDist', 'KneserNeyProbDist', 'ProbDistI', 'ProbabilisticMixIn', 'UniformProbDist', 'WittenBellProbDist', 'add_logs', 'log_likelihood', 'sum_logs', 'entropy']
mit
soxofaan/luigi
luigi/contrib/pai.py
2
11175
# -*- coding: utf-8 -*- # # Copyright 2017 Open Targets # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ MicroSoft OpenPAI Job wrapper for Luigi. "OpenPAI is an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale." For more information about OpenPAI : https://github.com/Microsoft/pai/, this task is tested against OpenPAI 0.7.1 Requires: - requests: ``pip install requests`` Written and maintained by Liu, Dongqing (@liudongqing). """ import time import logging import luigi import abc try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin import json logger = logging.getLogger('luigi-interface') try: import requests as rs from requests.exceptions import HTTPError except ImportError: logger.warning('requests is not installed. PaiTask requires requests.') def slot_to_dict(o): o_dict = {} for key in o.__slots__: if not key.startswith('__'): value = getattr(o, key, None) if value is not None: o_dict[key] = value return o_dict class PaiJob(object): """ The Open PAI job definition. Refer to here https://github.com/Microsoft/pai/blob/master/docs/job_tutorial.md :: { "jobName": String, "image": String, "authFile": String, "dataDir": String, "outputDir": String, "codeDir": String, "virtualCluster": String, "taskRoles": [ { "name": String, "taskNumber": Integer, "cpuNumber": Integer, "memoryMB": Integer, "shmMB": Integer, "gpuNumber": Integer, "portList": [ { "label": String, "beginAt": Integer, "portNumber": Integer } ], "command": String, "minFailedTaskCount": Integer, "minSucceededTaskCount": Integer } ], "gpuType": String, "retryCount": Integer } """ __slots__ = ( 'jobName', 'image', 'authFile', 'dataDir', 'outputDir', 'codeDir', 'virtualCluster', 'taskRoles', 'gpuType', 'retryCount' ) def __init__(self, jobName, image, tasks): """ Initialize a Job with required fields. :param jobName: Name for the job, need to be unique :param image: URL pointing to the Docker image for all tasks in the job :param tasks: List of taskRole, one task role at least """ self.jobName = jobName self.image = image if isinstance(tasks, list) and len(tasks) != 0: self.taskRoles = tasks else: raise TypeError('you must specify one task at least.') class Port(object): __slots__ = ('label', 'beginAt', 'portNumber') def __init__(self, label, begin_at=0, port_number=1): """ The Port definition for TaskRole :param label: Label name for the port type, required :param begin_at: The port to begin with in the port type, 0 for random selection, required :param port_number: Number of ports for the specific type, required """ self.label = label self.beginAt = begin_at self.portNumber = port_number class TaskRole(object): __slots__ = ( 'name', 'taskNumber', 'cpuNumber', 'memoryMB', 'shmMB', 'gpuNumber', 'portList', 'command', 'minFailedTaskCount', 'minSucceededTaskCount' ) def __init__(self, name, command, taskNumber=1, cpuNumber=1, memoryMB=2048, shmMB=64, gpuNumber=0, portList=[]): """ The TaskRole of PAI :param name: Name for the task role, need to be unique with other roles, required :param command: Executable command for tasks in the task role, can not be empty, required :param taskNumber: Number of tasks for the task role, no less than 1, required :param cpuNumber: CPU number for one task in the task role, no less than 1, required :param shmMB: Shared memory for one task in the task role, no more than memory size, required :param memoryMB: Memory for one task in the task role, no less than 100, required :param gpuNumber: GPU number for one task in the task role, no less than 0, required :param portList: List of portType to use, optional """ self.name = name self.command = command self.taskNumber = taskNumber self.cpuNumber = cpuNumber self.memoryMB = memoryMB self.shmMB = shmMB self.gpuNumber = gpuNumber self.portList = portList class OpenPai(luigi.Config): pai_url = luigi.Parameter( default='http://127.0.0.1:9186', description='rest server url, default is http://127.0.0.1:9186') username = luigi.Parameter( default='admin', description='your username') password = luigi.Parameter( default=None, description='your password') expiration = luigi.IntParameter( default=3600, description='expiration time in seconds') class PaiTask(luigi.Task): __POLL_TIME = 5 @abc.abstractproperty def name(self): """Name for the job, need to be unique, required""" return 'SklearnExample' @abc.abstractproperty def image(self): """URL pointing to the Docker image for all tasks in the job, required""" return 'openpai/pai.example.sklearn' @abc.abstractproperty def tasks(self): """List of taskRole, one task role at least, required""" return [] @property def auth_file_path(self): """Docker registry authentication file existing on HDFS, optional""" return None @property def data_dir(self): """Data directory existing on HDFS, optional""" return None @property def code_dir(self): """Code directory existing on HDFS, should not contain any data and should be less than 200MB, optional""" return None @property def output_dir(self): """Output directory on HDFS, $PAI_DEFAULT_FS_URI/$jobName/output will be used if not specified, optional""" return '$PAI_DEFAULT_FS_URI/{0}/output'.format(self.name) @property def virtual_cluster(self): """The virtual cluster job runs on. If omitted, the job will run on default virtual cluster, optional""" return 'default' @property def gpu_type(self): """Specify the GPU type to be used in the tasks. If omitted, the job will run on any gpu type, optional""" return None @property def retry_count(self): """Job retry count, no less than 0, optional""" return 0 def __init_token(self): self.__openpai = OpenPai() request_json = json.dumps({'username': self.__openpai.username, 'password': self.__openpai.password, 'expiration': self.__openpai.expiration}) logger.debug('Get token request {0}'.format(request_json)) response = rs.post(urljoin(self.__openpai.pai_url, '/api/v1/token'), headers={'Content-Type': 'application/json'}, data=request_json) logger.debug('Get token response {0}'.format(response.text)) if response.status_code != 200: msg = 'Get token request failed, response is {}'.format(response.text) logger.error(msg) raise Exception(msg) else: self.__token = response.json()['token'] def __init__(self, *args, **kwargs): """ :param pai_url: The rest server url of PAI clusters, default is 'http://127.0.0.1:9186'. :param token: The toke used to auth the rest server of PAI. """ super(PaiTask, self).__init__(*args, **kwargs) self.__init_token() def __check_job_status(self): response = rs.get(urljoin(self.__openpai.pai_url, '/api/v1/jobs/{0}'.format(self.name))) logger.debug('Check job response {0}'.format(response.text)) if response.status_code == 404: msg = 'Job {0} is not found'.format(self.name) logger.debug(msg) raise HTTPError(msg, response=response) elif response.status_code != 200: msg = 'Get job request failed, response is {}'.format(response.text) logger.error(msg) raise HTTPError(msg, response=response) job_state = response.json()['jobStatus']['state'] if job_state in ['UNKNOWN', 'WAITING', 'RUNNING']: logger.debug('Job {0} is running in state {1}'.format(self.name, job_state)) return False else: msg = 'Job {0} finished in state {1}'.format(self.name, job_state) logger.info(msg) if job_state == 'SUCCEED': return True else: raise RuntimeError(msg) def run(self): job = PaiJob(self.name, self.image, self.tasks) job.virtualCluster = self.virtual_cluster job.authFile = self.auth_file_path job.codeDir = self.code_dir job.dataDir = self.data_dir job.outputDir = self.output_dir job.retryCount = self.retry_count job.gpuType = self.gpu_type request_json = json.dumps(job, default=slot_to_dict) logger.debug('Submit job request {0}'.format(request_json)) response = rs.post(urljoin(self.__openpai.pai_url, '/api/v1/jobs'), headers={'Content-Type': 'application/json', 'Authorization': 'Bearer {}'.format(self.__token)}, data=request_json) logger.debug('Submit job response {0}'.format(response.text)) # 202 is success for job submission, see https://github.com/Microsoft/pai/blob/master/docs/rest-server/API.md if response.status_code != 202: msg = 'Submit job failed, response code is {0}, body is {1}'.format(response.status_code, response.text) logger.error(msg) raise HTTPError(msg, response=response) while not self.__check_job_status(): time.sleep(self.__POLL_TIME) def output(self): return luigi.contrib.hdfs.HdfsTarget(self.output()) def complete(self): try: return self.__check_job_status() except HTTPError: return False except RuntimeError: return False
apache-2.0
scienceopen/msise00
Examples/suntest.py
1
1208
#!/usr/bin/env python """ understanding sun apparent position over Earth in geodetic lat,lon """ from astropy.time import Time from astropy.coordinates import get_sun, AltAz, EarthLocation import astropy.units as u import numpy as np from matplotlib.pyplot import figure, show from pymap3d import aer2geodetic obslla = (0, 0, 0) midnight = Time("2015-01-01T00:00") delta_midnight = np.linspace(0, 365, 1000) * u.day time = midnight + delta_midnight obs = EarthLocation(lat=obslla[0], lon=obslla[1], height=obslla[2]) sun = get_sun(time=time) aaf = AltAz(obstime=time, location=obs) sloc = sun.transform_to(aaf) # %% time = time.to_datetime() fg = figure() ax = fg.subplots(2, 1, sharex=True) ax[0].plot(time, sloc.alt) ax[0].set_title("sun elevation") ax[0].set_ylabel("elevation [deg]") ax[1].plot(time, sloc.az) ax[1].set_title("sun azimuth") ax[1].set_ylabel("azimuth [deg]") ax[1].set_xlabel("time") fg.suptitle(f"sun over 1 year @ lat,lon,alt: {obslla}") # %% lat, lon, alt = aer2geodetic(sloc.az.value, sloc.alt.value, sloc.distance.value, *obslla) ax = figure().gca() ax.plot(time, lat) ax.set_title("subsolar latitude vs. time") ax.set_ylabel("latitude [deg]") ax.set_xlabel("time") show()
mit
harshaneelhg/scikit-learn
examples/svm/plot_oneclass.py
249
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
rsignell-usgs/notebook
ERDDAP/ERDDAP_MPALA.py
1
2117
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # #Read data from MPALA ERDDAP # Exploring use of Python to formulate ERDDAP data requests and process the responses. # <codecell> import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline # <markdowncell> # If you go to the ERDDAP TableDap page, you can select which variables you want, the time ranges, etc, and then select how you want to download the data. You can either then download the data, or just copy the URL that would download the data. That URL can therefore be used as the basis of a custom data query, as shown below. We simply generated a URL, then replaced the time and data requested with python variables. # # Note: If you just see a blank box below, you might have to tell your browser to "allow unsafe script". In Chrome it's a little shield that shows up on the right hand side of the address bar. # <codecell> from IPython.display import IFrame IFrame('http://geoport.whoi.edu/erddap/tabledap/tower_65ce_ba2b_9a66.html', width='100%', height=450) # <codecell> #select the variables you want vars='Tsoil10cmGrass_Avg,Tsoil20cmGass_Avg' # Use ERDDAP's built-in relative time functionality to get last 48 hours: start='now-7days' stop='now' # or specify a specific period: start = '2013-05-06T00:00:00Z' stop = '2013-06-07T00:00:00Z' # <codecell> #construct the ERDDAP URL url='http://geoport.whoi.edu/erddap/tabledap/tower_65ce_ba2b_9a66.csvp?\ time,%s&time>=%s&time<=%s' % (vars,start,stop) df = pd.read_csv(url,index_col=0,parse_dates=True) # <codecell> df.plot(figsize=(12,4)); # <codecell> # List last ten records df.tail(10) # <codecell> df.describe() # <markdowncell> # Use ERDDAP to make a plot # <codecell> from IPython.display import Image url='http://geoport.whoi.edu/erddap/tabledap/tower_65ce_ba2b_9a66.png?time,TsoilOpen_Avg&time%3E=2014-08-27T00:00:00Z&time%3C=2014-09-03T00:00:00Z&.draw=lines&.color=0x000000' Image(url=url,format=u'png') # <codecell> !git push # <codecell> pwd # <codecell> cd /usgs/data2/notebook/ERDDAP # <codecell>
mit
bbfamily/abu
abupy/MLBu/ABuMLBinsCs.py
1
4273
# -*- encoding:utf-8 -*- """直观可视化制作qcut的bins点""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import math import logging import matplotlib.pyplot as plt import numpy as np import pandas as pd import itertools # noinspection PyUnresolvedReferences from ..CoreBu.ABuFixes import filter __all__ = ['show_orders_hist'] def show_orders_hist(df, feature_columns, show=True, only_hist=True, show_pie=False): """ 可视化统计feature_columns序列所指定的特征在df中的直方图或者饼状图, 根据参数only_hist是否进行pd.qcut统计输出 eg: from abupy import AbuML, ml ttn_raw = AbuML.load_ttn_raw_df() ml.show_orders_hist(ttn_raw, ['Age', 'Fare', 'Pclass']) :param df: pd.DataFrame对象 :param feature_columns: 特征名称序列,eg:['Age', 'Fare', 'Pclass'] :param show: 是否可视化直方图或者饼状图 :param show_pie: 是否优先考虑绘制饼状图,默认false :param only_hist: 是否进行pd.qcut统计输出 """ if not isinstance(df, pd.DataFrame): logging.info('df must pd.DataFrame, not type {}'.format(type(df))) return # 第一步过滤不在在特征列中的feature_columns元素 feature_columns = list(filter(lambda x: df.columns.tolist().count(x) > 0, feature_columns)) # 第二步过滤feature_columns元素中类型不是int或者float的 feature_columns = list( filter( lambda x: df[x].dtype == int or df[x].dtype == float or df[x].dtype == np.uint or df[x].dtype == np.uint8, feature_columns)) # 第三步过滤feature_columns元素中所指特征列中unique==1的,eg:1列全是1,全是0,没办法做bin feature_columns = list(filter(lambda x: len(np.unique(df[x])) > 1, feature_columns)) axs_list = None if len(feature_columns) == 0: # 晒没了的情况,直接返回 logging.info('{}\n{}\nnot exist! or unique==1!, or dtype != int or float'.format( df.columns, df.dtypes)) return if show: # 如果可视化直方图,先确定子画布列数,一行放两个,取math.ceil,eg:3 /2 = 2 n_rows = int(math.ceil(len(feature_columns) / 2)) # 行高取5,总高度:n_rows * 5 fig_h = n_rows * 5 # plt.subplots生成子画布 _, axs = plt.subplots(nrows=n_rows, ncols=2, figsize=(14, fig_h)) # 如果是多于1个的即展开字画本序列为1d序列 axs_list = axs if n_rows == 1 else list(itertools.chain.from_iterable(axs)) for ind, feature in enumerate(feature_columns): feature_unique = len(np.unique(df[feature])) ax = None if axs_list is not None: ax = axs_list[ind] ax.set_title(feature) if show_pie and feature_unique < 10: # 如果特征的值unique < 10个,通过value_counts直接画饼图 df[feature].value_counts().plot(ax=ax, kind='pie') else: # 画直方图 bins = int(feature_unique / 50) if feature_unique / 50 > 10 else 10 df[feature].hist(ax=ax, bins=bins) if only_hist: # 只做可视化就continue continue try: # qcut切分10等份 cats = pd.qcut(df[feature], 10) except Exception: # 某一个数据超出q的数量导致无法分 import pandas.core.algorithms as algos bins = algos.quantile(np.unique(df[feature]), np.linspace(0, 1, 10 + 1)) # noinspection PyProtectedMember,PyUnresolvedReferences cats = pd.tools.tile._bins_to_cuts(df[feature], bins, include_lowest=True) logging.info('{0} show hist and qcuts'.format(feature)) """ Age show hist and qcuts (31.8, 36] 91 (14, 19] 87 (41, 50] 78 [0.42, 14] 77 (22, 25] 70 (19, 22] 67 (28, 31.8] 66 (50, 80] 64 (25, 28] 61 (36, 41] 53 Name: Age, dtype: int64 """ logging.info(cats.value_counts())
gpl-3.0
DonBeo/scikit-learn
sklearn/mixture/gmm.py
9
27514
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import warnings import numpy as np from scipy import linalg from ..base import BaseEstimator from ..utils import check_random_state, check_array from ..utils.extmath import logsumexp from ..utils.validation import check_is_fitted from .. import cluster from sklearn.externals.six.moves import zip EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covar : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) # get rid of tiny negatives np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (None by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. tol : float, optional Convergence threshold. EM iterations will stop when average gain in log-likelihood is below this threshold. Defaults to 1e-3. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. Attributes ---------- weights_ : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. covars_ : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Infinite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=None, tol=0.001) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=None, tol=1e-3, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc'): if thresh is not None: warnings.warn("'thresh' has been replaced by 'tol' in 0.16 " " and will be removed in 0.18.", DeprecationWarning) self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.tol = tol self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params if covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on `cvtype`:: (`n_states`, 'n_features') if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_states`, `n_features`) if 'diag', (`n_states`, `n_features`, `n_features`) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X, y=None): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit(self, X, y=None): """Estimate model parameters with the expectation-maximization algorithm. A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. """ # initialization step X = check_array(X, dtype=np.float64) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty for _ in range(self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False # this line should be removed when 'thresh' is removed in v0.18 tol = (self.tol if self.thresh is None else self.thresh / float(X.shape[0])) for i in range(self.n_iter): prev_log_likelihood = current_log_likelihood # Expectation step log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() # Check for convergence. # (should compare to self.tol when dreprecated 'thresh' is # removed in v0.18) if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if change < tol: self.converged_ = True break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) # if the results are better, keep it if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") # self.n_iter == 0 occurs when using GMM within HMM if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weihgts. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### ## some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means, covars): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means, covars): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" cv = np.tile(covars, (means.shape[0], 1, 1)) return _log_multivariate_normal_density_full(X, means, cv) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices. """ n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probably stuck in a component with too # few observations, we need to reinitialize this components cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape " "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template """ if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): # Underflow Errors in doing post * X.T are not important avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) out = avg_X2 - avg_means2 out *= 1. / X.shape[0] out.flat[::len(out) + 1] += min_covar return out _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
humm/dmpbbo
src/bbo/plotting/plotUpdateSummary.py
2
4764
import sys import numpy import matplotlib.pyplot as plt from pylab import * import numpy as np import os import matplotlib.pyplot as pl from matplotlib.patches import Ellipse import time #from matplotlib import animation # From https://github.com/dfm/dfmplot/blob/master/dfmplot/ellipse.py def plot_error_ellipse(mu, cov, ax=None, **kwargs): """ Plot the error ellipse at a point given it's covariance matrix Parameters ---------- mu : array (2,) The center of the ellipse cov : array (2,2) The covariance matrix for the point ax : matplotlib.Axes, optional The axis to overplot on **kwargs : dict These keywords are passed to matplotlib.patches.Ellipse """ # some sane defaults facecolor = kwargs.pop('facecolor', 'none') edgecolor = kwargs.pop('edgecolor', 'k') x, y = mu U,S,V = np.linalg.svd(cov) theta = np.degrees(np.arctan2(U[1,0], U[0,0])) ellipsePlot = Ellipse(xy=[x, y], width = 2*np.sqrt(S[0]), height= 2*np.sqrt(S[1]), angle=theta, facecolor=facecolor, edgecolor=edgecolor, **kwargs) if ax is None: ax = pl.gca() lines = ax.add_patch(ellipsePlot) return lines def plotUpdateSummary(distribution_mean,distribution_covar,samples,costs,weights,distribution_new_mean,distribution_new_covar,ax,highlight=True,plot_samples=False): n_dims = len(distribution_mean); if (n_dims==1): print "Sorry, only know how to plot for n_dims==2, but you provided n_dims==1" return if (n_dims>2): #print "Sorry, only know how to plot for n_dims==2, throwing away excess dimensions" distribution_mean = distribution_mean[0:2] distribution_covar = distribution_covar[0:2,0:2] distribution_new_mean = distribution_new_mean[0:2] distribution_new_covar = distribution_new_covar[0:2,0:2] samples = samples[:,0:2] if (plot_samples): max_marker_size = 80; for ii in range(len(weights)): cur_marker_size = max_marker_size*weights[ii] sample_handle = ax.plot(samples[ii,0],samples[ii,1],'o',color='green') plt.setp(sample_handle,markersize=cur_marker_size,markerfacecolor=(0.5,0.8,0.5),markeredgecolor='none') ax.plot(samples[:,0],samples[:,1],'.',color='black') ax.plot((distribution_mean[0],distribution_new_mean[0]),(distribution_mean[1],distribution_new_mean[1]),'-',color='blue') mean_handle = ax.plot(distribution_mean[0],distribution_mean[1],'o',label='old') mean_handle_new = ax.plot(distribution_new_mean[0],distribution_new_mean[1],'o',label='new') mean_handle_link = ax.plot([distribution_mean[0], distribution_new_mean[0]],[distribution_mean[1], distribution_new_mean[1]],'-') patch = plot_error_ellipse(distribution_mean[0:2],distribution_covar[0:2,0:2],ax) patch_new = plot_error_ellipse(distribution_new_mean[0:2],distribution_new_covar[0:2,0:2],ax) if (highlight): plt.setp(mean_handle,color='red') plt.setp(mean_handle_new,color='blue') plt.setp(patch,edgecolor='red') plt.setp(patch_new,edgecolor='blue') else: plt.setp(mean_handle,color='gray') plt.setp(mean_handle_new,color='gray') plt.setp(patch,edgecolor='gray') plt.setp(patch_new,edgecolor='gray') plt.setp(mean_handle_link,color='gray') ax.set_aspect('equal') plt.rcParams['text.usetex']=True ax.set_xlabel(r'$\theta_1$') ax.set_ylabel(r'$\theta_2$') return mean_handle,mean_handle_new,patch,patch_new def plotUpdateSummaryFromDirectory(directory,ax,highlight=True,plot_samples=False): # Read data distribution_mean = np.loadtxt(directory+"/distribution_mean.txt") distribution_covar = np.loadtxt(directory+"/distribution_covar.txt") samples = np.loadtxt(directory+"/samples.txt") costs = np.loadtxt(directory+"/costs.txt") weights = np.loadtxt(directory+"/weights.txt") distribution_new_mean = np.loadtxt(directory+"/distribution_new_mean.txt") distribution_new_covar = np.loadtxt(directory+"/distribution_new_covar.txt") plotUpdateSummary(distribution_mean,distribution_covar,samples,costs,weights,distribution_new_mean,distribution_new_covar,ax,highlight,plot_samples) if __name__=='__main__': # See if input directory was passed if (len(sys.argv)==2): directory = str(sys.argv[1]) else: print '\nUsage: '+sys.argv[0]+' <directory>\n'; sys.exit() fig = plt.figure() ax = fig.gca() highlight = True plot_samples = True plotUpdateSummaryFromDirectory(directory,ax,highlight,plot_samples) plt.show()
gpl-2.0
ronalcc/zipline
zipline/history/history.py
20
12233
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import numpy as np import pandas as pd import re from zipline.finance import trading from zipline.finance.trading import with_environment from zipline.errors import IncompatibleHistoryFrequency def parse_freq_str(freq_str): # TODO: Wish we were more aligned with pandas here. num_str, unit_str = re.match('([0-9]+)([A-Za-z]+)', freq_str).groups() return int(num_str), unit_str class Frequency(object): """ Represents how the data is sampled, as specified by the algoscript via units like "1d", "1m", etc. Currently only two frequencies are supported, "1d" and "1m" - "1d" provides data at daily frequency, with the latest bar aggregating the elapsed minutes of the (incomplete) current day - "1m" provides data at minute frequency """ SUPPORTED_FREQUENCIES = frozenset({'1d', '1m'}) MAX_MINUTES = {'m': 1, 'd': 390} MAX_DAYS = {'d': 1} def __init__(self, freq_str, data_frequency): if freq_str not in self.SUPPORTED_FREQUENCIES: raise ValueError( "history frequency must be in {supported}".format( supported=self.SUPPORTED_FREQUENCIES, )) # The string the at the algoscript specifies. # Hold onto to use a key for caching. self.freq_str = freq_str # num - The number of units of the frequency. # unit_str - The unit type, e.g. 'd' self.num, self.unit_str = parse_freq_str(freq_str) self.data_frequency = data_frequency def next_window_start(self, previous_window_close): """ Get the first minute of the window starting after a window that finished on @previous_window_close. """ if self.unit_str == 'd': return self.next_day_window_start(previous_window_close, self.data_frequency) elif self.unit_str == 'm': return self.next_minute_window_start(previous_window_close) @staticmethod def next_day_window_start(previous_window_close, data_frequency='minute'): """ Get the next day window start after @previous_window_close. This is defined as the first market open strictly greater than @previous_window_close. """ env = trading.environment if data_frequency == 'daily': next_open = env.next_trading_day(previous_window_close) else: next_open = env.next_market_minute(previous_window_close) return next_open @staticmethod def next_minute_window_start(previous_window_close): """ Get the next minute window start after @previous_window_close. This is defined as the first market minute strictly greater than @previous_window_close. """ env = trading.environment return env.next_market_minute(previous_window_close) def window_open(self, window_close): """ For a period ending on `window_end`, calculate the date of the first minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_open(window_close, self.num) elif self.unit_str == 'm': return self.minute_window_open(window_close, self.num) def window_close(self, window_start): """ For a period starting on `window_start`, calculate the date of the last minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_close(window_start, self.num) elif self.unit_str == 'm': return self.minute_window_close(window_start, self.num) def day_window_open(self, window_close, num_days): """ Get the first minute for a daily window of length @num_days with last minute @window_close. This is calculated by searching backward until @num_days market_closes are encountered. """ env = trading.environment open_ = env.open_close_window( window_close, 1, offset=-(num_days - 1) ).market_open.iloc[0] if self.data_frequency == 'daily': open_ = pd.tslib.normalize_date(open_) return open_ def minute_window_open(self, window_close, num_minutes): """ Get the first minute for a minutely window of length @num_minutes with last minute @window_close. This is defined as window_close if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_close env = trading.environment return env.market_minute_window(window_close, count=-num_minutes)[-1] def day_window_close(self, window_start, num_days): """ Get the window close for a daily frequency. If the data_frequency is minute, then this will be the last minute of last day of the window. If the data_frequency is minute, this will be midnight utc of the last day of the window. """ env = trading.environment if self.data_frequency != 'daily': return env.get_open_and_close( env.add_trading_days(num_days - 1, window_start), )[1] return pd.tslib.normalize_date( env.add_trading_days(num_days - 1, window_start), ) def minute_window_close(self, window_start, num_minutes): """ Get the last minute for a minutely window of length @num_minutes with first minute @window_start. This is defined as window_start if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_start env = trading.environment return env.market_minute_window(window_start, count=num_minutes)[-1] @with_environment() def prev_bar(self, dt, env=None): """ Returns the previous bar for dt. """ if self.unit_str == 'd': if self.data_frequency == 'minute': def func(dt): return env.get_open_and_close( env.previous_trading_day(dt))[1] else: func = env.previous_trading_day else: func = env.previous_market_minute # Cache the function dispatch. self.prev_bar = func return func(dt) @property def max_bars(self): if self.data_frequency == 'daily': return self.max_days else: return self.max_minutes @property def max_days(self): if self.data_frequency != 'daily': raise ValueError('max_days requested in minute mode') return self.MAX_DAYS[self.unit_str] * self.num @property def max_minutes(self): """ The maximum number of minutes required to roll a bar at this frequency. """ if self.data_frequency != 'minute': raise ValueError('max_minutes requested in daily mode') return self.MAX_MINUTES[self.unit_str] * self.num def normalize(self, dt): if self.data_frequency != 'daily': return dt return pd.tslib.normalize_date(dt) def __eq__(self, other): return self.freq_str == other.freq_str def __hash__(self): return hash(self.freq_str) def __repr__(self): return ''.join([str(self.__class__.__name__), "('", self.freq_str, "')"]) class HistorySpec(object): """ Maps to the parameters of the history() call made by the algoscript An object is used here so that get_history calls are not constantly parsing the parameters and provides values for caching and indexing into result frames. """ FORWARD_FILLABLE = frozenset({'price'}) @classmethod def spec_key(cls, bar_count, freq_str, field, ffill): """ Used as a hash/key value for the HistorySpec. """ return "{0}:{1}:{2}:{3}".format( bar_count, freq_str, field, ffill) def __init__(self, bar_count, frequency, field, ffill, data_frequency='daily'): # Number of bars to look back. self.bar_count = bar_count if isinstance(frequency, str): frequency = Frequency(frequency, data_frequency) if frequency.unit_str == 'm' and data_frequency == 'daily': raise IncompatibleHistoryFrequency( frequency=frequency.unit_str, data_frequency=data_frequency, ) # The frequency at which the data is sampled. self.frequency = frequency # The field, e.g. 'price', 'volume', etc. self.field = field # Whether or not to forward fill nan data. Only has an effect if this # spec's field is in FORWARD_FILLABLE. self._ffill = ffill # Calculate the cache key string once. self.key_str = self.spec_key( bar_count, frequency.freq_str, field, ffill) @property def ffill(self): """ Wrapper around self._ffill that returns False for fields which are not forward-fillable. """ return self._ffill and self.field in self.FORWARD_FILLABLE def __repr__(self): return ''.join([self.__class__.__name__, "('", self.key_str, "')"]) def days_index_at_dt(history_spec, algo_dt): """ Get the index of a frame to be used for a get_history call with daily frequency. """ env = trading.environment # Get the previous (bar_count - 1) days' worth of market closes. day_delta = (history_spec.bar_count - 1) * history_spec.frequency.num market_closes = env.open_close_window( algo_dt, day_delta, offset=(-day_delta), step=history_spec.frequency.num, ).market_close if history_spec.frequency.data_frequency == 'daily': market_closes = market_closes.apply(pd.tslib.normalize_date) # Append the current algo_dt as the last index value. # Using the 'rawer' numpy array values here because of a bottleneck # that appeared when using DatetimeIndex return np.append(market_closes.values, algo_dt) def minutes_index_at_dt(history_spec, algo_dt): """ Get the index of a frame to be used for a get_history_call with minutely frequency. """ # TODO: This is almost certainly going to be too slow for production. env = trading.environment return env.market_minute_window( algo_dt, history_spec.bar_count, step=-1, )[::-1] def index_at_dt(history_spec, algo_dt): """ Returns index of a frame returned by get_history() with the given history_spec and algo_dt. The resulting index will have @history_spec.bar_count bars, increasing in units of @history_spec.frequency, terminating at the given @algo_dt. Note: The last bar of the returned frame represents an as-of-yet incomplete time window, so the delta between the last and second-to-last bars is usually always less than `@history_spec.frequency` for frequencies greater than 1m. """ frequency = history_spec.frequency if frequency.unit_str == 'd': return days_index_at_dt(history_spec, algo_dt) elif frequency.unit_str == 'm': return minutes_index_at_dt(history_spec, algo_dt)
apache-2.0
lcameron05/PCWG
pcwg/gui/power_curve.py
2
4979
# -*- coding: utf-8 -*- """ Created on Wed Aug 10 14:20:11 2016 @author: Stuart """ import base_dialog import Tkinter as tk import validation import pandas as pd from grid_box import DialogGridBox from ..configuration.power_curve_configuration import PowerCurveLevel from ..exceptions.handling import ExceptionHandler from ..core.status import Status class PowerCurveLevelDialog(base_dialog.BaseDialog): def __init__(self, master, parent_dialog, item = None): self.parent_dialog = parent_dialog self.isNew = (item == None) if self.isNew: self.item = PowerCurveLevel() else: self.item = item base_dialog.BaseDialog.__init__(self, master) def body(self, master): self.prepareColumns(master) self.addTitleRow(master, "Power Curve Level Settings:") self.wind_speed = self.addEntry(master, "Wind Speed:", validation.ValidateNonNegativeFloat(master), self.item.wind_speed) self.power = self.addEntry(master, "Power:", validation.ValidateNonNegativeFloat(master), self.item.power) self.turbulence = self.addEntry(master, "Turbulence:", validation.ValidateNonNegativeFloat(master), self.item.turbulence) def set_item_values(self): self.item.wind_speed = float(self.wind_speed.get()) self.item.power = float(self.power.get()) self.item.turbulence = float(self.turbulence.get()) def apply(self): self.set_item_values() if self.isNew: Status.add("Power Curve Level created") else: Status.add("Power Curve Level updated") class PowerCurveLevelsGridBox(DialogGridBox): def get_headers(self): return ["Wind Speed", "Power", "Turbulence"] def get_item_values(self, item): values_dict = {} values_dict["Wind Speed"] = item.wind_speed values_dict["Power"] = item.power values_dict["Turbulence"] = item.turbulence return values_dict def new_dialog(self, master, parent_dialog, item): return PowerCurveLevelDialog(master, self.parent_dialog, item) def size(self): return self.item_count() def get(self, index): return self.get_items()[index] def preprocess_sort_values(self, data): return self.change_numeric(data) class PowerCurveConfigurationDialog(base_dialog.BaseConfigurationDialog): def getInitialFileName(self): return "PowerCurve" def addFormElements(self, master, path): self.name = self.addEntry(master, "Name:", None, self.config.name, width = 60) self.density = self.addEntry(master, "Reference Density:", validation.ValidateNonNegativeFloat(master), self.config.density) self.power_curve_levels_grid_box = PowerCurveLevelsGridBox(master, self, self.row, self.inputColumn) self.power_curve_levels_grid_box.add_items(self.config.power_curve_levels) self.row += 1 self.validatedPowerCurveLevels = validation.ValidatePowerCurveLevels(master, self.power_curve_levels_grid_box) self.validations.append(self.validatedPowerCurveLevels) self.addPowerCurveLevelButton = tk.Button(master, text="Parse", command = self.parse_clipboard, width=5, height=1) self.addPowerCurveLevelButton.grid(row=self.row, sticky=tk.E+tk.S, column=self.secondButtonColumn, pady=30) def parse_clipboard(self): clip_board_df = pd.read_clipboard() if clip_board_df is None: return if len(clip_board_df.columns) < 2: return for index in clip_board_df.index: self.add_clip_board_row(clip_board_df.ix[index]) self.validatedPowerCurveLevels.validate() def add_clip_board_row(self, row): if len(row) < 2: return try: speed = float(row[0]) except: speed = 0.0 try: power = float(row[1]) except: power = 0.0 if len(row) > 2: if len(row[2]) > 0: if row[2][-1] == '%': turbulence = float(row[2][:-1]) * 0.01 else: turbulence = float(row[2]) else: turbulence = 0.1 else: turbulence = 0.1 self.power_curve_levels_grid_box.add_item(PowerCurveLevel(speed, power, turbulence)) def setConfigValues(self): self.config.name = self.name.get() self.config.density = float(self.density.get()) self.config.power_curve_levels = self.power_curve_levels_grid_box.get_items()
mit
mahak/spark
python/pyspark/sql/tests/test_pandas_udf_grouped_agg.py
18
20955
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.rdd import PythonEvalType from pyspark.sql import Row from pyspark.sql.functions import array, explode, col, lit, mean, sum, \ udf, pandas_udf, PandasUDFType from pyspark.sql.types import ArrayType, TimestampType from pyspark.sql.utils import AnalysisException from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: import pandas as pd from pandas.testing import assert_frame_equal @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class GroupedAggPandasUDFTests(ReusedSQLTestCase): @property def data(self): return self.spark.range(10).toDF('id') \ .withColumn("vs", array([lit(i * 1.0) + col('id') for i in range(20, 30)])) \ .withColumn("v", explode(col('vs'))) \ .drop('vs') \ .withColumn('w', lit(1.0)) @property def python_plus_one(self): @udf('double') def plus_one(v): assert isinstance(v, (int, float)) return float(v + 1) return plus_one @property def pandas_scalar_plus_two(self): @pandas_udf('double', PandasUDFType.SCALAR) def plus_two(v): assert isinstance(v, pd.Series) return v + 2 return plus_two @property def pandas_agg_mean_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def avg(v): return v.mean() return avg @property def pandas_agg_sum_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def sum(v): return v.sum() return sum @property def pandas_agg_weighted_mean_udf(self): import numpy as np @pandas_udf('double', PandasUDFType.GROUPED_AGG) def weighted_mean(v, w): return np.average(v, weights=w) return weighted_mean def test_manual(self): df = self.data sum_udf = self.pandas_agg_sum_udf mean_udf = self.pandas_agg_mean_udf mean_arr_udf = pandas_udf( self.pandas_agg_mean_udf.func, ArrayType(self.pandas_agg_mean_udf.returnType), self.pandas_agg_mean_udf.evalType) result1 = df.groupby('id').agg( sum_udf(df.v), mean_udf(df.v), mean_arr_udf(array(df.v))).sort('id') expected1 = self.spark.createDataFrame( [[0, 245.0, 24.5, [24.5]], [1, 255.0, 25.5, [25.5]], [2, 265.0, 26.5, [26.5]], [3, 275.0, 27.5, [27.5]], [4, 285.0, 28.5, [28.5]], [5, 295.0, 29.5, [29.5]], [6, 305.0, 30.5, [30.5]], [7, 315.0, 31.5, [31.5]], [8, 325.0, 32.5, [32.5]], [9, 335.0, 33.5, [33.5]]], ['id', 'sum(v)', 'avg(v)', 'avg(array(v))']) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_basic(self): df = self.data weighted_mean_udf = self.pandas_agg_weighted_mean_udf # Groupby one column and aggregate one UDF with literal result1 = df.groupby('id').agg(weighted_mean_udf(df.v, lit(1.0))).sort('id') expected1 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort('id') assert_frame_equal(expected1.toPandas(), result1.toPandas()) # Groupby one expression and aggregate one UDF with literal result2 = df.groupby((col('id') + 1)).agg(weighted_mean_udf(df.v, lit(1.0)))\ .sort(df.id + 1) expected2 = df.groupby((col('id') + 1))\ .agg(mean(df.v).alias('weighted_mean(v, 1.0)')).sort(df.id + 1) assert_frame_equal(expected2.toPandas(), result2.toPandas()) # Groupby one column and aggregate one UDF without literal result3 = df.groupby('id').agg(weighted_mean_udf(df.v, df.w)).sort('id') expected3 = df.groupby('id').agg(mean(df.v).alias('weighted_mean(v, w)')).sort('id') assert_frame_equal(expected3.toPandas(), result3.toPandas()) # Groupby one expression and aggregate one UDF without literal result4 = df.groupby((col('id') + 1).alias('id'))\ .agg(weighted_mean_udf(df.v, df.w))\ .sort('id') expected4 = df.groupby((col('id') + 1).alias('id'))\ .agg(mean(df.v).alias('weighted_mean(v, w)'))\ .sort('id') assert_frame_equal(expected4.toPandas(), result4.toPandas()) def test_unsupported_types(self): with QuietTest(self.sc): with self.assertRaisesRegex(NotImplementedError, 'not supported'): pandas_udf( lambda x: x, ArrayType(ArrayType(TimestampType())), PandasUDFType.GROUPED_AGG) with QuietTest(self.sc): with self.assertRaisesRegex(NotImplementedError, 'not supported'): @pandas_udf('mean double, std double', PandasUDFType.GROUPED_AGG) def mean_and_std_udf(v): return v.mean(), v.std() with QuietTest(self.sc): with self.assertRaisesRegex(NotImplementedError, 'not supported'): @pandas_udf(ArrayType(TimestampType()), PandasUDFType.GROUPED_AGG) def mean_and_std_udf(v): return {v.mean(): v.std()} def test_alias(self): df = self.data mean_udf = self.pandas_agg_mean_udf result1 = df.groupby('id').agg(mean_udf(df.v).alias('mean_alias')) expected1 = df.groupby('id').agg(mean(df.v).alias('mean_alias')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_mixed_sql(self): """ Test mixing group aggregate pandas UDF with sql expression. """ df = self.data sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF with sql expression result1 = (df.groupby('id') .agg(sum_udf(df.v) + 1) .sort('id')) expected1 = (df.groupby('id') .agg(sum(df.v) + 1) .sort('id')) # Mix group aggregate pandas UDF with sql expression (order swapped) result2 = (df.groupby('id') .agg(sum_udf(df.v + 1)) .sort('id')) expected2 = (df.groupby('id') .agg(sum(df.v + 1)) .sort('id')) # Wrap group aggregate pandas UDF with two sql expressions result3 = (df.groupby('id') .agg(sum_udf(df.v + 1) + 2) .sort('id')) expected3 = (df.groupby('id') .agg(sum(df.v + 1) + 2) .sort('id')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) def test_mixed_udfs(self): """ Test mixing group aggregate pandas UDF with python UDF and scalar pandas UDF. """ df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Mix group aggregate pandas UDF and python UDF result1 = (df.groupby('id') .agg(plus_one(sum_udf(df.v))) .sort('id')) expected1 = (df.groupby('id') .agg(plus_one(sum(df.v))) .sort('id')) # Mix group aggregate pandas UDF and python UDF (order swapped) result2 = (df.groupby('id') .agg(sum_udf(plus_one(df.v))) .sort('id')) expected2 = (df.groupby('id') .agg(sum(plus_one(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF result3 = (df.groupby('id') .agg(sum_udf(plus_two(df.v))) .sort('id')) expected3 = (df.groupby('id') .agg(sum(plus_two(df.v))) .sort('id')) # Mix group aggregate pandas UDF and scalar pandas UDF (order swapped) result4 = (df.groupby('id') .agg(plus_two(sum_udf(df.v))) .sort('id')) expected4 = (df.groupby('id') .agg(plus_two(sum(df.v))) .sort('id')) # Wrap group aggregate pandas UDF with two python UDFs and use python UDF in groupby result5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum_udf(plus_one(df.v)))) .sort('plus_one(id)')) expected5 = (df.groupby(plus_one(df.id)) .agg(plus_one(sum(plus_one(df.v)))) .sort('plus_one(id)')) # Wrap group aggregate pandas UDF with two scala pandas UDF and user scala pandas UDF in # groupby result6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum_udf(plus_two(df.v)))) .sort('plus_two(id)')) expected6 = (df.groupby(plus_two(df.id)) .agg(plus_two(sum(plus_two(df.v)))) .sort('plus_two(id)')) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) assert_frame_equal(expected5.toPandas(), result5.toPandas()) assert_frame_equal(expected6.toPandas(), result6.toPandas()) def test_multiple_udfs(self): """ Test multiple group aggregate pandas UDFs in one agg function. """ df = self.data mean_udf = self.pandas_agg_mean_udf sum_udf = self.pandas_agg_sum_udf weighted_mean_udf = self.pandas_agg_weighted_mean_udf result1 = (df.groupBy('id') .agg(mean_udf(df.v), sum_udf(df.v), weighted_mean_udf(df.v, df.w)) .sort('id') .toPandas()) expected1 = (df.groupBy('id') .agg(mean(df.v), sum(df.v), mean(df.v).alias('weighted_mean(v, w)')) .sort('id') .toPandas()) assert_frame_equal(expected1, result1) def test_complex_groupby(self): df = self.data sum_udf = self.pandas_agg_sum_udf plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two # groupby one expression result1 = df.groupby(df.v % 2).agg(sum_udf(df.v)) expected1 = df.groupby(df.v % 2).agg(sum(df.v)) # empty groupby result2 = df.groupby().agg(sum_udf(df.v)) expected2 = df.groupby().agg(sum(df.v)) # groupby one column and one sql expression result3 = df.groupby(df.id, df.v % 2).agg(sum_udf(df.v)).orderBy(df.id, df.v % 2) expected3 = df.groupby(df.id, df.v % 2).agg(sum(df.v)).orderBy(df.id, df.v % 2) # groupby one python UDF result4 = df.groupby(plus_one(df.id)).agg(sum_udf(df.v)).sort('plus_one(id)') expected4 = df.groupby(plus_one(df.id)).agg(sum(df.v)).sort('plus_one(id)') # groupby one scalar pandas UDF result5 = df.groupby(plus_two(df.id)).agg(sum_udf(df.v)).sort('sum(v)') expected5 = df.groupby(plus_two(df.id)).agg(sum(df.v)).sort('sum(v)') # groupby one expression and one python UDF result6 = (df.groupby(df.v % 2, plus_one(df.id)) .agg(sum_udf(df.v)).sort(['(v % 2)', 'plus_one(id)'])) expected6 = (df.groupby(df.v % 2, plus_one(df.id)) .agg(sum(df.v)).sort(['(v % 2)', 'plus_one(id)'])) # groupby one expression and one scalar pandas UDF result7 = (df.groupby(df.v % 2, plus_two(df.id)) .agg(sum_udf(df.v)).sort(['sum(v)', 'plus_two(id)'])) expected7 = (df.groupby(df.v % 2, plus_two(df.id)) .agg(sum(df.v)).sort(['sum(v)', 'plus_two(id)'])) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) assert_frame_equal(expected5.toPandas(), result5.toPandas()) assert_frame_equal(expected6.toPandas(), result6.toPandas()) assert_frame_equal(expected7.toPandas(), result7.toPandas()) def test_complex_expressions(self): df = self.data plus_one = self.python_plus_one plus_two = self.pandas_scalar_plus_two sum_udf = self.pandas_agg_sum_udf # Test complex expressions with sql expression, python UDF and # group aggregate pandas UDF result1 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_one(sum_udf(col('v1'))), sum_udf(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected1 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_one(sum(col('v1'))), sum(plus_one(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test complex expressions with sql expression, scala pandas UDF and # group aggregate pandas UDF result2 = (df.withColumn('v1', plus_one(df.v)) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum_udf(col('v')), sum_udf(col('v1') + 3), sum_udf(col('v2')) + 5, plus_two(sum_udf(col('v1'))), sum_udf(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) expected2 = (df.withColumn('v1', df.v + 1) .withColumn('v2', df.v + 2) .groupby(df.id, df.v % 2) .agg(sum(col('v')), sum(col('v1') + 3), sum(col('v2')) + 5, plus_two(sum(col('v1'))), sum(plus_two(col('v2')))) .sort(['id', '(v % 2)']) .toPandas().sort_values(by=['id', '(v % 2)'])) # Test sequential groupby aggregate result3 = (df.groupby('id') .agg(sum_udf(df.v).alias('v')) .groupby('id') .agg(sum_udf(col('v'))) .sort('id') .toPandas()) expected3 = (df.groupby('id') .agg(sum(df.v).alias('v')) .groupby('id') .agg(sum(col('v'))) .sort('id') .toPandas()) assert_frame_equal(expected1, result1) assert_frame_equal(expected2, result2) assert_frame_equal(expected3, result3) def test_retain_group_columns(self): with self.sql_conf({"spark.sql.retainGroupColumns": False}): df = self.data sum_udf = self.pandas_agg_sum_udf result1 = df.groupby(df.id).agg(sum_udf(df.v)) expected1 = df.groupby(df.id).agg(sum(df.v)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_array_type(self): df = self.data array_udf = pandas_udf(lambda x: [1.0, 2.0], 'array<double>', PandasUDFType.GROUPED_AGG) result1 = df.groupby('id').agg(array_udf(df['v']).alias('v2')) self.assertEqual(result1.first()['v2'], [1.0, 2.0]) def test_invalid_args(self): df = self.data plus_one = self.python_plus_one mean_udf = self.pandas_agg_mean_udf with QuietTest(self.sc): with self.assertRaisesRegex( AnalysisException, 'nor.*aggregate function'): df.groupby(df.id).agg(plus_one(df.v)).collect() with QuietTest(self.sc): with self.assertRaisesRegex( AnalysisException, 'aggregate function.*argument.*aggregate function'): df.groupby(df.id).agg(mean_udf(mean_udf(df.v))).collect() with QuietTest(self.sc): with self.assertRaisesRegex( AnalysisException, 'mixture.*aggregate function.*group aggregate pandas UDF'): df.groupby(df.id).agg(mean_udf(df.v), mean(df.v)).collect() def test_register_vectorized_udf_basic(self): sum_pandas_udf = pandas_udf( lambda v: v.sum(), "integer", PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) self.assertEqual(sum_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) group_agg_pandas_udf = self.spark.udf.register("sum_pandas_udf", sum_pandas_udf) self.assertEqual(group_agg_pandas_udf.evalType, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF) q = "SELECT sum_pandas_udf(v1) FROM VALUES (3, 0), (2, 0), (1, 1) tbl(v1, v2) GROUP BY v2" actual = sorted(map(lambda r: r[0], self.spark.sql(q).collect())) expected = [1, 5] self.assertEqual(actual, expected) def test_grouped_with_empty_partition(self): data = [Row(id=1, x=2), Row(id=1, x=3), Row(id=2, x=4)] expected = [Row(id=1, sum=5), Row(id=2, x=4)] num_parts = len(data) + 1 df = self.spark.createDataFrame(self.sc.parallelize(data, numSlices=num_parts)) f = pandas_udf(lambda x: x.sum(), 'int', PandasUDFType.GROUPED_AGG) result = df.groupBy('id').agg(f(df['x']).alias('sum')).collect() self.assertEqual(result, expected) def test_grouped_without_group_by_clause(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def max_udf(v): return v.max() df = self.spark.range(0, 100) self.spark.udf.register('max_udf', max_udf) with self.tempView("table"): df.createTempView('table') agg1 = df.agg(max_udf(df['id'])) agg2 = self.spark.sql("select max_udf(id) from table") assert_frame_equal(agg1.toPandas(), agg2.toPandas()) def test_no_predicate_pushdown_through(self): # SPARK-30921: We should not pushdown predicates of PythonUDFs through Aggregate. import numpy as np @pandas_udf('float', PandasUDFType.GROUPED_AGG) def mean(x): return np.mean(x) df = self.spark.createDataFrame([ Row(id=1, foo=42), Row(id=2, foo=1), Row(id=2, foo=2) ]) agg = df.groupBy('id').agg(mean('foo').alias("mean")) filtered = agg.filter(agg['mean'] > 40.0) assert(filtered.collect()[0]["mean"] == 42.0) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf_grouped_agg import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/mne-python-0.10/doc/conf.py
7
9408
# -*- coding: utf-8 -*- # # MNE documentation build configuration file, created by # sphinx-quickstart on Fri Jun 11 10:45:48 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import os.path as op from datetime import date import sphinxgallery import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. curdir = op.dirname(__file__) sys.path.append(op.abspath(op.join(curdir, '..', 'mne'))) sys.path.append(op.abspath(op.join(curdir, 'sphinxext'))) import mne # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. import numpy_ext.numpydoc extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'numpy_ext.numpydoc', # 'sphinx.ext.intersphinx', # 'flow_diagram', 'sphinxgallery.gen_gallery'] autosummary_generate = True autodoc_default_flags = ['inherited-members'] # extensions = ['sphinx.ext.autodoc', # 'sphinx.ext.doctest', # 'sphinx.ext.todo', # 'sphinx.ext.pngmath', # 'sphinx.ext.inheritance_diagram', # 'numpydoc', # 'ipython_console_highlighting', # 'only_directives'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'MNE' copyright = u'2012-%s, MNE Developers' % date.today().year # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = mne.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = ['config_doc.rst'] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] exclude_patterns = ['source/generated'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['mne.'] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'navbar_title': ' ', 'source_link_position': "footer", 'bootswatch_theme': "flatly", 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [("Tutorials", "tutorials"), ("Gallery", "auto_examples/index"), ("Manual", "manual/index"), ("API", "python_reference"), ("FAQ", "faq"), ("Cite", "cite"), ], } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "_static/mne_logo_small.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', '_images', sphinxgallery.glr_path_static()] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # variables to pass to HTML templating engine build_dev_html = bool(int(os.environ.get('BUILD_DEV_HTML', False))) html_context = {'use_google_analytics': True, 'use_twitter': True, 'use_media_buttons': True, 'build_dev_html': build_dev_html} # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'mne-doc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ # ('index', 'MNE.tex', u'MNE Manual', # u'MNE Contributors', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "_static/logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. latex_use_parts = True # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. latex_use_modindex = True trim_doctests_flags = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} sphinxgallery_conf = { 'examples_dirs' : ['../examples', '../tutorials'], 'gallery_dirs' : ['auto_examples', 'auto_tutorials'], 'doc_module': ('sphinxgallery', 'numpy'), 'reference_url': { 'mne': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.9.1', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', 'mayavi': 'http://docs.enthought.com/mayavi/mayavi'}, 'find_mayavi_figures': True, 'default_thumb_file': '_static/mne_helmet.png', }
bsd-3-clause
manashmndl/scikit-learn
sklearn/manifold/locally_linear.py
206
25061
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) v0 = random_state.rand(M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) #build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] #find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) #choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] #find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] #calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) #find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues #Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float) for i in range(N): s_i = s_range[i] #select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) #compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h #Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) #Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] #We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) #Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) #We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
Garrett-R/scikit-learn
sklearn/ensemble/forest.py
8
52992
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # License: BSD 3 clause from __future__ import division from itertools import chain import numpy as np from warnings import warn from abc import ABCMeta, abstractmethod from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array from ..utils.validation import DataConversionWarning from .base import BaseEnsemble, _partition_estimators __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor"] MAX_INT = np.iinfo(np.int32).max def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() random_state = check_random_state(tree.random_state) indices = random_state.randint(0, n_samples, n_samples) sample_counts = np.bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) tree.indices_ = sample_counts > 0. else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree def _parallel_helper(obj, methodname, *args, **kwargs): """Private helper to workaround Python 2 pickle limitations""" return getattr(obj, methodname)(*args, **kwargs) class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = check_array(X, dtype=DTYPE) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(tree.tree_, 'apply', X) for tree in self.estimators_) return np.array(results).T def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like of shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Convert data # ensure_2d=False because there are actually unit test checking we fail # for 1d. FIXME make this consistent in the future. X = check_array(X, dtype=DTYPE, ensure_2d=False) # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y = self._validate_y(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False) tree.set_params(random_state=random_state.randint(MAX_INT)) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y(self, y): # Default implementation return y @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs)( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / self.n_estimators class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def _set_oob_score(self, X, y): n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in xrange(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: mask = np.ones(n_samples, dtype=np.bool) mask[estimator.indices_] = False p_estimator = estimator.predict_proba(X[mask, :]) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in xrange(self.n_outputs_): predictions[k][mask, :] += p_estimator[k] for k in xrange(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y(self, y): y = np.copy(y) self.classes_ = [] self.n_classes_ = [] for k in xrange(self.n_outputs_): classes_k, y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) return y def predict(self, X): """Predict class for X. The predicted class of an input sample is computed as the majority prediction of the trees in the forest. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, ensure_2d=False) n_samples = len(X) proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in xrange(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data if getattr(X, "dtype", None) != DTYPE or X.ndim != 2: X = check_array(X, dtype=DTYPE) # Assign chunk of trees to jobs n_jobs, n_trees, starts = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict_proba', X) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in xrange(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in xrange(1, len(all_proba)): for k in xrange(self.n_outputs_): proba[k] += all_proba[j][k] for k in xrange(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in xrange(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y: array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data if getattr(X, "dtype", None) != DTYPE or X.ndim != 2: X = check_array(X, dtype=DTYPE) # Assign chunk of trees to jobs n_jobs, n_trees, starts = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict', X) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: mask = np.ones(n_samples, dtype=np.bool) mask[estimator.indices_] = False p_estimator = estimator.predict(X[mask, :]) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[mask, :] += p_estimator n_predictions[mask, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in xrange(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_samples_leaf`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_samples_leaf`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_samples_leaf`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_samples_leaf`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. Note: this parameter is tree-specific. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as trees in the forest. The dimensionality of the resulting representation is approximately ``n_estimators * 2 ** max_depth``. Parameters ---------- n_estimators : int Number of trees in the forest. max_depth : int The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_samples_leaf`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. sparse_output: bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input data used to build forests. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input data used to build forests. Returns ------- X_transformed: sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input data to be transformed. Returns ------- X_transformed: sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
JPFrancoia/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
JT5D/scikit-learn
sklearn/linear_model/ridge.py
2
37593
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import safe_asarray from ..utils import compute_class_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import _deprecate_loss_and_score_funcs def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info != 0: raise ValueError("Failed with error code %d" % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_dense_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_dense_cholesky_kernel(K, y, alpha, sample_weight=None): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) has_sw = isinstance(sample_weight, np.ndarray) or sample_weight != 1.0 if has_sw: sw = np.sqrt(sample_weight) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=True) # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=1.0, solver='auto', max_iter=None, tol=1e-3): """Solve the ridge equation by the method of normal equations. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample solver : {'auto', 'svd', 'dense_cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'dense_cholesky'. - 'dense_cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'dense_cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol: float Precision of the solution. Returns ------- coef: array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = isinstance(sample_weight, np.ndarray) or sample_weight != 1.0 if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if hasattr(X, '__array__'): solver = 'dense_cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw and solver != "dense_cholesky": warnings.warn("""sample_weight and class_weight not supported in %s, fall back to dense_cholesky.""" % solver) solver = 'dense_cholesky' # There should be either 1 or n_targets penalties alpha = safe_asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'dense_cholesky', 'svd', 'lsqr'): ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'dense_cholesky': if n_features > n_samples or has_sw: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_dense_cholesky_kernel(K, y, alpha, sample_weight) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T else: try: coef = _solve_dense_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=1.0): X = safe_asarray(X, dtype=np.float) y = np.asarray(y, dtype=np.float) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'dense_cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'dense_cholesky'. - 'dense_cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'dense_cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- `coef_` : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=1.0): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'dense_cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Sinvular value decomposition to obtain the solution, 'dense_cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- `coef_` : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.multilabel_: y = column_or_1d(y, warn=True) if self.class_weight: cw = compute_class_weight(self.class_weight, self.classes_, Y) # get the class weight corresponding to each sample sample_weight = cw[np.searchsorted(self.classes_, y)] else: sample_weight = 1.0 super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=[0.1, 1.0, 10.0], fit_intercept=True, normalize=False, scoring=None, score_func=None, loss_func=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.score_func = score_func self.loss_func = loss_func self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=1.0): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X = safe_asarray(X, dtype=np.float) y = np.asarray(y, dtype=np.float) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = _deprecate_loss_and_score_funcs( self.loss_func, self.score_func, self.scoring, score_overrides_loss=True ) error = scorer is None #error = self.score_func is None and self.loss_func is None for i, alpha in enumerate(self.alphas): if error: out, c = _errors(sample_weight * alpha, y, v, Q, QT_y) else: out, c = _values(sample_weight * alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, scoring=None, score_func=None, loss_func=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.score_func = score_func self.loss_func = loss_func self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=1.0): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, score_func=self.score_func, loss_func=self.loss_func, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} # FIXME: sample_weight must be split into training/validation data # too! #fit_params = {'sample_weight' : sample_weight} fit_params = {} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Parameters ---------- alphas: numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- `cv_values_` : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). `coef_` : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). `alpha_` : float Estimated regularization parameter. `intercept_` : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Parameters ---------- alphas: numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. Attributes ---------- `cv_values_` : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). `coef_` : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). `alpha_` : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, score_func=score_func, loss_func=loss_func, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=1.0, class_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. This is parameter is deprecated. Returns ------- self : object Returns self. """ if class_weight is None: class_weight = self.class_weight else: warnings.warn("'class_weight' is now an initialization parameter." " Using it in the 'fit' method is deprecated and " "will be removed in 0.15.", DeprecationWarning, stacklevel=2) self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.multilabel_: y = column_or_1d(y, warn=True) cw = compute_class_weight(class_weight, self.classes_, Y) # modify the sample weights with the corresponding class weight sample_weight *= cw[np.searchsorted(self.classes_, y)] _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
2PacIsAlive/deepnet.works
deep_networks/data/dicom/plot.py
2
1479
import logging #import pylab import matplotlib.pyplot as plt from skimage import measure from mpl_toolkits.mplot3d.art3d import Poly3DCollection class Plotter(object): logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) def plot_3d(self, image, threshold=-300): """ Adapted from: https://www.kaggle.com/gzuidhof/data-science-bowl-2017/full-preprocessing-tutorial """ # Position the scan upright, # so the head of the patient would be at the top facing the camera p = image.transpose(2,1,0) verts, faces = measure.marching_cubes(p, threshold) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') # Fancy indexing: `verts[faces]` to generate a collection of triangles mesh = Poly3DCollection(verts[faces], alpha=0.1) face_color = [0.5, 0.5, 1] mesh.set_facecolor(face_color) ax.add_collection3d(mesh) ax.set_xlim(0, p.shape[0]) ax.set_ylim(0, p.shape[1]) ax.set_zlim(0, p.shape[2]) plt.show() def plot(dataset): log.info("plotting {}".format(dataset.PatientsName)) #pylab.imshow(dataset.pixel_array, cmap=pylab.cm.bone) def save(dataset): log.info("saving {}".format(dataset.PatientsName)) pylab.imshow(dataset.pixel_array, cmap=pylab.cm.bone) pylab.savefig(dataset.PatientsName + '.png', bbox_inches='tight')
mit
rhattersley/cartopy
lib/cartopy/mpl/slippy_image_artist.py
1
2694
# (C) British Crown Copyright 2014 - 2018, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. """ Define the SlippyImageArtist class, which interfaces with :class:`cartopy.io.RasterSource` instances at draw time, for interactive dragging and zooming of raster data. """ from __future__ import (absolute_import, division, print_function) from matplotlib.image import AxesImage import matplotlib.artist class SlippyImageArtist(AxesImage): """ A subclass of :class:`~matplotlib.image.AxesImage` which provides an interface for getting a raster from the given object with interactive slippy map type functionality. Kwargs are passed to the AxesImage constructor. """ def __init__(self, ax, raster_source, **kwargs): self.raster_source = raster_source super(SlippyImageArtist, self).__init__(ax, **kwargs) self.set_clip_path(ax.background_patch) self.cache = [] ax.figure.canvas.mpl_connect('button_press_event', self.on_press) ax.figure.canvas.mpl_connect('button_release_event', self.on_release) self.on_release() def on_press(self, event=None): self.user_is_interacting = True def on_release(self, event=None): self.user_is_interacting = False self.stale = True @matplotlib.artist.allow_rasterization def draw(self, renderer, *args, **kwargs): if not self.get_visible(): return ax = self.axes window_extent = ax.get_window_extent() [x1, y1], [x2, y2] = ax.viewLim.get_points() if not self.user_is_interacting: located_images = self.raster_source.fetch_raster( ax.projection, extent=[x1, x2, y1, y2], target_resolution=(window_extent.width, window_extent.height)) self.cache = located_images for img, extent in self.cache: self.set_array(img) with ax.hold_limits(): self.set_extent(extent) super(SlippyImageArtist, self).draw(renderer, *args, **kwargs)
lgpl-3.0
belkinsky/SFXbot
src/pyAudioAnalysis/analyzeMovieSound.py
1
6130
import os, sys, shutil, glob, numpy, csv, pickle import scipy.io.wavfile as wavfile from . import audioBasicIO from . import audioTrainTest as aT from . import audioSegmentation as aS import matplotlib.pyplot as plt import scipy.spatial.distance minDuration = 7; def classifyFolderWrapper(inputFolder, modelType, modelName, outputMode=False): if not os.path.isfile(modelName): raise Exception("Input modelName not found!") if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadSVModel(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadKNNModel(modelName) PsAll = numpy.zeros((len(classNames), )) files = "*.wav" if os.path.isdir(inputFolder): strFilePattern = os.path.join(inputFolder, files) else: strFilePattern = inputFolder + files wavFilesList = [] wavFilesList.extend(glob.glob(strFilePattern)) wavFilesList = sorted(wavFilesList) if len(wavFilesList)==0: print("No WAV files found!") return Results = [] for wavFile in wavFilesList: [Fs, x] = audioBasicIO.readAudioFile(wavFile) signalLength = x.shape[0] / float(Fs) [Result, P, classNames] = aT.fileClassification(wavFile, modelName, modelType) PsAll += (numpy.array(P) * signalLength) Result = int(Result) Results.append(Result) if outputMode: print("{0:s}\t{1:s}".format(wavFile,classNames[Result])) Results = numpy.array(Results) # print distribution of classes: [Histogram, _] = numpy.histogram(Results, bins=numpy.arange(len(classNames)+1)) if outputMode: for i,h in enumerate(Histogram): print("{0:20s}\t\t{1:d}".format(classNames[i], h)) PsAll = PsAll / numpy.sum(PsAll) if outputMode: fig = plt.figure() ax = fig.add_subplot(111) plt.title("Classes percentage " + inputFolder.replace('Segments','')) ax.axis((0, len(classNames)+1, 0, 1)) ax.set_xticks(numpy.array(list(range(len(classNames)+1)))) ax.set_xticklabels([" "] + classNames) ax.bar(numpy.array(list(range(len(classNames))))+0.5, PsAll) plt.show() return classNames, PsAll def getMusicSegmentsFromFile(inputFile): modelType = "svm" modelName = "data/svmMovies8classes" dirOutput = inputFile[0:-4] + "_musicSegments" if os.path.exists(dirOutput) and dirOutput!=".": shutil.rmtree(dirOutput) os.makedirs(dirOutput) [Fs, x] = audioBasicIO.readAudioFile(inputFile) if modelType=='svm': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadSVModel(modelName) elif modelType=='knn': [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT] = aT.loadKNNModel(modelName) flagsInd, classNames, acc, CM = aS.mtFileClassification(inputFile, modelName, modelType, plotResults = False, gtFile = "") segs, classes = aS.flags2segs(flagsInd, mtStep) for i, s in enumerate(segs): if (classNames[int(classes[i])] == "Music") and (s[1] - s[0] >= minDuration): strOut = "{0:s}{1:.3f}-{2:.3f}.wav".format(dirOutput+os.sep, s[0], s[1]) wavfile.write( strOut, Fs, x[int(Fs*s[0]):int(Fs*s[1])]) def analyzeDir(dirPath): for i,f in enumerate(glob.glob(dirPath + os.sep + '*.wav')): # for each WAV file getMusicSegmentsFromFile(f) [c, P]= classifyFolderWrapper(f[0:-4] + "_musicSegments", "svm", "data/svmMusicGenre8", False) if i==0: print("".ljust(100)+"\t", end=' ') for C in c: print(C.ljust(12)+"\t", end=' ') print() print(f.ljust(100)+"\t", end=' ') for p in P: print("{0:.2f}".format(p).ljust(12)+"\t", end=' ') print() def main(argv): if argv[1]=="--file": getMusicSegmentsFromFile(argv[2]) classifyFolderWrapper(argv[2][0:-4] + "_musicSegments", "svm", "data/svmMusicGenre8", True) elif argv[1]=="--dir": analyzeDir(argv[2]) elif argv[1]=="--sim": csvFile = argv[2] f = [] fileNames = [] with open(csvFile, 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter='\t', quotechar='|') for j,row in enumerate(spamreader): if j>0: ftemp = [] for i in range(1,9): ftemp.append(float(row[i])) f.append(ftemp) R = row[0] II = R.find(".wav"); fileNames.append(row[0][0:II]) f = numpy.array(f) Sim = numpy.zeros((f.shape[0], f.shape[0])) for i in range(f.shape[0]): for j in range(f.shape[0]): Sim[i,j] = scipy.spatial.distance.cdist(numpy.reshape(f[i,:], (f.shape[1],1)).T, numpy.reshape(f[j,:], (f.shape[1],1)).T, 'cosine') Sim1 = numpy.reshape(Sim, (Sim.shape[0]*Sim.shape[1], 1)) plt.hist(Sim1) plt.show() fo = open(csvFile + "_simMatrix", "wb") pickle.dump(fileNames, fo, protocol = pickle.HIGHEST_PROTOCOL) pickle.dump(f, fo, protocol = pickle.HIGHEST_PROTOCOL) pickle.dump(Sim, fo, protocol = pickle.HIGHEST_PROTOCOL) fo.close() elif argv[1]=="--loadsim": try: fo = open(argv[2], "rb") except IOError: print("didn't find file") return try: fileNames = pickle.load(fo) f = pickle.load(fo) Sim = pickle.load(fo) except: fo.close() fo.close() print(fileNames) Sim1 = numpy.reshape(Sim, (Sim.shape[0]*Sim.shape[1], 1)) plt.hist(Sim1) plt.show() elif argv[1]=="--audio-event-dir": files = "*.wav" inputFolder = argv[2] if os.path.isdir(inputFolder): strFilePattern = os.path.join(inputFolder, files) else: strFilePattern = inputFolder + files wavFilesList = [] wavFilesList.extend(glob.glob(strFilePattern)) wavFilesList = sorted(wavFilesList) for i,w in enumerate(wavFilesList): [flagsInd, classesAll, acc, CM] = aS.mtFileClassification(w, "data/svmMovies8classes", "svm", False, '') histTemp = numpy.zeros( (len(classesAll), ) ) for f in flagsInd: histTemp[int(f)] += 1.0 histTemp /= histTemp.sum() if i==0: print("".ljust(100)+"\t", end=' ') for C in classesAll: print(C.ljust(12)+"\t", end=' ') print() print(w.ljust(100)+"\t", end=' ') for h in histTemp: print("{0:.2f}".format(h).ljust(12)+"\t", end=' ') print() return 0 if __name__ == '__main__': main(sys.argv)
mit
mlovci/mpld3
examples/interactive_legend.py
20
1601
""" Interactive legend plugin ========================= This is a demonstration of how to add an interactive legend to data plots. The Plugin is defined within mpld3. The user provides how select/unselect and legend overlay will affect the alpha parameter of associated objects. You can also control how to initialize the graph: all selected or unselected. """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import mpld3 from mpld3 import plugins np.random.seed(9615) # generate df N = 100 df = pd.DataFrame((.1 * (np.random.random((N, 5)) - .5)).cumsum(0), columns=['a', 'b', 'c', 'd', 'e'],) # plot line + confidence interval fig, ax = plt.subplots() ax.grid(True, alpha=0.3) for key, val in df.iteritems(): l, = ax.plot(val.index, val.values, label=key) ax.fill_between(val.index, val.values * .5, val.values * 1.5, color=l.get_color(), alpha=.4) # define interactive legend handles, labels = ax.get_legend_handles_labels() # return lines and labels interactive_legend = plugins.InteractiveLegendPlugin(zip(handles, ax.collections), labels, alpha_unsel=0.5, alpha_over=1.5, start_visible=True) plugins.connect(fig, interactive_legend) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('Interactive legend', size=20) mpld3.show()
bsd-3-clause
ctk3b/mdtraj
mdtraj/testing/testing.py
5
8311
############################################################################## # MDTraj: A Python Library for Loading, Saving, and Manipulating # Molecular Dynamics Trajectories. # Copyright 2012-2013 Stanford University and the Authors # # Authors: Robert McGibbon # Contributors: Kyle A Beauchamp # # MDTraj is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 # of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with MDTraj. If not, see <http://www.gnu.org/licenses/>. ############################################################################## ############################################################################## # imports ############################################################################## from __future__ import print_function, division import ast import os import sys import functools import numpy as np from numpy.testing import (assert_allclose, assert_almost_equal, assert_approx_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal, assert_array_less, assert_array_max_ulp, assert_equal, assert_raises, assert_string_equal, assert_warns) from numpy.testing.decorators import skipif, slow from nose.tools import ok_, eq_, raises from nose import SkipTest from pkg_resources import resource_filename # py2/3 compatibility from mdtraj.utils.six import iteritems, integer_types, PY2 # if the system doesn't have scipy, we'd like # this package to still work: # we'll just redefine isspmatrix as a function that always returns # false try: from scipy.sparse import isspmatrix except ImportError: isspmatrix = lambda x: False try: # need special logic to check for equality of pandas DataFrames. # but this is only relevant if the user has pandas installed import pandas as pd except ImportError: pass __all__ = ['assert_allclose', 'assert_almost_equal', 'assert_approx_equal', 'assert_array_almost_equal', 'assert_array_almost_equal_nulp', 'assert_array_equal', 'assert_array_less', 'assert_array_max_ulp', 'assert_equal', 'assert_raises', 'assert_string_equal', 'assert_warns', 'get_fn', 'eq', 'assert_dict_equal', 'assert_sparse_matrix_equal', 'expected_failure', 'SkipTest', 'ok_', 'eq_', 'raises', 'skipif', 'slow'] ############################################################################## # functions ############################################################################## def get_fn(name): """Get the full path to one of the reference files shipped for testing In the source distribution, these files are in ``MDTraj/testing/reference``, but on installation, they're moved to somewhere in the user's python site-packages directory. Parameters ---------- name : str Name of the file to load (with respect to the reference/ folder). Examples -------- >>> import mdtraj as md >>> t = md.load(get_fn('2EQQ.pdb')) >>> eq(t.n_frames, 20) # this runs the assert, using the eq() func. """ fn = resource_filename('mdtraj', os.path.join('testing', 'reference', name)) if not os.path.exists(fn): raise ValueError('Sorry! %s does not exists. If you just ' 'added it, you\'ll have to re install' % fn) return fn def eq(o1, o2, decimal=6, err_msg=''): """Convenience function for asserting that two objects are equal to one another If the objects are both arrays or sparse matrices, this method will dispatch to an appropriate handler, which makes it a little bit more useful than just calling ``assert o1 == o2`` (which wont work for numpy arrays -- it returns an array of bools, not a single True or False) Parameters ---------- o1 : object The first object o2 : object The second object decimal : int If the two objects are floats or arrays of floats, they'll be checked for equality up to this decimal place. err_msg : str Custom error message Returns ------- passed : bool True if the tests pass. If the tests doesn't pass, since the AssertionError will be raised Raises ------ AssertionError If the tests fail """ if isinstance(o1, integer_types) and isinstance(o2, integer_types) and PY2: eq_(long(o1), long(o2)) return assert (type(o1) is type(o2)), 'o1 and o2 not the same type: %s %s' % (type(o1), type(o2)) if isinstance(o1, dict): assert_dict_equal(o1, o1, decimal) elif isinstance(o1, float): np.testing.assert_almost_equal(o1, o2, decimal) elif isspmatrix(o1): assert_sparse_matrix_equal(o1, o1, decimal) elif isinstance(o1, np.ndarray): if o1.dtype.kind == 'f' or o2.dtype.kind == 'f': # compare floats for almost equality assert_array_almost_equal(o1, o2, decimal, err_msg=err_msg) elif o1.dtype.type == np.core.records.record: # if its a record array, we need to comparse each term assert o1.dtype.names == o2.dtype.names for name in o1.dtype.names: eq(o1[name], o2[name], decimal=decimal, err_msg=err_msg) else: # compare everything else (ints, bools) for absolute equality assert_array_equal(o1, o2, err_msg=err_msg) elif 'pandas' in sys.modules and isinstance(o1, pd.DataFrame): # pandas dataframes are basically like dictionaries of numpy arrayss assert_dict_equal(o1, o2, decimal=decimal) elif isinstance(o1, ast.AST) and isinstance(o2, ast.AST): eq_(ast.dump(o1), ast.dump(o2)) # probably these are other specialized types # that need a special check? else: eq_(o1, o2, msg=err_msg) return True def assert_dict_equal(t1, t2, decimal=6): """Assert two dicts are equal. This method should actually work for any dict of numpy arrays/objects Parameters ---------- t1 : object t2 : object decimal : int Number of decimal places to check, for arrays inside the dicts """ # make sure the keys are the same eq_(list(t1.keys()), list(t2.keys())) for key, val in iteritems(t1): # compare numpy arrays using numpy.testing if isinstance(val, np.ndarray) or ('pandas' in sys.modules and isinstance(t1, pd.DataFrame)): if val.dtype.kind == 'f': # compare floats for almost equality assert_array_almost_equal(val, t2[key], decimal) else: # compare everything else (ints, bools) for absolute equality assert_array_equal(val, t2[key]) else: eq_(val, t2[key]) def assert_sparse_matrix_equal(m1, m2, decimal=6): """Assert two scipy.sparse matrices are equal. Parameters ---------- m1 : sparse_matrix m2 : sparse_matrix decimal : int Number of decimal places to check. """ # both are sparse matricies assert isspmatrix(m1) assert isspmatrix(m1) # make sure they have the same format eq_(m1.format, m2.format) # even though its called assert_array_almost_equal, it will # work for scalars assert_array_almost_equal((m1 - m2).sum(), 0, decimal=decimal) # decorator to mark tests as expected failure def expected_failure(test): @functools.wraps(test) def inner(*args, **kwargs): try: test(*args, **kwargs) except BaseException: raise SkipTest else: raise AssertionError('Failure expected') return inner # decorator to skip tests def skip(reason): def wrap(test): @functools.wraps(test) def inner(*args, **kwargs): raise SkipTest print("After f(*args)") return inner return wrap
lgpl-2.1
nesterione/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
35
15016
from __future__ import division from collections import defaultdict from functools import partial import numpy as np from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
liikGit/MissionPlanner
Lib/site-packages/scipy/stats/distributions.py
53
207806
# Functions to implement several important functions for # various Continous and Discrete Probability Distributions # # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # import math import warnings from copy import copy from scipy.misc import comb, derivative from scipy import special from scipy import optimize from scipy import integrate from scipy.special import gammaln as gamln import inspect from numpy import alltrue, where, arange, putmask, \ ravel, take, ones, sum, shape, product, repeat, reshape, \ zeros, floor, logical_and, log, sqrt, exp, arctanh, tan, sin, arcsin, \ arctan, tanh, ndarray, cos, cosh, sinh, newaxis, array, log1p, expm1 from numpy import atleast_1d, polyval, ceil, place, extract, \ any, argsort, argmax, vectorize, r_, asarray, nan, inf, pi, isinf, \ power, NINF, empty import numpy import numpy as np import numpy.random as mtrand from numpy import flatnonzero as nonzero import vonmises_cython def _moment(data, n, mu=None): if mu is None: mu = data.mean() return ((data - mu)**n).mean() def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args): if (n==0): return 1.0 elif (n==1): if mu is None: val = moment_func(1,*args) else: val = mu elif (n==2): if mu2 is None or mu is None: val = moment_func(2,*args) else: val = mu2 + mu*mu elif (n==3): if g1 is None or mu2 is None or mu is None: val = moment_func(3,*args) else: mu3 = g1*(mu2**1.5) # 3rd central moment val = mu3+3*mu*mu2+mu**3 # 3rd non-central moment elif (n==4): if g1 is None or g2 is None or mu2 is None or mu is None: val = moment_func(4,*args) else: mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment mu3 = g1*(mu2**1.5) # 3rd central moment val = mu4+4*mu*mu3+6*mu*mu*mu2+mu**4 else: val = moment_func(n, *args) return val def _skew(data): data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m3 = ((data - mu)**3).mean() return m3 / m2**1.5 def _kurtosis(data): data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m4 = ((data - mu)**4).mean() return m4 / m2**2 - 3 __all__ = [ 'rv_continuous', 'ksone', 'kstwobign', 'norm', 'alpha', 'anglit', 'arcsine', 'beta', 'betaprime', 'bradford', 'burr', 'fisk', 'cauchy', 'chi', 'chi2', 'cosine', 'dgamma', 'dweibull', 'erlang', 'expon', 'exponweib', 'exponpow', 'fatiguelife', 'foldcauchy', 'f', 'foldnorm', 'frechet_r', 'weibull_min', 'frechet_l', 'weibull_max', 'genlogistic', 'genpareto', 'genexpon', 'genextreme', 'gamma', 'gengamma', 'genhalflogistic', 'gompertz', 'gumbel_r', 'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm', 'hypsecant', 'gausshyper', 'invgamma', 'invnorm', 'invgauss', 'invweibull', 'johnsonsb', 'johnsonsu', 'laplace', 'levy', 'levy_l', 'levy_stable', 'logistic', 'loggamma', 'loglaplace', 'lognorm', 'gilbrat', 'maxwell', 'mielke', 'nakagami', 'ncx2', 'ncf', 't', 'nct', 'pareto', 'lomax', 'powerlaw', 'powerlognorm', 'powernorm', 'rdist', 'rayleigh', 'reciprocal', 'rice', 'recipinvgauss', 'semicircular', 'triang', 'truncexpon', 'truncnorm', 'tukeylambda', 'uniform', 'vonmises', 'wald', 'wrapcauchy', 'entropy', 'rv_discrete', 'binom', 'bernoulli', 'nbinom', 'geom', 'hypergeom', 'logser', 'poisson', 'planck', 'boltzmann', 'randint', 'zipf', 'dlaplace', 'skellam' ] floatinfo = numpy.finfo(float) errp = special.errprint arr = asarray gam = special.gamma import types from scipy.misc import doccer all = alltrue sgf = vectorize try: from new import instancemethod except ImportError: # Python 3 def instancemethod(func, obj, cls): return types.MethodType(func, obj) # These are the docstring parts used for substitution in specific # distribution docstrings. docheaders = {'methods':"""\nMethods\n-------\n""", 'parameters':"""\nParameters\n---------\n""", 'notes':"""\nNotes\n-----\n""", 'examples':"""\nExamples\n--------\n"""} _doc_rvs = \ """rvs(%(shapes)s, loc=0, scale=1, size=1) Random variates. """ _doc_pdf = \ """pdf(x, %(shapes)s, loc=0, scale=1) Probability density function. """ _doc_logpdf = \ """logpdf(x, %(shapes)s, loc=0, scale=1) Log of the probability density function. """ _doc_pmf = \ """pmf(x, %(shapes)s, loc=0, scale=1) Probability mass function. """ _doc_logpmf = \ """logpmf(x, %(shapes)s, loc=0, scale=1) Log of the probability mass function. """ _doc_cdf = \ """cdf(x, %(shapes)s, loc=0, scale=1) Cumulative density function. """ _doc_logcdf = \ """logcdf(x, %(shapes)s, loc=0, scale=1) Log of the cumulative density function. """ _doc_sf = \ """sf(x, %(shapes)s, loc=0, scale=1) Survival function (1-cdf --- sometimes more accurate). """ _doc_logsf = \ """logsf(x, %(shapes)s, loc=0, scale=1) Log of the survival function. """ _doc_ppf = \ """ppf(q, %(shapes)s, loc=0, scale=1) Percent point function (inverse of cdf --- percentiles). """ _doc_isf = \ """isf(q, %(shapes)s, loc=0, scale=1) Inverse survival function (inverse of sf). """ _doc_moment = \ """moment(n, %(shapes)s, loc=0, scale=1) Non-central moment of order n """ _doc_stats = \ """stats(%(shapes)s, loc=0, scale=1, moments='mv') Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). """ _doc_entropy = \ """entropy(%(shapes)s, loc=0, scale=1) (Differential) entropy of the RV. """ _doc_fit = \ """fit(data, %(shapes)s, loc=0, scale=1) Parameter estimates for generic data. """ _doc_expect = \ """expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. """ _doc_expect_discrete = \ """expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. """ _doc_median = \ """median(%(shapes)s, loc=0, scale=1) Median of the distribution. """ _doc_mean = \ """mean(%(shapes)s, loc=0, scale=1) Mean of the distribution. """ _doc_var = \ """var(%(shapes)s, loc=0, scale=1) Variance of the distribution. """ _doc_std = \ """std(%(shapes)s, loc=0, scale=1) Standard deviation of the distribution. """ _doc_interval = \ """interval(alpha, %(shapes)s, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution """ _doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf, _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf, _doc_logsf, _doc_ppf, _doc_isf, _doc_moment, _doc_stats, _doc_entropy, _doc_fit, _doc_expect, _doc_median, _doc_mean, _doc_var, _doc_std, _doc_interval]) # Note that the two lines for %(shapes) are searched for and replaced in # rv_continuous and rv_discrete - update there if the exact string changes _doc_default_callparams = \ """ Parameters ---------- x : array-like quantiles q : array-like lower or upper tail probability %(shapes)s : array-like shape parameters loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : str, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. (default='mv') """ _doc_default_longsummary = \ """Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below: """ _doc_default_frozen_note = \ """ Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0, scale=1) - Frozen RV object with the same methods but holding the given shape, location, and scale fixed. """ _doc_default_example = \ """Examples -------- >>> import matplotlib.pyplot as plt >>> numargs = %(name)s.numargs >>> [ %(shapes)s ] = [0.9,] * numargs >>> rv = %(name)s(%(shapes)s) Display frozen pdf >>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) >>> h = plt.plot(x, rv.pdf(x)) Check accuracy of cdf and ppf >>> prb = %(name)s.cdf(x, %(shapes)s) >>> h = plt.semilogy(np.abs(x - %(name)s.ppf(prb, %(shapes)s)) + 1e-20) Random number generation >>> R = %(name)s.rvs(%(shapes)s, size=100) """ _doc_default = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note, _doc_default_example]) _doc_default_before_notes = ''.join([_doc_default_longsummary, _doc_allmethods, _doc_default_callparams, _doc_default_frozen_note]) docdict = {'rvs':_doc_rvs, 'pdf':_doc_pdf, 'logpdf':_doc_logpdf, 'cdf':_doc_cdf, 'logcdf':_doc_logcdf, 'sf':_doc_sf, 'logsf':_doc_logsf, 'ppf':_doc_ppf, 'isf':_doc_isf, 'stats':_doc_stats, 'entropy':_doc_entropy, 'fit':_doc_fit, 'moment':_doc_moment, 'expect':_doc_expect, 'interval':_doc_interval, 'mean':_doc_mean, 'std':_doc_std, 'var':_doc_var, 'median':_doc_median, 'allmethods':_doc_allmethods, 'callparams':_doc_default_callparams, 'longsummary':_doc_default_longsummary, 'frozennote':_doc_default_frozen_note, 'example':_doc_default_example, 'default':_doc_default, 'before_notes':_doc_default_before_notes} # Reuse common content between continous and discrete docs, change some # minor bits. docdict_discrete = docdict.copy() docdict_discrete['pmf'] = _doc_pmf docdict_discrete['logpmf'] = _doc_logpmf docdict_discrete['expect'] = _doc_expect_discrete _doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf', 'ppf', 'isf', 'stats', 'entropy', 'fit', 'expect', 'median', 'mean', 'var', 'std', 'interval'] for obj in _doc_disc_methods: docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '') docdict_discrete.pop('pdf') docdict_discrete.pop('logpdf') _doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods]) docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods docdict_discrete['longsummary'] = _doc_default_longsummary.replace(\ 'Continuous', 'Discrete') _doc_default_frozen_note = \ """ Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0) - Frozen RV object with the same methods but holding the given shape and location fixed. """ docdict_discrete['frozennote'] = _doc_default_frozen_note docdict_discrete['example'] = _doc_default_example.replace('[0.9,]', 'Replace with reasonable value') _doc_default_disc = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['frozennote'], docdict_discrete['example']]) docdict_discrete['default'] = _doc_default_disc # clean up all the separate docstring elements, we do not need them anymore for obj in [s for s in dir() if s.startswith('_doc_')]: exec('del ' + obj) del obj try: del s except NameError: # in Python 3, loop variables are not visible after the loop pass def _build_random_array(fun, args, size=None): # Build an array by applying function fun to # the arguments in args, creating an array with # the specified shape. # Allows an integer shape n as a shorthand for (n,). if isinstance(size, types.IntType): size = [size] if size is not None and len(size) != 0: n = numpy.multiply.reduce(size) s = apply(fun, args + (n,)) s.shape = size return s else: n = 1 s = apply(fun, args + (n,)) return s[0] random = mtrand.random_sample rand = mtrand.rand random_integers = mtrand.random_integers permutation = mtrand.permutation ## Internal class to compute a ppf given a distribution. ## (needs cdf function) and uses brentq from scipy.optimize ## to compute ppf from cdf. class general_cont_ppf(object): def __init__(self, dist, xa=-10.0, xb=10.0, xtol=1e-14): self.dist = dist self.cdf = eval('%scdf'%dist) self.xa = xa self.xb = xb self.xtol = xtol self.vecfunc = sgf(self._single_call,otypes='d') def _tosolve(self, x, q, *args): return apply(self.cdf, (x, )+args) - q def _single_call(self, q, *args): return optimize.brentq(self._tosolve, self.xa, self.xb, args=(q,)+args, xtol=self.xtol) def __call__(self, q, *args): return self.vecfunc(q, *args) # Frozen RV class class rv_frozen(object): def __init__(self, dist, *args, **kwds): self.args = args self.kwds = kwds self.dist = dist def pdf(self, x): #raises AttributeError in frozen discrete distribution return self.dist.pdf(x, *self.args, **self.kwds) def logpdf(self, x): return self.dist.logpdf(x, *self.args, **self.kwds) def cdf(self, x): return self.dist.cdf(x, *self.args, **self.kwds) def logcdf(self, x): return self.dist.logcdf(x, *self.args, **self.kwds) def ppf(self, q): return self.dist.ppf(q, *self.args, **self.kwds) def isf(self, q): return self.dist.isf(q, *self.args, **self.kwds) def rvs(self, size=None): kwds = self.kwds.copy() kwds.update({'size':size}) return self.dist.rvs(*self.args, **kwds) def sf(self, x): return self.dist.sf(x, *self.args, **self.kwds) def logsf(self, x): return self.dist.logsf(x, *self.args, **self.kwds) def stats(self, moments='mv'): kwds = self.kwds.copy() kwds.update({'moments':moments}) return self.dist.stats(*self.args, **kwds) def median(self): return self.dist.median(*self.args, **self.kwds) def mean(self): return self.dist.mean(*self.args, **self.kwds) def var(self): return self.dist.var(*self.args, **self.kwds) def std(self): return self.dist.std(*self.args, **self.kwds) def moment(self, n): return self.dist.moment(n, *self.args, **self.kwds) def entropy(self): return self.dist.entropy(*self.args, **self.kwds) def pmf(self,k): return self.dist.pmf(k, *self.args, **self.kwds) def logpmf(self,k): return self.dist.logpmf(k, *self.args, **self.kwds) def interval(self, alpha): return self.dist.interval(alpha, *self.args, **self.kwds) ## NANs are returned for unsupported parameters. ## location and scale parameters are optional for each distribution. ## The shape parameters are generally required ## ## The loc and scale parameters must be given as keyword parameters. ## These are related to the common symbols in the .lyx file ## skew is third central moment / variance**(1.5) ## kurtosis is fourth central moment / variance**2 - 3 ## References:: ## Documentation for ranlib, rv2, cdflib and ## ## Eric Wesstein's world of mathematics http://mathworld.wolfram.com/ ## http://mathworld.wolfram.com/topics/StatisticalDistributions.html ## ## Documentation to Regress+ by Michael McLaughlin ## ## Engineering and Statistics Handbook (NIST) ## http://www.itl.nist.gov/div898/handbook/index.htm ## ## Documentation for DATAPLOT from NIST ## http://www.itl.nist.gov/div898/software/dataplot/distribu.htm ## ## Norman Johnson, Samuel Kotz, and N. Balakrishnan "Continuous ## Univariate Distributions", second edition, ## Volumes I and II, Wiley & Sons, 1994. ## Each continuous random variable as the following methods ## ## rvs -- Random Variates (alternatively calling the class could produce these) ## pdf -- PDF ## logpdf -- log PDF (more numerically accurate if possible) ## cdf -- CDF ## logcdf -- log of CDF ## sf -- Survival Function (1-CDF) ## logsf --- log of SF ## ppf -- Percent Point Function (Inverse of CDF) ## isf -- Inverse Survival Function (Inverse of SF) ## stats -- Return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis ## nnlf -- negative log likelihood function (to minimize) ## fit -- Model-fitting ## ## Maybe Later ## ## hf --- Hazard Function (PDF / SF) ## chf --- Cumulative hazard function (-log(SF)) ## psf --- Probability sparsity function (reciprocal of the pdf) in ## units of percent-point-function (as a function of q). ## Also, the derivative of the percent-point function. ## To define a new random variable you subclass the rv_continuous class ## and re-define the ## ## _pdf method which will be given clean arguments (in between a and b) ## and passing the argument check method ## ## If postive argument checking is not correct for your RV ## then you will also need to re-define ## _argcheck ## Correct, but potentially slow defaults exist for the remaining ## methods but for speed and/or accuracy you can over-ride ## ## _cdf, _ppf, _rvs, _isf, _sf ## ## Rarely would you override _isf and _sf but you could for numerical precision. ## ## Statistics are computed using numerical integration by default. ## For speed you can redefine this using ## ## _stats --- take shape parameters and return mu, mu2, g1, g2 ## --- If you can't compute one of these return it as None ## ## --- Can also be defined with a keyword argument moments=<str> ## where <str> is a string composed of 'm', 'v', 's', ## and/or 'k'. Only the components appearing in string ## should be computed and returned in the order 'm', 'v', ## 's', or 'k' with missing values returned as None ## ## OR ## ## You can override ## ## _munp -- takes n and shape parameters and returns ## -- then nth non-central moment of the distribution. ## def valarray(shape,value=nan,typecode=None): """Return an array of all value. """ out = reshape(repeat([value],product(shape,axis=0),axis=0),shape) if typecode is not None: out = out.astype(typecode) if not isinstance(out, ndarray): out = arr(out) return out # This should be rewritten def argsreduce(cond, *args): """Return the sequence of ravel(args[i]) where ravel(condition) is True in 1D. Examples -------- >>> import numpy as np >>> rand = np.random.random_sample >>> A = rand((4,5)) >>> B = 2 >>> C = rand((1,5)) >>> cond = np.ones(A.shape) >>> [A1,B1,C1] = argsreduce(cond,A,B,C) >>> B1.shape (20,) >>> cond[2,:] = 0 >>> [A2,B2,C2] = argsreduce(cond,A,B,C) >>> B2.shape (15,) """ newargs = atleast_1d(*args) if not isinstance(newargs, list): newargs = [newargs,] expand_arr = (cond==cond) return [extract(cond, arr1 * expand_arr) for arr1 in newargs] class rv_generic(object): """Class which encapsulates common functionality between rv_discrete and rv_continuous. """ def _fix_loc_scale(self, args, loc, scale=1): N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and scale is None: # loc and scale given without keyword loc, scale = args[-2:] args = args[:self.numargs] if scale is None: scale = 1.0 if loc is None: loc = 0.0 return args, loc, scale def _fix_loc(self, args, loc): args, loc, scale = self._fix_loc_scale(args, loc) return args, loc # These are actually called, and should not be overwritten if you # want to keep error checking. def rvs(self,*args,**kwds): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) size : int or tuple of ints, optional defining number of random variates (default=1) Returns ------- rvs : array-like random variates of given `size` """ kwd_names = ['loc', 'scale', 'size', 'discrete'] loc, scale, size, discrete = map(kwds.get, kwd_names, [None]*len(kwd_names)) args, loc, scale = self._fix_loc_scale(args, loc, scale) cond = logical_and(self._argcheck(*args),(scale >= 0)) if not all(cond): raise ValueError("Domain error in arguments.") # self._size is total size of all output values self._size = product(size, axis=0) if self._size is not None and self._size > 1: size = numpy.array(size, ndmin=1) if np.all(scale == 0): return loc*ones(size, 'd') vals = self._rvs(*args) if self._size is not None: vals = reshape(vals, size) vals = vals * scale + loc # Cast to int if discrete if discrete: if numpy.isscalar(vals): vals = int(vals) else: vals = vals.astype(int) return vals def median(self, *args, **kwds): """ Median of the distribution. Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- median : float the median of the distribution. See Also -------- self.ppf --- inverse of the CDF """ return self.ppf(0.5, *args, **kwds) def mean(self, *args, **kwds): """ Mean of the distribution Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- mean : float the mean of the distribution """ kwds['moments'] = 'm' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def var(self, *args, **kwds): """ Variance of the distribution Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- var : float the variance of the distribution """ kwds['moments'] = 'v' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def std(self, *args, **kwds): """ Standard deviation of the distribution. Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- std : float standard deviation of the distribution """ kwds['moments'] = 'v' res = sqrt(self.stats(*args, **kwds)) return res def interval(self, alpha, *args, **kwds): """Confidence interval with equal areas around the median Parameters ---------- alpha : array-like float in [0,1] Probability that an rv will be drawn from the returned range arg1, arg2, ... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc: array-like, optioal location parameter (deafult = 0) scale : array-like, optional scale paramter (default = 1) Returns ------- a, b: array-like (float) end-points of range that contain alpha % of the rvs """ alpha = arr(alpha) if any((alpha > 1) | (alpha < 0)): raise ValueError("alpha must be between 0 and 1 inclusive") q1 = (1.0-alpha)/2 q2 = (1.0+alpha)/2 a = self.ppf(q1, *args, **kwds) b = self.ppf(q2, *args, **kwds) return a, b class rv_continuous(rv_generic): """ A generic continuous random variable class meant for subclassing. `rv_continuous` is a base class to construct specific distribution classes and instances from for continuous random variables. It cannot be used directly as a distribution. Parameters ---------- momtype : int, optional The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf. a : float, optional Lower bound of the support of the distribution, default is minus infinity. b : float, optional Upper bound of the support of the distribution, default is plus infinity. xa : float, optional Lower bound for fixed point calculation for generic ppf. xb : float, optional Upper bound for fixed point calculation for generic ppf. xtol : float, optional The tolerance for fixed point calculation for generic ppf. badvalue : object, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the two shape arguments for all its methods. extradoc : str, optional, deprecated This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. Methods ------- rvs(<shape(s)>, loc=0, scale=1, size=1) random variates pdf(x, <shape(s)>, loc=0, scale=1) probability density function logpdf(x, <shape(s)>, loc=0, scale=1) log of the probability density function cdf(x, <shape(s)>, loc=0, scale=1) cumulative density function logcdf(x, <shape(s)>, loc=0, scale=1) log of the cumulative density function sf(x, <shape(s)>, loc=0, scale=1) survival function (1-cdf --- sometimes more accurate) logsf(x, <shape(s)>, loc=0, scale=1) log of the survival function ppf(q, <shape(s)>, loc=0, scale=1) percent point function (inverse of cdf --- quantiles) isf(q, <shape(s)>, loc=0, scale=1) inverse survival function (inverse of sf) moment(n, <shape(s)>, loc=0, scale=1) non-central n-th moment of the distribution. May not work for array arguments. stats(<shape(s)>, loc=0, scale=1, moments='mv') mean('m'), variance('v'), skew('s'), and/or kurtosis('k') entropy(<shape(s)>, loc=0, scale=1) (differential) entropy of the RV. fit(data, <shape(s)>, loc=0, scale=1) Parameter estimates for generic data expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function with respect to the distribution. Additional kwd arguments passed to integrate.quad median(<shape(s)>, loc=0, scale=1) Median of the distribution. mean(<shape(s)>, loc=0, scale=1) Mean of the distribution. std(<shape(s)>, loc=0, scale=1) Standard deviation of the distribution. var(<shape(s)>, loc=0, scale=1) Variance of the distribution. interval(alpha, <shape(s)>, loc=0, scale=1) Interval that with `alpha` percent probability contains a random realization of this distribution. __call__(<shape(s)>, loc=0, scale=1) Calling a distribution instance creates a frozen RV object with the same methods but holding the given shape, location, and scale fixed. See Notes section. **Parameters for Methods** x : array-like quantiles q : array-like lower or upper tail probability <shape(s)> : array-like shape parameters loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : string, optional composed of letters ['mvsk'] specifying which moments to compute where 'm' = mean, 'v' = variance, 's' = (Fisher's) skew and 'k' = (Fisher's) kurtosis. (default='mv') n : int order of moment to calculate in method moments **Methods that can be overwritten by subclasses** :: _rvs _pdf _cdf _sf _ppf _isf _stats _munp _entropy _argcheck There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called. Notes ----- **Frozen Distribution** Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = generic(<shape(s)>, loc=0, scale=1) frozen RV object with the same methods but holding the given shape, location, and scale fixed **Subclassing** New random variables can be defined by subclassing rv_continuous class and re-defining at least the _pdf or the _cdf method (normalized to location 0 and scale 1) which will be given clean arguments (in between a and b) and passing the argument check method If postive argument checking is not correct for your RV then you will also need to re-define :: _argcheck Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride :: _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf Rarely would you override _isf, _sf, and _logsf but you could. Statistics are computed using numerical integration by default. For speed you can redefine this using _stats - take shape parameters and return mu, mu2, g1, g2 - If you can't compute one of these, return it as None - Can also be defined with a keyword argument moments=<str> where <str> is a string composed of 'm', 'v', 's', and/or 'k'. Only the components appearing in string should be computed and returned in the order 'm', 'v', 's', or 'k' with missing values returned as None OR You can override _munp takes n and shape parameters and returns the nth non-central moment of the distribution. Examples -------- To create a new Gaussian distribution, we would do the following:: class gaussian_gen(rv_continuous): "Gaussian distribution" def _pdf: ... ... """ def __init__(self, momtype=1, a=None, b=None, xa=-10.0, xb=10.0, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None): rv_generic.__init__(self) if badvalue is None: badvalue = nan self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -inf if b is None: self.b = inf self.xa = xa self.xb = xb self.xtol = xtol self._size = 1 self.m = 0.0 self.moment_type = momtype self.expandarr = 1 if not hasattr(self,'numargs'): #allows more general subclassing with *args cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pdf_signature = inspect.getargspec(self._pdf.im_func) numargs2 = len(pdf_signature[0]) - 2 self.numargs = max(numargs1, numargs2) #nin correction self.vecfunc = sgf(self._ppf_single_call,otypes='d') self.vecfunc.nin = self.numargs + 1 self.vecentropy = sgf(self._entropy,otypes='d') self.vecentropy.nin = self.numargs + 1 self.veccdf = sgf(self._cdf_single_call,otypes='d') self.veccdf.nin = self.numargs + 1 self.shapes = shapes self.extradoc = extradoc if momtype == 0: self.generic_moment = sgf(self._mom0_sc,otypes='d') else: self.generic_moment = sgf(self._mom1_sc,otypes='d') self.generic_moment.nin = self.numargs+1 # Because of the *args argument # of _mom0_sc, vectorize cannot count the number of arguments correctly. if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name # generate docstring for subclass instances if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc) else: self._construct_doc() ## This only works for old-style classes... # self.__class__.__doc__ = self.__doc__ def _construct_default_doc(self, longname=None, extradoc=None): """Construct instance docstring from the default template.""" if longname is None: longname = 'A' if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s continuous random variable.'%longname, '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc() def _construct_doc(self): """Construct the instance docstring with string substitutions.""" tempdict = docdict.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['callparams', 'default', 'before_notes']: tempdict[item] = tempdict[item].replace(\ "\n%(shapes)s : array-like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) def _ppf_to_solve(self, x, q,*args): return apply(self.cdf, (x, )+args)-q def _ppf_single_call(self, q, *args): return optimize.brentq(self._ppf_to_solve, self.xa, self.xb, args=(q,)+args, xtol=self.xtol) # moment from definition def _mom_integ0(self, x,m,*args): return x**m * self.pdf(x,*args) def _mom0_sc(self, m,*args): return integrate.quad(self._mom_integ0, self.a, self.b, args=(m,)+args)[0] # moment calculated using ppf def _mom_integ1(self, q,m,*args): return (self.ppf(q,*args))**m def _mom1_sc(self, m,*args): return integrate.quad(self._mom_integ1, 0, 1,args=(m,)+args)[0] ## These are the methods you must define (standard form functions) def _argcheck(self, *args): # Default check for correct values on args and keywords. # Returns condition array of 1's where arguments are correct and # 0's where they are not. cond = 1 for arg in args: cond = logical_and(cond,(arr(arg) > 0)) return cond def _pdf(self,x,*args): return derivative(self._cdf,x,dx=1e-5,args=args,order=5) ## Could also define any of these def _logpdf(self, x, *args): return log(self._pdf(x, *args)) ##(return 1-d using self._size to get number) def _rvs(self, *args): ## Use basic inverse cdf algorithm for RV generation as default. U = mtrand.sample(self._size) Y = self._ppf(U,*args) return Y def _cdf_single_call(self, x, *args): return integrate.quad(self._pdf, self.a, x, args=args)[0] def _cdf(self, x, *args): return self.veccdf(x,*args) def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x,*args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self.vecfunc(q,*args) def _isf(self, q, *args): return self._ppf(1.0-q,*args) #use correct _ppf for subclasses # The actual cacluation functions (no basic checking need be done) # If these are defined, the others won't be looked at. # Otherwise, the other set can be defined. def _stats(self,*args, **kwds): return None, None, None, None # Central moments def _munp(self,n,*args): return self.generic_moment(n,*args) def pdf(self,x,*args,**kwds): """ Probability density function at x of the given RV. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- pdf : array-like Probability density function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = arr((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = zeros(shape(cond),'d') putmask(output,(1-cond0)*array(cond1,bool),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] output = place(output,cond,self._pdf(*goodargs) / scale) if output.ndim == 0: return output[()] return output def logpdf(self, x, *args, **kwds): """ Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- logpdf : array-like Log of the probability density function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = arr((x-loc)*1.0/scale) cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) putmask(output,(1-cond0)*array(cond1,bool),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] output = place(output,cond,self._logpdf(*goodargs) - log(scale)) if output.ndim == 0: return output[()] return output def cdf(self,x,*args,**kwds): """ Cumulative distribution function at x of the given RV. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- cdf : array-like Cumulative distribution function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = zeros(shape(cond),'d') output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,1.0) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) output = place(output,cond,self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self,x,*args,**kwds): """ Log of the cumulative distribution function at x of the given RV. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- logcdf : array-like Log of the cumulative distribution function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = (x >= self.b) & cond0 cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,0.0) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) output = place(output,cond,self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self,x,*args,**kwds): """ Survival function (1-cdf) at x of the given RV. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- sf : array-like Survival function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = zeros(shape(cond),'d') output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,1.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) output = place(output,cond,self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self,x,*args,**kwds): """ Log of the Survival function log(1-cdf) at x of the given RV. Parameters ---------- x : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- logsf : array-like Log of the survival function evaluated at x """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) x,loc,scale = map(arr,(x,loc,scale)) args = tuple(map(arr,args)) x = (x-loc)*1.0/scale cond0 = self._argcheck(*args) & (scale > 0) cond1 = (scale > 0) & (x > self.a) & (x < self.b) cond2 = cond0 & (x <= self.a) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,0.0) if any(cond): goodargs = argsreduce(cond, *((x,)+args)) output = place(output,cond,self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self,q,*args,**kwds): """ Percent point function (inverse of cdf) at q of the given RV. Parameters ---------- q : array-like lower tail probability arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- x : array-like quantile corresponding to the lower tail probability q. """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) q,loc,scale = map(arr,(q,loc,scale)) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.a*scale + loc) output = place(output,(1-cond0)+(1-cond1)*(q!=0.0), self.badvalue) output = place(output,cond2,self.b*scale + loc) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] output = place(output,cond,self._ppf(*goodargs)*scale + loc) if output.ndim == 0: return output[()] return output def isf(self,q,*args,**kwds): """ Inverse survival function at q of the given RV. Parameters ---------- q : array-like upper tail probability arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) Returns ------- x : array-like quantile corresponding to the upper tail probability q. """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) q,loc,scale = map(arr,(q,loc,scale)) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.b) #output = place(output,(1-cond0)*(cond1==cond1), self.badvalue) output = place(output,(1-cond0)*(cond1==cond1)+(1-cond1)*(q!=0.0), self.badvalue) output = place(output,cond2,self.a) if any(cond): #call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale,loc))) #PB replace 1-q by q scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] output = place(output,cond,self._isf(*goodargs)*scale + loc) #PB use _isf instead of _ppf if output.ndim == 0: return output[()] return output def stats(self,*args,**kwds): """ Some statistics of the given RV Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) moments : string, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default='mv') Returns ------- stats : sequence of requested moments. """ loc,scale,moments=map(kwds.get,['loc','scale','moments']) N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and scale is None: # loc and scale given without keyword loc, scale = args[-2:] if N == self.numargs + 3 and moments is None: # loc, scale, and moments loc, scale, moments = args[-3:] args = args[:self.numargs] if scale is None: scale = 1.0 if loc is None: loc = 0.0 if moments is None: moments = 'mv' loc,scale = map(arr,(loc,scale)) args = tuple(map(arr,args)) cond = self._argcheck(*args) & (scale > 0) & (loc==loc) signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mu, mu2, g1, g2 = self._stats(*args,**{'moments':moments}) else: mu, mu2, g1, g2 = self._stats(*args) if g1 is None: mu3 = None else: mu3 = g1*np.power(mu2,1.5) #(mu2**1.5) breaks down for nan and inf default = valarray(shape(cond), self.badvalue) output = [] # Use only entries that are valid in calculation if any(cond): goodargs = argsreduce(cond, *(args+(scale,loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] if 'm' in moments: if mu is None: mu = self._munp(1.0,*goodargs) out0 = default.copy() out0 = place(out0,cond,mu*scale+loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) mu2 = mu2p - mu*mu if np.isinf(mu): #if mean is inf then var is also inf mu2 = np.inf out0 = default.copy() out0 = place(out0,cond,mu2*scale*scale) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu mu3 = mu3p - 3*mu*mu2 - mu**3 g1 = mu3 / mu2**1.5 out0 = default.copy() out0 = place(out0,cond,g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu if mu3 is None: mu3p = self._munp(3.0,*goodargs) mu3 = mu3p - 3*mu*mu2 - mu**3 mu4 = mu4p - 4*mu*mu3 - 6*mu*mu*mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() out0 = place(out0,cond,g2) output.append(out0) else: #no valid args output = [] for _ in moments: out0 = default.copy() output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def moment(self, n, *args, **kwds): """ n'th order non-central moment of distribution Parameters ---------- n: int, n>=1 order of moment arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : float, optional location parameter (default=0) scale : float, optional scale parameter (default=1) """ loc = kwds.get('loc', 0) scale = kwds.get('scale', 1) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mdict = {'moments':{1:'m',2:'v',3:'vs',4:'vk'}[n]} else: mdict = {} mu, mu2, g1, g2 = self._stats(*args,**mdict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n,k,exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def _nnlf(self, x, *args): return -sum(self._logpdf(x, *args),axis=0) def nnlf(self, theta, x): # - sum (log pdf(x, theta),axis=0) # where theta are the parameters (including loc and scale) # try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return inf x = arr((x-loc) / scale) cond0 = (x <= self.a) | (x >= self.b) if (any(cond0)): return inf else: N = len(x) return self._nnlf(x, *args) + N*log(scale) # return starting point for fit (shape arguments + loc + scale) def _fitstart(self, data, args=None): if args is None: args = (1.0,)*self.numargs return args + self.fit_loc_scale(data, *args) # Return the (possibly reduced) function to optimize in order to find MLE # estimates for the .fit method def _reduce_func(self, args, kwds): args = list(args) Nargs = len(args) - 2 fixedn = [] index = range(Nargs) + [-2, -1] names = ['f%d' % n for n in range(Nargs)] + ['floc', 'fscale'] x0 = args[:] for n, key in zip(index, names): if kwds.has_key(key): fixedn.append(n) args[n] = kwds[key] del x0[n] if len(fixedn) == 0: func = self.nnlf restore = None else: if len(fixedn) == len(index): raise ValueError("All parameters fixed. There is nothing to optimize.") def restore(args, theta): # Replace with theta for all numbers not in fixedn # This allows the non-fixed values to vary, but # we still call self.nnlf with all parameters. i = 0 for n in range(Nargs): if n not in fixedn: args[n] = theta[i] i += 1 return args def func(theta, x): newtheta = restore(args[:], theta) return self.nnlf(newtheta, x) return x0, func, restore, args def fit(self, data, *args, **kwds): """ Return MLEs for shape, location, and scale parameters from data. MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, ``self._fitstart(data)`` is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) and ``floc`` and ``fscale`` (for location and scale parameters, respectively). Parameters ---------- data : array_like Data to use in calculating the MLEs args : floats, optional Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to ``_fitstart(data)``). No default value. kwds : floats, optional Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed: f0...fn : hold respective shape parameters fixed. floc : hold location parameter fixed to specified value. fscale : hold scale parameter fixed to specified value. optimizer : The optimizer to use. The optimizer must take func, and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp=0 to suppress output as keyword arguments. Returns ------- shape, loc, scale : tuple of floats MLEs for any shape statistics, followed by those for location and scale. """ Narg = len(args) if Narg > self.numargs: raise ValueError("Too many input arguments.") start = [None]*2 if (Narg < self.numargs) or not (kwds.has_key('loc') and kwds.has_key('scale')): start = self._fitstart(data) # get distribution specific starting locations args += start[Narg:-2] loc = kwds.get('loc', start[-2]) scale = kwds.get('scale', start[-1]) args += (loc, scale) x0, func, restore, args = self._reduce_func(args, kwds) optimizer = kwds.get('optimizer', optimize.fmin) # convert string to function in scipy.optimize if not callable(optimizer) and isinstance(optimizer, (str, unicode)): if not optimizer.startswith('fmin_'): optimizer = "fmin_"+optimizer if optimizer == 'fmin_': optimizer = 'fmin' try: optimizer = getattr(optimize, optimizer) except AttributeError: raise ValueError("%s is not a valid optimizer" % optimizer) vals = optimizer(func,x0,args=(ravel(data),),disp=0) if restore is not None: vals = restore(args, vals) vals = tuple(vals) return vals def fit_loc_scale(self, data, *args): """ Estimate loc and scale parameters from data using 1st and 2nd moments """ mu, mu2 = self.stats(*args,**{'moments':'mv'}) muhat = arr(data).mean() mu2hat = arr(data).var() Shat = sqrt(mu2hat / mu2) Lhat = muhat - Shat*mu return Lhat, Shat @np.deprecate def est_loc_scale(self, data, *args): """This function is deprecated, use self.fit_loc_scale(data) instead. """ return self.fit_loc_scale(data, *args) def freeze(self,*args,**kwds): return rv_frozen(self,*args,**kwds) def __call__(self, *args, **kwds): return self.freeze(*args, **kwds) def _entropy(self, *args): def integ(x): val = self._pdf(x, *args) return val*log(val) entr = -integrate.quad(integ,self.a,self.b)[0] if not np.isnan(entr): return entr else: # try with different limits if integration problems low,upp = self.ppf([0.001,0.999],*args) if np.isinf(self.b): upper = upp else: upper = self.b if np.isinf(self.a): lower = low else: lower = self.a return -integrate.quad(integ,lower,upper)[0] def entropy(self, *args, **kwds): """ Differential entropy of the RV. Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) """ loc,scale=map(kwds.get,['loc','scale']) args, loc, scale = self._fix_loc_scale(args, loc, scale) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc==loc) output = zeros(shape(cond0),'d') output = place(output,(1-cond0),self.badvalue) goodargs = argsreduce(cond0, *args) #I don't know when or why vecentropy got broken when numargs == 0 if self.numargs == 0: output = place(output,cond0,self._entropy()+log(scale)) else: output = place(output,cond0,self.vecentropy(*goodargs)+log(scale)) return output def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds): """calculate expected value of a function with respect to the distribution location and scale only tested on a few examples Parameters ---------- all parameters are keyword parameters func : function (default: identity mapping) Function for which integral is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution lb, ub : numbers lower and upper bound for integration, default is set to the support of the distribution conditional : boolean (False) If true then the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Additional keyword arguments are passed to the integration routine. Returns ------- expected value : float Notes ----- This function has not been checked for it's behavior when the integral is not finite. The integration behavior is inherited from integrate.quad. """ lockwds = {'loc': loc, 'scale':scale} if func is None: def fun(x, *args): return x*self.pdf(x, *args, **lockwds) else: def fun(x, *args): return func(x)*self.pdf(x, *args, **lockwds) if lb is None: lb = loc + self.a * scale if ub is None: ub = loc + self.b * scale if conditional: invfac = (self.sf(lb, *args, **lockwds) - self.sf(ub, *args, **lockwds)) else: invfac = 1.0 kwds['args'] = args return integrate.quad(fun, lb, ub, **kwds)[0] / invfac _EULER = 0.577215664901532860606512090082402431042 # -special.psi(1) _ZETA3 = 1.202056903159594285399738161511449990765 # special.zeta(3,1) Apery's constant ## Kolmogorov-Smirnov one-sided and two-sided test statistics class ksone_gen(rv_continuous): def _cdf(self,x,n): return 1.0-special.smirnov(n,x) def _ppf(self,q,n): return special.smirnovi(n,1.0-q) ksone = ksone_gen(a=0.0,name='ksone', longname="Kolmogorov-Smirnov "\ "A one-sided test statistic.", shapes="n", extradoc=""" General Kolmogorov-Smirnov one-sided test. """ ) class kstwobign_gen(rv_continuous): def _cdf(self,x): return 1.0-special.kolmogorov(x) def _sf(self,x): return special.kolmogorov(x) def _ppf(self,q): return special.kolmogi(1.0-q) kstwobign = kstwobign_gen(a=0.0,name='kstwobign', longname='Kolmogorov-Smirnov two-sided (for large N)', extradoc=""" Kolmogorov-Smirnov two-sided test for large N """ ) ## Normal distribution # loc = mu, scale = std # Keep these implementations out of the class definition so they can be reused # by other distributions. _norm_pdf_C = math.sqrt(2*pi) _norm_pdf_logC = math.log(_norm_pdf_C) def _norm_pdf(x): return exp(-x**2/2.0) / _norm_pdf_C def _norm_logpdf(x): return -x**2 / 2.0 - _norm_pdf_logC def _norm_cdf(x): return special.ndtr(x) def _norm_logcdf(x): return log(special.ndtr(x)) def _norm_ppf(q): return special.ndtri(q) class norm_gen(rv_continuous): def _rvs(self): return mtrand.standard_normal(self._size) def _pdf(self,x): return _norm_pdf(x) def _logpdf(self, x): return _norm_logpdf(x) def _cdf(self,x): return _norm_cdf(x) def _logcdf(self, x): return _norm_logcdf(x) def _sf(self, x): return _norm_cdf(-x) def _logsf(self, x): return _norm_logcdf(-x) def _ppf(self,q): return _norm_ppf(q) def _isf(self,q): return -_norm_ppf(q) def _stats(self): return 0.0, 1.0, 0.0, 0.0 def _entropy(self): return 0.5*(log(2*pi)+1) norm = norm_gen(name='norm',longname='A normal',extradoc=""" Normal distribution The location (loc) keyword specifies the mean. The scale (scale) keyword specifies the standard deviation. normal.pdf(x) = exp(-x**2/2)/sqrt(2*pi) """) ## Alpha distribution ## class alpha_gen(rv_continuous): def _pdf(self, x, a): return 1.0/(x**2)/special.ndtr(a)*_norm_pdf(a-1.0/x) def _logpdf(self, x, a): return -2*log(x) + _norm_logpdf(a-1.0/x) - log(special.ndtr(a)) def _cdf(self, x, a): return special.ndtr(a-1.0/x) / special.ndtr(a) def _ppf(self, q, a): return 1.0/arr(a-special.ndtri(q*special.ndtr(a))) def _stats(self, a): return [inf]*2 + [nan]*2 alpha = alpha_gen(a=0.0,name='alpha',shapes='a',extradoc=""" Alpha distribution alpha.pdf(x,a) = 1/(x**2*Phi(a)*sqrt(2*pi)) * exp(-1/2 * (a-1/x)**2) where Phi(alpha) is the normal CDF, x > 0, and a > 0. """) ## Anglit distribution ## class anglit_gen(rv_continuous): def _pdf(self, x): return cos(2*x) def _cdf(self, x): return sin(x+pi/4)**2.0 def _ppf(self, q): return (arcsin(sqrt(q))-pi/4) def _stats(self): return 0.0, pi*pi/16-0.5, 0.0, -2*(pi**4 - 96)/(pi*pi-8)**2 def _entropy(self): return 1-log(2) anglit = anglit_gen(a=-pi/4,b=pi/4,name='anglit', extradoc=""" Anglit distribution anglit.pdf(x) = sin(2*x+pi/2) = cos(2*x) for -pi/4 <= x <= pi/4 """) ## Arcsine distribution ## class arcsine_gen(rv_continuous): def _pdf(self, x): return 1.0/pi/sqrt(x*(1-x)) def _cdf(self, x): return 2.0/pi*arcsin(sqrt(x)) def _ppf(self, q): return sin(pi/2.0*q)**2.0 def _stats(self): #mup = 0.5, 3.0/8.0, 15.0/48.0, 35.0/128.0 mu = 0.5 mu2 = 1.0/8 g1 = 0 g2 = -3.0/2.0 return mu, mu2, g1, g2 def _entropy(self): return -0.24156447527049044468 arcsine = arcsine_gen(a=0.0,b=1.0,name='arcsine',extradoc=""" Arcsine distribution arcsine.pdf(x) = 1/(pi*sqrt(x*(1-x))) for 0 < x < 1. """) ## Beta distribution ## class beta_gen(rv_continuous): def _rvs(self, a, b): return mtrand.beta(a,b,self._size) def _pdf(self, x, a, b): Px = (1.0-x)**(b-1.0) * x**(a-1.0) Px /= special.beta(a,b) return Px def _logpdf(self, x, a, b): lPx = (b-1.0)*log(1.0-x) + (a-1.0)*log(x) lPx -= log(special.beta(a,b)) return lPx def _cdf(self, x, a, b): return special.btdtr(a,b,x) def _ppf(self, q, a, b): return special.btdtri(a,b,q) def _stats(self, a, b): mn = a *1.0 / (a + b) var = (a*b*1.0)/(a+b+1.0)/(a+b)**2.0 g1 = 2.0*(b-a)*sqrt((1.0+a+b)/(a*b)) / (2+a+b) g2 = 6.0*(a**3 + a**2*(1-2*b) + b**2*(1+b) - 2*a*b*(2+b)) g2 /= a*b*(a+b+2)*(a+b+3) return mn, var, g1, g2 def _fitstart(self, data): g1 = _skew(data) g2 = _kurtosis(data) def func(x): a, b = x sk = 2*(b-a)*sqrt(a + b + 1) / (a + b + 2) / sqrt(a*b) ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2) ku /= a*b*(a+b+2)*(a+b+3) ku *= 6 return [sk-g1, ku-g2] a, b = optimize.fsolve(func, (1.0, 1.0)) return super(beta_gen, self)._fitstart(data, args=(a,b)) def fit(self, data, *args, **kwds): floc = kwds.get('floc', None) fscale = kwds.get('fscale', None) if floc is not None and fscale is not None: # special case data = (ravel(data)-floc)/fscale xbar = data.mean() v = data.var(ddof=0) fac = xbar*(1-xbar)/v - 1 a = xbar * fac b = (1-xbar) * fac return a, b, floc, fscale else: # do general fit return super(beta_gen, self).fit(data, *args, **kwds) beta = beta_gen(a=0.0, b=1.0, name='beta',shapes='a, b',extradoc=""" Beta distribution beta.pdf(x, a, b) = gamma(a+b)/(gamma(a)*gamma(b)) * x**(a-1) * (1-x)**(b-1) for 0 < x < 1, a, b > 0. """) ## Beta Prime class betaprime_gen(rv_continuous): def _rvs(self, a, b): u1 = gamma.rvs(a,size=self._size) u2 = gamma.rvs(b,size=self._size) return (u1 / u2) def _pdf(self, x, a, b): return 1.0/special.beta(a,b)*x**(a-1.0)/(1+x)**(a+b) def _logpdf(self, x, a, b): return (a-1.0)*log(x) - (a+b)*log(1+x) - log(special.beta(a,b)) def _cdf_skip(self, x, a, b): # remove for now: special.hyp2f1 is incorrect for large a x = where(x==1.0, 1.0-1e-6,x) return pow(x,a)*special.hyp2f1(a+b,a,1+a,-x)/a/special.beta(a,b) def _munp(self, n, a, b): if (n == 1.0): return where(b > 1, a/(b-1.0), inf) elif (n == 2.0): return where(b > 2, a*(a+1.0)/((b-2.0)*(b-1.0)), inf) elif (n == 3.0): return where(b > 3, a*(a+1.0)*(a+2.0)/((b-3.0)*(b-2.0)*(b-1.0)), inf) elif (n == 4.0): return where(b > 4, a*(a+1.0)*(a+2.0)*(a+3.0)/((b-4.0)*(b-3.0) \ *(b-2.0)*(b-1.0)), inf) else: raise NotImplementedError betaprime = betaprime_gen(a=0.0, b=500.0, name='betaprime', shapes='a, b', extradoc=""" Beta prime distribution betaprime.pdf(x, a, b) = gamma(a+b)/(gamma(a)*gamma(b)) * x**(a-1) * (1-x)**(-a-b) for x > 0, a, b > 0. """) ## Bradford ## class bradford_gen(rv_continuous): def _pdf(self, x, c): return c / (c*x + 1.0) / log(1.0+c) def _cdf(self, x, c): return log(1.0+c*x) / log(c+1.0) def _ppf(self, q, c): return ((1.0+c)**q-1)/c def _stats(self, c, moments='mv'): k = log(1.0+c) mu = (c-k)/(c*k) mu2 = ((c+2.0)*k-2.0*c)/(2*c*k*k) g1 = None g2 = None if 's' in moments: g1 = sqrt(2)*(12*c*c-9*c*k*(c+2)+2*k*k*(c*(c+3)+3)) g1 /= sqrt(c*(c*(k-2)+2*k))*(3*c*(k-2)+6*k) if 'k' in moments: g2 = c**3*(k-3)*(k*(3*k-16)+24)+12*k*c*c*(k-4)*(k-3) \ + 6*c*k*k*(3*k-14) + 12*k**3 g2 /= 3*c*(c*(k-2)+2*k)**2 return mu, mu2, g1, g2 def _entropy(self, c): k = log(1+c) return k/2.0 - log(c/k) bradford = bradford_gen(a=0.0, b=1.0, name='bradford', longname="A Bradford", shapes='c', extradoc=""" Bradford distribution bradford.pdf(x,c) = c/(k*(1+c*x)) for 0 < x < 1, c > 0 and k = log(1+c). """) ## Burr # burr with d=1 is called the fisk distribution class burr_gen(rv_continuous): def _pdf(self, x, c, d): return c*d*(x**(-c-1.0))*((1+x**(-c*1.0))**(-d-1.0)) def _cdf(self, x, c, d): return (1+x**(-c*1.0))**(-d**1.0) def _ppf(self, q, c, d): return (q**(-1.0/d)-1)**(-1.0/c) def _stats(self, c, d, moments='mv'): g2c, g2cd = gam(1-2.0/c), gam(2.0/c+d) g1c, g1cd = gam(1-1.0/c), gam(1.0/c+d) gd = gam(d) k = gd*g2c*g2cd - g1c**2 * g1cd**2 mu = g1c*g1cd / gd mu2 = k / gd**2.0 g1, g2 = None, None g3c, g3cd = None, None if 's' in moments: g3c, g3cd = gam(1-3.0/c), gam(3.0/c+d) g1 = 2*g1c**3 * g1cd**3 + gd*gd*g3c*g3cd - 3*gd*g2c*g1c*g1cd*g2cd g1 /= sqrt(k**3) if 'k' in moments: if g3c is None: g3c = gam(1-3.0/c) if g3cd is None: g3cd = gam(3.0/c+d) g4c, g4cd = gam(1-4.0/c), gam(4.0/c+d) g2 = 6*gd*g2c*g2cd * g1c**2 * g1cd**2 + gd**3 * g4c*g4cd g2 -= 3*g1c**4 * g1cd**4 -4*gd**2*g3c*g1c*g1cd*g3cd return mu, mu2, g1, g2 burr = burr_gen(a=0.0, name='burr', longname="Burr", shapes="c, d", extradoc=""" Burr distribution burr.pdf(x,c,d) = c*d * x**(-c-1) * (1+x**(-c))**(-d-1) for x > 0. """) # Fisk distribution # burr is a generalization class fisk_gen(burr_gen): def _pdf(self, x, c): return burr_gen._pdf(self, x, c, 1.0) def _cdf(self, x, c): return burr_gen._cdf(self, x, c, 1.0) def _ppf(self, x, c): return burr_gen._ppf(self, x, c, 1.0) def _stats(self, c): return burr_gen._stats(self, c, 1.0) def _entropy(self, c): return 2 - log(c) fisk = fisk_gen(a=0.0, name='fisk', longname="Fisk", shapes='c', extradoc=""" Fisk distribution. Also known as the log-logistic distribution. Burr distribution with d=1. """ ) ## Cauchy # median = loc class cauchy_gen(rv_continuous): def _pdf(self, x): return 1.0/pi/(1.0+x*x) def _cdf(self, x): return 0.5 + 1.0/pi*arctan(x) def _ppf(self, q): return tan(pi*q-pi/2.0) def _sf(self, x): return 0.5 - 1.0/pi*arctan(x) def _isf(self, q): return tan(pi/2.0-pi*q) def _stats(self): return inf, inf, nan, nan def _entropy(self): return log(4*pi) cauchy = cauchy_gen(name='cauchy',longname='Cauchy',extradoc=""" Cauchy distribution cauchy.pdf(x) = 1/(pi*(1+x**2)) This is the t distribution with one degree of freedom. """ ) ## Chi ## (positive square-root of chi-square) ## chi(1, loc, scale) = halfnormal ## chi(2, 0, scale) = Rayleigh ## chi(3, 0, scale) = MaxWell class chi_gen(rv_continuous): def _rvs(self, df): return sqrt(chi2.rvs(df,size=self._size)) def _pdf(self, x, df): return x**(df-1.)*exp(-x*x*0.5)/(2.0)**(df*0.5-1)/gam(df*0.5) def _cdf(self, x, df): return special.gammainc(df*0.5,0.5*x*x) def _ppf(self, q, df): return sqrt(2*special.gammaincinv(df*0.5,q)) def _stats(self, df): mu = sqrt(2)*special.gamma(df/2.0+0.5)/special.gamma(df/2.0) mu2 = df - mu*mu g1 = (2*mu**3.0 + mu*(1-2*df))/arr(mu2**1.5) g2 = 2*df*(1.0-df)-6*mu**4 + 4*mu**2 * (2*df-1) g2 /= arr(mu2**2.0) return mu, mu2, g1, g2 chi = chi_gen(a=0.0,name='chi',shapes='df',extradoc=""" Chi distribution chi.pdf(x,df) = x**(df-1)*exp(-x**2/2)/(2**(df/2-1)*gamma(df/2)) for x > 0. """ ) ## Chi-squared (gamma-distributed with loc=0 and scale=2 and shape=df/2) class chi2_gen(rv_continuous): def _rvs(self, df): return mtrand.chisquare(df,self._size) def _pdf(self, x, df): return exp(self._logpdf(x, df)) def _logpdf(self, x, df): #term1 = (df/2.-1)*log(x) #term1[(df==2)*(x==0)] = 0 #avoid 0*log(0)==nan return (df/2.-1)*log(x+1e-300) - x/2. - gamln(df/2.) - (log(2)*df)/2. ## Px = x**(df/2.0-1)*exp(-x/2.0) ## Px /= special.gamma(df/2.0)* 2**(df/2.0) ## return log(Px) def _cdf(self, x, df): return special.chdtr(df, x) def _sf(self, x, df): return special.chdtrc(df, x) def _isf(self, p, df): return special.chdtri(df, p) def _ppf(self, p, df): return self._isf(1.0-p, df) def _stats(self, df): mu = df mu2 = 2*df g1 = 2*sqrt(2.0/df) g2 = 12.0/df return mu, mu2, g1, g2 chi2 = chi2_gen(a=0.0,name='chi2',longname='A chi-squared',shapes='df', extradoc=""" Chi-squared distribution chi2.pdf(x,df) = 1/(2*gamma(df/2)) * (x/2)**(df/2-1) * exp(-x/2) """ ) ## Cosine (Approximation to the Normal) class cosine_gen(rv_continuous): def _pdf(self, x): return 1.0/2/pi*(1+cos(x)) def _cdf(self, x): return 1.0/2/pi*(pi + x + sin(x)) def _stats(self): return 0.0, pi*pi/3.0-2.0, 0.0, -6.0*(pi**4-90)/(5.0*(pi*pi-6)**2) def _entropy(self): return log(4*pi)-1.0 cosine = cosine_gen(a=-pi,b=pi,name='cosine',extradoc=""" Cosine distribution (approximation to the normal) cosine.pdf(x) = 1/(2*pi) * (1+cos(x)) for -pi <= x <= pi. """) ## Double Gamma distribution class dgamma_gen(rv_continuous): def _rvs(self, a): u = random(size=self._size) return (gamma.rvs(a,size=self._size)*where(u>=0.5,1,-1)) def _pdf(self, x, a): ax = abs(x) return 1.0/(2*special.gamma(a))*ax**(a-1.0) * exp(-ax) def _logpdf(self, x, a): ax = abs(x) return (a-1.0)*log(ax) - ax - log(2) - gamln(a) def _cdf(self, x, a): fac = 0.5*special.gammainc(a,abs(x)) return where(x>0,0.5+fac,0.5-fac) def _sf(self, x, a): fac = 0.5*special.gammainc(a,abs(x)) #return where(x>0,0.5-0.5*fac,0.5+0.5*fac) return where(x>0,0.5-fac,0.5+fac) def _ppf(self, q, a): fac = special.gammainccinv(a,1-abs(2*q-1)) return where(q>0.5, fac, -fac) def _stats(self, a): mu2 = a*(a+1.0) return 0.0, mu2, 0.0, (a+2.0)*(a+3.0)/mu2-3.0 dgamma = dgamma_gen(name='dgamma',longname="A double gamma", shapes='a',extradoc=""" Double gamma distribution dgamma.pdf(x,a) = 1/(2*gamma(a))*abs(x)**(a-1)*exp(-abs(x)) for a > 0. """ ) ## Double Weibull distribution ## class dweibull_gen(rv_continuous): def _rvs(self, c): u = random(size=self._size) return weibull_min.rvs(c, size=self._size)*(where(u>=0.5,1,-1)) def _pdf(self, x, c): ax = abs(x) Px = c/2.0*ax**(c-1.0)*exp(-ax**c) return Px def _logpdf(self, x, c): ax = abs(x) return log(c) - log(2.0) + (c-1.0)*log(ax) - ax**c def _cdf(self, x, c): Cx1 = 0.5*exp(-abs(x)**c) return where(x > 0, 1-Cx1, Cx1) def _ppf_skip(self, q, c): fac = where(q<=0.5,2*q,2*q-1) fac = pow(arr(log(1.0/fac)),1.0/c) return where(q>0.5,fac,-fac) def _stats(self, c): var = gam(1+2.0/c) return 0.0, var, 0.0, gam(1+4.0/c)/var dweibull = dweibull_gen(name='dweibull',longname="A double Weibull", shapes='c',extradoc=""" Double Weibull distribution dweibull.pdf(x,c) = c/2*abs(x)**(c-1)*exp(-abs(x)**c) """ ) ## ERLANG ## ## Special case of the Gamma distribution with shape parameter an integer. ## class erlang_gen(rv_continuous): def _rvs(self, n): return gamma.rvs(n,size=self._size) def _arg_check(self, n): return (n > 0) & (floor(n)==n) def _pdf(self, x, n): Px = (x)**(n-1.0)*exp(-x)/special.gamma(n) return Px def _logpdf(self, x, n): return (n-1.0)*log(x) - x - gamln(n) def _cdf(self, x, n): return special.gdtr(1.0,n,x) def _sf(self, x, n): return special.gdtrc(1.0,n,x) def _ppf(self, q, n): return special.gdtrix(1.0, n, q) def _stats(self, n): n = n*1.0 return n, n, 2/sqrt(n), 6/n def _entropy(self, n): return special.psi(n)*(1-n) + 1 + gamln(n) erlang = erlang_gen(a=0.0,name='erlang',longname='An Erlang', shapes='n',extradoc=""" Erlang distribution (Gamma with integer shape parameter) """ ) ## Exponential (gamma distributed with a=1.0, loc=loc and scale=scale) ## scale == 1.0 / lambda class expon_gen(rv_continuous): def _rvs(self): return mtrand.standard_exponential(self._size) def _pdf(self, x): return exp(-x) def _logpdf(self, x): return -x def _cdf(self, x): return -expm1(-x) def _ppf(self, q): return -log1p(-q) def _sf(self,x): return exp(-x) def _logsf(self, x): return -x def _isf(self,q): return -log(q) def _stats(self): return 1.0, 1.0, 2.0, 6.0 def _entropy(self): return 1.0 expon = expon_gen(a=0.0,name='expon',longname="An exponential", extradoc=""" Exponential distribution expon.pdf(x) = exp(-x) for x >= 0. scale = 1.0 / lambda """ ) ## Exponentiated Weibull class exponweib_gen(rv_continuous): def _pdf(self, x, a, c): exc = exp(-x**c) return a*c*(1-exc)**arr(a-1) * exc * x**(c-1) def _logpdf(self, x, a, c): exc = exp(-x**c) return log(a) + log(c) + (a-1.)*log(1-exc) - x**c + (c-1.0)*log(x) def _cdf(self, x, a, c): exm1c = -expm1(-x**c) return arr((exm1c)**a) def _ppf(self, q, a, c): return (-log1p(-q**(1.0/a)))**arr(1.0/c) exponweib = exponweib_gen(a=0.0,name='exponweib', longname="An exponentiated Weibull", shapes="a, c",extradoc=""" Exponentiated Weibull distribution exponweib.pdf(x,a,c) = a*c*(1-exp(-x**c))**(a-1)*exp(-x**c)*x**(c-1) for x > 0, a, c > 0. """ ) ## Exponential Power class exponpow_gen(rv_continuous): def _pdf(self, x, b): xbm1 = arr(x**(b-1.0)) xb = xbm1 * x return exp(1)*b*xbm1 * exp(xb - exp(xb)) def _logpdf(self, x, b): xb = x**(b-1.0)*x return 1 + log(b) + (b-1.0)*log(x) + xb - exp(xb) def _cdf(self, x, b): xb = arr(x**b) return -expm1(-expm1(xb)) def _sf(self, x, b): xb = arr(x**b) return exp(-expm1(xb)) def _isf(self, x, b): return (log1p(-log(x)))**(1./b) def _ppf(self, q, b): return pow(log1p(-log1p(-q)), 1.0/b) exponpow = exponpow_gen(a=0.0,name='exponpow',longname="An exponential power", shapes='b',extradoc=""" Exponential Power distribution exponpow.pdf(x,b) = b*x**(b-1) * exp(1+x**b - exp(x**b)) for x >= 0, b > 0. """ ) ## Fatigue-Life (Birnbaum-Sanders) class fatiguelife_gen(rv_continuous): def _rvs(self, c): z = norm.rvs(size=self._size) x = 0.5*c*z x2 = x*x t = 1.0 + 2*x2 + 2*x*sqrt(1 + x2) return t def _pdf(self, x, c): return (x+1)/arr(2*c*sqrt(2*pi*x**3))*exp(-(x-1)**2/arr((2.0*x*c**2))) def _logpdf(self, x, c): return log(x+1) - (x-1)**2 / (2.0*x*c**2) - log(2*c) - 0.5*(log(2*pi) + 3*log(x)) def _cdf(self, x, c): return special.ndtr(1.0/c*(sqrt(x)-1.0/arr(sqrt(x)))) def _ppf(self, q, c): tmp = c*special.ndtri(q) return 0.25*(tmp + sqrt(tmp**2 + 4))**2 def _stats(self, c): c2 = c*c mu = c2 / 2.0 + 1 den = 5*c2 + 4 mu2 = c2*den /4.0 g1 = 4*c*sqrt(11*c2+6.0)/den**1.5 g2 = 6*c2*(93*c2+41.0) / den**2.0 return mu, mu2, g1, g2 fatiguelife = fatiguelife_gen(a=0.0,name='fatiguelife', longname="A fatigue-life (Birnbaum-Sanders)", shapes='c',extradoc=""" Fatigue-life (Birnbaum-Sanders) distribution fatiguelife.pdf(x,c) = (x+1)/(2*c*sqrt(2*pi*x**3)) * exp(-(x-1)**2/(2*x*c**2)) for x > 0. """ ) ## Folded Cauchy class foldcauchy_gen(rv_continuous): def _rvs(self, c): return abs(cauchy.rvs(loc=c,size=self._size)) def _pdf(self, x, c): return 1.0/pi*(1.0/(1+(x-c)**2) + 1.0/(1+(x+c)**2)) def _cdf(self, x, c): return 1.0/pi*(arctan(x-c) + arctan(x+c)) def _stats(self, c): return inf, inf, nan, nan # setting xb=1000 allows to calculate ppf for up to q=0.9993 foldcauchy = foldcauchy_gen(a=0.0, name='foldcauchy',xb=1000, longname = "A folded Cauchy", shapes='c',extradoc=""" A folded Cauchy distributions foldcauchy.pdf(x,c) = 1/(pi*(1+(x-c)**2)) + 1/(pi*(1+(x+c)**2)) for x >= 0. """ ) ## F class f_gen(rv_continuous): def _rvs(self, dfn, dfd): return mtrand.f(dfn, dfd, self._size) def _pdf(self, x, dfn, dfd): # n = arr(1.0*dfn) # m = arr(1.0*dfd) # Px = m**(m/2) * n**(n/2) * x**(n/2-1) # Px /= (m+n*x)**((n+m)/2)*special.beta(n/2,m/2) return exp(self._logpdf(x, dfn, dfd)) def _logpdf(self, x, dfn, dfd): n = 1.0*dfn m = 1.0*dfd lPx = m/2*log(m) + n/2*log(n) + (n/2-1)*log(x) lPx -= ((n+m)/2)*log(m+n*x) + special.betaln(n/2,m/2) return lPx def _cdf(self, x, dfn, dfd): return special.fdtr(dfn, dfd, x) def _sf(self, x, dfn, dfd): return special.fdtrc(dfn, dfd, x) def _ppf(self, q, dfn, dfd): return special.fdtri(dfn, dfd, q) def _stats(self, dfn, dfd): v2 = arr(dfd*1.0) v1 = arr(dfn*1.0) mu = where (v2 > 2, v2 / arr(v2 - 2), inf) mu2 = 2*v2*v2*(v2+v1-2)/(v1*(v2-2)**2 * (v2-4)) mu2 = where(v2 > 4, mu2, inf) g1 = 2*(v2+2*v1-2)/(v2-6)*sqrt((2*v2-4)/(v1*(v2+v1-2))) g1 = where(v2 > 6, g1, nan) g2 = 3/(2*v2-16)*(8+g1*g1*(v2-6)) g2 = where(v2 > 8, g2, nan) return mu, mu2, g1, g2 f = f_gen(a=0.0,name='f',longname='An F',shapes="dfn, dfd", extradoc=""" F distribution df2**(df2/2) * df1**(df1/2) * x**(df1/2-1) F.pdf(x,df1,df2) = -------------------------------------------- (df2+df1*x)**((df1+df2)/2) * B(df1/2, df2/2) for x > 0. """ ) ## Folded Normal ## abs(Z) where (Z is normal with mu=L and std=S so that c=abs(L)/S) ## ## note: regress docs have scale parameter correct, but first parameter ## he gives is a shape parameter A = c * scale ## Half-normal is folded normal with shape-parameter c=0. class foldnorm_gen(rv_continuous): def _rvs(self, c): return abs(norm.rvs(loc=c,size=self._size)) def _pdf(self, x, c): return sqrt(2.0/pi)*cosh(c*x)*exp(-(x*x+c*c)/2.0) def _cdf(self, x, c,): return special.ndtr(x-c) + special.ndtr(x+c) - 1.0 def _stats(self, c): fac = special.erf(c/sqrt(2)) mu = sqrt(2.0/pi)*exp(-0.5*c*c)+c*fac mu2 = c*c + 1 - mu*mu c2 = c*c g1 = sqrt(2/pi)*exp(-1.5*c2)*(4-pi*exp(c2)*(2*c2+1.0)) g1 += 2*c*fac*(6*exp(-c2) + 3*sqrt(2*pi)*c*exp(-c2/2.0)*fac + \ pi*c*(fac*fac-1)) g1 /= pi*mu2**1.5 g2 = c2*c2+6*c2+3+6*(c2+1)*mu*mu - 3*mu**4 g2 -= 4*exp(-c2/2.0)*mu*(sqrt(2.0/pi)*(c2+2)+c*(c2+3)*exp(c2/2.0)*fac) g2 /= mu2**2.0 return mu, mu2, g1, g2 foldnorm = foldnorm_gen(a=0.0,name='foldnorm',longname='A folded normal', shapes='c',extradoc=""" Folded normal distribution foldnormal.pdf(x,c) = sqrt(2/pi) * cosh(c*x) * exp(-(x**2+c**2)/2) for c >= 0. """ ) ## Extreme Value Type II or Frechet ## (defined in Regress+ documentation as Extreme LB) as ## a limiting value distribution. ## class frechet_r_gen(rv_continuous): def _pdf(self, x, c): return c*pow(x,c-1)*exp(-pow(x,c)) def _logpdf(self, x, c): return log(c) + (c-1)*log(x) - pow(x,c) def _cdf(self, x, c): return -expm1(-pow(x,c)) def _ppf(self, q, c): return pow(-log1p(-q),1.0/c) def _munp(self, n, c): return special.gamma(1.0+n*1.0/c) def _entropy(self, c): return -_EULER / c - log(c) + _EULER + 1 frechet_r = frechet_r_gen(a=0.0,name='frechet_r',longname="A Frechet right", shapes='c',extradoc=""" A Frechet (right) distribution (also called Weibull minimum) frechet_r.pdf(x,c) = c*x**(c-1)*exp(-x**c) for x > 0, c > 0. """ ) weibull_min = frechet_r_gen(a=0.0,name='weibull_min', longname="A Weibull minimum", shapes='c',extradoc=""" A Weibull minimum distribution (also called a Frechet (right) distribution) weibull_min.pdf(x,c) = c*x**(c-1)*exp(-x**c) for x > 0, c > 0. """ ) class frechet_l_gen(rv_continuous): def _pdf(self, x, c): return c*pow(-x,c-1)*exp(-pow(-x,c)) def _cdf(self, x, c): return exp(-pow(-x,c)) def _ppf(self, q, c): return -pow(-log(q),1.0/c) def _munp(self, n, c): val = special.gamma(1.0+n*1.0/c) if (int(n) % 2): sgn = -1 else: sgn = 1 return sgn*val def _entropy(self, c): return -_EULER / c - log(c) + _EULER + 1 frechet_l = frechet_l_gen(b=0.0,name='frechet_l',longname="A Frechet left", shapes='c',extradoc=""" A Frechet (left) distribution (also called Weibull maximum) frechet_l.pdf(x,c) = c * (-x)**(c-1) * exp(-(-x)**c) for x < 0, c > 0. """ ) weibull_max = frechet_l_gen(b=0.0,name='weibull_max', longname="A Weibull maximum", shapes='c',extradoc=""" A Weibull maximum distribution (also called a Frechet (left) distribution) weibull_max.pdf(x,c) = c * (-x)**(c-1) * exp(-(-x)**c) for x < 0, c > 0. """ ) ## Generalized Logistic ## class genlogistic_gen(rv_continuous): def _pdf(self, x, c): Px = c*exp(-x)/(1+exp(-x))**(c+1.0) return Px def _logpdf(self, x, c): return log(c) - x - (c+1.0)*log1p(exp(-x)) def _cdf(self, x, c): Cx = (1+exp(-x))**(-c) return Cx def _ppf(self, q, c): vals = -log(pow(q,-1.0/c)-1) return vals def _stats(self, c): zeta = special.zeta mu = _EULER + special.psi(c) mu2 = pi*pi/6.0 + zeta(2,c) g1 = -2*zeta(3,c) + 2*_ZETA3 g1 /= mu2**1.5 g2 = pi**4/15.0 + 6*zeta(4,c) g2 /= mu2**2.0 return mu, mu2, g1, g2 genlogistic = genlogistic_gen(name='genlogistic', longname="A generalized logistic", shapes='c',extradoc=""" Generalized logistic distribution genlogistic.pdf(x,c) = c*exp(-x) / (1+exp(-x))**(c+1) for x > 0, c > 0. """ ) ## Generalized Pareto class genpareto_gen(rv_continuous): def _argcheck(self, c): c = arr(c) self.b = where(c < 0, 1.0/abs(c), inf) return where(c==0, 0, 1) def _pdf(self, x, c): Px = pow(1+c*x,arr(-1.0-1.0/c)) return Px def _logpdf(self, x, c): return (-1.0-1.0/c) * np.log1p(c*x) def _cdf(self, x, c): return 1.0 - pow(1+c*x,arr(-1.0/c)) def _ppf(self, q, c): vals = 1.0/c * (pow(1-q, -c)-1) return vals def _munp(self, n, c): k = arange(0,n+1) val = (-1.0/c)**n * sum(comb(n,k)*(-1)**k / (1.0-c*k),axis=0) return where(c*n < 1, val, inf) def _entropy(self, c): if (c > 0): return 1+c else: self.b = -1.0 / c return rv_continuous._entropy(self, c) genpareto = genpareto_gen(a=0.0,name='genpareto', longname="A generalized Pareto", shapes='c',extradoc=""" Generalized Pareto distribution genpareto.pdf(x,c) = (1+c*x)**(-1-1/c) for c != 0, and for x >= 0 for all c, and x < 1/abs(c) for c < 0. """ ) ## Generalized Exponential class genexpon_gen(rv_continuous): def _pdf(self, x, a, b, c): return (a+b*(-expm1(-c*x)))*exp((-a-b)*x+b*(-expm1(-c*x))/c) def _cdf(self, x, a, b, c): return -expm1((-a-b)*x + b*(-expm1(-c*x))/c) def _logpdf(self, x, a, b, c): return np.log(a+b*(-expm1(-c*x))) + (-a-b)*x+b*(-expm1(-c*x))/c genexpon = genexpon_gen(a=0.0,name='genexpon', longname='A generalized exponential', shapes='a, b, c',extradoc=""" Generalized exponential distribution (Ryu 1993) f(x,a,b,c) = (a+b*(1-exp(-c*x))) * exp(-a*x-b*x+b/c*(1-exp(-c*x))) for x >= 0, a,b,c > 0. a, b, c are the first, second and third shape parameters. References ---------- "The Exponential Distribution: Theory, Methods and Applications", N. Balakrishnan, Asit P. Basu """ ) ## Generalized Extreme Value ## c=0 is just gumbel distribution. ## This version does now accept c==0 ## Use gumbel_r for c==0 # new version by Per Brodtkorb, see ticket:767 # also works for c==0, special case is gumbel_r # increased precision for small c class genextreme_gen(rv_continuous): def _argcheck(self, c): min = np.minimum max = np.maximum sml = floatinfo.machar.xmin #self.b = where(c > 0, 1.0 / c,inf) #self.a = where(c < 0, 1.0 / c, -inf) self.b = where(c > 0, 1.0 / max(c, sml),inf) self.a = where(c < 0, 1.0 / min(c,-sml), -inf) return where(abs(c)==inf, 0, 1) #True #(c!=0) def _pdf(self, x, c): ## ex2 = 1-c*x ## pex2 = pow(ex2,1.0/c) ## p2 = exp(-pex2)*pex2/ex2 ## return p2 cx = c*x logex2 = where((c==0)*(x==x),0.0,log1p(-cx)) logpex2 = where((c==0)*(x==x),-x,logex2/c) pex2 = exp(logpex2) # % Handle special cases logpdf = where((cx==1) | (cx==-inf),-inf,-pex2+logpex2-logex2) putmask(logpdf,(c==1) & (x==1),0.0) # logpdf(c==1 & x==1) = 0; % 0^0 situation return exp(logpdf) def _cdf(self, x, c): #return exp(-pow(1-c*x,1.0/c)) loglogcdf = where((c==0)*(x==x),-x,log1p(-c*x)/c) return exp(-exp(loglogcdf)) def _ppf(self, q, c): #return 1.0/c*(1.-(-log(q))**c) x = -log(-log(q)) return where((c==0)*(x==x),x,-expm1(-c*x)/c) def _stats(self,c): g = lambda n : gam(n*c+1) g1 = g(1) g2 = g(2) g3 = g(3); g4 = g(4) g2mg12 = where(abs(c)<1e-7,(c*pi)**2.0/6.0,g2-g1**2.0) gam2k = where(abs(c)<1e-7,pi**2.0/6.0, expm1(gamln(2.0*c+1.0)-2*gamln(c+1.0))/c**2.0); eps = 1e-14 gamk = where(abs(c)<eps,-_EULER,expm1(gamln(c+1))/c) m = where(c<-1.0,nan,-gamk) v = where(c<-0.5,nan,g1**2.0*gam2k) #% skewness sk1 = where(c<-1./3,nan,np.sign(c)*(-g3+(g2+2*g2mg12)*g1)/((g2mg12)**(3./2.))); sk = where(abs(c)<=eps**0.29,12*sqrt(6)*_ZETA3/pi**3,sk1) #% The kurtosis is: ku1 = where(c<-1./4,nan,(g4+(-4*g3+3*(g2+g2mg12)*g1)*g1)/((g2mg12)**2)) ku = where(abs(c)<=(eps)**0.23,12.0/5.0,ku1-3.0) return m,v,sk,ku def _munp(self, n, c): k = arange(0,n+1) vals = 1.0/c**n * sum(comb(n,k) * (-1)**k * special.gamma(c*k + 1),axis=0) return where(c*n > -1, vals, inf) genextreme = genextreme_gen(name='genextreme', longname="A generalized extreme value", shapes='c',extradoc=""" Generalized extreme value (see gumbel_r for c=0) genextreme.pdf(x,c) = exp(-exp(-x))*exp(-x) for c==0 genextreme.pdf(x,c) = exp(-(1-c*x)**(1/c))*(1-c*x)**(1/c-1) for x <= 1/c, c > 0 """ ) ## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition) ## gamma(a, loc, scale) with a an integer is the Erlang distribution ## gamma(1, loc, scale) is the Exponential distribution ## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom. class gamma_gen(rv_continuous): def _rvs(self, a): return mtrand.standard_gamma(a, self._size) def _pdf(self, x, a): return x**(a-1)*exp(-x)/special.gamma(a) def _logpdf(self, x, a): return (a-1)*log(x) - x - gamln(a) def _cdf(self, x, a): return special.gammainc(a, x) def _ppf(self, q, a): return special.gammaincinv(a,q) def _stats(self, a): return a, a, 2.0/sqrt(a), 6.0/a def _entropy(self, a): return special.psi(a)*(1-a) + 1 + gamln(a) def _fitstart(self, data): a = 4 / _skew(data)**2 return super(gamma_gen, self)._fitstart(data, args=(a,)) def fit(self, data, *args, **kwds): floc = kwds.get('floc', None) if floc == 0: xbar = ravel(data).mean() logx_bar = ravel(log(data)).mean() s = log(xbar) - logx_bar def func(a): return log(a) - special.digamma(a) - s aest = (3-s + math.sqrt((s-3)**2 + 24*s)) / (12*s) xa = aest*(1-0.4) xb = aest*(1+0.4) a = optimize.brentq(func, xa, xb, disp=0) scale = xbar / a return a, floc, scale else: return super(gamma_gen, self).fit(data, *args, **kwds) gamma = gamma_gen(a=0.0,name='gamma',longname='A gamma', shapes='a',extradoc=""" Gamma distribution For a = integer, this is the Erlang distribution, and for a=1 it is the exponential distribution. gamma.pdf(x,a) = x**(a-1)*exp(-x)/gamma(a) for x >= 0, a > 0. """ ) # Generalized Gamma class gengamma_gen(rv_continuous): def _argcheck(self, a, c): return (a > 0) & (c != 0) def _pdf(self, x, a, c): return abs(c)* exp((c*a-1)*log(x)-x**c- gamln(a)) def _cdf(self, x, a, c): val = special.gammainc(a,x**c) cond = c + 0*val return where(cond>0,val,1-val) def _ppf(self, q, a, c): val1 = special.gammaincinv(a,q) val2 = special.gammaincinv(a,1.0-q) ic = 1.0/c cond = c+0*val1 return where(cond > 0,val1**ic,val2**ic) def _munp(self, n, a, c): return special.gamma(a+n*1.0/c) / special.gamma(a) def _entropy(self, a,c): val = special.psi(a) return a*(1-val) + 1.0/c*val + gamln(a)-log(abs(c)) gengamma = gengamma_gen(a=0.0, name='gengamma', longname='A generalized gamma', shapes="a, c", extradoc=""" Generalized gamma distribution gengamma.pdf(x,a,c) = abs(c)*x**(c*a-1)*exp(-x**c)/gamma(a) for x > 0, a > 0, and c != 0. """ ) ## Generalized Half-Logistic ## class genhalflogistic_gen(rv_continuous): def _argcheck(self, c): self.b = 1.0 / c return (c > 0) def _pdf(self, x, c): limit = 1.0/c tmp = arr(1-c*x) tmp0 = tmp**(limit-1) tmp2 = tmp0*tmp return 2*tmp0 / (1+tmp2)**2 def _cdf(self, x, c): limit = 1.0/c tmp = arr(1-c*x) tmp2 = tmp**(limit) return (1.0-tmp2) / (1+tmp2) def _ppf(self, q, c): return 1.0/c*(1-((1.0-q)/(1.0+q))**c) def _entropy(self,c): return 2 - (2*c+1)*log(2) genhalflogistic = genhalflogistic_gen(a=0.0, name='genhalflogistic', longname="A generalized half-logistic", shapes='c',extradoc=""" Generalized half-logistic genhalflogistic.pdf(x,c) = 2*(1-c*x)**(1/c-1) / (1+(1-c*x)**(1/c))**2 for 0 <= x <= 1/c, and c > 0. """ ) ## Gompertz (Truncated Gumbel) ## Defined for x>=0 class gompertz_gen(rv_continuous): def _pdf(self, x, c): ex = exp(x) return c*ex*exp(-c*(ex-1)) def _cdf(self, x, c): return 1.0-exp(-c*(exp(x)-1)) def _ppf(self, q, c): return log(1-1.0/c*log(1-q)) def _entropy(self, c): return 1.0 - log(c) - exp(c)*special.expn(1,c) gompertz = gompertz_gen(a=0.0, name='gompertz', longname="A Gompertz (truncated Gumbel) distribution", shapes='c',extradoc=""" Gompertz (truncated Gumbel) distribution gompertz.pdf(x,c) = c*exp(x) * exp(-c*(exp(x)-1)) for x >= 0, c > 0. """ ) ## Gumbel, Log-Weibull, Fisher-Tippett, Gompertz ## The left-skewed gumbel distribution. ## and right-skewed are available as gumbel_l and gumbel_r class gumbel_r_gen(rv_continuous): def _pdf(self, x): ex = exp(-x) return ex*exp(-ex) def _logpdf(self, x): return -x - exp(-x) def _cdf(self, x): return exp(-exp(-x)) def _logcdf(self, x): return -exp(-x) def _ppf(self, q): return -log(-log(q)) def _stats(self): return _EULER, pi*pi/6.0, \ 12*sqrt(6)/pi**3 * _ZETA3, 12.0/5 def _entropy(self): return 1.0608407169541684911 gumbel_r = gumbel_r_gen(name='gumbel_r',longname="A (right-skewed) Gumbel", extradoc=""" Right-skewed Gumbel (Log-Weibull, Fisher-Tippett, Gompertz) distribution gumbel_r.pdf(x) = exp(-(x+exp(-x))) """ ) class gumbel_l_gen(rv_continuous): def _pdf(self, x): ex = exp(x) return ex*exp(-ex) def _logpdf(self, x): return x - exp(x) def _cdf(self, x): return 1.0-exp(-exp(x)) def _ppf(self, q): return log(-log(1-q)) def _stats(self): return -_EULER, pi*pi/6.0, \ -12*sqrt(6)/pi**3 * _ZETA3, 12.0/5 def _entropy(self): return 1.0608407169541684911 gumbel_l = gumbel_l_gen(name='gumbel_l',longname="A left-skewed Gumbel", extradoc=""" Left-skewed Gumbel distribution gumbel_l.pdf(x) = exp(x - exp(x)) """ ) # Half-Cauchy class halfcauchy_gen(rv_continuous): def _pdf(self, x): return 2.0/pi/(1.0+x*x) def _logpdf(self, x): return np.log(2.0/pi) - np.log1p(x*x) def _cdf(self, x): return 2.0/pi*arctan(x) def _ppf(self, q): return tan(pi/2*q) def _stats(self): return inf, inf, nan, nan def _entropy(self): return log(2*pi) halfcauchy = halfcauchy_gen(a=0.0,name='halfcauchy', longname="A Half-Cauchy",extradoc=""" Half-Cauchy distribution halfcauchy.pdf(x) = 2/(pi*(1+x**2)) for x >= 0. """ ) ## Half-Logistic ## class halflogistic_gen(rv_continuous): def _pdf(self, x): return 0.5/(cosh(x/2.0))**2.0 def _cdf(self, x): return tanh(x/2.0) def _ppf(self, q): return 2*arctanh(q) def _munp(self, n): if n==1: return 2*log(2) if n==2: return pi*pi/3.0 if n==3: return 9*_ZETA3 if n==4: return 7*pi**4 / 15.0 return 2*(1-pow(2.0,1-n))*special.gamma(n+1)*special.zeta(n,1) def _entropy(self): return 2-log(2) halflogistic = halflogistic_gen(a=0.0, name='halflogistic', longname="A half-logistic", extradoc=""" Half-logistic distribution halflogistic.pdf(x) = 2*exp(-x)/(1+exp(-x))**2 = 1/2*sech(x/2)**2 for x >= 0. """ ) ## Half-normal = chi(1, loc, scale) class halfnorm_gen(rv_continuous): def _rvs(self): return abs(norm.rvs(size=self._size)) def _pdf(self, x): return sqrt(2.0/pi)*exp(-x*x/2.0) def _logpdf(self, x): return 0.5 * np.log(2.0/pi) - x*x/2.0 def _cdf(self, x): return special.ndtr(x)*2-1.0 def _ppf(self, q): return special.ndtri((1+q)/2.0) def _stats(self): return sqrt(2.0/pi), 1-2.0/pi, sqrt(2)*(4-pi)/(pi-2)**1.5, \ 8*(pi-3)/(pi-2)**2 def _entropy(self): return 0.5*log(pi/2.0)+0.5 halfnorm = halfnorm_gen(a=0.0, name='halfnorm', longname="A half-normal", extradoc=""" Half-normal distribution halfnorm.pdf(x) = sqrt(2/pi) * exp(-x**2/2) for x > 0. """ ) ## Hyperbolic Secant class hypsecant_gen(rv_continuous): def _pdf(self, x): return 1.0/(pi*cosh(x)) def _cdf(self, x): return 2.0/pi*arctan(exp(x)) def _ppf(self, q): return log(tan(pi*q/2.0)) def _stats(self): return 0, pi*pi/4, 0, 2 def _entropy(self): return log(2*pi) hypsecant = hypsecant_gen(name='hypsecant',longname="A hyperbolic secant", extradoc=""" Hyperbolic secant distribution hypsecant.pdf(x) = 1/pi * sech(x) """ ) ## Gauss Hypergeometric class gausshyper_gen(rv_continuous): def _argcheck(self, a, b, c, z): return (a > 0) & (b > 0) & (c==c) & (z==z) def _pdf(self, x, a, b, c, z): Cinv = gam(a)*gam(b)/gam(a+b)*special.hyp2f1(c,a,a+b,-z) return 1.0/Cinv * x**(a-1.0) * (1.0-x)**(b-1.0) / (1.0+z*x)**c def _munp(self, n, a, b, c, z): fac = special.beta(n+a,b) / special.beta(a,b) num = special.hyp2f1(c,a+n,a+b+n,-z) den = special.hyp2f1(c,a,a+b,-z) return fac*num / den gausshyper = gausshyper_gen(a=0.0, b=1.0, name='gausshyper', longname="A Gauss hypergeometric", shapes="a, b, c, z", extradoc=""" Gauss hypergeometric distribution gausshyper.pdf(x,a,b,c,z) = C * x**(a-1) * (1-x)**(b-1) * (1+z*x)**(-c) for 0 <= x <= 1, a > 0, b > 0, and C = 1/(B(a,b)F[2,1](c,a;a+b;-z)) """ ) ## Inverted Gamma # special case of generalized gamma with c=-1 # class invgamma_gen(rv_continuous): def _pdf(self, x, a): return exp(self._logpdf(x,a)) def _logpdf(self, x, a): return (-(a+1)*log(x)-gamln(a) - 1.0/x) def _cdf(self, x, a): return 1.0-special.gammainc(a, 1.0/x) def _ppf(self, q, a): return 1.0/special.gammaincinv(a,1-q) def _munp(self, n, a): return exp(gamln(a-n) - gamln(a)) def _entropy(self, a): return a - (a+1.0)*special.psi(a) + gamln(a) invgamma = invgamma_gen(a=0.0, name='invgamma',longname="An inverted gamma", shapes='a',extradoc=""" Inverted gamma distribution invgamma.pdf(x,a) = x**(-a-1)/gamma(a) * exp(-1/x) for x > 0, a > 0. """ ) ## Inverse Normal Distribution # scale is gamma from DATAPLOT and B from Regress _invnorm_msg = \ """The `invnorm` distribution will be renamed to `invgauss` after scipy 0.9""" class invnorm_gen(rv_continuous): def _rvs(self, mu): warnings.warn(_invnorm_msg, DeprecationWarning) return mtrand.wald(mu, 1.0, size=self._size) def _pdf(self, x, mu): warnings.warn(_invnorm_msg, DeprecationWarning) return 1.0/sqrt(2*pi*x**3.0)*exp(-1.0/(2*x)*((x-mu)/mu)**2) def _logpdf(self, x, mu): warnings.warn(_invnorm_msg, DeprecationWarning) return -0.5*log(2*pi) - 1.5*log(x) - ((x-mu)/mu)**2/(2*x) def _cdf(self, x, mu): warnings.warn(_invnorm_msg, DeprecationWarning) fac = sqrt(1.0/x) C1 = norm.cdf(fac*(x-mu)/mu) C1 += exp(2.0/mu)*norm.cdf(-fac*(x+mu)/mu) return C1 def _stats(self, mu): warnings.warn(_invnorm_msg, DeprecationWarning) return mu, mu**3.0, 3*sqrt(mu), 15*mu invnorm = invnorm_gen(a=0.0, name='invnorm', longname="An inverse normal", shapes="mu",extradoc=""" Inverse normal distribution NOTE: `invnorm` will be renamed to `invgauss` after scipy 0.9 invnorm.pdf(x,mu) = 1/sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for x > 0. """ ) ## Inverse Gaussian Distribution (used to be called 'invnorm' # scale is gamma from DATAPLOT and B from Regress class invgauss_gen(rv_continuous): def _rvs(self, mu): return mtrand.wald(mu, 1.0, size=self._size) def _pdf(self, x, mu): return 1.0/sqrt(2*pi*x**3.0)*exp(-1.0/(2*x)*((x-mu)/mu)**2) def _logpdf(self, x, mu): return -0.5*log(2*pi) - 1.5*log(x) - ((x-mu)/mu)**2/(2*x) def _cdf(self, x, mu): fac = sqrt(1.0/x) C1 = norm.cdf(fac*(x-mu)/mu) C1 += exp(2.0/mu)*norm.cdf(-fac*(x+mu)/mu) return C1 def _stats(self, mu): return mu, mu**3.0, 3*sqrt(mu), 15*mu invgauss = invgauss_gen(a=0.0, name='invgauss', longname="An inverse Gaussian", shapes="mu",extradoc=""" Inverse Gaussian distribution invgauss.pdf(x,mu) = 1/sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for x > 0. """ ) ## Inverted Weibull class invweibull_gen(rv_continuous): def _pdf(self, x, c): xc1 = x**(-c-1.0) #xc2 = xc1*x xc2 = x**(-c) xc2 = exp(-xc2) return c*xc1*xc2 def _cdf(self, x, c): xc1 = x**(-c) return exp(-xc1) def _ppf(self, q, c): return pow(-log(q),arr(-1.0/c)) def _entropy(self, c): return 1+_EULER + _EULER / c - log(c) invweibull = invweibull_gen(a=0,name='invweibull', longname="An inverted Weibull", shapes='c',extradoc=""" Inverted Weibull distribution invweibull.pdf(x,c) = c*x**(-c-1)*exp(-x**(-c)) for x > 0, c > 0. """ ) ## Johnson SB class johnsonsb_gen(rv_continuous): def _argcheck(self, a, b): return (b > 0) & (a==a) def _pdf(self, x, a, b): trm = norm.pdf(a+b*log(x/(1.0-x))) return b*1.0/(x*(1-x))*trm def _cdf(self, x, a, b): return norm.cdf(a+b*log(x/(1.0-x))) def _ppf(self, q, a, b): return 1.0/(1+exp(-1.0/b*(norm.ppf(q)-a))) johnsonsb = johnsonsb_gen(a=0.0,b=1.0,name='johnsonb', longname="A Johnson SB", shapes="a, b",extradoc=""" Johnson SB distribution johnsonsb.pdf(x,a,b) = b/(x*(1-x)) * phi(a + b*log(x/(1-x))) for 0 < x < 1 and a,b > 0, and phi is the normal pdf. """ ) ## Johnson SU class johnsonsu_gen(rv_continuous): def _argcheck(self, a, b): return (b > 0) & (a==a) def _pdf(self, x, a, b): x2 = x*x trm = norm.pdf(a+b*log(x+sqrt(x2+1))) return b*1.0/sqrt(x2+1.0)*trm def _cdf(self, x, a, b): return norm.cdf(a+b*log(x+sqrt(x*x+1))) def _ppf(self, q, a, b): return sinh((norm.ppf(q)-a)/b) johnsonsu = johnsonsu_gen(name='johnsonsu',longname="A Johnson SU", shapes="a, b", extradoc=""" Johnson SU distribution johnsonsu.pdf(x,a,b) = b/sqrt(x**2+1) * phi(a + b*log(x+sqrt(x**2+1))) for all x, a,b > 0, and phi is the normal pdf. """ ) ## Laplace Distribution class laplace_gen(rv_continuous): def _rvs(self): return mtrand.laplace(0, 1, size=self._size) def _pdf(self, x): return 0.5*exp(-abs(x)) def _cdf(self, x): return where(x > 0, 1.0-0.5*exp(-x), 0.5*exp(x)) def _ppf(self, q): return where(q > 0.5, -log(2*(1-q)), log(2*q)) def _stats(self): return 0, 2, 0, 3 def _entropy(self): return log(2)+1 laplace = laplace_gen(name='laplace', longname="A Laplace", extradoc=""" Laplacian distribution laplace.pdf(x) = 1/2*exp(-abs(x)) """ ) ## Levy Distribution class levy_gen(rv_continuous): def _pdf(self, x): return 1/sqrt(2*pi*x)/x*exp(-1/(2*x)) def _cdf(self, x): return 2*(1-norm._cdf(1/sqrt(x))) def _ppf(self, q): val = norm._ppf(1-q/2.0) return 1.0/(val*val) def _stats(self): return inf, inf, nan, nan levy = levy_gen(a=0.0,name="levy", longname = "A Levy", extradoc=""" Levy distribution levy.pdf(x) = 1/(x*sqrt(2*pi*x)) * exp(-1/(2*x)) for x > 0. This is the same as the Levy-stable distribution with a=1/2 and b=1. """ ) ## Left-skewed Levy Distribution class levy_l_gen(rv_continuous): def _pdf(self, x): ax = abs(x) return 1/sqrt(2*pi*ax)/ax*exp(-1/(2*ax)) def _cdf(self, x): ax = abs(x) return 2*norm._cdf(1/sqrt(ax))-1 def _ppf(self, q): val = norm._ppf((q+1.0)/2) return -1.0/(val*val) def _stats(self): return inf, inf, nan, nan levy_l = levy_l_gen(b=0.0,name="levy_l", longname = "A left-skewed Levy", extradoc=""" Left-skewed Levy distribution levy_l.pdf(x) = 1/(abs(x)*sqrt(2*pi*abs(x))) * exp(-1/(2*abs(x))) for x < 0. This is the same as the Levy-stable distribution with a=1/2 and b=-1. """ ) ## Levy-stable Distribution (only random variates) class levy_stable_gen(rv_continuous): def _rvs(self, alpha, beta): sz = self._size TH = uniform.rvs(loc=-pi/2.0,scale=pi,size=sz) W = expon.rvs(size=sz) if alpha==1: return 2/pi*(pi/2+beta*TH)*tan(TH)-beta*log((pi/2*W*cos(TH))/(pi/2+beta*TH)) # else ialpha = 1.0/alpha aTH = alpha*TH if beta==0: return W/(cos(TH)/tan(aTH)+sin(TH))*((cos(aTH)+sin(aTH)*tan(TH))/W)**ialpha # else val0 = beta*tan(pi*alpha/2) th0 = arctan(val0)/alpha val3 = W/(cos(TH)/tan(alpha*(th0+TH))+sin(TH)) res3 = val3*((cos(aTH)+sin(aTH)*tan(TH)-val0*(sin(aTH)-cos(aTH)*tan(TH)))/W)**ialpha return res3 def _argcheck(self, alpha, beta): if beta == -1: self.b = 0.0 elif beta == 1: self.a = 0.0 return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1) def _pdf(self, x, alpha, beta): raise NotImplementedError levy_stable = levy_stable_gen(name='levy_stable', longname="A Levy-stable", shapes="alpha, beta", extradoc=""" Levy-stable distribution (only random variates available -- ignore other docs) """ ) ## Logistic (special case of generalized logistic with c=1) ## Sech-squared class logistic_gen(rv_continuous): def _rvs(self): return mtrand.logistic(size=self._size) def _pdf(self, x): ex = exp(-x) return ex / (1+ex)**2.0 def _cdf(self, x): return 1.0/(1+exp(-x)) def _ppf(self, q): return -log(1.0/q-1) def _stats(self): return 0, pi*pi/3.0, 0, 6.0/5.0 def _entropy(self): return 1.0 logistic = logistic_gen(name='logistic', longname="A logistic", extradoc=""" Logistic distribution logistic.pdf(x) = exp(-x)/(1+exp(-x))**2 """ ) ## Log Gamma # class loggamma_gen(rv_continuous): def _rvs(self, c): return log(mtrand.gamma(c, size=self._size)) def _pdf(self, x, c): return exp(c*x-exp(x)-gamln(c)) def _cdf(self, x, c): return special.gammainc(c, exp(x)) def _ppf(self, q, c): return log(special.gammaincinv(c,q)) def _munp(self,n,*args): # use generic moment calculation using ppf return self._mom0_sc(n,*args) loggamma = loggamma_gen(name='loggamma', longname="A log gamma", shapes='c', extradoc=""" Log gamma distribution loggamma.pdf(x,c) = exp(c*x-exp(x)) / gamma(c) for all x, c > 0. """ ) ## Log-Laplace (Log Double Exponential) ## class loglaplace_gen(rv_continuous): def _pdf(self, x, c): cd2 = c/2.0 c = where(x < 1, c, -c) return cd2*x**(c-1) def _cdf(self, x, c): return where(x < 1, 0.5*x**c, 1-0.5*x**(-c)) def _ppf(self, q, c): return where(q < 0.5, (2.0*q)**(1.0/c), (2*(1.0-q))**(-1.0/c)) def _entropy(self, c): return log(2.0/c) + 1.0 loglaplace = loglaplace_gen(a=0.0, name='loglaplace', longname="A log-Laplace",shapes='c', extradoc=""" Log-Laplace distribution (Log Double Exponential) loglaplace.pdf(x,c) = c/2*x**(c-1) for 0 < x < 1 = c/2*x**(-c-1) for x >= 1 for c > 0. """ ) ## Lognormal (Cobb-Douglass) ## std is a shape parameter and is the variance of the underlying ## distribution. ## the mean of the underlying distribution is log(scale) class lognorm_gen(rv_continuous): def _rvs(self, s): return exp(s * norm.rvs(size=self._size)) def _pdf(self, x, s): Px = exp(-log(x)**2 / (2*s**2)) return Px / (s*x*sqrt(2*pi)) def _cdf(self, x, s): return norm.cdf(log(x)/s) def _ppf(self, q, s): return exp(s*norm._ppf(q)) def _stats(self, s): p = exp(s*s) mu = sqrt(p) mu2 = p*(p-1) g1 = sqrt((p-1))*(2+p) g2 = numpy.polyval([1,2,3,0,-6.0],p) return mu, mu2, g1, g2 def _entropy(self, s): return 0.5*(1+log(2*pi)+2*log(s)) lognorm = lognorm_gen(a=0.0, name='lognorm', longname='A lognormal', shapes='s', extradoc=""" Lognormal distribution lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2) for x > 0, s > 0. If log x is normally distributed with mean mu and variance sigma**2, then x is log-normally distributed with shape paramter sigma and scale parameter exp(mu). """ ) # Gibrat's distribution is just lognormal with s=1 class gilbrat_gen(lognorm_gen): def _rvs(self): return lognorm_gen._rvs(self, 1.0) def _pdf(self, x): return lognorm_gen._pdf(self, x, 1.0) def _cdf(self, x): return lognorm_gen._cdf(self, x, 1.0) def _ppf(self, q): return lognorm_gen._ppf(self, q, 1.0) def _stats(self): return lognorm_gen._stats(self, 1.0) def _entropy(self): return 0.5*log(2*pi) + 0.5 gilbrat = gilbrat_gen(a=0.0, name='gilbrat', longname='A Gilbrat', extradoc=""" Gilbrat distribution gilbrat.pdf(x) = 1/(x*sqrt(2*pi)) * exp(-1/2*(log(x))**2) """ ) # MAXWELL class maxwell_gen(rv_continuous): """A Maxwell continuous random variable. %(before_notes)s Notes ----- A special case of a `chi` distribution, with ``df = 3``, ``loc = 0.0``, and given ``scale = 1.0 / sqrt(a)``, where a is the parameter used in the Mathworld description [1]_. Probability density function. Given by :math:`\sqrt(2/\pi)x^2 exp(-x^2/2)` for ``x > 0``. References ---------- .. [1] http://mathworld.wolfram.com/MaxwellDistribution.html %(example)s """ def _rvs(self): return chi.rvs(3.0,size=self._size) def _pdf(self, x): return sqrt(2.0/pi)*x*x*exp(-x*x/2.0) def _cdf(self, x): return special.gammainc(1.5,x*x/2.0) def _ppf(self, q): return sqrt(2*special.gammaincinv(1.5,q)) def _stats(self): val = 3*pi-8 return 2*sqrt(2.0/pi), 3-8/pi, sqrt(2)*(32-10*pi)/val**1.5, \ (-12*pi*pi + 160*pi - 384) / val**2.0 def _entropy(self): return _EULER + 0.5*log(2*pi)-0.5 maxwell = maxwell_gen(a=0.0, name='maxwell', extradoc=""" Maxwell distribution maxwell.pdf(x) = sqrt(2/pi) * x**2 * exp(-x**2/2) for x > 0. """ ) # Mielke's Beta-Kappa class mielke_gen(rv_continuous): def _pdf(self, x, k, s): return k*x**(k-1.0) / (1.0+x**s)**(1.0+k*1.0/s) def _cdf(self, x, k, s): return x**k / (1.0+x**s)**(k*1.0/s) def _ppf(self, q, k, s): qsk = pow(q,s*1.0/k) return pow(qsk/(1.0-qsk),1.0/s) mielke = mielke_gen(a=0.0, name='mielke', longname="A Mielke's Beta-Kappa", shapes="k, s", extradoc=""" Mielke's Beta-Kappa distribution mielke.pdf(x,k,s) = k*x**(k-1) / (1+x**s)**(1+k/s) for x > 0. """ ) # Nakagami (cf Chi) class nakagami_gen(rv_continuous): def _pdf(self, x, nu): return 2*nu**nu/gam(nu)*(x**(2*nu-1.0))*exp(-nu*x*x) def _cdf(self, x, nu): return special.gammainc(nu,nu*x*x) def _ppf(self, q, nu): return sqrt(1.0/nu*special.gammaincinv(nu,q)) def _stats(self, nu): mu = gam(nu+0.5)/gam(nu)/sqrt(nu) mu2 = 1.0-mu*mu g1 = mu*(1-4*nu*mu2)/2.0/nu/mu2**1.5 g2 = -6*mu**4*nu + (8*nu-2)*mu**2-2*nu + 1 g2 /= nu*mu2**2.0 return mu, mu2, g1, g2 nakagami = nakagami_gen(a=0.0, name="nakagami", longname="A Nakagami", shapes='nu', extradoc=""" Nakagami distribution nakagami.pdf(x,nu) = 2*nu**nu/gamma(nu) * x**(2*nu-1) * exp(-nu*x**2) for x > 0, nu > 0. """ ) # Non-central chi-squared # nc is lambda of definition, df is nu class ncx2_gen(rv_continuous): def _rvs(self, df, nc): return mtrand.noncentral_chisquare(df,nc,self._size) def _pdf(self, x, df, nc): a = arr(df/2.0) Px = exp(-nc/2.0)*special.hyp0f1(a,nc*x/4.0) Px *= exp(-x/2.0)*x**(a-1) / arr(2**a * special.gamma(a)) return Px def _cdf(self, x, df, nc): return special.chndtr(x,df,nc) def _ppf(self, q, df, nc): return special.chndtrix(q,df,nc) def _stats(self, df, nc): val = df + 2.0*nc return df + nc, 2*val, sqrt(8)*(val+nc)/val**1.5, \ 12.0*(val+2*nc)/val**2.0 ncx2 = ncx2_gen(a=0.0, name='ncx2', longname="A non-central chi-squared", shapes="df, nc", extradoc=""" Non-central chi-squared distribution ncx2.pdf(x,df,nc) = exp(-(nc+df)/2)*1/2*(x/nc)**((df-2)/4) * I[(df-2)/2](sqrt(nc*x)) for x > 0. """ ) # Non-central F class ncf_gen(rv_continuous): def _rvs(self, dfn, dfd, nc): return mtrand.noncentral_f(dfn,dfd,nc,self._size) def _pdf_skip(self, x, dfn, dfd, nc): n1,n2 = dfn, dfd term = -nc/2+nc*n1*x/(2*(n2+n1*x)) + gamln(n1/2.)+gamln(1+n2/2.) term -= gamln((n1+n2)/2.0) Px = exp(term) Px *= n1**(n1/2) * n2**(n2/2) * x**(n1/2-1) Px *= (n2+n1*x)**(-(n1+n2)/2) Px *= special.assoc_laguerre(-nc*n1*x/(2.0*(n2+n1*x)),n2/2,n1/2-1) Px /= special.beta(n1/2,n2/2) #this function does not have a return # drop it for now, the generic function seems to work ok def _cdf(self, x, dfn, dfd, nc): return special.ncfdtr(dfn,dfd,nc,x) def _ppf(self, q, dfn, dfd, nc): return special.ncfdtri(dfn, dfd, nc, q) def _munp(self, n, dfn, dfd, nc): val = (dfn *1.0/dfd)**n term = gamln(n+0.5*dfn) + gamln(0.5*dfd-n) - gamln(dfd*0.5) val *= exp(-nc / 2.0+term) val *= special.hyp1f1(n+0.5*dfn, 0.5*dfn, 0.5*nc) return val def _stats(self, dfn, dfd, nc): mu = where(dfd <= 2, inf, dfd / (dfd-2.0)*(1+nc*1.0/dfn)) mu2 = where(dfd <=4, inf, 2*(dfd*1.0/dfn)**2.0 * \ ((dfn+nc/2.0)**2.0 + (dfn+nc)*(dfd-2.0)) / \ ((dfd-2.0)**2.0 * (dfd-4.0))) return mu, mu2, None, None ncf = ncf_gen(a=0.0, name='ncf', longname="A non-central F distribution", shapes="dfn, dfd, nc", extradoc=""" Non-central F distribution ncf.pdf(x,df1,df2,nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2))) * df1**(df1/2) * df2**(df2/2) * x**(df1/2-1) * (df2+df1*x)**(-(df1+df2)/2) * gamma(df1/2)*gamma(1+df2/2) * L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2))) / (B(v1/2, v2/2) * gamma((v1+v2)/2)) for df1, df2, nc > 0. """ ) ## Student t distribution class t_gen(rv_continuous): def _rvs(self, df): return mtrand.standard_t(df, size=self._size) #Y = f.rvs(df, df, size=self._size) #sY = sqrt(Y) #return 0.5*sqrt(df)*(sY-1.0/sY) def _pdf(self, x, df): r = arr(df*1.0) Px = exp(gamln((r+1)/2)-gamln(r/2)) Px /= sqrt(r*pi)*(1+(x**2)/r)**((r+1)/2) return Px def _logpdf(self, x, df): r = df*1.0 lPx = gamln((r+1)/2)-gamln(r/2) lPx -= 0.5*log(r*pi) + (r+1)/2*log(1+(x**2)/r) return lPx def _cdf(self, x, df): return special.stdtr(df, x) def _sf(self, x, df): return special.stdtr(df, -x) def _ppf(self, q, df): return special.stdtrit(df, q) def _isf(self, q, df): return -special.stdtrit(df, q) def _stats(self, df): mu2 = where(df > 2, df / (df-2.0), inf) g1 = where(df > 3, 0.0, nan) g2 = where(df > 4, 6.0/(df-4.0), nan) return 0, mu2, g1, g2 t = t_gen(name='t',longname="Student's T", shapes="df", extradoc=""" Student's T distribution gamma((df+1)/2) t.pdf(x,df) = ----------------------------------------------- sqrt(pi*df)*gamma(df/2)*(1+x**2/df)**((df+1)/2) for df > 0. """ ) ## Non-central T distribution class nct_gen(rv_continuous): def _rvs(self, df, nc): return norm.rvs(loc=nc,size=self._size)*sqrt(df) / sqrt(chi2.rvs(df,size=self._size)) def _pdf(self, x, df, nc): n = df*1.0 nc = nc*1.0 x2 = x*x ncx2 = nc*nc*x2 fac1 = n + x2 trm1 = n/2.*log(n) + gamln(n+1) trm1 -= n*log(2)+nc*nc/2.+(n/2.)*log(fac1)+gamln(n/2.) Px = exp(trm1) valF = ncx2 / (2*fac1) trm1 = sqrt(2)*nc*x*special.hyp1f1(n/2+1,1.5,valF) trm1 /= arr(fac1*special.gamma((n+1)/2)) trm2 = special.hyp1f1((n+1)/2,0.5,valF) trm2 /= arr(sqrt(fac1)*special.gamma(n/2+1)) Px *= trm1+trm2 return Px def _cdf(self, x, df, nc): return special.nctdtr(df, nc, x) def _ppf(self, q, df, nc): return special.nctdtrit(df, nc, q) def _stats(self, df, nc, moments='mv'): mu, mu2, g1, g2 = None, None, None, None val1 = gam((df-1.0)/2.0) val2 = gam(df/2.0) if 'm' in moments: mu = nc*sqrt(df/2.0)*val1/val2 if 'v' in moments: var = (nc*nc+1.0)*df/(df-2.0) var -= nc*nc*df* val1**2 / 2.0 / val2**2 mu2 = var if 's' in moments: g1n = 2*nc*sqrt(df)*val1*((nc*nc*(2*df-7)-3)*val2**2 \ -nc*nc*(df-2)*(df-3)*val1**2) g1d = (df-3)*sqrt(2*df*(nc*nc+1)/(df-2) - \ nc*nc*df*(val1/val2)**2) * val2 * \ (nc*nc*(df-2)*val1**2 - \ 2*(nc*nc+1)*val2**2) g1 = g1n/g1d if 'k' in moments: g2n = 2*(-3*nc**4*(df-2)**2 *(df-3) *(df-4)*val1**4 + \ 2**(6-2*df) * nc*nc*(df-2)*(df-4)* \ (nc*nc*(2*df-7)-3)*pi* gam(df+1)**2 - \ 4*(nc**4*(df-5)-6*nc*nc-3)*(df-3)*val2**4) g2d = (df-3)*(df-4)*(nc*nc*(df-2)*val1**2 - \ 2*(nc*nc+1)*val2)**2 g2 = g2n / g2d return mu, mu2, g1, g2 nct = nct_gen(name="nct", longname="A Noncentral T", shapes="df, nc", extradoc=""" Non-central Student T distribution df**(df/2) * gamma(df+1) nct.pdf(x,df,nc) = -------------------------------------------------- 2**df*exp(nc**2/2)*(df+x**2)**(df/2) * gamma(df/2) for df > 0, nc > 0. """ ) # Pareto class pareto_gen(rv_continuous): def _pdf(self, x, b): return b * x**(-b-1) def _cdf(self, x, b): return 1 - x**(-b) def _ppf(self, q, b): return pow(1-q, -1.0/b) def _stats(self, b, moments='mv'): mu, mu2, g1, g2 = None, None, None, None if 'm' in moments: mask = b > 1 bt = extract(mask,b) mu = valarray(shape(b),value=inf) mu = place(mu, mask, bt / (bt-1.0)) if 'v' in moments: mask = b > 2 bt = extract( mask,b) mu2 = valarray(shape(b), value=inf) mu2 = place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2) if 's' in moments: mask = b > 3 bt = extract( mask,b) g1 = valarray(shape(b), value=nan) vals = 2*(bt+1.0)*sqrt(b-2.0)/((b-3.0)*sqrt(b)) g1 = place(g1, mask, vals) if 'k' in moments: mask = b > 4 bt = extract( mask,b) g2 = valarray(shape(b), value=nan) vals = 6.0*polyval([1.0,1.0,-6,-2],bt)/ \ polyval([1.0,-7.0,12.0,0.0],bt) g2 = place(g2, mask, vals) return mu, mu2, g1, g2 def _entropy(self, c): return 1 + 1.0/c - log(c) pareto = pareto_gen(a=1.0, name="pareto", longname="A Pareto", shapes="b", extradoc=""" Pareto distribution pareto.pdf(x,b) = b/x**(b+1) for x >= 1, b > 0. """ ) # LOMAX (Pareto of the second kind.) # Special case of Pareto of the first kind (location=-1.0) class lomax_gen(rv_continuous): def _pdf(self, x, c): return c*1.0/(1.0+x)**(c+1.0) def _logpdf(self, x, c): return log(c) - (c+1)*log(1+x) def _cdf(self, x, c): return 1.0-1.0/(1.0+x)**c def _sf(self, x, c): return 1.0/(1.0+x)**c def _logsf(self, x, c): return -c*log(1+x) def _ppf(self, q, c): return pow(1.0-q,-1.0/c)-1 def _stats(self, c): mu, mu2, g1, g2 = pareto.stats(c, loc=-1.0, moments='mvsk') return mu, mu2, g1, g2 def _entropy(self, c): return 1+1.0/c-log(c) lomax = lomax_gen(a=0.0, name="lomax", longname="A Lomax (Pareto of the second kind)", shapes="c", extradoc=""" Lomax (Pareto of the second kind) distribution lomax.pdf(x,c) = c / (1+x)**(c+1) for x >= 0, c > 0. """ ) ## Power-function distribution ## Special case of beta dist. with d =1.0 class powerlaw_gen(rv_continuous): def _pdf(self, x, a): return a*x**(a-1.0) def _logpdf(self, x, a): return log(a) + (a-1)*log(x) def _cdf(self, x, a): return x**(a*1.0) def _logcdf(self, x, a): return a*log(x) def _ppf(self, q, a): return pow(q, 1.0/a) def _stats(self, a): return a/(a+1.0), a*(a+2.0)/(a+1.0)**2, \ 2*(1.0-a)*sqrt((a+2.0)/(a*(a+3.0))), \ 6*polyval([1,-1,-6,2],a)/(a*(a+3.0)*(a+4)) def _entropy(self, a): return 1 - 1.0/a - log(a) powerlaw = powerlaw_gen(a=0.0, b=1.0, name="powerlaw", longname="A power-function", shapes="a", extradoc=""" Power-function distribution powerlaw.pdf(x,a) = a*x**(a-1) for 0 <= x <= 1, a > 0. """ ) # Power log normal class powerlognorm_gen(rv_continuous): def _pdf(self, x, c, s): return c/(x*s)*norm.pdf(log(x)/s)*pow(norm.cdf(-log(x)/s),c*1.0-1.0) def _cdf(self, x, c, s): return 1.0 - pow(norm.cdf(-log(x)/s),c*1.0) def _ppf(self, q, c, s): return exp(-s*norm.ppf(pow(1.0-q,1.0/c))) powerlognorm = powerlognorm_gen(a=0.0, name="powerlognorm", longname="A power log-normal", shapes="c, s", extradoc=""" Power log-normal distribution powerlognorm.pdf(x,c,s) = c/(x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s,c > 0. """ ) # Power Normal class powernorm_gen(rv_continuous): def _pdf(self, x, c): return c*_norm_pdf(x)* \ (_norm_cdf(-x)**(c-1.0)) def _logpdf(self, x, c): return log(c) + _norm_logpdf(x) + (c-1)*_norm_logcdf(-x) def _cdf(self, x, c): return 1.0-_norm_cdf(-x)**(c*1.0) def _ppf(self, q, c): return -norm.ppf(pow(1.0-q,1.0/c)) powernorm = powernorm_gen(name='powernorm', longname="A power normal", shapes="c", extradoc=""" Power normal distribution powernorm.pdf(x,c) = c * phi(x)*(Phi(-x))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x > 0, c > 0. """ ) # R-distribution ( a general-purpose distribution with a # variety of shapes. # FIXME: PPF does not work. class rdist_gen(rv_continuous): def _pdf(self, x, c): return np.power((1.0-x*x),c/2.0-1) / special.beta(0.5,c/2.0) def _cdf_skip(self, x, c): #error inspecial.hyp2f1 for some values see tickets 758, 759 return 0.5 + x/special.beta(0.5,c/2.0)* \ special.hyp2f1(0.5,1.0-c/2.0,1.5,x*x) def _munp(self, n, c): return (1-(n % 2))*special.beta((n+1.0)/2,c/2.0) rdist = rdist_gen(a=-1.0,b=1.0, name="rdist", longname="An R-distributed", shapes="c", extradoc=""" R-distribution rdist.pdf(x,c) = (1-x**2)**(c/2-1) / B(1/2, c/2) for -1 <= x <= 1, c > 0. """ ) # Rayleigh distribution (this is chi with df=2 and loc=0.0) # scale is the mode. class rayleigh_gen(rv_continuous): def _rvs(self): return chi.rvs(2,size=self._size) def _pdf(self, r): return r*exp(-r*r/2.0) def _cdf(self, r): return 1.0-exp(-r*r/2.0) def _ppf(self, q): return sqrt(-2*log(1-q)) def _stats(self): val = 4-pi return np.sqrt(pi/2), val/2, 2*(pi-3)*sqrt(pi)/val**1.5, \ 6*pi/val-16/val**2 def _entropy(self): return _EULER/2.0 + 1 - 0.5*log(2) rayleigh = rayleigh_gen(a=0.0, name="rayleigh", longname="A Rayleigh", extradoc=""" Rayleigh distribution rayleigh.pdf(r) = r * exp(-r**2/2) for x >= 0. """ ) # Reciprocal Distribution class reciprocal_gen(rv_continuous): def _argcheck(self, a, b): self.a = a self.b = b self.d = log(b*1.0 / a) return (a > 0) & (b > 0) & (b > a) def _pdf(self, x, a, b): # argcheck should be called before _pdf return 1.0/(x*self.d) def _logpdf(self, x, a, b): return -log(x) - log(self.d) def _cdf(self, x, a, b): return (log(x)-log(a)) / self.d def _ppf(self, q, a, b): return a*pow(b*1.0/a,q) def _munp(self, n, a, b): return 1.0/self.d / n * (pow(b*1.0,n) - pow(a*1.0,n)) def _entropy(self,a,b): return 0.5*log(a*b)+log(log(b/a)) reciprocal = reciprocal_gen(name="reciprocal", longname="A reciprocal", shapes="a, b", extradoc=""" Reciprocal distribution reciprocal.pdf(x,a,b) = 1/(x*log(b/a)) for a <= x <= b, a,b > 0. """ ) # Rice distribution # FIXME: PPF does not work. class rice_gen(rv_continuous): def _pdf(self, x, b): return x*exp(-(x*x+b*b)/2.0)*special.i0(x*b) def _logpdf(self, x, b): return log(x) - (x*x + b*b)/2.0 + log(special.i0(x*b)) def _munp(self, n, b): nd2 = n/2.0 n1 = 1+nd2 b2 = b*b/2.0 return 2.0**(nd2)*exp(-b2)*special.gamma(n1) * \ special.hyp1f1(n1,1,b2) rice = rice_gen(a=0.0, name="rice", longname="A Rice", shapes="b", extradoc=""" Rician distribution rice.pdf(x,b) = x * exp(-(x**2+b**2)/2) * I[0](x*b) for x > 0, b > 0. """ ) # Reciprocal Inverse Gaussian # FIXME: PPF does not work. class recipinvgauss_gen(rv_continuous): def _rvs(self, mu): #added, taken from invgauss return 1.0/mtrand.wald(mu, 1.0, size=self._size) def _pdf(self, x, mu): return 1.0/sqrt(2*pi*x)*exp(-(1-mu*x)**2.0 / (2*x*mu**2.0)) def _logpdf(self, x, mu): return -(1-mu*x)**2.0 / (2*x*mu**2.0) - 0.5*log(2*pi*x) def _cdf(self, x, mu): trm1 = 1.0/mu - x trm2 = 1.0/mu + x isqx = 1.0/sqrt(x) return 1.0-_norm_cdf(isqx*trm1)-exp(2.0/mu)*_norm_cdf(-isqx*trm2) # xb=50 or something large is necessary for stats to converge without exception recipinvgauss = recipinvgauss_gen(a=0.0, xb=50, name='recipinvgauss', longname="A reciprocal inverse Gaussian", shapes="mu", extradoc=""" Reciprocal inverse Gaussian recipinvgauss.pdf(x, mu) = 1/sqrt(2*pi*x) * exp(-(1-mu*x)**2/(2*x*mu**2)) for x >= 0. """ ) # Semicircular class semicircular_gen(rv_continuous): def _pdf(self, x): return 2.0/pi*sqrt(1-x*x) def _cdf(self, x): return 0.5+1.0/pi*(x*sqrt(1-x*x) + arcsin(x)) def _stats(self): return 0, 0.25, 0, -1.0 def _entropy(self): return 0.64472988584940017414 semicircular = semicircular_gen(a=-1.0,b=1.0, name="semicircular", longname="A semicircular", extradoc=""" Semicircular distribution semicircular.pdf(x) = 2/pi * sqrt(1-x**2) for -1 <= x <= 1. """ ) # Triangular # up-sloping line from loc to (loc + c*scale) and then downsloping line from # loc + c*scale to loc + scale # _trstr = "Left must be <= mode which must be <= right with left < right" class triang_gen(rv_continuous): def _rvs(self, c): return mtrand.triangular(0, c, 1, self._size) def _argcheck(self, c): return (c >= 0) & (c <= 1) def _pdf(self, x, c): return where(x < c, 2*x/c, 2*(1-x)/(1-c)) def _cdf(self, x, c): return where(x < c, x*x/c, (x*x-2*x+c)/(c-1)) def _ppf(self, q, c): return where(q < c, sqrt(c*q), 1-sqrt((1-c)*(1-q))) def _stats(self, c): return (c+1.0)/3.0, (1.0-c+c*c)/18, sqrt(2)*(2*c-1)*(c+1)*(c-2) / \ (5*(1.0-c+c*c)**1.5), -3.0/5.0 def _entropy(self,c): return 0.5-log(2) triang = triang_gen(a=0.0, b=1.0, name="triang", longname="A Triangular", shapes="c", extradoc=""" Triangular distribution up-sloping line from loc to (loc + c*scale) and then downsloping for (loc + c*scale) to (loc+scale). - standard form is in the range [0,1] with c the mode. - location parameter shifts the start to loc - scale changes the width from 1 to scale """ ) # Truncated Exponential class truncexpon_gen(rv_continuous): def _argcheck(self, b): self.b = b return (b > 0) def _pdf(self, x, b): return exp(-x)/(1-exp(-b)) def _logpdf(self, x, b): return -x - log(1-exp(-b)) def _cdf(self, x, b): return (1.0-exp(-x))/(1-exp(-b)) def _ppf(self, q, b): return -log(1-q+q*exp(-b)) def _munp(self, n, b): #wrong answer with formula, same as in continuous.pdf #return gam(n+1)-special.gammainc(1+n,b) if n == 1: return (1-(b+1)*exp(-b))/(-expm1(-b)) elif n == 2: return 2*(1-0.5*(b*b+2*b+2)*exp(-b))/(-expm1(-b)) else: #return generic for higher moments #return rv_continuous._mom1_sc(self,n, b) return self._mom1_sc(n, b) def _entropy(self, b): eB = exp(b) return log(eB-1)+(1+eB*(b-1.0))/(1.0-eB) truncexpon = truncexpon_gen(a=0.0, name='truncexpon', longname="A truncated exponential", shapes="b", extradoc=""" Truncated exponential distribution truncexpon.pdf(x,b) = exp(-x)/(1-exp(-b)) for 0 < x < b. """ ) # Truncated Normal class truncnorm_gen(rv_continuous): def _argcheck(self, a, b): self.a = a self.b = b self._nb = _norm_cdf(b) self._na = _norm_cdf(a) self._delta = self._nb - self._na self._logdelta = log(self._delta) return (a != b) # All of these assume that _argcheck is called first # and no other thread calls _pdf before. def _pdf(self, x, a, b): return _norm_pdf(x) / self._delta def _logpdf(self, x, a, b): return _norm_logpdf(x) - self._logdelta def _cdf(self, x, a, b): return (_norm_cdf(x) - self._na) / self._delta def _ppf(self, q, a, b): return norm._ppf(q*self._nb + self._na*(1.0-q)) def _stats(self, a, b): nA, nB = self._na, self._nb d = nB - nA pA, pB = _norm_pdf(a), _norm_pdf(b) mu = (pA - pB) / d #correction sign mu2 = 1 + (a*pA - b*pB) / d - mu*mu return mu, mu2, None, None truncnorm = truncnorm_gen(name='truncnorm', longname="A truncated normal", shapes="a, b", extradoc=""" Truncated Normal distribution. The standard form of this distribution is a standard normal truncated to the range [a,b] --- notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation use a,b = (myclip_a-my_mean)/my_std, (myclip_b-my_mean)/my_std """ ) # Tukey-Lambda # A flexible distribution ranging from Cauchy (lam=-1) # to logistic (lam=0.0) # to approx Normal (lam=0.14) # to u-shape (lam = 0.5) # to Uniform from -1 to 1 (lam = 1) # FIXME: RVS does not work. class tukeylambda_gen(rv_continuous): def _argcheck(self, lam): # lam in RR. return np.ones(np.shape(lam), dtype=bool) def _pdf(self, x, lam): Fx = arr(special.tklmbda(x,lam)) Px = Fx**(lam-1.0) + (arr(1-Fx))**(lam-1.0) Px = 1.0/arr(Px) return where((lam <= 0) | (abs(x) < 1.0/arr(lam)), Px, 0.0) def _cdf(self, x, lam): return special.tklmbda(x, lam) def _ppf(self, q, lam): q = q*1.0 vals1 = (q**lam - (1-q)**lam)/lam vals2 = log(q/(1-q)) return where((lam == 0)&(q==q), vals2, vals1) def _stats(self, lam): mu2 = 2*gam(lam+1.5)-lam*pow(4,-lam)*sqrt(pi)*gam(lam)*(1-2*lam) mu2 /= lam*lam*(1+2*lam)*gam(1+1.5) mu4 = 3*gam(lam)*gam(lam+0.5)*pow(2,-2*lam) / lam**3 / gam(2*lam+1.5) mu4 += 2.0/lam**4 / (1+4*lam) mu4 -= 2*sqrt(3)*gam(lam)*pow(2,-6*lam)*pow(3,3*lam) * \ gam(lam+1.0/3)*gam(lam+2.0/3) / (lam**3.0 * gam(2*lam+1.5) * \ gam(lam+0.5)) g2 = mu4 / mu2 / mu2 - 3.0 return 0, mu2, 0, g2 def _entropy(self, lam): def integ(p): return log(pow(p,lam-1)+pow(1-p,lam-1)) return integrate.quad(integ,0,1)[0] tukeylambda = tukeylambda_gen(name='tukeylambda', longname="A Tukey-Lambda", shapes="lam", extradoc=""" Tukey-Lambda distribution A flexible distribution ranging from Cauchy (lam=-1) to logistic (lam=0.0) to approx Normal (lam=0.14) to u-shape (lam = 0.5) to Uniform from -1 to 1 (lam = 1) """ ) # Uniform # loc to loc + scale class uniform_gen(rv_continuous): def _rvs(self): return mtrand.uniform(0.0,1.0,self._size) def _pdf(self, x): return 1.0*(x==x) def _cdf(self, x): return x def _ppf(self, q): return q def _stats(self): return 0.5, 1.0/12, 0, -1.2 def _entropy(self): return 0.0 uniform = uniform_gen(a=0.0,b=1.0, name='uniform', longname="A uniform", extradoc=""" Uniform distribution constant between loc and loc+scale """ ) # Von-Mises # if x is not in range or loc is not in range it assumes they are angles # and converts them to [-pi, pi] equivalents. eps = numpy.finfo(float).eps class vonmises_gen(rv_continuous): def _rvs(self, b): return mtrand.vonmises(0.0, b, size=self._size) def _pdf(self, x, b): return exp(b*cos(x)) / (2*pi*special.i0(b)) def _cdf(self, x, b): return vonmises_cython.von_mises_cdf(b,x) def _stats_skip(self, b): return 0, None, 0, None vonmises = vonmises_gen(name='vonmises', longname="A Von Mises", shapes="b", extradoc=""" Von Mises distribution if x is not in range or loc is not in range it assumes they are angles and converts them to [-pi, pi] equivalents. vonmises.pdf(x,b) = exp(b*cos(x)) / (2*pi*I[0](b)) for -pi <= x <= pi, b > 0. """ ) ## Wald distribution (Inverse Normal with shape parameter mu=1.0) class wald_gen(invgauss_gen): """A Wald continuous random variable. %(before_notes)s Notes ----- The probability density function, `pdf`, is defined by ``1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x))``, for ``x > 0``. %(example)s """ def _rvs(self): return mtrand.wald(1.0, 1.0, size=self._size) def _pdf(self, x): return invgauss._pdf(x, 1.0) def _logpdf(self, x): return invgauss._logpdf(x, 1.0) def _cdf(self, x): return invgauss._cdf(x, 1.0) def _stats(self): return 1.0, 1.0, 3.0, 15.0 wald = wald_gen(a=0.0, name="wald", extradoc=""" Wald distribution wald.pdf(x) = 1/sqrt(2*pi*x**3) * exp(-(x-1)**2/(2*x)) for x > 0. """ ) ## Weibull ## See Frechet # Wrapped Cauchy class wrapcauchy_gen(rv_continuous): def _argcheck(self, c): return (c > 0) & (c < 1) def _pdf(self, x, c): return (1.0-c*c)/(2*pi*(1+c*c-2*c*cos(x))) def _cdf(self, x, c): output = 0.0*x val = (1.0+c)/(1.0-c) c1 = x<pi c2 = 1-c1 xp = extract( c1,x) #valp = extract(c1,val) xn = extract( c2,x) #valn = extract(c2,val) if (any(xn)): valn = extract(c2, np.ones_like(x)*val) xn = 2*pi - xn yn = tan(xn/2.0) on = 1.0-1.0/pi*arctan(valn*yn) output = place(output, c2, on) if (any(xp)): valp = extract(c1, np.ones_like(x)*val) yp = tan(xp/2.0) op = 1.0/pi*arctan(valp*yp) output = place(output, c1, op) return output def _ppf(self, q, c): val = (1.0-c)/(1.0+c) rcq = 2*arctan(val*tan(pi*q)) rcmq = 2*pi-2*arctan(val*tan(pi*(1-q))) return where(q < 1.0/2, rcq, rcmq) def _entropy(self, c): return log(2*pi*(1-c*c)) wrapcauchy = wrapcauchy_gen(a=0.0,b=2*pi, name='wrapcauchy', longname="A wrapped Cauchy", shapes="c", extradoc=""" Wrapped Cauchy distribution wrapcauchy.pdf(x,c) = (1-c**2) / (2*pi*(1+c**2-2*c*cos(x))) for 0 <= x <= 2*pi, 0 < c < 1. """ ) ### DISCRETE DISTRIBUTIONS ### def entropy(pk,qk=None): """S = entropy(pk,qk=None) calculate the entropy of a distribution given the p_k values S = -sum(pk * log(pk), axis=0) If qk is not None, then compute a relative entropy S = sum(pk * log(pk / qk), axis=0) Routine will normalize pk and qk if they don't sum to 1 """ pk = arr(pk) pk = 1.0* pk / sum(pk,axis=0) if qk is None: vec = where(pk == 0, 0.0, pk*log(pk)) else: qk = arr(qk) if len(qk) != len(pk): raise ValueError("qk and pk must have same length.") qk = 1.0*qk / sum(qk,axis=0) # If qk is zero anywhere, then unless pk is zero at those places # too, the relative entropy is infinite. if any(take(pk,nonzero(qk==0.0),axis=0)!=0.0, 0): return inf vec = where (pk == 0, 0.0, -pk*log(pk / qk)) return -sum(vec,axis=0) ## Handlers for generic case where xk and pk are given def _drv_pmf(self, xk, *args): try: return self.P[xk] except KeyError: return 0.0 def _drv_cdf(self, xk, *args): indx = argmax((self.xk>xk),axis=-1)-1 return self.F[self.xk[indx]] def _drv_ppf(self, q, *args): indx = argmax((self.qvals>=q),axis=-1) return self.Finv[self.qvals[indx]] def _drv_nonzero(self, k, *args): return 1 def _drv_moment(self, n, *args): n = arr(n) return sum(self.xk**n[newaxis,...] * self.pk, axis=0) def _drv_moment_gen(self, t, *args): t = arr(t) return sum(exp(self.xk * t[newaxis,...]) * self.pk, axis=0) def _drv2_moment(self, n, *args): '''non-central moment of discrete distribution''' #many changes, originally not even a return tot = 0.0 diff = 1e100 #pos = self.a pos = max(0.0, 1.0*self.a) count = 0 #handle cases with infinite support ulimit = max(1000, (min(self.b,1000) + max(self.a,-1000))/2.0 ) llimit = min(-1000, (min(self.b,1000) + max(self.a,-1000))/2.0 ) while (pos <= self.b) and ((pos <= ulimit) or \ (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos,*args) # use pmf because _pmf does not check support in randint # and there might be problems ? with correct self.a, self.b at this stage tot += diff pos += self.inc count += 1 if self.a < 0: #handle case when self.a = -inf diff = 1e100 pos = -self.inc while (pos >= self.a) and ((pos >= llimit) or \ (diff > self.moment_tol)): diff = np.power(pos, n) * self.pmf(pos,*args) #using pmf instead of _pmf, see above tot += diff pos -= self.inc count += 1 return tot def _drv2_ppfsingle(self, q, *args): # Use basic bisection algorithm b = self.invcdf_b a = self.invcdf_a if isinf(b): # Be sure ending point is > q b = max(100*q,10) while 1: if b >= self.b: qb = 1.0; break qb = self._cdf(b,*args) if (qb < q): b += 10 else: break else: qb = 1.0 if isinf(a): # be sure starting point < q a = min(-100*q,-10) while 1: if a <= self.a: qb = 0.0; break qa = self._cdf(a,*args) if (qa > q): a -= 10 else: break else: qa = self._cdf(a, *args) while 1: if (qa == q): return a if (qb == q): return b if b == a+1: #testcase: return wrong number at lower index #python -c "from scipy.stats import zipf;print zipf.ppf(0.01,2)" wrong #python -c "from scipy.stats import zipf;print zipf.ppf([0.01,0.61,0.77,0.83],2)" #python -c "from scipy.stats import logser;print logser.ppf([0.1,0.66, 0.86,0.93],0.6)" if qa > q: return a else: return b c = int((a+b)/2.0) qc = self._cdf(c, *args) if (qc < q): a = c qa = qc elif (qc > q): b = c qb = qc else: return c def reverse_dict(dict): newdict = {} sorted_keys = copy(dict.keys()) sorted_keys.sort() for key in sorted_keys[::-1]: newdict[dict[key]] = key return newdict def make_dict(keys, values): d = {} for key, value in zip(keys, values): d[key] = value return d # Must over-ride one of _pmf or _cdf or pass in # x_k, p(x_k) lists in initialization class rv_discrete(rv_generic): """ A generic discrete random variable class meant for subclassing. `rv_discrete` is a base class to construct specific distribution classes and instances from for discrete random variables. rv_discrete can be used to construct an arbitrary distribution with defined by a list of support points and the corresponding probabilities. Parameters ---------- a : float, optional Lower bound of the support of the distribution, default: 0 b : float, optional Upper bound of the support of the distribution, default: plus infinity moment_tol : float, optional The tolerance for the generic calculation of moments values : tuple of two array_like (xk, pk) where xk are points (integers) with positive probability pk with sum(pk) = 1 inc : integer increment for the support of the distribution, default: 1 other values have not been tested badvalue : object, optional The value in (masked) arrays that indicates a value that should be ignored. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the first two arguments for all its methods. extradoc : str, optional This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. Methods ------- generic.rvs(<shape(s)>, loc=0, size=1) random variates generic.pmf(x, <shape(s)>, loc=0) probability mass function logpmf(x, <shape(s)>, loc=0) log of the probability density function generic.cdf(x, <shape(s)>, loc=0) cumulative density function generic.logcdf(x, <shape(s)>, loc=0) log of the cumulative density function generic.sf(x, <shape(s)>, loc=0) survival function (1-cdf --- sometimes more accurate) generic.logsf(x, <shape(s)>, loc=0, scale=1) log of the survival function generic.ppf(q, <shape(s)>, loc=0) percent point function (inverse of cdf --- percentiles) generic.isf(q, <shape(s)>, loc=0) inverse survival function (inverse of sf) generic.moment(n, <shape(s)>, loc=0) non-central n-th moment of the distribution. May not work for array arguments. generic.stats(<shape(s)>, loc=0, moments='mv') mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k') generic.entropy(<shape(s)>, loc=0) entropy of the RV generic.fit(data, <shape(s)>, loc=0) Parameter estimates for generic data generic.expect(func=None, args=(), loc=0, lb=None, ub=None, conditional=False) Expected value of a function with respect to the distribution. Additional kwd arguments passed to integrate.quad generic.median(<shape(s)>, loc=0) Median of the distribution. generic.mean(<shape(s)>, loc=0) Mean of the distribution. generic.std(<shape(s)>, loc=0) Standard deviation of the distribution. generic.var(<shape(s)>, loc=0) Variance of the distribution. generic.interval(alpha, <shape(s)>, loc=0) Interval that with `alpha` percent probability contains a random realization of this distribution. generic(<shape(s)>, loc=0) calling a distribution instance returns a frozen distribution Notes ----- Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: myrv = generic(<shape(s)>, loc=0) - frozen RV object with the same methods but holding the given shape and location fixed. You can construct an aribtrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization method (through the values=keyword) a tuple of sequences (xk, pk) which describes only those values of X (xk) that occur with nonzero probability (pk). To create a new discrete distribution, we would do the following:: class poisson_gen(rv_continuous): #"Poisson distribution" def _pmf(self, k, mu): ... and create an instance poisson = poisson_gen(name="poisson", shapes="mu", longname='A Poisson') The docstring can be created from a template. Examples -------- >>> import matplotlib.pyplot as plt >>> numargs = generic.numargs >>> [ <shape(s)> ] = ['Replace with resonable value', ]*numargs Display frozen pmf: >>> rv = generic(<shape(s)>) >>> x = np.arange(0, np.min(rv.dist.b, 3)+1) >>> h = plt.plot(x, rv.pmf(x)) Check accuracy of cdf and ppf: >>> prb = generic.cdf(x, <shape(s)>) >>> h = plt.semilogy(np.abs(x-generic.ppf(prb, <shape(s)>))+1e-20) Random number generation: >>> R = generic.rvs(<shape(s)>, size=100) Custom made discrete distribution: >>> vals = [arange(7), (0.1, 0.2, 0.3, 0.1, 0.1, 0.1, 0.1)] >>> custm = rv_discrete(name='custm', values=vals) >>> h = plt.plot(vals[0], custm.pmf(vals[0])) """ def __init__(self, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8,values=None,inc=1,longname=None, shapes=None, extradoc=None): super(rv_generic,self).