repo_name
stringlengths
6
92
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
821
753k
license
stringclasses
15 values
henrykironde/scikit-learn
benchmarks/bench_plot_nmf.py
206
5890
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, R=None): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) R : integer, optional random seed Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape if R == "svd": W, H = _initialize_nmf(V, r) elif R is None: R = np.random.mtrand._rand W = np.abs(R.standard_normal((n, r))) H = np.abs(R.standard_normal((r, m))) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): it = 0 timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init=None, max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, R=None, tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
LLNL/spack
var/spack/repos/builtin/packages/py-workload-automation/package.py
4
2174
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyWorkloadAutomation(PythonPackage): """Workload Automation (WA) is a framework for executing workloads and collecting measurements on Android and Linux devices.""" homepage = "https://github.com/ARM-software/workload-automation" url = "https://github.com/ARM-software/workload-automation/archive/v3.2.tar.gz" version('3.2', sha256='a3db9df6a9e0394231560ebe6ba491a513f6309e096eaed3db6f4cb924c393ea') version('3.1.4', sha256='217fc33a3739d011a086315ef86b90cf332c16d1b03c9dcd60d58c9fd1f37f98') version('3.1.3', sha256='152470808cf8dad8a833fd7b2cb7d77cf8aa5d1af404e37fa0a4ff3b07b925b2') version('3.1.2', sha256='8226a6abc5cbd96e3f1fd6df02891237a06cdddb8b1cc8916f255fcde20d3069') version('3.1.1', sha256='32a19be92e43439637c68d9146f21bb7a0ae7b8652c11dfc4b4bd66d59329ad4') version('3.1.0', sha256='f00aeef7a1412144c4139c23b4c48583880ba2147207646d96359f1d295d6ac3') version('3.0.0', sha256='8564b0c67541e3a212363403ee090dfff5e4df85770959a133c0979445b51c3c') version('2.7.0', sha256='e9005b9db18e205bf6c4b3e09b15a118abeede73700897427565340dcd589fbb') version('2.6.0', sha256='b94341fb067592cebe0db69fcf7c00c82f96b4eb7c7210e34b38473869824cce') depends_on('py-setuptools', type='build') depends_on('py-python-dateutil', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-pyserial', type=('build', 'run')) depends_on('py-colorama', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-requests', type=('build', 'run')) depends_on('py-wrapt', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run'), when='^[email protected]:') depends_on('[email protected]:0.24.2', type=('build', 'run'), when='^python@:3.5.2') depends_on('py-future', type=('build', 'run')) depends_on('py-louie', type=('build', 'run')) depends_on('py-devlib', type=('build', 'run'))
lgpl-2.1
bmazin/SDR
Projects/ChannelizerSim/channelizerSim.py
1
13632
import numpy as np import matplotlib.pyplot as plt import scipy.signal from util.popup import pop #from ARCONS-pipeline def tone(freq,nSamples,sampleRate,initialPhase=0.): dt = 1/sampleRate time = np.arange(0,nSamples)*dt out = np.exp(1.j*(2*np.pi*freq*time+initialPhase)) #out = np.cos(2*np.pi*freq*time) return out def toneWithPhasePulse(freq,nSamples,sampleRate=512.e6,pulseAmpDeg=-35.,decayTime=30.e-6,riseTime=.5e-6,pulseArrivalTime=50.e-6,initialPhase=0.): dt = 1./sampleRate time = np.arange(0,nSamples)*dt pulseArrivalIndex = pulseArrivalTime//dt pulseAmp = np.pi/180.*pulseAmpDeg pulse = np.exp(-time[0:nSamples-pulseArrivalIndex]/decayTime) rise = np.exp(-time[0:pulseArrivalIndex]/riseTime)[::-1] paddedPulse = np.append(rise,pulse) phase = pulseAmp*paddedPulse out = np.exp(1.j*(2*np.pi*freq*time+phase+initialPhase)) return out def pfb(x,nTaps=4,fftSize=512,binWidthScale=2.5,windowType='hanning'): windowSize = nTaps*fftSize angles = np.arange(-nTaps/2.,nTaps/2.,1./fftSize) window = np.sinc(binWidthScale*angles) if windowType == 'hanning': window *= np.hanning(windowSize) nFftChunks = len(x)//fftSize #it takes a windowSize worth of x values to get the first out value, so there will be windowsize fewer values in out, assuming x divides evenly by fftSize out = np.zeros(nFftChunks*fftSize-windowSize,np.complex128) for i in xrange(0,len(out),fftSize): windowedChunk = x[i:i+windowSize]*window out[i:i+fftSize] = windowedChunk.reshape(nTaps,fftSize).sum(axis=0) return out def dftBin(k,k0,m,N=512): return np.exp(1.j*m*np.pi*k0)*(1-np.exp(1.j*2*np.pi*k0))/(1-np.exp(1.j*2*np.pi/N*(k0-k))) def dftSingle(signal,n,freqIndex): indices = np.arange(0,n) signalCropped = signal[0:n] dft = np.sum(signalCropped*np.exp(-2*np.pi*1.j*indices*freqIndex/N)) return dft instrument = 'darkness'#'darkness' if instrument == 'arcons': fftSize=512 nPfbTaps=4 sampleRate = 512.e6 clockRate = 256.e6 bFlipSigns = True lpfCutoff = 250.e3# 125 kHz in old firmware, should probably be 250 kHz nLpfTaps = 20 binOversamplingRate = 2. #number of samples from the same bin used in a clock cycle downsample = 2 elif instrument == 'darkness': fftSize=2**12#2048 #2**11 nPfbTaps=4 sampleRate = 1.8e9 clockRate = 225.e6 bFlipSigns = True lpfCutoff = 250.e3# 125 kHz in old firmware, should probably be 250 kHz nLpfTaps = 20 binOversamplingRate = 2. #number of samples from the same bin used in a clock cycle downsample = 1 nSimultaneousInputs = sampleRate/clockRate #number of consecutive samples (from consecutive channels) used in a clock cycle binSpacing = sampleRate/fftSize #space between fft bin centers binSampleRate = binOversamplingRate*nSimultaneousInputs*clockRate/fftSize #each fft bin is sampled at this rate print 'instrument: ',instrument print nSimultaneousInputs,' consecutive inputs' print binSpacing/1.e6, 'MHz between bin centers' print binSampleRate/1.e6, 'MHz sampling of fft bin' lpf = scipy.signal.firwin(nLpfTaps, cutoff=lpfCutoff, nyq=binSampleRate/2.,window='hanning') #Define the resonant frequency of interest resFreq = 10.99e6 #[Hz] binIndex = round(resFreq/binSpacing) #nearest FFT freq bin to resFreq binFreq = binIndex*binSpacing #center frequency of bin at binIndex #Define some additional nearby resonant frequencies. These should be filtered out of the channel of interest. resSpacing = .501e6 #250 kHz minimum space between resonators resFreq2 = resFreq-resSpacing#[Hz] Resonator frequency resFreq3 = resFreq+resSpacing#[Hz] Resonator frequency resFreqIndex = fftSize*resFreq/sampleRate resFreqIndex2 = fftSize*resFreq2/sampleRate resFreqIndex3 = fftSize*resFreq3/sampleRate print 'nearest-k',binIndex print 'freq',resFreq/1.e6,'MHz k0',resFreqIndex print 'freq2',resFreq2/1.e6,'MHz k0',resFreqIndex2 print 'freq3',resFreq3/1.e6,'MHz k0',resFreqIndex3 nSamples = 4*nPfbTaps*fftSize #Simulate the frequency response for a range of frequencies freqStep = 0.01e6 freqResponseBandwidth = 8.e6 #1st stage, apply pfb and fft freqList = np.arange(binFreq-freqResponseBandwidth/2, binFreq+freqResponseBandwidth/2, freqStep) nFreq = len(freqList) freqResponseFft = np.zeros(nFreq,dtype=np.complex128) freqResponsePfb = np.zeros(nFreq,dtype=np.complex128) #sweep through frequencies for iFreq,freq in enumerate(freqList): signal = tone(freq,nSamples,sampleRate) fft = (np.fft.fft(signal,fftSize)) fft /= fftSize fftBin = fft[binIndex] freqResponseFft[iFreq] = fftBin fft = (np.fft.fft(pfb(signal,fftSize=fftSize,nTaps=nPfbTaps),fftSize)) fft /= fftSize fftBin = fft[binIndex] freqResponsePfb[iFreq] = fftBin freqResponseFftDb = 10*np.log10(np.abs(freqResponseFft)) freqResponsePfbDb = 10*np.log10(np.abs(freqResponsePfb)) #2nd stage, shift res freq to zero and apply low pass filter normFreqStep = freqStep*2*np.pi/binSampleRate #binBandNormFreqs = np.arange(-np.pi-10*normFreqStep,np.pi,normFreqStep) binBandNormFreqs = (freqList-resFreq)*2*np.pi/binSampleRate # frequencies in bandwidth of a fft bin[rad/sample] _,freqResponseLpf = scipy.signal.freqz(lpf, worN=binBandNormFreqs) freqResponseLpfDb = 10*np.log10(np.abs(freqResponseLpf)) binBandFreqs = resFreq+binBandNormFreqs*binSampleRate/(2.*np.pi) freqResponse = freqResponseLpf*freqResponsePfb phaseResponse = np.rad2deg(np.unwrap(np.angle(freqResponse))) phaseResponseLpf = np.rad2deg(np.unwrap(np.angle(freqResponseLpf))) phaseResponsePfb = np.rad2deg(np.unwrap(np.angle(freqResponsePfb))) #phaseResponse = np.angle(freqResponse,deg=True) #phaseResponseLpf = np.angle(freqResponseLpf,deg=True) #phaseResponsePfb = np.angle(freqResponsePfb,deg=True) freqResponseDb = 10.*np.log10(np.abs(freqResponse)) freqListMHz = freqList/1.e6 #Plot Response vs Frequency for 1st and 2nd stages def f(fig,ax): ax.plot(freqListMHz,freqResponsePfbDb,label='FFT bin') #ax.plot(freqListMHz,freqResponseFftDb) #ax.plot(freqListMHz,freqResponseLpfDb) ax.plot(freqListMHz,freqResponseDb,label='final channel') ax.axvline(resFreq/1.e6,color='.5',label='resonant freq') ax.axvline(resFreq2/1.e6,color='.8') ax.axvline(resFreq3/1.e6,color='.8') ax.set_ylim(-50,0) ax.set_ylabel('response (dB)') ax.set_xlabel('frequency (MHz)') ax.legend(loc='lower left') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) #Plot Response vs Phase for 1st and 2nd stages def f(fig,ax): ax.plot(freqListMHz,phaseResponse,label='overall') ax.plot(freqListMHz,phaseResponseLpf,label='LPF') ax.plot(freqListMHz,phaseResponsePfb,label='FFT') ax.axvline(resFreq/1.e6,color='.5',label='resonant freq') ax.axvline(resFreq2/1.e6,color='.8') ax.axvline(resFreq3/1.e6,color='.8') ax.set_ylabel('phase response ($^\circ$)') ax.set_xlabel('frequency (MHz)') ax.legend(loc='best') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) ################################################################### #Now we'll simulate the full channelizer with a probe tone at the resonant frequency nSamples = 100*nPfbTaps*fftSize #signal = tone(resFreq,nSamples,sampleRate) signal = toneWithPhasePulse(resFreq,nSamples,sampleRate) #add in other tones signal += toneWithPhasePulse(resFreq2,nSamples,sampleRate,pulseAmpDeg=-90.,pulseArrivalTime=200.e-6,initialPhase=2.) signal += toneWithPhasePulse(resFreq3,nSamples,sampleRate,pulseAmpDeg=-80.,pulseArrivalTime=300.e-6,initialPhase=1.) #signal += tone(resFreq3,nSamples,sampleRate,initialPhase=1.) time = np.arange(nSamples)/sampleRate/1.e-6 #in us #signal = tone(resFreq,nSamples,sampleRate)+tone(10.e6,nSamples,sampleRate) #Plot raw signal vs time coming in from ADC def f(fig,ax): ax.plot(time,np.angle(signal),'r') ax.plot(time,np.abs(signal),'b') ax.set_xlabel('Time (us)') ax.set_title('Signal with Phase Pulse') #pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) rawFftSize=100000 rawFft = 10*np.log10(np.fft.fftshift(np.abs(np.fft.fft(signal,n=rawFftSize)/rawFftSize))) rawFreqs = sampleRate*np.fft.fftshift(np.fft.fftfreq(rawFftSize))/1.e6 #plot fft of raw signal def f(fig,ax): ax.plot(rawFreqs,rawFft) ax.set_xlabel('Freq (MHz)') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nraw signal') ax.set_xlim((resFreq-2.*resSpacing)/1.e6,(resFreq+2.*resSpacing)/1.e6) ax.set_ylim(-35,5) pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) filteredSignal0 = pfb(signal[:-fftSize/2],fftSize=fftSize,nTaps=nPfbTaps) filteredSignal1 = pfb(signal[fftSize/2:],fftSize=fftSize,nTaps=nPfbTaps) #trim off end if the length doesn't evenly divide by fftSize nFfts = len(filteredSignal0)//fftSize filteredSignal0 = filteredSignal0[:nFfts*fftSize] filteredSignal1 = filteredSignal1[:nFfts*fftSize] foldedSignal0 = np.reshape(filteredSignal0,(nFfts,fftSize)) foldedSignal1 = np.reshape(filteredSignal1,(nFfts,fftSize)) ffts0 = np.fft.fft(foldedSignal0,n=fftSize,axis=1) #each row will be the fft of a row in foldedSignal ffts1 = np.fft.fft(foldedSignal1,n=fftSize,axis=1) #flip signs for odd frequencies in every other bin sample if bFlipSigns: ffts1[:,1::2] *= -1 binTimestream0 = ffts0[:,binIndex] #pick out values for the bin corresponding to resFreq binTimestream1 = ffts1[:,binIndex] #binTimestream = binTimestream0 binTimestream = np.hstack(zip(binTimestream0,binTimestream1))#interleave timestreams time = time[:len(filteredSignal0):fftSize/binOversamplingRate] #Plot signal vs time coming out of FFT bin def f(fig,ax): ax.plot(time,np.real(binTimestream),color='b') ax.plot(time,np.imag(binTimestream),color='r') ax.set_xlabel('Time (us)') ax.set_title('After 1st Stage') #pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) binFftSize=100 #Now for checking shifted frequencies in a bin binFft = 10*np.log10(np.fft.fftshift(np.abs(np.fft.fft(binTimestream,n=binFftSize)/binFftSize))) binFreqs = (binFreq+np.fft.fftshift(np.fft.fftfreq(binFftSize))*binSampleRate)/1.e6#MHz #plot fft of signal coming out of FFT bin with frequencies shifted to show the resonant frequency def f(fig,ax): ax.plot(binFreqs,binFft) ax.set_xlabel('Freq (MHz)') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nsampled FFT bin') #pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) binFreqs = np.fft.fftshift(np.fft.fftfreq(binFftSize)) #plot fft of signal coming out of FFT bin def f(fig,ax): ax.plot(binFreqs,binFft) ax.set_xlabel('Freq/$f_s$') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nsampled FFT bin') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) ddsTimestream = tone(freq=binFreq-resFreq,nSamples=len(binTimestream),sampleRate=binSampleRate) channelTimestream = binTimestream*ddsTimestream def f(fig,ax): ax.plot(time,np.abs(channelTimestream),color='b') ax.plot(time,np.angle(channelTimestream,deg=True),color='r') ax.set_title('After DDS') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) channelFftSize=100 #Now for checking shifted frequencies in a bin channelFft = 10*np.log10(np.fft.fftshift(np.abs(np.fft.fft(channelTimestream,n=channelFftSize)/channelFftSize))) channelFreqs = (resFreq+np.fft.fftshift(np.fft.fftfreq(channelFftSize))*binSampleRate)/1.e6#MHz #plot fft of signal coming out of DDS mixer with frequencies shifted to show the resonant frequency def f(fig,ax): ax.plot(channelFreqs,channelFft) ax.set_xlabel('Freq (MHz)') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nDDS mixer output') #pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) channelFreqs = np.fft.fftshift(np.fft.fftfreq(channelFftSize)) #plot fft of signal coming out of DDS mixer def f(fig,ax): ax.plot(channelFreqs,channelFft) ax.set_xlabel('Freq/$f_s$') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nDDS mixer output') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) channelTimestream = np.convolve(channelTimestream,lpf,mode='same') channelTimestream = channelTimestream[::downsample] time=time[::downsample] finalFftSize=200 #Now for checking shifted frequencies in a bin finalFft = 10*np.log10(np.fft.fftshift(np.abs(np.fft.fft(channelTimestream,n=finalFftSize)/finalFftSize))) finalFreqs = (resFreq+np.fft.fftshift(np.fft.fftfreq(finalFftSize))*binSampleRate)/1.e6#MHz #plot fft of signal coming out of DDS mixer with frequencies shifted to show the resonant frequency def f(fig,ax): ax.plot(finalFreqs,finalFft) ax.set_xlabel('Freq (MHz)') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nLPF output') #pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) finalFreqs = np.fft.fftshift(np.fft.fftfreq(finalFftSize)) #plot fft of signal coming out of DDS mixer def f(fig,ax): ax.plot(finalFreqs,finalFft) ax.set_xlabel('Freq/$f_s$') ax.set_ylabel('Amp (dB)') ax.set_title('Frequency Content of\nLPF output') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) phase = np.angle(channelTimestream,deg=True)[1:-1] time = time[1:-1] phaseOffset = phase[0] phase -= phaseOffset #in readout, done by rotating IQ loops in templar customFIR = np.loadtxt('matched_30us.txt')[::-1] filteredPhase = np.convolve(phase,customFIR,mode='same') def f(fig,ax): #ax.plot(time,np.abs(channelTimestream),color='b') ax.plot(time,phase,color='r',marker='.') ax.plot(time,filteredPhase,color='m',marker='.') ax.set_xlabel('Time (us)') ax.set_ylabel('Phase ($^{\circ}$)') ax.set_title('Output Phase') pop(plotFunc=lambda fig,axes: f(fig=fig,ax=axes)) plt.show()
gpl-2.0
shayanb/SEC.gov-form-retriever
parser_nsar.py
1
5676
#!/usr/bin/env python import sys import re import csv import os.path from itertools import izip import shutil import pandas as pd #TODO: # Read the input file via sysarg or path crawling --> include everything in pathrun() # Change the hardcodename argument # FIX: Q 8 - 23 # Joining all the funds to one csv # DONE! series i ! remove the %i from the name of the column # hardcodename = "filename" # hard coded name for each fund in each csv - later on this should be changed to a part of the original csv file def txt2csv(txtfile, csvfilename): ''' converts the txt files to csv files with [Key,Value] structure ''' colonseperated = re.compile(' *(.+) *: *(.+) *') fixedfields = re.compile('(\d{3} +\w{6,7}) +(.*)') series = re.compile('<(\w{,}.*)>(\w{,}.*)') matchers = [colonseperated, fixedfields, series] outfile = csv.writer(open(csvfilename +'.csv', 'w')) outfile.writerow(['Key', 'Value']) for line in open(txtfile): line = line.strip() for matcher in matchers: match = matcher.match(line) if match and list(match.groups())[1] not in ('', ' ') and (list(match.groups())[0] not in ('PAGE')): outfile.writerow(list(match.groups())) def pathrun(): ''' starts crawling on the ciks folders, opens the txt files and send them to txt2csv then runs seriesExtract to extract the series ''' path = os.getcwd() path = (path+"/NSAR") ciks = os.listdir(path) for cik in ciks: if cik.isdigit(): years = os.listdir(path + "/" + cik) for i in years: os.chdir(path + "/" + cik + "/" + str(i)) qtrs = os.listdir(".") for j in qtrs: os.chdir(path+"/"+cik+ "/" +str(i)+"/"+j) print os.listdir(".") for nsarfile in os.listdir("."): if nsarfile.endswith(".txt"): print str(nsarfile) txt2csv(nsarfile,cik+'-'+i+'-'+j) ## seriesExtract(cik+'-'+i+'-'+j+'.csv') #UNCOMMENT this when series extract is done csvfile="/Users/sbeta/Desktop/NSARFILES/0000910472-08-000530.csv" def haveSeries(csvfile): ''' check if the csvfile has any series (funds) returns the line number of 007 A000000 and the number of series ''' with open(csvfile, 'rb') as f: reader = csv.reader(f) row2 = 0 for row in reader: if (row[0] == '007 A000000') and (row[1]=='Y'): baseline = reader.line_num print baseline seriesnum = reader.next() seriesnum1 = seriesnum[1] print seriesnum1 return baseline,seriesnum1 # else: # print "NO Funds" # return 0, 0 def transpose(csvfile): ''' transpose the rows and columns of csv file ''' a = izip(*csv.reader(open(csvfile, "rb"))) filename = os.path.splitext(os.path.basename(csvfile))[0] csv.writer(open(filename + "_T.csv", "wb")).writerows(a) def mergeCsv(filename1,seriesnum): """ goes through all the fund classes and merges the csvs together on inner join """ result = pd.read_csv(filename1 + "_1.csv") str = [] for i in xrange(2,int(seriesnum)): #GO WITH APPEND! result = result.append(filename1 + "_" + str(i) + ".csv") # eachfile = pd.read_csv(filename1 + "_" + str(i) + ".csv") #merged = firstfile.merge(eachfile, left_index=True, right_index=True, how='outer') #merged.to_csv("result.csv", index=False, na_rep='NA') result.to_csv("result.csv") #firstfile = pd.read_csv("result.csv").reindex() #firstfile.reindex(index="Key") def writeInCSV(filename,key,value): ''' Hacky code to make/write into a csvfile ''' outfile = csv.writer(open(filename +'.csv', 'a')) outfile.writerow([key, value]) def seriesExtract(csvfile): ''' extract fund/series details ''' with open(csvfile, 'rb') as f: row2 = 0 reader = csv.reader(f) if haveSeries(csvfile) != False: seriesBaseNNum=haveSeries(csvfile) for row in reader: # this part writes all the lines from line number 1 to right before question 7 repeatedly to the quantity of funds if reader.line_num < seriesBaseNNum[0]: writeInCSV(hardcodename + "_1", row[0], row[1]) for i in xrange(2,int(seriesBaseNNum[1])+1): # hacky code to copy the file to the number of funds shutil.copyfile(hardcodename + "_1.csv", hardcodename + "_" + str(i) + ".csv") f.seek(0) #reader2 = csv.reader(f) for row in reader: for i in xrange(1,int(seriesBaseNNum[1])): seriesi = re.compile ("(?P<qno>\d{3})(?P<qsec>( \w| )\d{2})%02d(?P<qlast>\d{2}.{,})" %i) # seperate the question number and fund number matchers = seriesi.search(row[0]) if matchers: print matchers.group("qno")+ matchers.group("qsec")+matchers.group("qlast") writeInCSV(hardcodename + "_" + str(i), matchers.group("qno")+ matchers.group("qsec")+matchers.group("qlast"),row[1]) # removes the fund number from the question number #just run pathrun() ... wait for it... TADA! #pathrun() #seriesExtract(csvfile) #for i in xrange(1,16): # transpose(hardcodename + "_" + str(i) + ".csv") mergeCsv(hardcodename, 16) #transpose("result.csv")
gpl-2.0
keiserlab/e3fp-paper
project/analysis/comparison/get_confusion_stats.py
1
5389
"""Calculate performance stats for specific thresholds from confusion matrix. Author: Seth Axen E-mail: [email protected] """ from __future__ import print_function, division import logging import os import glob import cPickle as pkl import sys import numpy as np from scipy.sparse import issparse from python_utilities.scripting import setup_logging from python_utilities.io_tools import smart_open from sklearn.metrics import confusion_matrix, precision_recall_curve def get_max_f1_thresh(y_true, y_score): """Get maximum F1-score and corresponding threshold.""" precision, recall, thresh = precision_recall_curve(y_true, y_score) f1 = 2 * precision * recall / (precision + recall) max_f1_ind = np.argmax(f1) max_f1 = f1[max_f1_ind] max_f1_thresh = thresh[max_f1_ind] return max_f1, max_f1_thresh def get_metrics_at_thresh(y_true, y_score, thresh): """Get sensitivity, specificity, precision and F1-score at threshold.""" y_pred = y_score >= thresh confusion = confusion_matrix(y_true, y_pred) tn, fp, fn, tp = confusion.ravel() sensitivity = tp / (tp + fn) # recall specificity = tn / (fp + tn) precision = tp / (tp + fp) f1 = 2 * precision * sensitivity / (precision + sensitivity) return sensitivity, specificity, precision, f1 def compute_fold_metrics(target_mol_array, mask_file, results_file, thresh=None): """Compute metrics from fold at maximum F1-score or threshold.""" logging.info("Loading mask file.") with smart_open(mask_file, "rb") as f: train_test_mask = pkl.load(f) test_mask = train_test_mask == 1 del train_test_mask logging.info("Loading results from file.") with np.load(results_file) as data: results = data["results"] logging.info("Computing metrics.") y_true = target_mol_array[test_mask].ravel() y_score = results[test_mask].ravel() nan_inds = np.where(~np.isnan(y_score)) y_true, y_score = y_true[nan_inds], y_score[nan_inds] del results, test_mask, target_mol_array if thresh is None: f1, thresh = get_max_f1_thresh(y_true, y_score) pvalue = 10**(-thresh) sensitivity, specificity, precision, f1 = get_metrics_at_thresh(y_true, y_score, thresh) logging.debug(("P-value: {:.4g} Sensitivity: {:.4f} " "Specificity: {:.4f} Precision: {:.4f} " "F1: {:.4f}").format(pvalue, sensitivity, specificity, precision, f1)) return (pvalue, sensitivity, specificity, precision, f1) def compute_average_metrics(cv_dir, thresh=None): """Compute fold metrics averaged across fold.""" input_file = os.path.join(cv_dir, "inputs.pkl.bz2") fold_dirs = glob.glob(os.path.join(cv_dir, "*/")) logging.debug("Loading input files.") with smart_open(input_file, "rb") as f: (fp_array, mol_to_fp_inds, target_mol_array, target_list, mol_list) = pkl.load(f) del fp_array, mol_to_fp_inds, target_list, mol_list if issparse(target_mol_array): target_mol_array = target_mol_array.toarray().astype(np.bool) fold_metrics = [] for fold_dir in sorted(fold_dirs): mask_file = glob.glob(os.path.join(fold_dir, "*mask*"))[0] results_file = glob.glob(os.path.join(fold_dir, "*result*"))[0] fold_metric = compute_fold_metrics(target_mol_array, mask_file, results_file, thresh=thresh) fold_metrics.append(fold_metric) fold_metrics = np.asarray(fold_metrics) mean_metrics = fold_metrics.mean(axis=0) std_metrics = fold_metrics.std(axis=0) logging.debug(("P-value: {:.4g} +/- {:.4g} " "Sensitivity: {:.4f} +/- {:.4f} " "Specificity: {:.4f} +/- {:.4f} " "Precision: {:.4f} +/- {:.4f} " "F1: {:.4f} +/- {:.4f}").format( mean_metrics[0], std_metrics[0], mean_metrics[1], std_metrics[1], mean_metrics[2], std_metrics[2], mean_metrics[3], std_metrics[3], mean_metrics[4], std_metrics[4])) return mean_metrics if __name__ == "__main__": try: e3fp_cv_dir, ecfp_cv_dir = sys.argv[1:3] except IndexError: sys.exit("Usage: python get_confusion_stats.py <e3fp_cv_dir> " "<ecfp_cv_dir>") setup_logging(verbose=True) logging.info("Getting average metrics for E3FP") metrics = compute_average_metrics(e3fp_cv_dir) max_thresh = -np.log10(metrics[0]) logging.info("Getting average metrics for E3FP at p-value: {:.4g}".format( metrics[0])) compute_average_metrics(e3fp_cv_dir, thresh=max_thresh) logging.info("Getting average metrics for ECFP4 at p-value: {:.4g}".format( metrics[0])) compute_average_metrics(ecfp_cv_dir, thresh=max_thresh) logging.info("Getting average metrics for ECFP4") metrics = compute_average_metrics(ecfp_cv_dir) max_thresh = -np.log10(metrics[0]) logging.info("Getting average metrics for ECFP4 at p-value: {:.4g}".format( metrics[0])) compute_average_metrics(ecfp_cv_dir, thresh=max_thresh)