__init__() if badvalue is None: badvalue = nan self.badvalue = badvalue self.a = a self.b = b self.invcdf_a = a # what's the difference to self.a, .b self.invcdf_b = b self.name = name self.moment_tol = moment_tol self.inc = inc self._cdfvec = sgf(self._cdfsingle,otypes='d') self.return_integers = 1 self.vecentropy = vectorize(self._entropy) self.shapes = shapes self.extradoc = extradoc if values is not None: self.xk, self.pk = values self.return_integers = 0 indx = argsort(ravel(self.xk)) self.xk = take(ravel(self.xk),indx, 0) self.pk = take(ravel(self.pk),indx, 0) self.a = self.xk[0] self.b = self.xk[-1] self.P = make_dict(self.xk, self.pk) self.qvals = numpy.cumsum(self.pk,axis=0) self.F = make_dict(self.xk, self.qvals) self.Finv = reverse_dict(self.F) self._ppf = instancemethod(sgf(_drv_ppf,otypes='d'), self, rv_discrete) self._pmf = instancemethod(sgf(_drv_pmf,otypes='d'), self, rv_discrete) self._cdf = instancemethod(sgf(_drv_cdf,otypes='d'), self, rv_discrete) self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete) self.generic_moment = instancemethod(_drv_moment, self, rv_discrete) self.moment_gen = instancemethod(_drv_moment_gen, self, rv_discrete) self.numargs=0 else: cdf_signature = inspect.getargspec(self._cdf.im_func) numargs1 = len(cdf_signature[0]) - 2 pmf_signature = inspect.getargspec(self._pmf.im_func) numargs2 = len(pmf_signature[0]) - 2 self.numargs = max(numargs1, numargs2) #nin correction needs to be after we know numargs #correct nin for generic moment vectorization self.vec_generic_moment = sgf(_drv2_moment, otypes='d') self.vec_generic_moment.nin = self.numargs + 2 self.generic_moment = instancemethod(self.vec_generic_moment, self, rv_discrete) #correct nin for ppf vectorization _vppf = sgf(_drv2_ppfsingle,otypes='d') _vppf.nin = self.numargs + 2 # +1 is for self self._vecppf = instancemethod(_vppf, self, rv_discrete) #now that self.numargs is defined, we can adjust nin self._cdfvec.nin = self.numargs + 1 # generate docstring for subclass instances if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc) else: self._construct_doc() ## This only works for old-style classes... # self.__class__.__doc__ = self.__doc__ def _construct_default_doc(self, longname=None, extradoc=None): """Construct instance docstring from the rv_discrete template.""" if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s discrete random variable.'%longname, '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc() def _construct_doc(self): """Construct the instance docstring with string substitutions.""" tempdict = docdict_discrete.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['callparams', 'default', 'before_notes']: tempdict[item] = tempdict[item].replace(\ "\n%(shapes)s : array-like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") self.__doc__ = doccer.docformat(self.__doc__, tempdict) def _rvs(self, *args): return self._ppf(mtrand.random_sample(self._size),*args) def _nonzero(self, k, *args): return floor(k)==k def _argcheck(self, *args): cond = 1 for arg in args: cond &= (arg > 0) return cond def _pmf(self, k, *args): return self._cdf(k,*args) - self._cdf(k-1,*args) def _logpmf(self, k, *args): return log(self._pmf(k, *args)) def _cdfsingle(self, k, *args): m = arange(int(self.a),k+1) return sum(self._pmf(m,*args),axis=0) def _cdf(self, x, *args): k = floor(x) return self._cdfvec(k,*args) def _logcdf(self, x, *args): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x,*args) def _logsf(self, x, *args): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self._vecppf(q, *args) def _isf(self, q, *args): return self._ppf(1-q,*args) def _stats(self, *args): return None, None, None, None def _munp(self, n, *args): return self.generic_moment(n, *args) def rvs(self, *args, **kwargs): """ Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) size : int or tuple of ints, optional defining number of random variates (default=1) Returns ------- rvs : array-like random variates of given `size` """ kwargs['discrete'] = True return super(rv_discrete, self).rvs(*args, **kwargs) def pmf(self, k,*args, **kwds): """ Probability mass function at k of the given RV. Parameters ---------- k : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- pmf : array-like Probability mass function evaluated at k """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k,*args) cond = cond0 & cond1 output = zeros(shape(cond),'d') output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._pmf(*goodargs)) if output.ndim == 0: return output[()] return output def logpmf(self, k,*args, **kwds): """ Log of the probability mass function at k of the given RV. Parameters ---------- k : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- logpmf : array-like Log of the probability mass function evaluated at k """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k,*args) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._logpmf(*goodargs)) if output.ndim == 0: return output[()] return output def cdf(self, k, *args, **kwds): """ Cumulative distribution function at k of the given RV Parameters ---------- k : array-like, int quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- cdf : array-like Cumulative distribution function evaluated at k """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = zeros(shape(cond),'d') output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2*(cond0==cond0), 1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self, k, *args, **kwds): """ Log of the cumulative distribution function at k of the given RV Parameters ---------- k : array-like, int quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- logcdf : array-like Log of the cumulative distribution function evaluated at k """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k < self.b) cond2 = (k >= self.b) cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2*(cond0==cond0), 0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self,k,*args,**kwds): """ Survival function (1-cdf) at k of the given RV Parameters ---------- k : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- sf : array-like Survival function evaluated at k """ loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = zeros(shape(cond),'d') output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,1.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self,k,*args,**kwds): """ Log of the survival function (1-cdf) at k of the given RV Parameters ---------- k : array-like quantiles arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- sf : array-like Survival function evaluated at k """ loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) k,loc = map(arr,(k,loc)) args = tuple(map(arr,args)) k = arr(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= self.a) & (k <= self.b) cond2 = (k < self.a) & cond0 cond = cond0 & cond1 output = empty(shape(cond),'d') output.fill(NINF) output = place(output,(1-cond0)*(cond1==cond1),self.badvalue) output = place(output,cond2,0.0) if any(cond): goodargs = argsreduce(cond, *((k,)+args)) output = place(output,cond,self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self,q,*args,**kwds): """ Percent point function (inverse of cdf) at q of the given RV Parameters ---------- q : array-like lower tail probability arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) scale: array-like, optional scale parameter (default=1) Returns ------- k : array-like quantile corresponding to the lower tail probability, q. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) q,loc = map(arr,(q,loc)) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.badvalue,typecode='d') #output type 'd' to handle nin and inf output = place(output,(q==0)*(cond==cond), self.a-1) output = place(output,cond2,self.b) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] output = place(output,cond,self._ppf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def isf(self,q,*args,**kwds): """ Inverse survival function (1-sf) at q of the given RV Parameters ---------- q : array-like upper tail probability arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) Returns ------- k : array-like quantile corresponding to the upper tail probability, q. """ loc = kwds.get('loc') args, loc = self._fix_loc(args, loc) q,loc = map(arr,(q,loc)) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 #old: ## output = valarray(shape(cond),value=self.b,typecode='d') ## #typecode 'd' to handle nin and inf ## output = place(output,(1-cond0)*(cond1==cond1), self.badvalue) ## output = place(output,cond2,self.a-1) #same problem as with ppf # copied from ppf and changed output = valarray(shape(cond),value=self.badvalue,typecode='d') #output type 'd' to handle nin and inf output = place(output,(q==0)*(cond==cond), self.b) output = place(output,cond2,self.a-1) # call place only if at least 1 valid argument if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] output = place(output,cond,self._isf(*goodargs) + loc) #PB same as ticket 766 if output.ndim == 0: return output[()] return output def stats(self, *args, **kwds): """ Some statistics of the given discrete RV Parameters ---------- arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) moments : string, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default='mv') Returns ------- stats : sequence of requested moments. """ loc,moments=map(kwds.get,['loc','moments']) N = len(args) if N > self.numargs: if N == self.numargs + 1 and loc is None: # loc is given without keyword loc = args[-1] if N == self.numargs + 2 and moments is None: # loc, scale, and moments loc, moments = args[-2:] args = args[:self.numargs] if loc is None: loc = 0.0 if moments is None: moments = 'mv' loc = arr(loc) args = tuple(map(arr,args)) cond = self._argcheck(*args) & (loc==loc) signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): mu, mu2, g1, g2 = self._stats(*args,**{'moments':moments}) else: mu, mu2, g1, g2 = self._stats(*args) if g1 is None: mu3 = None else: mu3 = g1*(mu2**1.5) default = valarray(shape(cond), self.badvalue) output = [] # Use only entries that are valid in calculation goodargs = argsreduce(cond, *(args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] if 'm' in moments: if mu is None: mu = self._munp(1.0,*goodargs) out0 = default.copy() out0 = place(out0,cond,mu+loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) mu2 = mu2p - mu*mu out0 = default.copy() out0 = place(out0,cond,mu2) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu mu3 = mu3p - 3*mu*mu2 - mu**3 g1 = mu3 / mu2**1.5 out0 = default.copy() out0 = place(out0,cond,g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4.0,*goodargs) if mu is None: mu = self._munp(1.0,*goodargs) if mu2 is None: mu2p = self._munp(2.0,*goodargs) mu2 = mu2p - mu*mu if mu3 is None: mu3p = self._munp(3.0,*goodargs) mu3 = mu3p - 3*mu*mu2 - mu**3 mu4 = mu4p - 4*mu*mu3 - 6*mu*mu*mu2 - mu**4 g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() out0 = place(out0,cond,g2) output.append(out0) if len(output) == 1: return output[0] else: return tuple(output) def moment(self, n, *args, **kwds): # Non-central moments in standard form. """ n'th non-central moment of the distribution Parameters ---------- n: int, n>=1 order of moment arg1, arg2, arg3,...: float The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : float, optional location parameter (default=0) scale : float, optional scale parameter (default=1) """ loc = kwds.get('loc', 0) scale = kwds.get('scale', 1) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): signature = inspect.getargspec(self._stats.im_func) if (signature[2] is not None) or ('moments' in signature[0]): dict = {'moments':{1:'m',2:'v',3:'vs',4:'vk'}[n]} else: dict = {} mu, mu2, g1, g2 = self._stats(*args,**dict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # so E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n,k)*(S/L)^k E[Y^k],k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n,k,exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def freeze(self, *args, **kwds): return rv_frozen(self, *args, **kwds) def _entropy(self, *args): if hasattr(self,'pk'): return entropy(self.pk) else: mu = int(self.stats(*args, **{'moments':'m'})) val = self.pmf(mu,*args) if (val==0.0): ent = 0.0 else: ent = -val*log(val) k = 1 term = 1.0 while (abs(term) > eps): val = self.pmf(mu+k,*args) if val == 0.0: term = 0.0 else: term = -val * log(val) val = self.pmf(mu-k,*args) if val != 0.0: term -= val*log(val) k += 1 ent += term return ent def entropy(self, *args, **kwds): loc= kwds.get('loc') args, loc = self._fix_loc(args, loc) loc = arr(loc) args = map(arr,args) cond0 = self._argcheck(*args) & (loc==loc) output = zeros(shape(cond0),'d') output = place(output,(1-cond0),self.badvalue) goodargs = argsreduce(cond0, *args) output = place(output,cond0,self.vecentropy(*goodargs)) return output def __call__(self, *args, **kwds): return self.freeze(*args,**kwds) def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False): """calculate expected value of a function with respect to the distribution for discrete distribution Parameters ---------- fn : function (default: identity mapping) Function for which sum is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution optional keyword parameters lb, ub : numbers lower and upper bound for integration, default is set to the support of the distribution, lb and ub are inclusive (ul<=k<=ub) conditional : boolean (False) If true then the expectation is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval (k such that ul<=k<=ub). Returns ------- expected value : float Notes ----- * function is not vectorized * accuracy: uses self.moment_tol as stopping criterium for heavy tailed distribution e.g. zipf(4), accuracy for mean, variance in example is only 1e-5, increasing precision (moment_tol) makes zipf very slow * suppnmin=100 internal parameter for minimum number of points to evaluate could be added as keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in (-suppnmin, suppnmin) * uses maxcount=1000 limits the number of points that are evaluated to break loop for infinite sums (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers are evaluated) """ #moment_tol = 1e-12 # increase compared to self.moment_tol, # too slow for only small gain in precision for zipf #avoid endless loop with unbound integral, eg. var of zipf(2) maxcount = 1000 suppnmin = 100 #minimum number of points to evaluate (+ and -) if func is None: def fun(x): #loc and args from outer scope return (x+loc)*self._pmf(x, *args) else: def fun(x): #loc and args from outer scope return func(x+loc)*self._pmf(x, *args) # used pmf because _pmf does not check support in randint # and there might be problems(?) with correct self.a, self.b at this stage # maybe not anymore, seems to work now with _pmf self._argcheck(*args) # (re)generate scalar self.a and self.b if lb is None: lb = (self.a) else: lb = lb - loc #convert bound for standardized distribution if ub is None: ub = (self.b) else: ub = ub - loc #convert bound for standardized distribution if conditional: if np.isposinf(ub)[()]: #work around bug: stats.poisson.sf(stats.poisson.b, 2) is nan invfac = 1 - self.cdf(lb-1,*args) else: invfac = 1 - self.cdf(lb-1,*args) - self.sf(ub,*args) else: invfac = 1.0 tot = 0.0 low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args) low = max(min(-suppnmin, low), lb) upp = min(max(suppnmin, upp), ub) supp = np.arange(low, upp+1, self.inc) #check limits #print 'low, upp', low, upp tot = np.sum(fun(supp)) diff = 1e100 pos = upp + self.inc count = 0 #handle cases with infinite support while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos += self.inc count += 1 if self.a < 0: #handle case when self.a = -inf diff = 1e100 pos = low - self.inc while (pos >= lb) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos -= self.inc count += 1 if count > maxcount: # fixme: replace with proper warning print 'sum did not converge' return tot/invfac # Binomial class binom_gen(rv_discrete): def _rvs(self, n, pr): return mtrand.binomial(n,pr,self._size) def _argcheck(self, n, pr): self.b = n return (n>=0) & (pr >= 0) & (pr <= 1) def _logpmf(self, x, n, pr): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + k*np.log(pr) + (n-k)*np.log(1-pr) def _pmf(self, x, n, pr): return exp(self._logpmf(x, n, pr)) def _cdf(self, x, n, pr): k = floor(x) vals = special.bdtr(k,n,pr) return vals def _sf(self, x, n, pr): k = floor(x) return special.bdtrc(k,n,pr) def _ppf(self, q, n, pr): vals = ceil(special.bdtrik(q,n,pr)) vals1 = vals-1 temp = special.bdtr(vals1,n,pr) return where(temp >= q, vals1, vals) def _stats(self, n, pr): q = 1.0-pr mu = n * pr var = n * pr * q g1 = (q-pr) / sqrt(n*pr*q) g2 = (1.0-6*pr*q)/(n*pr*q) return mu, var, g1, g2 def _entropy(self, n, pr): k = r_[0:n+1] vals = self._pmf(k,n,pr) lvals = where(vals==0,0.0,log(vals)) return -sum(vals*lvals,axis=0) binom = binom_gen(name='binom',shapes="n, pr",extradoc=""" Binomial distribution Counts the number of successes in *n* independent trials when the probability of success each time is *pr*. binom.pmf(k,n,p) = choose(n,k)*p**k*(1-p)**(n-k) for k in {0,1,...,n} """) # Bernoulli distribution class bernoulli_gen(binom_gen): def _rvs(self, pr): return binom_gen._rvs(self, 1, pr) def _argcheck(self, pr): return (pr >=0 ) & (pr <= 1) def _logpmf(self, x, pr): return binom._logpmf(x, 1, pr) def _pmf(self, x, pr): return binom._pmf(x, 1, pr) def _cdf(self, x, pr): return binom._cdf(x, 1, pr) def _sf(self, x, pr): return binom._sf(x, 1, pr) def _ppf(self, q, pr): return binom._ppf(q, 1, pr) def _stats(self, pr): return binom._stats(1, pr) def _entropy(self, pr): return -pr*log(pr)-(1-pr)*log(1-pr) bernoulli = bernoulli_gen(b=1,name='bernoulli',shapes="pr",extradoc=""" Bernoulli distribution 1 if binary experiment succeeds, 0 otherwise. Experiment succeeds with probabilty *pr*. bernoulli.pmf(k,p) = 1-p if k = 0 = p if k = 1 for k = 0,1 """ ) # Negative binomial class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- Probability mass function, given by ``np.choose(k+n-1, n-1) * p**n * (1-p)**k`` for ``k >= 0``. %(example)s """ def _rvs(self, n, pr): return mtrand.negative_binomial(n, pr, self._size) def _argcheck(self, n, pr): return (n >= 0) & (pr >= 0) & (pr <= 1) def _pmf(self, x, n, pr): coeff = exp(gamln(n+x) - gamln(x+1) - gamln(n)) return coeff * power(pr,n) * power(1-pr,x) def _logpmf(self, x, n, pr): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(pr) + x*log(1-pr) def _cdf(self, x, n, pr): k = floor(x) return special.betainc(n, k+1, pr) def _sf_skip(self, x, n, pr): #skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k,n,pr) def _ppf(self, q, n, pr): vals = ceil(special.nbdtrik(q,n,pr)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1,n,pr) return where(temp >= q, vals1, vals) def _stats(self, n, pr): Q = 1.0 / pr P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom', shapes="n, pr", extradoc=""" Negative binomial distribution nbinom.pmf(k,n,p) = choose(k+n-1,n-1) * p**n * (1-p)**k for k >= 0. """ ) ## Geometric distribution class geom_gen(rv_discrete): def _rvs(self, pr): return mtrand.geometric(pr,size=self._size) def _argcheck(self, pr): return (pr<=1) & (pr >= 0) def _pmf(self, k, pr): return (1-pr)**(k-1) * pr def _logpmf(self, k, pr): return (k-1)*log(1-pr) + pr def _cdf(self, x, pr): k = floor(x) return (1.0-(1.0-pr)**k) def _sf(self, x, pr): k = floor(x) return (1.0-pr)**k def _ppf(self, q, pr): vals = ceil(log(1.0-q)/log(1-pr)) temp = 1.0-(1.0-pr)**(vals-1) return where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, pr): mu = 1.0/pr qr = 1.0-pr var = qr / pr / pr g1 = (2.0-pr) / sqrt(qr) g2 = numpy.polyval([1,-6,6],pr)/(1.0-pr) return mu, var, g1, g2 geom = geom_gen(a=1,name='geom', longname="A geometric", shapes="pr", extradoc=""" Geometric distribution geom.pmf(k,p) = (1-p)**(k-1)*p for k >= 1 """ ) ## Hypergeometric distribution class hypergeom_gen(rv_discrete): def _rvs(self, M, n, N): return mtrand.hypergeometric(n,M-n,N,size=self._size) def _argcheck(self, M, n, N): cond = rv_discrete._argcheck(self,M,n,N) cond &= (n <= M) & (N <= M) self.a = N-(M-n) self.b = min(n,N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): #same as the following but numerically more precise #return comb(good,k) * comb(bad,N-k) / comb(tot,N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): tot, good = M, n n = good*1.0 m = (tot-good)*1.0 N = N*1.0 tot = m+n p = n/tot mu = N*p var = m*n*N*(tot-N)*1.0/(tot*tot*(tot-1)) g1 = (m - n)*(tot-2*N) / (tot-2.0)*sqrt((tot-1.0)/(m*n*N*(tot-N))) m2, m3, m4, m5 = m**2, m**3, m**4, m**5 n2, n3, n4, n5 = n**2, n**2, n**4, n**5 g2 = m3 - m5 + n*(3*m2-6*m3+m4) + 3*m*n2 - 12*m2*n2 + 8*m3*n2 + n3 \ - 6*m*n3 + 8*m2*n3 + m*n4 - n5 - 6*m3*N + 6*m4*N + 18*m2*n*N \ - 6*m3*n*N + 18*m*n2*N - 24*m2*n2*N - 6*n3*N - 6*m*n3*N \ + 6*n4*N + N*N*(6*m2 - 6*m3 - 24*m*n + 12*m2*n + 6*n2 + \ 12*m*n2 - 6*n3) return mu, var, g1, g2 def _entropy(self, M, n, N): k = r_[N-(M-n):min(n,N)+1] vals = self.pmf(k,M,n,N) lvals = where(vals==0.0,0.0,log(vals)) return -sum(vals*lvals,axis=0) hypergeom = hypergeom_gen(name='hypergeom',longname="A hypergeometric", shapes="M, n, N", extradoc=""" Hypergeometric distribution Models drawing objects from a bin. M is total number of objects, n is total number of Type I objects. RV counts number of Type I objects in N drawn without replacement from population. hypergeom.pmf(k, M, n, N) = choose(n,k)*choose(M-n,N-k)/choose(M,N) for N - (M-n) <= k <= min(m,N) """ ) ## Logarithmic (Log-Series), (Series) distribution # FIXME: Fails _cdfvec class logser_gen(rv_discrete): def _rvs(self, pr): # looks wrong for pr>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return mtrand.logseries(pr,size=self._size) def _argcheck(self, pr): return (pr > 0) & (pr < 1) def _pmf(self, k, pr): return -pr**k * 1.0 / k / log(1-pr) def _stats(self, pr): r = log(1-pr) mu = pr / (pr - 1.0) / r mu2p = -pr / r / (pr-1.0)**2 var = mu2p - mu*mu mu3p = -pr / r * (1.0+pr) / (1.0-pr)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / var**1.5 mu4p = -pr / r * (1.0/(pr-1)**2 - 6*pr/(pr-1)**3 + \ 6*pr*pr / (pr-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1,name='logser', longname='A logarithmic', shapes='pr', extradoc=""" Logarithmic (Log-Series, Series) distribution logser.pmf(k,p) = - p**k / (k*log(1-p)) for k >= 1 """ ) ## Poisson distribution class poisson_gen(rv_discrete): def _rvs(self, mu): return mtrand.poisson(mu, self._size) def _pmf(self, k, mu): Pk = k*log(mu)-gamln(k+1) - mu return exp(Pk) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k,mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k,mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q,mu)) vals1 = vals-1 temp = special.pdtr(vals1,mu) return where((temp >= q), vals1, vals) def _stats(self, mu): var = mu g1 = 1.0/arr(sqrt(mu)) g2 = 1.0 / arr(mu) return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson', shapes="mu", extradoc=""" Poisson distribution poisson.pmf(k, mu) = exp(-mu) * mu**k / k! for k >= 0 """ ) ## (Planck) Discrete Exponential class planck_gen(rv_discrete): def _argcheck(self, lambda_): if (lambda_ > 0): self.a = 0 self.b = inf return 1 elif (lambda_ < 0): self.a = -inf self.b = 0 return 1 return 0 # lambda_ = 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck',longname='A discrete exponential ', shapes="lamda", extradoc=""" Planck (Discrete Exponential) planck.pmf(k,b) = (1-exp(-b))*exp(-b*k) for k*b >= 0 """ ) class boltzmann_gen(rv_discrete): def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann',longname='A truncated discrete exponential ', shapes="lamda, N", extradoc=""" Boltzmann (Truncated Discrete Exponential) boltzmann.pmf(k,b,N) = (1-exp(-b))*exp(-b*k)/(1-exp(-b*N)) for k=0,..,N-1 """ ) ## Discrete Uniform class randint_gen(rv_discrete): def _argcheck(self, min, max): self.a = min self.b = max-1 return (max > min) def _pmf(self, k, min, max): fact = 1.0 / (max - min) return fact def _cdf(self, x, min, max): k = floor(x) return (k-min+1)*1.0/(max-min) def _ppf(self, q, min, max): vals = ceil(q*(max-min)+min)-1 vals1 = (vals-1).clip(min, max) temp = self._cdf(vals1, min, max) return where(temp >= q, vals1, vals) def _stats(self, min, max): m2, m1 = arr(max), arr(min) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d-1)*(d+1.0)/12.0 g1 = 0.0 g2 = -6.0/5.0*(d*d+1.0)/(d-1.0)*(d+1.0) return mu, var, g1, g2 def _rvs(self, min, max=None): """An array of *size* random integers >= min and < max. If max is None, then range is >=0 and < min """ return mtrand.randint(min, max, self._size) def _entropy(self, min, max): return log(max-min) randint = randint_gen(name='randint',longname='A discrete uniform '\ '(random integer)', shapes="min, max", extradoc=""" Discrete Uniform Random integers >=min and <max. randint.pmf(k,min, max) = 1/(max-min) for min <= k < max. """ ) # Zipf distribution # FIXME: problems sampling. class zipf_gen(rv_discrete): def _rvs(self, a): return mtrand.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / arr(special.zeta(a,1) * k**a) return Pk def _munp(self, n, a): return special.zeta(a-n,1) / special.zeta(a,1) def _stats(self, a): sv = errp(0) fac = arr(special.zeta(a,1)) mu = special.zeta(a-1.0,1)/fac mu2p = special.zeta(a-2.0,1)/fac var = mu2p - mu*mu mu3p = special.zeta(a-3.0,1)/fac mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / arr(var**1.5) mu4p = special.zeta(a-4.0,1)/fac sv = errp(sv) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / arr(var**2) - 3.0 return mu, var, g1, g2 zipf = zipf_gen(a=1,name='zipf', longname='A Zipf', shapes="a", extradoc=""" Zipf distribution zipf.pmf(k,a) = 1/(zeta(a)*k**a) for k >= 1 """ ) # Discrete Laplacian class dlaplace_gen(rv_discrete): def _pmf(self, k, a): return tanh(a/2.0)*exp(-a*abs(k)) def _cdf(self, x, a): k = floor(x) ind = (k >= 0) const = exp(a)+1 return where(ind, 1.0-exp(-a*k)/const, exp(a*(k+1))/const) def _ppf(self, q, a): const = 1.0/(1+exp(-a)) cons2 = 1+exp(a) ind = q < const vals = ceil(where(ind, log(q*cons2)/a-1, -log((1-q)*cons2)/a)) vals1 = (vals-1) temp = self._cdf(vals1, a) return where(temp >= q, vals1, vals) def _stats_skip(self, a): # variance mu2 does not aggree with sample variance, # nor with direct calculation using pmf # remove for now because generic calculation works # except it does not show nice zeros for mean and skew(?) ea = exp(-a) e2a = exp(-2*a) e3a = exp(-3*a) e4a = exp(-4*a) mu2 = 2* (e2a + ea) / (1-ea)**3.0 mu4 = 2* (e4a + 11*e3a + 11*e2a + ea) / (1-ea)**5.0 return 0.0, mu2, 0.0, mu4 / mu2**2.0 - 3 def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-inf, name='dlaplace', longname='A discrete Laplacian', shapes="a", extradoc=""" Discrete Laplacian distribution. dlaplace.pmf(k,a) = tanh(a/2) * exp(-a*abs(k)) for a > 0. """ ) class skellam_gen(rv_discrete): def _rvs(self, mu1, mu2): n = self._size return np.random.poisson(mu1, n)-np.random.poisson(mu2, n) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, ncx2.pdf(2*mu2, 2*(1-x), 2*mu1)*2, ncx2.pdf(2*mu1, 2*(x+1), 2*mu2)*2) #ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = np.floor(x) px = np.where(x < 0, ncx2.cdf(2*mu2, -2*x, 2*mu1), 1-ncx2.cdf(2*mu1, 2*(x+1), 2*mu2)) return px # enable later ## def _cf(self, w, mu1, mu2): ## # characteristic function ## poisscf = poisson._cf ## return poisscf(w, mu1) * poisscf(-w, mu2) def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / np.sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam', shapes="mu1,mu2", extradoc=""" Skellam distribution Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, k1-k2 follows a Skellam distribution with parameters mu1 = lam1 - rho*sqrt(lam1*lam2) and mu2 = lam2 - rho*sqrt(lam1*lam2), where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then rho = 0. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution """ )
gpl-3.0
tomlof/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
78
6016
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from sklearn.utils import check_random_state from sklearn.utils.testing import assert_raises from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile from sklearn.ensemble.gradient_boosting import QuantileLossFunction def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float64) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float64) y.fill(0.0) sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float64) y.fill(1.0) sw = np.ones(102, dtype=np.float64) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_quantile_loss_function(): # Non regression test for the QuantileLossFunction object # There was a sign problem when evaluating the function # for negative values of 'ytrue - ypred' x = np.asarray([-1.0, 0.0, 1.0]) y_found = QuantileLossFunction(1, 0.9)(x, np.zeros_like(x)) y_expected = np.asarray([0.1, 0.0, 0.9]).mean() np.testing.assert_allclose(y_found, y_expected) def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
NextThought/pypy-numpy
numpy/lib/twodim_base.py
37
26758
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types ) from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0, 1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0, 1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return v.diagonal(k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2D-histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) Or we fill the histogram H with a determined bin content: >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted [[ 13. 14. 15. 16.] [ 9. 10. 11. 12.] [ 5. 6. 7. 8.] [ 1. 2. 3. 4.]] Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow: equidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) pcolormesh can display exact bin edges: >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh: exact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') NonUniformImage displays exact bin edges with interpolation: >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage: interpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> ax.set_xlim(xedges[0], xedges[-1]) >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
rseubert/scikit-learn
sklearn/linear_model/tests/test_logistic.py
19
22876
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_loss_grad_hess, _multinomial_loss_grad_hess ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): """Simple sanity check on a 2 classes dataset Make sure it predicts the correct result on simple datasets. """ check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): """Test for appropriate exception on errors""" assert_raises(ValueError, LogisticRegression(C=-1).fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): """Test logistic regression with the iris dataset""" n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_multinomial_binary(): """Test multinomial LR on a binary problem.""" target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): """Test sparsify and densify members.""" n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): """Test that an exception is raised on inconsistent input""" rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): """Test that we can write to coef_ and intercept_""" clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): """Test proper NaN handling. Regression test for Issue #252: fit used to go into an infinite loop. """ Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): """Test that the path algorithm is consistent""" rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_random_state(): X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0) lr2.fit(X, y) assert_array_almost_equal(lr1.coef_, lr2.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_loss_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_2, grad_2, hess = _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) loss_interp_2, grad_interp_2, hess = \ _logistic_loss_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): """test for LogisticRegressionCV object""" n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) loss_interp, grad_interp, hess_interp = _logistic_loss_grad_hess( w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) loss, grad, hess = _logistic_loss_grad_hess(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): """Test that OvR and multinomial are correct using the iris dataset.""" train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=auto X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='auto') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='auto') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): """Test that warnings are raised if model does not converge""" X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): """Tests for the multinomial option in logistic regression""" # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=50, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_loss_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) _, grad, hessp = _multinomial_loss_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_loss_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_loss_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): """Test negative prediction when decision_function values are zero. Liblinear predicts the positive class when decision_function values are zero. This is a test to verify that we do not do the same. See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 """ rng = np.random.RandomState(0) X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): """Test LogRegCV with solver='liblinear' works for sparse matrices""" X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y)
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/linear_model/setup.py
169
1567
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('linear_model', parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension('cd_fast', sources=['cd_fast.c'], libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sgd_fast', sources=['sgd_fast.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) # add other directories config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
alyptik/dotfiles
.ipython/profile_default/ipython_config.py
1
22545
# Configuration file for ipython. #------------------------------------------------------------------------------ # InteractiveShellApp(Configurable) configuration #------------------------------------------------------------------------------ ## A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` ## Execute the given command string. #c.InteractiveShellApp.code_to_run = '' ## Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.InteractiveShellApp.exec_PYTHONSTARTUP = True ## List of files to run at IPython startup. #c.InteractiveShellApp.exec_files = [] ## lines of code to run at IPython startup. #c.InteractiveShellApp.exec_lines = [] ## A list of dotted module names of IPython extensions to load. #c.InteractiveShellApp.extensions = [] ## dotted module name of an IPython extension to load. #c.InteractiveShellApp.extra_extension = '' ## A file to be run #c.InteractiveShellApp.file_to_run = '' ## Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk2', 'gtk3', # 'osx', 'pyglet', 'qt', 'qt4', 'qt5', 'tk', 'wx', 'gtk2', 'qt4'). #c.InteractiveShellApp.gui = None ## Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? #c.InteractiveShellApp.hide_initial_ns = True ## Configure matplotlib for interactive use with the default matplotlib backend. #c.InteractiveShellApp.matplotlib = None ## Run the module as a script. #c.InteractiveShellApp.module_to_run = '' ## Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. #c.InteractiveShellApp.pylab = None ## If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. c.InteractiveShellApp.pylab_import_all = True ## Reraise exceptions encountered loading IPython extensions? #c.InteractiveShellApp.reraise_ipython_extension_failures = False #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s #c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template #c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. #c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication(Application) configuration #------------------------------------------------------------------------------ ## IPython: an enhanced interactive Python shell. ## Whether to create profile dir if it doesn't exist #c.BaseIPythonApplication.auto_create = False ## Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. #c.BaseIPythonApplication.copy_config_files = False ## Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. #c.BaseIPythonApplication.extra_config_file = '' ## The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. #c.BaseIPythonApplication.ipython_dir = '' ## Whether to overwrite existing config files when copying #c.BaseIPythonApplication.overwrite = False ## The IPython profile to use. #c.BaseIPythonApplication.profile = 'default' ## Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback #c.BaseIPythonApplication.verbose_crash = False #------------------------------------------------------------------------------ # TerminalIPythonApp(BaseIPythonApplication,InteractiveShellApp) configuration #------------------------------------------------------------------------------ ## Whether to display a banner upon starting IPython. #c.TerminalIPythonApp.display_banner = True ## If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. #c.TerminalIPythonApp.force_interact = False ## Start IPython quickly by skipping the loading of config files. #c.TerminalIPythonApp.quick = False #------------------------------------------------------------------------------ # InteractiveShell(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## An enhanced, interactive shell for Python. ## 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). #c.InteractiveShell.ast_node_interactivity = 'last_expr' ## A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. #c.InteractiveShell.ast_transformers = [] ## Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). c.InteractiveShell.autocall = 2 ## Autoindent IPython code entered interactively. # c.InteractiveShell.autoindent = True ## Enable magic commands to be called without the leading %. # c.InteractiveShell.automagic = True ## The part of the banner to be printed before the profile #c.InteractiveShell.banner1 = 'Python 3.6.1 (default, Mar 27 2017, 00:27:06) \nType "copyright", "credits" or "license" for more information.\n\nIPython 5.3.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' ## The part of the banner to be printed after the profile #c.InteractiveShell.banner2 = '' ## Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working #c.InteractiveShell.cache_size = 1000 ## Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. c.InteractiveShell.color_info = True ## Set the color scheme (NoColor, Neutral, Linux, or LightBG). c.InteractiveShell.colors = 'Linux' ## #c.InteractiveShell.debug = False ## **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). #c.InteractiveShell.deep_reload = False ## Don't call post-execute functions that have failed in the past. #c.InteractiveShell.disable_failing_post_execute = False ## If True, anything that would be passed to the pager will be displayed as # regular output instead. #c.InteractiveShell.display_page = False ## (Provisional API) enables html representation in mime bundles sent to pagers. #c.InteractiveShell.enable_html_pager = False ## Total length of command history c.InteractiveShell.history_length = 1000000 ## The number of saved history entries to be loaded into the history buffer at # startup. c.InteractiveShell.history_load_length = 1000000 ## #c.InteractiveShell.ipython_dir = '' ## Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. #c.InteractiveShell.logappend = '' ## The name of the logfile to use. #c.InteractiveShell.logfile = '' ## Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. #c.InteractiveShell.logstart = False ## #c.InteractiveShell.object_info_string_level = 0 ## Automatically call the pdb debugger after every exception. #c.InteractiveShell.pdb = False ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in1 = 'In [\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in2 = ' .\\D.: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_out = 'Out[\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompts_pad_left = True ## #c.InteractiveShell.quiet = False ## #c.InteractiveShell.separate_in = '\n' ## #c.InteractiveShell.separate_out = '' ## #c.InteractiveShell.separate_out2 = '' ## Show rewritten input, e.g. for autocall. #c.InteractiveShell.show_rewritten_input = True ## Enables rich html representation of docstrings. (This requires the docrepr # module). #c.InteractiveShell.sphinxify_docstring = False ## #c.InteractiveShell.wildcards_case_sensitive = True ## #c.InteractiveShell.xmode = 'Context' #------------------------------------------------------------------------------ # TerminalInteractiveShell(InteractiveShell) configuration #------------------------------------------------------------------------------ ## Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. #c.TerminalInteractiveShell.confirm_exit = True c.TerminalInteractiveShell.confirm_exit = False ## Options for displaying tab completions, 'column', 'multicolumn', and # 'readlinelike'. These options are for `prompt_toolkit`, see `prompt_toolkit` # documentation for more information. #c.TerminalInteractiveShell.display_completions = 'multicolumn' ## Shortcut style to use at the prompt. 'vi' or 'emacs'. # c.TerminalInteractiveShell.editing_mode = 'vi' c.TerminalInteractiveShell.editing_mode = 'emacs' ## Set the editor used by IPython (default to $EDITOR/vi/notepad). c.TerminalInteractiveShell.editor = 'vim' ## Enable vi (v) or Emacs (C-X C-E) shortcuts to open an external editor. This is # in addition to the F2 binding, which is always enabled. #c.TerminalInteractiveShell.extra_open_editor_shortcuts = False c.TerminalInteractiveShell.extra_open_editor_shortcuts = True ## Highlight matching brackets. #c.TerminalInteractiveShell.highlight_matching_brackets = True ## The name or class of a Pygments style to use for syntax # highlighting: # default, emacs, friendly, colorful, autumn, murphy, manni, monokai, perldoc, pastie, borland, trac, native, fruity, bw, vim, vs, tango, rrt, xcode, igor, paraiso-light, paraiso-dark, lovelace, algol, algol_nu, arduino, rainbow_dash, abap # c.TerminalInteractiveShell.highlighting_style = traitlets.Undefined c.TerminalInteractiveShell.highlighting_style = 'monokai' ## Override highlighting format for specific tokens #c.TerminalInteractiveShell.highlighting_style_overrides = {} ## Enable mouse support in the prompt c.TerminalInteractiveShell.mouse_support = True ## Class used to generate Prompt token for prompt_toolkit #c.TerminalInteractiveShell.prompts_class = 'IPython.terminal.prompts.Prompts' ## Use `raw_input` for the REPL, without completion, multiline input, and prompt # colors. # # Useful when controlling IPython as a subprocess, and piping STDIN/OUT/ERR. # Known usage are: IPython own testing machinery, and emacs inferior-shell # integration through elpy. # # This mode default to `True` if the `IPY_TEST_SIMPLE_PROMPT` environment # variable is set, or the current terminal is not a tty. #c.TerminalInteractiveShell.simple_prompt = False ## Number of line at the bottom of the screen to reserve for the completion menu #c.TerminalInteractiveShell.space_for_menu = 6 ## Automatically set the terminal title #c.TerminalInteractiveShell.term_title = True ## Use 24bit colors instead of 256 colors in prompt highlighting. If your # terminal supports true color, the following command should print 'TRUECOLOR' # in orange: printf "\x1b[38;2;255;100;0mTRUECOLOR\x1b[0m\n" # c.TerminalInteractiveShell.true_color = True c.TerminalInteractiveShell.true_color = False #------------------------------------------------------------------------------ # HistoryAccessor(HistoryAccessorBase) configuration #------------------------------------------------------------------------------ ## Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. ## Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. #c.HistoryAccessor.connection_options = {} ## enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. #c.HistoryAccessor.enabled = True ## Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # # you can also use the specific value `:memory:` (including the colon at both # end but not the back ticks), to avoid creating an history file. #c.HistoryAccessor.hist_file = '' #------------------------------------------------------------------------------ # HistoryManager(HistoryAccessor) configuration #------------------------------------------------------------------------------ ## A class to organize all history-related functionality in one place. ## Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. #c.HistoryManager.db_cache_size = 0 ## Should the history database include output? (default: no) #c.HistoryManager.db_log_output = False #------------------------------------------------------------------------------ # ProfileDir(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. ## Set the profile location directly. This overrides the logic used by the # `profile` option. #c.ProfileDir.location = '' #------------------------------------------------------------------------------ # BaseFormatter(Configurable) configuration #------------------------------------------------------------------------------ ## A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. ## #c.BaseFormatter.deferred_printers = {} ## #c.BaseFormatter.enabled = True ## #c.BaseFormatter.singleton_printers = {} ## #c.BaseFormatter.type_printers = {} #------------------------------------------------------------------------------ # PlainTextFormatter(BaseFormatter) configuration #------------------------------------------------------------------------------ ## The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') ## #c.PlainTextFormatter.float_precision = '' ## Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. #c.PlainTextFormatter.max_seq_length = 1000 ## #c.PlainTextFormatter.max_width = 79 ## #c.PlainTextFormatter.newline = '\n' ## #c.PlainTextFormatter.pprint = True ## #c.PlainTextFormatter.verbose = False #------------------------------------------------------------------------------ # Completer(Configurable) configuration #------------------------------------------------------------------------------ ## Activate greedy completion PENDING DEPRECTION. this is now mostly taken care # of with Jedi. # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. #c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter(Completer) configuration #------------------------------------------------------------------------------ ## Extension of the completer class with IPython-specific features ## DEPRECATED as of version 5.0. # # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored #c.IPCompleter.limit_to__all__ = False ## Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. #c.IPCompleter.merge_completions = True ## Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 c.IPCompleter.omit__names = 0 #------------------------------------------------------------------------------ # ScriptMagics(Magics) configuration #------------------------------------------------------------------------------ ## Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. ## Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths #c.ScriptMagics.script_magics = [] ## Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. #c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics(Magics) configuration #------------------------------------------------------------------------------ ## Lightweight persistence for python variables. # # Provides the %store magic. ## If True, any %store-d variables will be automatically restored when IPython # starts. #c.StoreMagics.autorestore = False # vi:ft=cfg:
gpl-3.0
kazemakase/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
mailhexu/pyDFTutils
pyDFTutils/phonon/parser.py
2
16721
#!/usr/bin/env python import os import numpy as np from ase.data import chemical_symbols import matplotlib.pyplot as plt from abipy.abilab import abiopen from pyDFTutils.perovskite.perovskite_mode import label_zone_boundary, label_Gamma from ase.units import Ha from spglib import spglib def displacement_cart_to_evec(displ_cart, masses, scaled_positions, qpoint=None, add_phase=True): """ displ_cart: cartisien displacement. (atom1_x, atom1_y, atom1_z, atom2_x, ...) masses: masses of atoms. scaled_postions: scaled postions of atoms. qpoint: if phase needs to be added, qpoint must be given. add_phase: whether to add phase to the eigenvectors. """ if add_phase and qpoint is None: raise ValueError('qpoint must be given if adding phase is needed') m = np.sqrt(np.kron(masses, [1, 1, 1])) evec = displ_cart * m if add_phase: phase = [ np.exp(-2j * np.pi * np.dot(pos, qpoint)) for pos in scaled_positions ] phase = np.kron(phase, [1, 1, 1]) evec *= phase evec /= np.linalg.norm(evec) return evec def ixc_to_xc(ixc): """ translate ixc (positive: abinit. negative: libxc) to XC. """ xcdict = { 0: 'NO-XC', 1: 'LDA', 2: 'LDA-PZCA', 3: 'LDA-CA', 4: 'LDA-Winger', 5: 'LDA-Hedin-Lundqvist', 6: 'LDA-X-alpha', 7: 'LDA-PW92', 8: 'LDA-PW92-xonly', 9: 'LDA-PW92-xRPA', 11: 'GGA-PBE', 12: 'GGA-PBE-xonly', 14: 'GGA-revPBE', 15: 'GGA-RPBE', 16: 'GGA-HTCH93', 17: 'GGA-HTCH120', 23: 'GGA-WC', 40: 'Hartree-Fock', 41: 'GGA-PBE0', 42: 'GGA-PBE0-1/3', -1009: 'LDA-PZCA', -101130: 'GGA-PBE', -106131: 'GGA-BLYP', -106132: 'GGA-BP86', -116133: 'GGA-PBEsol', -118130: 'GGA-WC', } if ixc in xcdict: return xcdict[ixc] else: return 'libxc_%s' % ixc class mat_data(): def __init__(self, name, mag='PM', description="None", author='High Throughput Bot', email='[email protected]', is_verified=False, verification_info="", tags=[] ): self._already_in_db = False self.name = name self.db_directory = None self.all_data_directory = None self.mag = mag self.insert_time = None self.update_time = None self.log = "" self.description = description self.author = author self.email = email self.tags=tags self.is_verified = is_verified self.verification_info = verification_info # properties in database. should be band | phonon self.has_ebands = False self.has_phonon = False self.is_cubic_perovskite = True self.cellpar = [0] * 6 self.cell = [0]*9 self.natoms = 0 self.chemical_symbols = [] self.masses = [] self.scaled_positions = [] self.ispin = 0 self.spinat = [] self.spgroup = 1 self.spgroup_name = 'P1' self.ixc = 1 self.XC = 'PBEsol' self.pp_type = 'ONCV' self.pp_info = 'Not implemented yet.' self.U_type=0 self.species=[] self.zion=[] self.U_l=[] self.U_u=[] self.U_j=[] self.GSR_parameters = {} self.energy = 0 self.efermi = 0 self.bandgap = 0 self.ebands = {} self.kptrlatt=[] self.usepaw=0 self.pawecutdg=0.0 self.nsppol=1 self.nspden=1 self.emacro = [0.0] * 9 self.becs = {} self.elastic = [] self.nqpts = [1, 1, 1] self.special_qpts = {} self.phonon_mode_freqs = {} self.phonon_mode_names = {} self.phonon_mode_evecs = {} self.phonon_mode_phdispl = {} self.phonon_mode_freqs_LOTO = {} self.phonon_mode_names_LOTO = {} self.phonon_mode_evecs_LOTO = {} self.phonon_mode_phdispl_LOTO = {} def read_BAND_nc(self, fname, outputfile='Ebands.png', plot_ebands=True): try: band_file = abiopen(fname) self.has_ebands = True except Exception: raise IOError("can't read %s" % fname) self.efermi = band_file.energy_terms.e_fermie gap = band_file.ebands.fundamental_gaps if len(gap) != 0: for g in gap: self.gap = g.energy self.is_direct_gap = g.is_direct self.bandgap = self.gap if plot_ebands: fig, ax = plt.subplots() fig = band_file.ebands.plot(ax=ax, show=False, ylims=[-7, 5]) fig.savefig(outputfile) def read_OUT_nc(self, fname): f = abiopen(fname) self.invars = f.get_allvars() for key in self.invars: if isinstance(self.invars[key], np.ndarray): self.invars[key] = tuple(self.invars[key]) self.spgroup = f.spgroup[0] self.ixc = f.ixc[0] self.XC = ixc_to_xc(self.ixc) self.ecut = f.ecut[0] self.species = [chemical_symbols[int(i)] for i in f.znucl] if 'usepawu' in self.invars: self.U_type= f.usepawu[0] else: self.U_type= 0 if self.U_type: self.U_l = f.lpawu self.U_u= [ x * Ha for x in f.upawu] self.U_j= [ x* Ha for x in f.jpawu ] #self.nband = f.nband[0] self.kptrlatt = tuple(f.kptrlatt) def print_scf_info(self): for key, val in self.invars: print("%s : %s\n" % (key, val)) def read_GSR_nc(self, fname): f = abiopen(fname) self.energy = f.energy self.stress_tensor = f.cart_stress_tensor # unit ? self.forces = np.array(f.cart_forces) # unit eV/ang def read_DDB(self, fname=None, do_label=True, workdir=None, phonon_output_dipdip='phonon_band_dipdip.png', phonon_output_nodipdip='phonon_band_nodipdip.png'): """ read phonon related properties from DDB file. """ self.has_phonon = True ddb = abiopen(fname) self.ddb_header = ddb.header self.atoms = ddb.structure.to_ase_atoms() self.natoms = len(self.atoms) self.cellpar = self.atoms.get_cell_lengths_and_angles() self.cell=self.atoms.get_cell().flatten() self.masses = self.atoms.get_masses() self.scaled_positions = self.atoms.get_scaled_positions() self.chemical_symbols = self.atoms.get_chemical_symbols() self.spgroup_name = spglib.get_spacegroup(self.atoms,symprec=1e-4) self.ixc = self.ddb_header['ixc'] self.XC = ixc_to_xc( self.ixc) self.ispin = self.ddb_header['nsppol'] self.spinat = self.ddb_header['spinat'] self.nband = self.ddb_header['nband'] self.ecut = self.ddb_header['ecut'] self.tsmear =self.ddb_header['tsmear'] self.usepaw =self.ddb_header['usepaw'] self.pawecutdg = self.ddb_header['tsmear'] self.nsppol = self.ddb_header['nsppol'] self.nspden= self.ddb_header['nspden'] self.species = [chemical_symbols[int(i)] for i in self.ddb_header['znucl']] self.zion = [int(x) for x in self.ddb_header['zion']] self.znucl = [int(x) for x in self.ddb_header['znucl']] emacror, becsr = ddb.anaget_emacro_and_becs() emacro = emacror[0].cartesian_tensor becs_array = becsr.values becs = {} for i, bec in enumerate(becs_array): becs[str(i)] = bec nqpts = ddb._guess_ngqpt() qpts = tuple(ddb.qpoints.frac_coords) self.emacro = emacro self.becs = becs self.nqpts = nqpts self.qpts = qpts for qpt in qpts: qpt = tuple(qpt) m = ddb.anaget_phmodes_at_qpoint(qpt) #self.results['phonon'][qpt]['frequencies'] = m.phfreqs #self.results['phonon'][qpt][ # 'eigen_displacements'] = m.phdispl_cart qpoints, evals, evecs, edisps = self.phonon_band( ddb, lo_to_splitting=False, phonon_output_dipdip=phonon_output_dipdip, phonon_output_nodipdip=phonon_output_nodipdip) #for i in range(15): # print(evecs[0, :, i]) self.special_qpts = { 'X': (0, 0.5, 0.0), 'M': (0.5, 0.5, 0), 'R': (0.5, 0.5, 0.5) } zb_modes = self.label_zone_boundary_all( qpoints, evals, evecs, label=do_label) for qname in self.special_qpts: self.phonon_mode_freqs[qname] = zb_modes[qname][0] self.phonon_mode_names[qname] = zb_modes[qname][1] self.phonon_mode_evecs[qname] = zb_modes[qname][2] Gmodes = self.label_Gamma_all(qpoints, evals, evecs, label=do_label) self.phonon_mode_freqs['Gamma'] = Gmodes[0] self.phonon_mode_names['Gamma'] = Gmodes[1] self.phonon_mode_evecs['Gamma'] = Gmodes[2] def get_zb_mode(self, qname, mode_name): """ return the frequencies of mode name. """ ibranches = [] freqs = [] for imode, mode in enumerate( self.results['phonon']['boundary_modes'][qname]): freq, mname = mode if mname == mode_name: ibranches.append(imode) freqs.append(freq) return ibranches, freqs def get_gamma_modes(self): """ return (Freqs, names, evecs) """ return self.phonon_mode_freqs['Gamma'], self.phonon_mode_names['Gamma'], self.phonon_mode_evecs['Gamma'], def get_gamma_mode(self, mode_name): """ return the frequencies of mode name. """ ibranches = [] freqs = [] for imode, mode in enumerate(zip(self.phonon_mode_freqs['Gamma'], self.phonon_mode_names['Gamma'])): freq, mname = mode if mname == mode_name: ibranches.append(imode) freqs.append(freq) return ibranches, freqs def label_Gamma_all(self, qpoints, evals, evecs, label=True): Gamma_mode_freqs = [] Gamma_mode_names = [] Gamma_mode_evecs = [] for i, qpt in enumerate(qpoints): if np.isclose(qpt, [0, 0, 0], rtol=1e-5, atol=1e-3).all(): evecq = evecs[i] for j, evec in enumerate(evecq.T): freq = evals[i][j] if label: mode = label_Gamma( evec=evec, masses=self.atoms.get_masses()) Gamma_mode_names.append(mode) else: Gamma_mode_names.append('') Gamma_mode_freqs.append(freq) Gamma_mode_evecs.append(np.real(evec)) return Gamma_mode_freqs, Gamma_mode_names, Gamma_mode_evecs if Gamma_mode_names == []: print("Warning: No Gamma point found in qpoints.\n") return Gamma_mode_freqs, Gamma_mode_names, Gamma_mode_evecs def label_zone_boundary_all(self, qpoints, evals, evecs, label=True): mode_dict = {} qdict = {'X': (0, 0.5, 0.0), 'M': (0.5, 0.5, 0), 'R': (0.5, 0.5, 0.5)} for i, qpt in enumerate(qpoints): for qname in qdict: if np.isclose(qpt, qdict[qname], rtol=1e-5, atol=1e-3).all(): mode_freqs = [] mode_names = [] mode_evecs = [] #print "====================================" #print qname evecq = evecs[i] for j, evec in enumerate(evecq.T): freq = evals[i][j] mode_freqs.append(freq) if label: mode = label_zone_boundary(qname, evec=evec) mode_names.append(mode) else: mode_names.append('') mode_evecs.append(np.real(evec)) mode_dict[qname] = (mode_freqs, mode_names, mode_evecs) return mode_dict def phonon_band(self, ddb, lo_to_splitting=False, workdir=None, phonon_output_dipdip='phonon_band_dipdip.png', phonon_output_nodipdip='phonon_band_nodipdip.png', show=False): atoms = ddb.structure.to_ase_atoms() if workdir is not None: workdir_dip = os.path.join(workdir, '/phbst_dipdip') #if os.path.exists(workdir_dip): # os.system('rm -r %s' % workdir_dip) else: workdir_dip = None phbst, phdos = ddb.anaget_phbst_and_phdos_files( nqsmall=10, asr=1, chneut=1, dipdip=1, verbose=1, lo_to_splitting=True, anaddb_kwargs={'alphon': 1}, workdir=workdir_dip, #qptbounds=kpath_bounds, ) fig, ax = plt.subplots(nrows=1, ncols=1) #plt.tight_layout(pad=2.19) #plt.axis('tight') plt.gcf().subplots_adjust(left=0.17) ax.axhline(0, linestyle='--', color='black') ax.set_title(self.name) ticks, labels = phbst.phbands._make_ticks_and_labels(qlabels=None) fig.axes[0].set_xlim([ticks[0],ticks[-1]]) fig = phbst.phbands.plot( ax=ax, units='cm-1', match_bands=False, linewidth=1.7, color='blue', show=False) fig.axes[0].grid(False) if show: plt.show() if phonon_output_dipdip: fig.savefig(phonon_output_dipdip) plt.close() if workdir is not None: workdir_nodip = os.path.join(workdir, 'phbst_nodipdip') #if os.path.exists(workdir_dip): # os.system('rm -r %s' % workdir_nodip) else: workdir_nodip = None phbst, phdos = ddb.anaget_phbst_and_phdos_files( nqsmall=5, asr=1, chneut=1, dipdip=0, verbose=1, lo_to_splitting=False, anaddb_kwargs={'alphon': 1}, workdir=workdir_nodip #qptbounds=kpath_bounds, ) fig, ax = plt.subplots(nrows=1, ncols=1) #plt.tight_layout(pad=2.19) #plt.axis('tight') plt.gcf().subplots_adjust(left=0.17) ax.axhline(0, linestyle='--', color='black') ax.set_title(self.name) ax.set_title(self.name) ticks, labels = phbst.phbands._make_ticks_and_labels(qlabels=None) fig.axes[0].set_xlim([ticks[0],ticks[-1]]) fig = phbst.phbands.plot( ax=ax, units='cm-1', match_bands=False, linewidth=1.4, color='blue', show=False) fig.axes[0].grid(False) if show: plt.show() if phonon_output_dipdip: fig.savefig(phonon_output_nodipdip) plt.close() qpoints = phbst.qpoints.frac_coords nqpts = len(qpoints) nbranch = 3 * len(atoms) evals = np.zeros([nqpts, nbranch]) evecs = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') edisps = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') masses = atoms.get_masses() scaled_positions = atoms.get_scaled_positions() for iqpt, qpt in enumerate(qpoints): for ibranch in range(nbranch): phmode = phbst.get_phmode(qpt, ibranch) evals[iqpt, ibranch] = phmode.freq * 8065.6 evec = displacement_cart_to_evec( phmode.displ_cart, masses, scaled_positions, qpoint=qpt, add_phase=False) evecs[iqpt, :, ibranch] = evec / np.linalg.norm(evec) edisps[iqpt, :, ibranch] = phmode.displ_cart return qpoints, evals, evecs, edisps def test(): m = mat_data() m.read_BAND_nc('./BAND_GSR.nc') m.read_OUT_nc('./OUT.nc') m.read_DDB('out_DDB') #test()
lgpl-3.0
pieleric/odemis
src/odemis/acq/stream/_base.py
2
56609
# -*- coding: utf-8 -*- ''' Created on 25 Jun 2014 @author: Éric Piel Copyright © 2014-2015 Éric Piel, Delmic This file is part of Odemis. Odemis is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Odemis is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Odemis. If not, see http://www.gnu.org/licenses/. ''' from __future__ import division from past.builtins import long import collections import functools import gc import logging import math import numbers import numpy from odemis import model from odemis.model import (MD_POS, MD_PIXEL_SIZE, MD_ROTATION, MD_ACQ_DATE, MD_SHEAR, VigilantAttribute, VigilantAttributeBase, MD_POL_HORIZONTAL, MD_POL_VERTICAL, MD_POL_POSDIAG, MD_POL_NEGDIAG, MD_POL_RHC, MD_POL_LHC, MD_POL_S0, MD_POL_S1, MD_POL_S2, MD_POL_S3, MD_POL_DS0, MD_POL_DS1, MD_POL_DS2, MD_POL_DS3, MD_POL_EPHI, MD_POL_ETHETA, MD_POL_EX, MD_POL_EY, MD_POL_EZ, MD_POL_DOP, MD_POL_DOLP, MD_POL_DOCP, MD_POL_UP, MD_POL_DS1N, MD_POL_DS2N, MD_POL_DS3N, MD_POL_S1N, MD_POL_S2N, MD_POL_S3N, TINT_FIT_TO_RGB, TINT_RGB_AS_IS) from odemis.util import img import threading import time import weakref import matplotlib # TODO: move to odemis.acq (once it doesn't depend on odemis.acq.stream) # Contains the base of the streams. Can be imported from other stream modules. # to identify a ROI which must still be defined by the user from odemis.util.transform import AffineTransform UNDEFINED_ROI = (0, 0, 0, 0) # use hardcode list of polarization positions necessary for polarimetry analysis POL_POSITIONS = (MD_POL_HORIZONTAL, MD_POL_VERTICAL, MD_POL_POSDIAG, MD_POL_NEGDIAG, MD_POL_RHC, MD_POL_LHC) POL_POSITIONS_RESULTS = (MD_POL_DS0, MD_POL_DS1, MD_POL_DS2, MD_POL_DS3, MD_POL_DS1N, MD_POL_DS2N, MD_POL_DS3N, MD_POL_S0, MD_POL_S1, MD_POL_S2, MD_POL_S3, MD_POL_S1N, MD_POL_S2N, MD_POL_S3N, MD_POL_EPHI, MD_POL_ETHETA, MD_POL_EX, MD_POL_EY, MD_POL_EZ, MD_POL_DOP, MD_POL_DOLP, MD_POL_DOCP, MD_POL_UP) # user-friendly look-up dict for display in legend POL_POSITIONS_2_DISPLAY = {MD_POL_HORIZONTAL: "Horizontal", MD_POL_VERTICAL: "Vertical", MD_POL_POSDIAG: "Positive diagonal", MD_POL_NEGDIAG: "Negative diagonal", MD_POL_RHC: "Right-handed circular", MD_POL_LHC: "Left-handed circular", MD_POL_DS0: "Stokes parameter detector plane S0", MD_POL_DS1: "Stokes parameter detector plane S1", MD_POL_DS2: "Stokes parameter detector plane S2", MD_POL_DS3: "Stokes parameter detector plane S3", MD_POL_DS1N: "Normalized stokes parameter detector plane S1", MD_POL_DS2N: "Normalized stokes parameter detector plane S2", MD_POL_DS3N: "Normalized stokes parameter detector plane S3", MD_POL_S0: "Stokes parameter sample plane S0", MD_POL_S1: "Stokes parameter sample plane S1", MD_POL_S2: "Stokes parameter sample plane S2", MD_POL_S3: "Stokes parameter sample plane S3", MD_POL_S1N: "Normalized stokes parameter sample plane S1", MD_POL_S2N: "Normalized stokes parameter sample plane S2", MD_POL_S3N: "Normalized stokes parameter sample plane S3", MD_POL_EPHI: u"Electrical field amplitude φ", MD_POL_ETHETA: u"Electrical field amplitude θ", MD_POL_EX: "Electrical field amplitude Ex", MD_POL_EY: "Electrical field amplitude Ey", MD_POL_EZ: "Electrical field amplitude Ez", MD_POL_DOP: "Degree of polarization", MD_POL_DOLP: "Degree of linear polarization", MD_POL_DOCP: "Degree of circular polarization", MD_POL_UP: "Degree of unpolarized light" } POL_MOVE_TIME = 6 # [s] extra time to move polarimetry hardware (value is very approximate) class Stream(object): """ A stream combines a Detector, its associated Dataflow and an Emitter. It handles acquiring the data from the hardware and renders it as a RGB image (with MD_PIXEL_SIZE and MD_POS copied) This is an abstract class, unless the emitter doesn't need any configuration (always on, with the right settings). Note: If a Stream needs multiple Emitters, then this should be implemented in a subclass of Stream. Note: in general it's a bad idea to use .resolution as a local VA (because it's automatically modified by binning/scale and affect by .roi) """ # Minimum overhead time in seconds when acquiring an image SETUP_OVERHEAD = 0.1 def __init__(self, name, detector, dataflow, emitter, focuser=None, opm=None, hwdetvas=None, hwemtvas=None, detvas=None, emtvas=None, axis_map={}, raw=None, acq_type=None): """ name (string): user-friendly name of this stream detector (Detector): the detector which has the dataflow dataflow (Dataflow): the dataflow from which to get the data emitter (Emitter): the emitter opm (OpticalPathManager): the optical path manager focuser (Actuator or None): an actuator with a 'z' axis that allows to change the focus hwdetvas (None or set of str): names of all detector hardware VAs to be controlled by this Stream hwemtvas (None or set of str): names of all emitter hardware VAs to be controlled by this Stream axis_map (None or dict of axis_name_in_stream(str) -> (str, Actuator)): names of all of the axes that are connected to the stream and should be controlled detvas (None or set of str): names of all the detector VigilantAttributes (VAs) to be duplicated on the stream. They will be named .detOriginalName emtvas (None or set of str): names of all the emitter VAs to be duplicated on the stream. They will be named .emtOriginalName raw (None or list of DataArrays or DataArrayShadow): raw data to be used at initialisation. By default, it will contain no data. acq_type (MD_AT_*): acquisition type associated with this stream (as in model._metadata) """ self.name = model.StringVA(name) self.acquisitionType = model.VigilantAttribute(acq_type) # MD_ACQ_TYPE or None # for identification of the acquisition type associated with the stream # Hardware Components self._detector = detector self._emitter = emitter self._focuser = focuser self._opm = opm # Dataflow (Live image stream with meta data) # Note: A Detector can have multiple dataflows, so that's why a Stream # has a separate attribute. self._dataflow = dataflow # TODO: We need to reorganise everything so that the # image display is done via a dataflow (in a separate thread), instead # of a VA. self._im_needs_recompute = threading.Event() self._init_thread() # list of DataArray(Shadow) received and used to generate the image # every time it's modified, image is also modified if raw is None: self.raw = [] else: self.raw = raw # initialize the projected tiles cache self._projectedTilesCache = {} # initialize the raw tiles cache self._rawTilesCache = {} # TODO: should better be based on a BufferedDataFlow: subscribing starts # acquisition and sends (raw) data to whoever is interested. .get() # returns the previous or next image acquired. # indicating if stream has already been prepared self._prepared = False # TODO: should_update is a GUI stuff => move away from stream # should_update has no effect direct effect, it's just a flag to # indicate the user would like to have the stream updated (live) self.should_update = model.BooleanVA(False) # is_active set to True will keep the acquisition going on self.is_active = model.BooleanVA(False, setter=self._is_active_setter) # Leech to use during acquisition. # Note: for now only some streams actually use them (MDStreams*) self.leeches = [] # Hardware VA that the stream is directly linked to self.hw_vas = {} self.hw_vas.update(self._getVAs(detector, hwdetvas or set())) self.hw_vas.update(self._getVAs(emitter, hwemtvas or set())) # Duplicate VA if requested self._hwvas = {} # str (name of the proxied VA) -> original Hw VA self._hwvasetters = {} # str (name of the proxied VA) -> setter self._lvaupdaters = {} # str (name of the proxied VA) -> listener self._axisvaupdaters = {} # str (name of the axis VA) -> listener (functools.partial) self._posupdaters = {} # Actuator -> listener (functools.partial) self._det_vas = self._duplicateVAs(detector, "det", detvas or set()) self._emt_vas = self._duplicateVAs(emitter, "emt", emtvas or set()) self._axis_map = axis_map or {} self._axis_vas = self._duplicateAxes(self._axis_map) self._dRangeLock = threading.Lock() self._drange = None # min/max data range, or None if unknown self._drange_unreliable = True # if current values are a rough guess (based on detector) # drange_raw is the smaller (less zoomed) image of an pyramidal image. It is used # instead of the full image because it would be too slow or even impossible to read # the full data from the image to the memory. It is also not the tiles from the tiled # image, so the code for pyramidal and non-pyramidal images # that reads drange_raw is the same. # The drawback of not using the full image, is that some of the pixels are lost, so # maybe the max/min of the smaller image is different from the min/max of the full image. # And the histogram of both images will probably be a bit different also. if raw and isinstance(raw[0], model.DataArrayShadow): # if the image is pyramidal, use the smaller image drange_raw = self._getMergedRawImage(raw[0], raw[0].maxzoom) else: drange_raw = None # TODO: move to the DataProjection class self.auto_bc = model.BooleanVA(True) self.auto_bc.subscribe(self._onAutoBC) # % of values considered outliers discarded in auto BC detection # Note: 1/256th is a nice value because on RGB, it means in degenerated # cases (like flat histogram), you still loose only one value on each # side. self.auto_bc_outliers = model.FloatContinuous(100 / 256, range=(0, 40)) self.auto_bc_outliers.subscribe(self._onOutliers) # The tint VA could be either: # - a list tuple RGB value (for a tint) or # - a matplotlib.colors.Colormap object for a custom color map # - a string of value TINT_FIT_TO_RGB to indicate fit RGB color mapping self.tint = model.VigilantAttribute((255, 255, 255), setter=self._setTint) # Used if auto_bc is False # min/max ratio of the whole intensity level which are mapped to # black/white. Its range is ._drange (will be updated by _updateDRange) self.intensityRange = model.TupleContinuous((0, 0), range=((0, 0), (1, 1)), cls=(int, long, float), setter=self._setIntensityRange) # Make it so that the value gets clipped when its range is updated and # the value is outside of it. self.intensityRange.clip_on_range = True self._updateDRange(drange_raw) # sets intensityRange self._init_projection_vas() # Histogram of the current image _or_ slightly older image. # Note it's an ndarray. Use .tolist() to get a python list. self.histogram = model.VigilantAttribute(numpy.empty(0), readonly=True) self.histogram._full_hist = numpy.ndarray(0) # for finding the outliers self.histogram._edges = None # Tuple of (int, str) or (None, None): loglevel and message self.status = model.VigilantAttribute((None, None), readonly=True) # Background data, to be subtracted from the acquisition data before # projection. It should be the same shape and dtype as the acquisition # data, otherwise no subtraction will be performed. If None, nothing is # subtracted is applied. self.background = model.VigilantAttribute(None, setter=self._setBackground) self.background.subscribe(self._onBackground) # if there is already some data, update image with it # TODO: have this done by the child class, if needed. if self.raw: self._updateHistogram(drange_raw) self._onNewData(None, self.raw[0]) def _init_projection_vas(self): """ Initialize the VAs related with image projection """ # DataArray or None: RGB projection of the raw data self.image = model.VigilantAttribute(None) # Don't call at init, so don't set metadata if default value self.tint.subscribe(self.onTint) self.intensityRange.subscribe(self._onIntensityRange) def _init_thread(self, period=0.1): """ Initialize the thread that updates the image """ self._imthread = threading.Thread(target=self._image_thread, args=(weakref.ref(self), period), name="Image computation of %s" % self.name.value) self._imthread.daemon = True self._imthread.start() # No __del__: subscription should be automatically stopped when the object # disappears, and the user should stop the update first anyway. @property def emitter(self): return self._emitter @property def detector(self): return self._detector @property def focuser(self): return self._focuser @property def det_vas(self): return self._det_vas @property def emt_vas(self): return self._emt_vas @property def axis_vas(self): return self._axis_vas def __str__(self): return "%s %s" % (self.__class__.__name__, self.name.value) def _getVAs(self, comp, va_names): if not isinstance(va_names, set): raise ValueError(u"vas should be a set but got %s" % (va_names,)) vas = {} for vaname in va_names: try: va = getattr(comp, vaname) except AttributeError: raise LookupError(u"Component %s has not attribute %s" % (comp.name, vaname)) if not isinstance(va, VigilantAttributeBase): raise LookupError(u"Component %s attribute %s is not a VA: %s" % (comp.name, vaname, va.__class__.__name__)) setattr(self, vaname, va) vas[vaname] = va return vas def _duplicateVAs(self, comp, prefix, va_names): """ Duplicate all the given VAs of the given component and rename them with the prefix :param comp: (Component) the component on which to find the VAs :param prefix: (str) prefix to put before the name of each VA :param va_names: (set of str) names of all the VAs :raise: LookupError: if the component doesn't have a listed VA :return: Dictionary (str -> VA): original va name -> duplicated va """ if not isinstance(va_names, set): raise ValueError("vas should be a set but got %s" % (va_names,)) dup_vas = {} for vaname in va_names: # Skip the duplication if the VA is already linked as a direct hardware VA if vaname in self.hw_vas: continue try: va = getattr(comp, vaname) except AttributeError: raise LookupError(u"Component %s has not attribute %s" % (comp.name, vaname)) if not isinstance(va, VigilantAttributeBase): raise LookupError(u"Component %s attribute %s is not a VA: %s" % (comp.name, vaname, va.__class__.__name__)) # TODO: add a setter/listener that will automatically synchronise the VA value # as long as the stream is active vasetter = functools.partial(self._va_sync_setter, va) dupva = self._duplicateVA(va, setter=vasetter) logging.debug(u"Duplicated VA '%s' with value %s", vaname, va.value) # Collect the vas, so we can return them at the end of the method dup_vas[vaname] = dupva # Convert from originalName to prefixOriginalName newname = prefix + vaname[0].upper() + vaname[1:] setattr(self, newname, dupva) # Keep the link between the new VA and the original VA so they can be synchronised self._hwvas[newname] = va # Keep setters, mostly to not have them dereferenced self._hwvasetters[newname] = vasetter return dup_vas def _va_sync_setter(self, origva, v): """ Setter for proxied VAs origva (VA): the original va v: the new value return: the real new value (as accepted by the original VA) """ if self.is_active.value: # only synchronised when the stream is active logging.debug(u"Updating VA (%s) to %s", origva, v) origva.value = v return origva.value else: logging.debug(u"Not updating VA (%s) to %s", origva, v) return v def _va_sync_from_hw(self, lva, v): """ Called when the Hw VA is modified, to update the local VA lva (VA): the local VA v: the new value """ # Don't use the setter, directly put the value as-is. That avoids the # setter to again set the Hw VA, and ensure we always accept the Hw # value logging.debug(u"Updating local VA (%s) to %s", lva, v) if lva._value != v: lva._value = v # TODO: works with ListVA? lva.notify(v) def _duplicateAxis(self, axis_name, actuator): """ Create a new VigilanteAttribute (VA) for the given axis, , which imitates is behaviour. axis_name (str): the name of the axis to define actuator (Actuator): the actuator return (VigilantAttribute): new VA """ axis = actuator.axes[axis_name] pos = actuator.position.value[axis_name] if hasattr(axis, "choices"): return model.VAEnumerated(pos, choices=axis.choices, unit=axis.unit) elif hasattr(axis, "range"): # Continuous return model.FloatContinuous(pos, range=axis.range, unit=axis.unit) else: raise ValueError("Invalid axis type") def _duplicateAxes(self, axis_map): """ Duplicate all of the axes passed to the stream in local Vigilant Attributes axis_map (dict of axis_name -> Actuator): map of an axis name to an Actuator component returns (dict str -> VA): axis_name -> new VA. """ # Add axis position VA's to the list of hardware VA's axis_vas = {} # dict of axis_name to duplicated position VA for va_name, (axis_name, actuator) in axis_map.items(): va = self._duplicateAxis(axis_name, actuator) axis_vas[va_name] = va # add attributes to stream setattr(self, "axis" + va_name[0].upper() + va_name[1:], va) return axis_vas # TODO: move to odemis.util ? def _duplicateVA(self, va, setter=None): """ Create a new VA, with same behaviour as the given VA va (VigilantAttribute): VA to duplicate setter (None or callable): the setter of the VA return (VigilantAttribute): new VA """ # Find out the type of the VA (without using the exact class, to work # even if it's proxied) kwargs = {} if isinstance(va, (model.ListVA, model.ListVAProxy)): vacls = model.ListVA elif hasattr(va, "choices") and isinstance(va.choices, collections.Iterable): # Enumerated vacls = model.VAEnumerated kwargs["choices"] = va.choices elif hasattr(va, "range") and isinstance(va.range, collections.Iterable): # Continuous # TODO: TupleContinuous vs FloatContinuous vs... use range type? r0 = va.range[0] if isinstance(r0, tuple): vacls = model.TupleContinuous if isinstance(r0[0], numbers.Real): kwargs["cls"] = numbers.Real # accept _any_ number # otherwise, the VA will just pick the class from the value elif isinstance(r0, numbers.Real): # TODO: distinguish model.IntContinuous, how? vacls = model.FloatContinuous else: raise NotImplementedError(u"Doesn't know how to duplicate VA %s" % (va,)) kwargs["range"] = va.range else: # TODO: FloatVA vs IntVA vs StringVA vs BooleanVA vs TupleVA based on value type? hard to do vacls = VigilantAttribute newva = vacls(va.value, readonly=va.readonly, unit=va.unit, setter=setter, **kwargs) return newva # Order in which VAs should be set to ensure the values are kept as-is. # This should be the behaviour of the hardware component... but the driver # might be buggy, so beware! VA_ORDER = ("Binning", "Scale", "Resolution", "Translation", "Rotation", "DwellTime", "TimeRange", "StreakMode", "MCPGain") def _index_in_va_order(self, va_entry): """ return the position of the VA name in VA_ORDER va_entry (tuple): first element must be the name of the VA return (int) """ name = va_entry[0][3:] # strip "det" or "emt" try: return self.VA_ORDER.index(name) except ValueError: # VA name is not listed => put last return len(self.VA_ORDER) + 1 # TODO: rename to applyHwVAs and never call unlinkHwVAs? def _linkHwVAs(self): """ Apply the current value of each duplicated hardware VAs from the stream to the hardware component. If the hardware value is not accepted as-is, the value of the local VA will be set to the hardware value. """ if self._lvaupdaters: logging.warning(u"Going to link Hw VAs, while already linked") # Make sure the VAs are set in the right order to keep values hwvas = list(self._hwvas.items()) # must be a list hwvas.sort(key=self._index_in_va_order) for vaname, hwva in hwvas: if hwva.readonly: continue lva = getattr(self, vaname) try: hwva.value = lva.value except Exception: logging.debug(u"Failed to set VA %s to value %s on hardware", vaname, lva.value) # Immediately read the VAs back, to read the actual values accepted by the hardware for vaname, hwva in hwvas: if hwva.readonly: continue lva = getattr(self, vaname) try: lva.value = hwva.value except Exception: logging.debug(u"Failed to update VA %s to value %s from hardware", vaname, hwva.value) # Hack: There shouldn't be a resolution local VA, but for now there is. # In order to set it to some correct value, we read back from the hardware. if vaname[3:] == "Resolution": updater = functools.partial(self._va_sync_from_hw, lva) self._lvaupdaters[vaname] = updater hwva.subscribe(updater) # Note: for now disabled. Normally, we don't need to set the VA value # via the hardware VA, and it causes confusion in some cases if the # hardware settings are changed temporarily for some reason. # make sure the local VA value is synchronised # for vaname, hwva in self._hwvas.items(): # if hwva.readonly: # continue # lva = getattr(self, vaname) # updater = functools.partial(self._va_sync_from_hw, lva) # self._lvaupdaters[vaname] = updater # hwva.subscribe(updater, init=True) def _unlinkHwVAs(self): for vaname, updater in list(self._lvaupdaters.items()): hwva = self._hwvas[vaname] hwva.unsubscribe(updater) del self._lvaupdaters[vaname] def _getEmitterVA(self, vaname): """ Give the VA for controlling the setting of the emitter, either the local one, or if it doesn't exist, directly the hardware one. vaname (str): name of the VA as on the hardware return (VigilantAttribute): the local VA or the Hw VA raises AttributeError: if VA doesn't exist """ lname = "emt" + vaname[0].upper() + vaname[1:] try: return getattr(self, lname) except AttributeError: hwva = getattr(self._emitter, vaname) if not isinstance(hwva, VigilantAttributeBase): raise AttributeError(u"Emitter has not VA %s" % (vaname,)) return hwva def _getDetectorVA(self, vaname): """ Give the VA for controlling the setting of the detector, either the local one, or if it doesn't exist, directly the hardware one. vaname (str): name of the VA as on the hardware return (VigilantAttribute): the local VA or the Hw VA raises AttributeError: if VA doesn't exist """ lname = "det" + vaname[0].upper() + vaname[1:] try: return getattr(self, lname) except AttributeError: hwva = getattr(self._detector, vaname) if not isinstance(hwva, VigilantAttributeBase): raise AttributeError(u"Detector has not VA %s" % (vaname,)) return hwva def _linkHwAxes(self): """" Link the axes, which are defined as local VA's, to their respective hardware component values. Blocking function. If local axis Vigilant Attributes's are specified, write the values of the local axis VA to the real hardware """ if hasattr(self, "_axis_vas"): moving_axes = [] moves = {} # Actuator -> move {axis -> value} for va_name, (axis_name, actuator) in self._axis_map.items(): va = self._axis_vas[va_name] pos = va.value moves.setdefault(actuator, {})[axis_name] = pos logging.info("Moving actuator %s axis %s to position %s.", actuator.name, axis_name, pos) # subscribe to update the axis when the stream plays ax_updater = functools.partial(self._update_linked_axis, va_name) self._axisvaupdaters[va_name] = ax_updater va.subscribe(ax_updater) # coordinate the moves in sequence, one per actuator for act, mv in moves.items(): # subscribe to the position VA's of the actuators pos_updater = functools.partial(self._update_linked_position, act) self._posupdaters[act] = pos_updater act.position.subscribe(pos_updater) try: f = act.moveAbs(mv) f.add_done_callback(self._onAxisMoveDone) moving_axes.append(f) except Exception: logging.exception("Failed to move actuator %s axis %s.", act.name, mv) for f in moving_axes: try: f.result() except Exception: logging.exception("Failed to move axis.") def _onAxisMoveDone(self, f): """ Callback method, which checks that the move is actually finished. :param f: (future) """ try: f.result() except Exception: logging.exception("Failed to move axis.") def _update_linked_position(self, act, pos): """ Subscriber called when the actuator position changes. update the linked axis VA's with the new position value """ if not self.is_active.value: return for axis_name, axpos in pos.items(): for va_name, (real_axis_name, actuator) in self._axis_map.items(): if axis_name == real_axis_name and act == actuator: va = self._axis_vas[va_name] break else: # some axes might not necessarily be in the axis map. Skip them continue # before updating va va.unsubscribe(self._axisvaupdaters[va_name]) # update va va.value = axpos logging.info("Updating local axis %s to position %s", va_name, axpos) va.subscribe(self._axisvaupdaters[va_name]) return pos def _update_linked_axis(self, va_name, pos): """ Update the value of a linked hardware axis VA when the stream is active """ if not self.is_active.value: return try: real_axis_name, act = self._axis_map[va_name] logging.info("Moving actuator %s axis %s to position %s.", act.name, real_axis_name, pos) f = act.moveAbs({real_axis_name: pos}) # TODO: ideally, it would block, so that the the caller knows when the move is complete. # However, this requires that the GUI calls this function is a separate thread. # f.result() except Exception: logging.exception("Failed to move axis.") return pos def _unlinkHwAxes(self): """ Unlink the axes to the hardware components """ if hasattr(self, "_axis_vas"): for va_name, updater in list(self._axisvaupdaters.items()): va = self._axis_vas[va_name] va.unsubscribe(updater) del self._axisvaupdaters[va_name] for actuator, updater in list(self._posupdaters.items()): actuator.position.unsubscribe(updater) del self._posupdaters[actuator] def prepare(self): """ Take care of any action required to be taken before the stream becomes active. Note: it's not necessary to call it before a stream is set to active. If it was not called, this function will automatically be called when starting the stream. returns (model.ProgressiveFuture): Progress of preparation """ if self.is_active.value: logging.warning("Prepare of stream %s called while already active", self.name.value) # TODO: raise an error return self._prepare() def _prepare(self): """ Take care of any action required to be taken before the stream becomes active. returns (model.ProgressiveFuture): Progress of preparation """ logging.debug(u"Preparing stream %s ...", self.name.value) # actually indicate that preparation has been triggered, don't wait for # it to be completed self._prepared = True return self._prepare_opm() def _prepare_opm(self): if self._opm is None: return model.InstantaneousFuture() logging.debug(u"Setting optical path for %s", self.name.value) f = self._opm.setPath(self) return f def estimateAcquisitionTime(self): """ Estimate the time it will take to acquire one image with the current settings of the detector and emitter. returns (float): approximate time in seconds that acquisition will take """ # This default implementation returns the shortest possible time, taking # into account a minimum overhead. (As in, acquisition will never take # less than 0.1 seconds) return self.SETUP_OVERHEAD def _setStatus(self, level, message=None): """ Set the status level (0<=int or None): the bigger the more important, same interpretation as logging. message (str or None): the status message """ if level is None and message is not None: logging.warning(u"Setting status with no level and message %s", message) self.status._value = (level, message) self.status.notify(self.status.value) def onTint(self, value): if self.raw: raw = self.raw[0] else: raw = None if raw is not None: raw.metadata[model.MD_USER_TINT] = img.tint_to_md_format(value) self._shouldUpdateImage() def _is_active_setter(self, active): """ Called just before the Stream becomes (in)active """ # Note: the setter can be called even if the value don't change if self.is_active.value != active: if active: # This is done in a setter to ensure that as soon as is_active is # True, all the HwVAs are already synchronised, and this avoids # the VA setter to catch again the change self._linkHwVAs() self._linkHwAxes() # TODO: create generic fct linkHWAxes and call here else: self._unlinkHwVAs() self._unlinkHwAxes() return active def _updateDRange(self, data=None): """ Update the ._drange, with whatever data is known so far. data (None or DataArray): data on which to base the detection. If None, it will try to use .raw, and if there is nothing, will just use the detector information. """ # Note: it feels like live and static streams could have a separate # version, but detecting a stream has no detector is really not costly # and static stream can still have changing drange (eg, when picking a # different 4th or 5th dimension). => just a generic version that tries # to handle all the cases. # Note: Add a lock to avoid calling this fct simultaneously. When starting # Odemis, the image thread and the histogram thread call this method. # It happened sometimes that self._drange_unreliable was already updated, while # self._drange was not updated yet. This resulted in incorrectly updated min and max # values for drange calc by the second thread as using the new # self._drange_unreliable but the old self._drange values. with self._dRangeLock: if data is None and self.raw: data = self.raw[0] if isinstance(data, model.DataArrayShadow): # if the image is pyramidal, use the smaller image data = self._getMergedRawImage(data, data.maxzoom) # 2 types of drange management: # * dtype is int -> follow MD_BPP/shape/dtype.max, and if too wide use data.max # * dtype is float -> data.max if data is not None: if data.dtype.kind in "biu": try: depth = 2 ** data.metadata[model.MD_BPP] if depth <= 1: logging.warning("Data reports a BPP of %d", data.metadata[model.MD_BPP]) raise ValueError() drange = (0, depth - 1) except (KeyError, ValueError): drange = self._guessDRangeFromDetector() if drange is None: idt = numpy.iinfo(data.dtype) drange = (idt.min, idt.max) elif data.dtype.kind == "i": # shift the range for signed data depth = drange[1] + 1 drange = (-depth // 2, depth // 2 - 1) # If range is too big to be used as is => look really at the data if (drange[1] - drange[0] > 4095 and (self._drange is None or self._drange_unreliable or self._drange[1] - self._drange[0] < drange[1] - drange[0])): mn = int(data.view(numpy.ndarray).min()) mx = int(data.view(numpy.ndarray).max()) if self._drange is not None and not self._drange_unreliable: # Only allow the range to expand, to avoid it constantly moving mn = min(mn, self._drange[0]) mx = max(mx, self._drange[1]) # Try to find "round" values. Either: # * mn = 0, mx = max rounded to next power of 2 -1 # * mn = min, width = width rounded to next power of 2 # => pick the one which gives the smallest width diff = max(2, mx - mn + 1) diffrd = 2 ** int(math.ceil(math.log(diff, 2))) # next power of 2 width0 = max(2, mx + 1) width0rd = 2 ** int(math.ceil(math.log(width0, 2))) # next power of 2 if diffrd < width0rd: drange = (mn, mn + diffrd - 1) else: drange = (0, width0rd - 1) else: # float # cast to ndarray to ensure a scalar (instead of a DataArray) drange = (data.view(numpy.ndarray).min(), data.view(numpy.ndarray).max()) if self._drange is not None and not self._drange_unreliable: drange = (min(drange[0], self._drange[0]), max(drange[1], self._drange[1])) if drange: self._drange_unreliable = False else: # no data, give a large estimate based on the detector drange = self._guessDRangeFromDetector() self._drange_unreliable = True if drange: # This VA will clip its own value if it is out of range self.intensityRange.range = ((drange[0], drange[0]), (drange[1], drange[1])) self._drange = drange def _guessDRangeFromDetector(self): try: # If the detector has .bpp, use this info try: depth = 2 ** self._getDetectorVA("bpp").value except AttributeError: # The last element of the shape indicates the bit depth, which # is used for brightness/contrast adjustment. depth = self._detector.shape[-1] if depth <= 1: logging.warning("Detector %s report a depth of %d", self._detector.name, depth) raise ValueError() drange = (0, depth - 1) except (AttributeError, IndexError, ValueError): drange = None return drange def _getDisplayIRange(self): """ return the min/max values to display. It also updates the intensityRange VA if needed. return (number, number): the min/max values to map to black/white. It is the same type as the data type. """ if self.auto_bc.value: # The histogram might be slightly old, but not too much # The main thing to pay attention is that the data range is identical if self.histogram._edges != self._drange: self._updateHistogram() irange = sorted(self.intensityRange.value) return irange def _find_metadata(self, md): """ Find the useful metadata for a 2D spatial projection from the metadata of a raw image return (dict MD_* -> value) """ md = dict(md) # duplicate to not modify the original metadata img.mergeMetadata(md) # applies correction metadata try: pos = md[MD_POS] except KeyError: # Note: this log message is disabled to prevent log flooding # logging.warning("Position of image unknown") pos = (0, 0) try: pxs = md[MD_PIXEL_SIZE] except KeyError: # Hopefully it'll be within the same magnitude, and otherwise # default to small value so that it easily fits in the FoV. spxs = md.get(model.MD_SENSOR_PIXEL_SIZE, (100e-9, 100e-9)) binning = md.get(model.MD_BINNING, (1, 1)) pxs = spxs[0] / binning[0], spxs[1] / binning[1] # Note: this log message is disabled to prevent log flooding # msg = "Pixel density of image unknown, using sensor size" # logging.warning(msg) rot = md.get(MD_ROTATION, 0) she = md.get(MD_SHEAR, 0) new_md = {MD_PIXEL_SIZE: pxs, MD_POS: pos, MD_ROTATION: rot, MD_SHEAR: she} # Not necessary, but handy to debug latency problems if MD_ACQ_DATE in md: new_md[MD_ACQ_DATE] = md[MD_ACQ_DATE] return new_md def _projectXY2RGB(self, data, tint=(255, 255, 255)): """ Project a 2D spatial DataArray into a RGB representation data (DataArray): 2D DataArray tint ((int, int, int)): colouration of the image, in RGB. return (DataArray): 3D DataArray """ irange = self._getDisplayIRange() rgbim = img.DataArray2RGB(data, irange, tint) rgbim.flags.writeable = False # Commented to prevent log flooding # if model.MD_ACQ_DATE in data.metadata: # logging.debug("Computed RGB projection %g s after acquisition", # time.time() - data.metadata[model.MD_ACQ_DATE]) md = self._find_metadata(data.metadata) md[model.MD_DIMS] = "YXC" # RGB format return model.DataArray(rgbim, md) def _shouldUpdateImage(self): """ Ensures that the image VA will be updated in the "near future". """ # If the previous request is still being processed, the event # synchronization allows to delay it (without accumulation). self._im_needs_recompute.set() @staticmethod def _image_thread(wstream, period=0.1): """ Called as a separate thread, and recomputes the image whenever it receives an event asking for it. Args: wstream (Weakref to a Stream): the stream to follow period ( float > 0) (Seconds): Minimum time in second between two image updates """ try: stream = wstream() name = stream.name.value im_needs_recompute = stream._im_needs_recompute # Only hold a weakref to allow the stream to be garbage collected # On GC, trigger im_needs_recompute so that the thread can end too wstream = weakref.ref(stream, lambda o: im_needs_recompute.set()) while True: del stream im_needs_recompute.wait() # wait until a new image is available stream = wstream() if stream is None: logging.debug("Stream %s disappeared so ending image update thread", name) break tnext = time.time() + period #running with a period of max "period", optional arg standard is 10 Hz im_needs_recompute.clear() stream._updateImage() tnow = time.time() # sleep a bit to avoid refreshing too fast tsleep = tnext - tnow if tsleep > 0.0001: time.sleep(tsleep) except Exception: logging.exception("Image update thread failed") gc.collect() def _getMergedRawImage(self, das, z): """ Returns the entire raw data of DataArrayShadow at a given zoom level das (DataArrayShadow): shadow of the raw data z (int): Zoom level index return (DataArray): The merged image """ # calculates the size of the merged image width_zoomed = das.shape[1] / (2 ** z) height_zoomed = das.shape[0] / (2 ** z) # calculates the number of tiles on both axes num_tiles_x = int(math.ceil(width_zoomed / das.tile_shape[1])) num_tiles_y = int(math.ceil(height_zoomed / das.tile_shape[0])) tiles = [] for x in range(num_tiles_x): tiles_column = [] for y in range(num_tiles_y): tile = das.getTile(x, y, z) tiles_column.append(tile) tiles.append(tiles_column) return img.mergeTiles(tiles) def _updateImage(self): """ Recomputes the image with all the raw data available """ if not self.raw: return try: if not isinstance(self.raw, list): raise AttributeError(".raw must be a list of DA/DAS") data = self.raw[0] bkg = self.background.value if bkg is not None: try: data = img.Subtract(data, bkg) except Exception as ex: logging.info("Failed to subtract background data: %s", ex) dims = data.metadata.get(model.MD_DIMS, "CTZYX"[-data.ndim::]) ci = dims.find("C") # -1 if not found # is RGB if dims in ("CYX", "YXC") and data.shape[ci] in (3, 4): rgbim = img.ensureYXC(data) rgbim.flags.writeable = False # merge and ensures all the needed metadata is there rgbim.metadata = self._find_metadata(rgbim.metadata) rgbim.metadata[model.MD_DIMS] = "YXC" # RGB format self.image.value = rgbim else: # is grayscale if data.ndim != 2: data = img.ensure2DImage(data) # Remove extra dimensions (of length 1) self.image.value = self._projectXY2RGB(data, self.tint.value) except Exception: logging.exception("Updating %s %s image", self.__class__.__name__, self.name.value) # Setter and updater of background don't do much, but allow to be overridden def _setBackground(self, data): """Called when the background is about to be changed""" return data def _onBackground(self, data): """Called after the background has changed""" self._shouldUpdateImage() def _onAutoBC(self, enabled): # if changing to auto: B/C might be different from the manual values if enabled: self._recomputeIntensityRange() def _onOutliers(self, outliers): if self.auto_bc.value: self._recomputeIntensityRange() def _recomputeIntensityRange(self): if len(self.histogram._full_hist) == 0: # No histogram yet return irange = img.findOptimalRange(self.histogram._full_hist, self.histogram._edges, self.auto_bc_outliers.value / 100) # clip is needed for some corner cases with floats irange = self.intensityRange.clip(irange) self.intensityRange.value = irange def _setIntensityRange(self, irange): # Not much to do, but force int if the data is int if self._drange and isinstance(self._drange[1], numbers.Integral): if not all(isinstance(v, numbers.Integral) for v in irange): # Round down/up irange = int(irange[0]), int(math.ceil(irange[1])) return irange def _setTint(self, tint): # The tint VA could be either: # - a list tuple RGB value (for a tint) or # - a matplotlib.colors.Colormap object for a custom color map or # - a string of value TINT_FIT_TO_RGB to indicate fit RGB color mapping or # - a string of value TINT_RGB_AS_IS that indicates no tint. Will be converted to a black tint # Enforce this setting if isinstance(tint, tuple): # RGB tuple - enforce len of 3 if len(tint) != 3: raise ValueError("RGB Value for tint should be of length 3") return tint elif isinstance(tint, list): # convert to tuple of len 3 if len(tint) != 3: raise ValueError("RGB Value for tint should be of length 3") return tuple(tint) elif isinstance(tint, matplotlib.colors.Colormap): return tint elif tint == TINT_FIT_TO_RGB: return tint elif tint == TINT_RGB_AS_IS: return (255, 255, 255) else: raise ValueError("Invalid value for tint VA") def _onIntensityRange(self, irange): self._shouldUpdateImage() def _updateHistogram(self, data=None): """ data (DataArray): the raw data to use, default to .raw[0] - background (if present). If will also update the intensityRange if auto_bc is enabled. """ # Compute histogram and compact version if data is None: if not self.raw: logging.debug("Not computing histogram as .raw is empty") return data = self.raw[0] if isinstance(data, model.DataArrayShadow): # Pyramidal => use the smallest version data = self._getMergedRawImage(data, data.maxzoom) # We only do background subtraction when automatically selecting raw bkg = self.background.value if bkg is not None: try: data = img.Subtract(data, bkg) except Exception as ex: logging.info("Failed to subtract background when computing histogram: %s", ex) # Depth can change at each image (depends on hardware settings) self._updateDRange(data) # Initially, _drange might be None, in which case it will be guessed hist, edges = img.histogram(data, irange=self._drange) if hist.size > 256: chist = img.compactHistogram(hist, 256) else: chist = hist self.histogram._full_hist = hist self.histogram._edges = edges # First update the value, before the intensityRange subscribers are called... self.histogram._value = chist if self.auto_bc.value: self._recomputeIntensityRange() # Notify last, so intensityRange is correct when subscribers get the new histogram self.histogram.notify(chist) def _onNewData(self, dataflow, data): # Commented out to prevent log flooding # if model.MD_ACQ_DATE in data.metadata: # logging.debug("Receive raw %g s after acquisition", # time.time() - data.metadata[model.MD_ACQ_DATE]) if isinstance(self.raw, list): if not self.raw: self.raw.append(data) else: self.raw[0] = data else: logging.error("%s .raw is not a list, so can store new data", self) self._shouldUpdateImage() def getPixelCoordinates(self, p_pos): """ Translate physical coordinates into data pixel coordinates Args: p_pos(tuple float, float): the position in physical coordinates Returns(tuple int, int or None): the position in pixel coordinates or None if it's outside of the image """ if not self.raw: raise LookupError("Stream has no data") raw = self.raw[0] md = self._find_metadata(raw.metadata) pxs = md.get(model.MD_PIXEL_SIZE, (1e-6, 1e-6)) rotation = md.get(model.MD_ROTATION, 0) shear = md.get(model.MD_SHEAR, 0) translation = md.get(model.MD_POS, (0, 0)) size = raw.shape[-1], raw.shape[-2] # The "shear" argument is not passed in the "AffineTransform" because the formula of the AffineTransform # uses a horizontal shear, while MD_SHEAR defines a vertical shear. The shear is applied afterwards, # by updating the transformation matrix. tform = AffineTransform(rotation=rotation, scale=pxs, translation=translation) L = numpy.array([(1, 0), (-shear, 1)]) tform.transformation_matrix = numpy.dot(tform.transformation_matrix, L) pixel_pos_c = tform.inverse()(p_pos) # a "-" is used for the y coordinate because Y axis has the opposite direction in physical coordinates pixel_pos = int(pixel_pos_c[0] + size[0] / 2), - int(pixel_pos_c[1] - size[1] / 2) if 0 <= pixel_pos[0] < size[0] and 0 <= pixel_pos[1] < size[1]: return pixel_pos else: return None def getRawValue(self, pixel_pos): """ Translate pixel coordinates into raw pixel value Args: pixel_pos(tuple int, int): the position in pixel coordinates Returns: the raw "value" of the position. In case the raw data has more than 2 dimensions, it returns an array. Raise LookupError if raw data not found """ raw = self.raw if not raw: raise LookupError("Cannot compute pixel raw value as stream has no data") return raw[0][..., pixel_pos[1], pixel_pos[0]].tolist() def getBoundingBox(self, im=None): """ Get the bounding box in X/Y of the complete data contained. Args: im: (DataArray(Shadow) or None): the data of the image if provided. If None, the raw data of the stream is used. return (tuple of floats (minx, miny, maxx, maxy)): left,top,right,bottom positions of the bounding box where top < bottom and left < right Raises: ValueError: If the stream has no (spatial) data and stream's image is not defined """ if im is None: try: im = self.image.value except AttributeError: im = None if im is None and self.raw: im = self.raw[0] if im is None: raise ValueError("Cannot compute bounding-box as stream has no data and stream's image is not defined") return img.getBoundingBox(im) def getRawMetadata(self): """ Gets the raw metadata structure from the stream. A list of metadata dicts is returned. """ return [None if data is None else data.metadata for data in self.raw]
gpl-2.0
rgommers/statsmodels
examples/python/ols.py
30
5601
## Ordinary Least Squares from __future__ import print_function import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.sandbox.regression.predstd import wls_prediction_std np.random.seed(9876789) # ## OLS estimation # # Artificial data: nsample = 100 x = np.linspace(0, 10, 100) X = np.column_stack((x, x**2)) beta = np.array([1, 0.1, 10]) e = np.random.normal(size=nsample) # Our model needs an intercept so we add a column of 1s: X = sm.add_constant(X) y = np.dot(X, beta) + e # Inspect data: X = sm.add_constant(X) y = np.dot(X, beta) + e # Fit and summary: model = sm.OLS(y, X) results = model.fit() print(results.summary()) # Quantities of interest can be extracted directly from the fitted model. Type ``dir(results)`` for a full list. Here are some examples: print('Parameters: ', results.params) print('R2: ', results.rsquared) # ## OLS non-linear curve but linear in parameters # # We simulate artificial data with a non-linear relationship between x and y: nsample = 50 sig = 0.5 x = np.linspace(0, 20, nsample) X = np.column_stack((x, np.sin(x), (x-5)**2, np.ones(nsample))) beta = [0.5, 0.5, -0.02, 5.] y_true = np.dot(X, beta) y = y_true + sig * np.random.normal(size=nsample) # Fit and summary: res = sm.OLS(y, X).fit() print(res.summary()) # Extract other quantities of interest: print('Parameters: ', res.params) print('Standard errors: ', res.bse) print('Predicted values: ', res.predict()) # Draw a plot to compare the true relationship to OLS predictions. Confidence intervals around the predictions are built using the ``wls_prediction_std`` command. prstd, iv_l, iv_u = wls_prediction_std(res) fig, ax = plt.subplots() ax.plot(x, y, 'o', label="data") ax.plot(x, y_true, 'b-', label="True") ax.plot(x, res.fittedvalues, 'r--.', label="OLS") ax.plot(x, iv_u, 'r--') ax.plot(x, iv_l, 'r--') ax.legend(loc='best'); # ## OLS with dummy variables # # We generate some artificial data. There are 3 groups which will be modelled using dummy variables. Group 0 is the omitted/benchmark category. nsample = 50 groups = np.zeros(nsample, int) groups[20:40] = 1 groups[40:] = 2 #dummy = (groups[:,None] == np.unique(groups)).astype(float) dummy = sm.categorical(groups, drop=True) x = np.linspace(0, 20, nsample) # drop reference category X = np.column_stack((x, dummy[:,1:])) X = sm.add_constant(X, prepend=False) beta = [1., 3, -3, 10] y_true = np.dot(X, beta) e = np.random.normal(size=nsample) y = y_true + e # Inspect the data: print(X[:5,:]) print(y[:5]) print(groups) print(dummy[:5,:]) # Fit and summary: res2 = sm.OLS(y, X).fit() print(res.summary()) # Draw a plot to compare the true relationship to OLS predictions: prstd, iv_l, iv_u = wls_prediction_std(res2) fig, ax = plt.subplots() ax.plot(x, y, 'o', label="Data") ax.plot(x, y_true, 'b-', label="True") ax.plot(x, res2.fittedvalues, 'r--.', label="Predicted") ax.plot(x, iv_u, 'r--') ax.plot(x, iv_l, 'r--') ax.legend(loc="best") # ## Joint hypothesis test # # ### F test # # We want to test the hypothesis that both coefficients on the dummy variables are equal to zero, that is, $R \times \beta = 0$. An F test leads us to strongly reject the null hypothesis of identical constant in the 3 groups: R = [[0, 1, 0, 0], [0, 0, 1, 0]] print(np.array(R)) print(res2.f_test(R)) # You can also use formula-like syntax to test hypotheses print(res2.f_test("x2 = x3 = 0")) # ### Small group effects # # If we generate artificial data with smaller group effects, the T test can no longer reject the Null hypothesis: beta = [1., 0.3, -0.0, 10] y_true = np.dot(X, beta) y = y_true + np.random.normal(size=nsample) res3 = sm.OLS(y, X).fit() print(res3.f_test(R)) print(res3.f_test("x2 = x3 = 0")) # ### Multicollinearity # # The Longley dataset is well known to have high multicollinearity. That is, the exogenous predictors are highly correlated. This is problematic because it can affect the stability of our coefficient estimates as we make minor changes to model specification. from statsmodels.datasets.longley import load_pandas y = load_pandas().endog X = load_pandas().exog X = sm.add_constant(X) # Fit and summary: ols_model = sm.OLS(y, X) ols_results = ols_model.fit() print(ols_results.summary()) # #### Condition number # # One way to assess multicollinearity is to compute the condition number. Values over 20 are worrisome (see Greene 4.9). The first step is to normalize the independent variables to have unit length: for i, name in enumerate(X): if name == "const": continue norm_x[:,i] = X[name]/np.linalg.norm(X[name]) norm_xtx = np.dot(norm_x.T,norm_x) # Then, we take the square root of the ratio of the biggest to the smallest eigen values. eigs = np.linalg.eigvals(norm_xtx) condition_number = np.sqrt(eigs.max() / eigs.min()) print(condition_number) # #### Dropping an observation # # Greene also points out that dropping a single observation can have a dramatic effect on the coefficient estimates: ols_results2 = sm.OLS(y.ix[:14], X.ix[:14]).fit() print("Percentage change %4.2f%%\n"*7 % tuple([i for i in (ols_results2.params - ols_results.params)/ols_results.params*100])) # We can also look at formal statistics for this such as the DFBETAS -- a standardized measure of how much each coefficient changes when that observation is left out. infl = ols_results.get_influence() # In general we may consider DBETAS in absolute value greater than $2/\sqrt{N}$ to be influential observations 2./len(X)**.5 print(infl.summary_frame().filter(regex="dfb"))
bsd-3-clause
xuewei4d/scikit-learn
examples/linear_model/plot_ard.py
43
3912
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. We also plot predictions and uncertainties for ARD for one dimensional regression using polynomial feature expansion. Note the uncertainty starts going up on the right side of the plot. This is because these test samples are outside of the range of the training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression # ############################################################################# # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weights with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise # ############################################################################# # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) # ############################################################################# # Plot the true weights, the estimated weights, the histogram of the # weights, and predictions with standard deviations plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2, label="ARD estimate") plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2, label="OLS estimate") plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, color='navy', log=True) plt.scatter(clf.coef_[relevant_features], np.full(len(relevant_features), 5.), color='gold', marker='o', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_, color='navy', linewidth=2) plt.ylabel("Score") plt.xlabel("Iterations") # Plotting some predictions for polynomial regression def f(x, noise_amount): y = np.sqrt(x) * np.sin(x) noise = np.random.normal(0, 1, len(x)) return y + noise_amount * noise degree = 10 X = np.linspace(0, 10, 100) y = f(X, noise_amount=1) clf_poly = ARDRegression(threshold_lambda=1e5) clf_poly.fit(np.vander(X, degree), y) X_plot = np.linspace(0, 11, 25) y_plot = f(X_plot, noise_amount=0) y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True) plt.figure(figsize=(6, 5)) plt.errorbar(X_plot, y_mean, y_std, color='navy', label="Polynomial ARD", linewidth=2) plt.plot(X_plot, y_plot, color='gold', linewidth=2, label="Ground Truth") plt.ylabel("Output y") plt.xlabel("Feature X") plt.legend(loc="lower left") plt.show()
bsd-3-clause
MatteusDeloge/opengrid
notebooks/job_electricity_standby.py
1
6293
# coding: utf-8 # In[ ]: # opengrid imports from opengrid.library import misc, houseprint, caching, analysis from opengrid import config c=config.Config() # other imports import pandas as pd import charts import numpy as np import os # configuration for the plots DEV = c.get('env', 'type') == 'dev' # DEV is True if we are in development environment, False if on the droplet if not DEV: # production environment: don't try to display plots import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.dates import HourLocator, DateFormatter, AutoDateLocator, num2date if DEV: if c.get('env', 'plots') == 'inline': get_ipython().magic(u'matplotlib inline') else: get_ipython().magic(u'matplotlib qt') else: pass # don't try to render plots plt.rcParams['figure.figsize'] = 12,8 # In[ ]: hp = houseprint.Houseprint() sensors = hp.get_sensors(sensortype='electricity') # sensor objects # Remove some sensors exclude = [ '565de0a7dc64d8370aa321491217b85f' # 3E ] solar = [x.key for x in hp.search_sensors(type='electricity', system='solar')] exclude += solar for s in sensors: if s.key in exclude: sensors.remove(s) hp.init_tmpo() # In[ ]: #hp.sync_tmpos() # In[ ]: # The first time, this will take a very looong time to get all the detailed data for building the cache # Afterwards, this is quick caching.cache_results(hp=hp, sensors=sensors, function='daily_min', resultname='elec_daily_min') caching.cache_results(hp=hp, sensors=sensors, function='daily_max', resultname='elec_daily_max') # In[ ]: cache_min = caching.Cache(variable='elec_daily_min') cache_max = caching.Cache(variable='elec_daily_max') dfdaymin = cache_min.get(sensors=sensors) dfdaymax = cache_max.get(sensors=sensors) # The next plot shows that some periods are missing. Due to the cumulative nature of the electricity counter, we still have the total consumption. However, it is spread out of the entire period. So we don't know the standby power during these days, and we have to remove those days. # In[ ]: if DEV: sensor = hp.search_sensors(key='3aa4')[0] df = sensor.get_data(head=pd.Timestamp('20151117'), tail=pd.Timestamp('20160104')) charts.plot(df, stock=True, show='inline') # In[ ]: # Clean out the data: # First remove days with too low values to be realistic dfdaymin[dfdaymin < 10] = np.nan # Now remove days where the minimum=maximum (within 1 Watt difference) dfdaymin[(dfdaymax - dfdaymin) < 1] = np.nan # In[ ]: if DEV: charts.plot(dfdaymin, stock=True, show='inline') # In[ ]: DEV # In[ ]: standby_statistics = dfdaymin.T.describe(percentiles=[0.1,0.5,0.9]).T # In[ ]: if DEV: charts.plot(standby_statistics[['10%', '50%', '90%']], stock=True, show='inline') # In[ ]: # Get detailed profiles for the last day now = pd.Timestamp('now', tz='UTC') start_of_day = now - pd.Timedelta(hours=now.hour, minutes=now.minute, seconds=now.second) sensors = map(hp.find_sensor, dfdaymin.columns) df_details = hp.get_data(sensors = sensors, head=start_of_day) # ### Boxplot approach. Possible for a period of maximum +/- 2 weeks. # In[ ]: # choose a period look_back_days = 10 start = now - pd.Timedelta(days=look_back_days) dfdaymin_period = dfdaymin.ix[start:].dropna(axis=1, how='all') # In[ ]: box = [dfdaymin_period.loc[i,:].dropna().values for i in dfdaymin_period.index] for sensor in dfdaymin_period.columns: plt.figure(figsize=(10,5)) ax1=plt.subplot(121) ax1.boxplot(box, positions=range(len(box)), notch=False) ax1.plot(range(len(box)), dfdaymin_period[sensor], 'rD', ms=10, label='Sluipverbruik') xticks = [x.strftime(format='%d/%m') for x in dfdaymin_period.index] plt.xticks(range(len(box)), xticks, rotation='vertical') plt.title(hp.find_sensor(sensor).device.key + ' - ' + sensor) ax1.grid() ax1.set_ylabel('Watt') plt.legend(numpoints=1, frameon=False) ax2=plt.subplot(122) try: ax2.plot_date(df_details[sensor].index, df_details[sensor].values, 'b-', label='Afgelopen nacht') #ax2.xaxis_date() #Put timeseries plot in local time # rotate the labels plt.xticks(rotation='vertical') ax2.set_ylabel('Watt') ax2.grid() plt.legend(loc='upper right', frameon=False) plt.tight_layout() except Exception as e: print(e) else: plt.savefig(os.path.join(c.get('data', 'folder'), 'figures', 'standby_horizontal_'+sensor+'.png'), dpi=100) pass if not DEV: plt.close() # ### Percentile approach. Useful for longer time periods, but tweaking of graph still needed # In[ ]: # choose a period look_back_days = 40 start = now - pd.Timedelta(days=look_back_days) dfdaymin_period = dfdaymin.ix[start:].dropna(axis=1, how='all') df = dfdaymin_period.join(standby_statistics[['10%', '50%', '90%']], how='left') # In[ ]: for sensor in dfdaymin_period.columns: plt.figure(figsize=(10,8)) ax1=plt.subplot(211) ax1.plot_date(df.index, df[u'10%'], '-', lw=2, color='g', label=u'10% percentile') ax1.plot_date(df.index, df[u'50%'], '-', lw=2, color='orange', label=u'50% percentile') ax1.plot_date(df.index, df[u'90%'], '-', lw=2, color='r', label=u'90% percentile') ax1.plot_date(df.index, df[sensor], 'rD', ms=7, label='Your standby power') ax1.legend() locs, lables=plt.xticks() xticks = [x.strftime(format='%d/%m') for x in num2date(locs)] plt.xticks(locs, xticks, rotation='vertical') plt.title(hp.find_sensor(sensor).device.key + ' - ' + sensor) ax1.grid() ax1.set_ylabel('Watt') ax2=plt.subplot(212) try: ax2.plot_date(df_details[sensor].index, df_details[sensor].values, 'b-', label='Afgelopen nacht') #ax2.xaxis_date() #Put timeseries plot in local time # rotate the labels plt.xticks(rotation='vertical') ax2.set_ylabel('Watt') ax2.grid() plt.legend(loc='upper right', frameon=False) plt.tight_layout() except Exception as e: print(e) else: plt.savefig(os.path.join(c.get('data', 'folder'), 'figures', 'standby_vertical_'+sensor+'.png'), dpi=100) pass if not DEV: plt.close() # In[ ]:
apache-2.0
mehdidc/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause
meduz/NeuroTools
examples/matlab_vs_python/smallnet.py
3
3997
# Created by Eugene M. Izhikevich, 2003 Modified by S. Fusi 2007 # Ported to Python by Eilif Muller, 2008. # # Notes: # # Requires matplotlib,ipython,numpy>=1.0.3 # On a debian/ubuntu based system: # $ apt-get install python-matplotlib python-numpy ipython # # Start ipython with threaded plotting support: # $ ipython -pylab # # At the resulting prompt, run the file by: # In [1]: execfile('smallnet.py') # <output> # In [2]: myplot() # Modules required import numpy import numpy.random as random from itertools import repeat # Bug fix for numpy version 1.0.4 numpy.lib.function_base.any = numpy.any # For measuring performance import time t1 = time.time() # Excitatory and inhibitory neuron counts Ne = 1000 Ni = 4 N = Ne+Ni # Synaptic couplings Je = 250.0/Ne Ji = 0.0 # reset depolarization (mV) reset = 0.0 # refractory period (ms) refr = 2.5 # Synaptic couplings (mV) S = numpy.zeros((N,N)) S[:,:Ne] = Je*random.uniform(size=(N,Ne)) S[:,:Ni] = -Ji*random.uniform(size=(N,Ni)) # Connectivity S[:,:Ne][random.uniform(size=(N,Ne))-0.9<=0.0]=0.0 S[:,Ne:][random.uniform(size=(N,Ni))-0.9<=0.0]=0.0 # (mV/ms) (lambda is a python keyword) leak = 5.0 dt = 0.05 sdt = numpy.sqrt(dt) # Statistics of the background external current mb = 3.0; sb = 4.0 mue = mb; sigmae=sb sigmai = 0.0 # State variable v, initial value of 0 v = numpy.zeros(N) # Refractory period state variable r = numpy.zeros(N) # Spike timings in a list firings = [] print 'mu(nu=5Hz)=%f' % (mb+Ne*Je*.015-leak,) print 'mu(nu=100Hz)=%f' % (mb+Ne*Je*.1-leak,) # total duration of the simulation (ms) duration = 400.0 t = numpy.arange(0.0,400.0,dt) vt = numpy.zeros_like(t) t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' t1 = time.time() for i,ti in enumerate(t): # time for a strong external input if ti>150.0: mue = 6.5 sigmae = 7.5 # time to restore the initial statistics of the external current if ti>300.0: mue = mb sigmae = sb Iext = random.normal(size=N) Iext[:Ne]*=sigmae Iext[Ne:]*=sigmai # Which neurons fired? fired = numpy.nonzero(v>=20.0)[0] if len(fired)>0: # Save mean firing rate of the excitatory neurons v[fired] = reset r[fired] = refr # Append spikes to the spike list firings+=zip(fired,repeat(ti)) aux = v-dt*(leak-mue)+numpy.sum(S[:,fired],1)+sdt*Iext else: aux = v-dt*(leak-mue)+sdt*Iext; # Neurons not in the refractory period nr = numpy.nonzero(r<=0)[0] # Bound voltages above 0.0 v[nr] = numpy.where(aux[nr]>=0.0,aux[nr],0.0) # Progress refractory variable nr = numpy.nonzero(r>0)[0] r[nr]-=dt # record the voltage trace of the zeroeth neuron vt[i] = v[0] t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' # ------------------------------------------------------------------------- # Plot everything # ------------------------------------------------------------------------- def myplot(): global firings t1 = time.time() figure() # Membrane potential trace of the zeroeth neuron subplot(3,1,1) vt[vt>=20.0]=65.0 plot(t,vt) ylabel(r'$V-V_{rest}\ \left[\rm{mV}\right]$') # Raster plot of the spikes of the network subplot(3,1,2) myfirings = array(firings) myfirings_100 = myfirings[myfirings[:,0]<min(100,Ne)] plot(myfirings_100[:,1],myfirings_100[:,0],'.') axis([0, duration, 0, min(100,Ne)]) ylabel('Neuron index') # Mean firing rate of the excitatory population as a function of time subplot(3,1,3) # 1 ms resultion of rate histogram dx = 1.0 x = arange(0,duration,dx) myfirings_Ne = myfirings[myfirings[:,0]<Ne] mean_fe,x = numpy.histogram(myfirings_Ne[:,1],x) plot(x,mean_fe/dx/Ne*1000.0,ls='steps') ylabel('Hz') xlabel('time [ms]') t2 = time.time() print 'Finished. Elapsed', str(t2-t1), ' seconds.' #myplot()
gpl-2.0
gautam1168/tardis
tardis/atomic.py
5
24426
# atomic model #TODO revisit import statements and reorganize from scipy import interpolate import numpy as np import logging import os import h5py import cPickle as pickle from astropy import table, units from collections import OrderedDict from pandas import DataFrame import pandas as pd logger = logging.getLogger(__name__) default_atom_h5_path = os.path.join(os.path.dirname(__file__), 'data', 'atom_data.h5') def data_path(fname): data_dir = os.path.join(os.path.dirname(__file__), 'data') return os.path.join(data_dir, fname) atomic_symbols_data = np.recfromtxt(data_path('atomic_symbols.dat'), names=['atomic_number', 'symbol']) symbol2atomic_number = OrderedDict(zip(atomic_symbols_data['symbol'], atomic_symbols_data['atomic_number'])) atomic_number2symbol = OrderedDict(atomic_symbols_data) @PendingDeprecationWarning def read_atomic_data(fname=None): return read_basic_atom_data(fname) def read_hdf5_data(fname, dset_name): """This function reads the dataset (dset_name) from the hdf5 file (fname). In addition it uses the attribute 'units' and parses it to the `~astropy.table.Table` constructor. Parameters ---------- fname : `str`, optional path to atomic.h5 file, if set to None it will read in default data directory Returns ------- data : `~astropy.table.Table` returns the respective """ h5_file = h5py.File(fname, 'r') dataset = h5_file[dset_name] data = np.asarray(dataset) # data_units = dataset.attrs['units'] data_table = table.Table(data) # for i, col_unit in enumerate(data_units): # if col_unit == 'n': # data_table.columns[i].units = None # elif col_unit == '1': # data_table.columns[i].units = units.Unit(1) # else: # data_table.columns[i].units = units.Unit(col_unit) h5_file.close() return data_table def read_basic_atom_data(fname=None): """This function reads the atomic number, symbol, and mass from hdf5 file Parameters ---------- fname : `str`, optional path to atomic.h5 file, if set to None it will read in default data directory Returns ------- data : `~astropy.table.Table` table with fields z[1], symbol, mass[u] """ data_table = read_hdf5_data(fname, 'basic_atom_data') # data_table.columns['mass'] = units.Unit('u').to('g', data_table['mass']) return data_table def read_ionization_data(fname=None): """This function reads the atomic number, ion number, and ionization energy from hdf5 file Parameters ---------- fname : `str`, optional path to atomic.h5 file, if set to None it will read in default data directory Returns ------- data : `~astropy.table.Table` table with fields z[1], ion[1], ionization_energy[eV] .. note:: energy from unionized atoms to once-ionized atoms ion = 1, for once ionized to twice ionized ion=2, etc. """ data_table = read_hdf5_data(fname, 'ionization_data') #data_table.columns['ionization_energy'] = units.Unit('eV').to('erg', data_table.columns['ionization_energy']) return data_table def read_levels_data(fname=None): """This function reads atomic number, ion number, level_number, energy, g, metastable information from hdf5 file. Parameters ---------- fname : `str`, optional path to atomic.h5 file, if set to None it will read in default data directory Returns ------- data : `~astropy.table.Table` table with fields z[1], ion[1], level_number, energy, g, metastable """ data_table = read_hdf5_data(fname, 'levels_data') #data_table.columns['energy'].convert_units_to('erg') #data_table.columns['energy'] = units.Unit('eV').to('erg', data_table.columns['energy']) return data_table def read_synpp_refs(fname): data_table = h5py.File(fname, 'r')['synpp_refs'] return data_table.__array__() def read_lines_data(fname=None): """ This function reads the wavelength, atomic number, ion number, f_ul, f_l and level id information from hdf5 file Parameters ---------- fname : `str`, optional path to atomic.h5 file, if set to None it will read in default data directory Returns ------- data : `~astropy.table.Table` table with fields wavelength, atomic_number, ion_number, f_ul, f_lu, level_id_lower, level_id_upper. """ data_table = read_hdf5_data(fname, 'lines_data') #data_table.columns['ionization_energy'].convert_units_to('erg') return data_table def read_zeta_data(fname): """ This function reads the recombination coefficient data from the HDF5 file :return: """ if fname is None: raise ValueError('fname can not be "None" when trying to use NebularAtom') if not os.path.exists(fname): raise IOError('HDF5 File doesn\'t exist') h5_file = h5py.File(fname, 'r') if 'zeta_data' not in h5_file.keys(): raise ValueError('zeta_data not available in this HDF5-data file. It can not be used with NebularAtomData') zeta_data = h5_file['zeta_data'] t_rads = zeta_data.attrs['t_rad'] return pd.DataFrame(zeta_data[:,2:], index=pd.MultiIndex.from_arrays(zeta_data[:,:2].transpose().astype(int)), columns=t_rads) def read_collision_data(fname): if fname is None: raise ValueError('fname can not be "None" when trying to use NebularAtom') if not os.path.exists(fname): raise IOError('HDF5 File doesn\'t exist') h5_file = h5py.File(fname, 'r') if 'collision_data' not in h5_file.keys(): raise ValueError('collision_data not available in this HDF5-data file. It can not be used with NLTE') collision_data = np.array(h5_file['collision_data']) collision_temperatures = h5_file['collision_data'].attrs['temperatures'] return collision_data, collision_temperatures def read_ion_cx_data(fname): try: h5_file = h5py.File(fname, 'r') ion_cx_th_data = h5_file['ionization_cx_threshold'] ion_cx_sp_data = h5_file['ionization_cx_support'] return ion_cx_th_data, ion_cx_sp_data except IOError, err: print(err.errno) print(err) logger.critical('Cannot import. Error opening the file to read ionization_cx') def read_macro_atom_data(fname): if fname is None: raise ValueError('fname can not be "None" when trying to use NebularAtom') if not os.path.exists(fname): raise IOError('HDF5 File doesn\'t exist') h5_file = h5py.File(fname, 'r') if 'macro_atom_data' not in h5_file.keys(): raise ValueError('Macro Atom Data (macro_atom_data) is not in this HDF5-data file. ' 'It is needed for complex line interaction') macro_atom_data = h5_file['macro_atom_data'] macro_atom_counts = h5_file['macro_atom_references'] return macro_atom_data, macro_atom_counts class AtomData(object): """ Class for storing atomic data AtomData --------- Parameters ---------- basic_atom_data : `~astropy.table.Table` containing the basic atom data: z, symbol, and mass ionization_data : ~astropy.table.Table containing the ionization data: z, ion, and ionization energy ::important to note here is that ion describes the final ion state e.g. H I - H II is described with ion=2 levels : ~astropy.table.Table containing the levels data: z, ion, level_number, energy, g lines : ~astropy.table.Table containing the lines data: wavelength, z, ion, levels_number_lower, levels_number_upper, f_lu, f_ul macro_atom_data : tuple of ~astropy.table.Table default ~None, a tuple of the macro-atom data and macro-atom references zeta_data : ~dict of interpolation objects default ~None """ @classmethod def from_hdf5(cls, fname=None): """ Function to read all the atom data from a special TARDIS HDF5 File. Parameters ---------- fname: str, optional the default for this is `None` and then it will use the very limited atomic_data shipped with TARDIS For more complex atomic data please contact the authors. use_macro_atom: default `False`. Set to `True`, if you want to read in macro_atom_data """ if fname is None: fname = default_atom_h5_path if not os.path.exists(fname): raise ValueError("Supplied Atomic Model Database %s does not exists" % fname) atom_data = read_basic_atom_data(fname) ionization_data = read_ionization_data(fname) levels_data = read_levels_data(fname) lines_data = read_lines_data(fname) with h5py.File(fname, 'r') as h5_file: h5_datasets = h5_file.keys() if 'macro_atom_data' in h5_datasets: macro_atom_data = read_macro_atom_data(fname) else: macro_atom_data = None if 'zeta_data' in h5_datasets: zeta_data = read_zeta_data(fname) else: zeta_data = None if 'collision_data' in h5_datasets: collision_data, collision_data_temperatures = read_collision_data(fname) else: collision_data, collision_data_temperatures = (None, None) if 'synpp_refs' in h5_datasets: synpp_refs = read_synpp_refs(fname) else: synpp_refs = None if 'ion_cx_data' in h5_datasets and 'ion_cx_data' in h5_datasets: ion_cx_data = read_ion_cx_data(fname) else: ion_cx_data = None atom_data = cls(atom_data=atom_data, ionization_data=ionization_data, levels_data=levels_data, lines_data=lines_data, macro_atom_data=macro_atom_data, zeta_data=zeta_data, collision_data=(collision_data, collision_data_temperatures), synpp_refs=synpp_refs, ion_cx_data=ion_cx_data) with h5py.File(fname, 'r') as h5_file: atom_data.uuid1 = h5_file.attrs['uuid1'] atom_data.md5 = h5_file.attrs['md5'] atom_data.version = h5_file.attrs.get('database_version', None) if atom_data.version is not None: atom_data.data_sources = pickle.loads(h5_file.attrs['data_sources']) logger.info('Read Atom Data with UUID=%s and MD5=%s', atom_data.uuid1, atom_data.md5) return atom_data def __init__(self, atom_data, ionization_data, levels_data, lines_data, macro_atom_data=None, zeta_data=None, collision_data=None, synpp_refs=None, ion_cx_data=None): if macro_atom_data is not None: self.has_macro_atom = True self.macro_atom_data_all = DataFrame(macro_atom_data[0].__array__()) self.macro_atom_references_all = DataFrame(macro_atom_data[1].__array__()) else: self.has_macro_atom = False if ion_cx_data is not None: self.has_ion_cx_data = True #TODO:Farm a panda here self.ion_cx_th_data = DataFrame(np.array(ion_cx_data[0])) self.ion_cx_th_data.set_index(['atomic_number', 'ion_number', 'level_id'], inplace=True) self.ion_cx_sp_data = DataFrame(np.array(ion_cx_data[1])) self.ion_cx_sp_data.set_index(['atomic_number', 'ion_number', 'level_id']) else: self.has_ion_cx_data = False if zeta_data is not None: self.zeta_data = zeta_data self.has_zeta_data = True else: self.has_zeta_data = False if collision_data[0] is not None: self.collision_data = DataFrame(collision_data[0]) self.collision_data_temperatures = collision_data[1] self.collision_data.set_index(['atomic_number', 'ion_number', 'level_number_lower', 'level_number_upper'], inplace=True) self.has_collision_data = True else: self.has_collision_data = False if synpp_refs is not None: self.has_synpp_refs = True self.synpp_refs = pd.DataFrame(synpp_refs) self.synpp_refs.set_index(['atomic_number', 'ion_number'], inplace=True) else: self.has_synpp_refs = False self.atom_data = DataFrame(atom_data.__array__()) self.atom_data.set_index('atomic_number', inplace=True) self.atom_data.mass = units.Unit('u').to('g', self.atom_data.mass.values) self.ionization_data = DataFrame(ionization_data.__array__()) self.ionization_data.set_index(['atomic_number', 'ion_number'], inplace=True) self.ionization_data.ionization_energy = units.Unit('eV').to('erg', self.ionization_data.ionization_energy.values) self._levels = DataFrame(levels_data.__array__()) self._levels.energy = units.Unit('eV').to('erg', self._levels.energy.values) self._lines = DataFrame(lines_data.__array__()) self._lines.set_index('line_id', inplace=True) self._lines['nu'] = units.Unit('angstrom').to('Hz', self._lines['wavelength'], units.spectral()) self._lines['wavelength_cm'] = units.Unit('angstrom').to('cm', self._lines['wavelength']) #tmp_lines_index = pd.MultiIndex.from_arrays(self.lines) #self.lines_inde self.symbol2atomic_number = OrderedDict(zip(self.atom_data['symbol'].values, self.atom_data.index)) self.atomic_number2symbol = OrderedDict(zip(self.atom_data.index, self.atom_data['symbol'])) def prepare_atom_data(self, selected_atomic_numbers, line_interaction_type='scatter', max_ion_number=None, nlte_species=[]): """ Prepares the atom data to set the lines, levels and if requested macro atom data. This function mainly cuts the `levels` and `lines` by discarding any data that is not needed (any data for atoms that are not needed Parameters ---------- selected_atoms : `~set` set of selected atom numbers, e.g. set([14, 26]) line_interaction_type : `~str` can be 'scatter', 'downbranch' or 'macroatom' max_ion_number : `~int` maximum ion number to be included in the calculation """ self.selected_atomic_numbers = selected_atomic_numbers self.nlte_species = nlte_species self._levels = self._levels.reset_index() self.levels = self._levels.copy() self.levels = self.levels[self.levels['atomic_number'].isin(self.selected_atomic_numbers)] if max_ion_number is not None: self.levels = self.levels[self.levels['ion_number'] <= max_ion_number] self.levels = self.levels.set_index(['atomic_number', 'ion_number', 'level_number']) self.levels_index = pd.Series(np.arange(len(self.levels), dtype=int), index=self.levels.index) #cutting levels_lines self.lines = self._lines.copy() self.lines = self.lines[self.lines['atomic_number'].isin(self.selected_atomic_numbers)] if max_ion_number is not None: self.lines = self.lines[self.lines['ion_number'] <= max_ion_number] self.lines.sort('wavelength', inplace=True) self.lines_index = pd.Series(np.arange(len(self.lines), dtype=int), index=self.lines.index) tmp_lines_lower2level_idx = pd.MultiIndex.from_arrays([self.lines['atomic_number'], self.lines['ion_number'], self.lines['level_number_lower']]) self.lines_lower2level_idx = self.levels_index.ix[tmp_lines_lower2level_idx].values.astype(np.int64) tmp_lines_upper2level_idx = pd.MultiIndex.from_arrays([self.lines['atomic_number'], self.lines['ion_number'], self.lines['level_number_upper']]) self.lines_upper2level_idx = self.levels_index.ix[tmp_lines_upper2level_idx].values.astype(np.int64) self.atom_ion_index = None self.levels_index2atom_ion_index = None if self.has_macro_atom and not (line_interaction_type == 'scatter'): self.macro_atom_data = self.macro_atom_data_all[ self.macro_atom_data_all['atomic_number'].isin(self.selected_atomic_numbers)] if max_ion_number is not None: self.macro_atom_data = self.macro_atom_data[self.macro_atom_data['ion_number'] <= max_ion_number] self.macro_atom_references = self.macro_atom_references_all[ self.macro_atom_references_all['atomic_number'].isin( self.selected_atomic_numbers)] if max_ion_number is not None: self.macro_atom_references = self.macro_atom_references[ self.macro_atom_references['ion_number'] <= max_ion_number] if line_interaction_type == 'downbranch': self.macro_atom_data = self.macro_atom_data[(self.macro_atom_data['transition_type'] == -1).values] self.macro_atom_references = self.macro_atom_references[self.macro_atom_references['count_down'] > 0] self.macro_atom_references['count_total'] = self.macro_atom_references['count_down'] self.macro_atom_references['block_references'] = np.hstack((0, np.cumsum(self.macro_atom_references[ 'count_down'].values[:-1]))) elif line_interaction_type == 'macroatom': self.macro_atom_references['block_references'] = np.hstack((0, np.cumsum(self.macro_atom_references[ 'count_total'].values[:-1]))) self.macro_atom_references.set_index(['atomic_number', 'ion_number', 'source_level_number'], inplace=True) self.macro_atom_references['references_idx'] = np.arange(len(self.macro_atom_references)) self.macro_atom_data['lines_idx'] = self.lines_index.ix[self.macro_atom_data['transition_line_id']].values tmp_lines_upper2level_idx = pd.MultiIndex.from_arrays( [self.lines['atomic_number'], self.lines['ion_number'], self.lines['level_number_upper']]) self.lines_upper2macro_reference_idx = self.macro_atom_references['references_idx'].ix[ tmp_lines_upper2level_idx].values.astype(np.int64) tmp_macro_destination_level_idx = pd.MultiIndex.from_arrays([self.macro_atom_data['atomic_number'], self.macro_atom_data['ion_number'], self.macro_atom_data[ 'destination_level_number']]) if line_interaction_type == 'macroatom': self.macro_atom_data['destination_level_idx'] = self.macro_atom_references['references_idx'].ix[ tmp_macro_destination_level_idx].values.astype(np.int64) elif line_interaction_type == 'downbranch': self.macro_atom_data['destination_level_idx'] = (np.ones(len(self.macro_atom_data)) * -1).astype( np.int64) self.nlte_data = NLTEData(self, nlte_species) def __repr__(self): return "<Atomic Data UUID=%s MD5=%s Lines=%d Levels=%d>" % \ (self.uuid1, self.md5, self.lines.atomic_number.count(), self.levels.energy.count()) class NLTEData(object): def __init__(self, atom_data, nlte_species): self.atom_data = atom_data self.lines = atom_data.lines.reset_index() self.nlte_species = nlte_species if nlte_species: logger.info('Preparing the NLTE data') self._init_indices() self._create_nlte_mask() if atom_data.has_collision_data: self._create_collision_coefficient_matrix() else: self._create_nlte_mask() def _init_indices(self): self.lines_idx = {} self.lines_level_number_lower = {} self.lines_level_number_upper = {} self.A_uls = {} self.B_uls = {} self.B_lus = {} for species in self.nlte_species: lines_idx = np.where((self.lines.atomic_number == species[0]) & (self.lines.ion_number == species[1])) self.lines_idx[species] = lines_idx self.lines_level_number_lower[species] = self.lines.level_number_lower.values[lines_idx].astype(int) self.lines_level_number_upper[species] = self.lines.level_number_upper.values[lines_idx].astype(int) self.A_uls[species] = self.atom_data.lines.A_ul.values[lines_idx] self.B_uls[species] = self.atom_data.lines.B_ul.values[lines_idx] self.B_lus[species] = self.atom_data.lines.B_lu.values[lines_idx] def _create_nlte_mask(self): self.nlte_levels_mask = np.zeros(self.atom_data.levels.energy.count()).astype(bool) self.nlte_lines_mask = np.zeros(self.atom_data.lines.wavelength.count()).astype(bool) for species in self.nlte_species: current_levels_mask = (self.atom_data.levels.index.get_level_values(0) == species[0]) & \ (self.atom_data.levels.index.get_level_values(1) == species[1]) current_lines_mask = (self.atom_data.lines.atomic_number.values == species[0]) & \ (self.atom_data.lines.ion_number.values == species[1]) self.nlte_levels_mask |= current_levels_mask self.nlte_lines_mask |= current_lines_mask def _create_collision_coefficient_matrix(self): self.C_ul_interpolator = {} self.delta_E_matrices = {} self.g_ratio_matrices = {} collision_group = self.atom_data.collision_data.groupby(level=['atomic_number', 'ion_number']) for species in self.nlte_species: no_of_levels = self.atom_data.levels.ix[species].energy.count() C_ul_matrix = np.zeros((no_of_levels, no_of_levels, len(self.atom_data.collision_data_temperatures))) delta_E_matrix = np.zeros((no_of_levels, no_of_levels)) g_ratio_matrix = np.zeros((no_of_levels, no_of_levels)) for (atomic_number, ion_number, level_number_lower, level_number_upper), line in \ collision_group.get_group(species).iterrows(): C_ul_matrix[level_number_lower, level_number_upper, :] = line.values[2:] delta_E_matrix[level_number_lower, level_number_upper] = line['delta_e'] #TODO TARDISATOMIC fix change the g_ratio to be the otherway round - I flip them now here. g_ratio_matrix[level_number_lower, level_number_upper] = line['g_ratio'] self.C_ul_interpolator[species] = interpolate.interp1d(self.atom_data.collision_data_temperatures, C_ul_matrix) self.delta_E_matrices[species] = delta_E_matrix self.g_ratio_matrices[species] = g_ratio_matrix def get_collision_matrix(self, species, t_electrons): c_ul_matrix = self.C_ul_interpolator[species](t_electrons) no_of_levels = c_ul_matrix.shape[0] c_ul_matrix[np.isnan(c_ul_matrix)] = 0.0 #TODO in tardisatomic the g_ratio is the other way round - here I'll flip it in prepare_collision matrix c_lu_matrix = c_ul_matrix * np.exp(-self.delta_E_matrices[species].reshape((no_of_levels, no_of_levels, 1)) / t_electrons.reshape((1, 1, t_electrons.shape[0]))) * \ self.g_ratio_matrices[species].reshape((no_of_levels, no_of_levels, 1)) return c_ul_matrix + c_lu_matrix.transpose(1, 0, 2)
bsd-3-clause
imaculate/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
73
2264
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matlotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
fzalkow/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
carlthome/librosa
librosa/feature/inverse.py
1
9012
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Feature inversion''' import warnings import numpy as np import scipy.fftpack from ..util.exceptions import ParameterError from ..core.spectrum import griffinlim from ..core.spectrum import db_to_power from ..util.utils import tiny from .. import filters from ..util import nnls __all__ = ['mel_to_stft', 'mel_to_audio', 'mfcc_to_mel', 'mfcc_to_audio'] def mel_to_stft(M, sr=22050, n_fft=2048, power=2.0, **kwargs): '''Approximate STFT magnitude from a Mel power spectrogram. Parameters ---------- M : np.ndarray [shape=(n_mels, n), non-negative] The spectrogram as produced by `feature.melspectrogram` sr : number > 0 [scalar] sampling rate of the underlying signal n_fft : int > 0 [scalar] number of FFT components in the resulting STFT power : float > 0 [scalar] Exponent for the magnitude melspectrogram kwargs : additional keyword arguments Mel filter bank parameters. See `librosa.filters.mel` for details Returns ------- S : np.ndarray [shape=(n_fft, t), non-negative] An approximate linear magnitude spectrogram See Also -------- feature.melspectrogram core.stft filters.mel util.nnls Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=5, offset=10) >>> S = np.abs(librosa.stft(y)) >>> mel_spec = librosa.feature.melspectrogram(S=S, sr=sr) >>> S_inv = librosa.feature.inverse.mel_to_stft(mel_spec, sr=sr) Compare the results visually >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max, top_db=None), ... y_axis='log', x_axis='time') >>> plt.colorbar() >>> plt.title('Original STFT') >>> plt.subplot(2,1,2) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(S_inv - S), ... ref=S.max(), top_db=None), ... vmax=0, y_axis='log', x_axis='time', cmap='magma') >>> plt.title('Residual error (dB)') >>> plt.colorbar() >>> plt.tight_layout() >>> plt.show() ''' # Construct a mel basis with dtype matching the input data mel_basis = filters.mel(sr, n_fft, n_mels=M.shape[0], dtype=M.dtype, **kwargs) # Find the non-negative least squares solution, and apply # the inverse exponent. # We'll do the exponentiation in-place. inverse = nnls(mel_basis, M) return np.power(inverse, 1. / power, out=inverse) def mel_to_audio(M, sr=22050, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', power=2.0, n_iter=32, length=None, dtype=np.float32, **kwargs): """Invert a mel power spectrogram to audio using Griffin-Lim. This is primarily a convenience wrapper for: >>> S = librosa.feature.inverse.mel_to_stft(M) >>> y = librosa.griffinlim(S) Parameters ---------- M : np.ndarray [shape=(n_mels, n), non-negative] The spectrogram as produced by `feature.melspectrogram` sr : number > 0 [scalar] sampling rate of the underlying signal n_fft : int > 0 [scalar] number of FFT components in the resulting STFT hop_length : None or int > 0 The hop length of the STFT. If not provided, it will default to `n_fft // 4` win_length : None or int > 0 The window length of the STFT. By default, it will equal `n_fft` window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] A window specification as supported by `stft` or `istft` center : boolean If `True`, the STFT is assumed to use centered frames. If `False`, the STFT is assumed to use left-aligned frames. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. power : float > 0 [scalar] Exponent for the magnitude melspectrogram n_iter : int > 0 The number of iterations for Griffin-Lim length : None or int > 0 If provided, the output `y` is zero-padded or clipped to exactly `length` samples. dtype : np.dtype Real numeric type for the time-domain signal. Default is 32-bit float. kwargs : additional keyword arguments Mel filter bank parameters Returns ------- y : np.ndarray [shape(n,)] time-domain signal reconstructed from `M` See Also -------- core.griffinlim feature.melspectrogram filters.mel feature.inverse.mel_to_stft """ stft = mel_to_stft(M, sr=sr, n_fft=n_fft, power=power, **kwargs) return griffinlim(stft, n_iter=n_iter, hop_length=hop_length, win_length=win_length, window=window, center=center, dtype=dtype, length=length, pad_mode=pad_mode) def mfcc_to_mel(mfcc, n_mels=128, dct_type=2, norm='ortho', ref=1.0, lifter=0): '''Invert Mel-frequency cepstral coefficients to approximate a Mel power spectrogram. This inversion proceeds in two steps: 1. The inverse DCT is applied to the MFCCs 2. `core.db_to_power` is applied to map the dB-scaled result to a power spectrogram Parameters ---------- mfcc : np.ndarray [shape=(n_mfcc, n)] The Mel-frequency cepstral coefficients n_mels : int > 0 The number of Mel frequencies dct_type : {1, 2, 3} Discrete cosine transform (DCT) type By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an orthonormal DCT basis. Normalization is not supported for `dct_type=1`. ref : number or callable Reference power for (inverse) decibel calculation lifter : number >= 0 If `lifter>0`, apply inverse liftering (inverse cepstral filtering): `M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2` Returns ------- M : np.ndarray [shape=(n_mels, n)] An approximate Mel power spectrum recovered from `mfcc` Warns -------- UserWarning due to critical values in lifter array that invokes underflow. See Also -------- mfcc melspectrogram scipy.fftpack.dct ''' if lifter > 0: n_mfcc = mfcc.shape[0] idx = np.arange(1, 1 + n_mfcc, dtype=mfcc.dtype) lifter_sine = 1 + lifter * 0.5 * np.sin(np.pi * idx / lifter)[:, np.newaxis] # raise a UserWarning if lifter array includes critical values if np.any(np.abs(lifter_sine) < np.finfo(lifter_sine.dtype).eps): warnings.warn(message="lifter array includes critial values that may invoke underflow.", category=UserWarning) # lifter mfcc values mfcc = mfcc / (lifter_sine + tiny(mfcc)) elif lifter != 0: raise ParameterError('MFCC to mel lifter must be a non-negative number.') logmel = scipy.fftpack.idct(mfcc, axis=0, type=dct_type, norm=norm, n=n_mels) return db_to_power(logmel, ref=ref) def mfcc_to_audio(mfcc, n_mels=128, dct_type=2, norm='ortho', ref=1.0, lifter=0, **kwargs): '''Convert Mel-frequency cepstral coefficients to a time-domain audio signal This function is primarily a convenience wrapper for the following steps: 1. Convert mfcc to Mel power spectrum (`mfcc_to_mel`) 2. Convert Mel power spectrum to time-domain audio (`mel_to_audio`) Parameters ---------- mfcc : np.ndarray [shape=(n_mfcc, n)] The Mel-frequency cepstral coefficients n_mels : int > 0 The number of Mel frequencies dct_type : {1, 2, 3} Discrete cosine transform (DCT) type By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an orthonormal DCT basis. Normalization is not supported for `dct_type=1`. ref : number or callable Reference power for (inverse) decibel calculation lifter : number >= 0 If `lifter>0`, apply inverse liftering (inverse cepstral filtering): `M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2` kwargs : additional keyword arguments Parameters to pass through to `mel_to_audio` Returns ------- y : np.ndarray [shape=(n)] A time-domain signal reconstructed from `mfcc` See Also -------- mfcc_to_mel mel_to_audio feature.mfcc core.griffinlim scipy.fftpack.dct ''' mel_spec = mfcc_to_mel(mfcc, n_mels=n_mels, dct_type=dct_type, norm=norm, ref=ref, lifter=lifter) return mel_to_audio(mel_spec, **kwargs)
isc
dpshelio/sunpy
examples/time_series/goes_hek_m25.py
1
1593
""" ============================== Flare times on a GOES XRS plot ============================== How to plot flare times as provided by the HEK on a GOES XRS plot. """ import matplotlib.pyplot as plt from sunpy.timeseries import TimeSeries from sunpy.time import TimeRange, parse_time from sunpy.net import hek, Fido, attrs as a ############################################################################### # Let's first grab GOES XRS data for a particular time of interest tr = TimeRange(['2011-06-07 04:00', '2011-06-07 12:00']) results = Fido.search(a.Time(tr), a.Instrument('XRS')) ############################################################################### # Then download the data and load it into a TimeSeries files = Fido.fetch(results) goes = TimeSeries(files) ############################################################################### # Next lets grab the HEK flare data for this time from the NOAA Space Weather # Prediction Center (SWPC) client = hek.HEKClient() flares_hek = client.search(hek.attrs.Time(tr.start, tr.end), hek.attrs.FL, hek.attrs.FRM.Name == 'SWPC') ############################################################################### # Lets plot everything together fig, ax = plt.subplots() goes.plot() ax.axvline(parse_time(flares_hek[0].get('event_peaktime')).plot_date) ax.axvspan(parse_time(flares_hek[0].get('event_starttime')).plot_date, parse_time(flares_hek[0].get('event_endtime')).plot_date, alpha=0.2, label=flares_hek[0].get('fl_goescls')) ax.legend(loc=2) ax.set_yscale('log') plt.show()
bsd-2-clause
doged/electrum-doged
plugins/plot.py
4
3822
from PyQt4.QtGui import * from electrum_doged.plugins import BasePlugin, hook from electrum_doged.i18n import _ import datetime from electrum_doged.util import format_satoshis try: import matplotlib.pyplot as plt import matplotlib.dates as md from matplotlib.patches import Ellipse from matplotlib.offsetbox import AnchoredOffsetbox, TextArea, DrawingArea, HPacker flag_matlib=True except: flag_matlib=False class Plugin(BasePlugin): def is_available(self): if flag_matlib: return True else: return False @hook def init_qt(self, gui): self.win = gui.main_window @hook def export_history_dialog(self, d,hbox): self.wallet = d.wallet history = self.wallet.get_history() if len(history) > 0: b = QPushButton(_("Preview plot")) hbox.addWidget(b) b.clicked.connect(lambda: self.do_plot(self.wallet, history)) else: b = QPushButton(_("No history to plot")) hbox.addWidget(b) def do_plot(self, wallet, history): balance_Val=[] fee_val=[] value_val=[] datenums=[] unknown_trans = 0 pending_trans = 0 counter_trans = 0 balance = 0 for item in history: tx_hash, confirmations, value, timestamp = item balance += value if confirmations: if timestamp is not None: try: datenums.append(md.date2num(datetime.datetime.fromtimestamp(timestamp))) balance_string = format_satoshis(balance, False) balance_Val.append(float((format_satoshis(balance,False)))*1000.0) except [RuntimeError, TypeError, NameError] as reason: unknown_trans += 1 pass else: unknown_trans += 1 else: pending_trans += 1 value_string = format_satoshis(value, True) value_val.append(float(value_string)*1000.0) if tx_hash: label, is_default_label = wallet.get_label(tx_hash) label = label.encode('utf-8') else: label = "" f, axarr = plt.subplots(2, sharex=True) plt.subplots_adjust(bottom=0.2) plt.xticks( rotation=25 ) ax=plt.gca() x=19 test11="Unknown transactions = "+str(unknown_trans)+" Pending transactions = "+str(pending_trans)+" ." box1 = TextArea(" Test : Number of pending transactions", textprops=dict(color="k")) box1.set_text(test11) box = HPacker(children=[box1], align="center", pad=0.1, sep=15) anchored_box = AnchoredOffsetbox(loc=3, child=box, pad=0.5, frameon=True, bbox_to_anchor=(0.5, 1.02), bbox_transform=ax.transAxes, borderpad=0.5, ) ax.add_artist(anchored_box) plt.ylabel('mDOGED') plt.xlabel('Dates') xfmt = md.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(xfmt) axarr[0].plot(datenums,balance_Val,marker='o',linestyle='-',color='blue',label='Balance') axarr[0].legend(loc='upper left') axarr[0].set_title('History Transactions') xfmt = md.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(xfmt) axarr[1].plot(datenums,value_val,marker='o',linestyle='-',color='green',label='Value') axarr[1].legend(loc='upper left') # plt.annotate('unknown transaction = %d \n pending transactions = %d' %(unknown_trans,pending_trans),xy=(0.7,0.05),xycoords='axes fraction',size=12) plt.show()
gpl-3.0
IntelLabs/hpat
examples/series/series_corr.py
1
1773
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import numpy as np import pandas as pd from numba import njit @njit def series_corr(): s1 = pd.Series([3.2, -10, np.nan, 0.23, 9.2]) s2 = pd.Series([5., 0, 3.3, np.nan, 9.2]) return s1.corr(s2) # Expect value: 0.98673... print(series_corr())
bsd-2-clause
boddulavineela/mase
python101/code/zipf.py
14
1453
"""This module contains code from Think Python by Allen B. Downey http://thinkpython.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import sys import string import matplotlib.pyplot as pyplot from analyze_book import * def rank_freq(hist): """Returns a list of tuples where each tuple is a rank and the number of times the item with that rank appeared. """ # sort the list of frequencies in decreasing order freqs = hist.values() freqs.sort(reverse=True) # enumerate the ranks and frequencies rf = [(r+1, f) for r, f in enumerate(freqs)] return rf def print_ranks(hist): """Prints the rank vs. frequency data.""" for r, f in rank_freq(hist): print r, f def plot_ranks(hist, scale='log'): """Plots frequency vs. rank.""" t = rank_freq(hist) rs, fs = zip(*t) pyplot.clf() pyplot.xscale(scale) pyplot.yscale(scale) pyplot.title('Zipf plot') pyplot.xlabel('rank') pyplot.ylabel('frequency') pyplot.plot(rs, fs, 'r-') pyplot.show() def main(name, filename='emma.txt', flag='plot', *args): hist = process_file(filename, skip_header=True) # either print the results or plot them if flag == 'print': print_ranks(hist) elif flag == 'plot': plot_ranks(hist) else: print 'Usage: zipf.py filename [print|plot]' if __name__ == '__main__': main(*sys.argv)
unlicense
saiwing-yeung/scikit-learn
examples/ensemble/plot_isolation_forest.py
65
2363
""" ========================================== IsolationForest example ========================================== An example using IsolationForest for anomaly detection. The IsolationForest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature. Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is equivalent to the path length from the root node to the terminating node. This path length, averaged over a forest of such random trees, is a measure of abnormality and our decision function. Random partitioning produces noticeable shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies. .. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest rng = np.random.RandomState(42) # Generate train data X = 0.3 * rng.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rng.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = IsolationForest(max_samples=100, random_state=rng) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) # plot the line, the samples, and the nearest vectors to the plane xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("IsolationForest") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([b1, b2, c], ["training observations", "new regular observations", "new abnormal observations"], loc="upper left") plt.show()
bsd-3-clause
btabibian/scikit-learn
sklearn/utils/estimator_checks.py
2
65609
from __future__ import print_function import types import warnings import sys import traceback import pickle from copy import deepcopy import numpy as np from scipy import sparse from scipy.stats import rankdata import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_allclose_dense_sparse from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_dict_equal from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import DataConversionWarning from sklearn.exceptions import SkipTestWarning from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from sklearn.utils.fixes import signature from sklearn.utils.validation import has_fit_parameter, _num_samples from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'GaussianProcessRegressor', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] def _yield_non_meta_checks(name, estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_sample_weights_pandas_series yield check_sample_weights_list yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, classifier): # test classifiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train yield check_classifiers_regression_target if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] and # TODO some complication with -1 label name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in classifier.get_params().keys(): yield check_class_weight_classifiers yield check_non_transformer_estimators_n_iter # test if predict_proba is a monotonic transformation of decision_function yield check_decision_proba_consistency @ignore_warnings(category=DeprecationWarning) def check_supervised_y_no_nan(name, estimator_orig): # Checks that the Estimator targets are not NaN. estimator = clone(estimator_orig) rng = np.random.RandomState(888) X = rng.randn(10, 5) y = np.ones(10) * np.inf y = multioutput_estimator_convert_y_2d(estimator, y) errmsg = "Input contains NaN, infinity or a value too large for " \ "dtype('float64')." try: estimator.fit(X, y) except ValueError as e: if str(e) != errmsg: raise ValueError("Estimator {0} raised error as expected, but " "does not match expected error message" .format(name)) else: raise ValueError("Estimator {0} should have raised error on fitting " "array y with NaN value.".format(name)) def _yield_regressor_checks(name, regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d yield check_supervised_y_no_nan if name != 'CCA': # check that the regressor handles int input yield check_regressors_int if name != "GaussianProcessRegressor": # Test if NotFittedError is raised yield check_estimators_unfitted yield check_non_transformer_estimators_n_iter def _yield_transformer_checks(name, transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if name not in external_solver: yield check_transformer_n_iter def _yield_clustering_checks(name, clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features yield check_non_transformer_estimators_n_iter def _yield_all_checks(name, estimator): for check in _yield_non_meta_checks(name, estimator): yield check if isinstance(estimator, ClassifierMixin): for check in _yield_classifier_checks(name, estimator): yield check if isinstance(estimator, RegressorMixin): for check in _yield_regressor_checks(name, estimator): yield check if isinstance(estimator, TransformerMixin): for check in _yield_transformer_checks(name, estimator): yield check if isinstance(estimator, ClusterMixin): for check in _yield_clustering_checks(name, estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample yield check_get_params_invariance yield check_dict_unchanged yield check_dont_overwrite_parameters def check_estimator(Estimator): """Check if estimator adheres to scikit-learn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. This test can be applied to classes or instances. Classes currently have some additional tests that related to construction, while passing instances allows the testing of multiple options. Parameters ---------- estimator : estimator object or class Estimator to check. Estimator is a class object or instance. """ if isinstance(Estimator, type): # got a class name = Estimator.__name__ check_parameters_default_constructible(name, Estimator) check_no_fit_attributes_set_in_init(name, Estimator) estimator = Estimator() else: # got an instance estimator = Estimator name = type(estimator).__name__ for check in _yield_all_checks(name, estimator): try: check(name, estimator) except SkipTest as message: # the only SkipTest thrown currently results from not # being able to import pandas. warnings.warn(message, SkipTestWarning) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_checking_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR, LinearSVC if estimator.__class__.__name__ in ['LinearSVR', 'LinearSVC']: estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': estimator.set_params(max_iter=100) # MLP if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']: estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if "decision_function_shape" in params: # SVC estimator.set_params(decision_function_shape='ovo') if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=2) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, estimator_orig): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) # catch deprecation warnings with ignore_warnings(category=DeprecationWarning): estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with ignore_warnings(category=DeprecationWarning): if name in ['Scaler', 'StandardScaler']: estimator = clone(estimator).set_params(with_mean=False) else: estimator = clone(estimator) # fit and predict try: with ignore_warnings(category=DeprecationWarning): estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise @ignore_warnings(category=DeprecationWarning) def check_sample_weights_pandas_series(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type pandas.Series in the 'fit' function. estimator = clone(estimator_orig) if has_fit_parameter(estimator, "sample_weight"): try: import pandas as pd X = pd.DataFrame([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]]) y = pd.Series([1, 1, 1, 2, 2, 2]) weights = pd.Series([1] * 6) try: estimator.fit(X, y, sample_weight=weights) except ValueError: raise ValueError("Estimator {0} raises error if " "'sample_weight' parameter is of " "type pandas.Series".format(name)) except ImportError: raise SkipTest("pandas is not installed: not testing for " "input of type pandas.Series to class weight.") @ignore_warnings(category=DeprecationWarning) def check_sample_weights_list(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type list in the 'fit' function. if has_fit_parameter(estimator_orig, "sample_weight"): estimator = clone(estimator_orig) rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(estimator, y) sample_weight = [3] * 10 # Test that estimators don't raise any exception estimator.fit(X, y, sample_weight=sample_weight) @ignore_warnings(category=(DeprecationWarning, UserWarning)) def check_dtype_object(name, estimator_orig): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_dict_unchanged(name, estimator_orig): # this estimator raises # ValueError: Found array with 0 feature(s) (shape=(23, 0)) # while a minimum of 1 is required. # error if name in ['SpectralCoclustering']: return rnd = np.random.RandomState(0) if name in ['RANSACRegressor']: X = 3 * rnd.uniform(size=(20, 3)) else: X = 2 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 if hasattr(estimator, "n_best"): estimator.n_best = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): dict_before = estimator.__dict__.copy() getattr(estimator, method)(X) assert_dict_equal(estimator.__dict__, dict_before, 'Estimator changes __dict__ during %s' % method) def is_public_parameter(attr): return not (attr.startswith('_') or attr.endswith('_')) @ignore_warnings(category=DeprecationWarning) def check_dont_overwrite_parameters(name, estimator_orig): # check that fit method only changes or sets private attributes if hasattr(estimator_orig.__init__, "deprecated_original"): # to not check deprecated classes return estimator = clone(estimator_orig) rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) dict_before_fit = estimator.__dict__.copy() estimator.fit(X, y) dict_after_fit = estimator.__dict__ public_keys_after_fit = [key for key in dict_after_fit.keys() if is_public_parameter(key)] attrs_added_by_fit = [key for key in public_keys_after_fit if key not in dict_before_fit.keys()] # check that fit doesn't add any public attribute assert_true(not attrs_added_by_fit, ('Estimator adds public attribute(s) during' ' the fit method.' ' Estimators are only allowed to add private attributes' ' either started with _ or ended' ' with _ but %s added' % ', '.join(attrs_added_by_fit))) # check that fit doesn't change any public attribute attrs_changed_by_fit = [key for key in public_keys_after_fit if (dict_before_fit[key] is not dict_after_fit[key])] assert_true(not attrs_changed_by_fit, ('Estimator changes public attribute(s) during' ' the fit method. Estimators are only allowed' ' to change attributes started' ' or ended with _, but' ' %s changed' % ', '.join(attrs_changed_by_fit))) @ignore_warnings(category=DeprecationWarning) def check_fit2d_predict1d(name, estimator_orig): # check by fitting a 2d array and predicting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): assert_raise_message(ValueError, "Reshape your data", getattr(estimator, method), X[0]) @ignore_warnings def check_fit2d_1sample(name, estimator_orig): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, estimator_orig): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, estimator_orig): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, estimator_orig): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings(category=DeprecationWarning) def check_transformer_general(name, transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, transformer, X, y) _check_transformer(name, transformer, X.tolist(), y.tolist()) @ignore_warnings(category=DeprecationWarning) def check_transformer_data_not_an_array(name, transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, transformer, this_X, this_y) @ignore_warnings(category=DeprecationWarning) def check_transformers_unfitted(name, transformer): X, y = _boston_subset() transformer = clone(transformer) assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, transformer_orig, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape transformer = clone(transformer_orig) set_random_state(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) # fit_transform method should work on non fitted estimator transformer_clone = clone(transformer) X_pred = transformer_clone.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_allclose_dense_sparse( x_pred, x_pred2, atol=1e-2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer) assert_allclose_dense_sparse( x_pred, x_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) else: assert_allclose_dense_sparse( X_pred, X_pred2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer, atol=1e-2) assert_allclose_dense_sparse( X_pred, X_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) assert_equal(_num_samples(X_pred2), n_samples) assert_equal(_num_samples(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, estimator_orig): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_allclose_dense_sparse(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, estimator_orig): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] if args[0] == "self": # if_delegate_has_method makes methods into functions # with an explicit "self", so need to shift arguments args = args[1:] assert_true(args[1] in ["y", "Y"], "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, type(estimator).__name__, args)) @ignore_warnings def check_estimators_dtypes(name, estimator_orig): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(estimator_orig, y) methods = ["predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: estimator = clone(estimator_orig) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) @ignore_warnings(category=DeprecationWarning) def check_estimators_empty_data_messages(name, estimator_orig): e = clone(estimator_orig) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(e, np.array([1, 0, 1])) msg = ("0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* " "is required.") assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) @ignore_warnings(category=DeprecationWarning) def check_estimators_nan_inf(name, estimator_orig): # Checks that Estimator X's do not contain NaN or inf. rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(estimator_orig, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with ignore_warnings(category=DeprecationWarning): estimator = clone(estimator_orig) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, estimator) # transform if hasattr(estimator, "transform"): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, estimator) @ignore_warnings def check_estimators_pickle(name, estimator_orig): """Test that we can pickle all estimators""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() estimator = clone(estimator_orig) # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) if estimator.__module__.startswith('sklearn.'): assert_true(b"version" in pickled_estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_allclose_dense_sparse(result[method], unpickled_result) @ignore_warnings(category=DeprecationWarning) def check_estimators_partial_fit_n_features(name, estimator_orig): # check if number of features changes between calls to partial_fit. if not hasattr(estimator_orig, 'partial_fit'): return estimator = clone(estimator_orig) X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() try: if isinstance(estimator, ClassifierMixin): classes = np.unique(y) estimator.partial_fit(X, y, classes=classes) else: estimator.partial_fit(X, y) except NotImplementedError: return assert_raises(ValueError, estimator.partial_fit, X[:, :-1], y) @ignore_warnings(category=DeprecationWarning) def check_clustering(name, clusterer_orig): clusterer = clone(clusterer_orig) X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings if hasattr(clusterer, "n_clusters"): clusterer.set_params(n_clusters=3) set_random_state(clusterer) if name == 'AffinityPropagation': clusterer.set_params(preference=-100) clusterer.set_params(max_iter=100) # fit clusterer.fit(X) # with lists clusterer.fit(X.tolist()) assert_equal(clusterer.labels_.shape, (n_samples,)) pred = clusterer.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name == 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(clusterer) with warnings.catch_warnings(record=True): pred2 = clusterer.fit_predict(X) assert_array_equal(pred, pred2) @ignore_warnings(category=DeprecationWarning) def check_clusterer_compute_labels_predict(name, clusterer_orig): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = clone(clusterer_orig) if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) @ignore_warnings(category=DeprecationWarning) def check_classifiers_one_label(name, classifier_orig): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with ignore_warnings(category=DeprecationWarning): classifier = clone(classifier_orig) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, classifier, exc) raise exc @ignore_warnings # Warnings are raised by decision function def check_classifiers_train(name, classifier_orig): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape classifier = clone(classifier_orig) if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes == 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes == 3 and # 1on1 of LibSVM works differently not isinstance(classifier, BaseLibSVM)): assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_allclose(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) if hasattr(classifier, "predict_log_proba"): # predict_log_proba is a transformation of predict_proba y_log_prob = classifier.predict_log_proba(X) assert_allclose(y_log_prob, np.log(y_prob), 8) assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob)) @ignore_warnings(category=DeprecationWarning) def check_estimators_fit_returns_self(name, estimator_orig): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) # some want non-negative input X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, estimator_orig): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() est = clone(estimator_orig) msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) @ignore_warnings(category=DeprecationWarning) def check_supervised_y_2d(name, estimator_orig): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 estimator = clone(estimator_orig) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_allclose(y_pred.ravel(), y_pred_2d.ravel()) @ignore_warnings(category=DeprecationWarning) def check_classifiers_classes(name, classifier_orig): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) classifier = clone(classifier_orig) if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) @ignore_warnings(category=DeprecationWarning) def check_regressors_int(name, regressor_orig): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(regressor_orig, y) rnd = np.random.RandomState(0) # separate estimators to control random seeds regressor_1 = clone(regressor_orig) regressor_2 = clone(regressor_orig) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) @ignore_warnings(category=DeprecationWarning) def check_regressors_train(name, regressor_orig): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() regressor = clone(regressor_orig) y = multioutput_estimator_convert_y_2d(regressor, y) rnd = np.random.RandomState(0) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, regressor_orig): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) regressor = clone(regressor_orig) y = multioutput_estimator_convert_y_2d(regressor, X[:, 0]) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) @ignore_warnings(category=DeprecationWarning) def check_class_weight_classifiers(name, classifier_orig): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} classifier = clone(classifier_orig).set_params( class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) @ignore_warnings(category=DeprecationWarning) def check_class_weight_balanced_classifiers(name, classifier_orig, X_train, y_train, X_test, y_test, weights): classifier = clone(classifier_orig) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) @ignore_warnings(category=DeprecationWarning) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" # this is run on classes, not instances, though this should be changed X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_allclose(coef_balanced, coef_manual) @ignore_warnings(category=DeprecationWarning) def check_estimators_overwrite_params(name, estimator_orig): X, y = make_blobs(random_state=0, n_samples=9) # some want non-negative input X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) # Make a physical copy of the original estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) @ignore_warnings(category=DeprecationWarning) def check_no_fit_attributes_set_in_init(name, Estimator): """Check that Estimator.__init__ doesn't set trailing-_ attributes.""" # this check works on classes, not instances estimator = Estimator() for attr in dir(estimator): if attr.endswith("_") and not attr.startswith("__"): # This check is for properties, they can be listed in dir # while at the same time have hasattr return False as long # as the property getter raises an AttributeError assert_false( hasattr(estimator, attr), "By convention, attributes ending with '_' are " 'estimated from data in scikit-learn. Consequently they ' 'should not be initialized in the constructor of an ' 'estimator but in the fit method. Attribute {!r} ' 'was found in estimator {}'.format(attr, name)) @ignore_warnings(category=DeprecationWarning) def check_sparsify_coefficients(name, estimator_orig): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = clone(estimator_orig) est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) @ignore_warnings(category=DeprecationWarning) def check_classifier_data_not_an_array(name, estimator_orig): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(estimator_orig, y) check_estimators_data_not_an_array(name, estimator_orig, X, y) @ignore_warnings(category=DeprecationWarning) def check_regressor_data_not_an_array(name, estimator_orig): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(estimator_orig, y) check_estimators_data_not_an_array(name, estimator_orig, X, y) @ignore_warnings(category=DeprecationWarning) def check_estimators_data_not_an_array(name, estimator_orig, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # separate estimators to control random seeds estimator_1 = clone(estimator_orig) estimator_2 = clone(estimator_orig) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) def check_parameters_default_constructible(name, Estimator): # this check works on classes, not instances classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with ignore_warnings(category=DeprecationWarning): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default) def multioutput_estimator_convert_y_2d(estimator, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if "MultiTask" in estimator.__class__.__name__: return np.reshape(y, (-1, 1)) return y @ignore_warnings(category=DeprecationWarning) def check_non_transformer_estimators_n_iter(name, estimator_orig): # Test that estimators that are not transformers with a parameter # max_iter, return the attribute of n_iter_ at least 1. # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. not_run_check_n_iter = ['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV', 'LinearSVC', 'LogisticRegression'] # Tested in test_transformer_n_iter not_run_check_n_iter += CROSS_DECOMPOSITION if name in not_run_check_n_iter: return # LassoLars stops early for the default alpha=1.0 the iris dataset. if name == 'LassoLars': estimator = clone(estimator_orig).set_params(alpha=0.) else: estimator = clone(estimator_orig) if hasattr(estimator, 'max_iter'): iris = load_iris() X, y_ = iris.data, iris.target y_ = multioutput_estimator_convert_y_2d(estimator, y_) set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) # HuberRegressor depends on scipy.optimize.fmin_l_bfgs_b # which doesn't return a n_iter for old versions of SciPy. if not (name == 'HuberRegressor' and estimator.n_iter_ is None): assert_greater_equal(estimator.n_iter_, 1) @ignore_warnings(category=DeprecationWarning) def check_transformer_n_iter(name, estimator_orig): # Test that transformers with a parameter max_iter, return the # attribute of n_iter_ at least 1. estimator = clone(estimator_orig) if hasattr(estimator, "max_iter"): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater_equal(iter_, 1) else: assert_greater_equal(estimator.n_iter_, 1) @ignore_warnings(category=DeprecationWarning) def check_get_params_invariance(name, estimator_orig): # Checks if get_params(deep=False) is a subset of get_params(deep=True) class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self def transform(self, X): return X e = clone(estimator_orig) shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items())) @ignore_warnings(category=DeprecationWarning) def check_classifiers_regression_target(name, estimator_orig): # Check if classifier throws an exception when fed regression targets boston = load_boston() X, y = boston.data, boston.target e = clone(estimator_orig) msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, e.fit, X, y) @ignore_warnings(category=DeprecationWarning) def check_decision_proba_consistency(name, estimator_orig): # Check whether an estimator having both decision_function and # predict_proba methods has outputs with perfect rank correlation. centers = [(2, 2), (4, 4)] X, y = make_blobs(n_samples=100, random_state=0, n_features=4, centers=centers, cluster_std=1.0, shuffle=True) X_test = np.random.randn(20, 2) + 4 estimator = clone(estimator_orig) if (hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba")): estimator.fit(X, y) a = estimator.predict_proba(X_test)[:, 1] b = estimator.decision_function(X_test) assert_array_equal(rankdata(a), rankdata(b))
bsd-3-clause
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/mpl_toolkits/axisartist/floating_axes.py
18
22796
""" An experimental support for curvilinear grid. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip # TODO : # *. see if tick_iterator method can be simplified by reusing the parent method. from itertools import chain from .grid_finder import GridFinder from .axislines import AxisArtistHelper, GridHelperBase from .axis_artist import AxisArtist from matplotlib.transforms import Affine2D, IdentityTransform import numpy as np from . import grid_helper_curvelinear class FloatingAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper): pass class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper): def __init__(self, grid_helper, side, nth_coord_ticks=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ value, nth_coord = grid_helper.get_data_boundary(side) # return v= 0 , nth=1, extremes of the other coordinate. super(FixedAxisArtistHelper, self).__init__(grid_helper, nth_coord, value, axis_direction=side, ) #self.grid_helper = grid_helper if nth_coord_ticks is None: nth_coord_ticks = nth_coord self.nth_coord_ticks = nth_coord_ticks self.value = value self.grid_helper = grid_helper self._side = side def update_lim(self, axes): self.grid_helper.update_lim(axes) self.grid_info = self.grid_helper.grid_info def get_axislabel_pos_angle(self, axes): extremes = self.grid_info["extremes"] if self.nth_coord == 0: xx0 = self.value yy0 = (extremes[2]+extremes[3])/2. dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000. elif self.nth_coord == 1: xx0 = (extremes[0]+extremes[1])/2. yy0 = self.value dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0. grid_finder = self.grid_helper.grid_finder xx1, yy1 = grid_finder.transform_xy([xx0], [yy0]) trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]]) if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.): xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]]) xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy]) xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]]) return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180. else: return None, None def get_tick_transform(self, axes): return IdentityTransform() #axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label, (optionally) tick_label""" grid_finder = self.grid_helper.grid_finder lat_levs, lat_n, lat_factor = self.grid_info["lat_info"] lon_levs, lon_n, lon_factor = self.grid_info["lon_info"] lon_levs, lat_levs = np.asarray(lon_levs), np.asarray(lat_levs) if lat_factor is not None: yy0 = lat_levs / lat_factor dy = 0.001 / lat_factor else: yy0 = lat_levs dy = 0.001 if lon_factor is not None: xx0 = lon_levs / lon_factor dx = 0.001 / lon_factor else: xx0 = lon_levs dx = 0.001 _extremes = self.grid_helper._extremes xmin, xmax = sorted(_extremes[:2]) ymin, ymax = sorted(_extremes[2:]) if self.nth_coord == 0: mask = (ymin <= yy0) & (yy0 <= ymax) yy0 = yy0[mask] elif self.nth_coord == 1: mask = (xmin <= xx0) & (xx0 <= xmax) xx0 = xx0[mask] def transform_xy(x, y): x1, y1 = grid_finder.transform_xy(x, y) x2y2 = axes.transData.transform(np.array([x1, y1]).transpose()) x2, y2 = x2y2.transpose() return x2, y2 # find angles if self.nth_coord == 0: xx0 = np.empty_like(yy0) xx0.fill(self.value) #yy0_ = yy0.copy() xx1, yy1 = transform_xy(xx0, yy0) xx00 = xx0.copy() xx00[xx0+dx>xmax] -= dx xx1a, yy1a = transform_xy(xx00, yy0) xx1b, yy1b = transform_xy(xx00+dx, yy0) yy00 = yy0.copy() yy00[yy0+dy>ymax] -= dy xx2a, yy2a = transform_xy(xx0, yy00) xx2b, yy2b = transform_xy(xx0, yy00+dy) labels = self.grid_info["lat_labels"] labels = [l for l, m in zip(labels, mask) if m] elif self.nth_coord == 1: yy0 = np.empty_like(xx0) yy0.fill(self.value) #xx0_ = xx0.copy() xx1, yy1 = transform_xy(xx0, yy0) yy00 = yy0.copy() yy00[yy0+dy>ymax] -= dy xx1a, yy1a = transform_xy(xx0, yy00) xx1b, yy1b = transform_xy(xx0, yy00+dy) xx00 = xx0.copy() xx00[xx0+dx>xmax] -= dx xx2a, yy2a = transform_xy(xx00, yy0) xx2b, yy2b = transform_xy(xx00+dx, yy0) labels = self.grid_info["lon_labels"] labels = [l for l, m in zip(labels, mask) if m] def f1(): dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined dd[mm] = dd2[mm]+3.14159/2. #dd += 3.14159 #dd = np.arctan2(xx2-xx1, angle_tangent-yy1) trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels): c2 = tr2ax.transform_point((x, y)) delta=0.00001 if (0. -delta<= c2[0] <= 1.+delta) and \ (0. -delta<= c2[1] <= 1.+delta): d1 = d/3.14159*180. d2 = d2/3.14159*180. #_mod = (d2-d1+180)%360 #if _mod < 180: # d1 += 180 ##_div, _mod = divmod(d2-d1, 360) yield [x, y], d1, d2, lab #, d2/3.14159*180.+da) return f1(), iter([]) def get_line_transform(self, axes): return axes.transData def get_line(self, axes): self.update_lim(axes) from matplotlib.path import Path k, v = dict(left=("lon_lines0", 0), right=("lon_lines0", 1), bottom=("lat_lines0", 0), top=("lat_lines0", 1))[self._side] xx, yy = self.grid_info[k][v] return Path(list(zip(xx, yy))) from .grid_finder import ExtremeFinderSimple class ExtremeFinderFixed(ExtremeFinderSimple): def __init__(self, extremes): self._extremes = extremes def __call__(self, transform_xy, x1, y1, x2, y2): """ get extreme values. x1, y1, x2, y2 in image coordinates (0-based) nx, ny : number of division in each axis """ #lon_min, lon_max, lat_min, lat_max = self._extremes return self._extremes class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear): def __init__(self, aux_trans, extremes, grid_locator1=None, grid_locator2=None, tick_formatter1=None, tick_formatter2=None): """ aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects which defines the transform and its inverse. The callables need take two arguments of array of source coordinates and should return two target coordinates: e.g., x2, y2 = trans(x1, y1) """ self._old_values = None self._extremes = extremes extreme_finder = ExtremeFinderFixed(extremes) super(GridHelperCurveLinear, self).__init__(aux_trans, extreme_finder, grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=tick_formatter2) # def update_grid_finder(self, aux_trans=None, **kw): # if aux_trans is not None: # self.grid_finder.update_transform(aux_trans) # self.grid_finder.update(**kw) # self.invalidate() # def _update(self, x1, x2, y1, y2): # "bbox in 0-based image coordinates" # # update wcsgrid # if self.valid() and self._old_values == (x1, x2, y1, y2): # return # self._update_grid(x1, y1, x2, y2) # self._old_values = (x1, x2, y1, y2) # self._force_update = False def get_data_boundary(self, side): """ return v= 0 , nth=1 """ lon1, lon2, lat1, lat2 = self._extremes return dict(left=(lon1, 0), right=(lon2, 0), bottom=(lat1, 1), top=(lat2, 1))[side] def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None): if axes is None: axes = self.axes if axis_direction is None: axis_direction = loc _helper = FixedAxisArtistHelper(self, loc, nth_coord_ticks=nth_coord) axisline = AxisArtist(axes, _helper, axis_direction=axis_direction) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) return axisline # new_floating_axis will inherit the grid_helper's extremes. # def new_floating_axis(self, nth_coord, # value, # axes=None, # axis_direction="bottom" # ): # axis = super(GridHelperCurveLinear, # self).new_floating_axis(nth_coord, # value, axes=axes, # axis_direction=axis_direction) # # set extreme values of the axis helper # if nth_coord == 1: # axis.get_helper().set_extremes(*self._extremes[:2]) # elif nth_coord == 0: # axis.get_helper().set_extremes(*self._extremes[2:]) # return axis def _update_grid(self, x1, y1, x2, y2): #self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2) if self.grid_info is None: self.grid_info = dict() grid_info = self.grid_info grid_finder = self.grid_finder extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy, x1, y1, x2, y2) lon_min, lon_max = sorted(extremes[:2]) lat_min, lat_max = sorted(extremes[2:]) lon_levs, lon_n, lon_factor = \ grid_finder.grid_locator1(lon_min, lon_max) lat_levs, lat_n, lat_factor = \ grid_finder.grid_locator2(lat_min, lat_max) grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max #extremes grid_info["lon_info"] = lon_levs, lon_n, lon_factor grid_info["lat_info"] = lat_levs, lat_n, lat_factor grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom", lon_factor, lon_levs) grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom", lat_factor, lat_levs) if lon_factor is None: lon_values = np.asarray(lon_levs[:lon_n]) else: lon_values = np.asarray(lon_levs[:lon_n]/lon_factor) if lat_factor is None: lat_values = np.asarray(lat_levs[:lat_n]) else: lat_values = np.asarray(lat_levs[:lat_n]/lat_factor) lon_values0 = lon_values[(lon_min<lon_values) & (lon_values<lon_max)] lat_values0 = lat_values[(lat_min<lat_values) & (lat_values<lat_max)] lon_lines, lat_lines = grid_finder._get_raw_grid_lines(lon_values0, lat_values0, lon_min, lon_max, lat_min, lat_max) grid_info["lon_lines"] = lon_lines grid_info["lat_lines"] = lat_lines lon_lines, lat_lines = grid_finder._get_raw_grid_lines(extremes[:2], extremes[2:], *extremes) #lon_min, lon_max, # lat_min, lat_max) grid_info["lon_lines0"] = lon_lines grid_info["lat_lines0"] = lat_lines def get_gridlines(self, which="major", axis="both"): grid_lines = [] if axis in ["both", "x"]: for gl in self.grid_info["lon_lines"]: grid_lines.extend([gl]) if axis in ["both", "y"]: for gl in self.grid_info["lat_lines"]: grid_lines.extend([gl]) return grid_lines def get_boundary(self): """ return Nx2 array of x,y coordinate of the boundary """ x0, x1, y0, y1 = self._extremes tr = self._aux_trans xx = np.linspace(x0, x1, 100) yy0, yy1 = np.empty_like(xx), np.empty_like(xx) yy0.fill(y0) yy1.fill(y1) yy = np.linspace(y0, y1, 100) xx0, xx1 = np.empty_like(yy), np.empty_like(yy) xx0.fill(x0) xx1.fill(x1) xxx = np.concatenate([xx[:-1], xx1[:-1], xx[-1:0:-1], xx0]) yyy = np.concatenate([yy0[:-1], yy[:-1], yy1[:-1], yy[::-1]]) t = tr.transform(np.array([xxx, yyy]).transpose()) return t class FloatingAxesBase(object): def __init__(self, *kl, **kwargs): grid_helper = kwargs.get("grid_helper", None) if grid_helper is None: raise ValueError("FloatingAxes requires grid_helper argument") if not hasattr(grid_helper, "get_boundary"): raise ValueError("grid_helper must implement get_boundary method") self._axes_class_floating.__init__(self, *kl, **kwargs) self.set_aspect(1.) self.adjust_axes_lim() def _gen_axes_patch(self): """ Returns the patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ import matplotlib.patches as mpatches grid_helper = self.get_grid_helper() t = grid_helper.get_boundary() return mpatches.Polygon(t) def cla(self): self._axes_class_floating.cla(self) #HostAxes.cla(self) self.patch.set_transform(self.transData) patch = self._axes_class_floating._gen_axes_patch(self) patch.set_figure(self.figure) patch.set_visible(False) patch.set_transform(self.transAxes) self.patch.set_clip_path(patch) self.gridlines.set_clip_path(patch) self._original_patch = patch def adjust_axes_lim(self): #t = self.get_boundary() grid_helper = self.get_grid_helper() t = grid_helper.get_boundary() x, y = t[:,0], t[:,1] xmin, xmax = min(x), max(x) ymin, ymax = min(y), max(y) dx = (xmax-xmin)/100. dy = (ymax-ymin)/100. self.set_xlim(xmin-dx, xmax+dx) self.set_ylim(ymin-dy, ymax+dy) _floatingaxes_classes = {} def floatingaxes_class_factory(axes_class): new_class = _floatingaxes_classes.get(axes_class) if new_class is None: new_class = type(str("Floating %s" % (axes_class.__name__)), (FloatingAxesBase, axes_class), {'_axes_class_floating': axes_class}) _floatingaxes_classes[axes_class] = new_class return new_class from .axislines import Axes from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory FloatingAxes = floatingaxes_class_factory(host_axes_class_factory(Axes)) import matplotlib.axes as maxes FloatingSubplot = maxes.subplot_class_factory(FloatingAxes) # def test(fig): # from mpl_toolkits.axes_grid.axislines import Subplot # ax = Subplot(fig, 111) # fig.add_subplot(ax) # plt.draw() def curvelinear_test3(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). grid_locator1 = angle_helper.LocatorDMS(15) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). from .grid_finder import FixedLocator grid_locator2 = FixedLocator([2, 4, 6, 8, 10]) grid_helper = GridHelperCurveLinear(tr, extremes=(0, 360, 10, 3), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=None, ) ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper) #ax1.axis["top"].set_visible(False) #ax1.axis["bottom"].major_ticklabels.set_axis_direction("top") fig.add_subplot(ax1) #ax1.grid(True) r_scale = 10. tr2 = Affine2D().scale(1., 1./r_scale) + tr grid_locator2 = FixedLocator([30, 60, 90]) grid_helper2 = GridHelperCurveLinear(tr2, extremes=(0, 360, 10.*r_scale, 3.*r_scale), grid_locator2=grid_locator2, ) ax1.axis["right"] = axis = grid_helper2.new_fixed_axis("right", axes=ax1) ax1.axis["left"].label.set_text("Test 1") ax1.axis["right"].label.set_text("Test 2") for an in [ "left", "right"]: ax1.axis[an].set_visible(False) #grid_helper2 = ax1.get_grid_helper() ax1.axis["z"] = axis = grid_helper.new_floating_axis(1, 7, axes=ax1, axis_direction="bottom") axis.toggle(all=True, label=True) #axis.label.set_axis_direction("top") axis.label.set_text("z = ?") axis.label.set_visible(True) axis.line.set_color("0.5") #axis.label.set_visible(True) ax2 = ax1.get_aux_axes(tr) xx, yy = [67, 90, 75, 30], [2, 5, 8, 4] ax2.scatter(xx, yy) l, = ax2.plot(xx, yy, "k-") l.set_clip_path(ax1.patch) def curvelinear_test4(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() grid_locator1 = angle_helper.LocatorDMS(5) tick_formatter1 = angle_helper.FormatterDMS() from .grid_finder import FixedLocator grid_locator2 = FixedLocator([2, 4, 6, 8, 10]) grid_helper = GridHelperCurveLinear(tr, extremes=(120, 30, 10, 0), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=None, ) ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper) #ax1.axis["top"].set_visible(False) #ax1.axis["bottom"].major_ticklabels.set_axis_direction("top") fig.add_subplot(ax1) #ax1.grid(True) ax1.axis["left"].label.set_text("Test 1") ax1.axis["right"].label.set_text("Test 2") for an in [ "top"]: ax1.axis[an].set_visible(False) #grid_helper2 = ax1.get_grid_helper() ax1.axis["z"] = axis = grid_helper.new_floating_axis(1, 70, axes=ax1, axis_direction="bottom") axis.toggle(all=True, label=True) axis.label.set_axis_direction("top") axis.label.set_text("z = ?") axis.label.set_visible(True) axis.line.set_color("0.5") #axis.label.set_visible(True) ax2 = ax1.get_aux_axes(tr) xx, yy = [67, 90, 75, 30], [2, 5, 8, 4] ax2.scatter(xx, yy) l, = ax2.plot(xx, yy, "k-") l.set_clip_path(ax1.patch) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, figsize=(5, 5)) fig.clf() #test(fig) #curvelinear_test1(fig) curvelinear_test4(fig) #plt.draw() plt.show()
gpl-2.0
thilbern/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
mjgrav2001/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
sgdecker/pygempak
gempak.py
1
3626
# A Module for Accessing GEMPAK Data from Python # Copyright 2015 Steven G. Decker # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import gempakf as gp import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap class Dataset: def __init__(self, gemfile): self.gemfile = gemfile n = gp.gemread.get_num_grids(gemfile) # Local variables gdattm = np.zeros((20,n,2), np.int8, 'F') level = np.zeros((n,2), np.int32, 'F') ivcord = np.zeros(n, np.int32) vcord = np.zeros((4,n), np.int8, 'F') parm = np.zeros((12,n), np.int8, 'F') self.max_grids, self.num_grids, self.nx, self.ny, self.proj, \ self.ang, self.lllat, self.lllon, self.urlat, self.urlon = \ gp.gemread.ggi(gemfile, gdattm, level, ivcord, vcord, parm) self.proj = self.proj.strip() self.datainfo = [] for i in range(self.num_grids): dattim = [gdattm[:,i,0].view('a20')[0].strip(), \ gdattm[:,i,1].view('a20')[0].strip()] lev = [level[i,0], level[i,1]] vc = vcord[:,i].view('a4')[0].strip() fun = parm[:,i].view('a12')[0].strip() datarow = {'gdattim': dattim, 'glevel': lev, 'gvcord': vc, 'gfunc': fun} self.datainfo.append(datarow) def grid_from_num(self, num): grid = np.zeros((self.nx,self.ny), np.float32, 'F') gp.gemread.read_grid(self.gemfile, \ self.datainfo[num]['gdattim'][0], \ self.datainfo[num]['gdattim'][1], \ self.datainfo[num]['glevel'][0], \ self.datainfo[num]['glevel'][1], \ self.datainfo[num]['gvcord'], \ self.datainfo[num]['gfunc'], grid) return grid.transpose() def grid_from_dict(self, d): grid = np.zeros((self.nx,self.ny), np.float32, 'F') gp.gemread.read_grid(self. gemfile, d['gdattim'][0], d['gdattim'][1], d['glevel'][0], d['glevel'][1], d['gvcord'], d['gfunc'], grid) return grid.transpose() def map_for_dataset(dset, res='l'): if dset.proj=='LCC': m = Basemap(llcrnrlon=dset.lllon, llcrnrlat=dset.lllat, urcrnrlon=dset.urlon, urcrnrlat = dset.urlat, projection='lcc', lat_1=dset.ang[0], lat_2=dset.ang[2], lon_0=dset.ang[1], resolution=res) else: print 'Sorry, this projection is not yet supported. :-(' m = 0 return m if __name__ == "__main__": gemdata = Dataset('nam211.gem') print gemdata.datainfo[0] arr = gemdata.grid_from_dict(gemdata.datainfo[10]) m = map_for_dataset(gemdata) m.drawcountries() m.drawcoastlines() m.drawstates() x = np.linspace(m.xmin,m.xmax,gemdata.nx) y = np.linspace(m.ymin,m.ymax,gemdata.ny) xmesh, ymesh = np.meshgrid(x, y) m.contourf(xmesh,ymesh,arr) plt.show()
apache-2.0
iismd17/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
arjoly/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
gfyoung/pandas
pandas/core/frame.py
1
332011