lgpl-3.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/frame/test_apply.py
3
24470
# -*- coding: utf-8 -*- from __future__ import print_function import pytest from datetime import datetime import warnings import numpy as np from pandas import (notnull, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, reduce=False) assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, reduce=True) assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, reduce=False) assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, reduce=True) assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast(self): broadcasted = self.frame.apply(np.mean, broadcast=True) agged = self.frame.apply(np.mean) for col, ts in compat.iteritems(broadcasted): assert (ts == agged[col]).all() broadcasted = self.frame.apply(np.mean, axis=1, broadcast=True) agged = self.frame.apply(np.mean, axis=1) for idx in broadcasted.index: assert (broadcasted.xs(idx) == agged[idx]).all() def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = self.mixed_frame._apply_standard(np.mean, 0, ignore_failures=True) expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), broadcast=True) assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notnull(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = DataFrame(np.tile(self.frame.index, (len(self.frame.columns), 1)).T, index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) def test_apply_multi_index(self): s = DataFrame([[1, 2], [3, 4], [5, 6]]) s.index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s.columns = ['col1', 'col2'] res = s.apply(lambda x: Series({'min': min(x), 'max': max(x)}), 1) assert isinstance(res.index, MultiIndex) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = pd.Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = pd.Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, reduce=True) reduce_false = df.apply(fn, reduce=False) reduce_none = df.apply(fn, reduce=None) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) def test_frame_apply_dont_convert_datetime64(self): from pandas.tseries.offsets import BDay df = DataFrame({'x1': [datetime(1996, 1, 1)]}) df = df.applymap(lambda x: x + BDay()) df = df.applymap(lambda x: x + BDay()) assert df.x1.dtype == 'M8[ns]' # See gh-12244 def test_apply_non_numpy_dtype(self): df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df) def zip_frames(*frames): """ take a list of frames, zip the columns together for each assume that these all have the first frame columns return a new frame """ columns = frames[0].columns zipped = [f[c] for c in columns for f in frames] return pd.concat(zipped, axis=1) class TestDataFrameAggregate(TestData): _multiprocess_can_split_ = True def test_agg_transform(self): with np.errstate(all='ignore'): f_sqrt = np.sqrt(self.frame) f_abs = np.abs(self.frame) # ufunc result = self.frame.transform(np.sqrt) expected = f_sqrt.copy() assert_frame_equal(result, expected) result = self.frame.apply(np.sqrt) assert_frame_equal(result, expected) result = self.frame.transform(np.sqrt) assert_frame_equal(result, expected) # list-like result = self.frame.apply([np.sqrt]) expected = f_sqrt.copy() expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['sqrt']]) assert_frame_equal(result, expected) result = self.frame.transform([np.sqrt]) assert_frame_equal(result, expected) # multiple items in list # these are in the order as if we are applying both # functions per series and then concatting expected = zip_frames(f_sqrt, f_abs) expected.columns = pd.MultiIndex.from_product( [self.frame.columns, ['sqrt', 'absolute']]) result = self.frame.apply([np.sqrt, np.abs]) assert_frame_equal(result, expected) result = self.frame.transform(['sqrt', np.abs]) assert_frame_equal(result, expected) def test_transform_and_agg_err(self): # cannot both transform and agg def f(): self.frame.transform(['max', 'min']) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.agg(['max', 'sqrt']) pytest.raises(ValueError, f) def f(): with np.errstate(all='ignore'): self.frame.transform(['max', 'sqrt']) pytest.raises(ValueError, f) df = pd.DataFrame({'A': range(5), 'B': 5}) def f(): with np.errstate(all='ignore'): df.agg({'A': ['abs', 'sum'], 'B': ['mean', 'max']}) def test_demo(self): # demonstration tests df = pd.DataFrame({'A': range(5), 'B': 5}) result = df.agg(['min', 'max']) expected = DataFrame({'A': [0, 4], 'B': [5, 5]}, columns=['A', 'B'], index=['min', 'max']) tm.assert_frame_equal(result, expected) result = df.agg({'A': ['min', 'max'], 'B': ['sum', 'max']}) expected = DataFrame({'A': [4.0, 0.0, np.nan], 'B': [5.0, np.nan, 25.0]}, columns=['A', 'B'], index=['max', 'min', 'sum']) tm.assert_frame_equal(result.reindex_like(expected), expected) def test_agg_dict_nested_renaming_depr(self): df = pd.DataFrame({'A': range(5), 'B': 5}) # nested renaming with tm.assert_produces_warning(FutureWarning): df.agg({'A': {'foo': 'min'}, 'B': {'bar': 'max'}}) def test_agg_reduce(self): # all reducers expected = zip_frames(self.frame.mean().to_frame(), self.frame.max().to_frame(), self.frame.sum().to_frame()).T expected.index = ['mean', 'max', 'sum'] result = self.frame.agg(['mean', 'max', 'sum']) assert_frame_equal(result, expected) # dict input with scalars result = self.frame.agg({'A': 'mean', 'B': 'sum'}) expected = Series([self.frame.A.mean(), self.frame.B.sum()], index=['A', 'B']) assert_series_equal(result.reindex_like(expected), expected) # dict input with lists result = self.frame.agg({'A': ['mean'], 'B': ['sum']}) expected = DataFrame({'A': Series([self.frame.A.mean()], index=['mean']), 'B': Series([self.frame.B.sum()], index=['sum'])}) assert_frame_equal(result.reindex_like(expected), expected) # dict input with lists with multiple result = self.frame.agg({'A': ['mean', 'sum'], 'B': ['sum', 'max']}) expected = DataFrame({'A': Series([self.frame.A.mean(), self.frame.A.sum()], index=['mean', 'sum']), 'B': Series([self.frame.B.sum(), self.frame.B.max()], index=['sum', 'max'])}) assert_frame_equal(result.reindex_like(expected), expected) def test_nuiscance_columns(self): # GH 15015 df = DataFrame({'A': [1, 2, 3], 'B': [1., 2., 3.], 'C': ['foo', 'bar', 'baz'], 'D': pd.date_range('20130101', periods=3)}) result = df.agg('min') expected = Series([1, 1., 'bar', pd.Timestamp('20130101')], index=df.columns) assert_series_equal(result, expected) result = df.agg(['min']) expected = DataFrame([[1, 1., 'bar', pd.Timestamp('20130101')]], index=['min'], columns=df.columns) assert_frame_equal(result, expected) result = df.agg('sum') expected = Series([6, 6., 'foobarbaz'], index=['A', 'B', 'C']) assert_series_equal(result, expected) result = df.agg(['sum']) expected = DataFrame([[6, 6., 'foobarbaz']], index=['sum'], columns=['A', 'B', 'C']) assert_frame_equal(result, expected)
mit
aleung12/ast381
PTMCMC.py
1
44864
import numpy as np import random import scipy.constants as const import datetime from jdcal import gcal2jd, jd2jcal, jcal2jd import time import multiprocessing as mp import gc def pt_aux(Tladder,nchain,swapInt,burnIn,models,param_list,param_ct,psmin,psmax,jhr,real_data,it): verbose = False output = mp.Queue() proc = [] for wnum in range(nchain): model = models[wnum] T = Tladder[wnum] proc.append(mp.Process(target=mcmc_fit, args=(swapInt,model,wnum,burnIn,verbose,param_list,param_ct,psmin,psmax,jhr,real_data,T,output,it))) for p in proc: p.start() for p in proc: p.join() results = [output.get() for p in proc] results.sort() print(' ###### results for iteration '+str(it+1)+': ') print('') print(results) print('') last_posit = [] for wnum in range(nchain): last_posit.append(results[wnum][1]) new_posit = propose_swaps(real_data,nchain,Tladder,last_posit) return new_posit def propose_swaps(real_data,nchain,temp_ladder,last_posit): print(' ###### propose_swaps() reached at: '+time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())) models = [] for i in range(nchain): models.append([]) avail_temps = np.copy(temp_ladder) avail_indices = np.arange(0,8) swap_acc_rates = np.zeros(8) for k in range(nchain/2): swap_elements = [-1,-1] while swap_elements[0] == swap_elements[1]: swap_elements = np.random.randint(nchain-2*k,size=2) beta_i = 1. /avail_temps[swap_elements[0]] beta_j = 1. /avail_temps[swap_elements[1]] chisq_sep_i, chisq_PA_i, chisq_RV_i = prob_data_given_model(real_data,last_posit[avail_indices[swap_elements[0]]]) chisq_sep_j, chisq_PA_j, chisq_RV_j = prob_data_given_model(real_data,last_posit[avail_indices[swap_elements[1]]]) arg = -sum(chisq_sep_i) +sum(chisq_sep_j) -sum(chisq_PA_i) +sum(chisq_PA_j) -chisq_RV_i +chisq_RV_j if arg >= 0: swap_prob = 1. else: swap_prob = exp(arg) **(beta_j -beta_i) swap_prob = min(1,swap_prob) if np.random.rand() < swap_prob: # accept swap models[avail_indices[swap_elements[0]]] = last_posit[avail_indices[swap_elements[1]]] models[avail_indices[swap_elements[1]]] = last_posit[avail_indices[swap_elements[0]]] print(' ###### proposed swap accepted ') print(' ###### between T = { %.0f , %.0f } '%(avail_temps[swap_elements[0]],avail_temps[swap_elements[1]])) print(' ###### swap acceptance probability: %.3f'%swap_prob) print(' ######') else: models[avail_indices[swap_elements[0]]] = last_posit[avail_indices[swap_elements[0]]] models[avail_indices[swap_elements[1]]] = last_posit[avail_indices[swap_elements[1]]] print(' ###### proposed swap rejected ') print(' ###### between T = { %.0f , %.0f } '%(avail_temps[swap_elements[0]],avail_temps[swap_elements[1]])) print(' ###### swap acceptance probability: %.3f'%swap_prob) print(' ######') swap_acc_rates[avail_indices[swap_elements[0]]] = swap_acc_rates[avail_indices[swap_elements[1]]] = swap_prob avail_temps = np.delete(avail_temps,swap_elements) avail_indices = np.delete(avail_indices,swap_elements) #print(models) ### return list of length=nchain with parameter states post-swap ### return swap acceptance rate for each temperature return models, swap_acc_rates def pt_runs(maxit,w81): t00 = time.time() param_list, param_ct, nchain, swapInt, jhr, psmin, psmax, real_data, models, temp_ladder = init_all(w81) swap_acc_rate = open('swap_acceptance_rate.dat','w') swap_acc_rate.write('# iteration \t') for i in range(len(temp_ladder)): swap_acc_rate.write(' T = %.1f \t'%(temp_ladder[i])) swap_acc_rate.write('\n') for it in range(maxit): t0,tl = time.time(),time.localtime() print(' ###### iteration %.0f of pt_runs() began at: '%(it+1) +time.strftime("%a, %d %b %Y %H:%M:%S", tl)) #if (it==0): burnIn = True #else: burnIn = False burnIn = True # [2015-12-16] always require burn-in after swaps if it == 0: swapInt = 2e4 else: swapInt = 1e4 #2e3 models, sarates = pt_aux(temp_ladder,nchain,swapInt,burnIn,models,param_list,param_ct,psmin,psmax,jhr,real_data,it) swap_acc_rate.write(' %.0f \t'%(it)) for T in range(len(sarates)): swap_acc_rate.write(' %.4f \t'%(sarates[T])) swap_acc_rate.write('\n') print(' ###### iteration %.0f of pt_runs() finished at: '%(it+1) +time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())) if (it%100)==0: plot_mcorbits(1,it+1,100) plot_proj_orbits(it+1,100) T = 1 mchain = get_mcsample(1,it+1,T,'hist') plot_posterior(mchain,it+1,T,True) mchain = [] gc.collect() swap_acc_rate.close() def prob_accept(data,prev_model,cand_model,var,jhr,psmin,psmax,T): prev_chisq_sep, prev_chisq_PA, prev_chisq_RV = prob_data_given_model(data,prev_model) cand_chisq_sep, cand_chisq_PA, cand_chisq_RV = prob_data_given_model(data,cand_model) arg = (sum(prev_chisq_sep) -sum(cand_chisq_sep) +sum(prev_chisq_PA) -sum(cand_chisq_PA) +prev_chisq_RV -cand_chisq_RV) /float(T) #if var == 3: # psmin[var] = -1. # psmax[var] = 1. # prev_model[var] = cos(prev_model[var]) # cand_model[var] = cos(cand_model[var]) if (not var==3): # properly normalize proposal distribution (uniform) if jump range extends beyond low end of parameter space if ((cand_model[var] -jhr[var]) < psmin[var]) or ((prev_model[var] -jhr[var]) < psmin[var]): arg += ln( (2*jhr[var]) / min((2*jhr[var]),(cand_model[var]+jhr[var]-psmin[var])) ) arg -= ln( (2*jhr[var]) / min((2*jhr[var]),(prev_model[var]+jhr[var]-psmin[var])) ) # properly normalize proposal distribution (uniform) if jump range extends beyond high end of parameter space elif ((cand_model[var] +jhr[var]) > psmax[var]) or ((prev_model[var] +jhr[var]) > psmax[var]): arg += ln( (2*jhr[var]) / min((2*jhr[var]),(-cand_model[var]+jhr[var]+psmax[var])) ) arg -= ln( (2*jhr[var]) / min((2*jhr[var]),(-prev_model[var]+jhr[var]+psmax[var])) ) if arg >= 0: prob_acc = 1. else: prob_acc = exp(arg) return prob_acc def prob_data_given_model(data,model): # likelihood to be expressed as function of chi-squared's n = len(data[0]) JD,sep,sepunc,PA,PAunc = data[0],data[1],data[2],data[3],data[4] smjr_ax,P,ecc,inclin,bOmega,omega,tP = model[0],model[1],model[2],model[3],model[4],model[5],model[6] chisq_sep, chisq_PA = [],[] for i in range(n): modelsep, modelPA = absolute_astrometry(d,JD[i],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'sep,PA') chisq_sep.append( ((sep[i]-modelsep)/sepunc[i])**2 ) chisq_PA.append( ((PA[i]-modelPA)/PAunc[i])**2 ) # [2015-12-10]: one RV data point from Snellen et al. (2014) modelRV = absolute_astrometry(d,convert_gcal('2013-12-17','jdd'),smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RV') chisq_RV = ((-15.4-modelRV)/1.7)**2 return chisq_sep, chisq_PA, chisq_RV def julian_day(jdy): return sum(jcal2jd(int(jdy),1,1+int(round((jdy%1)*365.25,0)))) def julian_year(jdd): jcal = jd2jcal(jdd,0) jdy = jcal[0] +(jcal[1]-1)/12. +(jcal[2]-1)/365.25 return round(jdy,3) def convert_gcal(gcd,jdw): gfmt = '%Y-%m-%d' ### Geogorian date format in data file jdt = datetime.datetime.strptime(gcd,gfmt).timetuple() jdd = sum(gcal2jd(jdt.tm_year,jdt.tm_mon,jdt.tm_mday)) if jdw == 'jdd': return jdd elif jdw == 'jdy': return julian_year(jdd) def init_all(w81): param_list = ['semimajor axis','orbital period','eccentricity','inclination','big Omega','omega','t_periastron'] param_ct = len(param_list) if w81 == False: sdata = 1 # not using 1981-11-10 event as data point elif w81 == True: sdata = 2 # do use 1981-11-10 event as data point nchain = 8 swapInt = 1e4 models = [] for i in range(nchain): #models.append(initial_guesses(1)) models.append(initial_guesses('')) #Tmin, Tmax = 1, 8 #temp_ladder = np.arange(Tmin,Tmax+1,1).tolist() #logTmin,logTmax = 0,4 ### v3 #temp_ladder = (10**(np.arange(logTmin,logTmax,0.5))).tolist() logTmin,logTmax = 0,5 ### v4 temp_ladder = (10**(np.arange(logTmin,logTmax,0.71428571))).tolist() # jump half-ranges (uniform distribution) # [2015-12-10]: switched to uniform in log(a) and cos(i) # [2005-12-12]: switched back to uniform in (a) jhr = [AU_to_cm(0.08), yrs_to_day(0.3), 1e-2, 5e-2, deg_to_rad(0.8), deg_to_rad(0.8), 21.] # define edges of parameter space psmin = [AU_to_cm(1), yrs_to_day(5), 1e-9, deg_to_rad(0), deg_to_rad(-180), deg_to_rad(-180), julian_day(1980)] psmax = [AU_to_cm(25), yrs_to_day(60), 0.8, deg_to_rad(180), deg_to_rad(180), deg_to_rad(180), julian_day(2015)] # get real data from file real_data = get_data(sdata) return param_list, param_ct, nchain, swapInt, jhr, psmin, psmax, real_data, models, temp_ladder def initial_guesses(init): if init == 1: ### MCMC result from Chauvin et al. (2012) return [AU_to_cm(8.8), yrs_to_day(19.6), 0.021, deg_to_rad(88.5), deg_to_rad(-148.24), deg_to_rad(-115.0), julian_day(2006.3)] elif init == 2: ### chi-squared minimization result from Chauvin et al. (2012) return [AU_to_cm(11.2), yrs_to_day(28.3), 0.16, deg_to_rad(88.8), deg_to_rad(-147.73), deg_to_rad(4.0), julian_day(2013.3)] else: smjr_ax = AU_to_cm(random.uniform(5,15)) P = yrs_to_day(random.uniform(15,25)) ecc = random.uniform(0.001,0.1) inclin = arccos(random.uniform(-0.2,0.2)) ### uniform in cos(i) bOmega = deg_to_rad(random.uniform(-160,-140)) omega = deg_to_rad(random.uniform(-120,-100)) tP = random.uniform(julian_day(2005),julian_day(2010)) return [smjr_ax,P,ecc,inclin,bOmega,omega,tP] def mcmc_fit(swapInt,model,wnum,burnIn,verbose,param_list,param_ct,psmin,psmax,jhr,real_data,T,output,it): t0 = time.time() init_model = np.copy(model) acc_rate,mchain = [],[] for i in range(param_ct): acc_rate.append([]) mchain.append([]) tpsmin = np.zeros(param_ct) # modified parameter space edge to reflect uniform priors in cos(i) tpsmax = np.zeros(param_ct) for i in range(param_ct): if i == 3: # prior for inclination is uniform in cos(i) tpsmin[i] = (-1.) tpsmax[i] = (1.) else: tpsmin[i] = (psmin[i]) tpsmax[i] = (psmax[i]) jump_ct = 0 for counter in range(int(swapInt)): trial_val = -1e30 # temporary placeholder value var = (counter%param_ct) # which parameter (Gibbs sampler) while not (tpsmin[var] < trial_val < tpsmax[var]): # do until new value falls within parameter space if var == 3: trial_val = cos(model[var]) +random.uniform(-jhr[var],jhr[var]) else: trial_val = model[var] +random.uniform(-jhr[var],jhr[var]) if var == 3: prop_val = arccos(trial_val) else: prop_val = trial_val new_model = np.append(model[:var],prop_val) new_model = np.append(new_model,model[var+1:]) prob_acc = prob_accept(real_data,model,new_model,var,jhr,psmin,psmax,T) if np.random.rand() < prob_acc: model = new_model jump_ct += 1 # [2015-12-16] burn-in reduced from 1e3 to 1e2 accepted jumps # [2015-12-18] burn-in reverted back to 1e3 accepted jumps, with corresponding change to 1e4 iterations between swap proposals if (jump_ct >= 1e3) or (burnIn == False): acc_rate[var].append(prob_acc) if (counter%1e2) == 0: for i in range(param_ct): if i==6: mchain[i].append(julian_year(model[i])) else: mchain[i].append(model[i]) if ((counter%1e2)==0 and verbose) or ((counter%2e3)==0) or (counter<1e4 and (counter%1e3)==0): print('walker '+str(wnum+1), '%6s'%jump_ct, '%6s'%counter, '%6s'%'%.3f'%prob_acc, '%6s'%'%.2f'%(cm_to_AU(model[0])),'%6s'%'%.2f'%(day_to_yrs(model[1])),'%6s'%'%.2f'%(model[2]),'%6s'%'%.2f'%(rad_to_deg(model[3])),'%6s'%'%.2f'%(rad_to_deg(model[4])),'%6s'%'%.2f'%(rad_to_deg(model[5])),'%6s'%'%.2f'%(julian_year(model[6]))) if True: #wnum == 0: print('') print('walker number: '+str(wnum+1)) print('semimajor axis : '+'median value = %6s'%'%.6f'%(cm_to_AU(np.median(mchain[0]))) \ +', initial value = %6s'%'%.6f'%(cm_to_AU(init_model[0])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[0]))) print('orbital period : '+'median value = %6s'%'%.6f'%(day_to_yrs(np.median(mchain[1]))) \ +', initial value = %6s'%'%.6f'%(day_to_yrs(init_model[1])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[1]))) print('eccentricity : '+'median value = %6s'%'%.6f'%(np.median(mchain[2])) \ +', initial value = %6s'%'%.6f'%(init_model[2]) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[2]))) print('inclination : '+'median value = %6s'%'%.6f'%(rad_to_deg(np.median(mchain[3]))) \ +', initial value = %6s'%'%.6f'%(rad_to_deg(init_model[3])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[3]))) print('big Omega : '+'median value = %6s'%'%.6f'%(rad_to_deg(np.median(mchain[4]))) \ +', initial value = %6s'%'%.6f'%(rad_to_deg(init_model[4])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[4]))) print('omega : '+'median value = %6s'%'%.6f'%(rad_to_deg(np.median(mchain[5]))) \ +', initial value = %6s'%'%.6f'%(rad_to_deg(init_model[5])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[5]))) print('t_periastron : '+'median value = %6s'%'%.6f'%(np.median(mchain[6])) \ +', initial value = %6s'%'%.6f'%(julian_year(init_model[6])) \ +', acceptance rate = %.3f'%(np.mean(acc_rate[6]))) print('') print('walker number: '+str(wnum+1)) print('time elapsed: %.1f seconds' % (time.time()-t0)) print('') print('jump half-ranges: '+str(['%.3f AU'%(cm_to_AU(jhr[0])), '%.3f yrs'%(day_to_yrs(jhr[1])), '%.3f (eccentricity)'%(jhr[2]), '%.3e (cos i)'%(jhr[3]), '%.3f deg'%(rad_to_deg(jhr[4])), '%.3f deg'%(rad_to_deg(jhr[5])), '%.3f days'%(jhr[6])])) print('') print(' ###### saving results from (T = %.1f) chain at: '%(T)+time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())) results_list = [] results_list.append(cm_to_AU(np.array(mchain[0]))) results_list.append(day_to_yrs(np.array(mchain[1]))) results_list.append((np.array(mchain[2]))) results_list.append(rad_to_deg(np.array(mchain[3]))) results_list.append(rad_to_deg(np.array(mchain[4]))) results_list.append(rad_to_deg(np.array(mchain[5]))) results_list.append((np.array(mchain[6]))) accepted = open('accepted_orbits_logT%.1f'%(log10(T))+'_it%03d'%(it+1)+'.dat','w') accepted.write('# \t') for i in range(param_ct): accepted.write(' '+param_list[i]+'\t') accepted.write('\n') for k in range(len(mchain[0])): for i in range(param_ct): accepted.write(' '+'%8s'%'%.5f'%(results_list[i][k])+'\t') accepted.write('\n') for i in range(len(mchain[6])): mchain[6][i] = julian_day(mchain[6][i]) last_posit = model avg_acc_rate = [] for i in range(param_ct): avg_acc_rate.append('%.3f'%np.mean(acc_rate[i])) output.put([wnum, last_posit, avg_acc_rate]) plot_posterior(results_list,it+1,T,False) print(' ###### mcmc_fit() finished for walker '+str(wnum+1)+', iteration '+str(it+1)+' at: '+time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())) gc.collect() def absolute_astrometry(d,t,smjr_ax,P,ecc,inclin,bOmega,omega,tP,verbose,output): ### mean motion (n) n = 2 *pi() /P ### mean anomaly (M) M = n *(t-tP) ### (t-tP) gives time since periapsis ''' ### solve Kepler's equation ### M = E -ecc *sin(E) ### use Newton-Raphson method ### f(E) = E -ecc*sin(E) -M(t) ### E_(n+1) = E_n - f(E_n) /f'(E_n) ### = E_n - (E_n -ecc*sin(E_n) -M(t)) /(1 -ecc*cos(E_n)) ''' ### eccentric anomaly (E) if ecc <= 0.8: E = M else: E = pi() counter = 0 tloop = time.time() while np.abs(g(E,M,ecc)) > 1e-5: E = E - (E -ecc*sin(E) -M) /(1 -ecc*cos(E)) counter += 1 if verbose and counter%10 == 0: print(counter,round(time.time()-tloop,5)) ### true anomaly (f) f = 2 * arctan(sqrt((1+ecc)/(1-ecc))*tan(E/2.)) ### true separation r = smjr_ax *(1 -ecc**2) /(1 +ecc *cos(f)) ### absolute astrometry X = r *(cos(bOmega)*cos(omega+f)-sin(bOmega)*sin(omega+f)*cos(inclin)) Y = r *(sin(bOmega)*cos(omega+f)+cos(bOmega)*sin(omega+f)*cos(inclin)) ### Kepler's third law M_sys = 4*pi()**2/G *smjr_ax**3 /P**2 ### switch to center-of-mass frame CM_X = X /M_sys #*m2/(m1 +m2) CM_Y = Y /M_sys #*m2/(m1 +m2) rawarctan = arctan((Y-CM_Y)/(X-CM_X)) if (Y-CM_Y)>=0 and (X-CM_X)>=0: PA_m2 = rawarctan # quadrant I elif (X-CM_X)<0: PA_m2 = rawarctan +pi() # quadrants II and III else: PA_m2 = rawarctan +2*pi() # quadrant IV proj_sep = sqrt((X-CM_X)**2 +(Y-CM_Y)**2) # physical separation in cm proj_sep = rad_to_deg(proj_sep/pc_to_cm(d)) *3600 *1000 # angular separation in mas PA = rad_to_deg(PA_m2) if PA >= 360: PA -= 360 ### calculate RVs with respect to stationary barycenter (CM) RV_m1 = m2 /M_sys *(sec_to_day(n) *smjr_ax *sin(inclin)) /sqrt(1 -ecc**2) *(cos(omega+f) +ecc*cos(omega)) RV_m2 = -RV_m1 *(M_sys-m2) /m2 #RV_m1 = m2 /(m1 +m2) *(sec_to_day(n) *smjr_ax *sin(inclin)) /sqrt(1 -ecc**2) *(cos(omega+f) +ecc*cos(omega)) #RV_m2 = -RV_m1 *m1 /m2 if output == 'sep,PA': return proj_sep, PA elif output == 'RA,dec': return (rad_to_deg((Y-CM_Y)/pc_to_cm(d))*3600*1000),(rad_to_deg((X-CM_X)/pc_to_cm(d))*3600*1000),(RV_m1*1e-5),(RV_m2*1e-5) elif output == 'RV': return (RV_m2*1e-5) def get_data(arg): JD, sep, sepunc, PA, PAunc = [],[],[],[],[] if arg == 1: data = open('data_bPicb.dat','r') elif arg == 2: data = open('data_bPicb_w81.dat','r') for line in data.readlines(): if not line.startswith('#'): thisline = line.split() gcal = str(thisline[0]) JD.append(convert_gcal(gcal,'jdd')) sep.append(float(thisline[1])) sepunc.append(float(thisline[2])) PA.append(float(thisline[3])) PAunc.append(float(thisline[4])) data.close() return JD, sep, sepunc, PA, PAunc ### function to be evaluated in Newton-Raphson method def g(E,M,ecc): return E -ecc*sin(E) -M ### define constants in cgs units h = const.h *1e7 ### erg s c = const.c *1e2 ### cm s-1 k = const.k *1e7 ### erg K-1 G = const.G *1e3 ### cm3 g-1 s-2 AU = 1.496e13 ### cm sigma = const.sigma *1e3 ### g s-3 K-4 R_Sun = 6.955e10 ### cm M_Sun = 1.989e33 ### grams M_Jup = 1.898e30 ### grams M_Earth = 5.972e27 ### grams ### helper functions def pi(): return np.pi def ln(x): return np.log(x) def exp(x): return np.exp(x) def sqrt(x): return np.sqrt(x) def sin(x): return np.sin(x) def cos(x): return np.cos(x) def tan(x): return np.tan(x) def arcsin(x): return np.arcsin(x) def arccos(x): return np.arccos(x) def arctan(x): return np.arctan(x) def arctan2(x,y): return np.arctan2(x,y) def arccos(x): return np.arccos(x) def log10(x): return np.log10(x) def ln(x): return np.log(x) ### unit conversions def rad_to_deg(rad): return rad *180. /pi() def deg_to_rad(deg): return deg /180. *pi() def sec_to_yrs(sec): return sec /60. /60 /24 /365.256362 def yrs_to_sec(yrs): return yrs *60. *60 *24 *365.256362 def day_to_yrs(day): return day /365.256362 def yrs_to_day(yrs): return yrs *365.256362 def sec_to_day(sec): return sec /60. /60 /24 def day_to_sec(day): return day *24. *60 *60 def hrs_to_sec(hrs): return hrs *60. *60. def cm_to_AU(cm): return cm *6.68458712e-14 def AU_to_cm(AU): return AU *1.496e13 def cm_to_Rsun(cm): return cm /R_Sun