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import annotations import collections from collections import abc import datetime from io import StringIO import itertools import mmap from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, AnyStr, Dict, FrozenSet, Hashable, Iterable, Iterator, List, Optional, Sequence, Set, Tuple, Type, Union, cast, overload, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib, properties from pandas._libs.lib import no_default from pandas._typing import ( AggFuncType, AnyArrayLike, ArrayLike, Axes, Axis, ColspaceArgType, CompressionOptions, Dtype, FilePathOrBuffer, FloatFormatType, FormattersType, FrameOrSeriesUnion, IndexKeyFunc, IndexLabel, Level, Manager, PythonFuncType, Renamer, StorageOptions, Suffixes, ValueKeyFunc, ) from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, doc, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( construct_1d_arraylike_from_scalar, construct_2d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_box_datetimelike, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_dataclass, is_datetime64_any_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, pandas_dtype, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.aggregation import reconstruct_func, relabel_result, transform from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ExtensionArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.construction import extract_array, sanitize_masked_array from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import ( DatetimeIndex, Index, PeriodIndex, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes.multi import MultiIndex, maybe_droplevels from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import ArrayManager, BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, dataclasses_to_dicts, init_dict, init_ndarray, masked_rec_array_to_mgr, mgr_to_mgr, nested_data_to_arrays, reorder_arrays, sanitize_index, to_arrays, treat_as_nested, ) from pandas.core.reshape.melt import melt from pandas.core.series import Series from pandas.core.sorting import get_group_index, lexsort_indexer, nargsort from pandas.io.common import get_handle from pandas.io.formats import console, format as fmt from pandas.io.formats.info import BaseInfo, DataFrameInfo import pandas.plotting if TYPE_CHECKING: from typing import Literal from pandas._typing import TimedeltaConvertibleTypes, TimestampConvertibleTypes from pandas.core.groupby.generic import DataFrameGroupBy from pandas.core.resample import Resampler from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = { "axes": "index, columns", "klass": "DataFrame", "axes_single_arg": "{0 or 'index', 1 or 'columns'}", "axis": """axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", "inplace": """ inplace : boolean, default False If True, performs operation inplace and returns None.""", "optional_by": """ by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels.""", "optional_labels": """labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", "optional_axis": """axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", "replace_iloc": """ This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value.""", } _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. * cross: creates the cartesian product from both frames, preserves the order of the left keys. .. versionadded:: 1.2.0 on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : list-like, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to the output DataFrame called "_merge" with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of "left_only" for observations whose merge key only appears in the left DataFrame, "right_only" for observations whose merge key only appears in the right DataFrame, and "both" if the observation's merge key is found in both DataFrames. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]}) >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3 >>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({'left': ['foo', 'bar']}) >>> df2 = pd.DataFrame({'right': [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8 """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame, OpsMixin): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, dataclass or list-like objects. If data is a dict, column order follows insertion-order. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv : Read a comma-separated values (csv) file into DataFrame. read_table : Read general delimited file into DataFrame. read_clipboard : Read text from clipboard into DataFrame. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 Constructing DataFrame from dataclass: >>> from dataclasses import make_dataclass >>> Point = make_dataclass("Point", [("x", int), ("y", int)]) >>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)]) x y 0 0 0 1 0 3 2 2 3 """ _internal_names_set = {"columns", "index"} | NDFrame._internal_names_set _typ = "dataframe" _HANDLED_TYPES = (Series, Index, ExtensionArray, np.ndarray) @property def _constructor(self) -> Type[DataFrame]: return DataFrame _constructor_sliced: Type[Series] = Series _hidden_attrs: FrozenSet[str] = NDFrame._hidden_attrs | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): # GH#31549 raising NotImplementedError on a property causes trouble # for `inspect` def constructor(*args, **kwargs): raise NotImplementedError("Not supported for DataFrames!") return constructor # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._mgr if isinstance(data, (BlockManager, ArrayManager)): if index is None and columns is None and dtype is None and copy is False: # GH#33357 fastpath NDFrame.__init__(self, data) return mgr = self._init_mgr( data, axes={"index": index, "columns": columns}, dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: data = sanitize_masked_array(data) mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif is_list_like(data): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_dataclass(data[0]): data = dataclasses_to_dicts(data) if treat_as_nested(data): arrays, columns, index = nested_data_to_arrays( data, columns, index, dtype ) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) # For data is scalar else: if index is None or columns is None: raise ValueError("DataFrame constructor not properly called!") if not dtype: dtype, _ = infer_dtype_from_scalar(data, pandas_dtype=True) # For data is a scalar extension dtype if is_extension_array_dtype(dtype): # TODO(EA2D): special case not needed with 2D EAs values = [ construct_1d_arraylike_from_scalar(data, len(index), dtype) for _ in range(len(columns)) ] mgr = arrays_to_mgr(values, columns, index, columns, dtype=None) else: values = construct_2d_arraylike_from_scalar( data, len(index), len(columns), dtype, copy ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) # ensure correct Manager type according to settings manager = get_option("mode.data_manager") mgr = mgr_to_mgr(mgr, typ=manager) NDFrame.__init__(self, mgr) def _as_manager(self, typ: str) -> DataFrame: """ Private helper function to create a DataFrame with specific manager. Parameters ---------- typ : {"block", "array"} Returns ------- DataFrame New DataFrame using specified manager type. Is not guaranteed to be a copy or not. """ new_mgr: Manager new_mgr = mgr_to_mgr(self._mgr, typ=typ) # fastpath of passing a manager doesn't check the option/manager class return DataFrame(new_mgr) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape : Tuple of array dimensions. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if isinstance(self._mgr, ArrayManager): return len({arr.dtype for arr in self._mgr.arrays}) == 1 if self._mgr.any_extension_types: return len({block.dtype for block in self._mgr.blocks}) == 1 else: return not self._is_mixed_type @property def _can_fast_transpose(self) -> bool: """ Can we transpose this DataFrame without creating any new array objects. """ if isinstance(self._mgr, ArrayManager): return False if self._mgr.any_extension_types: # TODO(EA2D) special case would be unnecessary with 2D EAs return False return len(self._mgr.blocks) == 1 # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case of non-interactive session, no boundaries apply. `ignore_width` is here so ipynb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if max_rows is not None: # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(line) for line in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", ) return fmt.DataFrameRenderer(formatter).to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int, list or dict of int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.FormattersType] = None, float_format: Optional[fmt.FloatFormatType] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, ) return fmt.DataFrameRenderer(formatter).to_string( buf=buf, encoding=encoding, line_width=line_width, ) # ---------------------------------------------------------------------- @property def style(self) -> Styler: """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. See Also -------- io.formats.style.Styler : Helps style a DataFrame or Series according to the data with HTML and CSS. """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Hashable, Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Hashable, Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Hashable, Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index: bool = True, name: Optional[str] = "Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) if name is not None: # https://github.com/python/mypy/issues/9046 # error: namedtuple() expects a string literal as the first argument itertuple = collections.namedtuple( # type: ignore[misc] name, fields, rename=True ) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) # pandas/core/frame.py:1146: error: Overloaded function signatures 1 and 2 # overlap with incompatible return types [misc] @overload def dot(self, other: Series) -> Series: # type: ignore[misc] ... @overload def dot(self, other: Union[DataFrame, Index, ArrayLike]) -> DataFrame: ... def dot(self, other: Union[AnyArrayLike, FrameOrSeriesUnion]) -> FrameOrSeriesUnion: """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Series. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right._values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return self._constructor_sliced(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return self._constructor_sliced(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") @overload def __matmul__(self, other: Series) -> Series: ... @overload def __matmul__( self, other: Union[AnyArrayLike, FrameOrSeriesUnion] ) -> FrameOrSeriesUnion: ... def __matmul__( self, other: Union[AnyArrayLike, FrameOrSeriesUnion] ) -> FrameOrSeriesUnion: """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ try: return self.T.dot(np.transpose(other)).T except ValueError as err: if "shape mismatch" not in str(err): raise # GH#21581 give exception message for original shapes msg = f"shapes {np.shape(other)} and {self.shape} not aligned" raise ValueError(msg) from err # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> DataFrame: """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy( self, dtype=None, copy: bool = False, na_value=lib.no_default ) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. na_value : Any, optional The value to use for missing values. The default value depends on `dtype` and the dtypes of the DataFrame columns. .. versionadded:: 1.1.0 Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ self._consolidate_inplace() result = self._mgr.as_array( transpose=self._AXIS_REVERSED, dtype=dtype, copy=copy, na_value=na_value ) if result.dtype is not dtype: result = np.array(result, dtype=dtype, copy=False) return result def to_dict(self, orient: str = "dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) orient = orient.lower() # GH32515 if orient.startswith(("d", "l", "s", "r", "i")) and orient not in { "dict", "list", "series", "split", "records", "index", }: warnings.warn( "Using short name for 'orient' is deprecated. Only the " "options: ('dict', list, 'series', 'split', 'records', 'index') " "will be used in a future version. Use one of the above " "to silence this warning.", FutureWarning, ) if orient.startswith("d"): orient = "dict" elif orient.startswith("l"): orient = "list" elif orient.startswith("sp"): orient = "split" elif orient.startswith("s"): orient = "series" elif orient.startswith("r"): orient = "records" elif orient.startswith("i"): orient = "index" if orient == "dict": return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient == "list": return into_c((k, v.tolist()) for k, v in self.items()) elif orient == "split": return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient == "series": return into_c((k, maybe_box_datetimelike(v)) for k, v in self.items()) elif orient == "records": columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient == "index": if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table: str, project_id: Optional[str] = None, chunksize: Optional[int] = None, reauth: bool = False, if_exists: str = "fail", auth_local_webserver: bool = False, table_schema: Optional[List[Dict[str, str]]] = None, location: Optional[str] = None, progress_bar: bool = True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float: bool = False, nrows=None, ) -> DataFrame: """ Convert structured or record ndarray to DataFrame. Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame. Parameters ---------- data : structured ndarray, sequence of tuples or dicts, or DataFrame Structured input data. index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame See Also -------- DataFrame.from_dict : DataFrame from dict of array-like or dicts. DataFrame : DataFrame object creation using constructor. Examples -------- Data can be provided as a structured ndarray: >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of dicts: >>> data = [{'col_1': 3, 'col_2': 'a'}, ... {'col_1': 2, 'col_2': 'b'}, ... {'col_1': 1, 'col_2': 'c'}, ... {'col_1': 0, 'col_2': 'd'}] >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of tuples with corresponding columns: >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns_list = [] for k, v in data.items(): if k in columns: arr_columns_list.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns_list, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns) if coerce_float: for i, arr in enumerate(arrays): if arr.dtype == object: arrays[i] = lib.maybe_convert_objects(arr, try_float=True) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index._values))) else: ix_vals = [self.index.values] arrays = ix_vals + [ np.asarray(self.iloc[:, i]) for i in range(len(self.columns)) ] index_names = list(self.index.names) if isinstance(self.index, MultiIndex): count = 0 for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [np.asarray(self.iloc[:, i]) for i in range(len(self.columns))] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays( cls, arrays, columns, index, dtype: Optional[Dtype] = None, verify_integrity: bool = True, ) -> DataFrame: """ Create DataFrame from a list of arrays corresponding to the columns. Parameters ---------- arrays : list-like of arrays Each array in the list corresponds to one column, in order. columns : list-like, Index The column names for the resulting DataFrame. index : list-like, Index The rows labels for the resulting DataFrame. dtype : dtype, optional Optional dtype to enforce for all arrays. verify_integrity : bool, default True Validate and homogenize all input. If set to False, it is assumed that all elements of `arrays` are actual arrays how they will be stored in a block (numpy ndarray or ExtensionArray), have the same length as and are aligned with the index, and that `columns` and `index` are ensured to be an Index object. Returns ------- DataFrame """ if dtype is not None: dtype = pandas_dtype(dtype) mgr = arrays_to_mgr( arrays, columns, index, columns, dtype=dtype, verify_integrity=verify_integrity, ) return cls(mgr) @doc(storage_options=generic._shared_docs["storage_options"]) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path: FilePathOrBuffer, convert_dates: Optional[Dict[Hashable, str]] = None, write_index: bool = True, byteorder: Optional[str] = None, time_stamp: Optional[datetime.datetime] = None, data_label: Optional[str] = None, variable_labels: Optional[Dict[Hashable, str]] = None, version: Optional[int] = 114, convert_strl: Optional[Sequence[Hashable]] = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ) -> None: """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {{114, 117, 118, 119, None}}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read version 119 files. .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. compression : str or dict, default 'infer' For on-the-fly compression of the output dta. If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and `fname` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {{'zip', 'gzip', 'bz2'}}, or inferred as one of the above, other entries passed as additional compression options. .. versionadded:: 1.1.0 {storage_options} .. versionadded:: 1.2.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import ( # type: ignore[no-redef] StataWriter117 as statawriter, ) else: # versions 118 and 119 # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import ( # type: ignore[no-redef] StataWriterUTF8 as statawriter, ) kwargs: Dict[str, Any] = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version # mypy: Too many arguments for "StataWriter" writer = statawriter( # type: ignore[call-arg] path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, compression=compression, storage_options=storage_options, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path: FilePathOrBuffer[AnyStr], **kwargs) -> None: """ Write a DataFrame to the binary Feather format. Parameters ---------- path : str or file-like object If a string, it will be used as Root Directory path. **kwargs : Additional keywords passed to :func:`pyarrow.feather.write_feather`. Starting with pyarrow 0.17, this includes the `compression`, `compression_level`, `chunksize` and `version` keywords. .. versionadded:: 1.1.0 """ from pandas.io.feather_format import to_feather to_feather(self, path, **kwargs) @doc( Series.to_markdown, klass=_shared_doc_kwargs["klass"], storage_options=_shared_docs["storage_options"], examples="""Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | Output markdown with a tabulate option. >>> print(df.to_markdown(tablefmt="grid")) +----+------------+------------+ | | animal_1 | animal_2 | +====+============+============+ | 0 | elk | dog | +----+------------+------------+ | 1 | pig | quetzal | +----+------------+------------+ """, ) def to_markdown( self, buf: Optional[Union[IO[str], str]] = None, mode: str = "wt", index: bool = True, storage_options: StorageOptions = None, **kwargs, ) -> Optional[str]: if "showindex" in kwargs: warnings.warn( "'showindex' is deprecated. Only 'index' will be used " "in a future version. Use 'index' to silence this warning.", FutureWarning, stacklevel=2, ) kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") kwargs.setdefault("showindex", index) tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result with get_handle(buf, mode, storage_options=storage_options) as handles: assert not isinstance(handles.handle, (str, mmap.mmap)) handles.handle.writelines(result) return None @doc(storage_options=generic._shared_docs["storage_options"]) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path: Optional[FilePathOrBuffer] = None, engine: str = "auto", compression: Optional[str] = "snappy", index: Optional[bool] = None, partition_cols: Optional[List[str]] = None, storage_options: StorageOptions = None, **kwargs, ) -> Optional[bytes]: """ Write a DataFrame to the binary parquet format. This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str or file-like object, default None If a string, it will be used as Root Directory path when writing a partitioned dataset. By file-like object, we refer to objects with a write() method, such as a file handle (e.g. via builtin open function) or io.BytesIO. The engine fastparquet does not accept file-like objects. If path is None, a bytes object is returned. .. versionchanged:: 1.2.0 Previously this was "fname" engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {{'snappy', 'gzip', 'brotli', None}}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string. .. versionadded:: 0.24.0 {storage_options} .. versionadded:: 1.2.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. Returns ------- bytes if no path argument is provided else None See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={{'col1': [1, 2], 'col2': [3, 4]}}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don't use partition_cols, which creates multiple files. >>> import io >>> f = io.BytesIO() >>> df.to_parquet(f) >>> f.seek(0) 0 >>> content = f.read() """ from pandas.io.parquet import to_parquet return to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, storage_options=storage_options, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int, list or dict of int or str", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[ColspaceArgType] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[FormattersType] = None, float_format: Optional[FloatFormatType] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: Union[bool, str] = False, decimal: str = ".", bold_rows: bool = True, classes: Optional[Union[str, List, Tuple]] = None, escape: bool = True, notebook: bool = False, border: Optional[int] = None, table_id: Optional[str] = None, render_links: bool = False, encoding: Optional[str] = None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, justify=justify, index_names=index_names, escape=escape, decimal=decimal, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, ) # TODO: a generic formatter wld b in DataFrameFormatter return fmt.DataFrameRenderer(formatter).to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, table_id=table_id, render_links=render_links, ) # ---------------------------------------------------------------------- @Substitution( klass="DataFrame", type_sub=" and columns", max_cols_sub=dedent( """\ max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used.""" ), show_counts_sub=dedent( """\ show_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the DataFrame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. null_counts : bool, optional .. deprecated:: 1.2.0 Use show_counts instead.""" ), examples_sub=dedent( """\ >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 165.9 MB""" ), see_also_sub=dedent( """\ DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns.""" ), version_added_sub="", ) @doc(BaseInfo.render) def info( self, verbose: Optional[bool] = None, buf: Optional[IO[str]] = None, max_cols: Optional[int] = None, memory_usage: Optional[Union[bool, str]] = None, show_counts: Optional[bool] = None, null_counts: Optional[bool] = None, ) -> None: if null_counts is not None: if show_counts is not None: raise ValueError("null_counts used with show_counts. Use show_counts.") warnings.warn( "null_counts is deprecated. Use show_counts instead", FutureWarning, stacklevel=2, ) show_counts = null_counts info = DataFrameInfo( data=self, memory_usage=memory_usage, ) info.render( buf=buf, max_cols=max_cols, verbose=verbose, show_counts=show_counts, ) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 180000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5244 """ result = self._constructor_sliced( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = self._constructor_sliced( self.index.memory_usage(deep=deep), index=["Index"] ).append(result) return result def transpose(self, *args, copy: bool = False) -> DataFrame: """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, {}) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self, method="transpose") @property def T(self) -> DataFrame: return self.transpose() # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._mgr.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._mgr.iget(i) result = self._box_col_values(values, i) # this is a cached value, mark it so result._set_as_cached(label, self) return result def _get_column_array(self, i: int) -> ArrayLike: """ Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block) """ return self._mgr.iget_values(i) def _iter_column_arrays(self) -> Iterator[ArrayLike]: """ Iterate over the arrays of all columns in order. This returns the values as stored in the Block (ndarray or ExtensionArray). """ for i in range(len(self.columns)): yield self._get_column_array(i) def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if isinstance(self.columns, MultiIndex): return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: if isinstance(indexer, np.ndarray): indexer = lib.maybe_indices_to_slice( indexer.astype(np.intp, copy=False), len(self) ) # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self._take_with_is_copy(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): # GH#26490 using data[key] can cause RecursionError data = data._get_item_cache(key) return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take_with_is_copy(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, np.ndarray)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: # loc is neither a slice nor ndarray, so must be an int return self._ixs(loc, axis=1) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._ixs(col, axis=1) return series._values[index] series = self._get_item_cache(col) engine = self.index._engine try: loc = engine.get_loc(index) return series._values[loc] except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) elif isinstance(value, DataFrame): self._set_item_frame_value(key, value) elif is_list_like(value) and 1 < len( self.columns.get_indexer_for([key]) ) == len(value): # Column to set is duplicated self._setitem_array([key], value) else: # set column self._set_item(key, value) def _setitem_slice(self, key: slice, value): # NB: we can't just use self.loc[key] = value because that # operates on labels and we need to operate positional for # backwards-compat, xref GH#31469 self._check_setitem_copy() self.iloc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.iloc[indexer] = value else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: self.loc._ensure_listlike_indexer(key, axis=1, value=value) indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.iloc[:, indexer] = value def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item_frame_value(self, key, value: DataFrame) -> None: self._ensure_valid_index(value) # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = _reindex_for_setitem(value, self.index) value = value.T self._set_item_mgr(key, value) def _iset_item_mgr(self, loc: int, value) -> None: self._mgr.iset(loc, value) self._clear_item_cache() def _set_item_mgr(self, key, value): value = _maybe_atleast_2d(value) try: loc = self._info_axis.get_loc(key) except KeyError: # This item wasn't present, just insert at end self._mgr.insert(len(self._info_axis), key, value) else: self._iset_item_mgr(loc, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _iset_item(self, loc: int, value): value = self._sanitize_column(value) value = _maybe_atleast_2d(value) self._iset_item_mgr(loc, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ value = self._sanitize_column(value) if ( key in self.columns and value.ndim == 1 and not is_extension_array_dtype(value) ): # broadcast across multiple columns if necessary if not self.columns.is_unique or isinstance(self.columns, MultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) self._set_item_mgr(key, value) def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False """ try: if takeable: series = self._ixs(col, axis=1) series._set_value(index, value, takeable=True) return series = self._get_item_cache(col) engine = self.index._engine loc = engine.get_loc(index) validate_numeric_casting(series.dtype, value) series._values[loc] = value # Note: trying to use series._set_value breaks tests in # tests.frame.indexing.test_indexing and tests.indexing.test_partial except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): if not isinstance(value, DataFrame): try: value = Series(value) except (ValueError, NotImplementedError, TypeError) as err: raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) from err # GH31368 preserve name of index index_copy = value.index.copy() if self.index.name is not None: index_copy.name = self.index.name self._mgr = self._mgr.reindex_axis(index_copy, axis=1, fill_value=np.nan) def _box_col_values(self, values, loc: int) -> Series: """ Provide boxed values for a column. """ # Lookup in columns so that if e.g. a str datetime was passed # we attach the Timestamp object as the name. name = self.columns[loc] klass = self._constructor_sliced return klass(values, index=self.index, name=name, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr: str, inplace: bool = False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named "Area (cm^2) would be referenced as `Area (cm^2)`). Column names which are Python keywords (like "list", "for", "import", etc) cannot be used. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame or None DataFrame resulting from the provided query expression or None if ``inplace=True``. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: result = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query result = self[res] if inplace: self._update_inplace(result) else: return result def eval(self, expr: str, inplace: bool = False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, pandas object, or None The result of the evaluation or None if ``inplace=True``. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> DataFrame: """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. See Also -------- DataFrame.dtypes: Return Series with the data type of each column. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <https://numpy.org/doc/stable/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int64']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if ( issubclass( unique_dtype.type, tuple(dtypes_set) # type: ignore[arg-type] ) or ( np.number in dtypes_set and getattr(unique_dtype, "_is_numeric", False) ) ) ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates: bool = False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional See Also -------- Index.insert : Insert new item by index. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df col1 col2 0 1 3 1 2 4 >>> df.insert(1, "newcol", [99, 99]) >>> df col1 newcol col2 0 1 99 3 1 2 99 4 >>> df.insert(0, "col1", [100, 100], allow_duplicates=True) >>> df col1 col1 newcol col2 0 100 1 99 3 1 100 2 99 4 """ if allow_duplicates and not self.flags.allows_duplicate_labels: raise ValueError( "Cannot specify 'allow_duplicates=True' when " "'self.flags.allows_duplicate_labels' is False." ) value = self._sanitize_column(value) value = _maybe_atleast_2d(value) self._mgr.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> DataFrame: r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, value): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- value : scalar, Series, or array-like Returns ------- numpy.ndarray """ self._ensure_valid_index(value) # We should never get here with DataFrame value if isinstance(value, Series): value = _reindex_for_setitem(value, self.index) elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: value = construct_1d_arraylike_from_scalar(value, len(self), dtype=None) return value @property def _series(self): return { item: Series( self._mgr.iget(idx), index=self.index, name=item, fastpath=True ) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. .. deprecated:: 1.2.0 DataFrame.lookup is deprecated, use DataFrame.melt and DataFrame.loc instead. For an example see :meth:`~pandas.DataFrame.lookup` in the user guide. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ msg = ( "The 'lookup' method is deprecated and will be" "removed in a future version." "You can use DataFrame.melt and DataFrame.loc" "as a substitute." ) warnings.warn(msg, FutureWarning, stacklevel=2) n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") if not (self.index.is_unique and self.columns.is_unique): # GH#33041 raise ValueError("DataFrame.lookup requires unique index and columns") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy: bool, level: Level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy: bool, level: Level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy: bool, fill_value) -> DataFrame: """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @doc(NDFrame.align, **_shared_doc_kwargs) def align( self, other, join: str = "outer", axis: Optional[Axis] = None, level: Optional[Level] = None, copy: bool = True, fill_value=None, method: Optional[str] = None, limit=None, fill_axis: Axis = 0, broadcast_axis: Optional[Axis] = None, ) -> DataFrame: return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Appender( """ Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> DataFrame: axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) def drop( self, labels=None, axis: Axis = 0, index=None, columns=None, level: Optional[Level] = None, inplace: bool = False, errors: str = "raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If False, return a copy. Otherwise, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame or None DataFrame without the removed index or column labels or None if ``inplace=True``. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional[DataFrame]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or function transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame or None DataFrame with the renamed axis labels or None if ``inplace=True``. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters: >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method: Optional[str] = None, axis: Optional[Axis] = None, inplace: bool = False, limit=None, downcast=None, ) -> Optional[DataFrame]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) def pop(self, item: Hashable) -> Series: """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : label Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ return super().pop(item=item) @doc(NDFrame.replace, **_shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace: bool = False, limit=None, regex: bool = False, method: str = "pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) def _replace_columnwise( self, mapping: Dict[Hashable, Tuple[Any, Any]], inplace: bool, regex ): """ Dispatch to Series.replace column-wise. Parameters ---------- mapping : dict of the form {col: (target, value)} inplace : bool regex : bool or same types as `to_replace` in DataFrame.replace Returns ------- DataFrame or None """ # Operate column-wise res = self if inplace else self.copy() ax = self.columns for i in range(len(ax)): if ax[i] in mapping: ser = self.iloc[:, i] target, value = mapping[ax[i]] newobj = ser.replace(target, value, regex=regex) res.iloc[:, i] = newobj if inplace: return return res.__finalize__(self) @doc(NDFrame.shift, klass=_shared_doc_kwargs["klass"]) def shift( self, periods=1, freq=None, axis: Axis = 0, fill_value=lib.no_default ) -> DataFrame: axis = self._get_axis_number(axis) ncols = len(self.columns) if axis == 1 and periods != 0 and fill_value is lib.no_default and ncols > 0: # We will infer fill_value to match the closest column # Use a column that we know is valid for our column's dtype GH#38434 label = self.columns[0] if periods > 0: result = self.iloc[:, :-periods] for col in range(min(ncols, abs(periods))): # TODO(EA2D): doing this in a loop unnecessary with 2D EAs # Define filler inside loop so we get a copy filler = self.iloc[:, 0].shift(len(self)) result.insert(0, label, filler, allow_duplicates=True) else: result = self.iloc[:, -periods:] for col in range(min(ncols, abs(periods))): # Define filler inside loop so we get a copy filler = self.iloc[:, -1].shift(len(self)) result.insert( len(result.columns), label, filler, allow_duplicates=True ) result.columns = self.columns.copy() return result return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def set_index( self, keys, drop: bool = True, append: bool = False, inplace: bool = False, verify_integrity: bool = False, ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False If True, modifies the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame or None Changed row labels or None if ``inplace=True``. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Hashable] = [] for col in keys: if isinstance(col, (Index, Series, np.ndarray, list, abc.Iterator)): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError as err: raise TypeError( f"{err_msg}. Received column of type {type(col)}" ) from err else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names: List[Hashable] = [] if append: names = list(self.index.names) if isinstance(self.index, MultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Hashable] = [] for col in keys: if isinstance(col, MultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (Index, Series)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame @overload # https://github.com/python/mypy/issues/6580 # Overloaded function signatures 1 and 2 overlap with incompatible return types def reset_index( # type: ignore[misc] self, level: Optional[Union[Hashable, Sequence[Hashable]]] = ..., drop: bool = ..., inplace: Literal[False] = ..., col_level: Hashable = ..., col_fill: Hashable = ..., ) -> DataFrame: ... @overload def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = ..., drop: bool = ..., inplace: Literal[True] = ..., col_level: Hashable = ..., col_fill: Hashable = ..., ) -> None: ... def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Hashable = "", ) -> Optional[DataFrame]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if inplace: new_obj = self else: new_obj = self.copy() new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, MultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if level is not None and i not in level: continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = lev._values if level_values.dtype == np.object_: level_values = lib.maybe_convert_objects(level_values) if lab is not None: # if we have the codes, extract the values with a mask level_values = algorithms.take( level_values, lab, allow_fill=True, fill_value=lev._na_value ) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isna(self) -> DataFrame: result = self._constructor(self._mgr.isna(func=isna)) return result.__finalize__(self, method="isna") @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isnull(self) -> DataFrame: return self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notna(self) -> DataFrame: return ~self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notnull(self) -> DataFrame: return ~self.isna() def dropna( self, axis: Axis = 0, how: str = "any", thresh=None, subset=None, inplace: bool = False, ): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame or None DataFrame with NA entries dropped from it or None if ``inplace=True``. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional[DataFrame]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame or None DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use ``subset``. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use ``keep``. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0 """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") ignore_index = validate_bool_kwarg(ignore_index, "ignore_index") duplicated = self.duplicated(subset, keep=keep) result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) if inplace: self._update_inplace(result) return None else: return result def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> Series: """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series Boolean series for each duplicated rows. See Also -------- Index.duplicated : Equivalent method on index. Series.duplicated : Equivalent method on Series. Series.drop_duplicates : Remove duplicate values from Series. DataFrame.drop_duplicates : Remove duplicate values from DataFrame. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, for each set of duplicated values, the first occurrence is set on False and all others on True. >>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True. >>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool By setting ``keep`` on False, all duplicates are True. >>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool To find duplicates on specific column(s), use ``subset``. >>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool """ from pandas._libs.hashtable import SIZE_HINT_LIMIT, duplicated_int64 if self.empty: return self._constructor_sliced(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) result = self._constructor_sliced(duplicated_int64(ids, keep), index=self.index) return result.__finalize__(self, method="duplicated") # ---------------------------------------------------------------------- # Sorting # TODO: Just move the sort_values doc here. @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) # error: Signature of "sort_values" incompatible with supertype "NDFrame" def sort_values( # type: ignore[override] self, by, axis: Axis = 0, ascending=True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool = False, key: ValueKeyFunc = None, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: keys = [self._get_label_or_level_values(x, axis=axis) for x in by] # need to rewrap columns in Series to apply key function if key is not None: keys = [Series(k, name=name) for (k, name) in zip(keys, by)] indexer = lexsort_indexer( keys, orders=ascending, na_position=na_position, key=key ) indexer = ensure_platform_int(indexer) else: by = by[0] k = self._get_label_or_level_values(by, axis=axis) # need to rewrap column in Series to apply key function if key is not None: k = Series(k, name=by) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position, key=key ) new_data = self._mgr.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.set_axis(1, ibase.default_index(len(indexer))) result = self._constructor(new_data) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") def sort_index( self, axis: Axis = 0, level: Optional[Level] = None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, key: IndexKeyFunc = None, ): """ Sort object by labels (along an axis). Returns a new DataFrame sorted by label if `inplace` argument is ``False``, otherwise updates the original DataFrame and returns None. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. `mergesort` and `stable` are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 key : callable, optional If not None, apply the key function to the index values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect an ``Index`` and return an ``Index`` of the same shape. For MultiIndex inputs, the key is applied *per level*. .. versionadded:: 1.1.0 Returns ------- DataFrame or None The original DataFrame sorted by the labels or None if ``inplace=True``. See Also -------- Series.sort_index : Sort Series by the index. DataFrame.sort_values : Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150], ... columns=['A']) >>> df.sort_index() A 1 4 29 2 100 1 150 5 234 3 By default, it sorts in ascending order, to sort in descending order, use ``ascending=False`` >>> df.sort_index(ascending=False) A 234 3 150 5 100 1 29 2 1 4 A key function can be specified which is applied to the index before sorting. For a ``MultiIndex`` this is applied to each level separately. >>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd']) >>> df.sort_index(key=lambda x: x.str.lower()) a A 1 b 2 C 3 d 4 """ return super().sort_index( axis, level, ascending, inplace, kind, na_position, sort_remaining, ignore_index, key, ) def value_counts( self, subset: Optional[Sequence[Hashable]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, ): """ Return a Series containing counts of unique rows in the DataFrame. .. versionadded:: 1.1.0 Parameters ---------- subset : list-like, optional Columns to use when counting unique combinations. normalize : bool, default False Return proportions rather than frequencies. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. Returns ------- Series See Also -------- Series.value_counts: Equivalent method on Series. Notes ----- The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 2 2 0.25 6 0 0.25 dtype: float64 """ if subset is None: subset = self.columns.tolist() counts = self.groupby(subset).grouper.size() if sort: counts = counts.sort_values(ascending=ascending) if normalize: counts /= counts.sum() # Force MultiIndex for single column if len(subset) == 1: counts.index = MultiIndex.from_arrays( [counts.index], names=[counts.index.name] ) return counts def nlargest(self, n, columns, keep: str = "first") -> DataFrame: """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep: str = "first") -> DataFrame: """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i: Axis = -2, j: Axis = -1, axis: Axis = 0) -> DataFrame: """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if not isinstance(result._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only swap levels on a hierarchical axis.") if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.swaplevel(i, j) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order: Sequence[Axis], axis: Axis = 0) -> DataFrame: """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : {0 or 'index', 1 or 'columns'}, default 0 Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.reorder_levels(order) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic Methods def _cmp_method(self, other, op): axis = 1 # only relevant for Series other case self, other = ops.align_method_FRAME(self, other, axis, flex=False, level=None) # See GH#4537 for discussion of scalar op behavior new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) def _arith_method(self, other, op): if ops.should_reindex_frame_op(self, other, op, 1, 1, None, None): return ops.frame_arith_method_with_reindex(self, other, op) axis = 1 # only relevant for Series other case self, other = ops.align_method_FRAME(self, other, axis, flex=True, level=None) new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) _logical_method = _arith_method def _dispatch_frame_op(self, right, func, axis: Optional[int] = None): """ Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation. Parameters ---------- right : scalar, Series, or DataFrame func : arithmetic or comparison operator axis : {None, 0, 1} Returns ------- DataFrame """ # Get the appropriate array-op to apply to each column/block's values. array_op = ops.get_array_op(func) right = lib.item_from_zerodim(right) if not is_list_like(right): # i.e. scalar, faster than checking np.ndim(right) == 0 bm = self._mgr.apply(array_op, right=right) return type(self)(bm) elif isinstance(right, DataFrame): assert self.index.equals(right.index) assert self.columns.equals(right.columns) # TODO: The previous assertion `assert right._indexed_same(self)` # fails in cases with empty columns reached via # _frame_arith_method_with_reindex # TODO operate_blockwise expects a manager of the same type bm = self._mgr.operate_blockwise( right._mgr, array_op # type: ignore[arg-type] ) return type(self)(bm) elif isinstance(right, Series) and axis == 1: # axis=1 means we want to operate row-by-row assert right.index.equals(self.columns) right = right._values # maybe_align_as_frame ensures we do not have an ndarray here assert not isinstance(right, np.ndarray) arrays = [ array_op(_left, _right) for _left, _right in zip(self._iter_column_arrays(), right) ] elif isinstance(right, Series): assert right.index.equals(self.index) # Handle other cases later right = right._values arrays = [array_op(left, right) for left in self._iter_column_arrays()] else: # Remaining cases have less-obvious dispatch rules raise NotImplementedError(right) return type(self)._from_arrays( arrays, self.columns, self.index, verify_integrity=False ) def _combine_frame(self, other: DataFrame, func, fill_value=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) new_data = self._dispatch_frame_op(other, _arith_op) return new_data def _construct_result(self, result) -> DataFrame: """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns out.index = self.index return out def __divmod__(self, other) -> Tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = self // other mod = self - div * other return div, mod def __rdivmod__(self, other) -> Tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = other // self mod = other - div * self return div, mod # ---------------------------------------------------------------------- # Combination-Related @doc( _shared_docs["compare"], """ Returns ------- DataFrame DataFrame that shows the differences stacked side by side. The resulting index will be a MultiIndex with 'self' and 'other' stacked alternately at the inner level. Raises ------ ValueError When the two DataFrames don't have identical labels or shape. See Also -------- Series.compare : Compare with another Series and show differences. DataFrame.equals : Test whether two objects contain the same elements. Notes ----- Matching NaNs will not appear as a difference. Can only compare identically-labeled (i.e. same shape, identical row and column labels) DataFrames Examples -------- >>> df = pd.DataFrame( ... {{ ... "col1": ["a", "a", "b", "b", "a"], ... "col2": [1.0, 2.0, 3.0, np.nan, 5.0], ... "col3": [1.0, 2.0, 3.0, 4.0, 5.0] ... }}, ... columns=["col1", "col2", "col3"], ... ) >>> df col1 col2 col3 0 a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 >>> df2 = df.copy() >>> df2.loc[0, 'col1'] = 'c' >>> df2.loc[2, 'col3'] = 4.0 >>> df2 col1 col2 col3 0 c 1.0 1.0 1 a 2.0 2.0 2 b 3.0 4.0 3 b NaN 4.0 4 a 5.0 5.0 Align the differences on columns >>> df.compare(df2) col1 col3 self other self other 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Stack the differences on rows >>> df.compare(df2, align_axis=0) col1 col3 0 self a NaN other c NaN 2 self NaN 3.0 other NaN 4.0 Keep the equal values >>> df.compare(df2, keep_equal=True) col1 col3 self other self other 0 a c 1.0 1.0 2 b b 3.0 4.0 Keep all original rows and columns >>> df.compare(df2, keep_shape=True) col1 col2 col3 self other self other self other 0 a c NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN 3.0 4.0 3 NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN Keep all original rows and columns and also all original values >>> df.compare(df2, keep_shape=True, keep_equal=True) col1 col2 col3 self other self other self other 0 a c 1.0 1.0 1.0 1.0 1 a a 2.0 2.0 2.0 2.0 2 b b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0 """, klass=_shared_doc_kwargs["klass"], ) def compare( self, other: DataFrame, align_axis: Axis = 1, keep_shape: bool = False, keep_equal: bool = False, ) -> DataFrame: return super().compare( other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) def combine( self, other: DataFrame, func, fill_value=None, overwrite: bool = True ) -> DataFrame: """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, new_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: DataFrame) -> DataFrame: """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def combiner(x, y): mask = extract_array(isna(x)) x_values = extract_array(x, extract_numpy=True) y_values = extract_array(y, extract_numpy=True) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) combined = self.combine(other, combiner, overwrite=False) dtypes = { col: find_common_type([self.dtypes[col], other.dtypes[col]]) for col in self.columns.intersection(other.columns) if not is_dtype_equal(combined.dtypes[col], self.dtypes[col]) } if dtypes: combined = combined.astype(dtypes) return combined def update( self, other, join: str = "left", overwrite: bool = True, filter_func=None, errors: str = "ignore", ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-column(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, its name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 We can also choose to include NA in group keys or not by setting `dropna` parameter, the default setting is `True`: >>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by=["b"]).sum() a c b 1.0 2 3 2.0 2 5 >>> df.groupby(by=["b"], dropna=False).sum() a c b 1.0 2 3 2.0 2 5 NaN 1 4 >>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by="a").sum() b c a a 13.0 13.0 b 12.3 123.0 >>> df.groupby(by="a", dropna=False).sum() b c a a 13.0 13.0 b 12.3 123.0 NaN 12.3 33.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis: Axis = 0, level: Optional[Level] = None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = no_default, observed: bool = False, dropna: bool = True, ) -> DataFrameGroupBy: from pandas.core.groupby.generic import DataFrameGroupBy if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) else: squeeze = False if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, dropna=dropna, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object or a list of str, optional Column to use to make new frame's index. If None, uses existing index. .. versionchanged:: 1.1.0 Also accept list of index names. columns : str or object or a list of str Column to use to make new frame's columns. .. versionchanged:: 1.1.0 Also accept list of columns names. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> DataFrame: from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with (in the resulting pivot table, after aggregation). margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.melt: Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> DataFrame: from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level: Level = -1, dropna: bool = True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): result = stack_multiple(self, level, dropna=dropna) else: result = stack(self, level, dropna=dropna) return result.__finalize__(self, method="stack") def explode( self, column: Union[str, Tuple], ignore_index: bool = False ) -> DataFrame: """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. .. versionadded:: 1.1.0 Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, sets, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of rows in the output will be non-deterministic when exploding sets. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) result = df[column].explode() result = df.drop([column], axis=1).join(result) if ignore_index: result.index = ibase.default_index(len(result)) else: result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack result = unstack(self, level, fill_value) return result.__finalize__(self, method="unstack") @Appender(_shared_docs["melt"] % {"caller": "df.melt(", "other": "melt"}) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level: Optional[Level] = None, ignore_index=True, ) -> DataFrame: return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ignore_index=ignore_index, ) # ---------------------------------------------------------------------- # Time series-related @doc( Series.diff, klass="Dataframe", extra_params="axis : {0 or 'index', 1 or 'columns'}, default 0\n " "Take difference over rows (0) or columns (1).\n", other_klass="Series", examples=dedent( """ Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0 0 1 NaN -1 3 2 NaN -1 7 3 NaN -1 13 4 NaN 0 20 5 NaN 2 28 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN Overflow in input dtype >>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8) >>> df.diff() a 0 NaN 1 255.0""" ), ) def diff(self, periods: int = 1, axis: Axis = 0) -> DataFrame: if not isinstance(periods, int): if not (is_float(periods) and periods.is_integer()): raise ValueError("periods must be an integer") periods = int(periods) bm_axis = self._get_block_manager_axis(axis) if bm_axis == 0 and periods != 0: return self - self.shift(periods, axis=axis) new_data = self._mgr.diff(n=periods, axis=bm_axis) return self._constructor(new_data).__finalize__(self, "diff") # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: IndexLabel, ndim: int, subset: Optional[FrameOrSeriesUnion] = None, ) -> FrameOrSeriesUnion: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.ExponentialMovingWindow : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean)) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @doc( _shared_docs["aggregate"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, ) def aggregate(self, func=None, axis: Axis = 0, *args, **kwargs): axis = self._get_axis_number(axis) relabeling, func, columns, order = reconstruct_func(func, **kwargs) result = None try: result, how = self._aggregate(func, axis, *args, **kwargs) except TypeError as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err if result is None: return self.apply(func, axis=axis, args=args, **kwargs) if relabeling: # This is to keep the order to columns occurrence unchanged, and also # keep the order of new columns occurrence unchanged # For the return values of reconstruct_func, if relabeling is # False, columns and order will be None. assert columns is not None assert order is not None result_in_dict = relabel_result(result, func, columns, order) result = DataFrame(result_in_dict, index=columns) return result def _aggregate(self, arg, axis: Axis = 0, *args, **kwargs): from pandas.core.apply import frame_apply op = frame_apply( self if axis == 0 else self.T, func=arg, axis=0, args=args, kwds=kwargs, ) result, how = op.agg() if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result = result.T if result is not None else result return result, how agg = aggregate @doc( _shared_docs["transform"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], ) def transform( self, func: AggFuncType, axis: Axis = 0, *args, **kwargs ) -> DataFrame: result = transform(self, func, axis, *args, **kwargs) assert isinstance(result, DataFrame) return result def apply( self, func: AggFuncType, axis: Axis = 0, raw: bool = False, result_type=None, args=(), **kwds, ): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing ``result_type='expand'`` will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.apply() def applymap( self, func: PythonFuncType, na_action: Optional[str] = None ) -> DataFrame: """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. na_action : {None, 'ignore'}, default None If ‘ignore’, propagate NaN values, without passing them to func. .. versionadded:: 1.2 Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Like Series.map, NA values can be ignored: >>> df_copy = df.copy() >>> df_copy.iloc[0, 0] = pd.NA >>> df_copy.applymap(lambda x: len(str(x)), na_action='ignore') 0 1 0 <NA> 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ if na_action not in {"ignore", None}: raise ValueError( f"na_action must be 'ignore' or None. Got {repr(na_action)}" ) ignore_na = na_action == "ignore" # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func, ignore_na=ignore_na) return lib.map_infer(x.astype(object)._values, func, ignore_na=ignore_na) return self.apply(infer).__finalize__(self, "applymap") # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False, ) -> DataFrame: """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return ( concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) ).__finalize__(self, method="append") def join( self, other: FrameOrSeriesUnion, on: Optional[IndexLabel] = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", sort: bool = False, ) -> DataFrame: """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-column(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other: FrameOrSeriesUnion, on: Optional[IndexLabel] = None, how: str = "left", lsuffix: str = "", rsuffix: str = "", sort: bool = False, ): from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import merge if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): if how == "cross": return merge( self, other, how=how, on=on, suffixes=(lsuffix, rsuffix), sort=sort, ) return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right: FrameOrSeriesUnion, how: str = "inner", on: Optional[IndexLabel] = None, left_on: Optional[IndexLabel] = None, right_on: Optional[IndexLabel] = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: Suffixes = ("_x", "_y"), copy: bool = True, indicator: bool = False, validate: Optional[str] = None, ) -> DataFrame: from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> DataFrame: """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> DataFrame: """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Series.corr : Compute the correlation between two Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.to_numpy(dtype=float, na_value=np.nan, copy=False) if method == "pearson": correl = libalgos.nancorr(mat, minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(mat, minp=min_periods) elif method == "kendall": correl = libalgos.nancorr_kendall(mat, minp=min_periods) elif callable(method): if min_periods is None: min_periods = 1 mat = mat.T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov( self, min_periods: Optional[int] = None, ddof: Optional[int] = 1 ) -> DataFrame: """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. ddof : int, default 1 Delta degrees of freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. .. versionadded:: 1.1.0 Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.ExponentialMovingWindow.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-ddof. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.to_numpy(dtype=float, na_value=np.nan, copy=False) if notna(mat).all(): if min_periods is not None and min_periods > len(mat): base_cov = np.empty((mat.shape[1], mat.shape[1])) base_cov.fill(np.nan) else: base_cov = np.cov(mat.T, ddof=ddof) base_cov = base_cov.reshape((len(cols), len(cols))) else: base_cov = libalgos.nancorr(mat, cov=True, minp=min_periods) return self._constructor(base_cov, index=idx, columns=cols) def corrwith(self, other, axis: Axis = 0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr : Compute pairwise correlation of columns. """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = self._constructor_sliced( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count( self, axis: Axis = 0, level: Optional[Level] = None, numeric_only: bool = False ): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each row. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.value_counts: Count unique combinations of columns. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = self._constructor_sliced(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._mgr.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = self._constructor_sliced( counts, index=frame._get_agg_axis(axis) ) return result.astype("int64") def _count_level(self, level: Level, axis: Axis = 0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) # Mask NaNs: Mask rows or columns where the index level is NaN, and all # values in the DataFrame that are NaN if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object values_mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes values_mask = notna(frame.values) index_mask = notna(count_axis.get_level_values(level=level)) if axis == 1: mask = index_mask & values_mask else: mask = index_mask.reshape(-1, 1) & values_mask if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=axis) if axis == 1: result = self._constructor(counts, index=agg_axis, columns=level_index) else: result = self._constructor(counts, index=level_index, columns=agg_axis) return result def _reduce( self, op, name: str, *, axis: Axis = 0, skipna: bool = True, numeric_only: Optional[bool] = None, filter_type=None, **kwds, ): assert filter_type is None or filter_type == "bool", filter_type out_dtype = "bool" if filter_type == "bool" else None own_dtypes = [arr.dtype for arr in self._iter_column_arrays()] dtype_is_dt = np.array( [is_datetime64_any_dtype(dtype) for dtype in own_dtypes], dtype=bool, ) if numeric_only is None and name in ["mean", "median"] and dtype_is_dt.any(): warnings.warn( "DataFrame.mean and DataFrame.median with numeric_only=None " "will include datetime64 and datetime64tz columns in a " "future version.", FutureWarning, stacklevel=5, ) cols = self.columns[~dtype_is_dt] self = self[cols] # TODO: Make other agg func handle axis=None properly GH#21597 axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) assert axis in [0, 1] def func(values: np.ndarray): # We only use this in the case that operates on self.values return op(values, axis=axis, skipna=skipna, **kwds) def blk_func(values, axis=1): if isinstance(values, ExtensionArray): return values._reduce(name, skipna=skipna, **kwds) else: return op(values, axis=axis, skipna=skipna, **kwds) def _get_data() -> DataFrame: if filter_type is None: data = self._get_numeric_data() else: # GH#25101, GH#24434 assert filter_type == "bool" data = self._get_bool_data() return data if numeric_only is not None or axis == 0: # For numeric_only non-None and axis non-None, we know # which blocks to use and no try/except is needed. # For numeric_only=None only the case with axis==0 and no object # dtypes are unambiguous can be handled with BlockManager.reduce # Case with EAs see GH#35881 df = self if numeric_only is True: df = _get_data() if axis == 1: df = df.T axis = 0 ignore_failures = numeric_only is None # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager.reduce res, indexer = df._mgr.reduce(blk_func, ignore_failures=ignore_failures) out = df._constructor(res).iloc[0] if out_dtype is not None: out = out.astype(out_dtype) if axis == 0 and len(self) == 0 and name in ["sum", "prod"]: # Even if we are object dtype, follow numpy and return # float64, see test_apply_funcs_over_empty out = out.astype(np.float64) return out assert numeric_only is None data = self values = data.values try: result = func(values) except TypeError: # e.g. in nanops trying to convert strs to float data = _get_data() labels = data._get_agg_axis(axis) values = data.values with np.errstate(all="ignore"): result = func(values) if filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) elif filter_type is None and is_object_dtype(result.dtype): try: result = result.astype(np.float64) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can pass result = self._constructor_sliced(result, index=labels) return result def nunique(self, axis: Axis = 0, dropna: bool = True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis: Axis = 0, skipna: bool = True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin : Return index of the minimum element. Notes ----- This method is the DataFrame version of ``ndarray.argmin``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object """ axis = self._get_axis_number(axis) res = self._reduce( nanops.nanargmin, "argmin", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be np.ndarray since axis is not None and # values is a 2d array for DataFrame # error: Item "int" of "Union[int, Any]" has no attribute "__iter__" assert isinstance(indices, np.ndarray) # for mypy index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return self._constructor_sliced(result, index=self._get_agg_axis(axis)) def idxmax(self, axis: Axis = 0, skipna: bool = True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax : Return index of the maximum element. Notes ----- This method is the DataFrame version of ``ndarray.argmax``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object """ axis = self._get_axis_number(axis) res = self._reduce( nanops.nanargmax, "argmax", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be np.ndarray since axis is not None and # values is a 2d array for DataFrame # error: Item "int" of "Union[int, Any]" has no attribute "__iter__" assert isinstance(indices, np.ndarray) # for mypy index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return self._constructor_sliced(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num: int) -> Index: """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode( self, axis: Axis = 0, numeric_only: bool = False, dropna: bool = True ) -> DataFrame: """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of ``species`` and ``legs`` contains ``NaN``. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) data = data.apply(f, axis=axis) # Ensure index is type stable (should always use int index) if data.empty: data.index = ibase.default_index(0) return data def quantile( self, q=0.5, axis: Axis = 0, numeric_only: bool = True, interpolation: str = "linear", ): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'}, default 0 Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._mgr.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result @doc(NDFrame.asfreq, **_shared_doc_kwargs) def asfreq( self, freq, method=None, how: Optional[str] = None, normalize: bool = False, fill_value=None, ) -> DataFrame: return super().asfreq( freq=freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) @doc(NDFrame.resample, **_shared_doc_kwargs) def resample( self, rule, axis=0, closed: Optional[str] = None, label: Optional[str] = None, convention: str = "start", kind: Optional[str] = None, loffset=None, base: Optional[int] = None, on=None, level=None, origin: Union[str, TimestampConvertibleTypes] = "start_day", offset: Optional[TimedeltaConvertibleTypes] = None, ) -> Resampler: return super().resample( rule=rule, axis=axis, closed=closed, label=label, convention=convention, kind=kind, loffset=loffset, base=base, on=on, level=level, origin=origin, offset=offset, ) def to_timestamp( self, freq=None, how: str = "start", axis: Axis = 0, copy: bool = True ) -> DataFrame: """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, PeriodIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_timestamp(freq=freq, how=how) setattr(new_obj, axis_name, new_ax) return new_obj def to_period(self, freq=None, axis: Axis = 0, copy: bool = True) -> DataFrame: """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with PeriodIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, DatetimeIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_period(freq=freq) setattr(new_obj, axis_name, new_ax) return new_obj def isin(self, values) -> DataFrame: """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return self._constructor( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add index and columns _AXIS_ORDERS = ["index", "columns"] _AXIS_TO_AXIS_NUMBER: Dict[Axis, int] = { **NDFrame._AXIS_TO_AXIS_NUMBER, 1: 1, "columns": 1, } _AXIS_REVERSED = True _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 1 _info_axis_name = "columns" index: Index = properties.AxisProperty( axis=1, doc="The index (row labels) of the DataFrame." ) columns: Index = properties.AxisProperty( axis=0, doc="The column labels of the DataFrame." ) @property def _AXIS_NUMBERS(self) -> Dict[str, int]: """.. deprecated:: 1.1.0""" super()._AXIS_NUMBERS return {"index": 0, "columns": 1} @property def _AXIS_NAMES(self) -> Dict[int, str]: """.. deprecated:: 1.1.0""" super()._AXIS_NAMES return {0: "index", 1: "columns"} # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._add_numeric_operations() ops.add_flex_arithmetic_methods(DataFrame) def _from_nested_dict(data) -> collections.defaultdict: new_data: collections.defaultdict = collections.defaultdict(dict) for index, s in data.items(): for col, v in s.items(): new_data[col][index] = v return new_data def _reindex_for_setitem(value: FrameOrSeriesUnion, index: Index) -> ArrayLike: # reindex if necessary if value.index.equals(index) or not len(index): return value._values.copy() # GH#4107 try: reindexed_value = value.reindex(index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err raise TypeError( "incompatible index of inserted column with frame index" ) from err return reindexed_value def _maybe_atleast_2d(value): # TODO(EA2D): not needed with 2D EAs if is_extension_array_dtype(value): return value return np.atleast_2d(np.asarray(value))
bsd-3-clause
ch3ll0v3k/scikit-learn
sklearn/utils/fixes.py
133
12882
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import os import errno import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount if 'exist_ok' in inspect.getargspec(os.makedirs).args: makedirs = os.makedirs else: def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ try: os.makedirs(name, mode=mode) except OSError as e: if (not exist_ok or e.errno != errno.EEXIST or not os.path.isdir(name)): raise
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/pylab_examples/contour_label_demo.py
3
2238
#!/usr/bin/env python """ Illustrate some of the more advanced things that one can do with contour labels. See also contour_demo.py. """ import matplotlib import numpy as np import matplotlib.cm as cm import matplotlib.mlab as mlab import matplotlib.ticker as ticker import matplotlib.pyplot as plt matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' ################################################## # Define our surface ################################################## delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1) # difference of Gaussians Z = 10.0 * (Z2 - Z1) ################################################## # Make contour labels using creative float classes # Follows suggestion of Manuel Metz ################################################## plt.figure() # Basic contour plot CS = plt.contour(X, Y, Z) # Define a class that forces representation of float to look a certain way # This remove trailing zero so '1.0' becomes '1' class nf(float): def __repr__(self): str = '%.1f' % (self.__float__(),) if str[-1]=='0': return '%.0f' % self.__float__() else: return '%.1f' % self.__float__() # Recast levels to new class CS.levels = [nf(val) for val in CS.levels ] # Label levels with specially formatted floats plt.clabel(CS, CS.levels, inline=True, fmt='%r %%', fontsize=10) ################################################## # Label contours with arbitrary strings using a # dictionary ################################################## plt.figure() # Basic contour plot CS = plt.contour(X, Y, Z) fmt = {} strs = [ 'first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh' ] for l,s in zip( CS.levels, strs ): fmt[l] = s # Label every other level using strings plt.clabel(CS,CS.levels[::2],inline=True,fmt=fmt,fontsize=10) # Use a Formatter plt.figure() CS = plt.contour(X, Y, 100**Z, locator=plt.LogLocator()) fmt = ticker.LogFormatterMathtext() fmt.create_dummy_axis() plt.clabel(CS, CS.levels, fmt=fmt) plt.title("$100^Z$") plt.show()
gpl-2.0
zuku1985/scikit-learn
sklearn/linear_model/bayes.py
14
19671
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : float estimated precision of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. References ---------- D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ sigma_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) self.sigma_ = (1. / alpha_) * sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. References ---------- D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_ ARD is a little different than the slide: only dimensions/features for which self.lambda_ < self.threshold_lambda are kept and the rest are discarded. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): # Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. return_std : boolean, optional Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array, shape = (n_samples,) Mean of predictive distribution of query points. y_std : array, shape = (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self.normalize: X = (X - self.X_offset_) / self.X_scale_ X = X[:, self.lambda_ < self.threshold_lambda] sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std
bsd-3-clause
hande-qmc/hande
tools/reblock_hande.py
1
14236
#!/usr/bin/env python '''Run a reblocking analysis on HANDE QMC output files. Files may be compressed with either gzip, bzip2 or xz (python 3 only). CCMC and FCIQMC calculations only are supported; other calculations have specific analysis scripts and/or should be analysed directly with pyhande.''' import argparse import os import pkgutil import pprint import sys import pandas as pd _script_dir = os.path.abspath(os.path.dirname(__file__)) if not pkgutil.find_loader('pyblock'): sys.path.append(os.path.join(_script_dir, 'pyblock')) if not pkgutil.find_loader('pyhande'): sys.path.append(os.path.join(_script_dir, 'pyhande')) import pyblock import pyhande def run_hande_blocking(files, start_iteration=None, end_iteration=None, reblock_plot=None, verbose=1, width=0, out_method='to_string', inefficiency=False, reweight_plot=False, extract_rl_time=False, analysis_method=None, warmup_detection=None): '''Run a reblocking analysis on HANDE output and print to STDOUT. See :func:`pyblock.pd_utils.reblock` and :func:`pyblock.blocking.reblock` for details on the reblocking procedure. Parameters ---------- files : list of list of strings names of files containing HANDE QMC calculation output. Each list contains the a set of files which are analysed together (ie a series of calculations restarted from the previous calculation). start_iteration : int or None (Default) QMC iteration from which statistics are gathered. While the end_iteration is included in analysis, the start_iteration is not. end_iteration : int or None (Default) QMC iteration until which statistics are gathered. If None, the last QMC iteration included is the last iteration of the data set. reblock_plot : string Filename to which the reblocking convergence plot (standard error vs reblock iteration) is saved. The plot is not created if None and shown interactively if '-'. verbose : int Level of verbosity. <0: print nothing 0: print only the estimate from the optimal block length. 1: print only the recommended statistics from the optimal block length. 2: print search for automatic starting iteration (if required), blocking analysis and recommended statistics. 3: print calculation metadata, search for automatic starting iteration (if required), blocking analysis and recommended statistics. width : int Maximum width (in characters) of lines to print out for :class:`pandas.DataFrame` objects; exceeding this results in line wrapping. A non-positive value corresponds to disabling line wrapping. out_method : string Output method for printing out tables. Either 'to_string' to print a space-separate table or 'to_csv' to print a CSV table. inefficiency : bool Attempt to calculate the inefficiency factor for the calculations, and include it in the output. reweight_plot: do reweighting the projected energy and show plot to determine population bias. extract_rl_time: extract times taken for a report loop and find mean and errors. Returns ------- info : Output from :func:`pyhande.lazy.std_analysis`. opt_block: :class:`pandas.DataFrame` Recommended statistics based upon the estimated 'optimal' block size as suggested by Wolff and Lee et al. (see :func:`pyblock.blocking.find_optimal_block`). ''' try: float_str = '%-#.8e' float_fmt = '{0:-#.8e}'.format float_fmt(1.0) except ValueError: # GAH. Alternate formatting only added to format function after # python 2.6.. float_str = '%-.8e' float_fmt = '{0:-.8e}'.format def df_to_x(df, out_method, float_fmt, float_str, width): tbl_fn = getattr(df, out_method) try: return tbl_fn(float_format=float_fmt, na_rep='n/a', line_width=width) except TypeError: # Annoyingly to_csv and to_string take different types for # their float_fmt arguments. # See: https://github.com/pydata/pandas/issues/9448 return tbl_fn(float_format=float_str, na_rep='n/a', line_width=width) if width <= 0: width = None # verbosity levels v_silent = -1 (v_estimate, v_rec_stats, v_analysis, v_meta, v_input) = (0, 1, 2, 3, 4) infos = [] indices = [] for calc in files: try: info = pyhande.lazy.std_analysis(calc, start_iteration, end=end_iteration, extract_psips=True, calc_inefficiency=inefficiency, verbosity = verbose, extract_rep_loop_time=extract_rl_time, analysis_method=analysis_method, warmup_detection=warmup_detection) for (i, i_info) in enumerate(info): if verbose >= v_analysis: msg = 'Analysing file(s): %s.' % (' '.join(calc)) if len(info) > 1: msg += '\nCalculation: %i.' % (i,) msg += ('\nReblocking from iteration: %i.' % (i_info.metadata['pyhande']['reblock_start'],)) print(msg) if verbose >= v_meta: md = i_info.metadata calc_type = md.pop('calc_type') calc_input = md.pop('input') print('calc_type: %s.\n' % (calc_type)) pprint.pprint(md) if verbose >= v_input: print('\nFull input options:\n%s' % '\n'.join(calc_input)) print('') if verbose >= v_analysis: print(df_to_x(i_info.reblock, out_method, float_fmt, float_str, width)) print('') infos.extend(info) if len(info) == 1: indices.append(','.join(calc)) else: indices.extend((','.join(calc),i) for i in range(len(info))) if reweight_plot: pyhande.lazy.reweighting_graph(calc, start=start_iteration, verbosity=verbose) except ValueError: print('WARNING: No data found in file '+' '.join(calc)+'.') except RuntimeError as err: print('WARNING: Reblocking failed for file '+' '.join(calc)+' with error '+format(err)+'.') opt_blocks = [pd.DataFrame(data= {'iteration':info.metadata['pyhande']['reblock_start']}, index = ['Block from']).append(info.opt_block) for info in infos] if verbose < v_rec_stats: for opt_block in opt_blocks: if not opt_block.empty: levels = ['mean', 'standard error', 'standard error error'] for level in levels: opt_block.drop(level, axis=1, inplace=True) opt_blocks = [opt_block.stack() for opt_block in opt_blocks] opt_block = pd.DataFrame(dict(zip(indices, opt_blocks))).T if verbose < v_rec_stats and not opt_block.empty: opt_block.columns = opt_block.columns.droplevel(1) if not opt_block.empty and verbose > v_silent: print('Recommended statistics from optimal block size:') print('') print(df_to_x(opt_block, out_method, float_fmt, float_str, width)) for (calc, info) in zip(indices, infos): if info.no_opt_block and verbose > v_silent: fnames = '' if (len(indices) > 1): try: fnames = ' in ' + calc.replace(',',' ') except AttributeError: # if there is more than one calculation in the file calc is a tuple fnames = ' in ' + calc[0] + ' ' + str(calc[1]) if (analysis_method != 'hybrid'): print('WARNING: could not find optimal block size%s.' % (fnames)) print('Insufficient statistics collected for the following ' 'variables: %s.' % (', '.join(info.no_opt_block))) if reblock_plot: for info in infos: pyblock.plot.plot_reblocking(info.reblock, reblock_plot) return infos def parse_args(args): '''Parse command-line arguments. Parameters ---------- args : list of strings command-line arguments. Returns ------- (filenames, start_iteration, reblock_plot) where filenames : list of strings list of QMC output files start_iteration : int iteration number from which statistics should be gathered. reblock_plot : string filename for the reblock convergence plot output. ''' try: cols = pd.core.series.get_terminal_size()[0] except AttributeError: try: cols = pd.util.terminal.get_terminal_size()[0] except AttributeError: # terminal module moved in pandas 0.20 cols = pd.io.formats.terminal.get_terminal_size()[0] if not sys.stdout.isatty(): cols = -1 parser = argparse.ArgumentParser(description = __doc__) parser.add_argument('-m', '--merge', default=False, action='store_true', help='Combine data from each file before analysing. ' 'Separate calculations can be denoted by placing \'--\'' ' between groups of files. Default: treat each file as' ' an independent calculation.') parser.add_argument('-o', '--output', default='txt', choices=['txt', 'csv'], help='Format for data table. Default: %(default)s.') parser.add_argument('-p', '--plot', default=None, dest='plotfile', help='Filename to which the reblocking convergence plot ' 'is saved. Use \'-\' to show plot interactively. ' 'Default: off.') parser.add_argument('-r', '--reweight', default=False, dest='reweight_plot', action='store_true', help='For each independent passed ' 'calculation show a reweighting plot') parser.add_argument('-q', '--quiet', dest='verbose', action='store_const', const=0, default=1, help='Output only the final summary table. ' 'Overrides --verbose.') parser.add_argument('-s', '--start', type=int, dest='start_iteration', default=None, help='Iteration number from which to ' 'gather statistics. The start iteration itself is not ' 'included in the analysis. Default: Try finding ' 'starting iteration automatically. ') parser.add_argument('-e', '--end', type=int, dest='end_iteration', default=None, help='Iteration number until which to ' 'gather statistics. Default: Last iteration in data ' 'set. ') parser.add_argument('-v', '--verbose', dest='verbose', action='count', default=1, help='Increase verbosity of the output. Can ' 'be specified multiple times.') parser.add_argument('-w', '--width', type=int, default=cols, help='Width (in characters) of data to print out ' 'before wrapping them. A non-positive value disables ' 'wrapping. Default: current terminal width if printing ' 'to a terminal, -1 if redirecting.') parser.add_argument('-i','--inefficiency', default=False, action='store_true', help='Calculate the inefficiency factor for the calculation ' 'if possible.') parser.add_argument('-t','--extract_rl_time', default=False, action='store_true', help='Find the mean time taken for a report loop.') parser.add_argument('-a','--analysis_method', dest='analysis_method', default='reblocking', choices=['reblocking','hybrid'], help='Designate the post-analysis method ' 'to estimate the statistic error. Default: %(default)s') parser.add_argument('-b','--warmup_detection', dest='warmup_detection', default='hande_org', choices=['hande_org','mser_min'], help='Designate the method to determine ' 'the starting iterations to be discarded before calculating ' 'the statistic error. Default: %(default)s') parser.add_argument('filenames', nargs=argparse.REMAINDER, help='Space-separated list of files to analyse.') options = parser.parse_args(args) if not options.filenames: parser.print_help() sys.exit(1) if options.merge: merged = [[]] for fname in options.filenames: if fname == '--': if merged[-1]: merged.append([]) else: merged[-1].append(fname) options.filenames = merged else: options.filenames = [[fname] for fname in options.filenames] out_methods = {'txt': 'to_string', 'csv': 'to_csv'} options.output = out_methods[options.output] return options def main(args): '''Run reblocking and data analysis on HANDE output. Parameters ---------- args : list of strings command-line arguments. Returns ------- None. ''' options = parse_args(args) run_hande_blocking(options.filenames, options.start_iteration, options.end_iteration, options.plotfile, options.verbose, options.width, options.output, options.inefficiency, options.reweight_plot, options.extract_rl_time, options.analysis_method, options.warmup_detection) if __name__ == '__main__': main(sys.argv[1:])
lgpl-2.1
waterponey/scikit-learn
examples/applications/plot_tomography_l1_reconstruction.py
81
5461
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x].astype(np.float64) center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36. x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return res - ndimage.binary_erosion(res) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
Twangist/log_calls
tests/test_log_calls.py
1
82876
__author__ = "Brian O'Neill" __version__ = '0.3.0' from log_calls import log_calls import doctest import unittest ############################################################################# # doctests ############################################################################# def main_basic(): """ ##[Basic usage](id:Basic-usage) `log_calls` has many features, and thus many, mostly independent, keyword parameters (14 in all). This section introduces all but four of them, one at a time, though of course you can use multiple parameters in any call to the decorator:: * [`enabled`](#enabled-parameter) * [`args_sep`](#args_sep-parameter) * [`log_args`](#log_args-parameter) * [`log_retval`](#log_retval-parameter) * [`log_exit`](#log_exit-parameter) * [`log_call_numbers`](#log_call_numbers-parameter) * [`log_elapsed`](#log_elapsed-parameter) * [`indent`](#indent-parameter) * [`prefix`](#prefix-parameter) * [`file`](#file-parameter) The two parameters that let you output `log_calls` messages to a `Logger` ([`logger`](#logger-parameter) and [`loglevel`](#loglevel-parameter)) are discussed in [Using loggers](#Logging). The two that determine whether call history is retained ([record_history](#record_history-parameter)), and then just how much([max_history](#max_history-parameter)), are discussed in [Call history and statistics – the *stats* attribute and the *\*_history* parameters](#call-history-and-statistics). Every example in this document uses `log_calls`, so without further ado: >>> from log_calls import log_calls ###[Using no parameters](id:No-parameters) First, let's see the simplest possible examples, using no parameters at all: >>> @log_calls() ... def f(a, b, c): ... pass >>> f(1, 2, 3) f <== called by <module> arguments: a=1, b=2, c=3 f ==> returning to <module> Adding another decorated function to the call chain gives useful information too: >>> @log_calls() ... def g(a): ... f(a, 2*a, 3*a) >>> g(3) g <== called by <module> arguments: a=3 f <== called by g arguments: a=3, b=6, c=9 f ==> returning to g g ==> returning to <module> ###[The *enabled* parameter (default – *True*)](id:enabled-parameter) The next most basic example: >>> @log_calls(enabled=False) ... def f(a, b, c): ... pass >>> f(1, 2, 3) # no output The `enabled` setting is in fact an `int`. (Later, for example in [Using *enabled* as a level of verbosity](#enabling-with-ints), we show how this can be used advantageously.) #### [True bypass](id:bypass) If you supply a negative integer, that is interpreted as *true bypass*: `log_calls` immediately calls the decorated function and returns its value. When the value of `enabled` is false (`False` or `0`), the decorator performs a little more processing before deferring to the decorated function, though of course less than when `enabled` is positive (e.g. `True`). ###[The *args_sep* parameter (default – `', '`)](id:args_sep-parameter) The `args_sep` parameter specifies the character or string used to separate arguments. If the string ends in (or is) `\n`, additional whitespace is appended so that arguments line up nicely: >>> @log_calls(args_sep='\\n') ... def f(a, b, c, **kwargs): ... print(a + b + c) >>> f(1, 2, 3, u='you') # doctest: +NORMALIZE_WHITESPACE, +SKIP f <== called by <module> arguments: a=1 b=2 c=3 **kwargs={'u': 'you'} 6 f ==> returning to <module> **NOTE**: *In all the doctest examples in this document, you'll see* `'\\n'` *where in actual code you'd write* `'\n'`. *This is a `doctest` quirk: all the examples herein work (as tests, they pass), and they would fail if* `'\n'` *were used. The only alternative would be to use raw character strings and write* `r'\n'`, *which is not obviously better.* ###[The *log_args* parameter (default – *True*)](id:log_args-parameter) When true, as seen above, arguments passed to the decorated function are logged. If the function's signature contains positional and/or keyword "varargs" (`*args` and/or `**kwargs`), these are included if they're nonempty. Any default values of keyword parameters with no corresponding argument are also logged, on a separate line. >>> @log_calls() ... def f_a(a, *args, something='that thing', **kwargs): pass >>> f_a(1, 2, 3, foo='bar') f_a <== called by <module> arguments: a=1, *args=(2, 3), **kwargs={'foo': 'bar'} defaults: something='that thing' f_a ==> returning to <module> Here, no argument information is logged at all: >>> @log_calls(log_args=False) ... def f_b(a, *args, something='that thing', **kwargs): pass >>> f_b(1, 2, 3, foo='bar') f_b <== called by <module> f_b ==> returning to <module> If a function has no parameters, `log_calls` won't display any "arguments" section: >>> @log_calls() ... def f(): pass >>> f() f <== called by <module> f ==> returning to <module> If a function has parameters but is passed no arguments, `log_calls` will display `arguments: <none>`, plus any default values used: >>> @log_calls() ... def ff(*args, **kwargs): pass >>> ff() ff <== called by <module> arguments: <none> ff ==> returning to <module> >>> @log_calls() ... def fff(*args, kw='doh', **kwargs): pass >>> fff() fff <== called by <module> arguments: <none> defaults: kw='doh' fff ==> returning to <module> ###[The *log_retval* parameter (default – *False*)](id:log_retval-parameter) When true, this parameter displays the value returned by the function: >>> @log_calls(log_retval=True) ... def f(a, b, c): ... return a + b + c >>> _ = f(1, 2, 3) f <== called by <module> arguments: a=1, b=2, c=3 f return value: 6 f ==> returning to <module> Return values longer than 77 characters are truncated and end with a trailing ellipsis: >>> @log_calls(log_retval=True) ... def return_long_str(): ... return '*' * 100 >>> return_long_str() # doctest: +NORMALIZE_WHITESPACE return_long_str <== called by <module> return_long_str return value: *****************************************************************************... return_long_str ==> returning to <module> '****************************************************************************************************' ###[The *log_exit* parameter (default – *True*)](id:log_exit-parameter) When false, this parameter suppresses the `... ==> returning to ...` line that indicates the function's return to its caller. >>> @log_calls(log_exit=False) ... def f(a, b, c): ... return a + b + c >>> _ = f(1, 2, 3) f <== called by <module> arguments: a=1, b=2, c=3 ###[The *log_call_numbers* parameter (default – *False*)](id:log_call_numbers-parameter) `log_calls` keeps a running tally of the number of times a decorated function is called. You can display this (1-based) number using the `log_call_numbers` parameter: >>> @log_calls(log_call_numbers=True) ... def f(): pass >>> for i in range(2): f() f [1] <== called by <module> f [1] ==> returning to <module> f [2] <== called by <module> f [2] ==> returning to <module> The call number is also displayed when `log_retval` is true: >>> @log_calls(log_call_numbers=True, log_retval=True) ... def f(): ... return 81 >>> _ = f() f [1] <== called by <module> f [1] return value: 81 f [1] ==> returning to <module> This is particularly valuable in the presence of recursion, for example. See the [recursion example](#recursion-example) later, where the feature is used to good effect. **NOTE**: *As we'll see later, logging for a decorated function can be turned on and off dynamically. In fact,* `log_calls` *also tracks the total number of calls to a decorated function, and that number is accessible too – see the section on [the* `stats.num_calls_total` *attribute](#stats.num_calls_total). When the* `log_call_numbers` *setting is true, the call number displayed is the logged call number - the rank of that call among the calls to the function when logging has been enabled. For example, suppose you call* `f` *17 times with logging enabled and with* `log_call_numbers` *enabled; then you turn logging off and call* `f` *3 times; finally you re-enable logging and call* `f` *again: the number displayed will be 18, not 21.* ###[The *log_elapsed* parameter (default – *False*)](id:log_elapsed-parameter) For performance profiling, you can measure the time it took a function to execute by using the `log_elapsed` keyword. When true, `log_calls` reports the time the decorated function took to complete, in seconds: >>> @log_calls(log_elapsed=True) ... def f(n): ... for i in range(n): ... # do something time-critical ... pass >>> f(5000) # doctest: +ELLIPSIS f <== called by <module> arguments: n=5000 elapsed time: ... [secs] f ==> returning to <module> ###[The *indent* parameter (default - *False*)](id:indent-parameter) The `indent` parameter, when true, indents each new level of logged messages by 4 spaces, providing a visualization of the call hierarchy. A decorated function's logged output is indented only as much as is necessary. Here, the even numbered functions don't indent, so the indented functions that they call are indented just one level more than their "inherited" indentation level: >>> @log_calls() ... def g1(): ... pass >>> @log_calls(indent=False) # no extra indentation for g1 ... def g2(): ... g1() >>> @log_calls() ... def g3(): ... g2() >>> @log_calls(indent=False) # no extra indentation for g3 ... def g4(): ... g3() >>> @log_calls() ... def g5(): ... g4() >>> g5() g5 <== called by <module> g4 <== called by g5 g3 <== called by g4 g2 <== called by g3 g1 <== called by g2 g1 ==> returning to g2 g2 ==> returning to g3 g3 ==> returning to g4 g4 ==> returning to g5 g5 ==> returning to <module> ###[The *prefix* parameter (default - `''`): decorating methods](id:prefix-parameter) ********* TODO REWORK DOCS for `prefix` >>> @log_calls(prefix='*** ') ... def f(): pass >>> f() *** f <== called by <module> *** f ==> returning to <module> For methods, you don't need to manually specify a *classname* + `'.'` prefix: the classname is, by default, part of the display name used for the method. Any prefix you do supply is prepended to that: >>> @log_calls(prefix='*** ') ... class Cls(): ... def __init__(self): pass >>> c = Cls() # doctest: +ELLIPSIS *** Cls.__init__ <== called by <module> arguments: self=<__main__.Cls object at 0x...> *** Cls.__init__ ==> returning to <module> The test suites `tests/test_log_calls_more.py`, `tests/test_log_calls__class_deco.py` and `tests/test_log_calls_v30_minor_features_fixes.py` contains more examples of using `log_calls` with methods of all kinds – instance methods, classmethods and staticmethods, and properties. ###[The *file* parameter (default - *sys.stdout*)](id:file-parameter) The `file` parameter specifies a stream (an instance of `io.TextIOBase`) to which `log_calls` will print its messages. This value is supplied to the `file` keyword parameter of the `print` function, and, like that parameter, its default value is `sys.stdout`. This parameter is ignored if you've supplied a logger for output using the [`logger`](#logger-parameter) parameter. If your program writes to the console a lot, you may not want `log_calls` messages interspersed with your real output: your understanding of both logically distinct streams can be compromised, so, better to make them two actually distinct streams. It can also be advantageous to gather all, and only all, of the `log_calls` messages in one place. You can use `indent=True` with a file, and the indentations will appear as intended. It's not simple to test this feature with doctest (in fact, there are subtleties to supporting this feature and using doctest at all), so we'll just give an example of writing to `stderr`, and reproduce the output: >>> import sys >>> @log_calls(file=sys.stderr, indent=True) ... def f(n): ... if n <= 0: ... return 'a' ... return '(' + f(n-1) + ')' Running `>>> f(2)` will return '((a))' and will write the following to `stderr`: f <== called by <module> f <== called by f arguments: n=1 f <== called by f arguments: n=0 f ==> returning to f f ==> returning to f f ==> returning to <module> """ pass # SURGERY: main_basic.__doc__ = main_basic.__doc__.replace("__main__", __name__) def main_logging(): """ ##[Using loggers](id:Logging) `log_calls` works well with loggers obtained from Python's `logging` module – that is, objects of type `logging.Logger`. First, we'll set up a logger with a single handler that writes to the console. Because `doctest` doesn't capture output written to `stderr` (the default stream to which console handlers write), we'll send the console handler's output to `stdout`, using the format `<loglevel>:<loggername>:<message>`. >>> import logging >>> import sys >>> ch = logging.StreamHandler(stream=sys.stdout) >>> c_formatter = logging.Formatter('%(levelname)8s:%(name)s:%(message)s') >>> ch.setFormatter(c_formatter) >>> logger = logging.getLogger('a_logger') >>> logger.addHandler(ch) >>> logger.setLevel(logging.DEBUG) ###The *logger* parameter (default – *None*) The `logger` keyword parameter tells `log_calls` to write its output using that logger rather than the `print` function: >>> @log_calls(logger=logger) ... def somefunc(v1, v2): ... logger.debug(v1 + v2) >>> somefunc(5, 16) # doctest: +NORMALIZE_WHITESPACE DEBUG:a_logger:somefunc <== called by <module> DEBUG:a_logger: arguments: v1=5, v2=16 DEBUG:a_logger:21 DEBUG:a_logger:somefunc ==> returning to <module> >>> @log_calls(logger=logger) ... def anotherfunc(): ... somefunc(17, 19) >>> anotherfunc() # doctest: +NORMALIZE_WHITESPACE DEBUG:a_logger:anotherfunc <== called by <module> DEBUG:a_logger: somefunc <== called by anotherfunc DEBUG:a_logger: arguments: v1=17, v2=19 DEBUG:a_logger:36 DEBUG:a_logger: somefunc ==> returning to anotherfunc DEBUG:a_logger:anotherfunc ==> returning to <module> The value of `logger` can be either a logger instance (a `logging.Logger`) or a string giving the name of a logger. Instead of passing the logger instance as above, we can simply pass `a_logger`: >>> @log_calls(logger='a_logger') ... def yetanotherfunc(): ... return 42 >>> _ = yetanotherfunc() # doctest: +NORMALIZE_WHITESPACE DEBUG:a_logger:yetanotherfunc <== called by <module> DEBUG:a_logger:yetanotherfunc ==> returning to <module> This works because "all calls to [`logging.getLogger(name)`] with a given name return the same logger instance", so that "logger instances never need to be passed between different parts of an application" as per the [Python documentation for `logging.getLogger()`](https://docs.python.org/3/library/logging.html?highlight=logging.getlogger#logging.getLogger). **NOTE**: *If the value of `logger` is a `Logger` instance that has no handlers (which can happen if you specify a logger name for a (theretofore) nonexistent logger), that logger won't be able to write anything, so `log_calls` will fall back to `print`.* ###The *loglevel* parameter (default – *logging.DEBUG*) `log_calls` also takes a `loglevel` keyword parameter, an `int` whose value must be one of the `logging` module's constants - `logging.DEBUG`, `logging.INFO`, etc. – or a custom logging level if you've added any. `log_calls` writes output messages using `logger.log(loglevel, …)`. Thus, if the `logger`'s log level is higher than `loglevel`, no output will appear: >>> logger.setLevel(logging.INFO) # raise logger's level to INFO >>> @log_calls(logger='logger_=', loglevel=logging.DEBUG) ... def f(x, y, z, **kwargs): ... return y + z >>> # No log_calls output from f >>> # because loglevel for f < level of logger >>> f(1,2,3, logger_=logger) # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS 5 The use of loggers, and of these parameters, is explored further in the later example [Using a logger with multiple handlers that have different loglevels](#logging-multiple-handlers). """ pass def main__call_chains(): """ ##Call chains `log_calls` does its best to chase back along the call chain to find the first *enabled* `log_calls`-decorated function on the stack. If there's no such function, it just displays the immediate caller. If there is such a function, however, when reporting calls and returns it displays the entire list of functions on the stack up to and including that function. Without this, you'd have to guess at what was called in between calls to functions decorated by `log_calls`. If you specified a prefix for the decorated caller on the end of a call chain, `log_calls` will use the prefixed name: >>> @log_calls() ... def g1(): ... pass >>> def g2(): ... g1() >>> @log_calls(prefix='mid.') ... def g3(): ... g2() >>> def g4(): ... g3() >>> @log_calls() ... def g5(): ... g4() >>> g5() g5 <== called by <module> mid.g3 <== called by g4 <== g5 g1 <== called by g2 <== mid.g3 g1 ==> returning to g2 ==> mid.g3 mid.g3 ==> returning to g4 ==> g5 g5 ==> returning to <module> In the next example, `g` is `log_calls`-decorated but logging is disabled, so the reported call chain for `f` stops at its immediate caller: >>> @log_calls() ... def f(): pass >>> def not_decorated(): f() >>> @log_calls(enabled=False, log_call_numbers=True) ... def g(): not_decorated() >>> g() f <== called by not_decorated f ==> returning to not_decorated Elaborating on the previous example, here are longer call chains with an intermediate decorated function that has logging disabled: >>> @log_calls() ... def e(): pass >>> def not_decorated_call_e(): e() >>> @log_calls() ... def f(): not_decorated_call_e() >>> def not_decorated_call_f(): f() >>> @log_calls(enabled=False, log_call_numbers=True) ... def g(): not_decorated_call_f() >>> @log_calls() ... def h(): g() >>> h() h <== called by <module> f <== called by not_decorated_call_f <== g <== h e <== called by not_decorated_call_e <== f e ==> returning to not_decorated_call_e ==> f f ==> returning to not_decorated_call_f ==> g ==> h h ==> returning to <module> Finally, a test with decorated functions in the call chain for which logging is "bypassed": >>> @log_calls() ... def h1(): ... pass >>> @log_calls(enabled=-1) ... def h2(): ... h1() >>> @log_calls() ... def h3(): ... h2() >>> @log_calls(enabled=-1) ... def h4(): ... h3() >>> @log_calls() ... def h5(): ... h4() >>> h5() h5 <== called by <module> h3 <== called by h4 <== h5 h1 <== called by h2 <== h3 h1 ==> returning to h2 ==> h3 h3 ==> returning to h4 ==> h5 h5 ==> returning to <module> ###[Another *indent* example](id:indent-parameter-another) In the next example, `g3` has logging disabled, so calls to it are not logged. `log_calls` chases back to the nearest *enabled* decorated function, so that there aren't gaps between call chains. The indentation levels are as you'd hope them to be: >>> @log_calls(indent=True) ... def g1(): ... pass >>> def g2(): ... g1() >>> @log_calls(enabled=False, indent=True) # not logged, causes no indentation for g1 ... def g3(): ... g2() >>> @log_calls(indent=True) ... def g4(): ... g3() >>> @log_calls(indent=True) ... def g5(): ... g4() >>> g5() g5 <== called by <module> g4 <== called by g5 g1 <== called by g2 <== g3 <== g4 g1 ==> returning to g2 ==> g3 ==> g4 g4 ==> returning to g5 g5 ==> returning to <module> We'll continue to use `indent` throughout this section. ###Call chains and inner functions When chasing back along the stack, `log_calls` also detects inner functions that it has decorated: >>> @log_calls(indent=True) ... def h0(z): ... pass >>> def h1(x): ... @log_calls(indent=True) ... def h1_inner(y): ... h0(x*y) ... return h1_inner >>> def h2(): ... h1(2)(3) >>> def h3(): ... h2() >>> def h4(): ... @log_calls(indent=True) ... def h4_inner(): ... h3() ... return h4_inner >>> @log_calls(indent=True) ... def h5(): ... h4()() >>> h5() h5 <== called by <module> h4.