def Rsun_to_cm(Rsun): return Rsun *R_Sun def pc_to_cm(pc): return pc *3.086e18 def g_to_Mearth(g): return g /5.972e27 ### beta Pic system d = 19.3 # pc (Hipparcos; Crifo et al. 1997) m1 = 1.61 *M_Sun # grams m2 = 7.0 *M_Jup # grams import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator,ScalarFormatter,FormatStrFormatter,NullFormatter from pylab import rcParams rcParams['xtick.direction'] = 'in' rcParams['ytick.direction'] = 'in' from matplotlib import font_manager from matplotlib import rc def hist_post_at_temp(it,T): mchain = get_mcsample(1,it+1,T,'hist') plot_posterior(mchain,it+1,T,True) mchain = [] gc.collect() def plot_posterior(mchain,it,T,cu): fontproperties = {'family':'serif','serif':['cmr'],'weight':'normal','size':11} rc('text', usetex=True) rc('font', **fontproperties) plt.close() fig = plt.figure(1,figsize=(7.5,10.5)) ax = [fig.add_subplot(521),fig.add_subplot(522),fig.add_subplot(523),fig.add_subplot(524),fig.add_subplot(525),fig.add_subplot(526),fig.add_subplot(527),fig.add_subplot(529)] #fig = plt.figure(1,figsize=(8.0,9.0)) #ax = [fig.add_subplot(421),fig.add_subplot(422),fig.add_subplot(423),fig.add_subplot(424),fig.add_subplot(425),fig.add_subplot(426),fig.add_subplot(427),fig.add_subplot(428)] ### 8th subplot overcomes bug in matplotlib histogram (as of 2015-12-03) ### see http://stackoverflow.com/questions/29791119/extra-bar-in-the-first-bin-of-a-pyplot-histogram ### see also: /home/leung/coursework/ast381/term_project/code/hist_v16.pdf ### #fig = plt.figure(1,figsize=(8.0,6.6)) #ax = [fig.add_subplot(321),fig.add_subplot(322),fig.add_subplot(323),fig.add_subplot(324),fig.add_subplot(325),fig.add_subplot(326)] #majorFormatter = FormatStrFormatter('%.0f') #('%d') #xmajorLocator = MultipleLocator(20) #xminorLocator = MultipleLocator(5) plot_list = mchain xlabels = ['$a$ \ (AU)','$P$ \ (yr)','$e$','$i$ \ ($^{\circ}$)',r'$\Omega$ \ ($^{\circ}$)',r'$\omega$ \ ($^{\circ}$)','$t_{\mathrm{p}}$ \ [yr JD]'] majloc = [5, 10, 0.1, 5, 5, 60, 5] minloc = [1, 2, 0.02, 1, 1, 10, 1] majfmt = ['%.0f','%.0f','%.1f','%.0f','%.0f','%.0f','%.0f'] xmax = [23, 60, 0.8, 98, -138, 60, 2015] xmin = [ 2, 10, 0, 82, -157, -180, 2000] #majloc = [5, 5, 0.1, 30, 60, 60, 5] #minloc = [1, 1, 0.02, 10, 20, 20, 1] #majfmt = ['%.0f','%.0f','%.1f','%.0f','%.0f','%.0f','%.0f'] #xmax = [25, 60, 0.8, 180, 180, 180, 2015] #xmin = [ 0, 5, 0, 0, -180, -180, 1995] for j in range(len(ax)-1): if j==3: tbins = 1200 elif j==4: tbins = 1600 else: tbins = 200 ax[j].hist(plot_list[j],bins=tbins,color='green',histtype='step',alpha=0.8,lw=1.6) ax[j].set_xlabel(xlabels[j]) ax[j].set_ylabel('$N_{\mathrm{orbits}}$') ax[j].set_xlim([xmin[j],xmax[j]]) ax[j].xaxis.set_major_locator(MultipleLocator(majloc[j])) ax[j].xaxis.set_minor_locator(MultipleLocator(minloc[j])) ax[j].xaxis.set_major_formatter(FormatStrFormatter(majfmt[j])) ax[j].spines['left'].set_linewidth(0.45) ax[j].spines['right'].set_linewidth(0.45) ax[j].spines['top'].set_linewidth(0.45) ax[j].spines['bottom'].set_linewidth(0.25) if cu: a = plt.hist(plot_list[j],bins=200) if j==0: print('most probable values: ') print(float(a[1][np.argmax(a[0])])) #if j==6: print(a[1]) print('') fig.tight_layout() if cu: plt.savefig('hist_all_logT%.1f'%(log10(T))+'_it%03d'%(it)+'.pdf') #plt.savefig('hist_all.pdf') else: plt.savefig('hist_logT%.1f'%(log10(T))+'_it%03d'%(it)+'.pdf') #plt.savefig('hist.pdf') plt.close() def plot_position(param,ver): fontproperties = {'family':'serif','serif':['cmr'],'weight':'normal','size':14} rc('text', usetex=True) rc('font', **fontproperties) plt.close() fig = plt.figure(1,figsize=(6.0,7.0)) ax = [fig.add_subplot(211),fig.add_subplot(212)] JD_data, sep, sep_unc, PA, PA_unc = get_data(1) RA_data,dec_data,jdy_data,error_bar = [],[],[],[] for i in range(len(JD_data)): jdy_data.append(julian_year(JD_data[i])) RA_data.append(sep[i]*sin(deg_to_rad(PA[i]))) dec_data.append(sep[i]*cos(deg_to_rad(PA[i]))) total_sqerr = (sep[i]*deg_to_rad(PA_unc[i]))**2 +(sep_unc[i])**2 err_bar = sqrt(0.5*total_sqerr) error_bar.append(err_bar) RV_data = -15.4 RV_err = 1.7 data_list = [[RA_data,dec_data],[RV_data]] label_list = [[r'$\Delta \alpha$ (mas)',r'$\Delta \delta$ (mas)'],'Radial velocity \ [km s$^{-1}$]'] color_list = [['green','orange'],['blue']] smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(param[0]),yrs_to_day(param[1]),param[2],deg_to_rad(param[3]),deg_to_rad(param[4]),deg_to_rad(param[5]),julian_day(param[6]) JD = np.arange(julian_day(1980),julian_day(2020),7) RA_list,dec_list,jdy,RV_list = [],[],[],[] for i in range(len(JD)): RA, dec, RV_m1, RV_m2 = absolute_astrometry(d,JD[i],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RA,dec') RA_list.append(RA) dec_list.append(dec) RV_list.append(RV_m2) jdy.append(julian_year(JD[i])) plot_list = [[RA_list,dec_list],[RV_list]] for j in range(len(plot_list)): for k in range(len(plot_list[j])): if j==0: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=1.2,alpha=0.6,label=label_list[j][k]) else: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=1.2,alpha=0.6,label='RV (km s$^{-1}$)') ax[j].plot([1980,2020],[0,0],'k-',ls='dashed',lw=0.2) if j==0: gcal = '1981-11-10' jd81 = convert_gcal(gcal,'jdy') ax[j].scatter([jd81],[0],marker='x',edgecolor='blue',lw=2,s=36) for k in range(len(plot_list[j])): ax[j].errorbar(jdy_data,data_list[j][k],yerr=[error_bar,error_bar],fmt='none',alpha=0.6,lw=0.6,ecolor='red',capthick=0.6) ax[j].scatter(jdy_data,data_list[j][k],marker='o',edgecolor='red',c='red',alpha=0.8,lw=0.2,s=6) else: gcal = '2013-12-17' jd13 = convert_gcal(gcal,'jdy') ax[j].scatter([jd13],[RV_data],marker='o',edgecolor='red',c='red',alpha=0.8,lw=0.5,s=12) ax[j].errorbar([jd13],[RV_data],yerr=RV_err,fmt='none',alpha=0.6,lw=0.6,ecolor='red',capthick=0.6) ax[j].set_xlabel('JD \ [year]') if j == 0: ax[j].set_ylabel('Angular separation \ [mas]') elif j == 1: ax[j].set_ylabel(label_list[j]) ax[j].set_xlim([1980,2020]) ax[j].xaxis.set_major_formatter(FormatStrFormatter('%.0f')) ax[j].xaxis.set_major_locator(MultipleLocator(5)) ax[j].xaxis.set_minor_locator(MultipleLocator(1)) ax[j].spines['left'].set_linewidth(0.9) ax[j].spines['right'].set_linewidth(0.9) ax[j].spines['top'].set_linewidth(0.9) ax[j].spines['bottom'].set_linewidth(0.9) ld = ax[j].legend(loc='upper right',shadow=False,labelspacing=0.25,borderpad=0.12) frame = ld.get_frame() frame.set_lw(0) for label in ld.get_texts(): label.set_fontsize('medium') for label in ld.get_lines(): label.set_linewidth(1.2) fig.tight_layout() plt.savefig('orbit_v'+str(ver)+'.pdf') plt.savefig('orbit.pdf') plt.close() def plot_all(mparam,ver): t0 = time.time() fontproperties = {'family':'serif','serif':['cmr'],'weight':'normal','size':14} rc('text', usetex=True) rc('font', **fontproperties) plt.close() fig = plt.figure(1,figsize=(6.0,7.0)) ax = [fig.add_subplot(211),fig.add_subplot(212)] JD_data, sep, sep_unc, PA, PA_unc = get_data(1) RA_data,dec_data,jdy_data,error_bar = [],[],[],[] for i in range(len(JD_data)): jdy_data.append(julian_year(JD_data[i])) RA_data.append(sep[i]*sin(deg_to_rad(PA[i]))) dec_data.append(sep[i]*cos(deg_to_rad(PA[i]))) total_sqerr = (sep[i]*deg_to_rad(PA_unc[i]))**2 +(sep_unc[i])**2 err_bar = sqrt(0.5*total_sqerr) error_bar.append(err_bar) RV_data = -15.4 RV_err = 1.7 data_list = [[RA_data,dec_data],[RV_data]] label_list = [[r'$\Delta \alpha$ (mas)',r'$\Delta \delta$ (mas)'],'Radial velocity \ [km s$^{-1}$]'] color_list = [['green','orange'],['blue']] if not (type(ver) == int): print('about to plot %.0f orbits' %len(mparam)) this = 0.26 else: this = 0.48 # plot orbits for p in range(len(mparam)): if (p <= 10) or ((p%10) == 0): print(p, '%.1f'%(time.time()-t0)) param = mparam[p] smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(param[0]),yrs_to_day(param[1]),param[2],deg_to_rad(param[3]),deg_to_rad(param[4]),deg_to_rad(param[5]),julian_day(param[6]) JD = np.arange(julian_day(1980),julian_day(2025),7) RA_list,dec_list,jdy,RV_list = [],[],[],[] for i in range(len(JD)): RA, dec, RV_m1, RV_m2 = absolute_astrometry(d,JD[i],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RA,dec') RA_list.append(RA) dec_list.append(dec) RV_list.append(RV_m2) jdy.append(julian_year(JD[i])) plot_list = [[RA_list,dec_list],[RV_list]] for j in range(len(plot_list)): for k in range(len(plot_list[j])): if j==0: if p==0: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=this,alpha=this,label=label_list[j][k]) else: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=this,alpha=this) else: if p==0: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=this,alpha=this,label='RV (km s$^{-1}$)') else: ax[j].plot(jdy,plot_list[j][k],color=color_list[j][k],marker='',ls='-',ms=1,lw=this,alpha=this) ax[j].plot([1980,2025],[0,0],'k-',ls='dashed',lw=0.2,color='gray') # plot data points for j in range(len(plot_list)): if j==0: gcal = '1981-11-10' jd81 = convert_gcal(gcal,'jdy') ax[j].scatter([jd81],[0],marker='x',edgecolor='blue',lw=2.6,s=36) for k in range(len(plot_list[j])): ax[j].scatter(jdy_data,data_list[j][k],marker='o',edgecolor='red',c='red',lw=0.8,s=3) ax[j].errorbar(jdy_data,data_list[j][k],yerr=[error_bar,error_bar],fmt='none',alpha=0.6,lw=0.6,ecolor='red',capsize=1.2,capthick=0.6) else: gcal = '2013-12-17' jd13 = convert_gcal(gcal,'jdy') ax[j].scatter([jd13],[RV_data],marker='o',edgecolor='red',c='red',lw=0.8,s=12) ax[j].errorbar([jd13],[RV_data],yerr=RV_err,fmt='none',alpha=0.6,lw=0.6,ecolor='red',capsize=1.2,capthick=0.6) ax[j].set_xlabel('JD \ [year]') if j == 0: ax[j].set_ylabel('Angular separation \ [mas]') elif j == 1: ax[j].set_ylabel(label_list[j]) ax[j].set_xlim([1980,2025]) if j == 0: ax[j].set_ylim([-600,800]) elif j == 1: ax[j].set_ylim([-30,30]) ax[j].xaxis.set_major_formatter(FormatStrFormatter('%.0f')) ax[j].xaxis.set_major_locator(MultipleLocator(5)) ax[j].xaxis.set_minor_locator(MultipleLocator(1)) ax[j].spines['left'].set_linewidth(0.9) ax[j].spines['right'].set_linewidth(0.9) ax[j].spines['top'].set_linewidth(0.9) ax[j].spines['bottom'].set_linewidth(0.9) ld = ax[j].legend(loc='upper right',shadow=False,labelspacing=0.1,borderpad=0.12) ld.get_frame().set_lw(0) ld.get_frame().set_alpha(0.0) for label in ld.get_texts(): label.set_fontsize('small') for label in ld.get_lines(): label.set_linewidth(1) fig.tight_layout() plt.savefig('many_orbits_it'+str(ver)+'.pdf') plt.savefig('many_orbits.pdf') plt.close() def get_mcsample(start,end,T,whatfor): param_list = ['semimajor axis','orbital period','eccentricity','inclination','big Omega','omega','t_periastron'] param_ct = len(param_list) params = [] if (not whatfor == 'plot'): for i in range(param_ct): params.append([]) for v in range(start,end+1): data = open('accepted_orbits_logT%.1f'%(log10(T))+'_it%03d'%(v)+'.dat','r') for line in data.readlines(): if not line.startswith('#'): thisline = line.split() for i in range(param_ct): params[i].append(float(thisline[i])) data.close() if whatfor == 'hist': return params elif whatfor == 'stat': import scipy.stats as ss conf_int = [] for i in range(param_ct): median = ss.scoreatpercentile(params[i],50) msigma = ss.scoreatpercentile(params[i],16) -median psigma = ss.scoreatpercentile(params[i],84) -median conf_int.append([param_list[i],'%6s'%'%.3f'%median,'%6s'%'%.3f'%msigma,'%6s'%'+%.3f'%psigma]) print(conf_int[i]) #return conf_int elif whatfor == 'plot': for v in range(start,end+1): data = open('accepted_orbits_logT%.1f'%(log10(T))+'_it%03d'%(v)+'.dat','r') for line in data.readlines(): if not line.startswith('#'): thisline = line.split() floatparam = [] for i in range(param_ct): floatparam.append(float(thisline[i])) params.append(floatparam) return params def prob_81nov(maxit): t0 = time.time() params = get_mcsample(1,maxit,1,'plot') chdate = convert_gcal('1981-11-10','jdd') ang_size = 0.84 # angular size of beta Pic in mas (Kervella et al. 2004) transit_ct = 0 for i in range(len(params)): param = params[i] smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(param[0]),yrs_to_day(param[1]),param[2],deg_to_rad(param[3]),deg_to_rad(param[4]),deg_to_rad(param[5]),julian_day(param[6]) modelsep, modelPA = absolute_astrometry(d,chdate,smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'sep,PA') if (modelsep <= 0.5*ang_size): transit_ct += 1 if (i%1000) == 0: print(str(i)+' of '+str(len(params)), '%.1f seconds'%(time.time()-t0)) print(transit_ct/float(len(params))) def upcoming_transit(maxit): param_list = ['semimajor axis','orbital period','eccentricity','inclination','big Omega','omega','t_periastron'] param_ct = len(param_list) transits = open('upcoming_transit.dat','w') transits.write('# \t') transits.write(' transit date (yr JD) \t transit date (JD) \t angular separation \t position angle \t') for i in range(param_ct): transits.write(' '+param_list[i]+'\t') transits.write('\n') params = get_mcsample(1,maxit,1,'plot') for i in range(len(params)): if (i%10)==0: print(' checking '+str(i)+' out of '+str(len(params))+' random orbits; current time is '+time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())) param = params[i] smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(param[0]),yrs_to_day(param[1]),param[2],deg_to_rad(param[3]),deg_to_rad(param[4]),deg_to_rad(param[5]),julian_day(param[6]) dates = np.arange(julian_day(2016.5),julian_day(2019.5),0.5) for j in range(len(dates)): proj_sep, PA = absolute_astrometry(d,dates[j],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'sep,PA') if proj_sep <= 0.835/2: transits.write(' %.3f \t %.1f \t %.1f \t %.1f '%(julian_year(dates[j]),dates[j],proj_sep,PA)) for k in range(len(param)): transits.write(' %.3f'%(param[k])+'\t') transits.write('\n') transits.close() import scipy.stats as ss def plot_proj_orbits(endit,howmany): fontproperties = {'family':'serif','serif':['cmr'],'weight':'normal','size':12} rc('text', usetex=True) rc('font', **fontproperties) plt.close() fig = plt.figure(1,figsize=(7.5,3.7)) oax = fig.add_subplot(111) oax.spines['top'].set_color('none') oax.spines['left'].set_color('none') oax.spines['right'].set_color('none') oax.spines['bottom'].set_color('none') oax.tick_params(labelcolor='none',top='off',bottom='off',left='off',right='off') params = get_mcsample(1,endit,1,'hist') param_ct = len(params) most_probable, median = [],[] for j in range(param_ct): if j==3: tbins = 1200 elif j==4: tbins = 1600 else: tbins = 200 a = plt.hist(params[j],bins=tbins) most_probable.append(float(a[1][np.argmax(a[0])])) median.append(ss.scoreatpercentile(params[j],50)) ax = [fig.add_subplot(121),fig.add_subplot(122)] ang_size = 0.835 # angular size of beta Pic in mas (Kervella et al. 2004) betaPic = plt.Circle((0,0),0.5*ang_size,color='orange',alpha=0.6,lw=0) smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(most_probable[0]),yrs_to_day(most_probable[1]),most_probable[2],deg_to_rad(most_probable[3]),deg_to_rad(most_probable[4]),deg_to_rad(most_probable[5]),julian_day(most_probable[6]) dates = np.arange(tP,tP+P,P/1000.) RA_off, dec_off = [],[] for j in range(len(dates)): RA, dec, RV_m1, RV_m2 = absolute_astrometry(d,dates[j],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RA,dec') RA_off.append(RA) dec_off.append(dec) for k in range(len(ax)): ax[k].plot(RA_off,dec_off,color='green',marker='',ls='-',ms=1,lw=0.6,alpha=0.85,label='Most probable') smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(median[0]),yrs_to_day(median[1]),median[2],deg_to_rad(median[3]),deg_to_rad(median[4]),deg_to_rad(median[5]),julian_day(median[6]) dates = np.arange(tP,tP+P,P/1000.) RA_off, dec_off = [],[] for j in range(len(dates)): RA, dec, RV_m1, RV_m2 = absolute_astrometry(d,dates[j],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RA,dec') RA_off.append(RA) dec_off.append(dec) for k in range(len(ax)): ax[k].plot(RA_off,dec_off,color='magenta',marker='',ls='-',ms=1,lw=0.55,alpha=0.65,label='Median') params = get_mcsample(1,endit,1,'plot') selected = [] for i in range(howmany): rsample = int(random.uniform(0,len(params))) selected.append(params[rsample]) for i in range(len(selected)): param = selected[i] smjr_ax,P,ecc,inclin,bOmega,omega,tP = AU_to_cm(param[0]),yrs_to_day(param[1]),param[2],deg_to_rad(param[3]),deg_to_rad(param[4]),deg_to_rad(param[5]),julian_day(param[6]) dates = np.arange(tP,tP+P,P/1000.) RA_off, dec_off = [],[] for j in range(len(dates)): RA, dec, RV_m1, RV_m2 = absolute_astrometry(d,dates[j],smjr_ax,P,ecc,inclin,bOmega,omega,tP,False,'RA,dec') RA_off.append(RA) dec_off.append(dec) #for k in range(len(ax)): ax[1].plot(RA_off,dec_off,color='blue',marker='',ls='-',ms=1,lw=0.12,alpha=0.16) JD_data, sep, sep_unc, PA, PA_unc = get_data(1) RA_data,dec_data,jdy_data,error_bar = [],[],[],[] for i in range(len(JD_data)): jdy_data.append(julian_year(JD_data[i])) RA_data.append(sep[i]*sin(deg_to_rad(PA[i]))) dec_data.append(sep[i]*cos(deg_to_rad(PA[i]))) total_sqerr = (sep[i]*deg_to_rad(PA_unc[i]))**2 +(sep_unc[i])**2 err_bar = sqrt(0.5*total_sqerr) error_bar.append(err_bar) ax[0].errorbar(RA_data,dec_data,xerr=error_bar,yerr=error_bar,fmt='none',alpha=0.6,lw=0.25,ecolor='red',capsize=0.6,capthick=0.2) ax[0].scatter(RA_data,dec_data,marker='o',edgecolor='red',c='red',lw=0.2,s=0.8,alpha=0.6) oax.set_xlabel(r'$\Delta \alpha$ \ (mas)',fontsize='large', fontweight='bold') oax.set_ylabel(r'$\Delta \delta$ \ (mas)',fontsize='large', fontweight='bold') oax.xaxis.labelpad = 12 oax.yaxis.labelpad = 16 #ax.grid() axpar = [[600,-600],[16,-16]] aypar = [[-600,600],[-16,16]] axmaj = [200,4] axmnr = [ 50,1] #ax[0].scatter([0],[0],marker='+',edgecolor='orange',lw=2,s=60) ld = ax[0].legend(loc='upper right',shadow=False,labelspacing=0.1,borderpad=0.12) ld.get_frame().set_lw(0) ld.get_frame().set_alpha(0.0) for label in ld.get_texts(): label.set_fontsize('x-small') for label in ld.get_lines(): label.set_linewidth(1) for k in range(len(ax)): ax[k].plot([axpar[k][0],axpar[k][1]],[0,0],'k-',ls=':',lw=0.36,color='gray') ax[k].plot([0,0],[aypar[k][0],aypar[k][1]],'k-',ls=':',lw=0.36,color='gray') ax[k].set_xlim([axpar[k][0],axpar[k][1]]) ax[k].set_ylim([aypar[k][0],aypar[k][1]]) ax[k].xaxis.set_major_formatter(FormatStrFormatter('%.0f')) ax[k].yaxis.set_major_formatter(FormatStrFormatter('%.0f')) ax[k].xaxis.set_major_locator(MultipleLocator(axmaj[k])) ax[k].xaxis.set_minor_locator(MultipleLocator(axmnr[k])) ax[k].yaxis.set_major_locator(MultipleLocator(axmaj[k])) ax[k].yaxis.set_minor_locator(MultipleLocator(axmnr[k])) ax[k].spines['left'].set_linewidth(0.5) ax[k].spines['right'].set_linewidth(0.5) ax[k].spines['top'].set_linewidth(0.5) ax[k].spines['bottom'].set_linewidth(0.5) ax[1].add_patch(betaPic) fig.tight_layout() plt.savefig('projected_orbits_it1-'+str(endit)+'.pdf') plt.savefig('projected_orbits.pdf') plt.close() def plot_mcorbits(start,end,howmany): t0 = time.time() params = get_mcsample(start,end,1,'plot') ssize = len(params) selected = [] for i in range(howmany): rsample = int(random.uniform(0,ssize)) selected.append(params[rsample]) print('start plotting') print(len(params),len(selected)) plot_all(selected,str(start)+'-'+str(end)) print('done plotting, took %.1f seconds' %((time.time()-t0))) params,selected = [],[] gc.collect() def get_params(arg): params = [[],[],[],[],[],[],[]] if arg == '': data = open('fitted_orbital_parameters.dat','r') elif arg == 'v1': data = open('fitted_orbital_parameters_2e5steps.dat','r') for line in data.readlines(): if not line.startswith('#'): thisline = line.split() for i in range(len(params)): params[i].append(float(thisline[i])) data.close() print('median parameter values: ') print(' semimajor axis : '+'median value = %6s'%'%.3f'%(np.median(params[0]))+' AU') print(' orbital period : '+'median value = %6s'%'%.3f'%(np.median(params[1]))+' yrs') print(' eccentricity : '+'median value = %6s'%'%.3f'%(np.median(params[2]))) print(' inclination : '+'median value = %6s'%'%.3f'%(np.median(params[3]))+' deg') print(' big Omega : '+'median value = %6s'%'%.3f'%(np.median(params[4]))+' deg') print(' omega : '+'median value = %6s'%'%.3f'%(np.median(params[5]))+' deg') print(' t_periastron : '+'median value = %6s'%'%.3f'%(np.median(params[6]))+' yr JD') def check_swap_rates(): rates = [[],[],[],[],[],[],[],[]] data = open('swap_acceptance_rate.dat','r') for line in data.readlines(): if not line.startswith('#'): thisline = line.split() for i in range(1,9): rates[i-1].append(float(thisline[i])) data.close() for i in range(len(rates)): print(np.mean(rates[i])) if __name__ == '__main__': a = input('Enter \'hist\' or \'orb\' or \'stat\' or \'run\': ') temp_ladder = (10**(np.arange(0,5,0.71428571))).tolist() if a == 'run': w81 = input('Fit 1981-11-10 event as data point? (Enter boolean) ') t0 = time.time() maxit = 999 pt_runs(maxit+1,w81) plot_mcorbits(1,maxit,100) plot_proj_orbits(maxit,100) for T in temp_ladder: hist_post_at_temp(maxit,T) prob_81nov(maxit) upcoming_transit(maxit) check_swap_rates() tt0 = time.time()-t0 print('time elapsed: %.1f hours, %.1f minutes, %.1f seconds' % ((tt0/3600.),((tt0%3600)/60.),((tt0%60)))) else: lit = input('Enter last iteration: ') if a == 'hist': for T in temp_ladder: hist_post_at_temp(lit-1,T) elif a == 'orb': plot_mcorbits(1,lit-1,100) plot_proj_orbits(lit,100) elif a == 'stat': get_mcsample(1,lit-1,1,a)
lgpl-3.0
ECP-CANDLE/Benchmarks
Pilot3/P3B3/p3b3_baseline_keras2.py
1
5635
from __future__ import print_function import numpy as np from keras import backend as K ''' from keras.layers import Input, Dense, Dropout, Activation from keras.optimizers import SGD, Adam, RMSprop from keras.models import Model from keras.callbacks import ModelCheckpoint, CSVLogger, ReduceLROnPlateau from sklearn.metrics import f1_score ''' import os, sys, gzip import keras from keras import backend as K import math from keras.layers.core import Dense, Dropout from keras import optimizers from keras.layers import Input from keras.models import Model import keras_mt_shared_cnn import argparse import p3b3 as bmk import candle def initialize_parameters(default_model = 'p3b3_default_model.txt'): # Build benchmark object p3b3Bmk = bmk.BenchmarkP3B3(bmk.file_path, default_model, 'keras', prog='p3b3_baseline', desc='Multi-task CNN for data extraction from clinical reports - Pilot 3 Benchmark 3') # Initialize parameters gParameters = candle.finalize_parameters(p3b3Bmk) #bmk.logger.info('Params: {}'.format(gParameters)) return gParameters def fetch_data(gParameters): """ Downloads and decompresses the data if not locally available. Since the training data depends on the model definition it is not loaded, instead the local path where the raw data resides is returned """ path = gParameters['data_url'] fpath = candle.fetch_file(path + gParameters['train_data'], 'Pilot3', untar=True) return fpath def run_cnn( GP, train_x, train_y, test_x, test_y, learning_rate = 0.01, batch_size = 10, epochs = 10, dropout = 0.5, optimizer = 'adam', wv_len = 300, filter_sizes = [3,4,5], num_filters = [300,300,300], emb_l2 = 0.001, w_l2 = 0.01 ): max_vocab = np.max( train_x ) max_vocab2 = np.max( test_x ) if max_vocab2 > max_vocab: max_vocab = max_vocab2 wv_mat = np.random.randn( max_vocab + 1, wv_len ).astype( 'float32' ) * 0.1 num_classes = [] num_classes.append( np.max( train_y[ :, 0 ] ) + 1 ) num_classes.append( np.max( train_y[ :, 1 ] ) + 1 ) num_classes.append( np.max( train_y[ :, 2 ] ) + 1 ) num_classes.append( np.max( train_y[ :, 3 ] ) + 1 ) kerasDefaults = candle.keras_default_config() optimizer_run = candle.build_optimizer( optimizer, learning_rate, kerasDefaults ) cnn = keras_mt_shared_cnn.init_export_network( num_classes= num_classes, in_seq_len= 1500, vocab_size= len( wv_mat ), wv_space= wv_len, filter_sizes= filter_sizes, num_filters= num_filters, concat_dropout_prob = dropout, emb_l2= emb_l2, w_l2= w_l2, optimizer= optimizer_run ) print( cnn.summary() ) validation_data = ( { 'Input': test_x }, { 'Dense0': test_y[ :, 0 ], 'Dense1': test_y[ :, 1 ], 'Dense2': test_y[ :, 2 ], 'Dense3': test_y[ :, 3 ] } ) # candleRemoteMonitor = CandleRemoteMonitor(params= GP) # timeoutMonitor = TerminateOnTimeOut(TIMEOUT) candleRemoteMonitor = candle.CandleRemoteMonitor( params= GP ) timeoutMonitor = candle.TerminateOnTimeOut( GP[ 'timeout' ] ) history = cnn.fit( x= np.array( train_x ), y= [ np.array( train_y[ :, 0 ] ), np.array( train_y[ :, 1 ] ), np.array( train_y[ :, 2 ] ), np.array( train_y[ :, 3 ] ) ], batch_size= batch_size, epochs= epochs, verbose= 2, validation_data= validation_data, callbacks = [candleRemoteMonitor, timeoutMonitor] ) return history def run(gParameters): fpath = fetch_data(gParameters) # Get default parameters for initialization and optimizer functions kerasDefaults = candle.keras_default_config() learning_rate = gParameters[ 'learning_rate' ] batch_size = gParameters[ 'batch_size' ] epochs = gParameters[ 'epochs' ] dropout = gParameters[ 'dropout' ] optimizer = gParameters[ 'optimizer' ] wv_len = gParameters[ 'wv_len' ] filter_sizes = gParameters[ 'filter_sizes' ] filter_sets = gParameters[ 'filter_sets' ] num_filters = gParameters[ 'num_filters' ] emb_l2 = gParameters[ 'emb_l2' ] w_l2 = gParameters[ 'w_l2' ] train_x = np.load( fpath + '/train_X.npy' ) train_y = np.load( fpath + '/train_Y.npy' ) test_x = np.load( fpath + '/test_X.npy' ) test_y = np.load( fpath + '/test_Y.npy' ) for task in range( len( train_y[ 0, : ] ) ): cat = np.unique( train_y[ :, task ] ) train_y[ :, task ] = [ np.where( cat == x )[ 0 ][ 0 ] for x in train_y[ :, task ] ] test_y[ :, task ] = [ np.where( cat == x )[ 0 ][ 0 ] for x in test_y[ :, task ] ] run_filter_sizes = [] run_num_filters = [] for k in range( filter_sets ): run_filter_sizes.append( filter_sizes + k ) run_num_filters.append( num_filters ) ret = run_cnn( gParameters, train_x, train_y, test_x, test_y, learning_rate = learning_rate, batch_size = batch_size, epochs = epochs, dropout = dropout, optimizer = optimizer, wv_len = wv_len, filter_sizes = run_filter_sizes, num_filters = run_num_filters, emb_l2 = emb_l2, w_l2 = w_l2 ) return ret def main(): gParameters = initialize_parameters() avg_loss = run(gParameters) print( "Return: ", avg_loss ) if __name__ == '__main__': main() try: K.clear_session() except AttributeError: # theano does not have this function pass
mit
cdeil/astrometric_checks
test_astrometric.py
1
8356
"""Tests for the Astropy Astrometric class against the HESS software. http://docs.astropy.org/en/latest/coordinates/matchsep.html?highlight=astrometric%20frame#astrometric-frames https://github.com/astropy/astropy/pull/4909 https://github.com/astropy/astropy/issues/4931 https://github.com/astropy/astropy/pull/4941 """ import numpy as np from astropy.io import fits from astropy.table import Table from astropy.coordinates import SkyCoord, Angle def copy_test_event_list(): """Copy HESS event list as test data file. This isn't public data, so we cut out the photons from the Crab nebula. """ filename = '/Users/deil/work/hess-host-analyses/checks/pointing_check/run_0018406_std_fullEnclosure_eventlist.fits' hdu_list = fits.open(filename) table = hdu_list['EVENTS'] source_pos = SkyCoord(table.header['RA_OBJ'], table.header['DEC_OBJ'], unit='deg') event_pos = SkyCoord(table.data['RA'], table.data['DEC'], unit='deg') sep = source_pos.separation(event_pos) mask = (sep > Angle(0.3, 'deg')) hdu_list['EVENTS'] = fits.BinTableHDU(header=table.header, data=table.data[mask], name='EVENTS') filename = 'hess_event_list.fits' print('Writing {}'.format(filename)) hdu_list.writeto(filename, clobber=True) def add_astropy_radec_coordinates(table): """Test FOV RADEC coordinate transformations. """ # Set up test data and astrometric frame (a.k.a. FOV frame) # centered on the telescope pointing position center = SkyCoord(table.meta['RA_PNT'], table.meta['DEC_PNT'], unit='deg') aframe = center.skyoffset_frame() # Transform: RADEC -> FOV_RADEC event_radec = SkyCoord(table['RA'], table['DEC'], unit='deg') event_fov = event_radec.transform_to(aframe) # event_fov = event_radec.spherical_offsets_to(center) table['FOV_RADEC_LON_ASTROPY'] = event_fov.data.lon.wrap_at('180 deg').to('deg') table['FOV_RADEC_LAT_ASTROPY'] = event_fov.data.lat.to('deg') table['FOV_RADEC_LON_DIFF'] = Angle(table['FOV_RADEC_LON_ASTROPY'] - table['FOV_RADEC_LON'], 'deg').to('arcsec') table['FOV_RADEC_LAT_DIFF'] = Angle(table['FOV_RADEC_LAT_ASTROPY'] - table['FOV_RADEC_LAT'], 'deg').to('arcsec') # Transform: FOV_RADEC -> RADEC # event_fov = SkyCoord(table['FOV_RADEC_LON_ASTROPY'], table['FOV_RADEC_LAT_ASTROPY'], unit='deg', frame=aframe) event_radec = event_fov.transform_to('icrs') table['RA_ASTROPY'] = event_radec.data.lon.to('deg') table['DEC_ASTROPY'] = event_radec.data.lat.to('deg') table['RA_DIFF'] = Angle(table['RA_ASTROPY'] - table['RA'], 'deg').to('arcsec') table['DEC_DIFF'] = Angle(table['DEC_ASTROPY'] - table['DEC'], 'deg').to('arcsec') # Check results # table.info('stats') """ FOV_RADEC_LON_ASTROPY 0.0443400478952 1.58878237603 -35.1578248604 21.7907000503 FOV_RADEC_LAT_ASTROPY -0.0177905539829 1.57634999964 -28.7981936822 17.18667566 FOV_RADEC_LON_DIFF -2.07926024446 0.792609733345 -8.00939051063 6.52532690282 FOV_RADEC_LAT_DIFF -16.225735491 0.608440988983 -24.6793550923 -6.86899057409 RA_ASTROPY 83.6820322695 1.72309019655 52.9889995666 106.496595676 DEC_ASTROPY 24.4867638715 1.58698917572 -8.10738650931 41.7000435121 RA_DIFF -0.00228730168484 0.00720260391234 -0.0173224899129 0.0125271212539 DEC_DIFF -0.000683806319612 0.00343228179454 -0.0148859721222 0.0125804299074 Conclusions: * currently results for RADEC -> FOV_RADEC are off by this much for unknown reasons: -8 to +6 arcsec in LON -24 to -6 arcsec in LAT * the Astropy transformation does roundtrip with this accuracy * good enough for us ... won't investigate further. * could be limited by float32 and switching to float64 would improve accuracy? * 0.01 arcsec in LON and LAT """ # import IPython; IPython.embed() return table def add_astropy_altaz_coordinates(table): """Test FOV RADEC coordinate transformations. """ # Set up test data and astrometric frame (a.k.a. FOV frame) # centered on the telescope pointing position from gammapy.data import EventList event_list = EventList(table) # print(event_list) center = event_list.pointing_radec.transform_to(event_list.altaz.frame) # import IPython; IPython.embed() # center = SkyCoord(table.meta['RA_PNT'], table.meta['DEC_PNT'], unit='deg') aframe = center.skyoffset_frame() # # # Transform: RADEC -> FOV_RADEC # event_radec = SkyCoord(table['RA'], table['DEC'], unit='deg') event_pos = event_list.altaz event_fov = event_pos.transform_to(aframe) # event_fov = event_radec.spherical_offsets_to(center) table['FOV_ALTAZ_LON_ASTROPY'] = event_fov.data.lon.wrap_at('180 deg').to('deg') table['FOV_ALTAZ_LAT_ASTROPY'] = event_fov.data.lat.to('deg') table['FOV_ALTAZ_LON_DIFF'] = Angle(table['FOV_ALTAZ_LON_ASTROPY'] - table['FOV_ALTAZ_LON'], 'deg').to('arcsec') table['FOV_ALTAZ_LAT_DIFF'] = Angle(table['FOV_ALTAZ_LAT_ASTROPY'] - table['FOV_ALTAZ_LAT'], 'deg').to('arcsec') return table def plot_fov_radec(): """Make plots to illustrate the RADEC FOV trafo differences.""" import matplotlib.pyplot as plt def test_fov_altaz(): """Test FOV ALTAZ coordinate transformations. """ # Set up test data and astrometric frame (a.k.a. FOV frame) # centered on the telescope pointing position table = Table.read('hess_event_list.fits') center = SkyCoord(table.meta['RA_PNT'], table.meta['DEC_PNT'], unit='deg') aframe = center.astrometric_frame() # TODO: this is more tricky, because AZ_PNT and ALT_PNT is changing with time. # We first have to get full agreement with the normal ALTAZ to RADEC trafo # before debugging the ALTAZ FOV event coordinates. # import IPython; IPython.embed() def test_separations(): """Test if sky separations are the same in all spherical coordinate systems. This is a simple consistency check. Sky separations computed between consecutive event positions should be the same in any spherical coordinate system. """ table = Table.read('hess_event_list_2.fits') def separation(table, lon_colname, lat_colname): lon = np.array(table[lon_colname], dtype=np.float64) lat = np.array(table[lat_colname], dtype=np.float64) pos1 = SkyCoord(lon[:1], lat[:1], unit='deg') pos2 = SkyCoord(lon[1:], lat[1:], unit='deg') sep = pos1.separation(pos2).arcsec res = np.empty(len(table), dtype=np.float64) res[:-1] = sep res[-1] = np.nan return res table['SEP_RADEC'] = separation(table, 'RA', 'DEC') table['SEP_RADEC_FOV'] = separation(table, 'FOV_RADEC_LON', 'FOV_RADEC_LAT') table['SEP_RADEC_FOV_MINUS_SEP_RADEC'] = table['SEP_RADEC_FOV'] - table['SEP_RADEC'] print('Max separation difference RADEC_FOV to RADEC: {} arcsec'.format(np.nanmax(table['SEP_RADEC_FOV_MINUS_SEP_RADEC']))) # TODO: this currently gives 14.9 arcsec, i.e. there's an issue! table['SEP_RADEC_FOV_ASTROPY'] = separation(table, 'FOV_RADEC_LON_ASTROPY', 'FOV_RADEC_LAT_ASTROPY') table['SEP_RADEC_FOV_ASTROPY_MINUS_SEP_RADEC'] = table['SEP_RADEC_FOV_ASTROPY'] - table['SEP_RADEC'] print('Max separation difference RADEC_FOV_ASTROPY to RADEC: {} arcsec'.format(np.nanmax(table['SEP_RADEC_FOV_ASTROPY_MINUS_SEP_RADEC']))) # 0.02 arcsec => OK # Note: for ALTAZ this is not expected to match RADEC, because the earth is rotating between events. # table['SEP_ALTAZ'] = separation(table, 'AZ', 'ALT') # table['SEP_RADEC_MINUS_SEP_ALTAZ'] = table['SEP_RADEC'] - table['SEP_ALTAZ'] # print('Max separation difference RADEC to ALTAZ: {}'.format(np.nanmax(table['SEP_RADEC_MINUS_SEP_ALTAZ']))) # table.info('stats') # table.write('temp.fits', overwrite=True) if __name__ == '__main__': # copy_test_event_list() table = Table.read('hess_event_list.fits', hdu='EVENTS') table2 = add_astropy_radec_coordinates(table) table3 = add_astropy_altaz_coordinates(table2) table3.info('stats') filename = 'hess_event_list_3.fits' print('Writing {}'.format(filename)) table3.write(filename, overwrite=True) # test_separations() # test_fov_altaz()
mit
xlhtc007/blaze
blaze/compute/tests/test_numpy_compute.py
6
16540
from __future__ import absolute_import, division, print_function import pytest import numpy as np import pandas as pd from datetime import datetime, date from blaze.compute.core import compute, compute_up from blaze.expr import symbol, by, exp, summary, Broadcast, join, concat from blaze import sin from odo import into from datashape import discover, to_numpy, dshape x = np.array([(1, 'Alice', 100), (2, 'Bob', -200), (3, 'Charlie', 300), (4, 'Denis', 400), (5, 'Edith', -500)], dtype=[('id', 'i8'), ('name', 'S7'), ('amount', 'i8')]) t = symbol('t', discover(x)) def eq(a, b): c = a == b if isinstance(c, np.ndarray): return c.all() return c def test_symbol(): assert eq(compute(t, x), x) def test_eq(): assert eq(compute(t['amount'] == 100, x), x['amount'] == 100) def test_selection(): assert eq(compute(t[t['amount'] == 100], x), x[x['amount'] == 0]) assert eq(compute(t[t['amount'] < 0], x), x[x['amount'] < 0]) def test_arithmetic(): assert eq(compute(t['amount'] + t['id'], x), x['amount'] + x['id']) assert eq(compute(t['amount'] * t['id'], x), x['amount'] * x['id']) assert eq(compute(t['amount'] % t['id'], x), x['amount'] % x['id']) def test_UnaryOp(): assert eq(compute(exp(t['amount']), x), np.exp(x['amount'])) assert eq(compute(abs(-t['amount']), x), abs(-x['amount'])) def test_Neg(): assert eq(compute(-t['amount'], x), -x['amount']) def test_invert_not(): assert eq(compute(~(t.amount > 0), x), ~(x['amount'] > 0)) def test_Reductions(): assert compute(t['amount'].mean(), x) == x['amount'].mean() assert compute(t['amount'].count(), x) == len(x['amount']) assert compute(t['amount'].sum(), x) == x['amount'].sum() assert compute(t['amount'].min(), x) == x['amount'].min() assert compute(t['amount'].max(), x) == x['amount'].max() assert compute(t['amount'].nunique(), x) == len(np.unique(x['amount'])) assert compute(t['amount'].var(), x) == x['amount'].var() assert compute(t['amount'].std(), x) == x['amount'].std() assert compute(t['amount'].var(unbiased=True), x) == x['amount'].var(ddof=1) assert compute(t['amount'].std(unbiased=True), x) == x['amount'].std(ddof=1) assert compute((t['amount'] > 150).any(), x) == True assert compute((t['amount'] > 250).all(), x) == False assert compute(t['amount'][0], x) == x['amount'][0] assert compute(t['amount'][-1], x) == x['amount'][-1] def test_count_string(): s = symbol('name', 'var * ?string') x = np.array(['Alice', np.nan, 'Bob', 'Denis', 'Edith'], dtype='object') assert compute(s.count(), x) == 4 def test_reductions_on_recarray(): assert compute(t.count(), x) == len(x) def test_count_nan(): t = symbol('t', '3 * ?real') x = np.array([1.0, np.nan, 2.0]) assert compute(t.count(), x) == 2 def test_distinct(): x = np.array([('Alice', 100), ('Alice', -200), ('Bob', 100), ('Bob', 100)], dtype=[('name', 'S5'), ('amount', 'i8')]) t = symbol('t', 'var * {name: string, amount: int64}') assert eq(compute(t['name'].distinct(), x), np.unique(x['name'])) assert eq(compute(t.distinct(), x), np.unique(x)) def test_distinct_on_recarray(): rec = pd.DataFrame( [[0, 1], [0, 2], [1, 1], [1, 2]], columns=('a', 'b'), ).to_records(index=False) s = symbol('s', discover(rec)) assert ( compute(s.distinct('a'), rec) == pd.DataFrame( [[0, 1], [1, 1]], columns=('a', 'b'), ).to_records(index=False) ).all() def test_distinct_on_structured_array(): arr = np.array( [(0., 1.), (0., 2.), (1., 1.), (1., 2.)], dtype=[('a', 'f4'), ('b', 'f4')], ) s = symbol('s', discover(arr)) assert( compute(s.distinct('a'), arr) == np.array([(0., 1.), (1., 1.)], dtype=arr.dtype) ).all() def test_distinct_on_str(): rec = pd.DataFrame( [['a', 'a'], ['a', 'b'], ['b', 'a'], ['b', 'b']], columns=('a', 'b'), ).to_records(index=False).astype([('a', '<U1'), ('b', '<U1')]) s = symbol('s', discover(rec)) assert ( compute(s.distinct('a'), rec) == pd.DataFrame( [['a', 'a'], ['b', 'a']], columns=('a', 'b'), ).to_records(index=False).astype([('a', '<U1'), ('b', '<U1')]) ).all() def test_sort(): assert eq(compute(t.sort('amount'), x), np.sort(x, order='amount')) assert eq(compute(t.sort('amount', ascending=False), x), np.sort(x, order='amount')[::-1]) assert eq(compute(t.sort(['amount', 'id']), x), np.sort(x, order=['amount', 'id'])) assert eq(compute(t.amount.sort(), x), np.sort(x['amount'])) def test_head(): assert eq(compute(t.head(2), x), x[:2]) def test_tail(): assert eq(compute(t.tail(2), x), x[-2:]) def test_label(): expected = x['amount'] * 10 expected = np.array(expected, dtype=[('foo', 'i8')]) assert eq(compute((t['amount'] * 10).label('foo'), x), expected) def test_relabel(): expected = np.array(x, dtype=[('ID', 'i8'), ('NAME', 'S7'), ('amount', 'i8')]) result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), x) assert result.dtype.names == expected.dtype.names assert eq(result, expected) def test_by(): expr = by(t.amount > 0, count=t.id.count()) result = compute(expr, x) assert set(map(tuple, into(list, result))) == set([(False, 2), (True, 3)]) def test_compute_up_field(): assert eq(compute(t['name'], x), x['name']) def test_compute_up_projection(): assert eq(compute_up(t[['name', 'amount']], x), x[['name', 'amount']]) ax = np.arange(30, dtype='f4').reshape((5, 3, 2)) a = symbol('a', discover(ax)) def test_slice(): inds = [0, slice(2), slice(1, 3), slice(None, None, 2), [1, 2, 3], (0, 1), (0, slice(1, 3)), (slice(0, 3), slice(3, 1, -1)), (0, [1, 2])] for s in inds: assert (compute(a[s], ax) == ax[s]).all() def test_array_reductions(): for axis in [None, 0, 1, (0, 1), (2, 1)]: assert eq(compute(a.sum(axis=axis), ax), ax.sum(axis=axis)) assert eq(compute(a.std(axis=axis), ax), ax.std(axis=axis)) def test_array_reductions_with_keepdims(): for axis in [None, 0, 1, (0, 1), (2, 1)]: assert eq(compute(a.sum(axis=axis, keepdims=True), ax), ax.sum(axis=axis, keepdims=True)) def test_summary_on_ndarray(): assert compute(summary(total=a.sum(), min=a.min()), ax) == \ (ax.min(), ax.sum()) result = compute(summary(total=a.sum(), min=a.min(), keepdims=True), ax) expected = np.array([(ax.min(), ax.sum())], dtype=[('min', 'float32'), ('total', 'float64')]) assert result.ndim == ax.ndim assert eq(expected, result) def test_summary_on_ndarray_with_axis(): for axis in [0, 1, (1, 0)]: expr = summary(total=a.sum(), min=a.min(), axis=axis) result = compute(expr, ax) shape, dtype = to_numpy(expr.dshape) expected = np.empty(shape=shape, dtype=dtype) expected['total'] = ax.sum(axis=axis) expected['min'] = ax.min(axis=axis) assert eq(result, expected) def test_utcfromtimestamp(): t = symbol('t', '1 * int64') data = np.array([0, 1]) expected = np.array(['1970-01-01T00:00:00Z', '1970-01-01T00:00:01Z'], dtype='M8[us]') assert eq(compute(t.utcfromtimestamp, data), expected) def test_nelements_structured_array(): assert compute(t.nelements(), x) == len(x) assert compute(t.nelements(keepdims=True), x) == (len(x),) def test_nelements_array(): t = symbol('t', '5 * 4 * 3 * float64') x = np.random.randn(*t.shape) result = compute(t.nelements(axis=(0, 1)), x) np.testing.assert_array_equal(result, np.array([20, 20, 20])) result = compute(t.nelements(axis=1), x) np.testing.assert_array_equal(result, 4 * np.ones((5, 3))) def test_nrows(): assert compute(t.nrows, x) == len(x) dts = np.array(['2000-06-25T12:30:04Z', '2000-06-28T12:50:05Z'], dtype='M8[us]') s = symbol('s', 'var * datetime') def test_datetime_truncation(): assert eq(compute(s.truncate(1, 'day'), dts), dts.astype('M8[D]')) assert eq(compute(s.truncate(2, 'seconds'), dts), np.array(['2000-06-25T12:30:04Z', '2000-06-28T12:50:04Z'], dtype='M8[s]')) assert eq(compute(s.truncate(2, 'weeks'), dts), np.array(['2000-06-18', '2000-06-18'], dtype='M8[D]')) assert into(list, compute(s.truncate(1, 'week'), dts))[0].isoweekday() == 7 def test_hour(): dts = [datetime(2000, 6, 20, 1, 00, 00), datetime(2000, 6, 20, 12, 59, 59), datetime(2000, 6, 20, 12, 00, 00), datetime(2000, 6, 20, 11, 59, 59)] dts = into(np.ndarray, dts) assert eq(compute(s.truncate(1, 'hour'), dts), into(np.ndarray, [datetime(2000, 6, 20, 1, 0), datetime(2000, 6, 20, 12, 0), datetime(2000, 6, 20, 12, 0), datetime(2000, 6, 20, 11, 0)])) def test_month(): dts = [datetime(2000, 7, 1), datetime(2000, 6, 30), datetime(2000, 6, 1), datetime(2000, 5, 31)] dts = into(np.ndarray, dts) assert eq(compute(s.truncate(1, 'month'), dts), into(np.ndarray, [date(2000, 7, 1), date(2000, 6, 1), date(2000, 6, 1), date(2000, 5, 1)])) def test_truncate_on_np_datetime64_scalar(): s = symbol('s', 'datetime') data = np.datetime64('2000-01-02T12:30:00Z') assert compute(s.truncate(1, 'day'), data) == data.astype('M8[D]') def test_numpy_and_python_datetime_truncate_agree_on_start_of_week(): s = symbol('s', 'datetime') n = np.datetime64('2014-11-11') p = datetime(2014, 11, 11) expr = s.truncate(1, 'week') assert compute(expr, n) == compute(expr, p) def test_add_multiple_ndarrays(): a = symbol('a', '5 * 4 * int64') b = symbol('b', '5 * 4 * float32') x = np.arange(9, dtype='int64').reshape(3, 3) y = (x + 1).astype('float32') expr = sin(a) + 2 * b scope = {a: x, b: y} expected = sin(x) + 2 * y # check that we cast correctly assert expr.dshape == dshape('5 * 4 * float64') np.testing.assert_array_equal(compute(expr, scope), expected) np.testing.assert_array_equal(compute(expr, scope, optimize=False), expected) nA = np.arange(30, dtype='f4').reshape((5, 6)) ny = np.arange(6, dtype='f4') A = symbol('A', discover(nA)) y = symbol('y', discover(ny)) def test_transpose(): assert eq(compute(A.T, nA), nA.T) assert eq(compute(A.transpose((0, 1)), nA), nA) def test_dot(): assert eq(compute(y.dot(y), {y: ny}), np.dot(ny, ny)) assert eq(compute(A.dot(y), {A: nA, y: ny}), np.dot(nA, ny)) def test_subexpr_datetime(): data = pd.date_range(start='01/01/2010', end='01/04/2010', freq='D').values s = symbol('s', discover(data)) result = compute(s.truncate(days=2).day, data) expected = np.array([31, 2, 2, 4]) np.testing.assert_array_equal(result, expected) def test_mixed_types(): x = np.array([[(4, 180), (4, 184), (4, 188), (4, 192), (4, 196)], [(4, 660), (4, 664), (4, 668), (4, 672), (4, 676)], [(4, 1140), (4, 1144), (4, 1148), (4, 1152), (4, 1156)], [(4, 1620), (4, 1624), (4, 1628), (4, 1632), (4, 1636)], [(4, 2100), (4, 2104), (4, 2108), (4, 2112), (4, 2116)]], dtype=[('count', '<i4'), ('total', '<i8')]) aggregate = symbol('aggregate', discover(x)) result = compute(aggregate.total.sum(axis=(0,)) / aggregate['count'].sum(axis=(0,)), x) expected = (x['total'].sum(axis=0, keepdims=True) / x['count'].sum(axis=0, keepdims=True)).squeeze() np.testing.assert_array_equal(result, expected) def test_broadcast_compute_against_numbers_and_arrays(): A = symbol('A', '5 * float32') a = symbol('a', 'float32') b = symbol('b', 'float32') x = np.arange(5, dtype='f4') expr = Broadcast((A, b), (a, b), a + b) result = compute(expr, {A: x, b: 10}) assert eq(result, x + 10) def test_map(): pytest.importorskip('numba') a = np.arange(10.0) f = lambda x: np.sin(x) + 1.03 * np.cos(x) ** 2 x = symbol('x', discover(a)) expr = x.map(f, 'float64') result = compute(expr, a) expected = f(a) # make sure we're not going to pandas here assert type(result) == np.ndarray assert type(result) == type(expected) np.testing.assert_array_equal(result, expected) def test_vector_norm(): x = np.arange(30).reshape((5, 6)) s = symbol('x', discover(x)) assert eq(compute(s.vnorm(), x), np.linalg.norm(x)) assert eq(compute(s.vnorm(ord=1), x), np.linalg.norm(x.flatten(), ord=1)) assert eq(compute(s.vnorm(ord=4, axis=0), x), np.linalg.norm(x, ord=4, axis=0)) expr = s.vnorm(ord=4, axis=0, keepdims=True) assert expr.shape == compute(expr, x).shape def test_join(): cities = np.array([('Alice', 'NYC'), ('Alice', 'LA'), ('Bob', 'Chicago')], dtype=[('name', 'S7'), ('city', 'O')]) c = symbol('cities', discover(cities)) expr = join(t, c, 'name') result = compute(expr, {t: x, c: cities}) assert (b'Alice', 1, 100, 'LA') in into(list, result) def test_query_with_strings(): b = np.array([('a', 1), ('b', 2), ('c', 3)], dtype=[('x', 'S1'), ('y', 'i4')]) s = symbol('s', discover(b)) assert compute(s[s.x == b'b'], b).tolist() == [(b'b', 2)] @pytest.mark.parametrize('keys', [['a'], list('bc')]) def test_isin(keys): b = np.array([('a', 1), ('b', 2), ('c', 3), ('a', 4), ('c', 5), ('b', 6)], dtype=[('x', 'S1'), ('y', 'i4')]) s = symbol('s', discover(b)) result = compute(s.x.isin(keys), b) expected = np.in1d(b['x'], keys) np.testing.assert_array_equal(result, expected) def test_nunique_recarray(): b = np.array([('a', 1), ('b', 2), ('c', 3), ('a', 4), ('c', 5), ('b', 6), ('a', 1), ('b', 2)], dtype=[('x', 'S1'), ('y', 'i4')]) s = symbol('s', discover(b)) expr = s.nunique() assert compute(expr, b) == len(np.unique(b)) def test_str_repeat(): a = np.array(('a', 'b', 'c')) s = symbol('s', discover(a)) expr = s.repeat(3) assert all(compute(expr, a) == np.char.multiply(a, 3)) def test_str_interp(): a = np.array(('%s', '%s', '%s')) s = symbol('s', discover(a)) expr = s.interp(1) assert all(compute(expr, a) == np.char.mod(a, 1)) def test_timedelta_arith(): dates = np.arange('2014-01-01', '2014-02-01', dtype='datetime64') delta = np.timedelta64(1, 'D') sym = symbol('s', discover(dates)) assert (compute(sym + delta, dates) == dates + delta).all() assert (compute(sym - delta, dates) == dates - delta).all() def test_coerce(): x = np.arange(1, 3) s = symbol('s', discover(x)) np.testing.assert_array_equal(compute(s.coerce('float64'), x), np.arange(1.0, 3.0)) def test_concat_arr(): s_data = np.arange(15) t_data = np.arange(15, 30) s = symbol('s', discover(s_data)) t = symbol('t', discover(t_data)) assert ( compute(concat(s, t), {s: s_data, t: t_data}) == np.arange(30) ).all() def test_concat_mat(): s_data = np.arange(15).reshape(5, 3) t_data = np.arange(15, 30).reshape(5, 3) s = symbol('s', discover(s_data)) t = symbol('t', discover(t_data)) assert ( compute(concat(s, t), {s: s_data, t: t_data}) == np.arange(30).reshape(10, 3) ).all() assert ( compute(concat(s, t, axis=1), {s: s_data, t: t_data}) == np.concatenate((s_data, t_data), axis=1) ).all()
bsd-3-clause
SkRobo/Eurobot-2017
old year/RESET-master/prob_motion_model.py
2
3393
""" Sampling algorithm for Probabilistic Odometry Holonomic Motion Model Ref: Probabilistic Robotics, ch 5.4, pp 136 http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf """ import math import random import matplotlib.pyplot as plt x, y, tetha = 0, 0, 0 # t-1 position in global coord sys x_bar, y_bar, tetha_bar = 2, 3, 0 # t-1 odometry position in local coord sys x_bar_prime, y_bar_prime, tetha_bar_prime = 3, 3.5, math.pi/3 # t odometry position in local coord sys alpha1, alpha2, alpha3 = 0.1,0.1,0.05 # robot error parameters x_plot = [] y_plot = [] tetha_plot = [] tetha_dummy = [] def prob3(x, y, tetha, x_bar, y_bar, tetha_bar, x_bar_prime, y_bar_prime, tetha_bar_prime): """Calculates the final robor position in global coord sys""" delta_x = x_bar_prime - x_bar delta_y = y_bar_prime - y_bar delta_rot = tetha_bar_prime - tetha_bar edelta_x = delta_x - sample(alpha1*math.fabs(delta_x) + alpha2*math.fabs(delta_y)/3 + alpha3*math.fabs(delta_rot)/3) edelta_y = delta_y - sample(alpha1*math.fabs(delta_x)/3 + alpha2*math.fabs(delta_y) + alpha3*math.fabs(delta_rot)/3) edelta_rot = delta_rot - sample(alpha1*math.fabs(delta_x)/3 + alpha2*math.fabs(delta_y)/3 + alpha3*math.fabs(delta_rot)) x_prime = x + edelta_x y_prime = y + edelta_y tetha_prime = tetha + edelta_rot return x_prime, y_prime, tetha_prime def prob2(x, y, tetha, x_bar, y_bar, tetha_bar, x_bar_prime, y_bar_prime, tetha_bar_prime): """Calculates the final robor position in global coord sys""" delta_trans = math.sqrt(math.pow(x_bar - x_bar_prime, 2) + math.pow(y_bar - y_bar_prime, 2)) delta_rot = tetha_bar_prime - tetha_bar delta_angle = math.atan2(y_bar_prime - y_bar, x_bar_prime - x_bar) edelta_trans = delta_trans - sample(alpha1*math.fabs(delta_trans) + alpha3*math.fabs(delta_rot)/3) edelta_rot = delta_rot - sample(alpha1*math.fabs(delta_trans)/3 + alpha3*math.fabs(delta_rot)) edelta_angle = delta_angle - sample(alpha1*math.fabs(delta_trans)/4) # dividing by 4 gives same 1D result as prob x_prime = x + edelta_trans*math.cos(edelta_angle) y_prime = y + edelta_trans*math.sin(edelta_angle) tetha_prime = tetha + edelta_rot return x_prime, y_prime, tetha_prime def prob(pose, delta): # From robot I get relative position. And I can do new relative minus # old relative to get displacement dx, dy, dtheta if delta[2] == 0: x_prime = pose[0] + delta[0] + trans_noise() y_prime = pose[1] + delta[1] + trans_noise() theta_prime = pose[2] + theta_noise() # else: # x_prime = pose[0] + delta[0] + noise # y_prime = pose[1] + delta[1] + noise # theta_prime = pose[2] + delta[2] + noise + drift # pp 3 return x_prime, y_prime, theta_prime def trans_noise(): return random.gauss(0, 10) def theta_noise(): return random.gauss(0, 0.1) def sample(b): """Draws a sample from the normal distribution""" #b = math.sqrt(b2) r = 0 for i in xrange(12): r += random.uniform(-b, b) return 0.5*r if __name__ == '__main__': for i in range(500): """Construct probable poositions""" x_temp, y_temp, tetha_temp = prob2(x, y, tetha, x_bar, y_bar, tetha_bar, x_bar_prime, y_bar_prime, tetha_bar_prime) x_plot.append(x_temp) y_plot.append(y_temp) tetha_plot.append(tetha_temp) tetha_dummy.append(0) #plt.plot(tetha_plot, tetha_dummy, 'ro') plt.plot(x_plot, y_plot, 'ro') plt.axis([0, 5, 0, 5]) plt.show()