<locals>.h4_inner <== called by h5 h1.<locals>.h1_inner <== called by h2 <== h3 <== h4.<locals>.h4_inner arguments: y=3 h0 <== called by h1.<locals>.h1_inner arguments: z=6 h0 ==> returning to h1.<locals>.h1_inner h1.<locals>.h1_inner ==> returning to h2 ==> h3 ==> h4.<locals>.h4_inner h4.<locals>.h4_inner ==> returning to h5 h5 ==> returning to <module> ... even when the inner function is called from within the outer function it's defined in: >>> @log_calls(indent=True) ... def j0(): ... pass >>> def j1(): ... j0() >>> def j2(): ... @log_calls(indent=True) ... def j2_inner(): ... j1() ... j2_inner() >>> @log_calls(indent=True) ... def j3(): ... j2() >>> j3() j3 <== called by <module> j2.<locals>.j2_inner <== called by j2 <== j3 j0 <== called by j1 <== j2.<locals>.j2_inner j0 ==> returning to j1 ==> j2.<locals>.j2_inner j2.<locals>.j2_inner ==> returning to j2 ==> j3 j3 ==> returning to <module> ###Call chains and *log_call_numbers* If a decorated function `g` calls another decorated function `f`, and if `f` is enabled and has `log_call_numbers` set to true, then the call number of f will be displayed in the call chain: >>> @log_calls() ... def f(): pass >>> def not_decorated(): f() >>> @log_calls(log_call_numbers=True) ... def g(): not_decorated() >>> g() g [1] <== called by <module> f <== called by not_decorated <== g [1] f ==> returning to not_decorated ==> g [1] g [1] ==> returning to <module> ###[Indentation and call numbers with recursion](id:recursion-example) These features are especially useful in recursive and mutually recursive situations. We have to use `OrderedDict`s here because they're more doctest-friendly: >>> from collections import OrderedDict >>> @log_calls(log_call_numbers=True, log_retval=True, indent=True) ... def depth(d, key=None): ... if not isinstance(d, dict): ... return 0 # base case ... elif not d: ... return 1 ... else: ... return max(map(depth, d.values(), d.keys())) + 1 >>> depth( ... OrderedDict( ... (('a', 0), ... ('b', OrderedDict( (('c1', 10), ('c2', 11)) )), ... ('c', 'text')) ... ) ... ) depth [1] <== called by <module> arguments: d=OrderedDict([('a', 0), ('b', OrderedDict([('c1', 10), ('c2', 11)])), ('c', 'text')]) defaults: key=None depth [2] <== called by depth [1] arguments: d=0, key='a' depth [2] return value: 0 depth [2] ==> returning to depth [1] depth [3] <== called by depth [1] arguments: d=OrderedDict([('c1', 10), ('c2', 11)]), key='b' depth [4] <== called by depth [3] arguments: d=10, key='c1' depth [4] return value: 0 depth [4] ==> returning to depth [3] depth [5] <== called by depth [3] arguments: d=11, key='c2' depth [5] return value: 0 depth [5] ==> returning to depth [3] depth [3] return value: 1 depth [3] ==> returning to depth [1] depth [6] <== called by depth [1] arguments: d='text', key='c' depth [6] return value: 0 depth [6] ==> returning to depth [1] depth [1] return value: 2 depth [1] ==> returning to <module> 2 **NOTE**: *The optional* `key` *parameter is for instructional purposes, so you can see the key that's paired with the value of* `d` *in the caller's dictionary. Typically the signature of this function would be just* `def depth(d)`, *and the recursive case would return* `max(map(depth, d.values())) + 1`. """ pass def main__log_message(): """ ## [The indent-aware writing method *log_message()*](id:log_message) `log_calls` exposes the method it uses to write its messages, `log_message`, whose full signature is: `log_message(msg, *msgs, sep=' ', extra_indent_level=1, prefix_with_name=False)` This method takes one or more "messages" (anything you want to see as a string), and writes one final output message formed by joining those messages separated by `sep`. `extra_indent_level` is a number of 4-column-wide *indent levels* specifying where to begin writing that message. This value x 4 is an offset in columns from the left margin of the visual frame established by log_calls – that is, an offset from the column in which the function entry/exit messages begin. The default of 1 aligns the message with the "arguments: " line of `log_calls`'s output. `prefix_with_name` is a `bool`. If true, the final message is prefaced with the possibly prefixed name of the function (using the `prefix` setting), plus possibly its call number in square brackets (if the `log_call_numbers` setting is true). If a decorated function or method writes debugging messages, even multiline messages, it can use this method to write them so that they sit nicely within the frame provided by `log_calls`. Consider the following function: >>> @log_calls(indent=True, log_call_numbers=True) ... def f(n): ... if n <= 0: ... print("*** Base case n <= 0") ... else: ... print("*** n=%d is %s,\\n but we knew that." ... % (n, "odd" if n%2 else "even")) ... print("*** (n=%d) We'll be right back, after this:" % n) ... f(n-1) ... print("*** (n=%d) We're back." % n) >>> f(2) f [1] <== called by <module> arguments: n=2 *** n=2 is even, but we knew that. *** (n=2) We'll be right back, after this: f [2] <== called by f [1] arguments: n=1 *** n=1 is odd, but we knew that. *** (n=1) We'll be right back, after this: f [3] <== called by f [2] arguments: n=0 *** Base case n <= 0 f [3] ==> returning to f [2] *** (n=1) We're back. f [2] ==> returning to f [1] *** (n=2) We're back. f [1] ==> returning to <module> The debugging messages written by `f` literally "stick out", and it becomes difficult, especially in more complex situations with multiple functions and methods, to figure out who actually wrote which message; hence the "(n=%d)" tag. If instead `f` uses `log_message`, all of its messages from each invocation align neatly within the `log_calls` visual frame. We take this opportunity to also illustrate the keyword parameters of `log_message`: >>> @log_calls(indent=True, log_call_numbers=True) ... def f(n): ... if n <= 0: ... f.log_message("Base case n =", n, prefix_with_name=True) ... else: ... f.log_message("*** n=%d is %s,\\n but we knew that." ... % (n, "odd" if n%2 else "even"), ... extra_indent_level=0) ... f.log_message("We'll be right back", "after this:", ... sep=", ", prefix_with_name=True) ... f(n-1) ... f.log_message("We're back.", prefix_with_name=True) >>> f(2) f [1] <== called by <module> arguments: n=2 *** n=2 is even, but we knew that. f [1]: We'll be right back, after this: f [2] <== called by f [1] arguments: n=1 *** n=1 is odd, but we knew that. f [2]: We'll be right back, after this: f [3] <== called by f [2] arguments: n=0 f [3]: Base case n = 0 f [3] ==> returning to f [2] f [2]: We're back. f [2] ==> returning to f [1] f [1]: We're back. f [1] ==> returning to <module> The `log_message()` method works whether the output destination is `stdout`, another stream, a file, or a logger. The test file `test_log_calls_more.py` contains an example `main__log_message__all_possible_output_destinations()` which illustrates that. **NOTE**: *In the example above, `f` accesses one of its attributes added by `log_calls`, namely, the `log_message()` method. (`log_calls` in fact adds two more attributes, discussed in subsequent sections: [`log_calls_settings`](#Dynamic-control-log_calls_settings) and [`stats`](#call-history-and-statistics).) Indeed, any function, and any static method, can access its `log_calls` attributes in the same syntactically straightforward way. Classmethods and instance methods decorated by `log_calls` can also use `log_message()`, but each of those kinds of methods requires its own approach (a little more syntax) to obtaining the `log_calls` wrapper which hosts the attributes. See the section [Functions and methods accessing their own *log_calls* attributes](#accessing-own-attrs) for details.* """ pass def main__using_log_calls_settings__dynamic_control_of_settings(): """ ##[Dynamic control of settings using the *log_calls_settings* attribute](id:Dynamic-control-log_calls_settings) The values given for the parameters of `log_calls`, e.g. `enabled=True`, `args_sep=" / "`, are set once the decorated function is interpreted. The values are established once and for all when the Python interpreter parses the definition of a decorated function and creates a function object. ###[The problem](id:problem) Even if a variable is used as a parameter value, its value at the time Python processes the definition is "frozen" for the created function object. Subsequently changing the value of the variable will *not* affect the behavior of the decorator. For example, suppose `DEBUG` is a module-level variable initialized to `False`: >>> DEBUG = False and you use this code: >>> @log_calls(enabled=DEBUG) ... def foo(**kwargs): ... pass >>> foo() # No log_calls output: DEBUG is False If later you set `Debug = True` and call `foo`, nothing will be written, because `foo`'s *enabled* setting is bound to the original value of `DEBUG`, established when the definition was processed: >>> DEBUG = True >>> foo() # Still no log_calls output This is simply how Python processes default values. ###Solutions `log_calls` provides *two* ways to dynamically control the settings of a decorated function. This section presents one of them – using `log_calls_settings`. The next section, on [indirect values](#Indirect-values), discusses another, rather different solution, one that's more intrusive but which affords even more control. ###The *log_calls_settings* attribute The `log_calls` decorator adds an attribute `log_calls_settings` to a decorated function, through which you can access the decorator settings for that function. This attribute is an object which lets you control the settings for a decorated function via a mapping (dict-like) interface, and equivalently, via attributes of the object. The mapping keys and the attribute names are simply the `log_calls` keywords. `log_calls_settings` also implements many of the standard `dict` methods for interacting with the settings in familiar ways. ###The mapping interface and the attribute interface to settings Once you've decorated a function with `log_calls`, >>> @log_calls() ... def f(*args, **kwargs): ... return 91 you can access and change its settings via the `log_calls_settings` attribute of the decorated function, which behaves like a dictionary. You can read and write settings using the `log_calls` keywords as keys: >>> f.log_calls_settings['enabled'] True >>> f.log_calls_settings['enabled'] = False >>> _ = f() # no output (not even 91, because of "_ = ") >>> f.log_calls_settings['enabled'] False >>> f.log_calls_settings['log_retval'] False >>> f.log_calls_settings['log_retval'] = True >>> f.log_calls_settings['log_elapsed'] False >>> f.log_calls_settings['log_elapsed'] = True The `log_calls_settings` attribute has a length: >>> len(f.log_calls_settings) 15 Its keys and items can be iterated through: >>> keys = [] >>> for k in f.log_calls_settings: keys.append(k) >>> keys # doctest: +NORMALIZE_WHITESPACE ['enabled', 'args_sep', 'log_args', 'log_retval', 'log_elapsed', 'log_exit', 'indent', 'log_call_numbers', 'prefix', 'file', 'logger', 'loglevel', 'mute', 'record_history', 'max_history'] >>> list(f.log_calls_settings.items()) # doctest: +NORMALIZE_WHITESPACE [('enabled', False), ('args_sep', ', '), ('log_args', True), ('log_retval', True), ('log_elapsed', True), ('log_exit', True), ('indent', True), ('log_call_numbers', False), ('prefix', ''), ('file', None), ('logger', None), ('loglevel', 10), ('mute', False), ('record_history', False), ('max_history', 0)] You can use `in` to test for key membership: >>> 'enabled' in f.log_calls_settings True >>> 'no_such_setting' in f.log_calls_settings False As with an ordinary dictionary, attempting to access the value of a nonexistent setting raises `KeyError`: >>> f.log_calls_settings['new_key'] # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... KeyError: ... Unlike an ordinary dictionary, you can't add new keys – the `log_calls_settings` dictionary is closed to new members, and attempts to add one will raise `KeyError`: >>> f.log_calls_settings['new_key'] = 'anything' # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... KeyError: ... You can use the same keywords as attributes of `log_calls_settings` instead of as keywords to the mapping interface; they're equivalent: >>> f.log_calls_settings.log_elapsed True >>> f.log_calls_settings.log_call_numbers False >>> f.log_calls_settings.log_call_numbers = True >>> f.log_calls_settings.enabled = True # turn it back on! >>> _ = f() # doctest: +ELLIPSIS f [1] <== called by <module> arguments: <none> f [1] return value: 91 elapsed time: ... [secs], process time: ... [secs] f [1] ==> returning to <module> >>> f.log_calls_settings.log_args = False >>> f.log_calls_settings.log_elapsed = False >>> f.log_calls_settings.log_retval = False >>> f() # doctest: +ELLIPSIS f [2] <== called by <module> f [2] ==> returning to <module> 91 The only difference is that you *can* add a new attribute to `log_calls_settings`, simply by using it: >>> f.log_calls_settings.new_attr = 'something' >>> f.log_calls_settings.new_attr 'something' But the new attribute still isn't a decorator setting: >>> 'new_attr' in f.log_calls_settings False ### The *update()*, *as_OD()* and *as_dict()* methods The `log_calls_settings` object provides an `update()` method so that you can update several settings at once: >>> f.log_calls_settings.update( ... log_args=True, log_elapsed=False, log_call_numbers=False, ... log_retval=False) >>> _ = f() f <== called by <module> arguments: <none> f ==> returning to <module> You can retrieve the entire collection of settings as either an `OrderedDict` using the `as_OD()` method, or as a `dict` using `as_dict()`. Either can serve as a snapshot of the settings, so that you can change settings temporarily, use the new settings, and then restore settings from the snapshot. in addition to taking keyword arguments, as shown above, the `update()` method can take one or more dicts – in particular, a dictionary retrieved from one of the `as_*` methods. For example: Retrieve settings (here, as an `OrderedDict` because it's more doctest-friendly, but using `as_dict()` is sufficient): >>> od = f.log_calls_settings.as_OD() >>> od # doctest: +NORMALIZE_WHITESPACE OrderedDict([('enabled', True), ('args_sep', ', '), ('log_args', True), ('log_retval', False), ('log_elapsed', False), ('log_exit', True), ('indent', True), ('log_call_numbers', False), ('prefix', ''), ('file', None), ('logger', None), ('loglevel', 10), ('mute', False), ('record_history', False), ('max_history', 0)]) Change settings temporarily: >>> f.log_calls_settings.update( ... log_args=False, log_elapsed=True, log_call_numbers=True, ... log_retval=True) Use the new settings for `f`: >>> _ = f() # doctest: +ELLIPSIS f [4] <== called by <module> f [4] return value: 91 elapsed time: ... [secs], process time: ... [secs] f [4] ==> returning to <module> Now restore original settings, this time passing the retrieved settings dictionary rather than keywords: >>> f.log_calls_settings.update(od) >>> od == f.log_calls_settings.as_OD() True -------- You can also update with `log_calls.get_defaults_OD()`: >>> f.log_calls_settings.update(log_calls.get_defaults_OD()) >>> f.log_calls_settings.as_OD() == log_calls.get_defaults_OD() True or even with `log_calls.get_factory_defaults_OD()`, though that will be the same `OrderedDict` as `log_calls.get_defaults_OD()` unless you have changed defaults using `log_calls.set_defaults(...)`. **NOTES**: 1. *The [`prefix`](#prefix-parameter) and [`max_history`](#max_history-parameter) settings are "immutable" (no other settings are), and attempts to change them directly (e.g.* `f.log_calls_settings.max_history = anything`) *raise* `ValueError`. *Nevertheless, they* are *items in the retrieved settings dictionaries. To allow for the use-case just illustrated, `update()` is considerate enough to skip over immutable settings.* 2. `log_calls` *continues to track call numbers even when it isn't reporting them: it tracks them regardless of the `log_call_numbers` setting. Thus, the last call to* `f` *was the 4th, as shown, although the call number of the 3rd call wasn't displayed.* """ def main__indirect_parameter_values__dynamic_control(): """ ##[Dynamic control of settings with indirect values](id:Indirect-values) Every parameter of `log_calls` except `prefix` and `max_history` can take two kinds of values: *direct* and *indirect*, which you can think of as *static* and *dynamic* respectively. Direct/static values are actual values used when the decorated function is interpreted, e.g. `enabled=True`, `args_sep=" / "`. As discussed in the previous section on [`log_call_settings`](#Dynamic-control-log_calls_settings), the values of parameters are set once and for all when the Python interpreter creates a function object from the source code of a decorated function. Even if you use a variable as the value of a setting, subsequently changing the variable's value has no effect on the decorator's setting. `log_calls` provides a second way to overcome this limitation. The decorator lets you specify any parameter except `prefix` or `max_history` with one level of indirection, by using *indirect values*: an indirect value is a string that names a keyword argument *of the decorated function*. It can be an explicit keyword argument present in the signature of the function, or an implicit keyword argument that ends up in `**kwargs` (if that's present in the function's signature). When the decorated function is called, the arguments passed by keyword, and the decorated function's explicit keyword parameters with default values, are both searched for the named parameter; if it is found and of the correct type, *its* value is used; otherwise a default value is used. To specify an indirect value for a parameter whose normal values are or can be `str`s (only `args_sep` and `logger`, at present), append an `'='` to the value. For consistency, any indirect value can end in a trailing `'='`, which is stripped. Thus, `enabled='enable_='` indicates an indirect value *to be supplied* by the keyword (argument or parameter) `enable_` of a decorated function. So, in: >>> @log_calls(args_sep='sep=', prefix="*** ") ... def f(a, b, c, sep='|'): pass `args_sep` has an indirect value which names `f`'s explicit keyword parameter `sep`, and `prefix` has a direct value as it always does. A call can dynamically override the default value '|' in the signature of `f` by supplying a value: >>> f(1, 2, 3, sep=' / ') *** f <== called by <module> arguments: a=1 / b=2 / c=3 / sep=' / ' *** f ==> returning to <module> or it can use `f`'s default value by not supplying a `sep` argument: >>> f(1, 2, 3) *** f <== called by <module> arguments: a=1|b=2|c=3 defaults: sep='|' *** f ==> returning to <module> *A decorated function doesn't have to explicitly declare the parameter named as an indirect value*, if its signature includes `**kwargs`: the intermediate parameter can be an implicit keyword parameter, passed by a caller but not present in the function's signature. Consider: >>> @log_calls(enabled='enable') ... def func1(a, b, c, **func1_kwargs): pass >>> @log_calls(enabled='enable') ... def func2(z, **func2_kwargs): func1(z, z+1, z+2, **func2_kwargs) When the following statement is executed, the calls to both func1 and func2 will be logged: >>> func2(17, enable=True) func2 <== called by <module> arguments: z=17, **func2_kwargs={'enable': True} func1 <== called by func2 arguments: a=17, b=18, c=19, **func1_kwargs={'enable': True} func1 ==> returning to func2 func2 ==> returning to <module> whereas neither of the following two statements will trigger logging: >>> func2(42, enable=False) # no log_calls output >>> func2(99) # no log_calls output **NOTE**: *This last example illustrates a subtle point: if you omit the* `enabled` *parameter altogether, logging will occur, as the default value is (the direct value)* `True`; *however, if you specify an indirect value for* `enabled` *and the named indirect keyword is not supplied in a call, then that call* won't *be logged. In other words, if you specify an indirect value for the* `enabled` *parameter then the effective default value of the enabled setting is* `False`* -- calls are not logged unless the named parameter is found and its value is true.* ###Controlling format 'from above' This indirection mechanism allows a calling function to control the appearance of logged calls to functions lower in the call chain, provided they all use the same indirect parameter keywords. In the next example, the separator value supplied to `g` by keyword argument propagates to `f`. Note that the arguments `42` and `99` end up in `g`'s positional *varargs* tuple. We've used non-generic names for the *varargs* to illustrate that whatever you call these parameters, their roles are unambiguous and `log_calls` will find and use their names: >>> @log_calls(args_sep='sep=') ... def f(a, b, c, **kwargs): pass >>> @log_calls(args_sep='sep=') ... def g(a, b, c, *g_args, **g_kwargs): ... f(a, b, c, **g_kwargs) >>> g(1,2,3, 42, 99, sep='\\n') # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS g <== called by <module> arguments: a=1 b=2 c=3 *g_args=(42, 99) **g_kwargs={'sep': '\\n'} f <== called by g arguments: a=1 b=2 c=3 **kwargs={'sep': '\\n'} f ==> returning to g g ==> returning to <module> ####Controlling indentation 'from above' Similarly, you can control indentation from above. >>> @log_calls(indent='lc_indent', log_call_numbers=True) ... def f(n, **kwargs): ... if n <= 0: ... return ... f(n-1, **kwargs) >>> @log_calls(indent='lc_indent') ... def g(n, **kwargs): ... f(n+1, **kwargs) Without an indirect value for `indent`, `log_calls` displays the calls to `f` and `g` in a "flat" way: >>> g(1) #, lc_indent=True) g <== called by <module> arguments: n=1 f [1] <== called by g arguments: n=2 f [2] <== called by f [1] arguments: n=1 f [3] <== called by f [2] arguments: n=0 f [3] ==> returning to f [2] f [2] ==> returning to f [1] f [1] ==> returning to g g ==> returning to <module> but the call hierarchy is represented visually when you pass the specified indirect value: >>> g(2, lc_indent=True) g <== called by <module> arguments: n=2, **kwargs={'lc_indent': True} f [4] <== called by g arguments: n=3, **kwargs={'lc_indent': True} f [5] <== called by f [4] arguments: n=2, **kwargs={'lc_indent': True} f [6] <== called by f [5] arguments: n=1, **kwargs={'lc_indent': True} f [7] <== called by f [6] arguments: n=0, **kwargs={'lc_indent': True} f [7] ==> returning to f [6] f [6] ==> returning to f [5] f [5] ==> returning to f [4] f [4] ==> returning to g g ==> returning to <module> ###Enabling with *int*s rather than *bool*s Sometimes it's desirable for a function to print or log debugging messages as it executes. It's the oldest form of debugging! Instead of a simple `bool`, you can use a nonnegative `int` as the enabling value and treat it as a level of verbosity. >>> DEBUG_MSG_BASIC = 1 >>> DEBUG_MSG_VERBOSE = 2 >>> DEBUG_MSG_MOREVERBOSE = 3 # etc. >>> @log_calls(enabled='debuglevel=') ... def do_stuff_with_commentary(*args, debuglevel=0): ... if debuglevel >= DEBUG_MSG_VERBOSE: ... print("*** extra debugging info ***") No output: >>> do_stuff_with_commentary() Only `log_calls` output: >>> do_stuff_with_commentary(debuglevel=DEBUG_MSG_BASIC) do_stuff_with_commentary <== called by <module> arguments: debuglevel=1 do_stuff_with_commentary ==> returning to <module> `log_calls` output plus the function's debugging reportage: >>> do_stuff_with_commentary(debuglevel=DEBUG_MSG_VERBOSE) do_stuff_with_commentary <== called by <module> arguments: debuglevel=2 *** extra debugging info *** do_stuff_with_commentary ==> returning to <module> The [metaclass example](#A-metaclass-example) below also makes use of this technique. ### Using *log_calls_settings* to set indirect values is perfectly legitimate: >>> @log_calls(enabled=False) ... def g(*args, **kwargs): ... return sum(args) >>> g.log_calls_settings.enabled = 'enable_log_calls=' >>> g(1, 2, 3, enable_log_calls=True) g <== called by <module> arguments: *args=(1, 2, 3), **kwargs={'enable_log_calls': True} g ==> returning to <module> 6 """ pass def main_call_history_and_statistics(): """ ##[Call history and statistics – the *stats* attribute and the *\*_history* parameters](id:call-history-and-statistics) Unless it's [bypassed](#bypass),`log_calls` always collects at least a few basic statistics about calls to a decorated function. It can collect the entire history of calls to a function if asked to (using the [`record_history` parameter](#record_history-parameter)). The statistics and history are accessible via the `stats` attribute which `log_calls` adds to a decorated function. ###The *stats* attribute The `stats` attribute is a collection of read-only performance and profiling data attributes, plus one method. The class of the `stats` has its own test suite, so here we only illustrate and discuss its use by `log_calls`. Define a decorated function with call number logging turned on, but with exit logging turned off for brevity: >>> @log_calls(log_call_numbers=True, log_exit=False) ... def f(a, *args, x=1, **kwargs): pass Let's call it 2 times: >>> f(0) f [1] <== called by <module> arguments: a=0 defaults: x=1 >>> f(1, 100, 101, x=1000, y=1001) f [2] <== called by <module> arguments: a=1, *args=(100, 101), x=1000, **kwargs={'y': 1001} and explore its `stats`. ###The *num_calls_logged* attribute The `stats.num_calls_logged` attribute contains the number of the most recent logged call to a decorated function. Thus, `f.stats.num_calls_logged` will equal 2: >>> f.stats.num_calls_logged 2 This counter gets incremented when a decorated function is called that has logging enabled, even if its `log_call_numbers` setting is false. ###[The *num_calls_total* attribute](id:stats.num_calls_total) The `stats.num_calls_total` attribute holds the *total* number of calls to a decorated function. This counter gets incremented even when logging is disabled for a function (`enabled` == 0), but **not** if logging is "bypassed" (`enabled` < 0). For example, let's now *disable* logging for `f` and call it 3 more times: >>> f.log_calls_settings.enabled = False >>> for i in range(3): f(i) Now `stats.num_calls_total` will equal 5, but `f.stats.num_calls_logged` will still equal 2: >>> f.stats.num_calls_total 5 >>> f.stats.num_calls_logged 2 As a further illustration, let's re-enable logging for `f` and call it again. The displayed call number will the number of the *logged* call, 3, the same value as `f.stats.num_calls_logged` after (and during!) the call: >>> f.log_calls_settings.enabled = True >>> f(10, 20, z=5000) f [3] <== called by <module> arguments: a=10, *args=(20,), **kwargs={'z': 5000} defaults: x=1 >>> f.stats.num_calls_total 6 >>> f.stats.num_calls_logged 3 **ATTENTION**: *Thus,* `log_calls` *has some overhead even when it's disabled, though of course less than when it's enabled.* **Comment it out in production code!** Finally, let's verify the claim that "bypassing" logging turns off tallying of both call counters: >>> f.log_calls_settings.enabled = -1 >>> f(10, 20, z=5000) # no `log_calls` output >>> f.stats.num_calls_total 6 >>> f.stats.num_calls_logged 3 Before moving on, we'll restore logging for `f`: >>> f.log_calls_settings.enabled = True ###The *stats.elapsed_secs_logged* attribute The `stats.elapsed_secs_logged` attribute holds the sum of the elapsed times of all logged calls to a decorated function, in seconds. It's not possible to doctest this so we'll just exhibit its value for the 3 logged calls to `f` above: >>> f.stats.elapsed_secs_logged # doctest: +SKIP 1.1463998816907406e-05 ###The *stats.process_secs_logged* attribute The `stats.process_secs_logged` attribute holds the sum of the "process times" of all logged calls to a decorated function, in seconds. Similarly, we'll just exhibit its value for the 3 logged calls to `f` above: >>> f.stats.process_secs_logged # doctest: +SKIP 1.1000000000038757e-05 ###[The *record_history* parameter (default – *False*)](id:record_history-parameter) When the `record_history` setting is true for a decorated function `f`, `log_calls` will retain a sequence of records holding the details of each logged call to that function. That history is accessible via attributes of the `stats` object. We'll illustrate with a familiar example. Let's define `f` just as before, but with `record_history` set to true: >>> @log_calls(record_history=True, log_call_numbers=True, log_exit=False) ... def f(a, *args, x=1, **kwargs): pass With logging enabled, let's call `f` three times: >>> f(0) f [1] <== called by <module> arguments: a=0 defaults: x=1 >>> f(1, 100, 101, x=1000, y=1001) f [2] <== called by <module> arguments: a=1, *args=(100, 101), x=1000, **kwargs={'y': 1001} >>> f(10, 20, z=5000) f [3] <== called by <module> arguments: a=10, *args=(20,), **kwargs={'z': 5000} defaults: x=1 No surprises there. But now, `f` has a call history, which we'll examine next. ####The *stats.history* attribute The `stats.history` attribute of a decorated function provides the call history of logged calls to the function as a tuple of records. Here's `f`'s history, hand-formatted for readability: >>> print('\\n'.join(map(str, f.stats.history))) # doctest: +SKIP CallRecord(call_num=1, argnames=['a'], argvals=(0,), varargs=(), explicit_kwargs=OrderedDict(), defaulted_kwargs=OrderedDict([('x', 1)]), implicit_kwargs={}, retval=None, elapsed_secs=3.0049995984882116e-06, process_secs=2.9999999999752447e-06, timestamp='10/28/14 15:56:13.733763', prefixed_func_name='f', caller_chain=['<module>']) CallRecord(call_num=2, argnames=['a'], argvals=(1,), varargs=(100, 101), explicit_kwargs=OrderedDict([('x', 1000)]), defaulted_kwargs=OrderedDict(), implicit_kwargs={'y': 1001}, retval=None, elapsed_secs=3.274002665420994e-06, process_secs=3.0000000000030003e-06, timestamp='10/28/14 15:56:13.734102', prefixed_func_name='f', caller_chain=['<module>']) CallRecord(call_num=3, argnames=['a'], argvals=(10,), varargs=(20,), explicit_kwargs=OrderedDict(), defaulted_kwargs=OrderedDict([('x', 1)]), implicit_kwargs={'z': 5000}, retval=None, elapsed_secs=2.8769973141606897e-06, process_secs=2.9999999999752447e-06, timestamp='10/28/14 15:56:13.734412', prefixed_func_name='f', caller_chain=['<module>']) The CSV representation pairs the `argnames` with their values in `argvals` (the `argnames` become column headings), making it even more human-readable, especially when viewed in a program that presents CSVs nicely. ####The *CallRecord* namedtuple For the record, the records that comprise a decorated function's history are `namedtuple`s of type `CallRecord`, whose fields are: >>> from log_calls import CallRecord >>> print('\\n'.join(CallRecord._fields)) call_num argnames argvals varargs explicit_kwargs defaulted_kwargs implicit_kwargs retval elapsed_secs process_secs timestamp prefixed_func_name caller_chain By now, the significance of each field should be clear. ####[*stats.elapsed_secs_logged* == sum of *elapsed_secs* "column" of *stats.history*](id:elapsed_secs_logged-equal-sum-etc) as you would expect. Similarly, `stats.process_secs_logged` == sum of the `process_secs` "column" of `stats.history`. This is [demonstrated](./record_history.html#elapsed_secs_logged-equal-sum-etc) in the documentation for the `record_history` decorator, a subset of `log_calls` which records call history and statistics but writes no messages. ###[The *max_history* parameter (default – 0)](id:max_history-parameter) The `max_history` parameter determines how many call history records are retained for a decorated function whose call history is recorded. If this value is 0 (the default) or negative, unboundedly many records are retained (unless or until you set the `record_history` setting to false, or call the [`stats.clear_history()`](#stats.clear_history) method). If the value of `max_history` is > 0, `log_calls` will retain at most that many records, discarding the oldest records to make room for newer ones if the history reaches capacity. An example: >>> @log_calls(record_history=True, max_history=2, ... log_args=False, log_exit=False, log_call_numbers=True) ... def g(a): pass >>> for i in range(3): g(i) g [1] <== called by <module> g [2] <== called by <module> g [3] <== called by <module> Here's `g`'s call history: >>> print('\\n'.join(map(str, g.stats.history))) # doctest: +SKIP CallRecord(call_num=2, argnames=['a'], argvals=(1,), varargs=(), explicit_kwargs=OrderedDict(), defaulted_kwargs=OrderedDict(), implicit_kwargs={}, retval=None, elapsed_secs=2.239001332782209e-06, process_secs=2.000000000002e-06, timestamp='10/28/14 20:51:12.376714', prefixed_func_name='g', caller_chain=['<module>']) CallRecord(call_num=3, argnames=['a'], argvals=(2,), varargs=(), explicit_kwargs=OrderedDict(), defaulted_kwargs=OrderedDict(), implicit_kwargs={}, retval=None, elapsed_secs=2.6509987947065383e-06, process_secs=2.000000000002e-06, timestamp='10/28/14 20:51:12.376977', prefixed_func_name='g', caller_chain=['<module>']) The first call (`call_num=1`) was discarded to make room for the last call (`call_num=3`) because the call history size is set to 2. You cannot change `max_history` using the mapping interface or the attribute of the same name; attempts to do so raise `ValueError`: >>> g.log_calls_settings.max_history = 17 # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: ... >>> g.log_calls_settings['max_history'] = 17 # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: ... The only way to change its value is with the [`clear_history`](#clear_history-method) method. ###The *stats.history_as_csv* attribute The value `stats.history_as_csv` attribute is a text representation of a decorated function's call history in CSV format. You can save this string and import it into the program or tool of your choice for further analysis. (*Note: if your tool of choice is [Pandas](http://pandas.pydata.org), you can use the `stats` attribute [`stats.history_as_DataFrame`](#stats.history_as_DataFrame) to obtain history directly in the representation you really want.*) The CSV representation breaks out each argument into its own column, throwing away information about whether an argument's value was passed or is a default. >>> print(g.stats.history_as_csv) # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS call_num|a|retval|elapsed_secs|process_secs|timestamp|prefixed_fname|caller_chain 2|1|None|...|...|...|'g'|['<module>'] 3|2|None|...|...|...|'g'|['<module>'] <BLANKLINE> Ellipses above are for the `elapsed_secs`, `process_secs` and `timestamp` fields. The CSV separator is '|' rather than ',' because some of the fields – `args`, `kwargs` and `caller_chain` – use commas intrinsically. Let's examine one more `history_as_csv` for a function that has all of those fields: >>> @log_calls(record_history=True, log_call_numbers=True, ... log_exit=False, log_args=False) ... def f(a, *extra_args, x=1, **kw_args): pass >>> def g(a, *args, **kwargs): f(a, *args, **kwargs) >>> @log_calls(log_exit=False, log_args=False) ... def h(a, *args, **kwargs): g(a, *args, **kwargs) >>> h(0) h <== called by <module> f [1] <== called by g <== h >>> h(10, 17, 19, z=100) h <== called by <module> f [2] <== called by g <== h >>> h(20, 3, 4, 6, x=5, y='Yarborough', z=100) h <== called by <module> f [3] <== called by g <== h >>> print(f.stats.history_as_csv) # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS call_num|a|extra_args|x|kw_args|retval|elapsed_secs|process_secs|timestamp|prefixed_fname|caller_chain 1|0|()|1|{}|None|...|...|...|'f'|['g', 'h'] 2|10|(17, 19)|1|{'z': 100}|None|...|...|...|'f'|['g', 'h'] 3|20|(3, 4, 6)|5|{'y': 'Yarborough', 'z': 100}|None|...|...|...|'f'|['g', 'h'] <BLANKLINE> As usual, `log_calls` will use whatever names you use for *varargs* parameters (here, `extra_args` and `kw_args`). Whatever the name of the `kwargs` parameter, items within that field are guaranteed to be in sorted order (otherwise this last example would sometimes fail as a doctest). ###[The *history_as_DataFrame* attribute](id:stats.history_as_DataFrame) The `stats.history_as_DataFrame` attribute returns the history of a decorated function as a [Pandas](http://pandas.pydata.org) [DataFrame](http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe), if the Pandas library is installed. This saves you the intermediate step of calling `DataFrame.from_csv` with the proper arguments (and also saves you from having to know or care what those are). If Pandas is not installed, the value of this attribute is `None`. The documentation for the `record_history` decorator contains an [example of the `history_as_DataFrame` attribute](./record_history.html#stats.history_as_DataFrame) which also illustrates its use in an IPython notebook. ###[The *stats.clear_history(max_history=0)* method](id:clear_history-method) As you might expect, the `stats.clear_history(max_history=0)` method clears the call history of a decorated function. In addition, it resets all running sums: `num_calls_total` and `num_calls_logged` are reset to 0, and both `elapsed_secs_logged` and `process_secs_logged` are reset to 0.0. **It is the only way to change the value of the `max_history` setting**, via the optional keyword parameter for which you can supply any (integer) value, by default 0. The function `f` has a nonempty history, as we just saw. Let's confirm the values of all relevant settings and counters: >>> f.log_calls_settings.max_history 0 >>> f.stats.num_calls_logged 3 >>> f.stats.num_calls_total 3 >>> f.stats.elapsed_secs_logged # doctest: +SKIP 1.3978995411889628e-05 >>> f.stats.process_secs_logged # doctest: +SKIP 1.2999999999985246e-05 Now let's clear `f`'s history, setting `max_history` to 33, and check that settings and `stats` tallies are reset: >>> f.stats.clear_history(max_history=33) >>> f.log_calls_settings.max_history 33 >>> f.stats.num_calls_logged 0 >>> f.stats.num_calls_total 0 >>> f.stats.elapsed_secs_logged 0.0 >>> f.stats.process_secs_logged 0.0 ### Data descriptors of *stats* are read-only The data descriptor stats attributes are all read-only: >>> f.stats.num_calls_logged = 57 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.num_calls_total = 58 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.elapsed_secs_logged = 0.1 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.process_secs_logged = 0.1 # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.history = tuple() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.history_as_csv = '' # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... >>> f.stats.history_as_DataFrame = '' # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: ... You **can** replace the non-data descriptor `clear_history`: >>> f.stats.clear_history = lambda: None but it's hard to imagine why one would :) """ pass def main__realistic_logging_example(): """ ##[A realistic logging example – multiple handlers with different loglevels](id:logging-multiple-handlers) #The basic setup: # # This shorter setup doesn't work on 3.4.0 on Linux (Ubuntu 12.04). # Perhaps the new-in-3.3 handlers parameter to basicConfig # regressed or anyway wasn't working properly. # >>> import logging # >>> import sys # >>> ch = logging.StreamHandler(stream=sys.stdout) # >>> logging.basicConfig(handlers=[ch]) # >>> logger = logging.getLogger('mylogger') # >>> logger.setLevel(logging.DEBUG) First let's set up a logging with a console handler that writes to `stdout`: >>> import logging >>> import sys >>> ch = logging.StreamHandler(stream=sys.stdout) >>> c_formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s') >>> ch.setFormatter(c_formatter) >>> logger = logging.getLogger('mylogger') >>> logger.addHandler(ch) >>> logger.setLevel(logging.DEBUG) Now let's add another handler, also sent to `stdout` but best thought of as writing to a log file. We'll set up the existing console handler with level `INFO`, and the "file" handler with level `DEBUG` - a typical setup: you want to log all details to the file, but you only want to write more important messages to the console. >>> fh = logging.StreamHandler(stream=sys.stdout) >>> f_formatter = logging.Formatter('[FILE] %(levelname)8s:%(name)s: %(message)s') >>> fh.setFormatter(f_formatter) >>> fh.setLevel(logging.DEBUG) >>> logger.addHandler(fh) >>> ch.setLevel(logging.INFO) Suppose we have two functions: one that's lower-level/often-called, and another that's higher-level/infrequently called. >>> @log_calls(logger=logger, loglevel=logging.DEBUG) ... def popular(): ... pass >>> @log_calls(logger=logger, loglevel=logging.INFO) ... def infrequent(): ... popular() Set logger level to `DEBUG` – the console handler logs calls only for `infrequent`, but the "file" handler logs calls for both functions. >>> logger.setLevel(logging.DEBUG) >>> infrequent() # doctest: +NORMALIZE_WHITESPACE INFO:mylogger:infrequent <== called by <module> [FILE] INFO:mylogger: infrequent <== called by <module> [FILE] DEBUG:mylogger: popular <== called by infrequent [FILE] DEBUG:mylogger: popular ==> returning to infrequent INFO:mylogger:infrequent ==> returning to <module> [FILE] INFO:mylogger: infrequent ==> returning to <module> Now set logger level to `INFO` – both handlers logs calls only for `infrequent`: >>> logger.setLevel(logging.INFO) >>> infrequent() # doctest: +NORMALIZE_WHITESPACE INFO:mylogger:infrequent <== called by <module> [FILE] INFO:mylogger: infrequent <== called by <module> INFO:mylogger:infrequent ==> returning to <module> [FILE] INFO:mylogger: infrequent ==> returning to <module> """ pass # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # A_meta, a metaclass # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - from collections import OrderedDict separator = '\n' # default ', ' gives rather long lines A_DBG_NONE = 0 A_DBG_BASIC = 1 A_DBG_INTERNAL = 2 @log_calls(args_sep=separator, enabled='A_debug=') class A_meta(type): @classmethod @log_calls(log_retval=True) def __prepare__(mcs, cls_name, bases, **kwargs): super_dict = super().__prepare__(cls_name, bases, **kwargs) A_debug = kwargs.pop('A_debug', A_DBG_NONE) if A_debug >= A_DBG_INTERNAL: log_calls.print(" mro =", mcs.__mro__) log_calls.print(" dict from super() = %r" % super_dict) super_dict = OrderedDict(super_dict) super_dict['key-from-__prepare__'] = 1729 return super_dict def __new__(mcs, cls_name, bases, cls_members: dict, **kwargs): cls_members['key-from-__new__'] = "No, Hardy!" A_debug = kwargs.pop('A_debug', A_DBG_NONE) if A_debug >= A_DBG_INTERNAL: log_calls.print(" calling super() with cls_members =", cls_members) return super().__new__(mcs, cls_name, bases, cls_members, **kwargs) def __init__(cls, cls_name, bases, cls_members: dict, **kwargs): A_debug = kwargs.pop('A_debug', A_DBG_NONE) if A_debug >= A_DBG_INTERNAL: log_calls.print(" cls.__mro__:", cls.__mro__) log_calls.print(" type(cls).__mro__[1] =", type(cls).__mro__[1]) try: super().__init__(cls_name, bases, cls_members, **kwargs) except TypeError as e: # call type.__init__ if A_debug >= A_DBG_INTERNAL: log_calls.print(" calling type.__init__ with no kwargs") type.__init__(cls, cls_name, bases, cls_members) def main__metaclass_example(): """ ##[A metaclass example](id:A-metaclass-example) The class ``A_meta`` is a metaclass: it derives from ``type``, and defines (overrides) methods ``__prepare__``, ``__new__`` and ``__init__``. All of these `log_calls`-decorated methods write their messages using the indent-aware method :ref:`log_calls.print <log_message_method>`. All of ``A_meta``'s methods look for an implicit keyword parameter ``A_debug``, used as the indirect value of the `log_calls` parameter ``enabled``. The methods treat its value as an integer verbosity level: they write extra messages when the value of ``A_debug`` is at least ``A_DBG_INTERNAL``. Rather than make ``A_debug`` an explicit keyword parameter of the metaclass methods, as in:: def __prepare__(mcs, cls_name, bases, *, A_debug=0, **kwargs): instead we have left their signatures agnostic. If ``A_debug`` has been passed by a class definition (as below), the methods use the passed value, and remove ``A_debug`` from ``kwargs``; otherwise they use a default value ``A_DBG_NONE``, which is less than their threshold value for writing debug messages. When we include ``A_debug=A_DBG_INTERNAL`` as a keyword argument to a class that uses ``A_meta`` as its metaclass, that argument gets passed to all of ``A_meta``'s methods, so not only will calls to the metaclass methods be logged, but those methods will also print extra debugging information: >>> class A(metaclass=A_meta, A_debug=A_DBG_INTERNAL): # doctest: +NORMALIZE_WHITESPACE ... pass A_meta.__prepare__ <== called by <module> arguments: mcs=<class '__main__.A_meta'> cls_name='A' bases=() **kwargs={'A_debug': 2} mro = (<class '__main__.A_meta'>, <class 'type'>, <class 'object'>) dict from super() = {} A_meta.__prepare__ return value: OrderedDict([('key-from-__prepare__', 1729)]) A_meta.__prepare__ ==> returning to <module> A_meta.__new__ <== called by <module> arguments: mcs=<class '__main__.A_meta'> cls_name='A' bases=() cls_members=OrderedDict([('key-from-__prepare__', 1729), ('__module__', '__main__'), ('__qualname__', 'A')]) **kwargs={'A_debug': 2} calling super() with cls_members = OrderedDict([('key-from-__prepare__', 1729), ('__module__', '__main__'), ('__qualname__', 'A'), ('key-from-__new__', 'No, Hardy!')]) A_meta.__new__ ==> returning to <module> A_meta.__init__ <== called by <module> arguments: cls=<class '__main__.A'> cls_name='A' bases=() cls_members=OrderedDict([('key-from-__prepare__', 1729), ('__module__', '__main__'), ('__qualname__', 'A'), ('key-from-__new__', 'No, Hardy!')]) **kwargs={'A_debug': 2} cls.__mro__: (<class '__main__.A'>, <class 'object'>) type(cls).__mro__[1] = <class 'type'> A_meta.__init__ ==> returning to <module> If we had passed `A_debug=A_DBG_BASIC`, then only `log_calls` output would have been printed: the metaclass methods would not have printed their extra debugging statements. If we pass `A_debug=0` (or omit it), we get no printed output at all, either from `log_calls` or from `A_meta`'s methods: >>> class AA(metaclass=A_meta, A_debug=False): # no output ... pass >>> class AAA(metaclass=A_meta): # no output ... pass """ # SURGERY: main__metaclass_example.__doc__ = \ main__metaclass_example.__doc__.replace("__main__", __name__) def main__functions_and_methods_accessing_their_attrs(): """ ## [Functions and methods accessing their own *log_calls* attributes](id:accessing-own-attrs) At times you may want a function or method to access the attributes added for it by `log_calls`. We've seen examples of this, where [global functions](#log_message) and [methods](#A-metaclass-example) use the indent-aware method `log_message` to write debugging messages that align properly with those of `log_calls`. In the metaclass example, two of the methods – an instance method, and a classmethod – had to perform extra legerdemain in order to get at their attributes. Happily, those are the only special cases. This section surveys all the different cases of functions and methods accessing their `log_calls` attributes. NOTE: The most artificial aspect of the examples in this section is that the functions and methods all access their `stats` attribute. This might be called "excessive introspection", and is probably seldom useful: when a log_calls-decorated function executes, its call counters (`stats.num_calls_logged` and `stats.num_calls_total`) have been incremented, but, as it hasn't yet returned, the value of `stats.elapsed_secs_logged` (as well as its history) remains as they was before the call began. We confirm and test this claim in the global and inner functions examples below. ### [Global functions and inner functions accessing their attributes](id:global-and-inner-functions-accessing-attrs) Global functions and inner functions can access within their own bodies the attributes that `log_calls` adds for them (`log_calls_settings`, `stats`, `log_message()`) using the same syntax that works outside of their bodies. ####[Global function accessing its attributes](id:global-function-accessing-attrs) A global function can just use the usual syntax: >>> @log_calls(enabled=2) ... def f(): ... f.log_message("f.log_calls_settings.enabled =", f.log_calls_settings.enabled, ... prefix_with_name=True) ... f.log_message("This is call number", f.stats.num_calls_logged) ... f.log_message("f.stats.elapsed_secs_logged is still", f.stats.elapsed_secs_logged) >>> f() f <== called by <module> f: f.log_calls_settings.enabled = 2 This is call number 1 f.stats.elapsed_secs_logged is still 0.0 f ==> returning to <module> #### [Inner function accessing its attributes](id:inner-function-accessing-attrs) Similarly, an inner function can just do the usual thing: >>> @log_calls() ... def outer(x): ... @log_calls(name='%s', enabled=7) ... def inner(y): ... inner.log_message("inner.log_calls_settings.enabled =", inner.log_calls_settings.enabled) ... inner.log_message("call number", inner.stats.num_calls_logged, prefix_with_name=True) ... inner.log_message("elapsed_secs_logged =", inner.stats.elapsed_secs_logged, prefix_with_name=True) ... return x + y ... outer.log_message("inner enabled =", inner.log_calls_settings.enabled, prefix_with_name=True) ... outer.log_message("Before call to inner:", extra_indent_level=-1, prefix_with_name=True) ... outer.log_message("its call number (inner.stats.num_calls_logged) =", inner.stats.num_calls_logged) ... outer.log_message("its elapsed_secs_logged =", inner.stats.elapsed_secs_logged) ... inner(2 * x) ... outer.log_message("After call to inner:", extra_indent_level=-1, prefix_with_name=True) ... outer.log_message("its call number =", inner.stats.num_calls_logged) ... outer.log_message("its elapsed_secs_logged =", inner.stats.elapsed_secs_logged) We specified `name='%s'` in the decorator of `inner` so that the function's display name will be just `inner` and not `outer.<locals>.inner`: >>> outer(3) # doctest: +ELLIPSIS outer <== called by <module> arguments: x=3 outer: inner enabled = 7 outer: Before call to inner: its call number (inner.stats.num_calls_logged) = 0 its elapsed_secs_logged = 0.0 inner <== called by outer arguments: y=6 inner.log_calls_settings.enabled = 7 inner: call number 1 inner: elapsed_secs_logged = 0.0 inner ==> returning to outer outer: After call to inner: its call number = 1 its elapsed_secs_logged = ... outer ==> returning to <module> ### [Methods accessing their attributes](id:methods-accessing-attrs) Static methods can access their log_calls-added attributes in a straightforward way. However, the other kinds of methods – class methods and instance methods – are different: each requires a unique kind of subterfuge to access its `log_calls` wrapper and thereby its `log_calls` attributes. Here's a class exhibiting the full range of possibilities: >>> class X(): ... # Instance methods, including __init__, can obtain their wrappers ... # from their class, via self.__class__.__dict__[method_name] ... @log_calls() ... def __init__(self): ... wrapper = X.__dict__['__init__'] # X not self ... logging_fn = wrapper.log_message ... logging_fn(wrapper.log_calls_settings.enabled) ... logging_fn(wrapper.stats.num_calls_logged) ... ... @log_calls(enabled=2) ... def my_method(self): ... wrapper = X.__dict__['my_method'] # X not self ... logging_fn = wrapper.log_message ... logging_fn(wrapper.log_calls_settings.enabled) ... logging_fn(wrapper.stats.num_calls_logged) ... ... # A classmethod can get at its attributes from its own body, ... # via cls.<classmethod>.__func__ ... @classmethod ... @log_calls(enabled=12) ... def my_classmethod(cls): ... logging_fn = cls.my_classmethod.__func__.log_message ... logging_fn(cls.my_classmethod.__func__.log_calls_settings.enabled) ... logging_fn(cls.my_classmethod.__func__.stats.num_calls_logged) ... ... # A staticmethod can access its attributes from its own body ... # in the obvious way, via <class>.<staticmethod> ... @staticmethod ... @log_calls(enabled=22) ... def my_staticmethod(): ... logging_fn = X.my_staticmethod.log_message ... logging_fn(X.my_staticmethod.log_calls_settings.enabled) ... logging_fn(X.my_staticmethod.stats.num_calls_logged) #### [Instance method tests](id:instance-method-accessing-attrs) >>> x = X() # doctest: +ELLIPSIS X.__init__ <== called by <module> arguments: self=<__main__.X object at ...> True 1 X.__init__ ==> returning to <module> >>> x.my_method() # doctest: +ELLIPSIS X.my_method <== called by <module> arguments: self=<__main__.X object at ...> 2 1 X.my_method ==> returning to <module> #### [Class method test](id:class-method-accessing-attrs) >>> x.my_classmethod() # or X.my_classmethod() X.my_classmethod <== called by <module> arguments: cls=<class '__main__.X'> 12 1 X.my_classmethod ==> returning to <module> #### [Static method test](id:static-method-accessing-attrs) >>> x.my_staticmethod() # or X.my_staticmethod() X.my_staticmethod <== called by <module> 22 1 X.my_staticmethod ==> returning to <module> """ pass # SURGERY: main__functions_and_methods_accessing_their_attrs.__doc__ = \ main__functions_and_methods_accessing_their_attrs.__doc__.replace("__main__", __name__) ############################################################################## # end of tests. ############################################################################## # For unittest integration def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite()) return tests if __name__ == "__main__": doctest.testmod() # (verbose=True) # unittest.main()
mit
JPFrancoia/scikit-learn
sklearn/utils/validation.py
20
26027
"""Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from ..utils.fixes import signature from .deprecation import deprecated from ..exceptions import DataConversionWarning as _DataConversionWarning from ..exceptions import NonBLASDotWarning as _NonBLASDotWarning from ..exceptions import NotFittedError as _NotFittedError @deprecated("DataConversionWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class DataConversionWarning(_DataConversionWarning): pass @deprecated("NonBLASDotWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class NonBLASDotWarning(_NonBLASDotWarning): pass @deprecated("NotFittedError has been moved into the sklearn.exceptions module." " It will not be available here from version 0.19") class NotFittedError(_NotFittedError): pass FLOAT_DTYPES = (np.float64, np.float32, np.float16) # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', _NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit'): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x) def _shape_repr(shape): """Return a platform independent representation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ lengths = [_num_samples(X) for X in arrays if X is not None] uniques = np.unique(lengths) if len(uniques) > 1: raise ValueError("Found input variables with inconsistent numbers of" " samples: %r" % [int(l) for l in lengths]) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse in [None, False]: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') if dtype is None: dtype = spmatrix.dtype changed_format = False if (isinstance(accept_sparse, (list, tuple)) and spmatrix.format not in accept_sparse): # create new with correct sparse spmatrix = spmatrix.asformat(accept_sparse[0]) changed_format = True if dtype != spmatrix.dtype: # convert dtype spmatrix = spmatrix.astype(dtype) elif copy and not changed_format: # force copy spmatrix = spmatrix.copy() if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) return spmatrix def check_array(array, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1, warn_on_dtype=False, estimator=None): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2D numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] # store whether originally we wanted numeric dtype dtype_numeric = dtype == "numeric" dtype_orig = getattr(array, "dtype", None) if not hasattr(dtype_orig, 'kind'): # not a data type (e.g. a column named dtype in a pandas DataFrame) dtype_orig = None if dtype_numeric: if dtype_orig is not None and dtype_orig.kind == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None if isinstance(dtype, (list, tuple)): if dtype_orig is not None and dtype_orig in dtype: # no dtype conversion required dtype = None else: # dtype conversion required. Let's select the first element of the # list of accepted types. dtype = dtype[0] if estimator is not None: if isinstance(estimator, six.string_types): estimator_name = estimator else: estimator_name = estimator.__class__.__name__ else: estimator_name = "Estimator" context = " by %s" % estimator_name if estimator is not None else "" if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, copy, force_all_finite) else: array = np.array(array, dtype=dtype, order=order, copy=copy) if ensure_2d: if array.ndim == 1: if ensure_min_samples >= 2: raise ValueError("%s expects at least 2 samples provided " "in a 2 dimensional array-like input" % estimator_name) warnings.warn( "Passing 1d arrays as data is deprecated in 0.17 and will " "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample.", DeprecationWarning) array = np.atleast_2d(array) # To ensure that array flags are maintained array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we actually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. %s expected <= 2." % (array.ndim, estimator_name)) if force_all_finite: _assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required%s." % (n_samples, shape_repr, ensure_min_samples, context)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required%s." % (n_features, shape_repr, ensure_min_features, context)) if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig: msg = ("Data with input dtype %s was converted to %s%s." % (dtype_orig, array.dtype, context)) warnings.warn(msg, _DataConversionWarning) return array def check_X_y(X, y, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False, ensure_min_samples=1, ensure_min_features=1, y_numeric=False, warn_on_dtype=False, estimator=None): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2d and sparse y. If the dtype of X is object, attempt converting to float, raising on failure. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type, list of types or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. This parameter does not influence whether y can have np.inf or np.nan values. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True. ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array). ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms. warn_on_dtype : boolean (default=False) Raise DataConversionWarning if the dtype of the input data structure does not match the requested dtype, causing a memory copy. estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages. Returns ------- X_converted : object The converted and validated X. y_converted : object The converted and validated y. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, dtype=None) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) if y_numeric and y.dtype.kind == 'O': y = y.astype(np.float64) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", _DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in signature(estimator.fit).parameters def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg. : ["coef_", "estimator_", ...], "coef_" msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise TypeError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): # FIXME NotFittedError_ --> NotFittedError in 0.19 raise _NotFittedError(msg % {'name': type(estimator).__name__}) def check_non_negative(X, whom): """ Check if there is any negative value in an array. Parameters ---------- X : array-like or sparse matrix Input data. whom : string Who passed X to this function. """ X = X.data if sp.issparse(X) else X if (X < 0).any(): raise ValueError("Negative values in data passed to %s" % whom)
bsd-3-clause
shubhomoydas/pyaad
pyalad/forest_aad_support.py
1
20227
import os import numpy as np import matplotlib.pyplot as plt import logging from pandas import DataFrame from app_globals import * from alad_support import * from r_support import matrix, cbind from forest_aad_detector import * from data_plotter import * from results_support import * from gp_support import * def get_queried_indexes(scores, labels, opts): # logger.debug("computing queried indexes...") queried = np.argsort(-scores)[0:opts.budget] num_seen = np.cumsum(labels[queried[np.arange(opts.budget)]]) return num_seen, queried def write_baseline_query_indexes(queried_info, opts): logger.debug("writing baseline queries...") queried = np.zeros(shape=(len(queried_info), opts.budget + 2), dtype=int) num_seen = np.zeros(shape=(len(queried_info), opts.budget + 2), dtype=int) for i, info in enumerate(queried_info): num_seen[i, 2:(opts.budget + 2)] = info[0] num_seen[i, 0] = 1 queried[i, 2:(opts.budget + 2)] = info[1] + 1 # make indexes relative 1, *not* 0 queried[i, 0] = 1 prefix = opts.get_alad_metrics_name_prefix() baseline_file = os.path.join(opts.resultsdir, "%s-baseline.csv" % (prefix,)) # np.savetxt(baseline_file, num_seen, fmt='%d', delimiter=',') queried_idxs_baseline_file = os.path.join(opts.resultsdir, "%s-queried-baseline.csv" % (prefix,)) np.savetxt(queried_idxs_baseline_file, queried, fmt='%d', delimiter=',') def forest_aad_unit_tests_battery(X_train, labels, model, metrics, opts, outputdir, dataset_name=""): data_2D = X_train.shape[1] == 2 regcols = ["red", "blue", "green", "brown", "cyan", "pink", "orange", "magenta", "yellow", "violet"] xx = None; yy = None if data_2D: # plot the line, the samples, and the nearest vectors to the plane xx, yy = np.meshgrid(np.linspace(-4, 8, 50), np.linspace(-4, 8, 50)) # sidebar coordinates and dimensions for showing rank locations of true anomalies dash_xy = (-4.0, -2.0) # bottom-left (x,y) coordinates dash_wh = (0.4, 8) # width, height output_forest_original = False output_transformed_to_file = False test_loss_grad = False plot_dataset = data_2D and True plot_rectangular_regions = plot_dataset and True plot_forest_contours = data_2D and True plot_baseline = data_2D and False plot_aad = metrics is not None and data_2D and True pdfpath_baseline = "%s/tree_baseline.pdf" % outputdir pdfpath_orig_if_contours = "%s/score_contours.pdf" % outputdir logger.debug("Number of regions: %d" % len(model.d)) tm = Timer() X_train_new = model.transform_to_region_features(X_train, dense=False) logger.debug(tm.message("transformed input to region features")) if plot_dataset: tm.start() plot_dataset_2D(X_train, labels, model, plot_rectangular_regions, regcols, outputdir) logger.debug(tm.message("plotted dataset")) if output_forest_original: n_found = evaluate_forest_original(X_train, labels, opts.budget, model, x_new=X_train_new) np.savetxt(os.path.join(outputdir, "iforest_original_num_found_%s.csv" % dataset_name), n_found, fmt='%3.2f', delimiter=",") if plot_forest_contours: tm.start() plot_forest_contours_2D(X_train, labels, xx, yy, opts.budget, model, pdfpath_orig_if_contours, dash_xy, dash_wh) logger.debug(tm.message("plotted contours")) if output_transformed_to_file: write_sparsemat_to_file(os.path.join(outputdir, "forest_features.csv"), X_train_new, fmt='%3.2f', delimiter=",") x_tmp = np.vstack((model.d, model.node_samples, model.frac_insts)) write_sparsemat_to_file(os.path.join(outputdir, "forest_node_info.csv"), x_tmp.T, fmt='%3.2f', delimiter=",") if test_loss_grad: test_forest_loss_grad(X_train_new, labels, model, opts) if plot_baseline: plot_forest_baseline_contours_2D(X_train, labels, X_train_new, xx, yy, opts.budget, model, pdfpath_baseline, dash_xy, dash_wh) if plot_aad and metrics is not None: plot_aad_2D(X_train, labels, X_train_new, xx, yy, model, metrics, outputdir, dash_xy, dash_wh) if False: plot_aad_gp(X_train, labels, X_train_new, xx, yy, model, metrics, outputdir, dash_xy, dash_wh) if False: plot_aad_score_var(X_train, labels, X_train_new, xx, yy, model, metrics, outputdir, dash_xy, dash_wh) def plot_aad_2D(x, y, x_forest, xx, yy, forest, metrics, outputdir, dash_xy, dash_wh): # use this to plot the AAD feedback x_test = np.c_[xx.ravel(), yy.ravel()] x_if = forest.transform_to_region_features(x_test, dense=False) queried = np.array(metrics.queried) for i, q in enumerate(queried): pdfpath = "%s/iter_%02d.pdf" % (outputdir, i) dp = DataPlotter(pdfpath=pdfpath, rows=1, cols=1) pl = dp.get_next_plot() w = metrics.all_weights[i, :] Z = forest.get_score(x_if, w) Z = Z.reshape(xx.shape) pl.contourf(xx, yy, Z, 20, cmap=plt.cm.get_cmap('jet')) dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}, s=25) # print queried[np.arange(i+1)] # print X_train[queried[np.arange(i+1)], :] dp.plot_points(matrix(x[queried[np.arange(i+1)], :], nrow=i+1), pl, labels=y[queried[np.arange(i+1)]], defaultcol="red", lbl_color_map={0: "green", 1: "red"}, edgecolor=None, facecolors=True, marker=matplotlib.markers.MarkerStyle('o', fillstyle=None), s=35) # plot the sidebar anom_scores = forest.get_score(x_forest, w) anom_order = np.argsort(-anom_scores) anom_idxs = np.where(y[anom_order] == 1)[0] dash = 1 - (anom_idxs * 1.0 / x.shape[0]) plot_sidebar(dash, dash_xy, dash_wh, pl) dp.close() def plot_aad_score_var(x, y, x_forest, xx, yy, forest, metrics, outputdir, dash_xy, dash_wh): # use this to plot the AAD feedback x_test = np.c_[xx.ravel(), yy.ravel()] x_test_forest = forest.transform_to_region_features(x_test, dense=False) queried = np.array(metrics.queried) for i, q in enumerate(queried): pdfpath = "%s/score_iter_%02d.pdf" % (outputdir, i) dp = DataPlotter(pdfpath=pdfpath, rows=1, cols=1) pl = dp.get_next_plot() w = metrics.all_weights[i, :] s_train = forest.get_score(x_forest, w) ranked_indexes = np.argsort(-s_train, ) # s_test = forest.get_score(x_test_forest, w) test_indexes = metrics.test_indexes[i] score_eval_set = x_test_forest score_mean, score_var, test_indexes, v_eval, _ = \ get_score_variances(x=x_forest, w=w, n_test=len(test_indexes) if test_indexes is not None else 10, ordered_indexes=ranked_indexes, queried_indexes=queried, test_indexes=test_indexes, eval_set=score_eval_set, n_closest=9) qpos = np.argmax(score_var) q = test_indexes[qpos] logger.debug("score_var:\n%s\ntest_indexes:\n%s" % (str(list(score_var)), str(list(test_indexes)))) logger.debug("qpos: %d, query instance: %d, var: %f, queried:%s" % (qpos, q, score_var[qpos], str(list(queried[np.arange(i)])))) if score_eval_set is not None: Z = v_eval.reshape(xx.shape) levels = np.linspace(np.min(v_eval), np.max(v_eval), 20) CS = pl.contourf(xx, yy, Z, levels, cmap=plt.cm.get_cmap('jet')) cbar = plt.colorbar(CS) cbar.ax.set_ylabel('score variance') dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}, s=25) dp.plot_points(x[test_indexes, :], pl, marker='o', defaultcol='magenta', s=60, edgecolor='magenta', facecolors='none') dp.plot_points(matrix(x[queried[np.arange(i+1)], :], nrow=i+1), pl, labels=y[queried[np.arange(i+1)]], defaultcol="red", lbl_color_map={0: "green", 1: "red"}, edgecolor=None, facecolors=True, marker=matplotlib.markers.MarkerStyle('o', fillstyle=None), s=35) # plot the sidebar anom_scores = forest.get_score(x_forest, w) anom_order = np.argsort(-anom_scores) anom_idxs = np.where(y[anom_order] == 1)[0] dash = 1 - (anom_idxs * 1.0 / x.shape[0]) plot_sidebar(dash, dash_xy, dash_wh, pl) dp.close() def plot_aad_gp(x, y, x_forest, xx, yy, forest, metrics, outputdir, dash_xy, dash_wh): # use this to plot the AAD feedback x_test = np.c_[xx.ravel(), yy.ravel()] x_test_forest = forest.transform_to_region_features(x_test, dense=False) queried = np.array(metrics.queried) for i, q in enumerate(queried): pdfpath = "%s/gp_iter_%02d.pdf" % (outputdir, i) dp = DataPlotter(pdfpath=pdfpath, rows=1, cols=1) pl = dp.get_next_plot() w = metrics.all_weights[i, :] s_train = forest.get_score(x_forest, w) ranked_indexes = np.argsort(-s_train, ) # s_test = forest.get_score(x_test_forest, w) gp_eval_set = x_test_forest gp_score, gp_var, train_indexes, test_indexes, v_eval = \ get_gp_predictions(x=x_forest, y=s_train, orig_x=x, ordered_indexes=ranked_indexes, queried_indexes=queried, n_train=100, n_test=30, length_scale=40, eval_set=gp_eval_set, orig_eval_set=x_test, n_closest=9) logger.debug("gp_var:\n%s\ntest_indexes:\n%s" % (str(list(gp_var)), str(list(test_indexes)))) if gp_eval_set is not None: Z = v_eval.reshape(xx.shape) levels = np.linspace(0., 1., 20) CS = pl.contourf(xx, yy, Z, levels, cmap=plt.cm.get_cmap('jet')) cbar = plt.colorbar(CS) cbar.ax.set_ylabel('score variance') dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}, s=25) dp.plot_points(x[train_indexes, :], pl, marker='o', defaultcol='blue', s=35, edgecolor='blue', facecolors='none') dp.plot_points(x[test_indexes, :], pl, marker='o', defaultcol='magenta', s=60, edgecolor='magenta', facecolors='none') # print queried[np.arange(i+1)] # print X_train[queried[np.arange(i+1)], :] dp.plot_points(matrix(x[queried[np.arange(i+1)], :], nrow=i+1), pl, labels=y[queried[np.arange(i+1)]], defaultcol="red", lbl_color_map={0: "green", 1: "red"}, edgecolor="black", marker=matplotlib.markers.MarkerStyle('o', fillstyle=None), s=35) # plot the sidebar anom_scores = forest.get_score(x_forest, w) anom_order = np.argsort(-anom_scores) anom_idxs = np.where(y[anom_order] == 1)[0] dash = 1 - (anom_idxs * 1.0 / x.shape[0]) plot_sidebar(dash, dash_xy, dash_wh, pl) dp.close() def test_forest_loss_grad(x_forest, y, model, opts): n = x_forest.shape[0] bt = get_budget_topK(n, opts) w = np.ones(len(model.d), dtype=float) w = w / w.dot(w) # normalized uniform weights qval = model.get_aatp_quantile(x_forest, w, bt.topK) w_unifprior = np.ones(len(model.d), dtype=float) w_unifprior = w_unifprior / w_unifprior.dot(w_unifprior) print "topK=%d, budget=%d, qval=%8.5f" % (bt.topK, bt.budget, qval) theta = np.zeros(w.shape, dtype=float) loss = model.if_aad_loss_linear(w, x_forest[1:10, :], y[1:10], qval, Ca=opts.Ca, Cn=opts.Cn, withprior=opts.withprior, w_prior=w_unifprior, sigma2=opts.priorsigma2) print "loss: %f" % loss loss_grad = model.if_aad_loss_gradient_linear(w, x_forest[1:10, :], y[1:10], qval, Ca=opts.Ca, Cn=opts.Cn, withprior=opts.withprior, w_prior=w_unifprior, sigma2=opts.priorsigma2) logger.debug("loss_grad") logger.debug(loss_grad) def evaluate_forest_original(x, y, budget, forest, x_new=None): original_scores = 0.5 - forest.decision_function(x) queried = np.argsort(-original_scores) n_found_orig = np.cumsum(y[queried[np.arange(budget)]]) # logger.debug("original isolation forest:") # logger.debug(n_found_orig) if x_new is not None: w = np.ones(len(forest.d), dtype=float) w = w / w.dot(w) # normalized uniform weights agg_scores = forest.get_score(x_new, w) queried = np.argsort(-agg_scores) n_found_baseline = np.cumsum(y[queried[np.arange(budget)]]) n_found = np.vstack((n_found_baseline, n_found_orig)).T else: n_found = np.reshape(n_found_orig, (1, len(n_found_orig))) return n_found def plot_forest_baseline_contours_2D(x, y, x_forest, xx, yy, budget, forest, pdfpath_contours, dash_xy, dash_wh): # use this to plot baseline query points. w = np.ones(len(forest.d), dtype=float) w = w / w.dot(w) # normalized uniform weights baseline_scores = forest.get_score(x_forest, w) queried = np.argsort(-baseline_scores) n_found = np.cumsum(y[queried[np.arange(budget)]]) print n_found dp = DataPlotter(pdfpath=pdfpath_contours, rows=1, cols=1) pl = dp.get_next_plot() x_test = np.c_[xx.ravel(), yy.ravel()] x_if = forest.transform_to_region_features(x_test, dense=False) y_if = forest.get_score(x_if, w) Z = y_if.reshape(xx.shape) pl.contourf(xx, yy, Z, 20, cmap=plt.cm.get_cmap('jet')) dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}, s=25) # print queried[np.arange(i+1)] # print X_train[queried[np.arange(i+1)], :] dp.plot_points(matrix(x[queried[np.arange(budget)], :], nrow=budget), pl, labels=y[queried[np.arange(budget)]], defaultcol="red", lbl_color_map={0: "green", 1: "red"}, edgecolor="black", marker=matplotlib.markers.MarkerStyle('o', fillstyle=None), s=35) # plot the sidebar anom_idxs = np.where(y[queried] == 1)[0] dash = 1 - (anom_idxs * 1.0 / x.shape[0]) plot_sidebar(dash, dash_xy, dash_wh, pl) dp.close() def plot_forest_contours_2D(x, y, xx, yy, budget, forest, pdfpath_contours, dash_xy, dash_wh): # Original detector contours baseline_scores = 0.5 - forest.decision_function(x) queried = np.argsort(-baseline_scores) # logger.debug("baseline scores:%s\n%s" % (str(baseline_scores.shape), str(list(baseline_scores)))) n_found = np.cumsum(y[queried[np.arange(budget)]]) print n_found Z_if = 0.5 - forest.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z_if = Z_if.reshape(xx.shape) dp = DataPlotter(pdfpath=pdfpath_contours, rows=1, cols=1) pl = dp.get_next_plot() pl.contourf(xx, yy, Z_if, 20, cmap=plt.cm.get_cmap('jet')) dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}) dp.plot_points(matrix(x[queried[np.arange(budget)], :], nrow=budget), pl, labels=y[queried[np.arange(budget)]], defaultcol="red", lbl_color_map={0: "green", 1: "red"}, edgecolor="black", marker=matplotlib.markers.MarkerStyle('o', fillstyle=None), s=35) # plot the sidebar anom_idxs = np.where(y[queried] == 1)[0] dash = 1 - (anom_idxs * 1.0 / x.shape[0]) plot_sidebar(dash, dash_xy, dash_wh, pl) dp.close() def plot_dataset_2D(x, y, forest, plot_regions, regcols, pdf_folder): # use this to plot the dataset treesig = "_%d_trees" % forest.n_estimators if plot_regions else "" pdfpath_dataset = "%s/synth_dataset%s.pdf" % (pdf_folder, treesig) dp = DataPlotter(pdfpath=pdfpath_dataset, rows=1, cols=1) pl = dp.get_next_plot() # dp.plot_points(x, pl, labels=y, lbl_color_map={0: "grey", 1: "red"}) dp.plot_points(x[y==0, :], pl, labels=y[y==0], defaultcol="grey") dp.plot_points(x[y==1, :], pl, labels=y[y==1], defaultcol="red", s=26, linewidths=1.5) if plot_regions: # plot the isolation forest tree regions axis_lims = (plt.xlim(), plt.ylim()) for i, regions in enumerate(forest.regions_in_forest): for region in regions: region = region.region plot_rect_region(pl, region, regcols[i % len(regcols)], axis_lims) dp.close() def prepare_forest_aad_debug_args(): datasets = ["abalone", "ann_thyroid_1v3", "cardiotocography_1", "covtype_sub", "kddcup_sub", "mammography_sub", "shuttle_sub", "yeast", "toy", "toy2"] dataset = datasets[9] datapath = "./datasets/anomaly/%s/fullsamples/%s_1.csv" % (dataset, dataset) outputdir = "./temp" budget = 35 n_runs = 2 inference_type = AAD_RSFOREST # inference_type = AAD_HSTREES # inference_type = AAD_IFOREST sigma2 = 0.5 n_jobs = 4 add_leaves_only = False plot2D = True streaming = True stream_window = 64 allow_stream_update = True if inference_type == AAD_IFOREST: n_trees = 100 forest_max_depth = 100 score_type = IFOR_SCORE_TYPE_CONST ensemble_score = ENSEMBLE_SCORE_LINEAR Ca = 100. Cx = 0.001 elif inference_type == AAD_HSTREES: n_trees = 25 forest_max_depth = 7 score_type = HST_SCORE_TYPE ensemble_score = ENSEMBLE_SCORE_LINEAR Ca = 1. Cx = 0.001 elif inference_type == AAD_RSFOREST: n_trees = 30 forest_max_depth = 7 score_type = RSF_LOG_SCORE_TYPE # score_type = RSF_SCORE_TYPE # score_type = ORIG_TREE_SCORE_TYPE ensemble_score = ENSEMBLE_SCORE_LINEAR Ca = 1. Cx = 0.001 else: raise ValueError("Invalid inference type %s" % inference_type) args = get_forest_aad_args(dataset=dataset, n_trees=n_trees, detector_type=inference_type, forest_add_leaf_nodes_only=add_leaves_only, forest_score_type=score_type, forest_max_depth=forest_max_depth, ensemble_score=ensemble_score, sigma2=sigma2, Ca=Ca, Cx=Cx, budget=budget, reruns=n_runs, n_jobs=n_jobs, log_file="./temp/aad.log", plot2D=plot2D, streaming=streaming, stream_window=stream_window, allow_stream_update=allow_stream_update) args.datafile = datapath args.resultsdir = os.path.join(outputdir, args.dataset, "%s_trees%d_samples%d_q%d_bd%d_nscore%d%s_tau%1.2f_sig%4.3f_ca%1.0f_cx%4.3f_%s%s%s" % (detector_types[args.detector_type], args.ifor_n_trees, args.ifor_n_samples, args.querytype, args.budget, args.forest_score_type, "" if not args.forest_add_leaf_nodes_only else "_leaf", args.tau, args.sigma2, args.Ca, args.Cx, ensemble_score_names[ensemble_score], "" if args.detector_type == AAD_IFOREST else "_d%d" % args.forest_max_depth, "_stream" if streaming else "")) dir_create(args.resultsdir) return args
mit
apdavison/IzhikevichModel
PyNN/izhikevich2004.py
1
15657
""" This script reproduces Fig. 1 of Izhikevich (2004). Original implementation references: Izhikevich E.M. (2004) Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks, 15:1063-1070 (special issue on temporal coding) Izhikevich E.M. (2003) Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks, 14:1569- 1572 http://www.izhikevich.org/publications/whichmod.htm http://izhikevich.org/publications/figure1.m See http://www.opensourcebrain.org/projects/izhikevichmodel/wiki for info on issues with the current implementation. Usage: python izhikevich2004.py <simulator> where <simulator> is neuron, nest, brian, or another PyNN backend simulator Requirements: PyNN 0.8 and one or more PyNN-supported simulators Units: all times are in milliseconds, voltages in millivolts and currents in nanoamps Version 0.1 - original script written by Vitor Chaud during Google Summer of Code 2013 Version 0.2 - script condensed and updated to use latest development version of PyNN by Andrew Davison, February and September 2014 :copyright: Copyright 2013-2014 Vitor Chaud, Andrew Davison and Padraig Gleeson :license: Modified BSD, see LICENSE for details. """ from __future__ import division import os import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from pyNN.utility import get_simulator, normalized_filename global_time_step = 0.01 plt.rcParams.update({ 'lines.linewidth': 0.5, 'legend.fontsize': 'small', 'axes.titlesize': 'small', 'font.size': 6, 'savefig.dpi': 200, }) def run_simulation(time_step=global_time_step, a=0.02, b=0.2, c=-65.0, d=6.0, u_init=None, v_init=-70.0, waveform=None, t_stop=100.0, title="", scalebar_level=0, label_scalebar=False): """ Run a simulation of a single neuron. Arguments: time_step - time step used in solving the differential equations a - time scale of the recovery variable u b - sensitivity of u to the subthreshold fluctuations of the membrane potential v c - after-spike reset value of v d - after-spike reset of u u_init - initial value of u v_init - initial value of v waveform - a tuple of two NumPy arrays, containing time and amplitude data for the injected current t_stop - duration of the simulation title - a title to be added to the figure panel for this simulation scalebar_level - a value between 0 and 1, controlling the vertical placement of the scalebar label_scalebar - True or False, whether to add a label to the scalebar """ global j, fig, gs # create a neuron and current source sim.setup(timestep=time_step, min_delay=time_step) if u_init is None: u_init = b * v_init initialValues = {'u': u_init, 'v': v_init} cell_type = sim.Izhikevich(a=a, b=b, c=c, d=d, i_offset=0.0) neuron = sim.create(cell_type) neuron.initialize(**initialValues) neuron.record('v') times, amps = waveform injectedCurrent = sim.StepCurrentSource(times=times, amplitudes=amps) injectedCurrent.inject_into(neuron) # run the simulation and retrieve the recorded data sim.run(t_stop) data = neuron.get_data().segments[0] # plot the membrane potential and injected current gs1 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[j//4, j%4], height_ratios=[8, 1], hspace=0.0) ax1 = plt.subplot(gs1[0]) ax2 = plt.subplot(gs1[1]) j += 1 for ax in (ax1, ax2): ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.spines['left'].set_color('None') ax.spines['right'].set_color('None') ax.spines['bottom'].set_color('None') ax.spines['top'].set_color('None') ax.set_xlim(0.0, t_stop) ax1.set_title(title) vm = data.filter(name='v')[0] i_times, i_vars = stepify(times, amps) ax1.plot(vm.times, vm) ax1.set_ylim(-90, 30) ax2.plot(i_times, i_vars, 'g') ymin, ymax = amps.min(), amps.max() padding = (ymax - ymin)/10 ax2.set_ylim(ymin - padding, ymax + padding) # scale bar scalebar_y = ymin + (ymax - ymin) * scalebar_level ax2.plot([t_stop - 20, t_stop], [scalebar_y, scalebar_y], color='k', linestyle='-', linewidth=1) if label_scalebar: ax.text(t_stop, ymin + padding, "20 ms", fontsize=4, horizontalalignment='right') plt.show(block=False) fig.canvas.draw() def step(amplitude, t_stop): """ Generate the waveform for a current that starts at zero and is stepped up to the given amplitude at time t_stop/10. """ times = np.array([0, t_stop/10, t_stop]) amps = np.array([0, amplitude, amplitude]) return times, amps def pulse(amplitude, onsets, width, t_stop, baseline=0.0): """ Generate the waveform for a series of current pulses. Arguments: amplitude - absolute current value during each pulse onsets - a list or array of times at which pulses begin width - duration of each pulse t_stop - total duration of the waveform baseline - the current value before, between and after pulses. """ times = [0] amps = [baseline] for onset in onsets: times += [onset, onset + width] amps += [amplitude, baseline] times += [t_stop] amps += [baseline] return np.array(times), np.array(amps) def ramp(gradient, onset, t_stop, baseline=0.0, time_step=global_time_step, t_start=0.0): """ Generate the waveform for a current which is initially constant and then increases linearly with time. Arguments: gradient - gradient of the ramp onset - time at which the ramp begins t_stop - total duration of the waveform baseline - current value before the ramp time_step - interval between increments in the ramp current t_start - time at which the waveform begins (used to construct waveforms containing multiple ramps). """ if onset > t_start: times = np.hstack((np.array((t_start, onset)), # flat part np.arange(onset + time_step, t_stop + time_step, time_step))) # ramp part else: times = np.arange(t_start, t_stop + time_step, time_step) amps = baseline + gradient*(times - onset) * (times > onset) return times, amps def stepify(times, values): """ Generate an explicitly-stepped version of a time series. """ new_times = np.empty((2*times.size - 1,)) new_values = np.empty_like(new_times) new_times[::2] = times new_times[1::2] = times[1:] new_values[::2] = values new_values[1::2] = values[:-1] return new_times, new_values # == Get command-line options, import simulator backend ===================== sim, options = get_simulator() # == Initialize figure ====================================================== j = 0 plt.ion() fig = plt.figure(1, facecolor='white', figsize=(6, 6)) gs = gridspec.GridSpec(5, 4) gs.update(hspace=0.5, wspace=0.4) # == Sub-plot A: Tonic spiking ============================================== t_stop = 100.0 run_simulation(a=0.02, b=0.2, c=-65.0, d=6.0, v_init=-70.0, waveform=step(0.014, t_stop), t_stop=t_stop, title='(A) Tonic spiking', label_scalebar=True) # == Sub-plot B: Phasic spiking ============================================= t_stop = 200.0 run_simulation(a=0.02, b=0.25, c=-65.0, d=6.0, v_init=-64.0, waveform=step(0.0005, t_stop), t_stop=t_stop, title='(B) Phasic spiking') # == Sub-plot C: Tonic bursting ============================================= _stop = 220.0 run_simulation(a=0.02, b=0.2, c=-50.0, d=2.0, v_init=-70.0, waveform=step(0.015, t_stop), t_stop=t_stop, title='(C) Tonic bursting') # == Sub-plot D: Phasic bursting ============================================ t_stop = 200.0 run_simulation(a=0.02, b=0.25, c=-55.0, d=0.05, v_init=-64.0, waveform=step(0.0006, t_stop), t_stop=t_stop, title='(D) Phasic bursting') # == Sub-plot E: Mixed mode ================================================= t_stop = 160.0 run_simulation(a=0.02, b=0.2, c=-55.0, d=4.0, v_init=-70.0, waveform=step(0.01, t_stop), t_stop=t_stop, title='(E) Mixed mode') # == Sub-plot F: Spike Frequency Adaptation (SFA) =========================== t_stop = 85.0 run_simulation(a=0.01, b=0.2, c=-65.0, d=8.0, v_init=-70.0, waveform=step(0.03, t_stop), t_stop=t_stop, title='(F) SFA') # == Sub-plot G: Class 1 excitable ========================================== ''' Note: This simulation is supposed to use a different parameterization of the model, i.e. V' = tau*(0.04*V^2 + 4.1*V + 108 -u + I) as opposed to V' = tau*(0.04*V^2 + 5*V + 140 - u + I) The alternative parameterization is not currently available in PyNN, therefore the results of this simulation are not expected to match the original figure. ''' t_stop = 300.0 run_simulation(a=0.02, b=0.2, c=-65.0, d=6.0, v_init=-70.0, waveform=ramp(0.000075, 30.0, t_stop), t_stop=t_stop, title='(G) Class 1 excitable') # == Sub-plot H: Class 2 excitable ========================================== t_stop = 300.0 run_simulation(a=0.2, b=0.26, c=-65.0, d=0.0, v_init=-64.0, waveform=ramp(0.000015, 30.0, t_stop, baseline=-0.0005), t_stop=t_stop, title='(H) Class 2 excitable') # == Sub-plot I: Spike latency ============================================== t_stop = 100.0 run_simulation(a=0.02, b=0.2, c=-65.0, d=6.0, v_init=-70.0, waveform=pulse(0.00671, # 0.00704 in original [10], 3, t_stop), t_stop=t_stop, title='(I) Spike latency', scalebar_level=0.5) # == Sub-plot J: Subthreshold oscillation =================================== t_stop = 200.0 run_simulation(a=0.05, b=0.26, c=-60.0, d=0.0, v_init=-62.0, waveform=pulse(0.002, [20], 5, t_stop), t_stop=t_stop, title='(J) Subthreshold oscillation', scalebar_level=0.5) # == Sub-plot K: Resonator ================================================== t_stop = 400.0 T1 = t_stop / 10 T2 = T1 + 20 T3 = 0.7 * t_stop T4 = T3 + 40 run_simulation(a=0.1, b=0.26, c=-60.0, d=-1.0, v_init=-62.0, waveform=pulse(0.00065, [T1, T2, T3, T4], 4, t_stop), t_stop=t_stop, title='(K) Resonator', scalebar_level=0.5) # == Sub-plot L: Integrator ================================================= ''' Note: This simulation is supposed to use a different parameterization of the model, i.e. V' = tau*(0.04*V^2 + 4.1*V + 108 -u + I) as opposed to V' = tau*(0.04*V^2 + 5*V + 140 - u + I) The alternative parameterization is not currently available in PyNN, therefore the results of this simulation are not expected to match the original figure. ''' t_stop = 100.0 T1 = t_stop / 11 T2 = T1 + 5 T3 = 0.7 * t_stop T4 = T3 + 10 run_simulation(a=0.02, b=-0.1, c=-55.0, d=6.0, v_init=-60.0, waveform=pulse(0.009, [T1, T2, T3, T4], 2, t_stop), t_stop=t_stop, title='(L) Integrator', scalebar_level=0.5) # == Sub-plot M: Rebound spike ============================================== t_stop = 200.0 run_simulation(a=0.03, b=0.25, c=-60.0, d=4.0, v_init=-64.0, waveform=pulse(-0.015, [20], 5, t_stop), t_stop=t_stop, title='(M) Rebound spike') # == Sub-plot N: Rebound burst ============================================== t_stop = 200.0 run_simulation(a=0.03, b=0.25, c=-52.0, d=0.0, v_init=-64.0, waveform=pulse(-0.015, [20], 5, t_stop), t_stop=t_stop, title='(N) Rebound burst') # == Sub-plot O: Threshold variability ====================================== t_stop = 100.0 times = np.array([0, 10, 15, 70, 75, 80, 85, t_stop]) amps = np.array([0, 0.001, 0, -0.006, 0, 0.001, 0, 0]) run_simulation(a=0.03, b=0.25, c=-60.0, d=4.0, v_init=-64.0, waveform=(times, amps), t_stop=t_stop, title='(O) Threshold variability') # == Sub-plot P: Bistability ================================================ t_stop = 300.0 T1 = t_stop/8 T2 = 208 # 216.0 in original run_simulation(a=0.1, b=0.26, c=-60.0, d=0.0, v_init=-61.0, waveform=pulse(0.00124, [T1, T2], 5, t_stop, baseline=0.00024), t_stop=t_stop, title='(P) Bistability', scalebar_level=0.5) # == Sub-plot Q: Depolarizing after-potential =============================== t_stop = 50.0 run_simulation(a=1.0, b=0.18, # 0.2 in original c=-60.0, d=-21.0, v_init=-70.0, waveform=pulse(0.02, [9], 2, t_stop), t_stop=t_stop, title='(Q) DAP', scalebar_level=0.5) # == Sub-plot R: Accomodation =============================================== ''' Note: This simulation is supposed to use a different parameterization of the model, i.e. u' = tau*a*(b*(V + 65)) as opposed to u' = tau*a*(b*V - u) The alternative parameterization is not currently available in PyNN, therefore the results of this simulation are not expected to match the original figure. ''' t_stop = 400.0 parts = (ramp(0.00004, 0.0, 200.0), (np.array([200.0 + global_time_step, 300.0 - global_time_step]), np.array([0.0, 0.0])), ramp(0.00032, 300.0, 312.5, t_start=300.0), (np.array([312.5 + global_time_step, t_stop]), np.array([0.0, 0.0]))) totalTimes, totalAmps = np.hstack(parts) run_simulation(a=0.02, b=1.0, c=-55.0, d=4.0, v_init=-65.0, u_init=-16.0, waveform=(totalTimes, totalAmps), t_stop=t_stop, title='(R) Accomodation', scalebar_level=0.5) # == Sub-plot S: Inhibition-induced spiking ================================= t_stop = 350.0 run_simulation(a=-0.02, b=-1.0, c=-60.0, d=8.0, v_init=-63.8, waveform=pulse(0.075, [50], 170, # 200 in original t_stop, baseline=0.08), t_stop=t_stop, title='(S) Inhibition-induced spiking') # == Sub-plot T: Inhibition-induced bursting ================================ ''' Modifying parameter d from -2.0 to -0.7 in order to reproduce Fig. 1 ''' t_stop = 350.0 run_simulation(a=-0.026, b=-1.0, c=-45.0, d=-0.7, v_init=-63.8, waveform=pulse(0.075, [50], 200, t_stop, baseline=0.08), t_stop=t_stop, title='(T) Inhibition-induced bursting') # == Export figure in PNG format ============================================ filename = normalized_filename("results", "izhikevich2004", "png", options.simulator) try: os.makedirs(os.path.dirname(filename)) except OSError: pass fig.savefig(filename)
bsd-3-clause
adamgreenhall/scikit-learn
examples/ensemble/plot_voting_decision_regions.py
230
2386
""" ================================================== Plot the decision boundaries of a VotingClassifier ================================================== Plot the decision boundaries of a `VotingClassifier` for two features of the Iris dataset. Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`DecisionTreeClassifier`, `KNeighborsClassifier`, and `SVC`) and used to initialize a soft-voting `VotingClassifier` with weights `[2, 1, 2]`, which means that the predicted probabilities of the `DecisionTreeClassifier` and `SVC` count 5 times as much as the weights of the `KNeighborsClassifier` classifier when the averaged probability is calculated. """ print(__doc__) from itertools import product import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # Loading some example data iris = datasets.load_iris() X = iris.data[:, [0, 2]] y = iris.target # Training classifiers clf1 = DecisionTreeClassifier(max_depth=4) clf2 = KNeighborsClassifier(n_neighbors=7) clf3 = SVC(kernel='rbf', probability=True) eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 2]) clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) eclf.fit(X, y) # Plotting decision regions x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8)) for idx, clf, tt in zip(product([0, 1], [0, 1]), [clf1, clf2, clf3, eclf], ['Decision Tree (depth=4)', 'KNN (k=7)', 'Kernel SVM', 'Soft Voting']): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4) axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) axarr[idx[0], idx[1]].set_title(tt) plt.show()
bsd-3-clause
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/tests/plotting/test_series.py
7
30920