mit
hsuantien/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
ARudiuk/mne-python
mne/io/base.py
1
97091
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Martin Luessi <[email protected]> # Denis Engemann <[email protected]> # Teon Brooks <[email protected]> # Marijn van Vliet <[email protected]> # # License: BSD (3-clause) import copy from copy import deepcopy import os import os.path as op import numpy as np from scipy import linalg from .constants import FIFF from .pick import pick_types, channel_type, pick_channels, pick_info from .pick import _pick_data_channels, _pick_data_or_ica from .meas_info import write_meas_info from .proj import setup_proj, activate_proj, _proj_equal, ProjMixin from ..channels.channels import (ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin) from ..channels.montage import read_montage, _set_montage, Montage from .compensator import set_current_comp from .write import (start_file, end_file, start_block, end_block, write_dau_pack16, write_float, write_double, write_complex64, write_complex128, write_int, write_id, write_string, write_name_list, _get_split_size) from ..filter import (low_pass_filter, high_pass_filter, band_pass_filter, notch_filter, band_stop_filter, resample, _resample_stim_channels) from ..fixes import in1d from ..parallel import parallel_func from ..utils import (_check_fname, _check_pandas_installed, _check_pandas_index_arguments, _check_copy_dep, check_fname, _get_stim_channel, object_hash, logger, verbose, _time_mask, warn) from ..viz import plot_raw, plot_raw_psd, plot_raw_psd_topo from ..defaults import _handle_default from ..externals.six import string_types from ..event import find_events, concatenate_events from ..annotations import _combine_annotations, _onset_to_seconds class ToDataFrameMixin(object): """Class to add to_data_frame capabilities to certain classes.""" def _get_check_picks(self, picks, picks_check): if picks is None: picks = list(range(self.info['nchan'])) else: if not in1d(picks, np.arange(len(picks_check))).all(): raise ValueError('At least one picked channel is not present ' 'in this object instance.') return picks def to_data_frame(self, picks=None, index=None, scale_time=1e3, scalings=None, copy=True, start=None, stop=None): """Export data in tabular structure as a pandas DataFrame. Columns and indices will depend on the object being converted. Generally this will include as much relevant information as possible for the data type being converted. This makes it easy to convert data for use in packages that utilize dataframes, such as statsmodels or seaborn. Parameters ---------- picks : array-like of int | None If None only MEG and EEG channels are kept otherwise the channels indices in picks are kept. index : tuple of str | None Column to be used as index for the data. Valid string options are 'epoch', 'time' and 'condition'. If None, all three info columns will be included in the table as categorial data. scale_time : float Scaling to be applied to time units. scalings : dict | None Scaling to be applied to the channels picked. If None, defaults to ``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, misc=1.0)``. copy : bool If true, data will be copied. Else data may be modified in place. start : int | None If it is a Raw object, this defines a starting index for creating the dataframe from a slice. The times will be interpolated from the index and the sampling rate of the signal. stop : int | None If it is a Raw object, this defines a stop index for creating the dataframe from a slice. The times will be interpolated from the index and the sampling rate of the signal. Returns ------- df : instance of pandas.core.DataFrame A dataframe suitable for usage with other statistical/plotting/analysis packages. Column/Index values will depend on the object type being converted, but should be human-readable. """ from ..epochs import _BaseEpochs from ..evoked import Evoked from ..source_estimate import _BaseSourceEstimate pd = _check_pandas_installed() mindex = list() # Treat SourceEstimates special because they don't have the same info if isinstance(self, _BaseSourceEstimate): if self.subject is None: default_index = ['time'] else: default_index = ['subject', 'time'] data = self.data.T times = self.times shape = data.shape mindex.append(('subject', np.repeat(self.subject, shape[0]))) if isinstance(self.vertices, list): # surface source estimates col_names = [i for e in [ ['{0} {1}'.format('LH' if ii < 1 else 'RH', vert) for vert in vertno] for ii, vertno in enumerate(self.vertices)] for i in e] else: # volume source estimates col_names = ['VOL {0}'.format(vert) for vert in self.vertices] elif isinstance(self, (_BaseEpochs, _BaseRaw, Evoked)): picks = self._get_check_picks(picks, self.ch_names) if isinstance(self, _BaseEpochs): default_index = ['condition', 'epoch', 'time'] data = self.get_data()[:, picks, :] times = self.times n_epochs, n_picks, n_times = data.shape data = np.hstack(data).T # (time*epochs) x signals # Multi-index creation times = np.tile(times, n_epochs) id_swapped = dict((v, k) for k, v in self.event_id.items()) names = [id_swapped[k] for k in self.events[:, 2]] mindex.append(('condition', np.repeat(names, n_times))) mindex.append(('epoch', np.repeat(np.arange(n_epochs), n_times))) col_names = [self.ch_names[k] for k in picks] elif isinstance(self, (_BaseRaw, Evoked)): default_index = ['time'] if isinstance(self, _BaseRaw): data, times = self[picks, start:stop] elif isinstance(self, Evoked): data = self.data[picks, :] times = self.times n_picks, n_times = data.shape data = data.T col_names = [self.ch_names[k] for k in picks] types = [channel_type(self.info, idx) for idx in picks] n_channel_types = 0 ch_types_used = [] scalings = _handle_default('scalings', scalings) for t in scalings.keys(): if t in types: n_channel_types += 1 ch_types_used.append(t) for t in ch_types_used: scaling = scalings[t] idx = [picks[i] for i in range(len(picks)) if types[i] == t] if len(idx) > 0: data[:, idx] *= scaling else: # In case some other object gets this mixin w/o an explicit check raise NameError('Object must be one of Raw, Epochs, Evoked, or ' + 'SourceEstimate. This is {0}'.format(type(self))) # Make sure that the time index is scaled correctly times = np.round(times * scale_time) mindex.append(('time', times)) if index is not None: _check_pandas_index_arguments(index, default_index) else: index = default_index if copy is True: data = data.copy() assert all(len(mdx) == len(mindex[0]) for mdx in mindex) df = pd.DataFrame(data, columns=col_names) for i, (k, v) in enumerate(mindex): df.insert(i, k, v) if index is not None: if 'time' in index: logger.info('Converting time column to int64...') df['time'] = df['time'].astype(np.int64) df.set_index(index, inplace=True) if all(i in default_index for i in index): df.columns.name = 'signal' return df class TimeMixin(object): """Class to add sfreq and time_as_index capabilities to certain classes.""" def time_as_index(self, times, use_rounding=False): """Convert time to indices Parameters ---------- times : list-like | float | int List of numbers or a number representing points in time. use_rounding : boolean If True, use rounding (instead of truncation) when converting times to indices. This can help avoid non-unique indices. Returns ------- index : ndarray Indices corresponding to the times supplied. """ from ..source_estimate import _BaseSourceEstimate if isinstance(self, _BaseSourceEstimate): sfreq = 1. / self.tstep else: sfreq = self.info['sfreq'] index = (np.atleast_1d(times) - self.times[0]) * sfreq if use_rounding: index = np.round(index) return index.astype(int) def _check_fun(fun, d, *args, **kwargs): want_shape = d.shape d = fun(d, *args, **kwargs) if not isinstance(d, np.ndarray): raise TypeError('Return value must be an ndarray') if d.shape != want_shape: raise ValueError('Return data must have shape %s not %s' % (want_shape, d.shape)) return d class _BaseRaw(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin, InterpolationMixin, ToDataFrameMixin, TimeMixin): """Base class for Raw data Subclasses must provide the following methods: * _read_segment_file(self, data, idx, fi, start, stop, cals, mult) (only needed for types that support on-demand disk reads) The `_BaseRaw._raw_extras` list can contain whatever data is necessary for such on-demand reads. For `RawFIF` this means a list of variables formerly known as ``_rawdirs``. """ @verbose def __init__(self, info, preload=False, first_samps=(0,), last_samps=None, filenames=(None,), raw_extras=(None,), comp=None, orig_comp_grade=None, orig_format='double', dtype=np.float64, verbose=None): # wait until the end to preload data, but triage here if isinstance(preload, np.ndarray): # some functions (e.g., filtering) only work w/64-bit data if preload.dtype not in (np.float64, np.complex128): raise RuntimeError('datatype must be float64 or complex128, ' 'not %s' % preload.dtype) if preload.dtype != dtype: raise ValueError('preload and dtype must match') self._data = preload self.preload = True assert len(first_samps) == 1 last_samps = [first_samps[0] + self._data.shape[1] - 1] load_from_disk = False else: if last_samps is None: raise ValueError('last_samps must be given unless preload is ' 'an ndarray') if preload is False: self.preload = False load_from_disk = False elif preload is not True and not isinstance(preload, string_types): raise ValueError('bad preload: %s' % preload) else: load_from_disk = True self._last_samps = np.array(last_samps) self._first_samps = np.array(first_samps) info._check_consistency() # make sure subclass did a good job self.info = info if info.get('buffer_size_sec', None) is None: raise RuntimeError('Reader error, notify mne-python developers') cals = np.empty(info['nchan']) for k in range(info['nchan']): cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal'] self.verbose = verbose self._cals = cals self._raw_extras = list(raw_extras) self.comp = comp self._orig_comp_grade = orig_comp_grade self._filenames = list(filenames) self.orig_format = orig_format self._projectors = list() self._projector = None self._dtype_ = dtype self.annotations = None # If we have True or a string, actually do the preloading self._update_times() if load_from_disk: self._preload_data(preload) @property def _dtype(self): """dtype for loading data (property so subclasses can override)""" # most classes only store real data, they won't need anything special return self._dtype_ def _read_segment(self, start=0, stop=None, sel=None, data_buffer=None, projector=None, verbose=None): """Read a chunk of raw data Parameters ---------- start : int, (optional) first sample to include (first is 0). If omitted, defaults to the first sample in data. stop : int, (optional) First sample to not include. If omitted, data is included to the end. sel : array, optional Indices of channels to select. data_buffer : array or str, optional numpy array to fill with data read, must have the correct shape. If str, a np.memmap with the correct data type will be used to store the data. projector : array SSP operator to apply to the data. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- data : array, [channels x samples] the data matrix (channels x samples). """ # Initial checks start = int(start) stop = self.n_times if stop is None else min([int(stop), self.n_times]) if start >= stop: raise ValueError('No data in this range') # Initialize the data and calibration vector n_sel_channels = self.info['nchan'] if sel is None else len(sel) # convert sel to a slice if possible for efficiency if sel is not None and len(sel) > 1 and np.all(np.diff(sel) == 1): sel = slice(sel[0], sel[-1] + 1) idx = slice(None, None, None) if sel is None else sel data_shape = (n_sel_channels, stop - start) dtype = self._dtype if isinstance(data_buffer, np.ndarray): if data_buffer.shape != data_shape: raise ValueError('data_buffer has incorrect shape: %s != %s' % (data_buffer.shape, data_shape)) data = data_buffer elif isinstance(data_buffer, string_types): # use a memmap data = np.memmap(data_buffer, mode='w+', dtype=dtype, shape=data_shape) else: data = np.zeros(data_shape, dtype=dtype) # deal with having multiple files accessed by the raw object cumul_lens = np.concatenate(([0], np.array(self._raw_lengths, dtype='int'))) cumul_lens = np.cumsum(cumul_lens) files_used = np.logical_and(np.less(start, cumul_lens[1:]), np.greater_equal(stop - 1, cumul_lens[:-1])) # set up cals and mult (cals, compensation, and projector) cals = self._cals.ravel()[np.newaxis, :] if self.comp is not None: if projector is not None: mult = self.comp * cals mult = np.dot(projector[idx], mult) else: mult = self.comp[idx] * cals elif projector is not None: mult = projector[idx] * cals else: mult = None cals = cals.T[idx] # read from necessary files offset = 0 for fi in np.nonzero(files_used)[0]: start_file = self._first_samps[fi] # first iteration (only) could start in the middle somewhere if offset == 0: start_file += start - cumul_lens[fi] stop_file = np.min([stop - cumul_lens[fi] + self._first_samps[fi], self._last_samps[fi] + 1]) if start_file < self._first_samps[fi] or stop_file < start_file: raise ValueError('Bad array indexing, could be a bug') n_read = stop_file - start_file this_sl = slice(offset, offset + n_read) self._read_segment_file(data[:, this_sl], idx, fi, int(start_file), int(stop_file), cals, mult) offset += n_read return data def _read_segment_file(self, data, idx, fi, start, stop, cals, mult): """Read a segment of data from a file Only needs to be implemented for readers that support ``preload=False``. Parameters ---------- data : ndarray, shape (len(idx), stop - start + 1) The data array. Should be modified inplace. idx : ndarray | slice The requested channel indices. fi : int The file index that must be read from. start : int The start sample in the given file. stop : int The stop sample in the given file (inclusive). cals : ndarray, shape (len(idx), 1) Channel calibrations (already sub-indexed). mult : ndarray, shape (len(idx), len(info['chs']) | None The compensation + projection + cals matrix, if applicable. """ raise NotImplementedError def _check_bad_segment(self, start, stop, picks, reject_by_annotation=False): """Function for checking if data segment is bad. If the slice is good, returns the data in desired range. If rejected based on annotation, returns description of the bad segment as a string. Parameters ---------- start : int First sample of the slice. stop : int End of the slice. picks : array of int Channel picks. reject_by_annotation : bool Whether to perform rejection based on annotations. False by default. Returns ------- data : array | str Data in the desired range (good segment) or description of the bad segment. """ if start < 0: return None if reject_by_annotation and self.annotations is not None: annot = self.annotations sfreq = self.info['sfreq'] onset = _onset_to_seconds(self, annot.onset) overlaps = np.where(onset < stop / sfreq) overlaps = np.where(onset[overlaps] + annot.duration[overlaps] > start / sfreq) for descr in annot.description[overlaps]: if descr.lower().startswith('bad'): return descr return self[picks, start:stop][0] @verbose def load_data(self, verbose=None): """Load raw data Parameters ---------- verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- raw : instance of Raw The raw object with data. Notes ----- This function will load raw data if it was not already preloaded. If data were already preloaded, it will do nothing. .. versionadded:: 0.10.0 """ if not self.preload: self._preload_data(True) return self @verbose def _preload_data(self, preload, verbose=None): """This function actually preloads the data""" data_buffer = preload if isinstance(preload, (string_types, np.ndarray)) else None logger.info('Reading %d ... %d = %9.3f ... %9.3f secs...' % (0, len(self.times) - 1, 0., self.times[-1])) self._data = self._read_segment(data_buffer=data_buffer) assert len(self._data) == self.info['nchan'] self.preload = True self.close() def _update_times(self): """Helper to update times""" self._times = np.arange(self.n_times) / float(self.info['sfreq']) # make it immutable self._times.flags.writeable = False @property def first_samp(self): return self._first_samps[0] @property def last_samp(self): return self.first_samp + sum(self._raw_lengths) - 1 @property def _raw_lengths(self): return [l - f + 1 for f, l in zip(self._first_samps, self._last_samps)] def __del__(self): # remove file for memmap if hasattr(self, '_data') and hasattr(self._data, 'filename'): # First, close the file out; happens automatically on del filename = self._data.filename del self._data # Now file can be removed try: os.remove(filename) except OSError: pass # ignore file that no longer exists def __enter__(self): """ Entering with block """ return self def __exit__(self, exception_type, exception_val, trace): """ Exiting with block """ try: self.close() except: return exception_type, exception_val, trace def __hash__(self): if not self.preload: raise RuntimeError('Cannot hash raw unless preloaded') return object_hash(dict(info=self.info, data=self._data)) def _parse_get_set_params(self, item): # make sure item is a tuple if not isinstance(item, tuple): # only channel selection passed item = (item, slice(None, None, None)) if len(item) != 2: # should be channels and time instants raise RuntimeError("Unable to access raw data (need both channels " "and time)") if isinstance(item[0], slice): start = item[0].start if item[0].start is not None else 0 nchan = self.info['nchan'] if start < 0: start += nchan if start < 0: raise ValueError('start must be >= -%s' % nchan) stop = item[0].stop if item[0].stop is not None else nchan step = item[0].step if item[0].step is not None else 1 sel = list(range(start, stop, step)) else: sel = item[0] if isinstance(item[1], slice): time_slice = item[1] start, stop, step = (time_slice.start, time_slice.stop, time_slice.step) else: item1 = item[1] # Let's do automated type conversion to integer here if np.array(item[1]).dtype.kind == 'i': item1 = int(item1) if isinstance(item1, (int, np.integer)): start, stop, step = item1, item1 + 1, 1 else: raise ValueError('Must pass int or slice to __getitem__') if start is None: start = 0 if (step is not None) and (step is not 1): raise ValueError('step needs to be 1 : %d given' % step) if isinstance(sel, (int, np.integer)): sel = np.array([sel]) if sel is not None and len(sel) == 0: raise ValueError("Empty channel list") return sel, start, stop def __getitem__(self, item): """Get raw data and times Parameters ---------- item : tuple or array-like See below for use cases. Returns ------- data : ndarray, shape (n_channels, n_times) The raw data. times : ndarray, shape (n_times,) The times associated with the data. Examples -------- Generally raw data is accessed as:: >>> data, times = raw[picks, time_slice] # doctest: +SKIP To get all data, you can thus do either of:: >>> data, times = raw[:] # doctest: +SKIP Which will be equivalent to: >>> data, times = raw[:, :] # doctest: +SKIP To get only the good MEG data from 10-20 seconds, you could do:: >>> picks = mne.pick_types(raw.info, meg=True, exclude='bads') # doctest: +SKIP >>> t_idx = raw.time_as_index([10., 20.]) # doctest: +SKIP >>> data, times = raw[picks, t_idx[0]:t_idx[1]] # doctest: +SKIP """ # noqa sel, start, stop = self._parse_get_set_params(item) if self.preload: data = self._data[sel, start:stop] else: data = self._read_segment(start=start, stop=stop, sel=sel, projector=self._projector, verbose=self.verbose) times = self.times[start:stop] return data, times def __setitem__(self, item, value): """setting raw data content with python slicing""" _check_preload(self, 'Modifying data of Raw') sel, start, stop = self._parse_get_set_params(item) # set the data self._data[sel, start:stop] = value def anonymize(self): """Anonymize data This function will remove ``raw.info['subject_info']`` if it exists. Returns ------- raw : instance of Raw The raw object. Operates in place. """ self.info._anonymize() return self @verbose def apply_function(self, fun, picks, dtype, n_jobs, *args, **kwargs): """ Apply a function to a subset of channels. The function "fun" is applied to the channels defined in "picks". The data of the Raw object is modified inplace. If the function returns a different data type (e.g. numpy.complex) it must be specified using the dtype parameter, which causes the data type used for representing the raw data to change. The Raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``. .. note:: If n_jobs > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporaily stored in memory. .. note:: If the data type changes (dtype != None), more memory is required since the original and the converted data needs to be stored in memory. Parameters ---------- fun : function A function to be applied to the channels. The first argument of fun has to be a timeseries (numpy.ndarray). The function must return an numpy.ndarray with the same size as the input. picks : array-like of int | None Indices of channels to apply the function to. If None, all M-EEG channels are used. dtype : numpy.dtype Data type to use for raw data after applying the function. If None the data type is not modified. n_jobs: int Number of jobs to run in parallel. *args : Additional positional arguments to pass to fun (first pos. argument of fun is the timeseries of a channel). **kwargs : Keyword arguments to pass to fun. Note that if "verbose" is passed as a member of ``kwargs``, it will be consumed and will override the default mne-python verbose level (see mne.verbose). """ _check_preload(self, 'raw.apply_function') if picks is None: picks = _pick_data_channels(self.info, exclude=[], with_ref_meg=False) if not callable(fun): raise ValueError('fun needs to be a function') data_in = self._data if dtype is not None and dtype != self._data.dtype: self._data = self._data.astype(dtype) if n_jobs == 1: # modify data inplace to save memory for idx in picks: self._data[idx, :] = _check_fun(fun, data_in[idx, :], *args, **kwargs) else: # use parallel function parallel, p_fun, _ = parallel_func(_check_fun, n_jobs) data_picks_new = parallel(p_fun(fun, data_in[p], *args, **kwargs) for p in picks) for pp, p in enumerate(picks): self._data[p, :] = data_picks_new[pp] @verbose def apply_hilbert(self, picks, envelope=False, n_jobs=1, n_fft=None, verbose=None): """ Compute analytic signal or envelope for a subset of channels. If envelope=False, the analytic signal for the channels defined in "picks" is computed and the data of the Raw object is converted to a complex representation (the analytic signal is complex valued). If envelope=True, the absolute value of the analytic signal for the channels defined in "picks" is computed, resulting in the envelope signal. .. warning: Do not use ``envelope=True`` if you intend to compute an inverse solution from the raw data. If you want to compute the envelope in source space, use ``envelope=False`` and compute the envelope after the inverse solution has been obtained. .. note:: If envelope=False, more memory is required since the original raw data as well as the analytic signal have temporarily to be stored in memory. .. note:: If n_jobs > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporaily stored in memory. Parameters ---------- picks : array-like of int Indices of channels to apply the function to. envelope : bool (default: False) Compute the envelope signal of each channel. n_jobs: int Number of jobs to run in parallel. n_fft : int > self.n_times | None Points to use in the FFT for Hilbert transformation. The signal will be padded with zeros before computing Hilbert, then cut back to original length. If None, n == self.n_times. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Notes ----- The analytic signal "x_a(t)" of "x(t)" is:: x_a = F^{-1}(F(x) 2U) = x + i y where "F" is the Fourier transform, "U" the unit step function, and "y" the Hilbert transform of "x". One usage of the analytic signal is the computation of the envelope signal, which is given by "e(t) = abs(x_a(t))". Due to the linearity of Hilbert transform and the MNE inverse solution, the enevlope in source space can be obtained by computing the analytic signal in sensor space, applying the MNE inverse, and computing the envelope in source space. Also note that the n_fft parameter will allow you to pad the signal with zeros before performing the Hilbert transform. This padding is cut off, but it may result in a slightly different result (particularly around the edges). Use at your own risk. """ n_fft = self.n_times if n_fft is None else n_fft if n_fft < self.n_times: raise ValueError("n_fft must be greater than n_times") if envelope is True: self.apply_function(_my_hilbert, picks, None, n_jobs, n_fft, envelope=envelope) else: self.apply_function(_my_hilbert, picks, np.complex64, n_jobs, n_fft, envelope=envelope) @verbose def filter(self, l_freq, h_freq, picks=None, filter_length='10s', l_trans_bandwidth=0.5, h_trans_bandwidth=0.5, n_jobs=1, method='fft', iir_params=None, verbose=None): """Filter a subset of channels. Applies a zero-phase low-pass, high-pass, band-pass, or band-stop filter to the channels selected by ``picks``. By default the data of the Raw object is modified inplace. The Raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``. ``l_freq`` and ``h_freq`` are the frequencies below which and above which, respectively, to filter out of the data. Thus the uses are: * ``l_freq < h_freq``: band-pass filter * ``l_freq > h_freq``: band-stop filter * ``l_freq is not None and h_freq is None``: high-pass filter * ``l_freq is None and h_freq is not None``: low-pass filter ``self.info['lowpass']`` and ``self.info['highpass']`` are only updated with picks=None. .. note:: If n_jobs > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporaily stored in memory. Parameters ---------- l_freq : float | None Low cut-off frequency in Hz. If None the data are only low-passed. h_freq : float | None High cut-off frequency in Hz. If None the data are only high-passed. picks : array-like of int | None Indices of channels to filter. If None only the data (MEG/EEG) channels will be filtered. filter_length : str (Default: '10s') | int | None Length of the filter to use. If None or "len(x) < filter_length", the filter length used is len(x). Otherwise, if int, overlap-add filtering with a filter of the specified length in samples) is used (faster for long signals). If str, a human-readable time in units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted to the shortest power-of-two length at least that duration. Not used for 'iir' filters. l_trans_bandwidth : float Width of the transition band at the low cut-off frequency in Hz (high pass or cutoff 1 in bandpass). Not used if 'order' is specified in iir_params. h_trans_bandwidth : float Width of the transition band at the high cut-off frequency in Hz (low pass or cutoff 2 in bandpass). Not used if 'order' is specified in iir_params. n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda is installed properly, CUDA is initialized, and method='fft'. method : str 'fft' will use overlap-add FIR filtering, 'iir' will use IIR forward-backward filtering (via filtfilt). iir_params : dict | None Dictionary of parameters to use for IIR filtering. See mne.filter.construct_iir_filter for details. If iir_params is None and method="iir", 4th order Butterworth will be used. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Returns ------- raw : instance of Raw The raw instance with filtered data. See Also -------- mne.Epochs.savgol_filter mne.io.Raw.notch_filter mne.io.Raw.resample """ fs = float(self.info['sfreq']) if l_freq == 0: l_freq = None if h_freq is not None and h_freq > (fs / 2.): h_freq = None if l_freq is not None and not isinstance(l_freq, float): l_freq = float(l_freq) if h_freq is not None and not isinstance(h_freq, float): h_freq = float(h_freq) _check_preload(self, 'raw.filter') if picks is None: picks = _pick_data_or_ica(self.info) # let's be safe. if len(picks) < 1: raise RuntimeError('Could not find any valid channels for ' 'your Raw object. Please contact the ' 'MNE-Python developers.') # update info if filter is applied to all data channels, # and it's not a band-stop filter if h_freq is not None: if (l_freq is None or l_freq < h_freq) and \ (self.info["lowpass"] is None or h_freq < self.info['lowpass']): self.info['lowpass'] = h_freq if l_freq is not None: if (h_freq is None or l_freq < h_freq) and \ (self.info["highpass"] is None or l_freq > self.info['highpass']): self.info['highpass'] = l_freq else: if h_freq is not None or l_freq is not None: logger.info('Filtering a subset of channels. The highpass and ' 'lowpass values in the measurement info will not ' 'be updated.') if l_freq is None and h_freq is not None: logger.info('Low-pass filtering at %0.2g Hz' % h_freq) low_pass_filter(self._data, fs, h_freq, filter_length=filter_length, trans_bandwidth=h_trans_bandwidth, method=method, iir_params=iir_params, picks=picks, n_jobs=n_jobs, copy=False) if l_freq is not None and h_freq is None: logger.info('High-pass filtering at %0.2g Hz' % l_freq) high_pass_filter(self._data, fs, l_freq, filter_length=filter_length, trans_bandwidth=l_trans_bandwidth, method=method, iir_params=iir_params, picks=picks, n_jobs=n_jobs, copy=False) if l_freq is not None and h_freq is not None: if l_freq < h_freq: logger.info('Band-pass filtering from %0.2g - %0.2g Hz' % (l_freq, h_freq)) self._data = band_pass_filter( self._data, fs, l_freq, h_freq, filter_length=filter_length, l_trans_bandwidth=l_trans_bandwidth, h_trans_bandwidth=h_trans_bandwidth, method=method, iir_params=iir_params, picks=picks, n_jobs=n_jobs, copy=False) else: logger.info('Band-stop filtering from %0.2g - %0.2g Hz' % (h_freq, l_freq)) self._data = band_stop_filter( self._data, fs, h_freq, l_freq, filter_length=filter_length, l_trans_bandwidth=h_trans_bandwidth, h_trans_bandwidth=l_trans_bandwidth, method=method, iir_params=iir_params, picks=picks, n_jobs=n_jobs, copy=False) return self @verbose def notch_filter(self, freqs, picks=None, filter_length='10s', notch_widths=None, trans_bandwidth=1.0, n_jobs=1, method='fft', iir_params=None, mt_bandwidth=None, p_value=0.05, verbose=None): """Notch filter a subset of channels. Applies a zero-phase notch filter to the channels selected by "picks". By default the data of the Raw object is modified inplace. The Raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``. .. note:: If n_jobs > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporaily stored in memory. Parameters ---------- freqs : float | array of float | None Specific frequencies to filter out from data, e.g., np.arange(60, 241, 60) in the US or np.arange(50, 251, 50) in Europe. None can only be used with the mode 'spectrum_fit', where an F test is used to find sinusoidal components. picks : array-like of int | None Indices of channels to filter. If None only the data (MEG/EEG) channels will be filtered. filter_length : str (Default: '10s') | int | None Length of the filter to use. If None or "len(x) < filter_length", the filter length used is len(x). Otherwise, if int, overlap-add filtering with a filter of the specified length in samples) is used (faster for long signals). If str, a human-readable time in units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted to the shortest power-of-two length at least that duration. Not used for 'iir' filters. notch_widths : float | array of float | None Width of each stop band (centred at each freq in freqs) in Hz. If None, freqs / 200 is used. trans_bandwidth : float Width of the transition band in Hz. n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda is installed properly, CUDA is initialized, and method='fft'. method : str 'fft' will use overlap-add FIR filtering, 'iir' will use IIR forward-backward filtering (via filtfilt). 'spectrum_fit' will use multi-taper estimation of sinusoidal components. iir_params : dict | None Dictionary of parameters to use for IIR filtering. See mne.filter.construct_iir_filter for details. If iir_params is None and method="iir", 4th order Butterworth will be used. mt_bandwidth : float | None The bandwidth of the multitaper windowing function in Hz. Only used in 'spectrum_fit' mode. p_value : float p-value to use in F-test thresholding to determine significant sinusoidal components to remove when method='spectrum_fit' and freqs=None. Note that this will be Bonferroni corrected for the number of frequencies, so large p-values may be justified. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Returns ------- raw : instance of Raw The raw instance with filtered data. See Also -------- mne.io.Raw.filter Notes ----- For details, see :func:`mne.filter.notch_filter`. """ fs = float(self.info['sfreq']) if picks is None: picks = _pick_data_or_ica(self.info) # let's be safe. if len(picks) < 1: raise RuntimeError('Could not find any valid channels for ' 'your Raw object. Please contact the ' 'MNE-Python developers.') _check_preload(self, 'raw.notch_filter') self._data = notch_filter( self._data, fs, freqs, filter_length=filter_length, notch_widths=notch_widths, trans_bandwidth=trans_bandwidth, method=method, iir_params=iir_params, mt_bandwidth=mt_bandwidth, p_value=p_value, picks=picks, n_jobs=n_jobs, copy=False) return self @verbose def resample(self, sfreq, npad='auto', window='boxcar', stim_picks=None, n_jobs=1, events=None, copy=None, verbose=None): """Resample all channels. The Raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``. .. warning:: The intended purpose of this function is primarily to speed up computations (e.g., projection calculation) when precise timing of events is not required, as downsampling raw data effectively jitters trigger timings. It is generally recommended not to epoch downsampled data, but instead epoch and then downsample, as epoching downsampled data jitters triggers. For more, see `this illustrative gist <https://gist.github.com/Eric89GXL/01642cb3789992fbca59>`_. If resampling the continuous data is desired, it is recommended to construct events using the original data. The event onsets can be jointly resampled with the raw data using the 'events' parameter. Parameters ---------- sfreq : float New sample rate to use. npad : int | str Amount to pad the start and end of the data. Can also be "auto" to use a padding that will result in a power-of-two size (can be much faster). window : string or tuple Frequency-domain window to use in resampling. See :func:`scipy.signal.resample`. stim_picks : array of int | None Stim channels. These channels are simply subsampled or supersampled (without applying any filtering). This reduces resampling artifacts in stim channels, but may lead to missing triggers. If None, stim channels are automatically chosen using :func:`mne.pick_types`. n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda is installed properly and CUDA is initialized. events : 2D array, shape (n_events, 3) | None An optional event matrix. When specified, the onsets of the events are resampled jointly with the data. copy : bool Whether to operate on a copy of the data (True) or modify data in-place (False). Defaults to False. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Returns ------- raw : instance of Raw The resampled version of the raw object. See Also -------- mne.io.Raw.filter mne.Epochs.resample Notes ----- For some data, it may be more accurate to use ``npad=0`` to reduce artifacts. This is dataset dependent -- check your data! """ # noqa _check_preload(self, 'raw.resample') inst = _check_copy_dep(self, copy) # When no event object is supplied, some basic detection of dropped # events is performed to generate a warning. Finding events can fail # for a variety of reasons, e.g. if no stim channel is present or it is # corrupted. This should not stop the resampling from working. The # warning should simply not be generated in this case. if events is None: try: original_events = find_events(inst) except: pass sfreq = float(sfreq) o_sfreq = float(inst.info['sfreq']) offsets = np.concatenate(([0], np.cumsum(inst._raw_lengths))) new_data = list() ratio = sfreq / o_sfreq # set up stim channel processing if stim_picks is None: stim_picks = pick_types(inst.info, meg=False, ref_meg=False, stim=True, exclude=[]) stim_picks = np.asanyarray(stim_picks) for ri in range(len(inst._raw_lengths)): data_chunk = inst._data[:, offsets[ri]:offsets[ri + 1]] new_data.append(resample(data_chunk, sfreq, o_sfreq, npad, window=window, n_jobs=n_jobs)) new_ntimes = new_data[ri].shape[1] # In empirical testing, it was faster to resample all channels # (above) and then replace the stim channels than it was to only # resample the proper subset of channels and then use np.insert() # to restore the stims. if len(stim_picks) > 0: stim_resampled = _resample_stim_channels( data_chunk[stim_picks], new_data[ri].shape[1], data_chunk.shape[1]) new_data[ri][stim_picks] = stim_resampled inst._first_samps[ri] = int(inst._first_samps[ri] * ratio) inst._last_samps[ri] = inst._first_samps[ri] + new_ntimes - 1 inst._raw_lengths[ri] = new_ntimes inst._data = np.concatenate(new_data, axis=1) inst.info['sfreq'] = sfreq if inst.info.get('lowpass') is not None: inst.info['lowpass'] = min(inst.info['lowpass'], sfreq / 2.) inst._update_times() # See the comment above why we ignore all errors here. if events is None: try: # Did we loose events? resampled_events = find_events(inst) if len(resampled_events) != len(original_events): warn('Resampling of the stim channels caused event ' 'information to become unreliable. Consider finding ' 'events on the original data and passing the event ' 'matrix as a parameter.') except: pass return inst else: if copy: events = events.copy() events[:, 0] = np.minimum( np.round(events[:, 0] * ratio).astype(int), inst._data.shape[1] ) return inst, events def crop(self, tmin=0.0, tmax=None, copy=None): """Crop raw data file. Limit the data from the raw file to go between specific times. Note that the new tmin is assumed to be t=0 for all subsequently called functions (e.g., time_as_index, or Epochs). New first_samp and last_samp are set accordingly. Parameters ---------- tmin : float New start time in seconds (must be >= 0). tmax : float | None New end time in seconds of the data (cannot exceed data duration). copy : bool This parameter has been deprecated and will be removed in 0.14. Use inst.copy() instead. Whether to return a new instance or modify in place. Returns ------- raw : instance of Raw The cropped raw object. """ raw = _check_copy_dep(self, copy) max_time = (raw.n_times - 1) / raw.info['sfreq'] if tmax is None: tmax = max_time if tmin > tmax: raise ValueError('tmin must be less than tmax') if tmin < 0.0: raise ValueError('tmin must be >= 0') elif tmax > max_time: raise ValueError('tmax must be less than or equal to the max raw ' 'time (%0.4f sec)' % max_time) smin, smax = np.where(_time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq']))[0][[0, -1]] cumul_lens = np.concatenate(([0], np.array(raw._raw_lengths, dtype='int'))) cumul_lens = np.cumsum(cumul_lens) keepers = np.logical_and(np.less(smin, cumul_lens[1:]), np.greater_equal(smax, cumul_lens[:-1])) keepers = np.where(keepers)[0] raw._first_samps = np.atleast_1d(raw._first_samps[keepers]) # Adjust first_samp of first used file! raw._first_samps[0] += smin - cumul_lens[keepers[0]] raw._last_samps = np.atleast_1d(raw._last_samps[keepers]) raw._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax raw._raw_extras = [r for ri, r in enumerate(raw._raw_extras) if ri in keepers] raw._filenames = [r for ri, r in enumerate(raw._filenames) if ri in keepers] if raw.preload: # slice and copy to avoid the reference to large array raw._data = raw._data[:, smin:smax + 1].copy() raw._update_times() return raw @verbose def save(self, fname, picks=None, tmin=0, tmax=None, buffer_size_sec=10, drop_small_buffer=False, proj=False, fmt='single', overwrite=False, split_size='2GB', verbose=None): """Save raw data to file Parameters ---------- fname : string File name of the new dataset. This has to be a new filename unless data have been preloaded. Filenames should end with raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz, raw_tsss.fif or raw_tsss.fif.gz. picks : array-like of int | None Indices of channels to include. If None all channels are kept. tmin : float | None Time in seconds of first sample to save. If None first sample is used. tmax : float | None Time in seconds of last sample to save. If None last sample is used. buffer_size_sec : float | None Size of data chunks in seconds. If None, the buffer size of the original file is used. drop_small_buffer : bool Drop or not the last buffer. It is required by maxfilter (SSS) that only accepts raw files with buffers of the same size. proj : bool If True the data is saved with the projections applied (active). .. note:: If ``apply_proj()`` was used to apply the projections, the projectons will be active even if ``proj`` is False. fmt : str Format to use to save raw data. Valid options are 'double', 'single', 'int', and 'short' for 64- or 32-bit float, or 32- or 16-bit integers, respectively. It is **strongly** recommended to use 'single', as this is backward-compatible, and is standard for maintaining precision. Note that using 'short' or 'int' may result in loss of precision, complex data cannot be saved as 'short', and neither complex data types nor real data stored as 'double' can be loaded with the MNE command-line tools. See raw.orig_format to determine the format the original data were stored in. overwrite : bool If True, the destination file (if it exists) will be overwritten. If False (default), an error will be raised if the file exists. split_size : string | int Large raw files are automatically split into multiple pieces. This parameter specifies the maximum size of each piece. If the parameter is an integer, it specifies the size in Bytes. It is also possible to pass a human-readable string, e.g., 100MB. .. note:: Due to FIFF file limitations, the maximum split size is 2GB. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Defaults to self.verbose. Notes ----- If Raw is a concatenation of several raw files, **be warned** that only the measurement information from the first raw file is stored. This likely means that certain operations with external tools may not work properly on a saved concatenated file (e.g., probably some or all forms of SSS). It is recommended not to concatenate and then save raw files for this reason. """ check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif', 'raw_tsss.fif', 'raw.fif.gz', 'raw_sss.fif.gz', 'raw_tsss.fif.gz')) split_size = _get_split_size(split_size) fname = op.realpath(fname) if not self.preload and fname in self._filenames: raise ValueError('You cannot save data to the same file.' ' Please use a different filename.') if self.preload: if np.iscomplexobj(self._data): warn('Saving raw file with complex data. Loading with ' 'command-line MNE tools will not work.') type_dict = dict(short=FIFF.FIFFT_DAU_PACK16, int=FIFF.FIFFT_INT, single=FIFF.FIFFT_FLOAT, double=FIFF.FIFFT_DOUBLE) if fmt not in type_dict.keys(): raise ValueError('fmt must be "short", "int", "single", ' 'or "double"') reset_dict = dict(short=False, int=False, single=True, double=True) reset_range = reset_dict[fmt] data_type = type_dict[fmt] data_test = self[0, 0][0] if fmt == 'short' and np.iscomplexobj(data_test): raise ValueError('Complex data must be saved as "single" or ' '"double", not "short"') # check for file existence _check_fname(fname, overwrite) if proj: info = copy.deepcopy(self.info) projector, info = setup_proj(info) activate_proj(info['projs'], copy=False) else: info = self.info projector = None # set the correct compensation grade and make inverse compensator inv_comp = None if self.comp is not None: inv_comp = linalg.inv(self.comp) set_current_comp(info, self._orig_comp_grade) # # Set up the reading parameters # # Convert to samples start = int(np.floor(tmin * self.info['sfreq'])) # "stop" is the first sample *not* to save, so we need +1's here if tmax is None: stop = np.inf else: stop = self.time_as_index(float(tmax), use_rounding=True)[0] + 1 stop = min(stop, self.last_samp - self.first_samp + 1) buffer_size = self._get_buffer_size(buffer_size_sec) # write the raw file _write_raw(fname, self, info, picks, fmt, data_type, reset_range, start, stop, buffer_size, projector, inv_comp, drop_small_buffer, split_size, 0, None) def plot(self, events=None, duration=10.0, start=0.0, n_channels=20, bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8), event_color='cyan', scalings=None, remove_dc=True, order='type', show_options=False, title=None, show=True, block=False, highpass=None, lowpass=None, filtorder=4, clipping=None): """Plot raw data Parameters ---------- events : array | None Events to show with vertical bars. duration : float Time window (sec) to plot in a given time. start : float Initial time to show (can be changed dynamically once plotted). n_channels : int Number of channels to plot at once. Defaults to 20. bgcolor : color object Color of the background. color : dict | color object | None Color for the data traces. If None, defaults to:: dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='r', emg='k', ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k') bad_color : color object Color to make bad channels. event_color : color object Color to use for events. scalings : dict | None Scaling factors for the traces. If any fields in scalings are 'auto', the scaling factor is set to match the 99.5th percentile of a subset of the corresponding data. If scalings == 'auto', all scalings fields are set to 'auto'. If any fields are 'auto' and data is not preloaded, a subset of times up to 100mb will be loaded. If None, defaults to:: dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4) remove_dc : bool If True remove DC component when plotting data. order : 'type' | 'original' | array Order in which to plot data. 'type' groups by channel type, 'original' plots in the order of ch_names, array gives the indices to use in plotting. show_options : bool If True, a dialog for options related to projection is shown. title : str | None The title of the window. If None, and either the filename of the raw object or '<unknown>' will be displayed as title. show : bool Show figures if True block : bool Whether to halt program execution until the figure is closed. Useful for setting bad channels on the fly (click on line). May not work on all systems / platforms. highpass : float | None Highpass to apply when displaying data. lowpass : float | None Lowpass to apply when displaying data. filtorder : int Filtering order. Note that for efficiency and simplicity, filtering during plotting uses forward-backward IIR filtering, so the effective filter order will be twice ``filtorder``. Filtering the lines for display may also produce some edge artifacts (at the left and right edges) of the signals during display. Filtering requires scipy >= 0.10. clipping : str | None If None, channels are allowed to exceed their designated bounds in the plot. If "clamp", then values are clamped to the appropriate range for display, creating step-like artifacts. If "transparent", then excessive values are not shown, creating gaps in the traces. Returns ------- fig : Instance of matplotlib.figure.Figure Raw traces. Notes ----- The arrow keys (up/down/left/right) can typically be used to navigate between channels and time ranges, but this depends on the backend matplotlib is configured to use (e.g., mpl.use('TkAgg') should work). The scaling can be adjusted with - and + (or =) keys. The viewport dimensions can be adjusted with page up/page down and home/end keys. Full screen mode can be to toggled with f11 key. To mark or un-mark a channel as bad, click on the rather flat segments of a channel's time series. The changes will be reflected immediately in the raw object's ``raw.info['bads']`` entry. """ return plot_raw(self, events, duration, start, n_channels, bgcolor, color, bad_color, event_color, scalings, remove_dc, order, show_options, title, show, block, highpass, lowpass, filtorder, clipping) @verbose def plot_psd(self, tmin=0.0, tmax=60.0, fmin=0, fmax=np.inf, proj=False, n_fft=2048, picks=None, ax=None, color='black', area_mode='std', area_alpha=0.33, n_overlap=0, dB=True, show=True, n_jobs=1, verbose=None): """Plot the power spectral density across channels Parameters ---------- tmin : float Start time for calculations. tmax : float End time for calculations. fmin : float Start frequency to consider. fmax : float End frequency to consider. proj : bool Apply projection. n_fft : int Number of points to use in Welch FFT calculations. picks : array-like of int | None List of channels to use. Cannot be None if `ax` is supplied. If both `picks` and `ax` are None, separate subplots will be created for each standard channel type (`mag`, `grad`, and `eeg`). ax : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. color : str | tuple A matplotlib-compatible color to use. area_mode : str | None How to plot area. If 'std', the mean +/- 1 STD (across channels) will be plotted. If 'range', the min and max (across channels) will be plotted. Bad channels will be excluded from these calculations. If None, no area will be plotted. area_alpha : float Alpha for the area. n_overlap : int The number of points of overlap between blocks. The default value is 0 (no overlap). dB : bool If True, transform data to decibels. show : bool Call pyplot.show() at the end. n_jobs : int Number of jobs to run in parallel. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : instance of matplotlib figure Figure with frequency spectra of the data channels. """ return plot_raw_psd(self, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, proj=proj, n_fft=n_fft, picks=picks, ax=ax, color=color, area_mode=area_mode, area_alpha=area_alpha, n_overlap=n_overlap, dB=dB, show=show, n_jobs=n_jobs) def plot_psd_topo(self, tmin=0., tmax=None, fmin=0, fmax=100, proj=False, n_fft=2048, n_overlap=0, layout=None, color='w', fig_facecolor='k', axis_facecolor='k', dB=True, show=True, n_jobs=1, verbose=None): """Function for plotting channel wise frequency spectra as topography. Parameters ---------- tmin : float Start time for calculations. Defaults to zero. tmax : float | None End time for calculations. If None (default), the end of data is used. fmin : float Start frequency to consider. Defaults to zero. fmax : float End frequency to consider. Defaults to 100. proj : bool Apply projection. Defaults to False. n_fft : int Number of points to use in Welch FFT calculations. Defaults to 2048. n_overlap : int The number of points of overlap between blocks. Defaults to 0 (no overlap). layout : instance of Layout | None Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If None (default), the correct layout is inferred from the data. color : str | tuple A matplotlib-compatible color to use for the curves. Defaults to white. fig_facecolor : str | tuple A matplotlib-compatible color to use for the figure background. Defaults to black. axis_facecolor : str | tuple A matplotlib-compatible color to use for the axis background. Defaults to black. dB : bool If True, transform data to decibels. Defaults to True. show : bool Show figure if True. Defaults to True. n_jobs : int Number of jobs to run in parallel. Defaults to 1. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ return plot_raw_psd_topo(self, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, proj=proj, n_fft=n_fft, n_overlap=n_overlap, layout=layout, color=color, fig_facecolor=fig_facecolor, axis_facecolor=axis_facecolor, dB=dB, show=show, n_jobs=n_jobs, verbose=verbose) def estimate_rank(self, tstart=0.0, tstop=30.0, tol=1e-4, return_singular=False, picks=None, scalings='norm'): """Estimate rank of the raw data This function is meant to provide a reasonable estimate of the rank. The true rank of the data depends on many factors, so use at your own risk. Parameters ---------- tstart : float Start time to use for rank estimation. Default is 0.0. tstop : float | None End time to use for rank estimation. Default is 30.0. If None, the end time of the raw file is used. tol : float Tolerance for singular values to consider non-zero in calculating the rank. The singular values are calculated in this method such that independent data are expected to have singular value around one. return_singular : bool If True, also return the singular values that were used to determine the rank. picks : array_like of int, shape (n_selected_channels,) The channels to be considered for rank estimation. If None (default) meg and eeg channels are included. scalings : dict | 'norm' To achieve reliable rank estimation on multiple sensors, sensors have to be rescaled. This parameter controls the rescaling. If dict, it will update the following dict of defaults: dict(mag=1e11, grad=1e9, eeg=1e5) If 'norm' data will be scaled by internally computed channel-wise norms. Defaults to 'norm'. Returns ------- rank : int Estimated rank of the data. s : array If return_singular is True, the singular values that were thresholded to determine the rank are also returned. Notes ----- If data are not pre-loaded, the appropriate data will be loaded by this function (can be memory intensive). Projectors are not taken into account unless they have been applied to the data using apply_proj(), since it is not always possible to tell whether or not projectors have been applied previously. Bad channels will be excluded from calculations. """ from ..cov import _estimate_rank_meeg_signals start = max(0, self.time_as_index(tstart)[0]) if tstop is None: stop = self.n_times - 1 else: stop = min(self.n_times - 1, self.time_as_index(tstop)[0]) tslice = slice(start, stop + 1) if picks is None: picks = _pick_data_channels(self.info, exclude='bads', with_ref_meg=False) # ensure we don't get a view of data if len(picks) == 1: return 1.0, 1.0 # this should already be a copy, so we can overwrite it data = self[picks, tslice][0] out = _estimate_rank_meeg_signals( data, pick_info(self.info, picks), scalings=scalings, tol=tol, return_singular=return_singular) return out @property def ch_names(self): """Channel names""" return self.info['ch_names'] @property def times(self): """Time points""" return self._times @property def n_times(self): """Number of time points""" return self.last_samp - self.first_samp + 1 def __len__(self): """The number of time points Returns ------- len : int The number of time points. Examples -------- This can be used as:: >>> len(raw) # doctest: +SKIP 1000 """ return self.n_times def load_bad_channels(self, bad_file=None, force=False): """ Mark channels as bad from a text file This function operates mostly in the style of the C function ``mne_mark_bad_channels``. Parameters ---------- bad_file : string File name of the text file containing bad channels If bad_file = None, bad channels are cleared, but this is more easily done directly as raw.info['bads'] = []. force : boolean Whether or not to force bad channel marking (of those that exist) if channels are not found, instead of raising an error. """ if bad_file is not None: # Check to make sure bad channels are there names = frozenset(self.info['ch_names']) with open(bad_file) as fid: bad_names = [l for l in fid.read().splitlines() if l] names_there = [ci for ci in bad_names if ci in names] count_diff = len(bad_names) - len(names_there) if count_diff > 0: if not force: raise ValueError('Bad channels from:\n%s\n not found ' 'in:\n%s' % (bad_file, self._filenames[0])) else: warn('%d bad channels from:\n%s\nnot found in:\n%s' % (count_diff, bad_file, self._filenames[0])) self.info['bads'] = names_there else: self.info['bads'] = [] def append(self, raws, preload=None): """Concatenate raw instances as if they were continuous Parameters ---------- raws : list, or Raw instance list of Raw instances to concatenate to the current instance (in order), or a single raw instance to concatenate. preload : bool, str, or None (default None) Preload data into memory for data manipulation and faster indexing. If True, the data will be preloaded into memory (fast, requires large amount of memory). If preload is a string, preload is the file name of a memory-mapped file which is used to store the data on the hard drive (slower, requires less memory). If preload is None, preload=True or False is inferred using the preload status of the raw files passed in. """ if not isinstance(raws, list): raws = [raws] # make sure the raws are compatible all_raws = [self] all_raws += raws _check_raw_compatibility(all_raws) # deal with preloading data first (while files are separate) all_preloaded = self.preload and all(r.preload for r in raws) if preload is None: if all_preloaded: preload = True else: preload = False if preload is False: if self.preload: self._data = None self.preload = False else: # do the concatenation ourselves since preload might be a string nchan = self.info['nchan'] c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)]) nsamp = c_ns[-1] if not self.preload: this_data = self._read_segment() else: this_data = self._data # allocate the buffer if isinstance(preload, string_types): _data = np.memmap(preload, mode='w+', dtype=this_data.dtype, shape=(nchan, nsamp)) else: _data = np.empty((nchan, nsamp), dtype=this_data.dtype) _data[:, 0:c_ns[0]] = this_data for ri in range(len(raws)): if not raws[ri].preload: # read the data directly into the buffer data_buffer = _data[:, c_ns[ri]:c_ns[ri + 1]] raws[ri]._read_segment(data_buffer=data_buffer) else: _data[:, c_ns[ri]:c_ns[ri + 1]] = raws[ri]._data self._data = _data self.preload = True # now combine information from each raw file to construct new self for r in raws: self._first_samps = np.r_[self._first_samps, r._first_samps] self._last_samps = np.r_[self._last_samps, r._last_samps] self._raw_extras += r._raw_extras self._filenames += r._filenames self.annotations = _combine_annotations((self.annotations, r.annotations), self._last_samps, self._first_samps, self.info['sfreq']) self._update_times() if not (len(self._first_samps) == len(self._last_samps) == len(self._raw_extras) == len(self._filenames)): raise RuntimeError('Append error') # should never happen def close(self): """Clean up the object. Does nothing for objects that close their file descriptors. Things like RawFIF will override this method. """ pass def copy(self): """ Return copy of Raw instance """ return deepcopy(self) def __repr__(self): name = self._filenames[0] name = 'None' if name is None else op.basename(name) s = ('%s, n_channels x n_times : %s x %s (%0.1f sec)' % (name, len(self.ch_names), self.n_times, self.times[-1])) return "<%s | %s>" % (self.__class__.__name__, s) def add_events(self, events, stim_channel=None): """Add events to stim channel Parameters ---------- events : ndarray, shape (n_events, 3) Events to add. The first column specifies the sample number of each event, the second column is ignored, and the third column provides the event value. If events already exist in the Raw instance at the given sample numbers, the event values will be added together. stim_channel : str | None Name of the stim channel to add to. If None, the config variable 'MNE_STIM_CHANNEL' is used. If this is not found, it will default to 'STI 014'. Notes ----- Data must be preloaded in order to add events. """ if not self.preload: raise RuntimeError('cannot add events unless data are preloaded') events = np.asarray(events) if events.ndim != 2 or events.shape[1] != 3: raise ValueError('events must be shape (n_events, 3)') stim_channel = _get_stim_channel(stim_channel, self.info) pick = pick_channels(self.ch_names, stim_channel) if len(pick) == 0: raise ValueError('Channel %s not found' % stim_channel) pick = pick[0] idx = events[:, 0].astype(int) if np.any(idx < self.first_samp) or np.any(idx > self.last_samp): raise ValueError('event sample numbers must be between %s and %s' % (self.first_samp, self.last_samp)) if not all(idx == events[:, 0]): raise ValueError('event sample numbers must be integers') self._data[pick, idx - self.first_samp] += events[:, 2] def _get_buffer_size(self, buffer_size_sec=None): """Helper to get the buffer size""" if buffer_size_sec is None: if 'buffer_size_sec' in self.info: buffer_size_sec = self.info['buffer_size_sec'] else: buffer_size_sec = 10.0 return int(np.ceil(buffer_size_sec * self.info['sfreq'])) def _check_preload(raw, msg): """Helper to ensure data are preloaded""" if not raw.preload: raise RuntimeError(msg + ' requires raw data to be loaded. Use ' 'preload=True (or string) in the constructor or ' 'raw.load_data().') def _allocate_data(data, data_buffer, data_shape, dtype): """Helper to data in memory or in memmap for preloading""" if data is None: # if not already done, allocate array with right type if isinstance(data_buffer, string_types): # use a memmap data = np.memmap(data_buffer, mode='w+', dtype=dtype, shape=data_shape) else: data = np.zeros(data_shape, dtype=dtype) return data def _index_as_time(index, sfreq, first_samp=0, use_first_samp=False): """Convert indices to time Parameters ---------- index : list-like | int List of ints or int representing points in time. use_first_samp : boolean If True, the time returned is relative to the session onset, else relative to the recording onset. Returns ------- times : ndarray Times corresponding to the index supplied. """ times = np.atleast_1d(index) + (first_samp if use_first_samp else 0) return times / sfreq class _RawShell(): """Used for creating a temporary raw object""" def __init__(self): self.first_samp = None self.last_samp = None self._cals = None self._rawdir = None self._projector = None @property def n_times(self): return self.last_samp - self.first_samp + 1 ############################################################################### # Writing def _write_raw(fname, raw, info, picks, fmt, data_type, reset_range, start, stop, buffer_size, projector, inv_comp, drop_small_buffer, split_size, part_idx, prev_fname): """Write raw file with splitting """ # we've done something wrong if we hit this n_times_max = len(raw.times) if start >= stop or stop > n_times_max: raise RuntimeError('Cannot write raw file with no data: %s -> %s ' '(max: %s) requested' % (start, stop, n_times_max)) if part_idx > 0: # insert index in filename base, ext = op.splitext(fname) use_fname = '%s-%d%s' % (base, part_idx, ext) else: use_fname = fname logger.info('Writing %s' % use_fname) fid, cals = _start_writing_raw(use_fname, info, picks, data_type, reset_range, raw.annotations) use_picks = slice(None) if picks is None else picks first_samp = raw.first_samp + start if first_samp != 0: write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp) # previous file name and id if part_idx > 0 and prev_fname is not None: start_block(fid, FIFF.FIFFB_REF) write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE) write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname) if info['meas_id'] is not None: write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id']) write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx - 1) end_block(fid, FIFF.FIFFB_REF) pos_prev = fid.tell() if pos_prev > split_size: raise ValueError('file is larger than "split_size" after writing ' 'measurement information, you must use a larger ' 'value for split size: %s plus enough bytes for ' 'the chosen buffer_size' % pos_prev) next_file_buffer = 2 ** 20 # extra cushion for last few post-data tags for first in range(start, stop, buffer_size): # Write blocks <= buffer_size in size last = min(first + buffer_size, stop) data, times = raw[use_picks, first:last] assert len(times) == last - first if projector is not None: data = np.dot(projector, data) if ((drop_small_buffer and (first > start) and (len(times) < buffer_size))): logger.info('Skipping data chunk due to small buffer ... ' '[done]') break logger.info('Writing ...') _write_raw_buffer(fid, data, cals, fmt, inv_comp) pos = fid.tell() this_buff_size_bytes = pos - pos_prev overage = pos - split_size + next_file_buffer if overage > 0: # This should occur on the first buffer write of the file, so # we should mention the space required for the meas info raise ValueError( 'buffer size (%s) is too large for the given split size (%s) ' 'by %s bytes after writing info (%s) and leaving enough space ' 'for end tags (%s): decrease "buffer_size_sec" or increase ' '"split_size".' % (this_buff_size_bytes, split_size, overage, pos_prev, next_file_buffer)) # Split files if necessary, leave some space for next file info # make sure we check to make sure we actually *need* another buffer # with the "and" check if pos >= split_size - this_buff_size_bytes - next_file_buffer and \ first + buffer_size < stop: next_fname, next_idx = _write_raw( fname, raw, info, picks, fmt, data_type, reset_range, first + buffer_size, stop, buffer_size, projector, inv_comp, drop_small_buffer, split_size, part_idx + 1, use_fname) start_block(fid, FIFF.FIFFB_REF) write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE) write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname)) if info['meas_id'] is not None: write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id']) write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx) end_block(fid, FIFF.FIFFB_REF) break pos_prev = pos logger.info('Closing %s [done]' % use_fname) if info.get('maxshield', False): end_block(fid, FIFF.FIFFB_SMSH_RAW_DATA) else: end_block(fid, FIFF.FIFFB_RAW_DATA) end_block(fid, FIFF.FIFFB_MEAS) end_file(fid) return use_fname, part_idx def _start_writing_raw(name, info, sel=None, data_type=FIFF.FIFFT_FLOAT, reset_range=True, annotations=None): """Start write raw data in file Data will be written in float Parameters ---------- name : string Name of the file to create. info : dict Measurement info. sel : array of int, optional Indices of channels to include. By default all channels are included. data_type : int The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT), 5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data. reset_range : bool If True, the info['chs'][k]['range'] parameter will be set to unity. annotations : instance of Annotations or None The annotations to write. Returns ------- fid : file The file descriptor. cals : list calibration factors. """ # # Measurement info # info = pick_info(info, sel) # # Create the file and save the essentials # fid = start_file(name) start_block(fid, FIFF.FIFFB_MEAS) write_id(fid, FIFF.FIFF_BLOCK_ID) if info['meas_id'] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id']) cals = [] for k in range(info['nchan']): # # Scan numbers may have been messed up # info['chs'][k]['scanno'] = k + 1 # scanno starts at 1 in FIF format if reset_range is True: info['chs'][k]['range'] = 1.0 cals.append(info['chs'][k]['cal'] * info['chs'][k]['range']) write_meas_info(fid, info, data_type=data_type, reset_range=reset_range) # # Annotations # if annotations is not None: start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS) write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset) write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, annotations.duration + annotations.onset) # To allow : in description, they need to be replaced for serialization write_name_list(fid, FIFF.FIFF_COMMENT, [d.replace(':', ';') for d in annotations.description]) if annotations.orig_time is not None: write_double(fid, FIFF.FIFF_MEAS_DATE, annotations.orig_time) end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS) # # Start the raw data # if info.get('maxshield', False): start_block(fid, FIFF.FIFFB_SMSH_RAW_DATA) else: start_block(fid, FIFF.FIFFB_RAW_DATA) return fid, cals def _write_raw_buffer(fid, buf, cals, fmt, inv_comp): """Write raw buffer Parameters ---------- fid : file descriptor an open raw data file. buf : array The buffer to write. cals : array Calibration factors. fmt : str 'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit float for each item. This will be doubled for complex datatypes. Note that short and int formats cannot be used for complex data. inv_comp : array | None The CTF compensation matrix used to revert compensation change when reading. """ if buf.shape[0] != len(cals): raise ValueError('buffer and calibration sizes do not match') if fmt not in ['short', 'int', 'single', 'double']: raise ValueError('fmt must be "short", "single", or "double"') if np.isrealobj(buf): if fmt == 'short': write_function = write_dau_pack16 elif fmt == 'int': write_function = write_int elif fmt == 'single': write_function = write_float else: write_function = write_double else: if fmt == 'single': write_function = write_complex64 elif fmt == 'double': write_function = write_complex128 else: raise ValueError('only "single" and "double" supported for ' 'writing complex data') if inv_comp is not None: buf = np.dot(inv_comp / np.ravel(cals)[:, None], buf) else: buf = buf / np.ravel(cals)[:, None] write_function(fid, FIFF.FIFF_DATA_BUFFER, buf) def _my_hilbert(x, n_fft=None, envelope=False): """ Compute Hilbert transform of signals w/ zero padding. Parameters ---------- x : array, shape (n_times) The signal to convert n_fft : int, length > x.shape[-1] | None How much to pad the signal before Hilbert transform. Note that signal will then be cut back to original length. envelope : bool Whether to compute amplitude of the hilbert transform in order to return the signal envelope. Returns ------- out : array, shape (n_times) The hilbert transform of the signal, or the envelope. """ from scipy.signal import hilbert n_fft = x.shape[-1] if n_fft is None else n_fft n_x = x.shape[-1] out = hilbert(x, N=n_fft)[:n_x] if envelope is True: out = np.abs(out) return out def _check_raw_compatibility(raw): """Check to make sure all instances of Raw in the input list raw have compatible parameters""" for ri in range(1, len(raw)): if not isinstance(raw[ri], type(raw[0])): raise ValueError('raw[%d] type must match' % ri) if not raw[ri].info['nchan'] == raw[0].info['nchan']: raise ValueError('raw[%d][\'info\'][\'nchan\'] must match' % ri) if not raw[ri].info['bads'] == raw[0].info['bads']: raise ValueError('raw[%d][\'info\'][\'bads\'] must match' % ri) if not raw[ri].info['sfreq'] == raw[0].info['sfreq']: raise ValueError('raw[%d][\'info\'][\'sfreq\'] must match' % ri) if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']): raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri) if not all(raw[ri]._cals == raw[0]._cals): raise ValueError('raw[%d]._cals must match' % ri) if len(raw[0].info['projs']) != len(raw[ri].info['projs']): raise ValueError('SSP projectors in raw files must be the same') if not all(_proj_equal(p1, p2) for p1, p2 in zip(raw[0].info['projs'], raw[ri].info['projs'])): raise ValueError('SSP projectors in raw files must be the same') if not all(r.orig_format == raw[0].orig_format for r in raw): warn('raw files do not all have the same data format, could result in ' 'precision mismatch. Setting raw.orig_format="unknown"') raw[0].orig_format = 'unknown' def concatenate_raws(raws, preload=None, events_list=None): """Concatenate raw instances as if they were continuous. Note that raws[0] is modified in-place to achieve the concatenation. Parameters ---------- raws : list list of Raw instances to concatenate (in order). preload : bool, or None If None, preload status is inferred using the preload status of the raw files passed in. True or False sets the resulting raw file to have or not have data preloaded. events_list : None | list The events to concatenate. Defaults to None. Returns ------- raw : instance of Raw The result of the concatenation (first Raw instance passed in). events : ndarray of int, shape (n events, 3) The events. Only returned if `event_list` is not None. """ if events_list is not None: if len(events_list) != len(raws): raise ValueError('`raws` and `event_list` are required ' 'to be of the same length') first, last = zip(*[(r.first_samp, r.last_samp) for r in raws]) events = concatenate_events(events_list, first, last) raws[0].append(raws[1:], preload) if events_list is None: return raws[0] else: return raws[0], events def _check_update_montage(info, montage, path=None, update_ch_names=False): """ Helper function for eeg readers to add montage""" if montage is not None: if not isinstance(montage, (string_types, Montage)): err = ("Montage must be str, None, or instance of Montage. " "%s was provided" % type(montage)) raise TypeError(err) if montage is not None: if isinstance(montage, string_types): montage = read_montage(montage, path=path) _set_montage(info, montage, update_ch_names=update_ch_names) missing_positions = [] exclude = (FIFF.FIFFV_EOG_CH, FIFF.FIFFV_MISC_CH, FIFF.FIFFV_STIM_CH) for ch in info['chs']: if not ch['kind'] in exclude: if np.unique(ch['loc']).size == 1: missing_positions.append(ch['ch_name']) # raise error if positions are missing if missing_positions: raise KeyError( "The following positions are missing from the montage " "definitions: %s. If those channels lack positions " "because they are EOG channels use the eog parameter." % str(missing_positions))
bsd-3-clause
fredRos/pypmc
examples/markov_chain.py
1
1798