#!/usr/bin/env python # coding: utf-8 import nose import itertools from datetime import datetime import pandas as pd from pandas import Series, DataFrame, date_range from pandas.compat import range, lrange import pandas.util.testing as tm from pandas.util.testing import slow import numpy as np from numpy.random import randn import pandas.tools.plotting as plotting from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works, _skip_if_no_scipy_gaussian_kde, _ok_for_gaussian_kde) """ Test cases for Series.plot """ @tm.mplskip class TestSeriesPlots(TestPlotBase): def setUp(self): TestPlotBase.setUp(self) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) axes = _check_plot_works(self.ts.plot, rot=0) self._check_ticks_props(axes, xrot=0) ax = _check_plot_works(self.ts.plot, style='.', logy=True) self._check_ax_scales(ax, yaxis='log') ax = _check_plot_works(self.ts.plot, style='.', logx=True) self._check_ax_scales(ax, xaxis='log') ax = _check_plot_works(self.ts.plot, style='.', loglog=True) self._check_ax_scales(ax, xaxis='log', yaxis='log') _check_plot_works(self.ts[:10].plot.bar) _check_plot_works(self.ts.plot.area, stacked=False) _check_plot_works(self.iseries.plot) for kind in ['line', 'bar', 'barh', 'kde', 'hist', 'box']: if not _ok_for_gaussian_kde(kind): continue _check_plot_works(self.series[:5].plot, kind=kind) _check_plot_works(self.series[:10].plot.barh) ax = _check_plot_works(Series(randn(10)).plot.bar, color='black') self._check_colors([ax.patches[0]], facecolors=['black']) # GH 6951 ax = _check_plot_works(self.ts.plot, subplots=True) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1)) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1)) self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) @slow def test_plot_figsize_and_title(self): # figsize and title ax = self.series.plot(title='Test', figsize=(16, 8)) self._check_text_labels(ax.title, 'Test') self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8)) def test_dont_modify_rcParams(self): # GH 8242 if self.mpl_ge_1_5_0: key = 'axes.prop_cycle' else: key = 'axes.color_cycle' colors = self.plt.rcParams[key] Series([1, 2, 3]).plot() self.assertEqual(colors, self.plt.rcParams[key]) def test_ts_line_lim(self): ax = self.ts.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() self.assertEqual(xmin, lines[0].get_data(orig=False)[0][0]) self.assertEqual(xmax, lines[0].get_data(orig=False)[0][-1]) tm.close() ax = self.ts.plot(secondary_y=True) xmin, xmax = ax.get_xlim() lines = ax.get_lines() self.assertEqual(xmin, lines[0].get_data(orig=False)[0][0]) self.assertEqual(xmax, lines[0].get_data(orig=False)[0][-1]) def test_ts_area_lim(self): ax = self.ts.plot.area(stacked=False) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] self.assertEqual(xmin, line[0]) self.assertEqual(xmax, line[-1]) tm.close() # GH 7471 ax = self.ts.plot.area(stacked=False, x_compat=True) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] self.assertEqual(xmin, line[0]) self.assertEqual(xmax, line[-1]) tm.close() tz_ts = self.ts.copy() tz_ts.index = tz_ts.tz_localize('GMT').tz_convert('CET') ax = tz_ts.plot.area(stacked=False, x_compat=True) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] self.assertEqual(xmin, line[0]) self.assertEqual(xmax, line[-1]) tm.close() ax = tz_ts.plot.area(stacked=False, secondary_y=True) xmin, xmax = ax.get_xlim() line = ax.get_lines()[0].get_data(orig=False)[0] self.assertEqual(xmin, line[0]) self.assertEqual(xmax, line[-1]) def test_label(self): s = Series([1, 2]) ax = s.plot(label='LABEL', legend=True) self._check_legend_labels(ax, labels=['LABEL']) self.plt.close() ax = s.plot(legend=True) self._check_legend_labels(ax, labels=['None']) self.plt.close() # get name from index s.name = 'NAME' ax = s.plot(legend=True) self._check_legend_labels(ax, labels=['NAME']) self.plt.close() # override the default ax = s.plot(legend=True, label='LABEL') self._check_legend_labels(ax, labels=['LABEL']) self.plt.close() # Add lebel info, but don't draw ax = s.plot(legend=False, label='LABEL') self.assertEqual(ax.get_legend(), None) # Hasn't been drawn ax.legend() # draw it self._check_legend_labels(ax, labels=['LABEL']) def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) self.assert_numpy_array_equal(np.delete(masked.data, 2), exp) self.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) self.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) self.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) self.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) def test_line_use_index_false(self): s = Series([1, 2, 3], index=['a', 'b', 'c']) s.index.name = 'The Index' ax = s.plot(use_index=False) label = ax.get_xlabel() self.assertEqual(label, '') ax2 = s.plot.bar(use_index=False) label2 = ax2.get_xlabel() self.assertEqual(label2, '') @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot.bar(log=True) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) tm.close() ax = Series([200, 500]).plot.barh(log=True) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected) tm.close() # GH 9905 expected = np.array([1.0e-03, 1.0e-02, 1.0e-01, 1.0e+00]) if not self.mpl_le_1_2_1: expected = np.hstack((1.0e-04, expected, 1.0e+01)) if self.mpl_ge_2_0_0: expected = np.hstack((1.0e-05, expected)) ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='bar') ymin = 0.0007943282347242822 if self.mpl_ge_2_0_0 else 0.001 ymax = 0.12589254117941673 if self.mpl_ge_2_0_0 else .10000000000000001 res = ax.get_ylim() self.assertAlmostEqual(res[0], ymin) self.assertAlmostEqual(res[1], ymax) tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) tm.close() ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind='barh') res = ax.get_xlim() self.assertAlmostEqual(res[0], ymin) self.assertAlmostEqual(res[1], ymax) tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected) @slow def test_bar_ignore_index(self): df = Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) ax = df.plot.bar(use_index=False) self._check_text_labels(ax.get_xticklabels(), ['0', '1', '2', '3']) def test_rotation(self): df = DataFrame(randn(5, 5)) # Default rot 0 axes = df.plot() self._check_ticks_props(axes, xrot=0) axes = df.plot(rot=30) self._check_ticks_props(axes, xrot=30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_pie_series(self): # if sum of values is less than 1.0, pie handle them as rate and draw # semicircle. series = Series(np.random.randint(1, 5), index=['a', 'b', 'c', 'd', 'e'], name='YLABEL') ax = _check_plot_works(series.plot.pie) self._check_text_labels(ax.texts, series.index) self.assertEqual(ax.get_ylabel(), 'YLABEL') # without wedge labels ax = _check_plot_works(series.plot.pie, labels=None) self._check_text_labels(ax.texts, [''] * 5) # with less colors than elements color_args = ['r', 'g', 'b'] ax = _check_plot_works(series.plot.pie, colors=color_args) color_expected = ['r', 'g', 'b', 'r', 'g'] self._check_colors(ax.patches, facecolors=color_expected) # with labels and colors labels = ['A', 'B', 'C', 'D', 'E'] color_args = ['r', 'g', 'b', 'c', 'm'] ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args) self._check_text_labels(ax.texts, labels) self._check_colors(ax.patches, facecolors=color_args) # with autopct and fontsize ax = _check_plot_works(series.plot.pie, colors=color_args, autopct='%.2f', fontsize=7) pcts = ['{0:.2f}'.format(s * 100) for s in series.values / float(series.sum())] iters = [iter(series.index), iter(pcts)] expected_texts = list(next(it) for it in itertools.cycle(iters)) self._check_text_labels(ax.texts, expected_texts) for t in ax.texts: self.assertEqual(t.get_fontsize(), 7) # includes negative value with tm.assertRaises(ValueError): series = Series([1, 2, 0, 4, -1], index=['a', 'b', 'c', 'd', 'e']) series.plot.pie() # includes nan series = Series([1, 2, np.nan, 4], index=['a', 'b', 'c', 'd'], name='YLABEL') ax = _check_plot_works(series.plot.pie) self._check_text_labels(ax.texts, ['a', 'b', '', 'd']) def test_pie_nan(self): s = Series([1, np.nan, 1, 1]) ax = s.plot.pie(legend=True) expected = ['0', '', '2', '3'] result = [x.get_text() for x in ax.texts] self.assertEqual(result, expected) @slow def test_hist_df_kwargs(self): df = DataFrame(np.random.randn(10, 2)) ax = df.plot.hist(bins=5) self.assertEqual(len(ax.patches), 10) @slow def test_hist_df_with_nonnumerics(self): # GH 9853 with tm.RNGContext(1): df = DataFrame( np.random.randn(10, 4), columns=['A', 'B', 'C', 'D']) df['E'] = ['x', 'y'] * 5 ax = df.plot.hist(bins=5) self.assertEqual(len(ax.patches), 20) ax = df.plot.hist() # bins=10 self.assertEqual(len(ax.patches), 40) @slow def test_hist_legacy(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month) with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5) fig, ax = self.plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = self.plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_bins_legacy(self): df = DataFrame(np.random.randn(10, 2)) ax = df.hist(bins=2)[0][0] self.assertEqual(len(ax.patches), 2) @slow def test_hist_layout(self): df = self.hist_df with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): df = self.hist_df # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1)) self._check_axes_shape(axes, axes_num=2, layout=(3, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1)) self._check_axes_shape(axes, axes_num=4, layout=(3, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=4, layout=(1, 4)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7)) self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7)) @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.axes if self.mpl_ge_1_5_0 else fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_hist_secondary_legend(self): # GH 9610 df = DataFrame(np.random.randn(30, 4), columns=list('abcd')) # primary -> secondary ax = df['a'].plot.hist(legend=True) df['b'].plot.hist(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b (right)']) self.assertTrue(ax.get_yaxis().get_visible()) self.assertTrue(ax.right_ax.get_yaxis().get_visible()) tm.close() # secondary -> secondary ax = df['a'].plot.hist(legend=True, secondary_y=True) df['b'].plot.hist(ax=ax, legend=True, secondary_y=True) # both legends are draw on left ax # left axis must be invisible, right axis must be visible self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b (right)']) self.assertFalse(ax.left_ax.get_yaxis().get_visible()) self.assertTrue(ax.get_yaxis().get_visible()) tm.close() # secondary -> primary ax = df['a'].plot.hist(legend=True, secondary_y=True) # right axes is returned df['b'].plot.hist(ax=ax, legend=True) # both legends are draw on left ax # left and right axis must be visible self._check_legend_labels(ax.left_ax, labels=['a (right)', 'b']) self.assertTrue(ax.left_ax.get_yaxis().get_visible()) self.assertTrue(ax.get_yaxis().get_visible()) tm.close() @slow def test_df_series_secondary_legend(self): # GH 9779 df = DataFrame(np.random.randn(30, 3), columns=list('abc')) s = Series(np.random.randn(30), name='x') # primary -> secondary (without passing ax) ax = df.plot() s.plot(legend=True, secondary_y=True) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)']) self.assertTrue(ax.get_yaxis().get_visible()) self.assertTrue(ax.right_ax.get_yaxis().get_visible()) tm.close() # primary -> secondary (with passing ax) ax = df.plot() s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left and right axis must be visible self._check_legend_labels(ax, labels=['a', 'b', 'c', 'x (right)']) self.assertTrue(ax.get_yaxis().get_visible()) self.assertTrue(ax.right_ax.get_yaxis().get_visible()) tm.close() # seconcary -> secondary (without passing ax) ax = df.plot(secondary_y=True) s.plot(legend=True, secondary_y=True) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)'] self._check_legend_labels(ax.left_ax, labels=expected) self.assertFalse(ax.left_ax.get_yaxis().get_visible()) self.assertTrue(ax.get_yaxis().get_visible()) tm.close() # secondary -> secondary (with passing ax) ax = df.plot(secondary_y=True) s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a (right)', 'b (right)', 'c (right)', 'x (right)'] self._check_legend_labels(ax.left_ax, expected) self.assertFalse(ax.left_ax.get_yaxis().get_visible()) self.assertTrue(ax.get_yaxis().get_visible()) tm.close() # secondary -> secondary (with passing ax) ax = df.plot(secondary_y=True, mark_right=False) s.plot(ax=ax, legend=True, secondary_y=True) # both legends are dran on left ax # left axis must be invisible and right axis must be visible expected = ['a', 'b', 'c', 'x (right)'] self._check_legend_labels(ax.left_ax, expected) self.assertFalse(ax.left_ax.get_yaxis().get_visible()) self.assertTrue(ax.get_yaxis().get_visible()) tm.close() @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_kde(self): ax = self.ts.plot.hist(logy=True) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() # ticks are values, thus ticklabels are blank self._check_text_labels(xlabels, [''] * len(xlabels)) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() _check_plot_works(self.ts.plot.kde) _check_plot_works(self.ts.plot.density) ax = self.ts.plot.kde(logy=True) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() self._check_text_labels(xlabels, [''] * len(xlabels)) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) @slow def test_kde_kwargs(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() from numpy import linspace _check_plot_works(self.ts.plot.kde, bw_method=.5, ind=linspace(-100, 100, 20)) _check_plot_works(self.ts.plot.density, bw_method=.5, ind=linspace(-100, 100, 20)) ax = self.ts.plot.kde(logy=True, bw_method=.5, ind=linspace(-100, 100, 20)) self._check_ax_scales(ax, yaxis='log') self._check_text_labels(ax.yaxis.get_label(), 'Density') @slow def test_kde_missing_vals(self): tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() s = Series(np.random.uniform(size=50)) s[0] = np.nan axes = _check_plot_works(s.plot.kde) # check if the values have any missing values # GH14821 self.assertTrue(any(~np.isnan(axes.lines[0].get_xdata())), msg='Missing Values not dropped') @slow def test_hist_kwargs(self): ax = self.ts.plot.hist(bins=5) self.assertEqual(len(ax.patches), 5) self._check_text_labels(ax.yaxis.get_label(), 'Frequency') tm.close() if self.mpl_ge_1_3_1: ax = self.ts.plot.hist(orientation='horizontal') self._check_text_labels(ax.xaxis.get_label(), 'Frequency') tm.close() ax = self.ts.plot.hist(align='left', stacked=True) tm.close() @slow def test_hist_kde_color(self): ax = self.ts.plot.hist(logy=True, bins=10, color='b') self._check_ax_scales(ax, yaxis='log') self.assertEqual(len(ax.patches), 10) self._check_colors(ax.patches, facecolors=['b'] * 10) tm._skip_if_no_scipy() _skip_if_no_scipy_gaussian_kde() ax = self.ts.plot.kde(logy=True, color='r') self._check_ax_scales(ax, yaxis='log') lines = ax.get_lines() self.assertEqual(len(lines), 1) self._check_colors(lines, ['r']) @slow def test_boxplot_series(self): ax = self.ts.plot.box(logy=True) self._check_ax_scales(ax, yaxis='log') xlabels = ax.get_xticklabels() self._check_text_labels(xlabels, [self.ts.name]) ylabels = ax.get_yticklabels() self._check_text_labels(ylabels, [''] * len(ylabels)) @slow def test_kind_both_ways(self): s = Series(range(3)) for kind in plotting._common_kinds + plotting._series_kinds: if not _ok_for_gaussian_kde(kind): continue s.plot(kind=kind) getattr(s.plot, kind)() @slow def test_invalid_plot_data(self): s = Series(list('abcd')) for kind in plotting._common_kinds: if not _ok_for_gaussian_kde(kind): continue with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) for kind in plotting._common_kinds: if not _ok_for_gaussian_kde(kind): continue _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) for kind in plotting._common_kinds: if not _ok_for_gaussian_kde(kind): continue with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @slow def test_errorbar_plot(self): s = Series(np.arange(10), name='x') s_err = np.random.randn(10) d_err = DataFrame(randn(10, 2), index=s.index, columns=['x', 'y']) # test line and bar plots kinds = ['line', 'bar'] for kind in kinds: ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=s_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, yerr=d_err, kind=kind) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind) self._check_has_errorbars(ax, xerr=1, yerr=1) ax = _check_plot_works(s.plot, xerr=s_err) self._check_has_errorbars(ax, xerr=1, yerr=0) # test time series plotting ix = date_range('1/1/2000', '1/1/2001', freq='M') ts = Series(np.arange(12), index=ix, name='x') ts_err = Series(np.random.randn(12), index=ix) td_err = DataFrame(randn(12, 2), index=ix, columns=['x', 'y']) ax = _check_plot_works(ts.plot, yerr=ts_err) self._check_has_errorbars(ax, xerr=0, yerr=1) ax = _check_plot_works(ts.plot, yerr=td_err) self._check_has_errorbars(ax, xerr=0, yerr=1) # check incorrect lengths and types with tm.assertRaises(ValueError): s.plot(yerr=np.arange(11)) s_err = ['zzz'] * 10 # in mpl 1.5+ this is a TypeError with tm.assertRaises((ValueError, TypeError)): s.plot(yerr=s_err) def test_table(self): _check_plot_works(self.series.plot, table=True) _check_plot_works(self.series.plot, table=self.series) @slow def test_series_grid_settings(self): # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 self._check_grid_settings(Series([1, 2, 3]), plotting._series_kinds + plotting._common_kinds) @slow def test_standard_colors(self): for c in ['r', 'red', 'green', '#FF0000']: result = plotting._get_standard_colors(1, color=c) self.assertEqual(result, [c]) result = plotting._get_standard_colors(1, color=[c]) self.assertEqual(result, [c]) result = plotting._get_standard_colors(3, color=c) self.assertEqual(result, [c] * 3) result = plotting._get_standard_colors(3, color=[c]) self.assertEqual(result, [c] * 3) @slow def test_standard_colors_all(self): import matplotlib.colors as colors # multiple colors like mediumaquamarine for c in colors.cnames: result = plotting._get_standard_colors(num_colors=1, color=c) self.assertEqual(result, [c]) result = plotting._get_standard_colors(num_colors=1, color=[c]) self.assertEqual(result, [c]) result = plotting._get_standard_colors(num_colors=3, color=c) self.assertEqual(result, [c] * 3) result = plotting._get_standard_colors(num_colors=3, color=[c]) self.assertEqual(result, [c] * 3) # single letter colors like k for c in colors.ColorConverter.colors: result = plotting._get_standard_colors(num_colors=1, color=c) self.assertEqual(result, [c]) result = plotting._get_standard_colors(num_colors=1, color=[c]) self.assertEqual(result, [c]) result = plotting._get_standard_colors(num_colors=3, color=c) self.assertEqual(result, [c] * 3) result = plotting._get_standard_colors(num_colors=3, color=[c]) self.assertEqual(result, [c] * 3) def test_series_plot_color_kwargs(self): # GH1890 ax = Series(np.arange(12) + 1).plot(color='green') self._check_colors(ax.get_lines(), linecolors=['green']) def test_time_series_plot_color_kwargs(self): # #1890 ax = Series(np.arange(12) + 1, index=date_range( '1/1/2000', periods=12)).plot(color='green') self._check_colors(ax.get_lines(), linecolors=['green']) def test_time_series_plot_color_with_empty_kwargs(self): import matplotlib as mpl if self.mpl_ge_1_5_0: def_colors = self._maybe_unpack_cycler(mpl.rcParams) else: def_colors = mpl.rcParams['axes.color_cycle'] index = date_range('1/1/2000', periods=12) s = Series(np.arange(1, 13), index=index) ncolors = 3 for i in range(ncolors): ax = s.plot() self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors]) def test_xticklabels(self): # GH11529 s = Series(np.arange(10), index=['P%02d' % i for i in range(10)]) ax = s.plot(xticks=[0, 3, 5, 9]) exp = ['P%02d' % i for i in [0, 3, 5, 9]] self._check_text_labels(ax.get_xticklabels(), exp) def test_custom_business_day_freq(self): # GH7222 from pandas.tseries.offsets import CustomBusinessDay s = Series(range(100, 121), index=pd.bdate_range( start='2014-05-01', end='2014-06-01', freq=CustomBusinessDay(holidays=['2014-05-26']))) _check_plot_works(s.plot) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
topotech/AID_tarea1
titanic/main.py
1
9651
# *-* coding: utf-8 *-* import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #Parte a) #pd.options.display.mpl_style = 'default' plt.style.use('ggplot') data = pd.read_csv('data/titanic-train.csv', sep=';') #Parte b) print "\nForma matriz:" + str(data.shape) print "--------------------\n" print "Resumen de los datos:\n" + str(data.describe()) print "--------------------\n" print "Nombres, tipos y cantidad de datos en cada variable:" print data.info() print " =============================================================== \n =============================================================== \n" #Parte c) print "Cola de la data:" print "--------------------\n" print data.tail() print "--------------------\n" print "Cabeza de la data:" print "--------------------\n" print data.head() print "--------------------\n" print "Datos 200-210:" print "--------------------\n" print data[200:210][:] print "--------------------\n" print "Cola de la data filtrada:" print "--------------------\n" print data[['Sex','Survived']].tail() print "--------------------\n" print "Cabeza de la data filtrada:" print "--------------------\n" print data[['Sex','Survived']].head() print "--------------------\n" print "Datos 200-210 filtrados:" print "--------------------\n" print data[['Sex','Survived']][200:210] print "--------------------\n" print " =============================================================== \n =============================================================== \n" #Parte d) print "Número de personas por sexo:" print data['Sex'].value_counts() print'' print "Número de sobrevivientes por sexo" print data[data['Survived']==1].groupby('Sex').Survived.count() print'' print "% personas sobrevivientes por sexo (usando la media)" print data.groupby('Sex').Survived.mean() print'' print "Data (Survived x Sex)" print data.groupby('Survived')['Sex'].value_counts() print'' print "Data (Sex x Survived)" print data.groupby('Sex')['Survived'].value_counts() print'' print "Renderizando plot..." data.groupby('Sex')['Survived'].value_counts().unstack().plot(kind='bar') plt.show() print "Data porcentual (Survived x Sex)" grouped_props = data.groupby('Survived')['Sex'].value_counts()/\ data.groupby('Survived').size() print grouped_props print "Renderizando plot..." grouped_props.unstack().plot(kind='bar') plt.show() print " =============================================================== \n =============================================================== \n" #Parte e) print "Edad promedio de sobrevivientes y muertos" print data.groupby('Survived')['Age'].mean() print "" print "Cargando boxplots e histograma edad vs supervivencia..." data.boxplot(column='Age',by='Survived') data.hist(column='Age',by='Survived') print "Renderizando plots..." plt.show() print "-----\nCantidad de muertos agrupados por conocimiento de edad:" print "Desconocida:\t" + str(sum(data[data.Survived==0]['Age'].isnull())) print "Conocida:\t\t" + str(sum(data[data.Survived==0]['Age'].notnull())) print "\nDatos de persona más vieja:" print data[data.Age==data['Age'].max()] print " =============================================================== \n =============================================================== \n" #Parte f) # Respuesta a la pregunta final: Una instrucción del tipo 'data[CONDICION][LABEL]' genera una copia de los datos del DataFrame # Por ello se recomienda usar una linea del tipo DataFrame.loc[row_indexer,col_indexer] para modificar los datos por referencia. print "Se establece la media aritmética como el valor de reemplazo para las edades nulas. Ya que es una edad estimada " \ "se utiliza la notación xx.5:\n" M_average_age = float(int(data[data.Sex == 'male']['Age'].mean())) + .5 F_average_age = float(int(data[data.Sex == 'female']['Age'].mean())) + .5 data.loc[(data.Age.isnull()) & (data.Sex =='male'), 'Age'] = M_average_age data.loc[(data.Age.isnull()) & (data.Sex =='female'), 'Age'] = F_average_age print "Nueva edad masculina: " + str(M_average_age) print "Nueva edad femenina: " + str(F_average_age) print " =============================================================== \n =============================================================== \n" #Parte g) #Sabemos por la definición que existe 1º, 2º y 3º clase. Ratificamos: print "Número de clases: " + str(data['Pclass'].unique().size) + "\n" print "De los sobrevivientes: ¿cuántas partes constitutía cada clase?:\n" print data.groupby(['Survived', 'Pclass']).size()/data.groupby(['Survived']).size() print "" print "¿Cuántos sobrevivieron de cada clase porcentualmente?:\n" print data.groupby(['Pclass','Survived']).size()/data.groupby(['Pclass']).size() females = data[data.Sex == 'female'].groupby(['Survived','Pclass']).size()/\ data[data.Sex == 'female'].groupby(['Survived']).size() males = data[data.Sex == 'male'].groupby(['Survived','Pclass']).size()/\ data[data.Sex == 'male'].groupby(['Survived']).size() print "¿Cuál es la proporción de sobreviviente por clase entre los hombres?:\n" print males print "¿Cuál es la proporción de sobreviviente por clase entre las mujeres?:\n" print females males.unstack().plot(kind='bar') females.unstack().plot(kind='bar') plt.show() print " =============================================================== \n =============================================================== \n" #Parte h) print "Predicción con Regla 1 (sobreviven todos los de 1º clase y las mujeres de 2º):" data['prediction'] = 0 #Se predice supervivencia de mujeres y primera clase. Si es mujer y de tercera, se rectifica a 0. data.loc[(data.Sex == 'female') | (data.Pclass == 1), 'prediction'] = 1 print "Precisión:\n" + \ str(data[data.prediction == 1][data.Survived == 1].size/float(data[data.prediction == 1].size)) print "Recall\n" + \ str(data[data.prediction == 1][data.Survived == 1].size/float(data[data.Survived == 1].size)) data.to_csv('predicciones-titanic.csv') print " =============================================================== \n =============================================================== \n" #Parte i) print "Nuevo análisis particionando en 5 clases según costo de pasaje:" _, myBP = data.boxplot(column='Fare', return_type='both') whiskers = [whiskers.get_ydata() for whiskers in myBP["whiskers"]] print "Rango de datos relevantes: ["+str(whiskers[0][1])+","+str(whiskers[1][1])+"]" # Imprime [bigote_inf,bigote_sup] # De la impresión anterior se concluye que los outliers están sobre 65.0 dataFareTyp = data[ data.Fare <= whiskers[1][1] ].copy() dataFareTyp.hist(column='Fare') plt.show() # Analisis de datos dataFareTypSurv = data[(data.Fare <= whiskers[1][1]) & (data.Survived == 1)] dataFareTypDied = data[(data.Fare <= whiskers[1][1]) & (data.Survived == 0)] fig, ax = plt.subplots() sns.distplot(dataFareTypSurv['Fare'], bins=[0, 10, 20, 30, 40, 65] ) #Curva pequeña sns.distplot(dataFareTypDied['Fare'], bins=[0, 10, 20, 30, 40, 65] ) #Curva alta #Muestra nuevo histograma con las nuevas "clases" plt.show() #Se usa dataFareTyp para definir nuevo criterio de clasificación económica dataFareTyp.loc[(dataFareTyp.Fare >= 0) & (dataFareTyp.Fare < 10), 'Pclass'] = 5 dataFareTyp.loc[(dataFareTyp.Fare >= 10) & (dataFareTyp.Fare < 20), 'Pclass'] = 4 dataFareTyp.loc[(dataFareTyp.Fare >= 20) & (dataFareTyp.Fare < 30), 'Pclass'] = 3 dataFareTyp.loc[(dataFareTyp.Fare >= 30) & (dataFareTyp.Fare < 40), 'Pclass'] = 2 dataFareTyp.loc[(dataFareTyp.Fare >= 40) , 'Pclass'] = 1 # Se usa dataFareTyp para definir nuevo criterio de clasificación # Tras observar el histograma, se define que los muertos serán todos de 5º clase... print "Predicción con Regla 2 (Se salvan todos menos 5º clase):" dataFareTyp['prediction'] = 1 data.loc[(data.Pclass == 5) , 'prediction'] = 0 print "Precisión:\n" + \ str(dataFareTyp[dataFareTyp.prediction == 1][dataFareTyp.Survived == 1].size/float(dataFareTyp[dataFareTyp.prediction == 1].size)) print "Recall\n" + \ str(dataFareTyp[dataFareTyp.prediction == 1][dataFareTyp.Survived == 1].size/float(dataFareTyp[dataFareTyp.Survived == 1].size)) print " =============================================================== \n =============================================================== \n" #Parte j) print "Se ponen a prueba las dos reglas de predicción sobre los datos de testing:\n" data = pd.read_csv('data/titanic-test.csv', sep=',') survival = pd.read_csv('data/titanic-gendermodel.csv', sep=',') data = data.merge(survival,on='PassengerId').copy() regla1 = data.copy() regla2 = data.copy() regla1['prediction'] = 0 regla1.loc[(regla1.Sex == 'female') | (regla1.Pclass == 1), 'prediction'] = 1 regla2['prediction'] = 1 regla2.loc[regla2.Fare < 10 , 'prediction'] = 0 print "\nRegla 1\n-------" print "\tPrecisión:\n\t" + \ str(regla1[regla1.prediction == 1][regla1.Survived == 1].size/float(regla1[regla1.prediction == 1].size)) print "\n\tRecall:\n\t" + \ str(regla1[regla1.prediction == 1][regla1.Survived == 1].size/float(regla1[regla1.Survived == 1].size)) + "\n" print "\nRegla 2\n-------" print "\tPrecisión:\n\t" + \ str(regla2[regla2.prediction == 1][regla2.Survived == 1].size/float(regla2[regla2.prediction == 1].size)) print "\n\tRecall:\n\t" + \ str(regla2[regla2.prediction == 1][regla2.Survived == 1].size/float(regla2[regla2.Survived == 1].size)) regla1['prediction'] = 0 regla1.loc[(regla1.Sex == 'female') | (regla1.Pclass == 1), 'prediction'] = 1 regla2['prediction'] = 1 regla2.loc[(regla2.Pclass == 5) , 'prediction'] = 0
unlicense
bartongroup/RATS
extras/F1000_manuscript/Analysis_scripts/fileutilities.py
1
69314
#!/homes/kfroussios/bin/python3 """fileutilities.py Author: Kimon Froussios Compatibility tested: python 3.5.2 Last reviewed: 13/01/2017 This module is a solution for Frequently Performed Generic Tasks that involve multiple files: * repeating a command for a range of files (not currently parallelized), * accessing and restructuring (multiple) delimited files. * miscellaneous stuff. Some of it is auxiliary to the primary functions, some is a legacy of this module's evolution of concept. Some of it could arguably be in different libraries, but I see not reason to inflate the dependencies. I hate sprawling webs of dependencies on non-standard packages more than I dislike some out-of-place functions. The primary purpose of this entire module is to encapsulate frequent generic tasks and related boilerplate code so as to be able to do them from the command line in a single step, instead of implementing specialized code for each variation of the task. The module provides a library of flexible functions as well as a main() implementing the primary use scenarios. Execute with -h in a shell to obtain syntax and help. """ # This module consists of: # - a class for handling lists of files, # - a library of functions that perform generic tasks on multiple files, and # - a main that provides access to most of the above functionality # NOTE about DataFrame indexes and headers: # Although dataframes support row and column labels, these make content manipulations # in the context of this module harder. Instead, any labels present in the text # input are treated as plain rows or columns. These may be optionally dropped or # preserved, but the dataframe in-built labels for columns and rows are reserved # solely for custom use. When appropriate these custom labels will be included in # the output. ####### TODO SUGGESTIONS ####### # # ################################ ######## UPDATES ############### # # 2016-04-13 : Range support added to --cols. Closed-end ranges only. # 2016-04-13 : Get columns by name support added to --cols. # 2016-04-13 : Multiple ranges support added for --loop R. NEW SYNTAX! # 2016-04-13 : Comma separated value support added to TARGET and --cols ONLY! Old syntax also retained. # Comma lists are not practical for other flags as they accept regex strings. # 2016-04-13 : Added option to retain fixed number of metadata lines at the top of the files # --cols, --rndcols and --appnd. # ################################ import os, sys, string, re, subprocess, random, argparse import pandas as pd from builtins import list from collections import Counter import mylogs as ml ##### F U N C T I O N S ##### # http://stackoverflow.com/questions/4836710/does-python-have-a-built-in-function-for-string-natural-sort def natural_sorted(l): """Sort list of numbers/strings in human-friendly order. Args: l(list): A list of strings. Returns: list """ convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] return sorted(l, key = alphanum_key) def expand_fpaths(flist): """Fully expand and absolute-ify the paths of listed files. Does not verify path validity. All paths are expanded. Args: flist[str]: A list/FilesList of files. Returns: [str]: List of expanded paths. """ return [os.path.abspath(os.path.expanduser(str(f))) for f in flist] def are_empty(flist, invalids=True): """List the files that are empty. Args: flist: A list/FilesList of files to probe. invalid(bool): How should invalid paths be reported? (Default True) There is no right or wrong way to classify invalid paths, it is entirely dependent on the context in which the files would be used downstream. Returns: FilesList: List of empty files. """ try: flist.aliases[0] except AttributeError: # If it's a plain list, upgrade it to a FilesList. flist = FilesList(flist) result = FilesList() for i, (myfile, myalias) in flist.enum(): try: if os.path.getsize(myfile) == 0: result.append(myfile, myalias) except OSError: if invalids: result.append(myfile, myalias) return result def dont_exist(flist): """List the files that don't exist. Args: flist: A list/FilesList of files to probe. Returns: FilesList: List of missing files. """ try: flist.aliases[0] except AttributeError: # If it's a plain list, upgrade it to a FilesList. flist = FilesList(flist) result = FilesList() for i, (myfile, myalias) in flist.enum(): if not os.path.exists(myfile): result.append(myfile, myalias) return result def arent_readable(flist): """List inaccessible files. Invalid paths are also reported as inaccessible. Args: flist: A list/FilesList of files to probe. Returns: FilesList: List of inaccessible files. """ try: flist.aliases[0] except AttributeError: # If it's a plain list, upgrade it to a FilesList. flist = FilesList(flist) result = FilesList() for f, (myfile, myalias) in flist.enum(): try: if not os.access(myfile, os.R_OK): result.append(myfile, myalias) except OSError: result.append(myfile, myalias) return result def arent_text(flist, invalids=True): """List the file that are (probably) text. This is achieved by probing the contents and using heuristics to determine the type of those contents. Args: flist: A list/FilesList of files to probe. invalids(bool): Should invalid paths be reported as not-text? (Default True) Returns: FilesList: List of files that are probably not plain text. """ try: flist.aliases[0] except AttributeError: # If it's a plain list, upgrade it to a FilesList. flist = FilesList(flist) result = FilesList() for i, (myfile, myalias) in flist.enum(): try: with open(myfile) as f: if not istext(f.read(1024)): result.append(myfile, myalias) except IOError: if invalids: result.append(myfile, myalias) return result # Helper function, string check. def istext(s): """Check if a string is (probably) text. Use heuristic based on characters contained in the string, adapted from: http://code.activestate.com/recipes/173220-test-if-a-file-or-string-is-text-or-binary/ Args: s(str): A string to test. Returns: bool """ # Copy-pasted. No idea what the code means. text_characters = "".join(list(map(chr, list(range(32, 127)))) + list("\n\r\t\b")) _null_trans = string.maketrans("", "") if "\0" in s: return False if not s: # Empty files/strings are considered text return True # Get the non-text characters (maps a character to itself then # use the 'remove' option to get rid of the text characters.) t = s.translate(_null_trans, text_characters) # If more than 30% non-text characters, then # this is considered a binary file if float(len(t))/float(len(s)) > 0.30: return False return True def slink(flist, aliases=None, dir="./", autoext=True): """Create symbolic links for multiple files. Create a link for each of the listed paths into the specified directory, using the specified aliases. Items in the lists will be matched one for one. If the aliases argument is omitted, the names for the links will be drawn from the aliases attribute of the paths list, if it is a FilesList object. If no aliases exist in either form, the files will be linked in the current or specified directory, using names their current basename. If linking to files of the same name located in different directories, a number will be automatically suffixed to the basename. Args: flist[str]: A list/FilesList of paths to link to. aliases[str]: A list of respective names for the created links. If omitted, the alias attribute of the flist argument will be used, and failing that, the existing basenames will be used. dir(str): The path to the directory in which the links should be placed. (Default "./") autoext(bool): Add the file extensions to the created links, if the links are created from aliases that lack them. (Default True) """ if not aliases: # No link names provided. Try to find them elsewhere or create them. try: # flist is a FilesList and has the aliases attribute. aliases = flist.aliases except AttributeError: # flist is a plain list, so compute the link name from the file name. aliases = [os.path.basename(p) for p in flist] # Check for duplicate aliases and amend them. # This applies mainly to link names automatically created from filenames, as # the same file name can exist in different directories. if len(set(aliases)) < len(flist): aliases = autonumerate(aliases) # Add extensions where necessary, if desired. if autoext: for i in range(0, len(flist)): (b, p) = os.path.splitext(flist[i]) c = p # If it's a .gz, include the next nested extension as well. if p == ".gz": p = os.path.splitext(b)[1] + p # Don't duplicate the extension if the alias already has it. a = os.path.splitext(aliases[i])[1] if c != a: aliases[i] = aliases[i] + p # Link. for i, mypath in enumerate(flist): os.symlink(mypath, os.path.join(dir, aliases[i])) # Helper function. def autonumerate(things): """Detect duplicate entries in a string list and suffix them. Suffixes are in _N format where N a natural number >=2. Existing suffixes in that format will also be detected and incremented. Args: things[str]: A list of strings. Returns: [str]: A corrected list of strings. """ c = Counter(things); # Because I use decrement, reversing the list ensures first instance gets smallest number. things.reverse() for i, t in enumerate(things): n = c[t] if n > 1: # The first occurrence is not suffixed. newname = t +'_' + str(n) while newname in things: # Check for already present suffixes n += 1 newname = t +'_' + str(n) things[i] = newname c[t] -= 1 things.reverse() return things def make_names(items, parameters): """Automatically create file names based on parameters. If automatic names happen to turn out identical with one another, unique numbers are appended to differentiate them. Check documentation for autonumerate(). Args: items[str]: A list of strings/filenames/paths to use as the basis for the output names. parameters(str,str,str): The first element is the output directory, the second is a common prefix to add to the names, the third is a common sufix to add to the names. Like so: <out[0]>/<out[1]>item<out[2] . If any of the 3 values in None, no outnames will be made. Use current directory and empty strings as necessary. Returns: [str]: A list of file paths. """ outfiles = [] if None not in parameters: for i in items: outfiles.append(os.path.join(os.path.abspath(os.path.expanduser(parameters[0])), parameters[1] + os.path.splitext(os.path.basename(str(i)))[0] + parameters[2]) ) autonumerate(outfiles) return outfiles def do_foreach(flist, comm, comments=False, progress=True, out=(None,None,None), log=False): """Execute an arbitrary command for each of the listed files. Enables executing a shell command over a range of items, by inserting the item values into the command as directed by place-holder substrings. Although the above is how it is meant to be used, the values in the FilesList could be overridden to be any arbitrary string, in which case only two of the placeholders will work correctly (full and alias). The others are computed from these and may not be sensible when the items are not file paths. This is the only function with comments or progress attributes, because invoked commands print their own output directly, so any informative messages controlled by this library need to also be inserted in real time. Args: flist[]: A FilesList. If a plain list is given, aliases will be automatically computed. comm[str]: The components of an arbitrary command, with place-holders for the item of each iteration. Placeholder strings are: '***full***' : absolute path of file. '***path***' : absolute path to the file. '***file***' : filename without path. '***core***' : filename without the last extension. '***alias***': alias for file, by default same as core. comments(bool): Print commented call details to STDOUT. (Default False) progress(bool): Show start and completion of iterations on STDERR. (Default True) out(str,str,str): The first element is the output directory, the second is a common prefix to add to the names, the third is a common suffix to add to the names. Check documentation for make_names(). log(bool): Log to /commands.log each individual call. """ outstream= sys.stdout # Test if it is a FilesList or plain list. Upgrade it if it's plain. try: flist.aliases[0] except AttributeError: flist = FilesList(flist) # Create output files. [] if out contains None. outfiles = make_names(flist, out) for i, (myfile, myalias) in flist.enum(): # Substitute place-holders. command = [] for c in comm: (mypath, mybase) = os.path.split(str(myfile)) c = c.replace("***full***", str(myfile)) c = c.replace("***path***", mypath) c = c.replace("***file***", mybase) c = c.replace("***core***", os.path.splitext(mybase)[0]) c = c.replace("***alias***", str(myalias)) command.append(c) # Redirect output. if outfiles: outstream = open(outfiles[i], 'w') # Do. try: see = " ".join(command) if log: ml.log_message(message=see, logfile="./commands.log") if comments and out == (None,None): outstream.write(ml.infostring("CWD: "+ os.getcwd() +"\tDO: "+ see)) if progress: sys.stderr.write(ml.infostring("DO: "+ see)) except IOError: pass subprocess.call(command, stdout=outstream, shell=False) # Optionally identify iteration. try: if comments and out == (None,None): outstream.write(ml.infostring("Finished: "+ str(myalias) +"\n")) if progress: sys.stderr.write(ml.infostring("Finished: "+ str(myalias) +"\n")) except IOError: pass finally: if outfiles: outstream.close() def tails(flist, linesToGet=5): """Get last lines of text files. Adapted from: https://gist.github.com/volker48/3437288 Files that cause an error are still represented in the return value with an empty sublist, like empty files, in order to maintain the correspondence between input and output lists. Args: flist: A list/FilesList of text files. lines_to_get: Number of lines to get from the end. Returns: [[str]]: A list of lists. Each sublist represents the lines returned by one file. Raises: IOError: With a message about ALL the inaccessible files. """ result = [] errors = [] for myfile in flist: if linesToGet < 1: result.append([]) continue try: with open(myfile, 'r') as f: # Place the cursor at the last character. f.seek(-1, os.SEEK_END) position = f.tell() linesSeen = 0 # I want the beginning of a line, by proxy of the previous line's newline end. # So if the last character of the file is a newline, ignore it and go one step back. if f.read(1) == "\n": position -= 1 f.seek(position) # Crawl backwards one character at a time. while linesSeen < linesToGet and position > 0: # Try previous character. position -= 1 f.seek(position) c = f.read(1) if c == "\n": linesSeen += 1 if position == 0: # The cursor will be right after a newline, unless I hit the beginning # of the file, in which case the loop leaves it on the second character. # So bring it manually to the start of the line and file. f.seek(0) # Now that the cursor is a the right place, read in the lines. chunk = [] for line in f: chunk.append(line) result.append(chunk) except IOError as e: result.append([]) errors.append(e.message) if errors != []: raise IOError(" --- ".join(errors)) return result def heads(flist, linesToGet=5): """Get first lines of text files. Files that cause an error are still represented in the return value with an empty sublist, like empty files, in order to maintain the correspondence between input and output lists. Args: flist: A list/FilesList of text files. lines_to_get: Number of lines to get from the top. Returns: [[str]]: A list of lists. Each sublist represents the lines returned by one file. Raises: IOError: With a message about ALL the inaccessible files. """ result = [] errors = [] for myfile in flist: if linesToGet < 1: result.append([]) continue try: with open(myfile, 'r') as f: chunk = [] for i in range(0, linesToGet): line = f.readline() if line != "": # Otherwise it appends empty strings when it hits the end of file. chunk.append(line) result.append(chunk) except IOError as e: result.append([]) errors.append(e.message) if errors != []: raise IOError(" --- ".join(errors)) return result def swap_strFiles(flist, insep=[","], outsep="\t"): """Replace the column separator with a different one. Supports multiple different delimiters in the input, to support one-step uniformity when the input files have different delimiters, but ALL input will be split at ALL/ANY occurring delimiters. If the delimiter of one file is present in a different use in an other file, the output may not be what you want. Although made for converting delimited text, inseps and outsep could be any substring in a text, delimited or not. Args: flist: A list/FilesList of delimited text files. insep[str]: A list of regex strings. (Default [","]) outsep(str): New column separator. (Default "\t") Returns: [str]: A list of strings with the changed delimiters. One string per file. It is up to you to decide what to do with the new strings. The order of strings is the same as the input. """ input = [] if flist == []: # Read all data from STDIN at once. Input[] gets a single entry. input.append(sys.stdin.read()) else: # Read in all the files entirely. Input[] gets as many entries as there are files. for myfile in flist: with open(myfile) as f: input.append(f.read()) return swap_substr(input, insep, outsep) # Helper function def swap_substr(slist, insep=[","], outsep="\t"): """Replace all occurrences of insep with outsep. Insep may be a regex. Args: slist[str]: A list of strings. insep[str]: A list of regex strings. (Default [","]) outsep(str): New substring. (Default "\t") Returns: [str]: A list of the edited strings. The order of the strings is the same as the input. """ rx = re.compile("|".join(insep), re.MULTILINE) result = [] for s in slist: # Replace all delimiters with the new one. result.append(rx.sub(outsep, s)) return result def prepare_df(df, myalias="", keyCol=None, keyhead="row_ID", header=False, cols=None, appendNum=True): """Prepare row names and column names. Assign column as row labels, rename columns based on their position and an arbitrary alias name for the dataframe, drop the first row. Args: df(pandas.DataFrame): A dataframe. myalias(str): The basename for the relabelling. header(bool): Remove first row (Default False). keyCol(int): Column to be used as row index. If None, no index will be used. (Default None) keyhead(str): Label for the index. cols[int]: Custom index numbers for the columns (Default None). If None then their current index positions are used. appendNum(bool): Append the columns' positional indices to the alias when making the new names (True). Returns: pandas.DataFrame """ # Set row labels. if keyhead is None: keyhead = "row_ID" if keyCol is not None: # Add index without dropping it, so as not to affect column positions. df.set_index(df.columns.values.tolist()[keyCol], inplace=True, drop=False) df.index.name = str(keyhead) # Make custom column labels, based on alias and column position. if not cols: cols = list(range(0, df.shape[1])) labels = [] if appendNum: labels = [str(myalias) +"_|"+ str(i) for i in cols] else: labels = [str(myalias) for i in cols] df.columns = labels # Remove header. if header: df.drop(df.index.values.tolist()[0], axis=0, inplace=True) return df def count_columns(flist=[None], colSep=["\t"]): """Determine the number of fields in each file by inspecting the first row. Args: flist: A list of FilesList of files. colSep[str]: A list of characters used to separate columns. Returns: [int]: A list, in the same order as the given files. """ tokenizer = re.compile("|".join(colSep)) counts = [] for file in flist: f = None if file is None: f = sys.stdin file = "<STDIN>" else: f = open(file) while True: line = f.readline() # Skip comments. if line[0] != "#": counts.append(len( tokenizer.split(line.rstrip()) )) break f.readline if f != sys.stdin: f.close() return counts def get_valuesSet(flist=[None], axis='r', index=0, filter='a', colSep=["\t"]): """"List the set of different values in the column(s)/row(s). Args: flist: A list of FilesList of files. colSep[str]: A list of characters used to separate columns. index: Position index of the required column/row. axis(str): Data slice orientation - 'r' for row, 'c' for column. filter(str): non redundant set of: 'a' - all, 'u' - unique, 'r' - repeated values. Returns: [[]]: A list of lists. The inner lists represent the sets in order as requested. Raises: ValueError: Invalid axis or filter values. """ tokenizer = "|".join(colSep) result = [] if flist == []: # Use None as a flag to read from STDIN flist.append(None) # Test if it is a FilesList or plain list. Upgrade it if it's plain. # It will have at least one entry for sure by now, either way. try: flist.aliases[0] except AttributeError: flist = FilesList(flist) # Main part of this function. results = [] for f, (myfile, myalias) in flist.enum(): # Input. df = None instream = sys.stdin if myfile is not None: instream = open(myfile) df = pd.read_csv(instream, sep=tokenizer, header=None, index_col=None, comment="#", engine='python') if instream != sys.stdin: instream.close() # Get value set. values = None if axis == 'r': values = df.iloc[int(index),:].tolist() elif axis == 'c': values = df.iloc[:,int(index)].tolist() else: raise ValueError("".join(["Unrecognized option: axis=", axis])) # Get count per value c = Counter(values); # Filter. if filter == 'a': results.append( set(values) ) elif filter == 'u': results.append( set([v for v in values if c[v] == 1]) ) # set() is redundant but keeps output type consistent elif filter == 'r': results.append( set([v for v in values if c[v] > 1]) ) else: raise ValueError("".join(["Unrecognized option: filter=", filter])) return results def get_columns(flist=[None], cols=[0], colSep=["\t"], header=False, index=None, merge=True): """Obtain the specified columns. Comment lines starting with '#' are ignored. The data columns are assembled into a single DataFrame. The returned columns will be labeled based on the name of the file they came from and their position in it. Existing labels are optionally preserved as the top row or can be skipped entirely. If an index is specified, it will be used only for merging, and will NOT be included in the output columns, unless explicitly present in cols[]. Args: flist: A list/FilesList of delimited plain text files. header(bool): Crop the header line (first non-comment line). (Default False) cols[int/str] : A list of positional indexes or names or ranges of the desired columns. (Default [0]). colSep[str]: List of characters used as field separators. (Default ["\t"]). merge(bool): Concatenate results from all files into a single dataframe. If False, a list of dataframes is returned instead. (Default True). index(int): Column to be used as row index for merging. (Default None) Returns: [pandas.DataFrame]: List of DataFrames. If merge=True, only the first element will be populated. """ tokenizer = "|".join(colSep) result = [] if flist == []: # Use None as a flag to read from STDIN flist.append(None) # Test if it is a FilesList or plain list. Upgrade it if it's plain. # It will have at least one entry for sure by now, either way. try: flist.aliases[0] except AttributeError: flist = FilesList(flist) # Parse. keyhead = None for f, (myfile, myalias) in flist.enum(): # I used to use the pandas parser, with my own parser used only as fallback # for problematic cases. As flexibility requirements increased, using the # pandas parser became too opaque and difficult to maintain, # so now all cases are delegated to mine. df = get_columns_manual(myfile, cols=cols, colSep=colSep, header=header, alias=myalias, index=index) if not keyhead: keyhead = df.index.name result.append(df) # Merge. if merge: result = [pd.concat(result, axis=1, join='outer', ignore_index=False)] result[0].index.name = keyhead return result # Helper function def get_columns_manual(file=None, cols=[0], colSep=["\t"], header=False, index=None, alias=None): """Get specified columns from a file where rows have varying numbers of fields. Some tables contain a fixed set of fields followed by optional fields. In these rare cases, traditional parsers fail due to inconsistent number of fields. This function provides a work-around for that. It is entirely the user's responsibility to ensure that the inconsistent row lengths are not a symptom of table corruption/malformation and that it is safe and reliable to extract the desired columns. If a row is shorter than expected, it is padded with the value "IDXERROR". If this value shows up in your result and you are not explicitly expecting it, you should stop and seriously examine your input table. Args: file(str): A delimited plain text file. header(bool): If True, the first non-comment line will not be in the data. (Default False) cols[int]: A list of positional indexes of the desired columns. (Default [0]). colSep[str]: List of regex strings for field separators. (Default ["\t"]). index(int): Position of column to be used as row index. (Default None) alias(str): An alias for the file. Used for naming the columns. Returns: pandas.DataFrame: DataFrame with the columns, labeled by original column number, ordered as specified. """ tokenizer = re.compile("|".join(colSep)) # Input source. f = None if file is None: f = sys.stdin file = "STDIN" else: f = open(file) if alias is None: alias = FilesList.autoalias(file) # Import data. keyhead = None values = [] labels = [] for l, line in enumerate(f): if line[0] == '#' or line == "\n": # Skip comments and empty lines. continue else: # Get the fields. fields = tokenizer.split(line.rstrip("\n")) # Column labels from the first non-comment non-empty row, # regardless of whether they really are labels or not. if not labels: labels = fields # Find out name of row index. if (not keyhead) and header and (index is not None): keyhead = str(fields[index]) # Get columns. selection = [] expandedcols = [] for c in cols: v = str(c).split(":") if len(v) == 1: try: expandedcols.append(int(v[0])) except ValueError: expandedcols.append(labels.index(v[0])) else: try: expandedcols.extend(list(range(int(v[0]), int(v[1]) + 1))) except TypeError: expandedcols.extend(list(range(labels.index(v[0]), labels.index(v[1]) + 1))) for i in expandedcols: try: selection.append(fields[i]) except IndexError: # Silently adding fields is too dangerous, so a flag value is needed. # Values like None or NA can sometimes be legitimate values for fields. selection.append("IDXERROR") # Add the key at the end, where they won't interfere with column numbers. if index is not None: selection.append(fields[index]) values.append(selection) if f != sys.stdin: f.close() # Adjust index of row keys to reflect the fact I stuck them at the end. if index is not None: index = len(values[0])-1 expandedcols.append("my_garbage_label_row_key") # Package data nicely. df = pd.DataFrame(data=values) df = prepare_df(df, myalias=alias, keyCol=index, header=header, cols=expandedcols, keyhead=keyhead, appendNum=True if len(expandedcols)>1 else False) if index is not None: df.drop(alias+"_|my_garbage_label_row_key", 1, inplace=True) return df def get_random_columns(flist, colSep=["\t"], k=1, header=False, index=None, merge=True): """ Get k random columns from each file. The returned columns will be labeled based on the name of the file they came from and their position in it. Existing labels are optionally preserved as the top row or can be skipped entirely. If an index is specified, it will be used for merging (if applicable) and will be included as a column in each output file. Args: flist: A list or FilesList of files. k(int): How many columns to get. colSep[str]: A list of characters used as field separators. (Default ["\t"]) header(bool): Strip column headers. (Default False) index(int): Column to use as row index for merging. (Default None) merge(bool): Concatenate results from all files into a single dataframe. If False, a list of dataframes is returned instead. (Default True). Returns: [pandas.DataFrame]: List of DataFrames. If merge=True, only the first element will be populated. """ tokenizer = "|".join(colSep) # The files may have different number of columns fieldNums = count_columns(flist, colSep) result = [] if flist == []: # Use None as a flag to read from STDIN flist.append(None) keyhead = None # Test if it is a FilesList or plain list. Upgrade it if it's plain. # get_columns() does this too, but as I call it per item in flist, I *must* # preserve any alias that is potentially already specified. try: flist.aliases[0] except AttributeError: flist = FilesList(flist) # Get columns. for f, (myfile, myalias) in flist.enum(): cols = [] if index is not None: # Generate random choice of columns. # range() is right-open. cols.extend(random.sample(list(range(0, fieldNums[f]-1)), k)) else: cols = random.sample(list(range(0,fieldNums[f])), k) # Would normally delegate the actual getting to get_columns() but there # are too many little differences to accommodate that complicate the code # to the point of defeating any benefits from code re-use. df = pd.read_csv(myfile, sep=tokenizer, header=None, index_col=None, comment="#", engine='python') if (not keyhead) and header and (index is not None): keyhead = str(df.iloc[0,index]) # Adjust row and column labels. df = prepare_df(df, myalias=myalias, keyCol=index, header=header, keyhead=keyhead, appendNum=True if k>1 else False) # Slice the part I need. df = df.iloc[:,cols] result.append(df) # Merge. if merge: result = [pd.concat(result, axis=1, join='outer', ignore_index=False)] result[0].index.name = keyhead return result def append_columns(flist, colSep=["\t"], header=False, index=None): """Append all columns from the files, as they are. The order of the columns in the output follows the order of the columns in the files and the order of the files. The files don't need to have the same number of columns. It is your responsibility to ensure sensible consistency of number and order of rows across files, otherwise the combined data may be nonsensical. This function also supports key-aware appending, using outer-join, when a row index is specified. Args: flist: A list/FilesList of files to combine. colSep[str]: A list of characters used as field delimiters. (Default ["\t"]) header(bool): First non-comment line as column labels. (Default False) index(int): Column to use as row index (same in all files). (Default None) Returns: pandas.Dataframe """ try: flist.aliases[0] except AttributeError: flist = FilesList(flist) # Determine how many columns each file has. numofcols = count_columns(flist, colSep=colSep) # Delegate fetching all the columns. data = [] keyhead = None for f, (myfile, myalias) in flist.enum(): # List the columns and remove the index one from among them. cols = [i for i in range(0,numofcols[f]) if i != index] df =get_columns(FilesList(files=[myfile], aliases=[myalias]), cols=cols, colSep=colSep, header=header, merge=False, index=index)[0] data.append( df ) # Merge. Row indexes will have been assigned by get_columns(), if applicable. keyhead = data[0].index.name result = pd.concat(data, axis=1, join="outer", ignore_index=False) result.index.name = keyhead return result def get_crosspoints(flist, cols=[0], rows=[0], colSep=["\t"], header=False, index=None, merge=True): """ Get the values at selected rows and columns. The values at the intersections of the selected rows and columns are extracted. Args: flist: A [str] list or fileutilities.FilesList of delimited text files. colSep[str]: List of column separators. cols[int]: List of columns. rows[int]: List of rows. header(bool): Whether there is a header line (False). index(int): Which column has the row labels (None). merge(bool): Merge results into single table (True). Returns: [pandas.DataFrame]: """ results = get_columns(flist, cols=cols, colSep=colSep, header=header, merge=merge, index=index) for i in range(0, len(results)): results[i] = results[i].iloc[rows,:] return results ##### C L A S S E S ##### class FilesList(list): """A container for a list of files. An extension of the built-in list, specifically for files, providing a means to import multiple filenames either from text lists or from directories. The purpose is to facilitate batch operations and sensible output of their results. FilesList is generally backwards compatible with the built-in list and it should be possible for them to be used interchangeably in most cases. A plain list can be cast as a FilesList, when necessary, allowing appointment of default alias values. A FilesList should always work as a plain list without additional actions (except for its string representation). When a FilesList is accessed as a plain list, only the full paths will be accessed. Certain equivalent methods are supplied for Most basic operations inherited from list are supported. Appending has been overridden to keep paths and aliases in sync. Sorting, deleting and inserting of items are currently not supported and will break the correspondence between paths and aliases. Attributes defined here: aliases = [] : Practical aliases for the full file-paths. """ def __init__(self, files=None, aliases=None, fromtuples=None): """Construct an instance of the FilesList. A FilesList can b created: - empty - from a list of files (with default aliases automatically assigned) - from a list of files and a list of aliases (in the same order) - from a list of (file, alias) tuples. Args: files[str]: A list of files. (Default None) aliases[str]: A list of aliases. (Default None) fromtuples[(str,str)]: A list of tuples (file, alias). (Default None) If this is specified together with flist and/or aliases, the data in fromtuples is used only. """ # If data is a list of (file, alias) tuples, unpair tuples into lists. if fromtuples is not None: data = [list(t) for t in zip(*fromtuples)] # Any data passed to flist and aliases at method call is discarded. files = data[0] aliases = data[1] # Having aliases without the paths is rather useless. if aliases: if not files: raise ValueError("No files supplied for the aliases.") else: # Make None into empty. aliases = [] # Assign default aliases to be same as files. Expand file paths. if files is not None: files = expand_fpaths(files) if not aliases: for f in files: aliases.append(self.autoalias(f)) else: # If still empty, it was an empty call to the constructor. files = [] # Create the basic list. super(FilesList, self).__init__(files) # Add a plain list attribute for the aliases with default values. self.aliases = autonumerate(aliases) def __str__(self): """Represent as string. Overrides built-in list's representation. Returns: str """ tmp = [] for f, (myfile, myalias) in self.enum(): tmp.append("\t".join([str(f), myfile, myalias])) tmp.append("") return "\n".join(tmp) def to_file(self, outfile=None, mode ='a'): """Save list as a text file that can be read back in. Args: outfile(str): Output file to write into. If omitted, it only returns the content as a print-ready string. (Default None) mode(str): Append ('a') or overwrite ('w'). (Default 'a') Returns: str: A print-ready multi-line string. This is returned even when an output file is specified and written into. """ result = "" for f, (myfile, myalias) in self.enum(): result += myfile + "\t" + myalias + "\n" if outfile is not None: with open(outfile, mode) as out: out.write(result) return result def enum(self): """Enumerate as (index, (filepath, filealias)). Returns: enumerator""" return enumerate(zip(self, self.aliases)) def get(self, loc): """Access path and alias at specified location as tuple. Args: loc[int]: Index of item to get. Returns: (str,str): Tuple (path, alias). """ return (self[loc], self.aliases[loc]) def append(self, myfile, myalias=None): """Appends value to both the paths list and the aliases list. This method overrides the built-in append() of list. It is backwards compatible by automatically guessing an alias. This reduces the risk of the paths and aliases going out of sync due to items being manually added without updating the aliases. It is still possible to break the sync by manually adding items to the aliases. Args: myfile(str): File (path will be expanded). myalias(str): Alias for the file (Default None). """ if myfile is not None: myfile = os.path.abspath(os.path.expanduser(myfile)) super(FilesList, self).append(myfile) if not myalias: myalias = self.autoalias(myfile) self.aliases.append(myalias) self.aliases = autonumerate(self.aliases) def populate_from_files(self, myfiles, colSep="\t"): """Parse the list of files from one or multiple text files. Read in multiple lists of files from text and append them to the FilesList. All paths are automatically expanded and converted to absolute paths. Because of this, each file may also be given a more convenient alias. If no alias is given, the filename as supplied is used as the alias instead. The paths are not checked for existence. Existing contents of the object are kept and the new contents are appended. Input file format (no spaces allowed inside names): #comment path1/file1 alias1-prefix alias1-suffix1 alias1-suffix2 path1/file2 alias1-prefix alias1-suffix3 path2/file3 alias3 path3/file4 Args: file[str]: A list of text files each containing a list of files. colSep(str): Column separator. (Default "\\t") Returns: FilesList: Returns self, to facilitate instantiation shortcuts. """ # Read new list. paths = [] for myfile in myfiles: with open(myfile, 'rU') as input: for line in input: if line == "\n": # Skip empty lines. continue elif line[0] == '#': # Skip comments. continue else: fields = line.rstrip().split(colSep) paths.append(fields[0]) # Store the alias for the file. if len(fields) > 1: self.aliases.append("_".join(fields[1:])) # If an alias was not specified, re-use the filepath given. else: self.aliases.append(self.autoalias(fields[0])) # Expand to absolute paths and add to main self list. self.extend(expand_fpaths(paths)) self.aliases = autonumerate(self.aliases) return self def populate_from_directories(self, dirpaths, patterns=None): """Get files based on naming patterns from within a list of directories. Useful for selecting among files that follow a naming convention. The convention is represented by a list of regex strings, at least one of which has to match. File paths will be expanded automatically. The filenames will be used as the aliases. Existing contents of the object are kept and the new contents are appended. Args: dirpaths[str]: A list/FilesList of paths to directories from where to get files. patterns[str]: A list of regex strings. Only files matching at least one of these will be returned. The patterns will be matched anywhere in the filenames. Returns: FilesList: Returns self, to facilitate instantiation shortcuts. """ rx = [] if patterns: rx = [re.compile(p) for p in patterns] cwd = os.getcwd() for d in dirpaths: try: os.chdir(d) for f in os.listdir('./'): if f in ["","\n",".",".."]: continue if not patterns: # No filter. self.append(f, self.autoalias(f)) else: for p in rx: if p.search(f): self.append(f, self.autoalias(f)) break finally: # Ensure return to original directory to prevent errors in # external code that uses the class. os.chdir(cwd) self.aliases = autonumerate(self.aliases) return self.sorted() # Helper function. @staticmethod def autoalias(pathname): """Strip a path to the base filename.""" if pathname is None: return None else: return os.path.splitext(os.path.basename(pathname))[0] def sorted(self): """Sorted copy. Returns: FilesList """ d = dict() for i, (myfile, myalias) in self.enum(): d[myfile] = myalias sk = natural_sorted(list(d.keys())) newFL = FilesList() for k in sk: newFL.append(k, d[k]) return newFL # Dispatch for similar functions. _funcDispatch = {"dont_exist" : dont_exist, "arent_access" : arent_readable, "are_empty" : are_empty, # Doesn't make sense from command line # because of lack of control of non-existence value. "arent_text" : arent_text } def store_metadata(flist, numoflines): """Store top lines of files into dictionary. Args: flist: A list or FilesList. numoflines(int): Number of lines to save. Returns: dict[]: The items of flist[] are used as keys. """ metadata = dict() for myfile in flist: if myfile is None: fin = sys.stdin else: fin = open(myfile) lines = [] for i in range(0, numoflines): lines.append(fin.readline()) metadata[myfile] = "".join(lines) if fin != sys.stdin: fin.close() return metadata ##### M A I N ##### def main(args): """Provide command-line access to the module's functionality. The functionality and format of main is subject to change, as the module expands and evolves to suit my needs. Main() is not intended to be called from within other code. Optional short info is printed in commented lines. The info always *succeeds* the relevant output, rather than precede it. This serves as confirmation that the task completed. Calling details of the script are recorded in commented lines at the top of the output. For more info on the functionality, read the above documentation of the classes and functions. For usage syntax, execute the module with the -h argument. """ # Organize arguments and usage help: parser = argparse.ArgumentParser(description="Provide INPUTTYPE and TARGETs \ *before* providing any of the other parameters. This is due to many \ parameters accepting an indefinite number of values. Only one task at a time.") # Input/Output. parser.add_argument('INPUTTYPE', type=str, choices=['L','T','D','P'], help=" Specify the type of the TARGETs: \ 'T' = The actual input filess. \ 'L' = Text file(s) listing the input files. \ 'P' = Get list of input files from STDIN pipe. \ 'D' = Input data directly from STDIN pipe. \ ('D' is compatible with only some of the functions)") parser.add_argument('TARGET', type=str, nargs='*', help=" The targets, space- or comma-separated. Usually files. \ Look into the specific task details below for special uses. \ Do not specify with INPUTTYPE 'P' or 'D'.") parser.add_argument('-O','--out', type=str, nargs=3, help=" Send individual outputs to individual files instead of \ merging them to STDOUT. Output files will be like \ <out[0]>/<out[1]>target<out[2]>") # Parameters. parser.add_argument('-L','--log', action='store_true', help=" Log this command to ./commands.log.") parser.add_argument('-c','--comments', action='store_true', help=" Include commented info to STDOUT or files. (Default don't include)") parser.add_argument('-C','--STDERRcomments', action="store_false", help=" Do NOT show info in STDERR. (Default show)") parser.add_argument('-s','--sep', type=str, default=["\t"], nargs='+', help=" A list of input field separators. The first value \ will be used for all output. (Default \\t, bash syntax for tab: $'\\t').") parser.add_argument('-l','--labels', action='store_true', help=" Discard column headers (first content line) in input files. (Default do not discard)") parser.add_argument('-r','--relabel', action='store_false', help=" Do NOT create new column headers that reflect the origin of the columns. (Default create)") parser.add_argument('-i','--index', action='store_true', help=" Use column 0 as row index. The index will always be included in the output. (Default no index)") parser.add_argument('-M','--metadata', type=int, default=0, help=" Number of metadata lines at the \ beginning of input data (Default 0). Metadate will be read separately \ and re-added verbatim into the output.") # General tasks. parser.add_argument('--probe', type=str, choices=list(_funcDispatch.keys()), help=" Do one of a these simple checks on the target files.") parser.add_argument('--dir', type=str, nargs='*', help=" List the contents of the target paths. \ Full absolute file paths are returned. Each file is also given an alias. \ Supplying an optional list of regex patterns enables filtering of the result.") parser.add_argument('--link', type=str, nargs='+', help=" Create symbolic links for the targets into the specified directory. \ Any additional values are used as respective names for the links, one for one, \ otherwise the aliases or basenames will be used, enumerated when necessary.") parser.add_argument('--loop', type=str, nargs='+', help=" Repeat the specified shell command for each target value. \ The fist value of this parameter determines what the target values are: \ 'S'= strings: paths/files/strings, 'R'= range: ranges of positive integers in x:y format. \ Target PLACEHOLDERS: ***full***, ***path***, ***file***, \ ***core***, ***alias***. \ If looping over a NUMERICAL RANGE use any of the last 3 placeholders. \ The nested command should be supplied as a list of components, not as a single string. \ Options intended for the nested command should be preceded \ by a '+' sign like this: '+-v'.") # Delimited file tasks. parser.add_argument('--swap', type=str, help=" Replace all occurrences of the --sep values with the value supplied here.\ ** Bash syntax for tab: $'\\t'. Compatible with 'D' as INPUTTYPE.") parser.add_argument('--cntcols', action='store_true', help="Count the number of fields in the first row of each target file.") parser.add_argument('--cols', nargs='+', help="Extract the specified columns (named or 0-indexed) from each target. \ Column ranges in x:y format closed at both ends. \ Negative indices must be escaped first: \-1. Compatible with 'D' as INPUTTYPE.") parser.add_argument('--rndcols', type=int, help="Randomly select this many columns from the target files. \ With --index, the index column will not be part of the random selection.") parser.add_argument('--appnd', action='store_true', help="Append all the columns of the target files into a single table.") parser.add_argument('--valset', nargs=3, help="Get the non-redundant set of values in the given row/column. \ Takes three arguments: (i) orientation 'r' for row or 'c' for column, \ (ii) position index of the row/column, (iii) repetition filter: \ 'a' all values, 'u' unique values only, 'r' only values with two or more instances.") params = parser.parse_args(args) # INPUT ################################################################### targets = [] for t in params.TARGET: v = t.split(",") if len(v) == 1: targets.append(t) else: targets.extend(v) flist = None if params.INPUTTYPE == 'P': # Read files list from STDIN flist = FilesList() for line in sys.stdin: fields = line.rstrip("\n").split("\t") if fields[0] != "": try: flist.append(fields[0], fields[1]) except IndexError: flist.append(fields[0]) elif params.INPUTTYPE == 'L': # Create the FilesList, by appending the contents of all provided lists. flist = FilesList().populate_from_files(targets) elif params.INPUTTYPE == 'T': # Create the FilesList by supplying a direct list of files. flist = FilesList(targets) elif params.INPUTTYPE == 'D': # Data will be read from STDIN. No files needed. Make an empty list. # Not all functions will switch to STDIN given this. Several will simply do nothing. flist = FilesList() else: sys.exit(ml.errstring("Unknown INPUTTYPE.")) # Metadata. --------------------------------------------------------------- metadata = "" if params.metadata: metadata = store_metadata(flist, params.metadata) # OUTPUT ################################################################## outdir, outpref, outsuff = None, None, None if params.out: outdir = expand_fpaths([params.out[0]])[0] outpref = params.out[1] outsuff = params.out[2] # CALL DETAILS ############################################################ if params.log: ml.log_command() if params.STDERRcomments: sys.stderr.write(ml.paramstring()) # TASKS ################################################################### # Simple file PROBEs. ----------------------------------------------------- if params.probe: result = _funcDispatch[params.probe](flist) try: if params.comments: sys.stdout.write(ml.paramstring()) print(result.to_file()) if params.STDERRcomments: sys.stderr.write(ml.donestring("probing")) except IOError: pass # Filter DIRECTORY contents. ---------------------------------------------- elif params.dir is not None: result = FilesList().populate_from_directories(flist, params.dir) try: if params.comments: sys.stdout.write(ml.paramstring()) sys.stdout.write(result.to_file()) if params.STDERRcomments: sys.stderr.write(ml.donestring("listing")) except IOError: pass # LOOP arbitrary command. ------------------------------------------------- elif params.loop: if params.loop[0] == 'R': # Generate the range. myrange = [] for t in targets: # Look for multiple ranges. v = t.split(":") if len(v) > 1: myrange.extend(list(range(int(v[0]), int(v[1]) + 1))) else: sys.exit(ml.errstring("No numeric ranges specified. Use -h for help with the newest syntax.")) flist = FilesList(myrange) # Strip left and/or right padding first. command = [] for c in params.loop[1:]: command.append(c.lstrip("+")) try: do_foreach(flist, command, out=(outdir, outpref, outsuff), progress=(params.STDERRcomments), comments=params.comments, log=params.log) if params.STDERRcomments: sys.stderr.write(ml.donestring("looping-"+ params.loop[0])) except IOError: pass # Symbolic LINKS. --------------------------------------------------------- elif params.link: slink(flist, dir=params.link[0], aliases=params.link[1:]) if params.STDERRcomments: sys.stderr.write(ml.donestring("linking")) # SWAP substrings. -------------------------------------------------------- elif params.swap is not None: result = swap_strFiles(flist, insep=params.sep, outsep=params.swap) # Create output filenames, if applicable. If [], then STDOUT. outfiles = make_names(flist.aliases, (outdir, outpref, outsuff)) outstream = sys.stdout # I need the for loop to iterate at least once. Relevant for STDIN input, since I have no input files listed then. if flist == []: flist.append("<STDIN>") # Print the converted data. for i, (myfile, myalias) in flist.enum(): if outfiles: # Send to individual file instead of STDOUT. outstream = open(outfiles[i], 'w') try: if params.comments: # Embed call info at beginning of output. More useful there when outputting to files. outstream.write(ml.paramstring("SOURCE: " + myfile)) outstream.write(result[i].rstrip("\n") +"\n") except IOError: pass finally: if outfiles: # Don't want to accidentally close STDOUT. outstream.close() if params.STDERRcomments: try: sys.stderr.write(ml.donestring("swapping delimiters")) except IOError: pass # Get COLUMNS or RANDOM columns. (most code shared) ----------------------- elif params.cols or params.rndcols: # Create output filenames, if applicable. If [], then STDOUT. outfiles = make_names(flist.aliases, (outdir, outpref, outsuff)) outstream = sys.stdout merge = False if outfiles else True # Determine if using index, and assign appropriate value. idx = None if params.index: idx = 0 else: idx = None # Extract data. result = None if params.cols: cols = [] for p in params.cols: # space separated arguments cols.extend(p.split(",")) # comma separated arguments # Get the specified columns. result = get_columns(flist, cols=cols, colSep=params.sep, header=params.labels, merge=merge, index=idx) else: # Get random columns. result = get_random_columns(flist, k=params.rndcols, colSep=params.sep, header=params.labels, merge=merge, index=idx) # I need the for loop to iterate at least once. Relevant for STDIN input, since I have no input files listed then. if flist == []: flist.append("<STDIN>") if merge: try: if params.comments: # Embed call info at beginning of output. outstream.write(ml.paramstring("SOURCE: " + myfile)) if params.metadata: # Dump all the metadata from all the merged input sources. for i, (myfile, myalias) in flist.enum(): outstream.write(metadata[myfile]) outstream.write( result[0].to_csv(header=params.relabel, index=params.index, sep=params.sep[0])) except IOError: pass else: for i, (myfile, myalias) in flist.enum(): outstream = open(outfiles[i], 'w') try: if params.comments: # Embed call info at beginning of output. outstream.write(ml.paramstring("SOURCE: " + myfile)) if params.metadata: outstream.write(metadata[myfile]) outstream.write( result[i].to_csv(header=params.relabel, index=params.index, sep=params.sep[0])) except IOError: pass finally: outstream.close() if params.STDERRcomments: try: if params.cols: sys.stderr.write(ml.donestring("getting columns, index "+ str(idx is not None))) else: sys.stderr.write(ml.donestring("getting random columns, index "+ str(idx is not None))) except IOError: pass # APPEND columns. --------------------------------------------------------- elif params.appnd: idx = None if params.index: idx = 0 df = append_columns(flist, colSep=params.sep, header=params.labels, index=idx) try: if params.comments: ml.parastring() if params.metadata: # Dump all the metadata from all the merged input sources. for i, (myfile, myalias) in flist.enum(): outstream.write(metadata[myfile]) sys.stdout.write(df.to_csv(sep=params.sep[0], header=params.relabel, index=params.index)) if params.STDERRcomments: sys.stderr.write(ml.donestring("appending columns, index "+ str(idx is not None))) except IOError: pass # COUNT columns. ---------------------------------------------------------- elif params.cntcols: result = count_columns(flist, params.sep) try: if params.comments: sys.stdout.write(ml.paramstring()) for f, (myfile, myalias) in flist.enum(): print("\t".join([str(result[f]), myalias, myfile])) if params.STDERRcomments: sys.stderr.write(ml.donestring("counting columns")) except IOError: pass # SET of values in row/column. -------------------------------------------- elif params.valset: nest = get_valuesSet(flist, axis=params.valset[0], index=params.valset[1], filter=params.valset[2], colSep=params.sep) try: if params.comments: sys.stdout.write(ml.paramstring()) for f, (myfile, myalias) in flist.enum(): print("".join([myfile, "\t", str(nest[f])])) if params.STDERRcomments: sys.stderr.write(ml.donestring("obtaining set of values.")) except IOError: pass # # All done. # if params.STDERRcomments: # sys.stderr.write(ml.donestring()) ##### E X E C U T I O N ##### # Call main only if the module was executed directly. if __name__ == "__main__": main(sys.argv[1:]) sys.exit(0) #EOF
mit
johannfaouzi/pyts
pyts/transformation/bag_of_patterns.py
1
7803
"""Code for Bag-of-patterns representation for time series.""" # Author: Johann Faouzi <[email protected]> # License: BSD-3-Clause from scipy.sparse import csr_matrix from sklearn.base import BaseEstimator from sklearn.feature_extraction.text import CountVectorizer from sklearn.utils.validation import check_array, check_is_fitted from ..bag_of_words import BagOfWords from ..base import UnivariateTransformerMixin class BagOfPatterns(BaseEstimator, UnivariateTransformerMixin): """Bag-of-patterns representation for time series. This algorithm uses a sliding window to extract subsequences from the time series and transforms each subsequence into a word using the Piecewise Aggregate Approximation and the Symbolic Aggregate approXimation algorithms. Thus it transforms each time series into a bag of words. Then it derives the frequencies of each word for each time series. Parameters ---------- window_size : int or float (default = 0.5) Length of the sliding window. If float, it represents a percentage of the size of each time series and must be between 0 and 1. word_size : int or float (default = 0.5) Length of the words. If float, it represents a percentage of the length of the sliding window and must be between 0. and 1. n_bins : int (default = 4) The number of bins to produce. It must be between 2 and ``min(window_size, 26)``. strategy : 'uniform', 'quantile' or 'normal' (default = 'normal') Strategy used to define the widths of the bins: - 'uniform': All bins in each sample have identical widths - 'quantile': All bins in each sample have the same number of points - 'normal': Bin edges are quantiles from a standard normal distribution numerosity_reduction : bool (default = True) If True, delete sample-wise all but one occurence of back to back identical occurences of the same words. window_step : int or float (default = 1) Step of the sliding window. If float, it represents the percentage of the size of each time series and must be between 0 and 1. The step of sliding window will be computed as ``ceil(window_step * n_timestamps)``. norm_mean : bool (default = True) If True, center each subseries before scaling. norm_std : bool (default = True) If True, scale each subseries to unit variance. sparse : bool (default = True) Return a sparse matrix if True, else return an array. overlapping : bool (default = True) If True, time points may belong to two bins when decreasing the size of the subsequence with the Piecewise Aggregate Approximation algorithm. If False, each time point belong to one single bin, but the size of the bins may vary. alphabet : None or array-like, shape = (n_bins,) Alphabet to use. If None, the first `n_bins` letters of the Latin alphabet are used. Attributes ---------- vocabulary_ : dict A mapping of feature indices to terms. References ---------- .. [1] J. Lin, R. Khade and Y. Li, "Rotation-invariant similarity in time series using bag-of-patterns representation". Journal of Intelligent Information Systems, 39 (2), 287-315 (2012). Examples -------- >>> import numpy as np >>> from pyts.transformation import BagOfPatterns >>> X = np.arange(12).reshape(2, 6) >>> bop = BagOfPatterns(window_size=4, word_size=4, sparse=False) >>> bop.fit_transform(X) array(...) >>> bop.set_params(numerosity_reduction=False) BagOfPatterns(...) >>> bop.fit_transform(X) array(...) """ def __init__(self, window_size=0.5, word_size=0.5, n_bins=4, strategy='normal', numerosity_reduction=True, window_step=1, norm_mean=True, norm_std=True, sparse=True, overlapping=True, alphabet=None): self.window_size = window_size self.word_size = word_size self.n_bins = n_bins self.strategy = strategy self.numerosity_reduction = numerosity_reduction self.window_step = window_step self.norm_mean = norm_mean self.norm_std = norm_std self.sparse = sparse self.overlapping = overlapping self.alphabet = alphabet def fit(self, X, y=None): """Learn the dictionary. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Input data y Ignored Returns ------- self : object """ # Transform each time series into a bag of words bow = BagOfWords( window_size=self.window_size, word_size=self.word_size, n_bins=self.n_bins, strategy=self.strategy, numerosity_reduction=self.numerosity_reduction, window_step=self.window_step, norm_mean=self.norm_mean, norm_std=self.norm_std, overlapping=self.overlapping, alphabet=self.alphabet ) X_bow = bow.transform(X) # Learn the vocabulary vectorizer = CountVectorizer() vectorizer.fit(X_bow) self.vocabulary_ = {value: key for key, value in vectorizer.vocabulary_.items()} self._vectorizer = vectorizer return self def transform(self, X): """Derive word frequencies for each time series. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to transform. Returns ------- X_new : array, shape = (n_samples, n_words) Word frequencies. """ X = check_array(X, dtype='float64') check_is_fitted(self, 'vocabulary_') # Transform each time series into a bag of words bow = BagOfWords( window_size=self.window_size, word_size=self.word_size, n_bins=self.n_bins, strategy=self.strategy, numerosity_reduction=self.numerosity_reduction, window_step=self.window_step, norm_mean=self.norm_mean, norm_std=self.norm_std, overlapping=self.overlapping, alphabet=self.alphabet ) X_bow = bow.transform(X) # Derive frequencies for each word in the vocabulary X_bop = self._vectorizer.transform(X_bow) if not self.sparse: return X_bop.A return csr_matrix(X_bop) def fit_transform(self, X, y=None): """Derive word frequencies for each time series. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to transform. y Ignored Returns ------- X_new : array, shape = (n_samples, n_words) Word frequencies. """ # Transform each time series into a bag of words bow = BagOfWords( window_size=self.window_size, word_size=self.word_size, n_bins=self.n_bins, strategy=self.strategy, numerosity_reduction=self.numerosity_reduction, window_step=self.window_step, norm_mean=self.norm_mean, norm_std=self.norm_std, overlapping=self.overlapping, alphabet=self.alphabet ) X_bow = bow.transform(X) # Derive frequencies of each word vectorizer = CountVectorizer() X_bop = vectorizer.fit_transform(X_bow) self.vocabulary_ = {value: key for key, value in vectorizer.vocabulary_.items()} self._vectorizer = vectorizer if not self.sparse: return X_bop.A return csr_matrix(X_bop)
bsd-3-clause
otmaneJai/Zipline
tests/finance/test_slippage.py
32
18400
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for finance.slippage """ import datetime import pytz from unittest import TestCase from nose_parameterized import parameterized import pandas as pd from zipline.finance.slippage import VolumeShareSlippage from zipline.protocol import Event, DATASOURCE_TYPE from zipline.finance.blotter import Order class SlippageTestCase(TestCase): def test_volume_share_slippage(self): event = Event( {'volume': 200, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'open': 3.0} ) slippage_model = VolumeShareSlippage() open_orders = [ Order(dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), amount=100, filled=0, sid=133) ] orders_txns = list(slippage_model.simulate( event, open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.01875), 'dt': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'amount': int(50), 'sid': int(133), 'commission': None, 'type': DATASOURCE_TYPE.TRANSACTION, 'order_id': open_orders[0].id } self.assertIsNotNone(txn) # TODO: Make expected_txn an Transaction object and ensure there # is a __eq__ for that class. self.assertEquals(expected_txn, txn.__dict__) def test_orders_limit(self): events = self.gen_trades() slippage_model = VolumeShareSlippage() # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.6}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 1) txn = orders_txns[0][1] expected_txn = { 'price': float(3.500875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'amount': int(100), 'sid': int(133), 'order_id': open_orders[0].id } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) expected_txn = {} self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.4}) ] orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.499125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-100), 'sid': int(133) } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) STOP_ORDER_CASES = { # Stop orders can be long/short and have their price greater or # less than the stop. # # A stop being reached is conditional on the order direction. # Long orders reach the stop when the price is greater than the stop. # Short orders reach the stop when the price is less than the stop. # # Which leads to the following 4 cases: # # | long | short | # | price > stop | | | # | price < stop | | | # # Currently the slippage module acts according to the following table, # where 'X' represents triggering a transaction # | long | short | # | price > stop | | X | # | price < stop | X | | # # However, the following behavior *should* be followed. # # | long | short | # | price > stop | X | | # | price < stop | | X | 'long | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 4.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 4.0, 'open': 3.5 }, 'expected': { 'transaction': { 'price': 4.001, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': 100, 'sid': 133, } } }, 'long | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.6 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 4.0 }, 'expected': { 'transaction': None } }, 'short | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.4 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 3.0 }, 'expected': { 'transaction': None } }, 'short | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.0, 'open': 3.0 }, 'expected': { 'transaction': { 'price': 2.99925, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': -100, 'sid': 133, } } }, } @parameterized.expand([ (name, case['order'], case['event'], case['expected']) for name, case in STOP_ORDER_CASES.items() ]) def test_orders_stop(self, name, order_data, event_data, expected): order = Order(**order_data) event = Event(initial_values=event_data) slippage_model = VolumeShareSlippage() try: _, txn = next(slippage_model.simulate(event, [order])) except StopIteration: txn = None if expected['transaction'] is None: self.assertIsNone(txn) else: self.assertIsNotNone(txn) for key, value in expected['transaction'].items(): self.assertEquals(value, txn[key]) def test_orders_stop_limit(self): events = self.gen_trades() slippage_model = VolumeShareSlippage() # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.0}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.6}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.500875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'amount': int(100), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 4.0}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 3.4}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.499125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-100), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) def gen_trades(self): # create a sequence of trades events = [ Event({ 'volume': 2000, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'open': 3.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.5, 'datetime': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.5, 'dt': datetime.datetime(2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'open': 3.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 4.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 33, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 4.0, 'dt': datetime.datetime(2006, 1, 5, 14, 33, tzinfo=pytz.utc), 'open': 3.5 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.5, 'datetime': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.5, 'dt': datetime.datetime(2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'open': 4.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 35, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 35, tzinfo=pytz.utc), 'open': 3.5 }) ] return events
apache-2.0
zihua/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
43
39945
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from itertools import product from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import skip_if_32bit from sklearn.exceptions import DataConversionWarning from sklearn.exceptions import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def check_classification_toy(presort, loss): # Check classification on a toy dataset. clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert_true(np.any(deviance_decrease >= 0.0)) leaves = clf.apply(X) assert_equal(leaves.shape, (6, 10, 1)) def test_classification_toy(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_toy, presort, loss def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def check_classification_synthetic(presort, loss): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=2, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.09) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=2, max_depth=1, loss=loss, learning_rate=1.0, subsample=0.5, random_state=0, presort=presort) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.08) def test_classification_synthetic(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_synthetic, presort, loss def check_boston(presort, loss, subsample): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. ones = np.ones(len(boston.target)) last_y_pred = None for sample_weight in None, ones, 2 * ones: clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=2, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) leaves = clf.apply(boston.data) assert_equal(leaves.shape, (506, 100)) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_less(mse, 6.0) if last_y_pred is not None: assert_array_almost_equal(last_y_pred, y_pred) last_y_pred = y_pred def test_boston(): for presort, loss, subsample in product(('auto', True, False), ('ls', 'lad', 'huber'), (1.0, 0.5)): yield check_boston, presort, loss, subsample def check_iris(presort, subsample, sample_weight): # Check consistency on dataset iris. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample, presort=presort) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) leaves = clf.apply(iris.data) assert_equal(leaves.shape, (150, 100, 3)) def test_iris(): ones = np.ones(len(iris.target)) for presort, subsample, sample_weight in product(('auto', True, False), (1.0, 0.5), (None, ones)): yield check_iris, presort, subsample, sample_weight def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: clf = GradientBoostingRegressor(presort=presort) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 5.0) # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 1700.0) # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 0.015) def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) for presort in True, False: clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=2, random_state=1, presort=presort) clf.fit(X, y) assert_true(hasattr(clf, 'feature_importances_')) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(X_new.shape[1], X.shape[1]) feature_mask = ( clf.feature_importances_ > clf.feature_importances_.mean()) assert_array_almost_equal(X_new, X[:, feature_mask]) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert_equal(clf.oob_improvement_.shape[0], 100) # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) assert_equal(clf.oob_improvement_.shape[0], clf.n_estimators) # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert_equal(est.estimators_[0, 0].max_depth, 1) for i in range(1, 11): assert_equal(est.estimators_[-i, 0].max_depth, 2) def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1]) def check_sparse_input(EstimatorClass, X, X_sparse, y): dense = EstimatorClass(n_estimators=10, random_state=0, max_depth=2).fit(X, y) sparse = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort=False).fit(X_sparse, y) auto = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort='auto').fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) assert_array_almost_equal(sparse.apply(X), auto.apply(X)) assert_array_almost_equal(sparse.predict(X), auto.predict(X)) assert_array_almost_equal(sparse.feature_importances_, auto.feature_importances_) if isinstance(EstimatorClass, GradientBoostingClassifier): assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) assert_array_almost_equal(sparse.predict_proba(X), auto.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), auto.predict_log_proba(X)) @skip_if_32bit def test_sparse_input(): ests = (GradientBoostingClassifier, GradientBoostingRegressor) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for EstimatorClass, sparse_matrix in product(ests, sparse_matrices): yield check_sparse_input, EstimatorClass, X, sparse_matrix(X), y
bsd-3-clause
farodin91/servo
tests/heartbeats/process_logs.py
139
16143
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import matplotlib.pyplot as plt import numpy as np import os from os import path import sys import warnings HB_LOG_IDX_START_TIME = 7 HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1 HB_LOG_IDX_START_ENERGY = 14 HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1 ENERGY_PROFILER_NAME = 'ApplicationHeartbeat' SUMMARY_OUTPUT = "summary.txt" SUMMARY_TIME_IDX = 8 SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1 SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1 def autolabel(rects, ax): """Attach some text labels. """ for rect in rects: ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom') def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize): """Plot the raw totals for a configuration. Keyword arguments: config -- configuration name plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std) max_time, max_time_std, max_energy, max_energy_std -- single values normalize -- True/False """ plot_data = sorted(plot_data) keys = [p for (p, tt, tts, te, tes) in plot_data] total_times = [tt for (p, tt, tts, te, tes) in plot_data] total_times_std = [tts for (p, tt, tts, te, tes) in plot_data] total_energies = [te for (p, tt, tts, te, tes) in plot_data] total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data] fig, ax1 = plt.subplots() ind = np.arange(len(keys)) # the x locations for the groups width = 0.35 # the width of the bars # add some text for labels, title and axes ticks ax1.set_title('Time/Energy Data for Configuration ' + config) ax1.set_xticks(ind + width) ax1.set_xticklabels(keys, rotation=45) fig.set_tight_layout(True) fig.set_size_inches(len(plot_data) / 1.5, 8) ax2 = ax1.twinx() # Normalize if normalize: total_times_std /= np.sum(total_times) total_times /= np.sum(total_times) total_energies_std /= np.sum(total_energies) total_energies /= np.sum(total_energies) ax1.set_ylabel('Time (Normalized)') ax2.set_ylabel('Energy (Normalized)') else: # set time in us instead of ns total_times_std /= np.array(1000000.0) total_times /= np.array(1000000.0) total_energies_std /= np.array(1000000.0) total_energies /= np.array(1000000.0) ax1.set_ylabel('Time (ms)') ax2.set_ylabel('Energy (Joules)') rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std) rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std) ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy']) # set axis x1, x2, y1, y2 = plt.axis() if normalize: ax1.set_ylim(ymin=0, ymax=1) ax2.set_ylim(ymin=0, ymax=1) else: ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0)) ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0)) autolabel(rects1, ax1) autolabel(rects2, ax2) # plt.show() plt.savefig(path.join(output_dir, config + ".png")) plt.close(fig) def create_raw_total_data(config_data): """Get the raw data to plot for a configuration Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)] Keyword arguments: config_data -- (trial, trial_data) """ # We can't assume that the same number of heartbeats are always issued across trials # key: profiler name; value: list of timing sums for each trial profiler_total_times = {} # key: profiler name; value: list of energy sums for each trial profiler_total_energies = {} for (t, td) in config_data: for (profiler, ts, te, es, ee) in td: # sum the total times and energies for each profiler in this trial total_time = np.sum(te - ts) total_energy = np.sum(ee - es) # add to list to be averaged later time_list = profiler_total_times.get(profiler, []) time_list.append(total_time) profiler_total_times[profiler] = time_list energy_list = profiler_total_energies.get(profiler, []) energy_list.append(total_energy) profiler_total_energies[profiler] = energy_list # Get mean and stddev for time and energy totals return [(profiler, np.mean(profiler_total_times[profiler]), np.std(profiler_total_times[profiler]), np.mean(profiler_total_energies[profiler]), np.std(profiler_total_energies[profiler])) for profiler in profiler_total_times.keys()] def plot_all_raw_totals(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized') os.makedirs(raw_total_norm_out_dir) raw_total_out_dir = path.join(output_dir, 'raw_totals') os.makedirs(raw_total_out_dir) # (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev))) raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list] mean_times = [] mean_times_std = [] mean_energies = [] mean_energies_std = [] for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]: for (p, tt, tts, te, tes) in profiler_tup: mean_times.append(tt) mean_times_std.append(tts) mean_energies.append(te) mean_energies_std.append(tes) # get consistent max time/energy values across plots max_t = np.max(mean_times) max_t_std = np.max(mean_times_std) max_e = np.max(mean_energies) max_e_std = np.max(mean_energies_std) [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True) for data in raw_totals_data] [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False) for data in raw_totals_data] def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir): """Plot time series for a single trial. Keyword arguments: config -- the config name trial -- the trial name trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])] max_end_time -- single value to use as max X axis value (for consistency across trials) output_dir -- the output directory """ # TODO: Some profilers may have parallel tasks - need to identify this on plots max_end_time = max_end_time / 1000000.0 trial_data = sorted(trial_data) fig, ax1 = plt.subplots() keys = [p for (p, ts, te, es, ee) in trial_data] # add some text for labels, title and axes ticks ax1.set_title('Profiler Activity for ' + config + ', ' + trial) ax1.set_xlabel('Time (ms)') ax1.grid(True) width = 8 # the width of the bars ax1.set_yticks(10 * np.arange(1, len(keys) + 2)) ax1.set_yticklabels(keys) ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10)) ax1.set_xlim(xmin=0, xmax=max_end_time) fig.set_tight_layout(True) fig.set_size_inches(16, len(trial_data) / 3) i = 10 for (p, ts, te, es, ee) in trial_data: xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))] ax1.broken_barh(xranges, (i - 0.5 * width, width)) i += 10 # place a vbar at the final time for this trial last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data])) plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black') power_times = [] power_values = [] for (p, ts, te, es, ee) in trial_data: if p == ENERGY_PROFILER_NAME: power_times = te / 1000000.0 power_values = (ee - es) / ((te - ts) / 1000.0) ax2 = ax1.twinx() ax2.set_xlim(xmin=0, xmax=max_end_time) ax2.set_ylim(ymin=0, ymax=max_power) ax2.set_ylabel('Power (Watts)') ax2.plot(power_times, power_values, color='r') # plt.show() plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png")) plt.close(fig) def hb_energy_times_to_power(es, ee, ts, te): """Compute power from start and end energy and times. Return: power values """ return (ee - es) / ((te - ts) / 1000.0) def plot_all_time_series(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ time_series_out_dir = path.join(output_dir, 'time_series') os.makedirs(time_series_out_dir) max_end_times = [] max_power_values = [] for (c, cd) in config_list: for (t, td) in cd: trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td])) max_end_times.append(np.nanmax(trial_max_end_times)) for (p, ts, te, es, ee) in td: # We only care about the energy profiler (others aren't reliable for instant power anyway) if p == ENERGY_PROFILER_NAME and len(te) > 0: max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te))) max_time = np.nanmax(max_end_times) max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top for (config, config_data) in config_list: [plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir) for (trial, trial_data) in config_data] def read_heartbeat_log(profiler_hb_log): """Read a heartbeat log file. Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers]) Keyword arguments: profiler_hb_log -- the file to read """ with warnings.catch_warnings(): try: warnings.simplefilter("ignore") time_start, time_end, energy_start, energy_end = \ np.loadtxt(profiler_hb_log, dtype=np.dtype('uint64'), skiprows=1, usecols=(HB_LOG_IDX_START_TIME, HB_LOG_IDX_END_TIME, HB_LOG_IDX_START_ENERGY, HB_LOG_IDX_END_ENERGY), unpack=True, ndmin=1) except ValueError: time_start, time_end, energy_start, energy_end = [], [], [], [] name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0] return (name, np.atleast_1d(time_start), np.atleast_1d(time_end), np.atleast_1d(energy_start), np.atleast_1d(energy_end)) def process_trial_dir(trial_dir): """Process trial directory. Return: [(profiler name, [start times], [end times], [start energies], [end energies])] Time and energy are normalized to 0 start values. Keyword arguments: trial_dir -- the directory for this trial """ log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)), filter(lambda f: f.endswith(".log"), os.listdir(trial_dir))) # Find the earliest timestamps and energy readings min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data]))) min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data]))) # Normalize timing/energy data to start values of 0 return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data] def process_config_dir(config_dir): """Process a configuration directory. Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])] Keyword arguments: config_dir -- the directory for this configuration - contains subdirectories for each trial """ return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)] def process_logs(log_dir): """Process log directory. Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])] Keyword arguments: log_dir -- the log directory to process - contains subdirectories for each configuration """ return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir)))) for config_dir in os.listdir(log_dir)] def find_best_executions(log_dir): """Get the best time, energy, and power from the characterization summaries. Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power)) Keyword arguments: results -- the results from process_logs(...). """ DEFAULT = ('', '', 1000000000.0) min_time = DEFAULT min_energy = DEFAULT min_power = DEFAULT for config_dir in os.listdir(log_dir): for trial_dir in os.listdir(path.join(log_dir, config_dir)): with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s: lines = s.readlines() time = float(lines[SUMMARY_TIME_IDX].split(':')[1]) energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1]) power = float(lines[SUMMARY_POWER_IDX].split(':')[1]) if time < min_time[2]: min_time = (config_dir, trial_dir, time) if energy < min_energy[2]: min_energy = (config_dir, trial_dir, energy) if power < min_power: min_power = (config_dir, trial_dir, power) return (min_time, min_energy, min_power) def main(): """This script processes the log files from the "characterize.py" script and produces visualizations. """ # Default log directory directory = 'heartbeat_logs' # Default output directory output_dir = 'plots' # Default android android = False # Parsing the input of the script parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization") parser.add_argument("-d", "--directory", default=directory, help="Heartbeat log directory \"-d heartbeat_logs\"") parser.add_argument("-o", "--output", default=output_dir, help="Specify the log output directory, for example \"-o plots\"") parser.add_argument("--android", action="store_true", dest="android", default=False, help="Specify if processing results from Android") args = parser.parse_args() if args.directory: directory = args.directory if args.output: output_dir = args.output if args.android: android = args.android if not os.path.exists(directory): print "Input directory does not exist: " + directory sys.exit(1) if os.path.exists(output_dir): print "Output directory already exists: " + output_dir sys.exit(1) res = process_logs(directory) if not android: best = find_best_executions(directory) print 'Best time:', best[0] print 'Best energy:', best[1] print 'Best power:', best[2] os.makedirs(output_dir) plot_all_raw_totals(res, output_dir) plot_all_time_series(res, output_dir) if __name__ == "__main__": main()
mpl-2.0
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/sklearn/datasets/svmlight_format.py
1
16064
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause import io import os.path from contextlib import closing import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from ..externals.six.moves import range, zip from .. import __version__ from ..externals import six from ..externals.six import u, b from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): is_sp = int(hasattr(X, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_labels] Target values. Class labels must be an integer or float, or array-like objects of integer or float for multilabel classifications. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) .. versionadded:: 0.17 parameter *multilabel* to support multilabel datasets. """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") y = np.asarray(y) if y.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (y.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != y.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], y.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
mit
gfyoung/pandas
pandas/tests/frame/conftest.py
1
8564
from itertools import product import numpy as np import pytest from pandas import DataFrame, NaT, date_range import pandas._testing as tm @pytest.fixture(params=product([True, False], [True, False])) def close_open_fixture(request): return request.param @pytest.fixture def float_frame_with_na(): """ Fixture for DataFrame of floats with index of unique strings Columns are ['A', 'B', 'C', 'D']; some entries are missing A B C D ABwBzA0ljw -1.128865 -0.897161 0.046603 0.274997 DJiRzmbyQF 0.728869 0.233502 0.722431 -0.890872 neMgPD5UBF 0.486072 -1.027393 -0.031553 1.449522 0yWA4n8VeX -1.937191 -1.142531 0.805215 -0.462018 3slYUbbqU1 0.153260 1.164691 1.489795 -0.545826 soujjZ0A08 NaN NaN NaN NaN 7W6NLGsjB9 NaN NaN NaN NaN ... ... ... ... ... uhfeaNkCR1 -0.231210 -0.340472 0.244717 -0.901590 n6p7GYuBIV -0.419052 1.922721 -0.125361 -0.727717 ZhzAeY6p1y 1.234374 -1.425359 -0.827038 -0.633189 uWdPsORyUh 0.046738 -0.980445 -1.102965 0.605503 3DJA6aN590 -0.091018 -1.684734 -1.100900 0.215947 2GBPAzdbMk -2.883405 -1.021071 1.209877 1.633083 sHadBoyVHw -2.223032 -0.326384 0.258931 0.245517 [30 rows x 4 columns] """ df = DataFrame(tm.getSeriesData()) # set some NAs df.iloc[5:10] = np.nan df.iloc[15:20, -2:] = np.nan return df @pytest.fixture def bool_frame_with_na(): """ Fixture for DataFrame of booleans with index of unique strings Columns are ['A', 'B', 'C', 'D']; some entries are missing A B C D zBZxY2IDGd False False False False IhBWBMWllt False True True True ctjdvZSR6R True False True True AVTujptmxb False True False True G9lrImrSWq False False False True sFFwdIUfz2 NaN NaN NaN NaN s15ptEJnRb NaN NaN NaN NaN ... ... ... ... ... UW41KkDyZ4 True True False False l9l6XkOdqV True False False False X2MeZfzDYA False True False False xWkIKU7vfX False True False True QOhL6VmpGU False False False True 22PwkRJdat False True False False kfboQ3VeIK True False True False [30 rows x 4 columns] """ df = DataFrame(tm.getSeriesData()) > 0 df = df.astype(object) # set some NAs df.iloc[5:10] = np.nan df.iloc[15:20, -2:] = np.nan # For `any` tests we need to have at least one True before the first NaN # in each column for i in range(4): df.iloc[i, i] = True return df @pytest.fixture def float_string_frame(): """ Fixture for DataFrame of floats and strings with index of unique strings Columns are ['A', 'B', 'C', 'D', 'foo']. A B C D foo w3orJvq07g -1.594062 -1.084273 -1.252457 0.356460 bar PeukuVdmz2 0.109855 -0.955086 -0.809485 0.409747 bar ahp2KvwiM8 -1.533729 -0.142519 -0.154666 1.302623 bar 3WSJ7BUCGd 2.484964 0.213829 0.034778 -2.327831 bar khdAmufk0U -0.193480 -0.743518 -0.077987 0.153646 bar LE2DZiFlrE -0.193566 -1.343194 -0.107321 0.959978 bar HJXSJhVn7b 0.142590 1.257603 -0.659409 -0.223844 bar ... ... ... ... ... ... 9a1Vypttgw -1.316394 1.601354 0.173596 1.213196 bar h5d1gVFbEy 0.609475 1.106738 -0.155271 0.294630 bar mK9LsTQG92 1.303613 0.857040 -1.019153 0.369468 bar oOLksd9gKH 0.558219 -0.134491 -0.289869 -0.951033 bar 9jgoOjKyHg 0.058270 -0.496110 -0.413212 -0.852659 bar jZLDHclHAO 0.096298 1.267510 0.549206 -0.005235 bar lR0nxDp1C2 -2.119350 -0.794384 0.544118 0.145849 bar [30 rows x 5 columns] """ df = DataFrame(tm.getSeriesData()) df["foo"] = "bar" return df @pytest.fixture def mixed_float_frame(): """ Fixture for DataFrame of different float types with index of unique strings Columns are ['A', 'B', 'C', 'D']. A B C D GI7bbDaEZe -0.237908 -0.246225 -0.468506 0.752993 KGp9mFepzA -1.140809 -0.644046 -1.225586 0.801588 VeVYLAb1l2 -1.154013 -1.677615 0.690430 -0.003731 kmPME4WKhO 0.979578 0.998274 -0.776367 0.897607 CPyopdXTiz 0.048119 -0.257174 0.836426 0.111266 0kJZQndAj0 0.274357 -0.281135 -0.344238 0.834541 tqdwQsaHG8 -0.979716 -0.519897 0.582031 0.144710 ... ... ... ... ... 7FhZTWILQj -2.906357 1.261039 -0.780273 -0.537237 4pUDPM4eGq -2.042512 -0.464382 -0.382080 1.132612 B8dUgUzwTi -1.506637 -0.364435 1.087891 0.297653 hErlVYjVv9 1.477453 -0.495515 -0.713867 1.438427 1BKN3o7YLs 0.127535 -0.349812 -0.881836 0.489827 9S4Ekn7zga 1.445518 -2.095149 0.031982 0.373204 xN1dNn6OV6 1.425017 -0.983995 -0.363281 -0.224502 [30 rows x 4 columns] """ df = DataFrame(tm.getSeriesData()) df.A = df.A.astype("float32") df.B = df.B.astype("float32") df.C = df.C.astype("float16") df.D = df.D.astype("float64") return df @pytest.fixture def mixed_int_frame(): """ Fixture for DataFrame of different int types with index of unique strings Columns are ['A', 'B', 'C', 'D']. A B C D mUrCZ67juP 0 1 2 2 rw99ACYaKS 0 1 0 0 7QsEcpaaVU 0 1 1 1 xkrimI2pcE 0 1 0 0 dz01SuzoS8 0 1 255 255 ccQkqOHX75 -1 1 0 0 DN0iXaoDLd 0 1 0 0 ... .. .. ... ... Dfb141wAaQ 1 1 254 254 IPD8eQOVu5 0 1 0 0 CcaKulsCmv 0 1 0 0 rIBa8gu7E5 0 1 0 0 RP6peZmh5o 0 1 1 1 NMb9pipQWQ 0 1 0 0 PqgbJEzjib 0 1 3 3 [30 rows x 4 columns] """ df = DataFrame({k: v.astype(int) for k, v in tm.getSeriesData().items()}) df.A = df.A.astype("int32") df.B = np.ones(len(df.B), dtype="uint64") df.C = df.C.astype("uint8") df.D = df.C.astype("int64") return df @pytest.fixture def timezone_frame(): """ Fixture for DataFrame of date_range Series with different time zones Columns are ['A', 'B', 'C']; some entries are missing A B C 0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00 1 2013-01-02 NaT NaT 2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00 """ df = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) df.iloc[1, 1] = NaT df.iloc[1, 2] = NaT return df @pytest.fixture def uint64_frame(): """ Fixture for DataFrame with uint64 values Columns are ['A', 'B'] """ return DataFrame( {"A": np.arange(3), "B": [2 ** 63, 2 ** 63 + 5, 2 ** 63 + 10]}, dtype=np.uint64 ) @pytest.fixture def simple_frame(): """ Fixture for simple 3x3 DataFrame Columns are ['one', 'two', 'three'], index is ['a', 'b', 'c']. one two three a 1.0 2.0 3.0 b 4.0 5.0 6.0 c 7.0 8.0 9.0 """ arr = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]) return DataFrame(arr, columns=["one", "two", "three"], index=["a", "b", "c"]) @pytest.fixture def frame_of_index_cols(): """ Fixture for DataFrame of columns that can be used for indexing Columns are ['A', 'B', 'C', 'D', 'E', ('tuple', 'as', 'label')]; 'A' & 'B' contain duplicates (but are jointly unique), the rest are unique. A B C D E (tuple, as, label) 0 foo one a 0.608477 -0.012500 -1.664297 1 foo two b -0.633460 0.249614 -0.364411 2 foo three c 0.615256 2.154968 -0.834666 3 bar one d 0.234246 1.085675 0.718445 4 bar two e 0.533841 -0.005702 -3.533912 """ df = DataFrame( { "A": ["foo", "foo", "foo", "bar", "bar"], "B": ["one", "two", "three", "one", "two"], "C": ["a", "b", "c", "d", "e"], "D": np.random.randn(5), "E": np.random.randn(5), ("tuple", "as", "label"): np.random.randn(5), } ) return df
bsd-3-clause
yutiansut/QUANTAXIS
QUANTAXIS/QASU/save_okex.py
2
21499
# coding: utf-8 # Author: 阿财(Rgveda@github)([email protected]) # Created date: 2020-02-27 # # The MIT License (MIT) # # Copyright (c) 2016-2018 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import datetime import time from dateutil.tz import tzutc from dateutil.relativedelta import relativedelta import pandas as pd from QUANTAXIS.QAUtil import ( DATABASE, QASETTING, QA_util_log_info, QA_util_log_expection, QA_util_to_json_from_pandas ) from QUANTAXIS.QAUtil.QADate_Adv import ( QA_util_timestamp_to_str, QA_util_datetime_to_Unix_timestamp, QA_util_print_timestamp ) from QUANTAXIS.QAFetch.QAOKEx import ( QA_fetch_okex_symbols, QA_fetch_okex_kline, QA_fetch_okex_kline_min, OKEx2QA_FREQUENCY_DICT ) from QUANTAXIS.QAUtil.QAcrypto import ( QA_util_save_raw_symbols, QA_util_find_missing_kline ) from QUANTAXIS.QAFetch.QAQuery import (QA_fetch_cryptocurrency_list) import pymongo # OKEx的历史数据只提供2000个bar OKEx_MIN_DATE = datetime.datetime(2017, 10, 1, tzinfo=tzutc()) OKEx_EXCHANGE = 'OKEX' OKEx_SYMBOL = 'OKEX.{}' def QA_SU_save_okex(frequency): """ Save OKEx kline "smart" """ if (frequency not in ["1d", '86400', "1day", "day"]): return QA_SU_save_okex_min(frequency) else: return QA_SU_save_okex_day(frequency) def QA_SU_save_okex_day( frequency='86400', ui_log=None, ui_progress=None): """ Save OKEx day kline K线 日线数据,统一转化字段保存数据为 crypto_asset_day """ symbol_template = OKEx_SYMBOL symbol_list = QA_fetch_cryptocurrency_list(OKEx_EXCHANGE) col = DATABASE.cryptocurrency_day col.create_index( [ ("symbol", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING) ], unique=True ) end = datetime.datetime.now(tzutc()) QA_util_log_info( 'Starting DOWNLOAD PROGRESS of day Klines from {:s}... '.format(OKEx_EXCHANGE), ui_log=ui_log, ui_progress=ui_progress ) for index in range(len(symbol_list)): symbol_info = symbol_list.iloc[index] QA_util_log_info( 'The "{}" #{} of total in {}'.format( symbol_template.format(symbol_info['symbol']), index, len(symbol_list) ), ui_log=ui_log, ui_progress=ui_progress ) QA_util_log_info( 'DOWNLOAD PROGRESS {} ' .format(str(float(index / len(symbol_list) * 100))[0:4] + '%'), ui_log=ui_log, ui_progress=ui_progress ) query_id = { "symbol": symbol_template.format(symbol_info['symbol']), } ref = col.find(query_id).sort('date_stamp', -1) if (col.count_documents(query_id) > 0): start_stamp = ref.next()['date_stamp'] start_time = datetime.datetime.fromtimestamp( start_stamp + 1, tz=tzutc() ) QA_util_log_info( 'UPDATE_SYMBOL "{}" Trying updating "{}" from {} to {}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ), ui_log=ui_log, ui_progress=ui_progress ) # 查询到 Kline 缺漏,点抓取模式,按缺失的时间段精确请求K线数据 missing_data_list = QA_util_find_missing_kline( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], )[::-1] else: start_time = OKEx_MIN_DATE QA_util_log_info( 'NEW_SYMBOL "{}" Trying downloading "{}" from {} to {}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ), ui_log=ui_log, ui_progress=ui_progress ) miss_kline = pd.DataFrame( [ [ int(QA_util_datetime_to_Unix_timestamp(start_time)), int(QA_util_datetime_to_Unix_timestamp(end)), '{} to {}'.format(start_time, end) ] ], columns=['expected', 'between', 'missing'] ) missing_data_list = miss_kline.values if len(missing_data_list) > 0: # 查询确定中断的K线数据起止时间,缺分时数据,补分时数据 expected = 0 between = 1 missing = 2 reqParams = {} for i in range(len(missing_data_list)): reqParams['from'] = int(missing_data_list[i][expected]) reqParams['to'] = int(missing_data_list[i][between]) if (reqParams['from'] > (QA_util_datetime_to_Unix_timestamp() + 120)): # 出现“未来”时间,一般是默认时区设置错误造成的 QA_util_log_info( 'A unexpected \'Future\' timestamp got, Please check self.missing_data_list_func param \'tzlocalize\' set. More info: {:s}@{:s} at {:s} but current time is {}' .format( symbol_template.format(symbol_info['symbol']), frequency, QA_util_print_timestamp(reqParams['from']), QA_util_print_timestamp( QA_util_datetime_to_Unix_timestamp() ) ) ) # 跳到下一个时间段 continue QA_util_log_info( 'Fetch "{:s}" slices "{:s}" kline:{:s} to {:s}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str( missing_data_list[i][expected] )[2:16], QA_util_timestamp_to_str( missing_data_list[i][between] )[2:16] ) ) data = QA_fetch_okex_kline( symbol_info['symbol'], time.mktime(start_time.utctimetuple()), time.mktime(end.utctimetuple()), frequency, callback_func=QA_SU_save_data_okex_callback ) if data is None: QA_util_log_info( 'SYMBOL "{}" from {} to {} has no data'.format( symbol_template.format(symbol_info['symbol']), QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ), ui_log=ui_log, ui_progress=ui_progress ) continue QA_util_log_info( 'DOWNLOAD PROGRESS of day Klines from {:s} accomplished.'.format(OKEx_EXCHANGE), ui_log=ui_log, ui_progress=ui_progress ) def QA_SU_save_okex_min( frequency='60', ui_log=None, ui_progress=None): """ Save OKEx min kline 分钟线数据,统一转化字段保存数据为 crypto_asset_min """ symbol_template = OKEx_SYMBOL symbol_list = QA_fetch_cryptocurrency_list(OKEx_EXCHANGE) col = DATABASE.cryptocurrency_min col.create_index( [ ("symbol", pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING), ('date_stamp', pymongo.ASCENDING) ] ) col.create_index( [ ("symbol", pymongo.ASCENDING), ("type", pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING) ], unique=True ) end = datetime.datetime.now(tzutc()) QA_util_log_info( 'Starting DOWNLOAD PROGRESS of min Klines from {:s}... '.format(OKEx_EXCHANGE), ui_log=ui_log, ui_progress=ui_progress ) for index in range(len(symbol_list)): symbol_info = symbol_list.iloc[index] # 上架仅处理交易对 QA_util_log_info( 'The "{}" #{} of total in {}'.format( symbol_template.format(symbol_info['symbol']), index, len(symbol_list) ), ui_log=ui_log, ui_progress=ui_progress ) QA_util_log_info( 'DOWNLOAD PROGRESS {} ' .format(str(float(index / len(symbol_list) * 100))[0:4] + '%'), ui_log=ui_log, ui_progress=ui_progress ) query_id = { "symbol": symbol_template.format(symbol_info['symbol']), 'type': OKEx2QA_FREQUENCY_DICT[frequency] } ref = col.find(query_id).sort('time_stamp', -1) if (col.count_documents(query_id) > 0): start_stamp = ref.next()['time_stamp'] start_time = datetime.datetime.fromtimestamp( start_stamp + 1, tz=tzutc() ) QA_util_log_info( 'UPDATE_SYMBOL "{}" Trying updating "{}" from {} to {}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ), ui_log=ui_log, ui_progress=ui_progress ) # 查询到 Kline 缺漏,点抓取模式,按缺失的时间段精确请求K线数据 missing_data_list = QA_util_find_missing_kline( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], )[::-1] else: start_time = OKEx_MIN_DATE QA_util_log_info( 'NEW_SYMBOL "{}" Trying downloading "{}" from {} to {}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ), ui_log=ui_log, ui_progress=ui_progress ) miss_kline = pd.DataFrame( [ [ int(QA_util_datetime_to_Unix_timestamp(start_time)), int(QA_util_datetime_to_Unix_timestamp(end)), '{} to {}'.format(start_time, end) ] ], columns=['expected', 'between', 'missing'] ) missing_data_list = miss_kline.values if len(missing_data_list) > 0: # 查询确定中断的K线数据起止时间,缺分时数据,补分时数据 expected = 0 between = 1 missing = 2 reqParams = {} for i in range(len(missing_data_list)): reqParams['from'] = int(missing_data_list[i][expected]) reqParams['to'] = int(missing_data_list[i][between]) if (reqParams['from'] > (QA_util_datetime_to_Unix_timestamp() + 120)): # 出现“未来”时间,一般是默认时区设置错误造成的 QA_util_log_info( 'A unexpected \'Future\' timestamp got, Please check self.missing_data_list_func param \'tzlocalize\' set. More info: {:s}@{:s} at {:s} but current time is {}' .format( symbol_template.format(symbol_info['symbol']), frequency, QA_util_print_timestamp(reqParams['from']), QA_util_print_timestamp( QA_util_datetime_to_Unix_timestamp() ) ) ) # 跳到下一个时间段 continue QA_util_log_info( 'Fetch "{:s}" slices "{:s}" kline:{:s} to {:s}'.format( symbol_template.format(symbol_info['symbol']), OKEx2QA_FREQUENCY_DICT[frequency], QA_util_timestamp_to_str( missing_data_list[i][expected] )[2:16], QA_util_timestamp_to_str( missing_data_list[i][between] )[2:16] ) ) data = QA_fetch_okex_kline_min( symbol_info['symbol'], start_time=reqParams['from'], end_time=reqParams['to'], frequency=frequency, callback_func=QA_SU_save_data_okex_callback ) if data is None: QA_util_log_info( 'SYMBOL "{}" from {} to {} has no MORE data'.format( symbol_template.format(symbol_info['symbol']), QA_util_timestamp_to_str(start_time), QA_util_timestamp_to_str(end) ) ) continue QA_util_log_info( 'DOWNLOAD PROGRESS of min Klines from {:s} accomplished.'.format(OKEx_EXCHANGE), ui_log=ui_log, ui_progress=ui_progress ) def QA_SU_save_okex_1min(): QA_SU_save_okex('60') def QA_SU_save_okex_1day(): QA_SU_save_okex("86400") def QA_SU_save_okex_1hour(): QA_SU_save_okex("3600") def QA_SU_save_okex_symbol( market=OKEx_EXCHANGE, client=DATABASE, ): """ 保存OKEx交易对信息 """ market = market.upper() QA_util_log_info('Downloading {:s} symbol list...'.format(market)) # 保存 OKEx API 原始 Symbol 数据备查阅,自动交易用得着 raw_symbol_lists = QA_util_save_raw_symbols( QA_fetch_okex_symbols, market ) if (len(raw_symbol_lists) > 0): # 保存到 QUANTAXIS.crypto_asset_list 数字资产列表,为了跨市场统一查询做数据汇总 symbol_lists = pd.DataFrame(raw_symbol_lists) # market,symbol为 mongodb 索引字段,保存之前必须要检查存在 symbol_lists['market'] = market symbol_lists['category'] = 1 symbol_lists.rename( { 'instrument_id': 'symbol', 'tick_size': 'price_precision', }, axis=1, inplace=True ) symbol_lists['state'] = 'online' symbol_lists['name'] = symbol_lists.apply( lambda x: '{:s}/{:s}'. format(x['base_currency'].upper(), x['quote_currency'].upper()), axis=1 ) symbol_lists['desc'] = symbol_lists['name'] # 移除非共性字段,这些字段只有 broker 才关心,做对应交易所 broker 接口的时候在交易所 raw_symbol_lists # 数据中读取。 symbol_lists.drop( [ 'min_size', 'size_increment', ], axis=1, inplace=True ) if ('_id' in symbol_lists.columns.values): # 有时有,必须单独删除 symbol_lists.drop( [ '_id', ], axis=1, inplace=True ) symbol_lists['created_at'] = int( time.mktime(datetime.datetime.now().utctimetuple()) ) symbol_lists['updated_at'] = int( time.mktime(datetime.datetime.now().utctimetuple()) ) coll_cryptocurrency_list = client.cryptocurrency_list coll_cryptocurrency_list.create_index( [('market', pymongo.ASCENDING), ('symbol', pymongo.ASCENDING)], unique=True ) try: query_id = {'market': market} if (coll_cryptocurrency_list.count_documents(query_id) > 0): # 删掉重复数据 query_id = { 'market': market, 'symbol': { '$in': symbol_lists['symbol'].tolist() } } coll_cryptocurrency_list.delete_many(query_id) coll_cryptocurrency_list.insert_many( QA_util_to_json_from_pandas(symbol_lists) ) return symbol_lists except: QA_util_log_expection( 'QA_SU_save_okex_symbol(): Insert_many(symbol) to "cryptocurrency_list" got Exception with {} klines' .format(len(symbol_lists)) ) pass return [] def QA_SU_save_data_okex_callback(data, freq): """ 异步获取数据回调用的 MongoDB 存储函数,okex返回数据也是时间倒序排列 """ symbol_template = OKEx_SYMBOL QA_util_log_info( 'SYMBOL "{}" Recived "{}" from {} to {} in total {} klines'.format( data.iloc[0].symbol, freq, time.strftime( '%Y-%m-%d %H:%M:%S', time.localtime(data.iloc[-1].time_stamp) )[2:16], time.strftime( '%Y-%m-%d %H:%M:%S', time.localtime(data.iloc[0].time_stamp) )[2:16], len(data) ) ) if (freq not in ['1day', '86400', 'day', '1d']): col = DATABASE.cryptocurrency_min col.create_index( [ ("symbol", pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING), ('date_stamp', pymongo.ASCENDING) ] ) col.create_index( [ ("symbol", pymongo.ASCENDING), ("type", pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING) ], unique=True ) # 查询是否新 tick query_id = { "symbol": data.iloc[0].symbol, 'type': data.iloc[0].type, 'time_stamp': { '$in': data['time_stamp'].tolist() } } refcount = col.count_documents(query_id) else: col = DATABASE.cryptocurrency_day col.create_index( [ ("symbol", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING) ], unique=True ) # 查询是否新 tick query_id = { "symbol": data.iloc[0].symbol, 'date_stamp': { '$in': data['date_stamp'].tolist() } } refcount = col.count_documents(query_id) if refcount > 0: if (len(data) > 1): # 删掉重复数据 col.delete_many(query_id) data = QA_util_to_json_from_pandas(data) col.insert_many(data) else: # 持续接收行情,更新记录 data.drop('created_at', axis=1, inplace=True) data = QA_util_to_json_from_pandas(data) col.replace_one(query_id, data[0]) else: # 新 tick,插入记录 data = QA_util_to_json_from_pandas(data) col.insert_many(data) if __name__ == '__main__': QA_SU_save_okex_min('900') QA_SU_save_okex_symbol() #QA_SU_save_okex_1day() #QA_SU_save_okex_1hour() QA_SU_save_okex_1min()
mit
anorfleet/turntable
test/lib/python2.7/site-packages/scipy/stats/kde.py
9
18242
#------------------------------------------------------------------------------- # # Define classes for (uni/multi)-variate kernel density estimation. # # Currently, only Gaussian kernels are implemented. # # Written by: Robert Kern # # Date: 2004-08-09 # # Modified: 2005-02-10 by Robert Kern. # Contributed to Scipy # 2005-10-07 by Robert Kern. # Some fixes to match the new scipy_core # # Copyright 2004-2005 by Enthought, Inc. # #------------------------------------------------------------------------------- from __future__ import division, print_function, absolute_import # Standard library imports. import warnings # Scipy imports. from scipy.lib.six import callable, string_types from scipy import linalg, special from numpy import atleast_2d, reshape, zeros, newaxis, dot, exp, pi, sqrt, \ ravel, power, atleast_1d, squeeze, sum, transpose import numpy as np from numpy.random import randint, multivariate_normal # Local imports. from . import mvn __all__ = ['gaussian_kde'] class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) kde.integrate_gaussian(mean, cov) : float Multiply pdf with a specified Gaussian and integrate over the whole domain. kde.integrate_box_1d(low, high) : float Integrate pdf (1D only) between two bounds. kde.integrate_box(low_bounds, high_bounds) : float Integrate pdf over a rectangular space between low_bounds and high_bounds. kde.integrate_kde(other_kde) : float Integrate two kernel density estimates multiplied together. kde.pdf(points) : ndarray Alias for ``kde.evaluate(points)``. kde.logpdf(points) : ndarray Equivalent to ``np.log(kde.evaluate(points))``. kde.resample(size=None) : ndarray Randomly sample a dataset from the estimated pdf. kde.set_bandwidth(bw_method='scott') : None Computes the bandwidth, i.e. the coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. .. versionadded:: 0.11.0 kde.covariance_factor : float Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`. Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): >>> "Measurement model, return two coupled measurements." >>> m1 = np.random.normal(size=n) >>> m2 = np.random.normal(scale=0.5, size=n) >>> return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None): self.dataset = atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) result = zeros((m,), dtype=np.float) if m >= self.n: # there are more points than data, so loop over data for i in range(self.n): diff = self.dataset[:, i, newaxis] - points tdiff = dot(self.inv_cov, diff) energy = sum(diff*tdiff,axis=0) / 2.0 result = result + exp(-energy) else: # loop over points for i in range(m): diff = self.dataset - points[:, i, newaxis] tdiff = dot(self.inv_cov, diff) energy = sum(diff * tdiff, axis=0) / 2.0 result[i] = sum(exp(-energy), axis=0) result = result / self._norm_factor return result __call__ = evaluate def integrate_gaussian(self, mean, cov): """ Multiply estimated density by a multivariate Gaussian and integrate over the whole space. Parameters ---------- mean : aray_like A 1-D array, specifying the mean of the Gaussian. cov : array_like A 2-D array, specifying the covariance matrix of the Gaussian. Returns ------- result : scalar The value of the integral. Raises ------ ValueError : If the mean or covariance of the input Gaussian differs from the KDE's dimensionality. """ mean = atleast_1d(squeeze(mean)) cov = atleast_2d(cov) if mean.shape != (self.d,): raise ValueError("mean does not have dimension %s" % self.d) if cov.shape != (self.d, self.d): raise ValueError("covariance does not have dimension %s" % self.d) # make mean a column vector mean = mean[:, newaxis] sum_cov = self.covariance + cov diff = self.dataset - mean tdiff = dot(linalg.inv(sum_cov), diff) energies = sum(diff * tdiff, axis=0) / 2.0 result = sum(exp(-energies), axis=0) / sqrt(linalg.det(2 * pi * sum_cov)) / self.n return result def integrate_box_1d(self, low, high): """ Computes the integral of a 1D pdf between two bounds. Parameters ---------- low : scalar Lower bound of integration. high : scalar Upper bound of integration. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDE is over more than one dimension. """ if self.d != 1: raise ValueError("integrate_box_1d() only handles 1D pdfs") stdev = ravel(sqrt(self.covariance))[0] normalized_low = ravel((low - self.dataset) / stdev) normalized_high = ravel((high - self.dataset) / stdev) value = np.mean(special.ndtr(normalized_high) - special.ndtr(normalized_low)) return value def integrate_box(self, low_bounds, high_bounds, maxpts=None): """Computes the integral of a pdf over a rectangular interval. Parameters ---------- low_bounds : array_like A 1-D array containing the lower bounds of integration. high_bounds : array_like A 1-D array containing the upper bounds of integration. maxpts : int, optional The maximum number of points to use for integration. Returns ------- value : scalar The result of the integral. """ if maxpts is not None: extra_kwds = {'maxpts': maxpts} else: extra_kwds = {} value, inform = mvn.mvnun(low_bounds, high_bounds, self.dataset, self.covariance, **extra_kwds) if inform: msg = ('An integral in mvn.mvnun requires more points than %s' % (self.d * 1000)) warnings.warn(msg) return value def integrate_kde(self, other): """ Computes the integral of the product of this kernel density estimate with another. Parameters ---------- other : gaussian_kde instance The other kde. Returns ------- value : scalar The result of the integral. Raises ------ ValueError If the KDEs have different dimensionality. """ if other.d != self.d: raise ValueError("KDEs are not the same dimensionality") # we want to iterate over the smallest number of points if other.n < self.n: small = other large = self else: small = self large = other sum_cov = small.covariance + large.covariance sum_cov_chol = linalg.cho_factor(sum_cov) result = 0.0 for i in range(small.n): mean = small.dataset[:, i, newaxis] diff = large.dataset - mean tdiff = linalg.cho_solve(sum_cov_chol, diff) energies = sum(diff * tdiff, axis=0) / 2.0 result += sum(exp(-energies), axis=0) result /= sqrt(linalg.det(2 * pi * sum_cov)) * large.n * small.n return result def resample(self, size=None): """ Randomly sample a dataset from the estimated pdf. Parameters ---------- size : int, optional The number of samples to draw. If not provided, then the size is the same as the underlying dataset. Returns ------- resample : (self.d, `size`) ndarray The sampled dataset. """ if size is None: size = self.n norm = transpose(multivariate_normal(zeros((self.d,), float), self.covariance, size=size)) indices = randint(0, self.n, size=size) means = self.dataset[:, indices] return means + norm def scotts_factor(self): return power(self.n, -1./(self.d+4)) def silverman_factor(self): return power(self.n*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1, bias=False)) self._data_inv_cov = linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n def pdf(self, x): """ Evaluate the estimated pdf on a provided set of points. Notes ----- This is an alias for `gaussian_kde.evaluate`. See the ``evaluate`` docstring for more details. """ return self.evaluate(x) def logpdf(self, x): """ Evaluate the log of the estimated pdf on a provided set of points. Notes ----- See `gaussian_kde.evaluate` for more details; this method simply returns ``np.log(gaussian_kde.evaluate(x))``. """ return np.log(self.evaluate(x))
mit
Myasuka/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
marcindulak/gpaw-on-aws
benchmark/plot.py
1
4378
import csv def CommentStripper(iterator): for line in iterator: if line.startswith('# p'): continue if line.startswith('# GPAW'): continue if line.startswith(' 32'): continue if line.startswith(' 64'): continue yield line # extraxt the run information: description line and results on 16 cores for all runs from analyse.txt rows = [] for row in csv.reader(CommentStripper(open('analyse.txt', 'rb'))): if len(row) > 0: rows.append(row) assert len(rows) % 2 == 0 # ID, 16 core price/hour in USD, total time in sec, price of the 16 cores run in USD cents, cpu type runs = {} for index in range(0, len(rows) - 1, 2): price = eval(rows[index][0].split()[3]) # price per hour cpu = rows[index][2].strip() time = eval(rows[index + 1][0].split()[-3].strip()) total_price = time / 3600 * price * 100 runs[rows[index][0].split()[2]] = (price, time, total_price, cpu) ids = sorted(runs.keys()) # write plot data in csv format with open('plot.csv', 'w') as csvfile: fieldnames = ['ID', '16 core price/hour in USD', 'total time in sec', 'price of the 16 cores run in USD cents', 'cpu type'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for id in ids: row = {fieldnames[0]: id} for n, field in enumerate(fieldnames[1:]): row.update({field: runs[id][n]}) writer.writerow(row) labels = [id.replace('xeon16.openblas.SL', 'Niflheim') for id in ids] import matplotlib matplotlib.use('Agg') from matplotlib import pylab colors = ('k', 'b', 'g', 'y', 'c', 'w', 'm', 'r') scale = [l + 0.5 for l in range(len(labels))] zero = [0.0 for v in scale] v0010 = [10.0 for v in scale] v0020 = [20.0 for v in scale] v0030 = [30.0 for v in scale] v0050 = [50.0 for v in scale] v0100 = [100.0 for v in scale] v0500 = [500.0 for v in scale] v0800 = [800.0 for v in scale] v0900 = [900.0 for v in scale] v1000 = [1000.0 for v in scale] if 0: pylab.plot(scale, zero, 'k-', label='_nolegend_') pylab.plot(v0010, zero, 'k-', label='_nolegend_') pylab.plot(v0020, zero, 'k-', label='_nolegend_') pylab.plot(v0020, zero, 'k-', label='_nolegend_') pylab.plot(v0050, zero, 'k-', label='_nolegend_') pylab.plot(v0500, zero, 'k-', label='_nolegend_') pylab.plot(v0800, zero, 'k-', label='_nolegend_') pylab.plot(v0900, zero, 'k-', label='_nolegend_') pylab.plot(v1000, zero, 'k-', label='_nolegend_') pylab.gca().set_ylim(-0.1, 1100.1) pylab.gca().set_xlim(-0.1, max(scale) + 0.5 + 0.1) if 0: # print vertical lines at xticks # http://matplotlib.org/examples/pylab_examples/axhspan_demo.html for s in scale: l = pylab.axvline(x=s, linewidth=0.5, color=(0,0,0,0), alpha=0.5) ay1 = pylab.gca() ay1.xaxis.set_ticks([n for n in scale]) ay1.xaxis.set_ticklabels(labels) ay1.yaxis.set_ticks([10., 50., 100., 500., 800., 900., 1000.,]) ay1.yaxis.set_ticklabels(['10', '50', '100', '500', '800', '900', '1000']) for label in ay1.get_xticklabels() + ay1.get_yticklabels(): label.set_fontsize(12) # rotate labels http://old.nabble.com/Rotate-x-axes-%28xticks%29-text.-td3141258.html for n, label in enumerate(ay1.get_xticklabels()): label.set_rotation(70) # label.set_position((0.0, 1.0 * (n % 2))) # once up / once down label.set_position((0.0, 0.0)) # down # create bins time = [runs[id][1] for id in ids] price = [runs[id][2] for id in ids] width = 0.6 plotscale = [s - width/2 for s in scale] plots = [] plots.append(pylab.bar(plotscale, price, width, color=colors[0], alpha=1.0)) plots.append(pylab.bar(plotscale, time, width, color=colors[1], alpha=0.3)) pylab.ylabel('Performance') t = pylab.title('GPAW benchmark on 16 CPU cores') # http://old.nabble.com/More-space-between-title-and-secondary-x-axis-td31722298.html t.set_y(1.05) prop = matplotlib.font_manager.FontProperties(size=12) leg = pylab.legend(plots, ['price of the run in USD cents', 'run time in seconds'], fancybox=True, prop=prop) leg.get_frame().set_alpha(0.5) # http://www.mail-archive.com/[email protected]/msg03952.html leg._loc=(0.40, 0.85) pylab.savefig('plot.png', bbox_inches='tight', dpi=600)
bsd-2-clause
zqhuang/COOP
mapio/pyscripts/sharex.py
2
2072
import numpy as np from matplotlib import use use('pdf') import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.colors import LogNorm import pylab as m cdict = { 'red' : ((0., 1., 1.), (0.02, 0.56, 0.56), (0.25, 0., 0.), (0.45, 0.1, 0.1), (0.5, 0., 0.) , (0.6, 0.7, 0.7), (0.7, 1., 1.), (0.8, 1., 1.), (1., 1., 1.)), 'green': ((0., 1., 1.), (0.02, 0.21, 0.21), (0.25, 0., 0.), (0.45, 0.9, 0.9) ,(0.5, 1., 1.), (0.7, 1., 1.), (0.8, 0.5, 0.5), (1., 0., 0.)), 'blue' : ((0., 1., 1.), (0.02, 0.94, 0.94), (0.25, 1., 1.), (0.45, 0.1, 0.1), (0.5, 0., 0.), (0.7, 0., 0.), (0.8, 0.2, 0.2), (1., 0., 0.)) } #generate the colormap with 1024 interpolated values my_cmap = m.matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 1024) mpl.cm.register_cmap(cmap = my_cmap) plt.set_cmap(my_cmap) #'gist_rainbow_r') fig, axes = plt.subplots(nrows=4, figsize=(10, 8.), sharex = True) chimin = 0.10000E-01 chimax = 1.2000 lmin = 2. lmax = 3000. axes[0].set_yscale('log') axes[0].set_ylabel('$\ell$') grid = np.loadtxt("ztinfo.txt").transpose() im = axes[0].imshow(grid[::-1], extent=[chimin,chimax,lmin, lmax], vmin = 0.1, vmax = 10., norm=LogNorm()) axes[0].set_title('Temperature $S/N$') axes[1].set_yscale('log') axes[1].set_ylabel('$\ell$') grid = np.loadtxt("zeinfo.txt").transpose() im = axes[1].imshow(grid[::-1], extent=[chimin,chimax,lmin, lmax], vmin = 0.1, vmax = 10., norm=LogNorm()) axes[1].set_title('E polarization $S/N$') axes[2].set_yscale('log') axes[2].set_ylabel('$\ell$') grid = np.loadtxt("zetinfo.txt").transpose() im = axes[2].imshow(grid[::-1], extent=[chimin,chimax,lmin, lmax], vmin = 0.1, vmax = 10., norm=LogNorm()) axes[2].set_title('T + E $S/N$') fig.colorbar(im, ax = axes.ravel().tolist()) chivis = np.loadtxt("vis.txt") chi = [ s[0] for s in chivis ] vis = [ s[1] for s in chivis ] axes[3].plot(chi,vis) axes[3].set_yscale('log') axes[3].set_ylabel('$\dot\kappa e^{-\kappa} / H_0$') axes[3].set_xlabel('$\chi/\chi_{rec}$') axes[3].set_title('differential visiblity') plt.savefig('zetaSN.pdf', format='pdf')
gpl-3.0
PhE/dask
dask/tests/test_core.py
3
3882
from collections import namedtuple from operator import add from dask.utils import raises from dask.core import (istask, get, get_dependencies, flatten, subs, preorder_traversal, quote, list2) def contains(a, b): """ >>> contains({'x': 1, 'y': 2}, {'x': 1}) True >>> contains({'x': 1, 'y': 2}, {'z': 3}) False """ return all(a.get(k) == v for k, v in b.items()) def inc(x): return x + 1 def add(x, y): return x + y def test_istask(): assert istask((inc, 1)) assert not istask(1) assert not istask((1, 2)) f = namedtuple('f', ['x', 'y']) assert not istask(f(sum, 2)) d = {':x': 1, ':y': (inc, ':x'), ':z': (add, ':x', ':y')} def test_preorder_traversal(): t = (add, 1, 2) assert list(preorder_traversal(t)) == [add, 1, 2] t = (add, (add, 1, 2), (add, 3, 4)) assert list(preorder_traversal(t)) == [add, add, 1, 2, add, 3, 4] t = (add, (sum, [1, 2]), 3) assert list(preorder_traversal(t)) == [add, sum, list, 1, 2, 3] def test_get(): assert get(d, ':x') == 1 assert get(d, ':y') == 2 assert get(d, ':z') == 3 assert get(d, 'pass-through') == 'pass-through' def test_memoized_get(): try: import toolz except ImportError: return cache = dict() getm = toolz.memoize(get, cache=cache, key=lambda args, kwargs: args[1:]) result = getm(d, ':z', get=getm) assert result == 3 assert contains(cache, {(':x',): 1, (':y',): 2, (':z',): 3}) def test_data_not_in_dict_is_ok(): d = {'x': 1, 'y': (add, 'x', 10)} assert get(d, 'y') == 11 def test_get_with_list(): d = {'x': 1, 'y': 2, 'z': (sum, ['x', 'y'])} assert get(d, ['x', 'y']) == [1, 2] assert get(d, 'z') == 3 def test_get_with_nested_list(): d = {'x': 1, 'y': 2, 'z': (sum, ['x', 'y'])} assert get(d, [['x'], 'y']) == [[1], 2] assert get(d, 'z') == 3 def test_get_works_with_unhashables_in_values(): f = lambda x, y: x + len(y) d = {'x': 1, 'y': (f, 'x', set([1]))} assert get(d, 'y') == 2 def test_get_laziness(): def isconcrete(arg): return isinstance(arg, list) d = {'x': 1, 'y': 2, 'z': (isconcrete, ['x', 'y'])} assert get(d, ['x', 'y']) == [1, 2] assert get(d, 'z') == False def test_get_dependencies_nested(): dsk = {'x': 1, 'y': 2, 'z': (add, (inc, [['x']]), 'y')} assert get_dependencies(dsk, 'z') == set(['x', 'y']) def test_get_dependencies_empty(): dsk = {'x': (inc,)} assert get_dependencies(dsk, 'x') == set() def test_nested_tasks(): d = {'x': 1, 'y': (inc, 'x'), 'z': (add, (inc, 'x'), 'y')} assert get(d, 'z') == 4 def test_get_stack_limit(): d = dict(('x%s' % (i+1), (inc, 'x%s' % i)) for i in range(10000)) d['x0'] = 0 assert get(d, 'x10000') == 10000 # introduce cycle d['x5000'] = (inc, 'x5001') assert raises(RuntimeError, lambda: get(d, 'x10000')) assert get(d, 'x4999') == 4999 def test_flatten(): assert list(flatten(())) == [] assert list(flatten('foo')) == ['foo'] def test_subs(): assert subs((sum, [1, 'x']), 'x', 2) == (sum, [1, 2]) assert subs((sum, [1, ['x']]), 'x', 2) == (sum, [1, [2]]) def test_subs_with_unfriendly_eq(): try: import numpy as np except: return else: task = (np.sum, np.array([1, 2])) assert (subs(task, (4, 5), 1) == task) is True def test_subs_with_surprisingly_friendly_eq(): try: import pandas as pd except: return else: df = pd.DataFrame() assert subs(df, 'x', 1) is df def test_quote(): literals = [[1, 2, 3], (add, 1, 2), [1, [2, 3]], (add, 1, (add, 2, 3))] for l in literals: assert get({'x': quote(l)}, 'x') == l
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/decomposition/plot_pca_iris.py
1
1481
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn import decomposition np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
mit
rgommers/statsmodels
statsmodels/nonparametric/kde.py
1
18953
""" Univariate Kernel Density Estimators References ---------- Racine, Jeff. (2008) "Nonparametric Econometrics: A Primer," Foundation and Trends in Econometrics: Vol 3: No 1, pp1-88. http://dx.doi.org/10.1561/0800000009 http://en.wikipedia.org/wiki/Kernel_%28statistics%29 Silverman, B.W. Density Estimation for Statistics and Data Analysis. """ from __future__ import absolute_import, print_function from statsmodels.compat.python import range # for 2to3 with extensions import warnings import numpy as np from scipy import integrate, stats from statsmodels.sandbox.nonparametric import kernels from statsmodels.tools.decorators import (cache_readonly, resettable_cache) from . import bandwidths from .kdetools import (forrt, revrt, silverman_transform, counts) from .linbin import fast_linbin #### Kernels Switch for estimators #### kernel_switch = dict(gau=kernels.Gaussian, epa=kernels.Epanechnikov, uni=kernels.Uniform, tri=kernels.Triangular, biw=kernels.Biweight, triw=kernels.Triweight, cos=kernels.Cosine, cos2=kernels.Cosine2) def _checkisfit(self): try: self.density except: raise ValueError("Call fit to fit the density first") #### Kernel Density Estimator Class ### class KDEUnivariate(object): """ Univariate Kernel Density Estimator. Parameters ---------- endog : array-like The variable for which the density estimate is desired. Notes ----- If cdf, sf, cumhazard, or entropy are computed, they are computed based on the definition of the kernel rather than the FFT approximation, even if the density is fit with FFT = True. `KDEUnivariate` is much faster than `KDEMultivariate`, due to its FFT-based implementation. It should be preferred for univariate, continuous data. `KDEMultivariate` also supports mixed data. See Also -------- KDEMultivariate kdensity, kdensityfft Examples -------- >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> nobs = 300 >>> np.random.seed(1234) # Seed random generator >>> dens = sm.nonparametric.KDEUnivariate(np.random.normal(size=nobs)) >>> dens.fit() >>> plt.plot(dens.cdf) >>> plt.show() """ def __init__(self, endog): self.endog = np.asarray(endog) def fit(self, kernel="gau", bw="normal_reference", fft=True, weights=None, gridsize=None, adjust=1, cut=3, clip=(-np.inf, np.inf)): """ Attach the density estimate to the KDEUnivariate class. Parameters ---------- kernel : str The Kernel to be used. Choices are: - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float The bandwidth to use. Choices are: - "scott" - 1.059 * A * nobs ** (-1/5.), where A is `min(std(X),IQR/1.34)` - "silverman" - .9 * A * nobs ** (-1/5.), where A is `min(std(X),IQR/1.34)` - "normal_reference" - C * A * nobs ** (-1/5.), where C is calculated from the kernel. Equivalent (up to 2 dp) to the "scott" bandwidth for gaussian kernels. See bandwidths.py - If a float is given, it is the bandwidth. fft : bool Whether or not to use FFT. FFT implementation is more computationally efficient. However, only the Gaussian kernel is implemented. If FFT is False, then a 'nobs' x 'gridsize' intermediate array is created. gridsize : int If gridsize is None, max(len(X), 50) is used. cut : float Defines the length of the grid past the lowest and highest values of X so that the kernel goes to zero. The end points are -/+ cut*bw*{min(X) or max(X)} adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. """ try: bw = float(bw) self.bw_method = "user-given" except: self.bw_method = bw endog = self.endog if fft: if kernel != "gau": msg = "Only gaussian kernel is available for fft" raise NotImplementedError(msg) if weights is not None: msg = "Weights are not implemented for fft" raise NotImplementedError(msg) density, grid, bw = kdensityfft(endog, kernel=kernel, bw=bw, adjust=adjust, weights=weights, gridsize=gridsize, clip=clip, cut=cut) else: density, grid, bw = kdensity(endog, kernel=kernel, bw=bw, adjust=adjust, weights=weights, gridsize=gridsize, clip=clip, cut=cut) self.density = density self.support = grid self.bw = bw self.kernel = kernel_switch[kernel](h=bw) # we instantiate twice, # should this passed to funcs? # put here to ensure empty cache after re-fit with new options self.kernel.weights = weights if weights is not None: self.kernel.weights /= weights.sum() self._cache = resettable_cache() @cache_readonly def cdf(self): """ Returns the cumulative distribution function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) density = self.density kern = self.kernel if kern.domain is None: # TODO: test for grid point at domain bound a,b = -np.inf,np.inf else: a,b = kern.domain func = lambda x,s: kern.density(s,x) support = self.support support = np.r_[a,support] gridsize = len(support) endog = self.endog probs = [integrate.quad(func, support[i-1], support[i], args=endog)[0] for i in range(1,gridsize)] return np.cumsum(probs) @cache_readonly def cumhazard(self): """ Returns the hazard function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) return -np.log(self.sf) @cache_readonly def sf(self): """ Returns the survival function evaluated at the support. Notes ----- Will not work if fit has not been called. """ _checkisfit(self) return 1 - self.cdf @cache_readonly def entropy(self): """ Returns the differential entropy evaluated at the support Notes ----- Will not work if fit has not been called. 1e-12 is added to each probability to ensure that log(0) is not called. """ _checkisfit(self) def entr(x,s): pdf = kern.density(s,x) return pdf*np.log(pdf+1e-12) pdf = self.density kern = self.kernel if kern.domain is not None: a,b = self.domain else: a,b = -np.inf,np.inf endog = self.endog #TODO: below could run into integr problems, cf. stats.dist._entropy return -integrate.quad(entr, a,b, args=(endog,))[0] @cache_readonly def icdf(self): """ Inverse Cumulative Distribution (Quantile) Function Notes ----- Will not work if fit has not been called. Uses `scipy.stats.mstats.mquantiles`. """ _checkisfit(self) gridsize = len(self.density) return stats.mstats.mquantiles(self.endog, np.linspace(0,1, gridsize)) def evaluate(self, point): """ Evaluate density at a single point. Parameters ---------- point : float Point at which to evaluate the density. """ _checkisfit(self) return self.kernel.density(self.endog, point) class KDE(KDEUnivariate): def __init__(self, endog): self.endog = np.asarray(endog) warnings.warn("KDE is deprecated and will be removed in 0.6, " "use KDEUnivariate instead", FutureWarning) #### Kernel Density Estimator Functions #### def kdensity(X, kernel="gau", bw="normal_reference", weights=None, gridsize=None, adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True): """ Rosenblatt-Parzen univariate kernel density estimator. Parameters ---------- X : array-like The variable for which the density estimate is desired. kernel : str The Kernel to be used. Choices are - "biw" for biweight - "cos" for cosine - "epa" for Epanechnikov - "gau" for Gaussian. - "tri" for triangular - "triw" for triweight - "uni" for uniform bw : str, float "scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34) "silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34) If a float is given, it is the bandwidth. weights : array or None Optional weights. If the X value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, max(len(X), 50) is used. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in X that are outside of the range given by clip are dropped. The number of observations in X is then shortened. cut : float Defines the length of the grid past the lowest and highest values of X so that the kernel goes to zero. The end points are -/+ cut*bw*{min(X) or max(X)} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : array The densities estimated at the grid points. grid : array, optional The grid points at which the density is estimated. Notes ----- Creates an intermediate (`gridsize` x `nobs`) array. Use FFT for a more computationally efficient version. """ X = np.asarray(X) if X.ndim == 1: X = X[:,None] clip_x = np.logical_and(X>clip[0], X<clip[1]) X = X[clip_x] nobs = float(len(X)) # after trim if gridsize == None: gridsize = max(nobs,50) # don't need to resize if no FFT # handle weights if weights is None: weights = np.ones(nobs) q = nobs else: # ensure weights is a numpy array weights = np.asarray(weights) if len(weights) != len(clip_x): msg = "The length of the weights must be the same as the given X." raise ValueError(msg) weights = weights[clip_x.squeeze()] q = weights.sum() # Get kernel object corresponding to selection kern = kernel_switch[kernel]() # if bw is None, select optimal bandwidth for kernel try: bw = float(bw) except: bw = bandwidths.select_bandwidth(X, bw, kern) bw *= adjust a = np.min(X,axis=0) - cut*bw b = np.max(X,axis=0) + cut*bw grid = np.linspace(a, b, gridsize) k = (X.T - grid[:,None])/bw # uses broadcasting to make a gridsize x nobs # set kernel bandwidth kern.seth(bw) # truncate to domain if kern.domain is not None: # won't work for piecewise kernels like parzen z_lo, z_high = kern.domain domain_mask = (k < z_lo) | (k > z_high) k = kern(k) # estimate density k[domain_mask] = 0 else: k = kern(k) # estimate density k[k<0] = 0 # get rid of any negative values, do we need this? dens = np.dot(k,weights)/(q*bw) if retgrid: return dens, grid, bw else: return dens, bw def kdensityfft(X, kernel="gau", bw="normal_reference", weights=None, gridsize=None, adjust=1, clip=(-np.inf,np.inf), cut=3, retgrid=True): """ Rosenblatt-Parzen univariate kernel density estimator Parameters ---------- X : array-like The variable for which the density estimate is desired. kernel : str ONLY GAUSSIAN IS CURRENTLY IMPLEMENTED. "bi" for biweight "cos" for cosine "epa" for Epanechnikov, default "epa2" for alternative Epanechnikov "gau" for Gaussian. "par" for Parzen "rect" for rectangular "tri" for triangular bw : str, float "scott" - 1.059 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34) "silverman" - .9 * A * nobs ** (-1/5.), where A is min(std(X),IQR/1.34) If a float is given, it is the bandwidth. weights : array or None WEIGHTS ARE NOT CURRENTLY IMPLEMENTED. Optional weights. If the X value is clipped, then this weight is also dropped. gridsize : int If gridsize is None, min(len(X), 512) is used. Note that the provided number is rounded up to the next highest power of 2. adjust : float An adjustment factor for the bw. Bandwidth becomes bw * adjust. clip : tuple Observations in X that are outside of the range given by clip are dropped. The number of observations in X is then shortened. cut : float Defines the length of the grid past the lowest and highest values of X so that the kernel goes to zero. The end points are -/+ cut*bw*{X.min() or X.max()} retgrid : bool Whether or not to return the grid over which the density is estimated. Returns ------- density : array The densities estimated at the grid points. grid : array, optional The grid points at which the density is estimated. Notes ----- Only the default kernel is implemented. Weights aren't implemented yet. This follows Silverman (1982) with changes suggested by Jones and Lotwick (1984). However, the discretization step is replaced by linear binning of Fan and Marron (1994). This should be extended to accept the parts that are dependent only on the data to speed things up for cross-validation. References ---------- :: Fan, J. and J.S. Marron. (1994) `Fast implementations of nonparametric curve estimators`. Journal of Computational and Graphical Statistics. 3.1, 35-56. Jones, M.C. and H.W. Lotwick. (1984) `Remark AS R50: A Remark on Algorithm AS 176. Kernal Density Estimation Using the Fast Fourier Transform`. Journal of the Royal Statistical Society. Series C. 33.1, 120-2. Silverman, B.W. (1982) `Algorithm AS 176. Kernel density estimation using the Fast Fourier Transform. Journal of the Royal Statistical Society. Series C. 31.2, 93-9. """ X = np.asarray(X) X = X[np.logical_and(X>clip[0], X<clip[1])] # won't work for two columns. # will affect underlying data? # Get kernel object corresponding to selection kern = kernel_switch[kernel]() try: bw = float(bw) except: bw = bandwidths.select_bandwidth(X, bw, kern) # will cross-val fit this pattern? bw *= adjust nobs = float(len(X)) # after trim # 1 Make grid and discretize the data if gridsize == None: gridsize = np.max((nobs,512.)) gridsize = 2**np.ceil(np.log2(gridsize)) # round to next power of 2 a = np.min(X)-cut*bw b = np.max(X)+cut*bw grid,delta = np.linspace(a,b,gridsize,retstep=True) RANGE = b-a #TODO: Fix this? # This is the Silverman binning function, but I believe it's buggy (SS) # weighting according to Silverman # count = counts(X,grid) # binned = np.zeros_like(grid) #xi_{k} in Silverman # j = 0 # for k in range(int(gridsize-1)): # if count[k]>0: # there are points of X in the grid here # Xingrid = X[j:j+count[k]] # get all these points # # get weights at grid[k],grid[k+1] # binned[k] += np.sum(grid[k+1]-Xingrid) # binned[k+1] += np.sum(Xingrid-grid[k]) # j += count[k] # binned /= (nobs)*delta**2 # normalize binned to sum to 1/delta #NOTE: THE ABOVE IS WRONG, JUST TRY WITH LINEAR BINNING binned = fast_linbin(X,a,b,gridsize)/(delta*nobs) # step 2 compute FFT of the weights, using Munro (1976) FFT convention y = forrt(binned) # step 3 and 4 for optimal bw compute zstar and the density estimate f # don't have to redo the above if just changing bw, ie., for cross val #NOTE: silverman_transform is the closed form solution of the FFT of the #gaussian kernel. Not yet sure how to generalize it. zstar = silverman_transform(bw, gridsize, RANGE)*y # 3.49 in Silverman # 3.50 w Gaussian kernel f = revrt(zstar) if retgrid: return f, grid, bw else: return f, bw if __name__ == "__main__": import numpy as np np.random.seed(12345) xi = np.random.randn(100) f,grid, bw1 = kdensity(xi, kernel="gau", bw=.372735, retgrid=True) f2, bw2 = kdensityfft(xi, kernel="gau", bw="silverman",retgrid=False) # do some checking vs. silverman algo. # you need denes.f, http://lib.stat.cmu.edu/apstat/176 #NOTE: I (SS) made some changes to the Fortran # and the FFT stuff from Munro http://lib.stat.cmu.edu/apstat/97o # then compile everything and link to denest with f2py #Make pyf file as usual, then compile shared object #f2py denest.f -m denest2 -h denest.pyf #edit pyf #-c flag makes it available to other programs, fPIC builds a shared library #/usr/bin/gfortran -Wall -c -fPIC fft.f #f2py -c denest.pyf ./fft.o denest.f try: from denest2 import denest # @UnresolvedImport a = -3.4884382032045504 b = 4.3671504686785605 RANGE = b - a bw = bandwidths.bw_silverman(xi) ft,smooth,ifault,weights,smooth1 = denest(xi,a,b,bw,np.zeros(512),np.zeros(512),0, np.zeros(512), np.zeros(512)) # We use a different binning algo, so only accurate up to 3 decimal places np.testing.assert_almost_equal(f2, smooth, 3) #NOTE: for debugging # y2 = forrt(weights) # RJ = np.arange(512/2+1) # FAC1 = 2*(np.pi*bw/RANGE)**2 # RJFAC = RJ**2*FAC1 # BC = 1 - RJFAC/(6*(bw/((b-a)/M))**2) # FAC = np.exp(-RJFAC)/BC # SMOOTH = np.r_[FAC,FAC[1:-1]] * y2 # dens = revrt(SMOOTH) except: # ft = np.loadtxt('./ft_silver.csv') # smooth = np.loadtxt('./smooth_silver.csv') print("Didn't get the estimates from the Silverman algorithm")
bsd-3-clause
legacysurvey/pipeline
py/legacypipe/survey.py
1
61399
from __future__ import print_function import os import tempfile import numpy as np import fitsio from astrometry.util.fits import fits_table, merge_tables from astrometry.util.file import trymakedirs from tractor.ellipses import EllipseESoft, EllipseE from tractor.galaxy import ExpGalaxy from tractor import PointSource, ParamList, ConstantFitsWcs from legacypipe.utils import EllipseWithPriors, galaxy_min_re import logging logger = logging.getLogger('legacypipe.survey') def info(*args): from legacypipe.utils import log_info log_info(logger, args) def debug(*args): from legacypipe.utils import log_debug log_debug(logger, args) # search order: $TMPDIR, $TEMP, $TMP, then /tmp, /var/tmp, /usr/tmp tempdir = tempfile.gettempdir() # The apertures we use in aperture photometry, in ARCSEC radius apertures_arcsec = np.array([0.5, 0.75, 1., 1.5, 2., 3.5, 5., 7.]) # Ugly hack: for sphinx documentation, the astrometry and tractor (and # other) packages are replaced by mock objects. But you can't # subclass a mock object correctly, so we have to un-mock # EllipseWithPriors here. if 'Mock' in str(type(EllipseWithPriors)): class duck(object): pass EllipseWithPriors = duck def year_to_mjd(year): # year_to_mjd(2015.5) -> 57205.875 from tractor.tractortime import TAITime return (year - 2000.) * TAITime.daysperyear + TAITime.mjd2k def mjd_to_year(mjd): # mjd_to_year(57205.875) -> 2015.5 from tractor.tractortime import TAITime return (mjd - TAITime.mjd2k) / TAITime.daysperyear + 2000. def tai_to_mjd(tai): return tai / (24. * 3600.) def radec_at_mjd(ra, dec, ref_year, pmra, pmdec, parallax, mjd): ''' Units: - matches Gaia DR1/DR2 - pmra,pmdec are in mas/yr. pmra is in angular speed (ie, has a cos(dec) factor) - parallax is in mas. NOTE: does not broadcast completely correctly -- all params vectors or all motion params vector + scalar mjd work fine. Other combos: not certain. Returns RA,Dec ''' from tractor.tractortime import TAITime from astrometry.util.starutil_numpy import radectoxyz, arcsecperrad, axistilt, xyztoradec dt = mjd_to_year(mjd) - ref_year cosdec = np.cos(np.deg2rad(dec)) dec = dec + dt * pmdec / (3600. * 1000.) ra = ra + (dt * pmra / (3600. * 1000.)) / cosdec parallax = np.atleast_1d(parallax) I = np.flatnonzero(parallax) if len(I): scalar = np.isscalar(ra) and np.isscalar(dec) ra = np.atleast_1d(ra) dec = np.atleast_1d(dec) suntheta = 2.*np.pi * np.fmod((mjd - TAITime.equinox) / TAITime.daysperyear, 1.0) # Finite differences on the unit sphere -- xyztoradec handles # points that are not exactly on the surface of the sphere. axis = np.deg2rad(axistilt) scale = parallax[I] / 1000. / arcsecperrad xyz = radectoxyz(ra[I], dec[I]) xyz[:,0] += scale * np.cos(suntheta) xyz[:,1] += scale * np.sin(suntheta) * np.cos(axis) xyz[:,2] += scale * np.sin(suntheta) * np.sin(axis) r,d = xyztoradec(xyz) ra [I] = r dec[I] = d # radectoxyz / xyztoradec do weird broadcasting if scalar: ra = ra[0] dec = dec[0] return ra,dec # Gaia measures positions better than we will, we assume, so the # GaiaPosition class pretends that it does not have any parameters # that can be optimized; therefore they stay fixed. class GaiaPosition(ParamList): def __init__(self, ra, dec, ref_epoch, pmra, pmdec, parallax): ''' Units: - matches Gaia DR1 - pmra,pmdec are in mas/yr. pmra is in angular speed (ie, has a cos(dec) factor) - parallax is in mas. - ref_epoch: year (eg 2015.5) ''' self.ra = ra self.dec = dec self.ref_epoch = float(ref_epoch) self.pmra = pmra self.pmdec = pmdec self.parallax = parallax super(GaiaPosition, self).__init__() self.cached_positions = {} def copy(self): return GaiaPosition(self.ra, self.dec, self.ref_epoch, self.pmra, self.pmdec, self.parallax) def getPositionAtTime(self, mjd): from tractor import RaDecPos try: return self.cached_positions[mjd] except KeyError: # not cached pass if self.pmra == 0. and self.pmdec == 0. and self.parallax == 0.: pos = RaDecPos(self.ra, self.dec) self.cached_positions[mjd] = pos return pos ra,dec = radec_at_mjd(self.ra, self.dec, self.ref_epoch, self.pmra, self.pmdec, self.parallax, mjd) pos = RaDecPos(ra, dec) self.cached_positions[mjd] = pos return pos @staticmethod def getName(): return 'GaiaPosition' def __str__(self): return ('%s: RA, Dec = (%.5f, %.5f), pm (%.1f, %.1f), parallax %.3f' % (self.getName(), self.ra, self.dec, self.pmra, self.pmdec, self.parallax)) class GaiaSource(PointSource): @staticmethod def getName(): return 'GaiaSource' def getSourceType(self): return 'GaiaSource' @classmethod def from_catalog(cls, g, bands): from tractor import NanoMaggies # Gaia has NaN entries when no proper motion or parallax is measured. # Convert to zeros. def nantozero(x): if not np.isfinite(x): return 0. return x pos = GaiaPosition(g.ra, g.dec, g.ref_epoch, nantozero(g.pmra), nantozero(g.pmdec), nantozero(g.parallax)) # initialize from decam_mag_B if available, otherwise Gaia G. fluxes = {} for band in bands: try: mag = g.get('decam_mag_%s' % band) except KeyError: mag = g.phot_g_mean_mag fluxes[band] = NanoMaggies.magToNanomaggies(mag) bright = NanoMaggies(order=bands, **fluxes) src = cls(pos, bright) src.forced_point_source = g.pointsource src.reference_star = getattr(g, 'isgaia', False) or getattr(g, 'isbright', False) return src # # We need a subclass of the standand WCS class to handle moving sources. # class LegacySurveyWcs(ConstantFitsWcs): def __init__(self, wcs, tai): super(LegacySurveyWcs, self).__init__(wcs) self.tai = tai def copy(self): return LegacySurveyWcs(self.wcs, self.tai) def positionToPixel(self, pos, src=None): if isinstance(pos, GaiaPosition): pos = pos.getPositionAtTime(tai_to_mjd(self.tai.getValue())) return super(LegacySurveyWcs, self).positionToPixel(pos, src=src) class LegacyEllipseWithPriors(EllipseWithPriors): # Prior on (softened) ellipticity: Gaussian with this standard deviation ellipticityStd = 0.25 from tractor.sersic import SersicIndex class LegacySersicIndex(SersicIndex): def __init__(self, val=0): super(LegacySersicIndex, self).__init__(val=val) self.lower = 0.5 self.upper = 6.0 class LogRadius(EllipseESoft): ''' Class used during fitting of the RexGalaxy type -- an ellipse type where only the radius is variable, and is represented in log space.''' def __init__(self, *args, **kwargs): super(LogRadius, self).__init__(*args, **kwargs) self.lowers = [None] # MAGIC -- 10" default max r_e! # SEE ALSO utils.py : class(EllipseWithPriors)! self.uppers = [np.log(10.)] self.lowers = [np.log(galaxy_min_re)] def isLegal(self): return ((self.logre <= self.uppers[0]) and (self.logre >= self.lowers[0])) def setMaxLogRadius(self, rmax): self.uppers[0] = rmax def getMaxLogRadius(self): return self.uppers[0] @staticmethod def getName(): return 'LogRadius' @staticmethod def getNamedParams(): # log r: log of effective radius in arcsec return dict(logre=0) def __repr__(self): return 'log r_e=%g' % (self.logre) @property def theta(self): return 0. @property def e(self): return 0. class RexGalaxy(ExpGalaxy): '''This defines the 'REX' galaxy profile -- an exponential profile that is round (zero ellipticity) with variable radius. It is used to measure marginally-resolved galaxies. The real action (what makes it a Rex) happens when it is constructed, via, eg, rex = RexGalaxy(position, brightness, LogRadius(0.)) (which happens in oneblob.py) ''' def __init__(self, *args): super(RexGalaxy, self).__init__(*args) def getName(self): return 'RexGalaxy' class SimpleGalaxy(ExpGalaxy): '''This defines the 'SIMP' galaxy profile -- an exponential profile with a fixed shape of a 0.45 arcsec effective radius and spherical shape. It is used to detect marginally-resolved galaxies. ''' shape = EllipseE(0.45, 0., 0.) def __init__(self, *args): super(SimpleGalaxy, self).__init__(*args) self.shape = SimpleGalaxy.shape def __str__(self): return (self.name + ' at ' + str(self.pos) + ' with ' + str(self.brightness)) def __repr__(self): return (self.name + '(pos=' + repr(self.pos) + ', brightness=' + repr(self.brightness) + ')') @staticmethod def getNamedParams(): return dict(pos=0, brightness=1) def getName(self): return 'SimpleGalaxy' ### HACK -- for Galaxy.getParamDerivatives() def isParamFrozen(self, pname): if pname == 'shape': return True return super(SimpleGalaxy, self).isParamFrozen(pname) class BrickDuck(object): '''A little duck-typing class when running on a custom RA,Dec center rather than a brick center. ''' def __init__(self, ra, dec, brickname): self.ra = ra self.dec = dec self.brickname = brickname self.brickid = -1 def get_git_version(dirnm=None): ''' Runs 'git describe' in the current directory (or given dir) and returns the result as a string. Parameters ---------- dirnm : string If non-None, "cd" to the given directory before running 'git describe' Returns ------- Git version string ''' from astrometry.util.run_command import run_command cmd = '' if dirnm is None: # Get the git version of the legacypipe product import legacypipe dirnm = os.path.dirname(legacypipe.__file__) cmd = "cd '%s' && git describe" % dirnm rtn,version,err = run_command(cmd) if rtn: raise RuntimeError('Failed to get version string (%s): ' % cmd + version + err) version = version.strip() return version def get_version_header(program_name, survey_dir, release, git_version=None): ''' Creates a fitsio header describing a DECaLS data product. ''' import datetime if program_name is None: import sys program_name = sys.argv[0] if git_version is None: git_version = get_git_version() hdr = fitsio.FITSHDR() #lsdir_prefix1 = '/global/project/projectdirs' #lsdir_prefix2 = '/global/projecta/projectdirs' for s in [ 'Data product of the DESI Imaging Legacy Survey (DECaLS)', 'Full documentation at http://legacysurvey.org', ]: hdr.add_record(dict(name='COMMENT', value=s, comment=s)) hdr.add_record(dict(name='LEGPIPEV', value=git_version, comment='legacypipe git version')) #hdr.add_record(dict(name='LSDIRPFX', value=lsdir_prefix1, # comment='LegacySurveys Directory Prefix')) hdr.add_record(dict(name='LSDIR', value=survey_dir, comment='$LEGACY_SURVEY_DIR directory')) hdr.add_record(dict(name='LSDR', value='DR9', comment='Data release number')) hdr.add_record(dict(name='RUNDATE', value=datetime.datetime.now().isoformat(), comment='%s run time' % program_name)) hdr.add_record(dict(name='SURVEY', value='DECaLS+BASS+MzLS', comment='The LegacySurveys')) # Requested by NOAO hdr.add_record(dict(name='SURVEYID', value='DECaLS BASS MzLS', comment='Survey names')) #hdr.add_record(dict(name='SURVEYID', value='DECam Legacy Survey (DECaLS)', #hdr.add_record(dict(name='SURVEYID', value='BASS MzLS', hdr.add_record(dict(name='DRVERSIO', value=release, comment='LegacySurveys Data Release number')) hdr.add_record(dict(name='OBSTYPE', value='object', comment='Observation type')) hdr.add_record(dict(name='PROCTYPE', value='tile', comment='Processing type')) import socket hdr.add_record(dict(name='NODENAME', value=socket.gethostname(), comment='Machine where script was run')) #hdr.add_record(dict(name='HOSTFQDN', value=socket.getfqdn(),comment='Machine where script was run')) hdr.add_record(dict(name='HOSTNAME', value=os.environ.get('NERSC_HOST', 'none'), comment='NERSC machine where script was run')) hdr.add_record(dict(name='JOB_ID', value=os.environ.get('SLURM_JOB_ID', 'none'), comment='SLURM job id')) hdr.add_record(dict(name='ARRAY_ID', value=os.environ.get('ARRAY_TASK_ID', 'none'), comment='SLURM job array id')) return hdr def get_dependency_versions(unwise_dir, unwise_tr_dir, unwise_modelsky_dir): import astrometry import astropy import matplotlib try: import mkl_fft except: mkl_fft = None import photutils import tractor import scipy import unwise_psf depvers = [] headers = [] default_ver = 'UNAVAILABLE' for name,pkg in [('astrometry', astrometry), ('astropy', astropy), ('fitsio', fitsio), ('matplotlib', matplotlib), ('mkl_fft', mkl_fft), ('numpy', np), ('photutils', photutils), ('scipy', scipy), ('tractor', tractor), ('unwise_psf', unwise_psf), ]: if pkg is None: depvers.append((name, 'none')) continue #depvers.append((name + '-path', os.path.dirname(pkg.__file__))) try: depvers.append((name, pkg.__version__)) except: try: depvers.append((name, get_git_version(os.path.dirname(pkg.__file__)))) except: pass # Get additional paths from environment variables dep = 'LARGEGALAXIES_CAT' value = os.environ.get(dep, default_ver) if value == default_ver: print('Warning: failed to get version string for "%s"' % dep) else: depvers.append((dep, value)) if os.path.exists(value): from legacypipe.reference import get_large_galaxy_version ver,preburn = get_large_galaxy_version(value) depvers.append(('LARGEGALAXIES_VER', ver)) depvers.append(('LARGEGALAXIES_PREBURN', preburn)) for dep in ['TYCHO2_KD', 'GAIA_CAT']: value = os.environ.get('%s_DIR' % dep, default_ver) if value == default_ver: print('Warning: failed to get version string for "%s"' % dep) else: depvers.append((dep, value)) if unwise_dir is not None: dirs = unwise_dir.split(':') depvers.append(('unwise', unwise_dir)) for i,d in enumerate(dirs): headers.append(('UNWISD%i' % (i+1), d, '')) if unwise_tr_dir is not None: depvers.append(('unwise_tr', unwise_tr_dir)) # this is assumed to be only a single directory headers.append(('UNWISTD', unwise_tr_dir, '')) if unwise_modelsky_dir is not None: depvers.append(('unwise_modelsky', unwise_modelsky_dir)) # this is assumed to be only a single directory headers.append(('UNWISSKY', unwise_modelsky_dir, '')) for i,(name,value) in enumerate(depvers): headers.append(('DEPNAM%02i' % i, name, '')) headers.append(('DEPVER%02i' % i, value, '')) return headers class MyFITSHDR(fitsio.FITSHDR): ''' This is copied straight from fitsio, simply removing "BUNIT" from the list of headers to remove. This is required to format the tractor catalogs the way we want them. ''' def clean(self, **kwargs): """ Remove reserved keywords from the header. These are keywords that the fits writer must write in order to maintain consistency between header and data. """ rmnames = ['SIMPLE','EXTEND','XTENSION','BITPIX','PCOUNT','GCOUNT', 'THEAP', 'EXTNAME', #'BUNIT', 'BSCALE','BZERO','BLANK', 'ZQUANTIZ','ZDITHER0','ZIMAGE','ZCMPTYPE', 'ZSIMPLE','ZTENSION','ZPCOUNT','ZGCOUNT', 'ZBITPIX','ZEXTEND', #'FZTILELN','FZALGOR', 'CHECKSUM','DATASUM'] self.delete(rmnames) r = self._record_map.get('NAXIS',None) if r is not None: naxis = int(r['value']) self.delete('NAXIS') rmnames = ['NAXIS%d' % i for i in xrange(1,naxis+1)] self.delete(rmnames) r = self._record_map.get('ZNAXIS',None) self.delete('ZNAXIS') if r is not None: znaxis = int(r['value']) rmnames = ['ZNAXIS%d' % i for i in xrange(1,znaxis+1)] self.delete(rmnames) rmnames = ['ZTILE%d' % i for i in xrange(1,znaxis+1)] self.delete(rmnames) rmnames = ['ZNAME%d' % i for i in xrange(1,znaxis+1)] self.delete(rmnames) rmnames = ['ZVAL%d' % i for i in xrange(1,znaxis+1)] self.delete(rmnames) r = self._record_map.get('TFIELDS',None) if r is not None: tfields = int(r['value']) self.delete('TFIELDS') if tfields > 0: nbase = ['TFORM','TTYPE','TDIM','TUNIT','TSCAL','TZERO', 'TNULL','TDISP','TDMIN','TDMAX','TDESC','TROTA', 'TRPIX','TRVAL','TDELT','TCUNI', #'FZALG' ] for i in xrange(1,tfields+1): names=['%s%d' % (n,i) for n in nbase] self.delete(names) def tim_get_resamp(tim, targetwcs): from astrometry.util.resample import resample_with_wcs,OverlapError if hasattr(tim, 'resamp'): return tim.resamp try: Yo,Xo,Yi,Xi,_ = resample_with_wcs(targetwcs, tim.subwcs, intType=np.int16) except OverlapError: print('No overlap') return None if len(Yo) == 0: return None return Yo,Xo,Yi,Xi def sdss_rgb(imgs, bands, scales=None, m=0.03, Q=20, mnmx=None): rgbscales=dict(g=(2, 6.0), r=(1, 3.4), i=(0, 3.0), z=(0, 2.2)) # rgbscales = {'u': 1.5, #1.0, # 'g': 2.5, # 'r': 1.5, # 'i': 1.0, # 'z': 0.4, #0.3 # } if scales is not None: rgbscales.update(scales) I = 0 for img,band in zip(imgs, bands): plane,scale = rgbscales[band] img = np.maximum(0, img * scale + m) I = I + img I /= len(bands) if Q is not None: fI = np.arcsinh(Q * I) / np.sqrt(Q) I += (I == 0.) * 1e-6 I = fI / I H,W = I.shape rgb = np.zeros((H,W,3), np.float32) for img,band in zip(imgs, bands): plane,scale = rgbscales[band] if mnmx is None: rgb[:,:,plane] = np.clip((img * scale + m) * I, 0, 1) else: mn,mx = mnmx rgb[:,:,plane] = np.clip(((img * scale + m) - mn) / (mx - mn), 0, 1) return rgb def get_rgb(imgs, bands, resids=False, mnmx=None, arcsinh=None): ''' Given a list of images in the given bands, returns a scaled RGB image. *imgs* a list of numpy arrays, all the same size, in nanomaggies *bands* a list of strings, eg, ['g','r','z'] *mnmx* = (min,max), values that will become black/white *after* scaling. Default is (-3,10) *arcsinh* use nonlinear scaling as in SDSS *scales* Returns a (H,W,3) numpy array with values between 0 and 1. ''' # (ignore arcsinh...) if resids: mnmx = (-0.1, 0.1) if mnmx is not None: return sdss_rgb(imgs, bands, m=0., Q=None, mnmx=mnmx) return sdss_rgb(imgs, bands) def wcs_for_brick(b, W=3600, H=3600, pixscale=0.262): ''' Returns an astrometry.net style Tan WCS object for a given brick object. b: row from survey-bricks.fits file W,H: size in pixels pixscale: pixel scale in arcsec/pixel. Returns: Tan wcs object ''' from astrometry.util.util import Tan pixscale = pixscale / 3600. return Tan(b.ra, b.dec, W/2.+0.5, H/2.+0.5, -pixscale, 0., 0., pixscale, float(W), float(H)) def bricks_touching_wcs(targetwcs, survey=None, B=None, margin=20): ''' Finds LegacySurvey bricks touching a given WCS header object. Parameters ---------- targetwcs : astrometry.util.Tan object or similar The region of sky to search survey : legacypipe.survey.LegacySurveyData object From which the brick table will be retrieved B : FITS table The table of brick objects to search margin : int Margin in pixels around the outside of the WCS Returns ------- A table (subset of B, if given) containing the bricks touching the given WCS region + margin. ''' from astrometry.libkd.spherematch import match_radec from astrometry.util.miscutils import clip_wcs if B is None: assert(survey is not None) B = survey.get_bricks_readonly() ra,dec = targetwcs.radec_center() radius = targetwcs.radius() # MAGIC 0.4 degree search radius = # DECam hypot(1024,2048)*0.27/3600 + Brick hypot(0.25, 0.25) ~= 0.35 + margin I,_,_ = match_radec(B.ra, B.dec, ra, dec, radius + np.hypot(0.25,0.25)/2. + 0.05) debug(len(I), 'bricks nearby') keep = [] for i in I: b = B[i] brickwcs = wcs_for_brick(b) clip = clip_wcs(targetwcs, brickwcs) if len(clip) == 0: debug('No overlap with brick', b.brickname) continue keep.append(i) return B[np.array(keep)] def ccds_touching_wcs(targetwcs, ccds, ccdrad=None, polygons=True): ''' targetwcs: wcs object describing region of interest ccds: fits_table object of CCDs ccdrad: radius of CCDs, in degrees. If None (the default), compute from the CCDs table. (0.17 for DECam) Returns: index array I of CCDs within range. ''' from astrometry.util.util import Tan from astrometry.util.miscutils import polygons_intersect from astrometry.util.starutil_numpy import degrees_between trad = targetwcs.radius() if ccdrad is None: ccdrad = max(np.sqrt(np.abs(ccds.cd1_1 * ccds.cd2_2 - ccds.cd1_2 * ccds.cd2_1)) * np.hypot(ccds.width, ccds.height) / 2.) rad = trad + ccdrad r,d = targetwcs.radec_center() I, = np.where(np.abs(ccds.dec - d) < rad) I = I[np.where(degrees_between(r, d, ccds.ra[I], ccds.dec[I]) < rad)[0]] if not polygons: return I # now check actual polygon intersection tw,th = targetwcs.imagew, targetwcs.imageh targetpoly = [(0.5,0.5),(tw+0.5,0.5),(tw+0.5,th+0.5),(0.5,th+0.5)] cd = targetwcs.get_cd() tdet = cd[0]*cd[3] - cd[1]*cd[2] if tdet > 0: targetpoly = list(reversed(targetpoly)) targetpoly = np.array(targetpoly) keep = [] for i in I: W,H = ccds.width[i],ccds.height[i] wcs = Tan(*[float(x) for x in [ccds.crval1[i], ccds.crval2[i], ccds.crpix1[i], ccds.crpix2[i], ccds.cd1_1[i], ccds.cd1_2[i], ccds.cd2_1[i], ccds.cd2_2[i], W, H]]) cd = wcs.get_cd() wdet = cd[0]*cd[3] - cd[1]*cd[2] poly = [] for x,y in [(0.5,0.5),(W+0.5,0.5),(W+0.5,H+0.5),(0.5,H+0.5)]: rr,dd = wcs.pixelxy2radec(x,y) ok,xx,yy = targetwcs.radec2pixelxy(rr,dd) poly.append((xx,yy)) if wdet > 0: poly = list(reversed(poly)) poly = np.array(poly) if polygons_intersect(targetpoly, poly): keep.append(i) I = np.array(keep) return I def create_temp(**kwargs): f,fn = tempfile.mkstemp(dir=tempdir, **kwargs) os.close(f) os.unlink(fn) return fn def imsave_jpeg(jpegfn, img, **kwargs): '''Saves a image in JPEG format. Some matplotlib installations don't support jpeg, so we optionally write to PNG and then convert to JPEG using the venerable netpbm tools. *jpegfn*: JPEG filename *img*: image, in the typical matplotlib formats (see plt.imsave) ''' import pylab as plt if True: kwargs.update(format='jpg') plt.imsave(jpegfn, img, **kwargs) else: tmpfn = create_temp(suffix='.png') plt.imsave(tmpfn, img, **kwargs) cmd = ('pngtopnm %s | pnmtojpeg -quality 90 > %s' % (tmpfn, jpegfn)) rtn = os.system(cmd) print(cmd, '->', rtn) os.unlink(tmpfn) class LegacySurveyData(object): ''' A class describing the contents of a LEGACY_SURVEY_DIR directory -- tables of CCDs and of bricks, and calibration data. Methods for dealing with the CCDs and bricks tables. This class is also responsible for creating LegacySurveyImage objects (eg, DecamImage objects), which then allow data to be read from disk. ''' def __init__(self, survey_dir=None, cache_dir=None, output_dir=None, allbands='grz'): '''Create a LegacySurveyData object using data from the given *survey_dir* directory, or from the $LEGACY_SURVEY_DIR environment variable. Parameters ---------- survey_dir : string Defaults to $LEGACY_SURVEY_DIR environment variable. Where to look for files including calibration files, tables of CCDs and bricks, image data, etc. cache_dir : string Directory to search for input files before looking in survey_dir. Useful for, eg, Burst Buffer. output_dir : string Base directory for output files; default ".". ''' from legacypipe.decam import DecamImage from legacypipe.mosaic import MosaicImage from legacypipe.bok import BokImage from legacypipe.ptf import PtfImage from legacypipe.cfht import MegaPrimeImage from collections import OrderedDict if survey_dir is None: survey_dir = os.environ.get('LEGACY_SURVEY_DIR') if survey_dir is None: print('Warning: you should set the $LEGACY_SURVEY_DIR environment variable.') print('Using the current directory as LEGACY_SURVEY_DIR.') survey_dir = os.getcwd() self.survey_dir = survey_dir self.cache_dir = cache_dir if output_dir is None: self.output_dir = '.' else: self.output_dir = output_dir self.output_file_hashes = OrderedDict() self.ccds = None self.bricks = None self.ccds_index = None # Create and cache a kd-tree for bricks_touching_radec_box ? self.cache_tree = False self.bricktree = None ### HACK! Hard-coded brick edge size, in degrees! self.bricksize = 0.25 # Cached CCD kd-tree -- # - initially None, then a list of (fn, kd) self.ccd_kdtrees = None self.image_typemap = { 'decam' : DecamImage, 'decam+noise' : DecamImage, 'mosaic' : MosaicImage, 'mosaic3': MosaicImage, '90prime': BokImage, 'ptf' : PtfImage, 'megaprime': MegaPrimeImage, } self.allbands = allbands # Filename prefix for coadd files self.file_prefix = 'legacysurvey' def __str__(self): return ('%s: dir %s, out %s' % (type(self).__name__, self.survey_dir, self.output_dir)) def get_default_release(self): return None def ccds_for_fitting(self, brick, ccds): # By default, use all. return None def image_class_for_camera(self, camera): # Assert that we have correctly removed trailing spaces assert(camera == camera.strip()) return self.image_typemap[camera] def sed_matched_filters(self, bands): from legacypipe.detection import sed_matched_filters return sed_matched_filters(bands) def index_of_band(self, b): return self.allbands.index(b) def read_intermediate_catalog(self, brick, **kwargs): ''' Reads the intermediate tractor catalog for the given brickname. *kwargs*: passed to self.find_file() Returns (T, hdr, primhdr) ''' fn = self.find_file('tractor-intermediate', brick=brick, **kwargs) T = fits_table(fn) hdr = T.get_header() primhdr = fitsio.read_header(fn) in_flux_prefix = '' # Ensure flux arrays are 2d (N x 1) keys = ['flux', 'flux_ivar', 'rchi2', 'fracflux', 'fracmasked', 'fracin', 'nobs', 'anymask', 'allmask', 'psfsize', 'depth', 'galdepth'] for k in keys: incol = '%s%s' % (in_flux_prefix, k) X = T.get(incol) # Hmm, if we need to reshape one of these arrays, we will # need to do all of them. if len(X.shape) == 1: X = X[:, np.newaxis] T.set(incol, X) return T, hdr, primhdr def find_file(self, filetype, brick=None, brickpre=None, band='%(band)s', camera=None, expnum=None, ccdname=None, output=False, **kwargs): ''' Returns the filename of a Legacy Survey file. *filetype* : string, type of file to find, including: "tractor" -- Tractor catalogs "depth" -- PSF depth maps "galdepth" -- Canonical galaxy depth maps "nexp" -- number-of-exposure maps *brick* : string, brick name such as "0001p000" *output*: True if we are about to write this file; will use self.outdir as the base directory rather than self.survey_dir. Returns: path to the specified file (whether or not it exists). ''' from glob import glob if brick is None: brick = '%(brick)s' brickpre = '%(brick).3s' else: brickpre = brick[:3] if output: basedir = self.output_dir else: basedir = self.survey_dir if brick is not None: codir = os.path.join(basedir, 'coadd', brickpre, brick) # Swap in files in the self.cache_dir, if they exist. def swap(fn): if output: return fn return self.check_cache(fn) def swaplist(fns): if output or self.cache_dir is None: return fns return [self.check_cache(fn) for fn in fns] sname = self.file_prefix if filetype == 'bricks': return swap(os.path.join(basedir, 'survey-bricks.fits.gz')) elif filetype == 'ccds': return swaplist( glob(os.path.join(basedir, 'survey-ccds*.fits.gz'))) elif filetype == 'ccd-kds': return swaplist( glob(os.path.join(basedir, 'survey-ccds*.kd.fits'))) elif filetype == 'tycho2': dirnm = os.environ.get('TYCHO2_KD_DIR') if dirnm is not None: fn = os.path.join(dirnm, 'tycho2.kd.fits') if os.path.exists(fn): return fn return swap(os.path.join(basedir, 'tycho2.kd.fits')) elif filetype == 'large-galaxies': fn = os.environ.get('LARGEGALAXIES_CAT') if fn is not None: if os.path.isfile(fn): return fn pat = os.path.join(basedir, 'LSLGA-*.kd.fits') fns = glob(pat) if len(fns) == 0: return None if len(fns) > 2: print('More than one filename matched large-galaxy pattern', pat, '; using the first one,', fns[0]) return fns[0] elif filetype == 'annotated-ccds': return swaplist( glob(os.path.join(basedir, 'ccds-annotated-*.fits.gz'))) elif filetype == 'tractor': return swap(os.path.join(basedir, 'tractor', brickpre, 'tractor-%s.fits' % brick)) elif filetype == 'tractor-intermediate': return swap(os.path.join(basedir, 'tractor-i', brickpre, 'tractor-%s.fits' % brick)) elif filetype == 'galaxy-sims': return swap(os.path.join(basedir, 'tractor', brickpre, 'galaxy-sims-%s.fits' % brick)) elif filetype in ['ccds-table', 'depth-table']: ty = filetype.split('-')[0] return swap( os.path.join(codir, '%s-%s-%s.fits' % (sname, brick, ty))) elif filetype in ['image-jpeg', 'model-jpeg', 'resid-jpeg', 'blobmodel-jpeg', 'imageblob-jpeg', 'simscoadd-jpeg','imagecoadd-jpeg', 'wise-jpeg', 'wisemodel-jpeg']: ty = filetype.split('-')[0] return swap( os.path.join(codir, '%s-%s-%s.jpg' % (sname, brick, ty))) elif filetype in ['outliers-pre', 'outliers-post', 'outliers-masked-pos', 'outliers-masked-neg']: return swap( os.path.join(basedir, 'metrics', brickpre, '%s-%s.jpg' % (filetype, brick))) elif filetype in ['invvar', 'chi2', 'image', 'model', 'blobmodel', 'depth', 'galdepth', 'nexp', 'psfsize', 'copsf']: return swap(os.path.join(codir, '%s-%s-%s-%s.fits.fz' % (sname, brick, filetype, band))) elif filetype in ['blobmap']: return swap(os.path.join(basedir, 'metrics', brickpre, 'blobs-%s.fits.gz' % (brick))) elif filetype in ['maskbits']: return swap(os.path.join(codir, '%s-%s-%s.fits.fz' % (sname, brick, filetype))) elif filetype in ['all-models']: return swap(os.path.join(basedir, 'metrics', brickpre, 'all-models-%s.fits' % (brick))) elif filetype == 'ref-sources': return swap(os.path.join(basedir, 'metrics', brickpre, 'reference-%s.fits' % (brick))) elif filetype == 'checksums': return swap(os.path.join(basedir, 'tractor', brickpre, 'brick-%s.sha256sum' % brick)) elif filetype == 'outliers_mask': return swap(os.path.join(basedir, 'metrics', brickpre, 'outlier-mask-%s.fits.fz' % (brick))) print('Unknown filetype "%s"' % filetype) assert(False) def check_cache(self, fn): if self.cache_dir is None: return fn cfn = fn.replace(self.survey_dir, self.cache_dir) print('checking for cache fn', cfn) if os.path.exists(cfn): debug('Cached file hit:', fn, '->', cfn) return cfn debug('Cached file miss:', fn, '-/->', cfn) return fn def get_compression_string(self, filetype, shape=None, **kwargs): pat = dict(# g: sigma ~ 0.002. qz -1e-3: 6 MB, -1e-4: 10 MB image = '[compress R %(tilew)i,%(tileh)i; qz -1e-4]', # g: qz -1e-3: 2 MB, -1e-4: 2.75 MB model = '[compress R %(tilew)i,%(tileh)i; qz -1e-4]', chi2 = '[compress R %(tilew)i,%(tileh)i; qz -0.1]', # qz +8: 9 MB, qz +16: 10.5 MB invvar = '[compress R %(tilew)i,%(tileh)i; qz 16]', nexp = '[compress H %(tilew)i,%(tileh)i]', maskbits = '[compress H %(tilew)i,%(tileh)i]', depth = '[compress G %(tilew)i,%(tileh)i; qz 0]', galdepth = '[compress G %(tilew)i,%(tileh)i; qz 0]', psfsize = '[compress G %(tilew)i,%(tileh)i; qz 0]', outliers_mask = '[compress G]', ).get(filetype) #outliers_mask = '[compress H %i,%i]', if pat is None: return pat # Tile compression size tilew,tileh = 100,100 if shape is not None: H,W = shape # CFITSIO's fpack compression can't handle partial tile # sizes < 4 pix. Select a tile size that works, or don't # compress if we can't find one. if W < 4 or H < 4: return None while tilew <= W: remain = W % tilew if remain == 0 or remain >= 4: break tilew += 1 while tileh <= H: remain = H % tileh if remain == 0 or remain >= 4: break tileh += 1 return pat % dict(tilew=tilew,tileh=tileh) def write_output(self, filetype, hashsum=True, **kwargs): ''' Returns a context manager for writing an output file. Example use: :: with survey.write_output('ccds', brick=brickname) as out: ccds.writeto(out.fn, primheader=primhdr) For FITS output, out.fits is a fitsio.FITS object. The file contents will actually be written in memory, and then a sha256sum computed before the file contents are written out to the real disk file. The 'out.fn' member variable is NOT set. :: with survey.write_output('ccds', brick=brickname) as out: ccds.writeto(None, fits_object=out.fits, primheader=primhdr) Does the following on entry: - calls self.find_file() to determine which filename to write to - ensures the output directory exists - appends a ".tmp" to the filename Does the following on exit: - moves the ".tmp" to the final filename (to make it atomic) - computes the sha256sum ''' class OutputFileContext(object): def __init__(self, fn, survey, hashsum=True, relative_fn=None, compression=None): ''' *compression*: a CFITSIO compression specification, eg: "[compress R 100,100; qz -0.05]" ''' self.real_fn = fn self.relative_fn = relative_fn self.survey = survey self.is_fits = (fn.endswith('.fits') or fn.endswith('.fits.gz') or fn.endswith('.fits.fz')) self.tmpfn = os.path.join(os.path.dirname(fn), 'tmp-'+os.path.basename(fn)) if self.is_fits: self.fits = fitsio.FITS('mem://' + (compression or ''), 'rw') else: self.fn = self.tmpfn self.hashsum = hashsum def __enter__(self): dirnm = os.path.dirname(self.tmpfn) trymakedirs(dirnm) return self def __exit__(self, exc_type, exc_value, traceback): # If an exception was thrown, bail out if exc_type is not None: return if self.hashsum: import hashlib hashfunc = hashlib.sha256 sha = hashfunc() if self.is_fits: # Read back the data written into memory by the # fitsio library rawdata = self.fits.read_raw() # close the fitsio file self.fits.close() # If gzip, we now have to actually do the # compression to gzip format... if self.tmpfn.endswith('.gz'): from io import BytesIO import gzip #ulength = len(rawdata) # We gzip to a memory file (BytesIO) so we can compute # the hashcode before writing to disk for real gzipped = BytesIO() gzf = gzip.GzipFile(self.real_fn, 'wb', 9, gzipped) gzf.write(rawdata) gzf.close() rawdata = gzipped.getvalue() gzipped.close() del gzipped #clength = len(rawdata) #print('Gzipped', ulength, 'to', clength) if self.hashsum: sha.update(rawdata) f = open(self.tmpfn, 'wb') f.write(rawdata) f.close() debug('Wrote', self.tmpfn) del rawdata else: f = open(self.tmpfn, 'rb') if self.hashsum: sha.update(f.read()) f.close() if self.hashsum: hashcode = sha.hexdigest() del sha os.rename(self.tmpfn, self.real_fn) debug('Renamed to', self.real_fn) info('Wrote', self.real_fn) if self.hashsum: # List the relative filename (from output dir) in # shasum file. fn = self.relative_fn or self.real_fn self.survey.add_hashcode(fn, hashcode) # end of OutputFileContext class # Get the output filename for this filetype fn = self.find_file(filetype, output=True, **kwargs) compress = self.get_compression_string(filetype, **kwargs) # Find the relative path (relative to output_dir), which is the string # we will put in the shasum file. relfn = fn if relfn.startswith(self.output_dir): relfn = relfn[len(self.output_dir):] if relfn.startswith('/'): relfn = relfn[1:] out = OutputFileContext(fn, self, hashsum=hashsum, relative_fn=relfn, compression=compress) return out def add_hashcode(self, fn, hashcode): ''' Callback to be called in the *write_output* routine. ''' self.output_file_hashes[fn] = hashcode def __getstate__(self): ''' For pickling; we omit cached tables. ''' d = self.__dict__.copy() d['ccds'] = None d['bricks'] = None d['bricktree'] = None d['ccd_kdtrees'] = None return d def drop_cache(self): ''' Clears all cached data contained in this object. Useful for pickling / multiprocessing. ''' self.ccds = None self.bricks = None if self.bricktree is not None: from astrometry.libkd.spherematch import tree_free tree_free(self.bricktree) self.bricktree = None def get_calib_dir(self): ''' Returns the directory containing calibration data. ''' return os.path.join(self.survey_dir, 'calib') def get_image_dir(self): ''' Returns the directory containing image data. ''' return os.path.join(self.survey_dir, 'images') def get_survey_dir(self): ''' Returns the base LEGACY_SURVEY_DIR directory. ''' return self.survey_dir def get_se_dir(self): ''' Returns the directory containing SourceExtractor config files, used during calibration. ''' from pkg_resources import resource_filename return resource_filename('legacypipe', 'config') def get_bricks(self): ''' Returns a table of bricks. The caller owns the table. For read-only purposes, see *get_bricks_readonly()*, which uses a cached version. ''' return fits_table(self.find_file('bricks')) def get_bricks_readonly(self): ''' Returns a read-only (shared) copy of the table of bricks. ''' if self.bricks is None: self.bricks = self.get_bricks() # Assert that bricks are the sizes we think they are. # ... except for the two poles, which are half-sized assert(np.all(np.abs((self.bricks.dec2 - self.bricks.dec1)[1:-1] - self.bricksize) < 1e-3)) return self.bricks def get_brick(self, brickid): ''' Returns a brick (as one row in a table) by *brickid* (integer). ''' B = self.get_bricks_readonly() I, = np.nonzero(B.brickid == brickid) if len(I) == 0: return None return B[I[0]] def get_brick_by_name(self, brickname): ''' Returns a brick (as one row in a table) by name (string). ''' B = self.get_bricks_readonly() I, = np.nonzero(np.array([n == brickname for n in B.brickname])) if len(I) == 0: return None return B[I[0]] def get_bricks_near(self, ra, dec, radius): ''' Returns a set of bricks near the given RA,Dec and radius (all in degrees). ''' bricks = self.get_bricks_readonly() if self.cache_tree: from astrometry.libkd.spherematch import tree_build_radec, tree_search_radec # Use kdtree if self.bricktree is None: self.bricktree = tree_build_radec(bricks.ra, bricks.dec) I = tree_search_radec(self.bricktree, ra, dec, radius) else: from astrometry.util.starutil_numpy import degrees_between d = degrees_between(bricks.ra, bricks.dec, ra, dec) I, = np.nonzero(d < radius) if len(I) == 0: return None return bricks[I] def bricks_touching_radec_box(self, bricks, ralo, rahi, declo, dechi): ''' Returns an index vector of the bricks that touch the given RA,Dec box. ''' if bricks is None: bricks = self.get_bricks_readonly() if self.cache_tree and bricks == self.bricks: from astrometry.libkd.spherematch import tree_build_radec, tree_search_radec from astrometry.util.starutil_numpy import degrees_between # Use kdtree if self.bricktree is None: self.bricktree = tree_build_radec(bricks.ra, bricks.dec) # brick size radius = np.sqrt(2.)/2. * self.bricksize # + RA,Dec box size radius = radius + degrees_between(ralo, declo, rahi, dechi) / 2. dec = (dechi + declo) / 2. c = (np.cos(np.deg2rad(rahi)) + np.cos(np.deg2rad(ralo))) / 2. s = (np.sin(np.deg2rad(rahi)) + np.sin(np.deg2rad(ralo))) / 2. ra = np.rad2deg(np.arctan2(s, c)) J = tree_search_radec(self.bricktree, ra, dec, radius) I = J[np.nonzero((bricks.ra1[J] <= rahi ) * (bricks.ra2[J] >= ralo) * (bricks.dec1[J] <= dechi) * (bricks.dec2[J] >= declo))[0]] return I if rahi < ralo: # Wrap-around debug('In Dec slice:', len(np.flatnonzero((bricks.dec1 <= dechi) * (bricks.dec2 >= declo)))) debug('Above RAlo=', ralo, ':', len(np.flatnonzero(bricks.ra2 >= ralo))) debug('Below RAhi=', rahi, ':', len(np.flatnonzero(bricks.ra1 <= rahi))) debug('In RA slice:', len(np.nonzero(np.logical_or(bricks.ra2 >= ralo, bricks.ra1 <= rahi)))) I, = np.nonzero(np.logical_or(bricks.ra2 >= ralo, bricks.ra1 <= rahi) * (bricks.dec1 <= dechi) * (bricks.dec2 >= declo)) debug('In RA&Dec slice', len(I)) else: I, = np.nonzero((bricks.ra1 <= rahi ) * (bricks.ra2 >= ralo) * (bricks.dec1 <= dechi) * (bricks.dec2 >= declo)) return I def get_ccds_readonly(self): ''' Returns a shared copy of the table of CCDs. ''' if self.ccds is None: self.ccds = self.get_ccds() return self.ccds def filter_ccds_files(self, fns): ''' When reading the list of CCDs, we find all files named survey-ccds-\*.fits.gz, then filter that list using this function. ''' return fns def filter_ccd_kd_files(self, fns): return fns def get_ccds(self, **kwargs): ''' Returns the table of CCDs. ''' fns = self.find_file('ccd-kds') fns = self.filter_ccd_kd_files(fns) # If 'ccd-kds' files exist, read the CCDs tables from them! # Otherwise, fall back to survey-ccds-*.fits.gz files. if len(fns) == 0: fns = self.find_file('ccds') fns.sort() fns = self.filter_ccds_files(fns) if len(fns) == 0: print('Failed to find any valid survey-ccds tables') raise RuntimeError('No survey-ccds files') TT = [] for fn in fns: debug('Reading CCDs from', fn) T = fits_table(fn, **kwargs) debug('Got', len(T), 'CCDs') TT.append(T) if len(TT) > 1: T = merge_tables(TT, columns='fillzero') else: T = TT[0] debug('Total of', len(T), 'CCDs') del TT T = self.cleanup_ccds_table(T) return T def get_annotated_ccds(self): ''' Returns the annotated table of CCDs. ''' fns = self.find_file('annotated-ccds') TT = [] for fn in fns: debug('Reading annotated CCDs from', fn) T = fits_table(fn) debug('Got', len(T), 'CCDs') TT.append(T) T = merge_tables(TT, columns='fillzero') debug('Total of', len(T), 'CCDs') del TT T = self.cleanup_ccds_table(T) return T def cleanup_ccds_table(self, ccds): # Remove trailing spaces from 'ccdname' column if 'ccdname' in ccds.columns(): # "N4 " -> "N4" ccds.ccdname = np.array([s.strip() for s in ccds.ccdname]) # Remove trailing spaces from 'camera' column. if 'camera' in ccds.columns(): ccds.camera = np.array([c.strip() for c in ccds.camera]) # And 'filter' column if 'filter' in ccds.columns(): ccds.filter = np.array([f.strip() for f in ccds.filter]) return ccds def ccds_touching_wcs(self, wcs, **kwargs): ''' Returns a table of the CCDs touching the given *wcs* region. ''' kdfns = self.get_ccd_kdtrees() if len(kdfns): from astrometry.libkd.spherematch import tree_search_radec # MAGIC number: we'll search a 1-degree radius for CCDs # roughly in range, then refine using the # ccds_touching_wcs() function. radius = 1. ra,dec = wcs.radec_center() TT = [] for fn,kd in kdfns: I = tree_search_radec(kd, ra, dec, radius) debug(len(I), 'CCDs within', radius, 'deg of RA,Dec', '(%.3f, %.3f)' % (ra,dec)) if len(I) == 0: continue # Read only the CCD-table rows within range. TT.append(fits_table(fn, rows=I)) if len(TT) == 0: return None ccds = merge_tables(TT, columns='fillzero') ccds = self.cleanup_ccds_table(ccds) else: ccds = self.get_ccds_readonly() I = ccds_touching_wcs(wcs, ccds, **kwargs) if len(I) == 0: return None return ccds[I] def get_ccd_kdtrees(self): # check cache... if self.ccd_kdtrees is not None: return self.ccd_kdtrees fns = self.find_file('ccd-kds') fns = self.filter_ccd_kd_files(fns) from astrometry.libkd.spherematch import tree_open self.ccd_kdtrees = [] for fn in fns: debug('Opening kd-tree', fn) kd = tree_open(fn, 'ccds') self.ccd_kdtrees.append((fn, kd)) return self.ccd_kdtrees def get_image_object(self, t, **kwargs): ''' Returns a DecamImage or similar object for one row of the CCDs table. ''' # get Image subclass imageType = self.image_class_for_camera(t.camera) # call Image subclass constructor return imageType(self, t, **kwargs) def get_approx_wcs(self, ccd): from astrometry.util.util import Tan W,H = ccd.width,ccd.height wcs = Tan(*[float(x) for x in [ccd.crval1, ccd.crval2, ccd.crpix1, ccd.crpix2, ccd.cd1_1, ccd.cd1_2, ccd.cd2_1, ccd.cd2_2, W, H]]) return wcs def tims_touching_wcs(self, targetwcs, mp, bands=None, **kwargs): '''Creates tractor.Image objects for CCDs touching the given *targetwcs* region. mp: multiprocessing object kwargs are passed to LegacySurveyImage.get_tractor_image() and may include: * gaussPsf * pixPsf ''' # Read images C = self.ccds_touching_wcs(targetwcs) # Sort by band if bands is not None: C.cut(np.array([b in bands for b in C.filter])) ims = [] for t in C: debug('Image file', t.image_filename, 'hdu', t.image_hdu) im = self.get_image_object(t) ims.append(im) # Read images, clip to ROI W,H = targetwcs.get_width(), targetwcs.get_height() targetrd = np.array([targetwcs.pixelxy2radec(x,y) for x,y in [(1,1),(W,1),(W,H),(1,H),(1,1)]]) args = [(im, targetrd, kwargs) for im in ims] tims = mp.map(read_one_tim, args) return tims def find_ccds(self, expnum=None, ccdname=None, camera=None): ''' Returns a table of CCDs matching the given *expnum* (exposure number, integer), *ccdname* (string), and *camera* (string), if given. ''' if expnum is not None: C = self.try_expnum_kdtree(expnum) if C is not None: if len(C) == 0: return None if ccdname is not None: C = C[C.ccdname == ccdname] if camera is not None: C = C[C.camera == camera] return C if expnum is not None and ccdname is not None: # use ccds_index if self.ccds_index is None: if self.ccds is not None: C = self.ccds else: C = self.get_ccds(columns=['expnum','ccdname']) self.ccds_index = dict([((e,n),i) for i,(e,n) in enumerate(zip(C.expnum, C.ccdname))]) row = self.ccds_index[(expnum, ccdname)] if self.ccds is not None: return self.ccds[row] #import numpy as np #C = self.get_ccds(rows=np.array([row])) #return C[0] T = self.get_ccds_readonly() if expnum is not None: T = T[T.expnum == expnum] if ccdname is not None: T = T[T.ccdname == ccdname] if camera is not None: T = T[T.camera == camera] return T def try_expnum_kdtree(self, expnum): ''' # By creating a kd-tree from the 'expnum' column, search for expnums # can be sped up: from astrometry.libkd.spherematch import * from astrometry.util.fits import fits_table T=fits_table('/global/cscratch1/sd/dstn/dr7-depthcut/survey-ccds-dr7.kd.fits', columns=['expnum']) ekd = tree_build(np.atleast_2d(T.expnum.copy()).T.astype(float), nleaf=60, bbox=False, split=True) ekd.set_name('expnum') ekd.write('ekd.fits') > fitsgetext -i $CSCRATCH/dr7-depthcut/survey-ccds-dr7.kd.fits -o dr7-%02i -a -M > fitsgetext -i ekd.fits -o ekd-%02i -a -M > cat dr7-0* ekd-0[123456] > $CSCRATCH/dr7-depthcut+/survey-ccds-dr7.kd.fits ''' fns = self.find_file('ccd-kds') fns = self.filter_ccd_kd_files(fns) if len(fns) == 0: return None from astrometry.libkd.spherematch import tree_open TT = [] for fn in fns: debug('Searching', fn) try: kd = tree_open(fn, 'expnum') except: debug('Failed to open', fn, ':') import traceback traceback.print_exc() continue if kd is None: return None I = kd.search(np.array([expnum]), 0.5, 0, 0) debug(len(I), 'CCDs with expnum', expnum, 'in', fn) if len(I) == 0: continue # Read only the CCD-table rows within range. TT.append(fits_table(fn, rows=I)) if len(TT) == 0: ##?? return fits_table() ccds = merge_tables(TT, columns='fillzero') ccds = self.cleanup_ccds_table(ccds) return ccds def run_calibs(X): im = X[0] kwargs = X[1] noraise = kwargs.pop('noraise', False) debug('run_calibs for image', im, ':', kwargs) try: return im.run_calibs(**kwargs) except: print('Exception in run_calibs:', im, kwargs) import traceback traceback.print_exc() if not noraise: raise def read_one_tim(X): (im, targetrd, kwargs) = X #print('Reading', im) tim = im.get_tractor_image(radecpoly=targetrd, **kwargs) return tim from tractor.psfex import PsfExModel class SchlegelPsfModel(PsfExModel): def __init__(self, fn=None, ext=1): ''' `ext` is ignored. ''' if fn is not None: T = fits_table(fn) T.about() ims = fitsio.read(fn, ext=2) print('Eigen-images', ims.shape) nsch,h,w = ims.shape hdr = fitsio.read_header(fn) x0 = 0. y0 = 0. xscale = 1. / hdr['XSCALE'] yscale = 1. / hdr['YSCALE'] degree = (T.xexp + T.yexp).max() self.sampling = 1. # Reorder the 'ims' to match the way PsfEx sorts its polynomial terms # number of terms in polynomial ne = (degree + 1) * (degree + 2) // 2 print('Number of eigen-PSFs required for degree=', degree, 'is', ne) self.psfbases = np.zeros((ne, h,w)) for d in range(degree + 1): # x polynomial degree = j # y polynomial degree = k for j in range(d+1): k = d - j ii = j + (degree+1) * k - (k * (k-1))// 2 jj = np.flatnonzero((T.xexp == j) * (T.yexp == k)) if len(jj) == 0: print('Schlegel image for power', j,k, 'not found') continue im = ims[jj,:,:] print('Schlegel image for power', j,k, 'has range', im.min(), im.max(), 'sum', im.sum()) self.psfbases[ii,:,:] = ims[jj,:,:] self.xscale, self.yscale = xscale, yscale self.x0,self.y0 = x0,y0 self.degree = degree print('SchlegelPsfEx degree:', self.degree) bh,bw = self.psfbases[0].shape self.radius = (bh+1)/2.
gpl-2.0