'''This example illustrates how to run a Markov Chain using pypmc''' import numpy as np import pypmc # define a proposal prop_dof = 1. prop_sigma = np.array([[0.1 , 0. ] ,[0. , 0.02]]) prop = pypmc.density.student_t.LocalStudentT(prop_sigma, prop_dof) # define the target; i.e., the function you want to sample from. # In this case, it is a Gaussian with mean "target_mean" and # covariance "target_sigma". # # Note that the target function "log_target" returns the log of the # unnormalized gaussian density. target_sigma = np.array([[0.01 , 0.003 ] ,[0.003, 0.0025]]) inv_target_sigma = np.linalg.inv(target_sigma) target_mean = np.array([4.3, 1.1]) def unnormalized_log_pdf_gauss(x, mu, inv_sigma): diff = x - mu return -0.5 * diff.dot(inv_sigma).dot(diff) log_target = lambda x: unnormalized_log_pdf_gauss(x, target_mean, inv_target_sigma) # choose a bad initialization start = np.array([-2., 10.]) # define the markov chain object mc = pypmc.sampler.markov_chain.AdaptiveMarkovChain(log_target, prop, start) # run burn-in mc.run(10**4) # delete burn-in from samples mc.clear() # run 100,000 steps adapting the proposal every 500 steps # hereby save the accept count which is returned by mc.run accept_count = 0 for i in range(200): accept_count += mc.run(500) mc.adapt() # extract a reference to the history of all visited points values = mc.samples[:] accept_rate = float(accept_count) / len(values) print("The chain accepted %4.2f%% of the proposed points" % (accept_rate * 100) ) # plot the result try: import matplotlib.pyplot as plt except ImportError: print('For plotting "matplotlib" needs to be installed') exit(1) plt.hexbin(values[:,0], values[:,1], gridsize = 40, cmap='gray_r') plt.show()
gpl-2.0
procoder317/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
tomlof/scikit-learn
sklearn/utils/setup.py
77
2993
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.pyx'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.pyx'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension('murmurhash', sources=['murmurhash.pyx', join( 'src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.pyx', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.pyx'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.pyx'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.pyx'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.pyx'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.pyx"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.pyx"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
Tong-Chen/scikit-learn
examples/exercises/plot_cv_digits.py
7
1177
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial excercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import pylab as pl pl.figure(1, figsize=(4, 3)) pl.clf() pl.semilogx(C_s, scores) pl.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') pl.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = pl.yticks() pl.yticks(locs, map(lambda x: "%g" % x, locs)) pl.ylabel('CV score') pl.xlabel('Parameter C') pl.ylim(0, 1.1) pl.show()
bsd-3-clause
YinongLong/scikit-learn
sklearn/utils/tests/test_multiclass.py
6
13417
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution from sklearn.utils.multiclass import check_classification_targets class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formatted as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that weren't supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_check_classification_targets(): for y_type in EXAMPLES.keys(): if y_type in ["unknown", "continuous", 'continuous-multioutput']: for example in EXAMPLES[y_type]: msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, check_classification_targets, example) else: for example in EXAMPLES[y_type]: check_classification_targets(example) # @ignore_warnings def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
mrawls/APO-1m-phot
compare_tgd.py
1
8531
from __future__ import division import numpy as np import matplotlib.pyplot as plt ''' Compare multiple measurements of Teff, logg, and distance for RG/EBs. ''' dfile = 'RGEB_distinfo.txt' tgfile = '../../RGEB_tefflogg.txt' colors = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00'] # distance file column info KICcol1 = 0 distcol = 7; disterrcol = 8 DR12distcol = 9; DR12disterrcol = 10 # teff & logg file column info KICcol2 = 0 MOOGtcol = 1; MOOGterrcol = 2 MOOGgcol = 3; MOOGgerrcol = 4 MOOGfecol = 5; MOOGfeerrcol = 6 DR12tcol = 7; DR12terrcol = 8 DR12gcol = 9; DR12gerrcol = 10 DR12fecol = 11; DR12feerrcol = 12 Cannontcol = 13; Cannonterrcol = 14 Cannongcol = 15; Cannongerrcol = 16 Cannonfecol = 17; Cannonfeerrcol = 18 KICtcol = 19; KICterrcol = 20 KICgcol = 21; KICgerrcol = 22 KICfecol = 23; KICfeerrcol = 24 MESAtcol = 25; MESAterrcol = 26 MESAgcol = 27; MESAgerrcol = 28 # logg column info only ELCgcol = 29; ELCgerrcol = 30 Seismicgcol = 31; Seismicgerrcol = 32 # we'll use KICcol1 as the master target list because it's numerically sorted KICs = np.loadtxt(dfile, comments='#', usecols=(0,), unpack=True) KICtgs = np.loadtxt(tgfile, comments='#', usecols=(0,), unpack=True) # create x axis label string list strKICs = [' ',] for KIC in KICs: strKICs.append(str(int(KIC))) strKICs.append(' ') xaxis = np.arange(0,len(KICs)) # load the rest of the data (distances) dists = np.loadtxt(dfile, comments='#', usecols=(distcol, disterrcol), unpack=True) DR12ds = np.loadtxt(dfile, comments='#', usecols=(DR12distcol, DR12disterrcol), unpack=True) # load the rest of the data (teffs, loggs) MOOGts = np.loadtxt(tgfile, comments='#', usecols=(MOOGtcol, MOOGterrcol), unpack=True) MOOGgs = np.loadtxt(tgfile, comments='#', usecols=(MOOGgcol, MOOGgerrcol), unpack=True) MOOGfes = np.loadtxt(tgfile, comments='#', usecols=(MOOGfecol, MOOGfeerrcol), unpack=True) DR12ts = np.loadtxt(tgfile, comments='#', usecols=(DR12tcol, DR12terrcol), unpack=True) DR12gs = np.loadtxt(tgfile, comments='#', usecols=(DR12gcol, DR12gerrcol), unpack=True) DR12fes = np.loadtxt(tgfile, comments='#', usecols=(DR12fecol, DR12feerrcol), unpack=True) Cannonts = np.loadtxt(tgfile, comments='#', usecols=(Cannontcol, Cannonterrcol), unpack=True) Cannongs = np.loadtxt(tgfile, comments='#', usecols=(Cannongcol, Cannongerrcol), unpack=True) Cannonfes = np.loadtxt(tgfile, comments='#', usecols=(Cannonfecol, Cannonfeerrcol), unpack=True) KICts = np.loadtxt(tgfile, comments='#', usecols=(KICtcol, KICterrcol), unpack=True) KICgs = np.loadtxt(tgfile, comments='#', usecols=(KICgcol, KICgerrcol), unpack=True) KICfes = np.loadtxt(tgfile, comments='#', usecols=(KICfecol, KICfeerrcol), unpack=True) MESAts = np.loadtxt(tgfile, comments='#', usecols=(MESAtcol, MESAterrcol), unpack=True) MESAgs = np.loadtxt(tgfile, comments='#', usecols=(MESAgcol, MESAgerrcol), unpack=True) ELCgs = np.loadtxt(tgfile, comments='#', usecols=(ELCgcol, ELCgerrcol), unpack=True) #Seismicgs = np.loadtxt(tgfile, comments='#', usecols=(Seismicgcol, Seismicgerrcol), unpack=True) # sort all the teff and logg arrays so they align with xaxis MOOGts[0] = MOOGts[0][np.argsort(KICtgs)]; MOOGgs[0] = MOOGgs[0][np.argsort(KICtgs)] MOOGts[1] = MOOGts[1][np.argsort(KICtgs)]; MOOGgs[1] = MOOGgs[1][np.argsort(KICtgs)] DR12ts[0] = DR12ts[0][np.argsort(KICtgs)]; DR12gs[0] = DR12gs[0][np.argsort(KICtgs)] DR12ts[1] = DR12ts[1][np.argsort(KICtgs)]; DR12gs[1] = DR12gs[1][np.argsort(KICtgs)] Cannonts[0] = Cannonts[0][np.argsort(KICtgs)]; Cannongs[0] = Cannongs[0][np.argsort(KICtgs)] Cannonts[1] = Cannonts[1][np.argsort(KICtgs)]; Cannongs[1] = Cannongs[1][np.argsort(KICtgs)] KICts[0] = KICts[0][np.argsort(KICtgs)]; KICgs[0] = KICgs[0][np.argsort(KICtgs)] KICts[1] = KICts[1][np.argsort(KICtgs)]; KICgs[1] = KICgs[1][np.argsort(KICtgs)] MESAts[0] = MESAts[0][np.argsort(KICtgs)]; MESAgs[0] = MESAgs[0][np.argsort(KICtgs)] MESAts[1] = MESAts[1][np.argsort(KICtgs)]; MESAgs[1] = MESAgs[1][np.argsort(KICtgs)] ELCgs[0] = ELCgs[0][np.argsort(KICtgs)] ELCgs[1] = ELCgs[1][np.argsort(KICtgs)] #Seismicgs[0] = Seismicgs[0][np.argsort(KICtgs)] #Seismicgs[1] = Seismicgs[1][np.argsort(KICtgs)] MOOGfes[0] = MOOGfes[0][np.argsort(KICtgs)]; MOOGfes[1] = MOOGfes[1][np.argsort(KICtgs)] DR12fes[0] = DR12fes[0][np.argsort(KICtgs)]; DR12fes[1] = DR12fes[1][np.argsort(KICtgs)] Cannonfes[0] = Cannonfes[0][np.argsort(KICtgs)]; Cannonfes[1] = Cannonfes[1][np.argsort(KICtgs)] KICfes[0] = KICfes[0][np.argsort(KICtgs)]; KICfes[1] = KICfes[1][np.argsort(KICtgs)] # WHEW THAT WAS FUN KICtgs = KICtgs[np.argsort(KICtgs)] # set up figures fig = plt.figure(1, figsize=(15,10)) plt.subplots_adjust(hspace=0) # top panel - TEMPERATURES ax1 = plt.subplot(4,1,1) ax1.set_ylabel(r'$T_{\textrm{eff}}$ (K)', size=26) ax1.set_xlim([-0.5,len(xaxis)-0.5]) ax1.set_ylim([4405, 5200]) ax1.set_xticklabels(strKICs, size=22) ax1.xaxis.tick_top() plt.errorbar(xaxis-0.1, DR12ts[0], yerr=DR12ts[1], ls='None', marker='o', ms=10, c=colors[1], label='DR12') plt.errorbar(xaxis-0.05, Cannonts[0], yerr=Cannonts[1], ls='None', marker='s', ms=10, c=colors[2], label='Cannon') plt.errorbar(xaxis+0.05, KICts[0], yerr=KICts[1], ls='None', marker='^', ms=10, c=colors[3], label='KIC') plt.errorbar(xaxis+0.1, MESAts[0], ls='None', marker='h', ms=12, c=colors[4], label='MESA') plt.errorbar(xaxis, MOOGts[0], yerr=MOOGts[1], ls='None', marker='D', ms=10, c=colors[0], label='MOOG') plt.axvspan(0.5,1.5, alpha=0.1, color='k') plt.axvspan(2.5,3.5, alpha=0.1, color='k') plt.axvspan(4.5,5.5, alpha=0.1, color='k') #leg1 = ax1.legend(bbox_to_anchor=(1.1,0.68), numpoints=1, loc=1, borderaxespad=0., # frameon=True, handletextpad=0.2, prop={'size':18}) #leg1.get_frame().set_linewidth(0.0) leg1 = ax1.legend(bbox_to_anchor=(1.1,0.90), numpoints=1, loc=1, borderaxespad=0., frameon=True, handletextpad=0.2, prop={'size':18}) leg1.get_frame().set_linewidth(0.0) # middle-top panel - LOGGS ax2 = plt.subplot(4,1,2) ax2.set_ylabel(r'$\log g$ (cgs)', size=26) ax2.set_xlim([-0.5,len(xaxis)-0.5]) ax2.set_ylim([1.8, 3.7]) ax2.set_xticklabels([]) plt.errorbar(xaxis-0.1, DR12gs[0], yerr=DR12gs[1], ls='None', marker='o', ms=10, c=colors[1]) plt.errorbar(xaxis-0.05, Cannongs[0], yerr=Cannongs[1], ls='None', marker='s', ms=10, c=colors[2]) plt.errorbar(xaxis+0.05, KICgs[0], yerr=KICgs[1], ls='None', marker='^', ms=10, c=colors[3]) plt.errorbar(xaxis+0.1, MESAgs[0], ls='None', marker='h', ms=12, c=colors[4]) plt.errorbar(xaxis, MOOGgs[0], yerr=MOOGgs[1], ls='None', marker='D', ms=10, c=colors[0]) plt.errorbar(xaxis, ELCgs[0], yerr=ELCgs[1], ls='None', marker='*', ms=20, c=colors[0], label='This work') #plt.errorbar(xaxis, Seismicgs[0], yerr=Seismicgs[1], ls='None', marker='*', ms=20, c='k', label='Seismic') plt.axvspan(0.5,1.5, alpha=0.1, color='k') plt.axvspan(2.5,3.5, alpha=0.1, color='k') plt.axvspan(4.5,5.5, alpha=0.1, color='k') #leg2 = ax2.legend(bbox_to_anchor=(1.12,1.01), numpoints=1, loc=1, borderaxespad=0., # frameon=True, handletextpad=0.2, prop={'size':18}) #leg2.get_frame().set_linewidth(0.0) leg2 = ax2.legend(bbox_to_anchor=(1.12,1.005), numpoints=1, loc=1, borderaxespad=0., frameon=True, handletextpad=0.2, prop={'size':18}) leg2.get_frame().set_linewidth(0.0) # middle-bottom panel - METALLICITIES ax3 = plt.subplot(4,1,3) ax3.set_ylabel(r'[Fe/H]', size=26) ax3.set_xlim([-0.5,len(xaxis)-0.5]) ax3.set_ylim([-0.9, 0.55]) ax3.set_xticklabels([]) plt.errorbar(xaxis-0.1, DR12fes[0], yerr=DR12fes[1], ls='None', marker='o', ms=10, c=colors[1]) plt.errorbar(xaxis-0.05, Cannonfes[0], yerr=Cannonfes[1], ls='None', marker='s', ms=10, c=colors[2]) plt.errorbar(xaxis+0.05, KICfes[0], yerr=KICfes[1], ls='None', marker='^', ms=10, c=colors[3]) plt.errorbar(xaxis, MOOGfes[0], yerr=MOOGfes[1], ls='None', marker='D', ms=10, c=colors[0]) plt.axvspan(0.5,1.5, alpha=0.1, color='k') plt.axvspan(2.5,3.5, alpha=0.1, color='k') plt.axvspan(4.5,5.5, alpha=0.1, color='k') # bottom panel - DISTANCES ax4 = plt.subplot(4,1,4) ax4.set_ylabel(r'$d$ (kpc)', size=26) ax4.set_xlim([-0.5,len(xaxis)-0.5]) ax4.set_ylim([0.5, 3.9]) ax4.set_xticklabels(strKICs, size=22) plt.errorbar(xaxis-0.1, DR12ds[0]/1000, yerr=DR12ds[1]/1000, ls='None', marker='o', ms=10, c=colors[1]) plt.errorbar(xaxis, dists[0]/1000, yerr=dists[1]/1000, ls='None', marker='*', ms=20, c=colors[0]) plt.axvspan(0.5,1.5, alpha=0.1, color='k') plt.axvspan(2.5,3.5, alpha=0.1, color='k') plt.axvspan(4.5,5.5, alpha=0.1, color='k') plt.show()
mit
deepesch/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
quheng/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/extension/test_categorical.py
2
7432
""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import string import numpy as np import pytest import pandas as pd from pandas import Categorical from pandas.api.types import CategoricalDtype from pandas.tests.extension import base import pandas.util.testing as tm def make_data(): while True: values = np.random.choice(list(string.ascii_letters), size=100) # ensure we meet the requirements # 1. first two not null # 2. first and second are different if values[0] != values[1]: break return values @pytest.fixture def dtype(): return CategoricalDtype() @pytest.fixture def data(): """Length-100 array for this type. * data[0] and data[1] should both be non missing * data[0] and data[1] should not gbe equal """ return Categorical(make_data()) @pytest.fixture def data_missing(): """Length 2 array with [NA, Valid]""" return Categorical([np.nan, "A"]) @pytest.fixture def data_for_sorting(): return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True) @pytest.fixture def data_missing_for_sorting(): return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True) @pytest.fixture def na_value(): return np.nan @pytest.fixture def data_for_grouping(): return Categorical(["a", "a", None, None, "b", "b", "a", "c"]) class TestDtype(base.BaseDtypeTests): pass class TestInterface(base.BaseInterfaceTests): @pytest.mark.skip(reason="Memory usage doesn't match") def test_memory_usage(self, data): # Is this deliberate? super().test_memory_usage(data) class TestConstructors(base.BaseConstructorsTests): pass class TestReshaping(base.BaseReshapingTests): def test_ravel(self, data): # GH#27199 Categorical.ravel returns self until after deprecation cycle with tm.assert_produces_warning(FutureWarning): data.ravel() class TestGetitem(base.BaseGetitemTests): skip_take = pytest.mark.skip(reason="GH-20664.") @pytest.mark.skip(reason="Backwards compatibility") def test_getitem_scalar(self, data): # CategoricalDtype.type isn't "correct" since it should # be a parent of the elements (object). But don't want # to break things by changing. super().test_getitem_scalar(data) @skip_take def test_take(self, data, na_value, na_cmp): # TODO remove this once Categorical.take is fixed super().test_take(data, na_value, na_cmp) @skip_take def test_take_negative(self, data): super().test_take_negative(data) @skip_take def test_take_pandas_style_negative_raises(self, data, na_value): super().test_take_pandas_style_negative_raises(data, na_value) @skip_take def test_take_non_na_fill_value(self, data_missing): super().test_take_non_na_fill_value(data_missing) @skip_take def test_take_out_of_bounds_raises(self, data, allow_fill): return super().test_take_out_of_bounds_raises(data, allow_fill) @pytest.mark.skip(reason="GH-20747. Unobserved categories.") def test_take_series(self, data): super().test_take_series(data) @skip_take def test_reindex_non_na_fill_value(self, data_missing): super().test_reindex_non_na_fill_value(data_missing) @pytest.mark.skip(reason="Categorical.take buggy") def test_take_empty(self, data, na_value, na_cmp): super().test_take_empty(data, na_value, na_cmp) @pytest.mark.skip(reason="test not written correctly for categorical") def test_reindex(self, data, na_value): super().test_reindex(data, na_value) class TestSetitem(base.BaseSetitemTests): pass class TestMissing(base.BaseMissingTests): @pytest.mark.skip(reason="Not implemented") def test_fillna_limit_pad(self, data_missing): super().test_fillna_limit_pad(data_missing) @pytest.mark.skip(reason="Not implemented") def test_fillna_limit_backfill(self, data_missing): super().test_fillna_limit_backfill(data_missing) class TestReduce(base.BaseNoReduceTests): pass class TestMethods(base.BaseMethodsTests): @pytest.mark.skip(reason="Unobserved categories included") def test_value_counts(self, all_data, dropna): return super().test_value_counts(all_data, dropna) def test_combine_add(self, data_repeated): # GH 20825 # When adding categoricals in combine, result is a string orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) expected = pd.Series( ([a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]) ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series([a + val for a in list(orig_data1)]) self.assert_series_equal(result, expected) @pytest.mark.skip(reason="Not Applicable") def test_fillna_length_mismatch(self, data_missing): super().test_fillna_length_mismatch(data_missing) def test_searchsorted(self, data_for_sorting): if not data_for_sorting.ordered: raise pytest.skip(reason="searchsorted requires ordered data.") class TestCasting(base.BaseCastingTests): pass class TestArithmeticOps(base.BaseArithmeticOpsTests): def test_arith_series_with_scalar(self, data, all_arithmetic_operators): op_name = all_arithmetic_operators if op_name != "__rmod__": super().test_arith_series_with_scalar(data, op_name) else: pytest.skip("rmod never called when string is first argument") def test_add_series_with_extension_array(self, data): ser = pd.Series(data) with pytest.raises(TypeError, match="cannot perform"): ser + data def test_divmod_series_array(self): # GH 23287 # skipping because it is not implemented pass def _check_divmod_op(self, s, op, other, exc=NotImplementedError): return super()._check_divmod_op(s, op, other, exc=TypeError) class TestComparisonOps(base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) if op_name == "__eq__": result = op(s, other) expected = s.combine(other, lambda x, y: x == y) assert (result == expected).all() elif op_name == "__ne__": result = op(s, other) expected = s.combine(other, lambda x, y: x != y) assert (result == expected).all() else: with pytest.raises(TypeError): op(data, other) class TestParsing(base.BaseParsingTests): pass
apache-2.0
LohithBlaze/scikit-learn
sklearn/externals/joblib/parallel.py
86
35087
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys import gc import warnings from math import sqrt import functools import time import threading import itertools from numbers import Integral try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_kbytes from ._compat import _basestring VALID_BACKENDS = ['multiprocessing', 'threading'] # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """ Return the number of CPUs. """ if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) if issubclass(e_type, TransportableException): raise else: raise TransportableException(text, e_type) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateComputeBatch(object): """Sequential computation of a batch of tasks. This replicates the async computation API but actually does not delay the computations when joblib.Parallel runs in sequential mode. """ def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp if (self.parallel.batch_size == 'auto' and self.batch_size == self.parallel._effective_batch_size): # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self.parallel._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = this_batch_duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * this_batch_duration self.parallel._smoothed_batch_duration = new_duration self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers shoud never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend='multiprocessing', verbose=0, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): self.verbose = verbose self._mp_context = None if backend is None: # `backend=None` was supported in 0.8.2 with this effect backend = "multiprocessing" elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._mp_context = backend backend = "multiprocessing" if backend not in VALID_BACKENDS: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, VALID_BACKENDS)) self.backend = backend self.n_jobs = n_jobs if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self.pre_dispatch = pre_dispatch self._temp_folder = temp_folder if isinstance(max_nbytes, _basestring): self._max_nbytes = 1024 * memstr_to_kbytes(max_nbytes) else: self._max_nbytes = max_nbytes self._mmap_mode = mmap_mode # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it # unless they choose to use the context manager API with a with block. self._pool = None self._output = None self._jobs = list() self._managed_pool = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_pool = True self._initialize_pool() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_pool() self._managed_pool = False def _effective_n_jobs(self): n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def _initialize_pool(self): """Build a process or thread pool and return the number of workers""" n_jobs = self._effective_n_jobs() # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs == 1: # Sequential mode: do not use a pool instance to avoid any # useless dispatching overhead self._pool = None elif self.backend == 'threading': self._pool = ThreadPool(n_jobs) elif self.backend == 'multiprocessing': if mp.current_process().daemon: # Daemonic processes cannot have children self._pool = None warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 elif threading.current_thread().name != 'MainThread': # Prevent posix fork inside in non-main posix threads self._pool = None warnings.warn( 'Multiprocessing backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 else: already_forked = int(os.environ.get(JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ[JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() poolargs = dict( max_nbytes=self._max_nbytes, mmap_mode=self._mmap_mode, temp_folder=self._temp_folder, verbose=max(0, self.verbose - 50), context_id=0, # the pool is used only for one call ) if self._mp_context is not None: # Use Python 3.4+ multiprocessing context isolation poolargs['context'] = self._mp_context self._pool = MemmapingPool(n_jobs, **poolargs) # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) else: raise ValueError("Unsupported backend: %s" % self.backend) return n_jobs def _terminate_pool(self): if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None if self.backend == 'multiprocessing': os.environ.pop(JOBLIB_SPAWNED_PROCESS, 0) def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return if self._pool is None: job = ImmediateComputeBatch(batch) self._jobs.append(job) self.n_dispatched_batches += 1 self.n_dispatched_tasks += len(batch) self.n_completed_tasks += len(batch) if not _verbosity_filter(self.n_dispatched_batches, self.verbose): self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(time.time() - self._start_time) )) else: dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._pool.apply_async(SafeFunction(batch), callback=cb) self._jobs.append(job) self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto' and self.backend == 'threading': # Batching is never beneficial with the threading backend batch_size = 1 elif self.batch_size == 'auto': old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int( old_batch_size * MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.verbose >= 10: self._print("Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) elif (batch_duration > MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. self._effective_batch_size = batch_size = old_batch_size // 2 if self.verbose >= 10: self._print("Batch computation too slow (%.2fs.) " "Setting batch_size=%d.", ( batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if not tasks: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._original_iterator: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_dispatched_batches # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched_tasks - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: self._output.extend(job.get()) except tuple(self.exceptions) as exception: # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # Kill remaining running processes without waiting for # the results as we will raise the exception we got back # to the caller instead of returning any result. with self._lock: self._terminate_pool() if self._managed_pool: # In case we had to terminate a managed pool, let # us start a new one to ensure that subsequent calls # to __call__ on the same Parallel instance will get # a working pool as they expect. self._initialize_pool() raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_pool: n_jobs = self._initialize_pool() else: n_jobs = self._effective_n_jobs() if self.batch_size == 'auto': self._effective_batch_size = 1 iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 self._smoothed_batch_duration = 0.0 try: self._iterating = True while self.dispatch_one_batch(iterator): pass if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_pool: self._terminate_pool() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
shahankhatch/scikit-learn
examples/calibration/plot_compare_calibration.py
241
5008
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probilities, with different biases per method: * GaussianNaiveBayes tends to push probabilties to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilties closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
hilaglanz/TCE
DensityPlotting.py
1
101746
import os import time import os.path import sys import threading import multiprocessing import shutil import math import pickle import gc import h5py import argparse import matplotlib import numpy matplotlib.use('Agg') from ctypes import * from amuse.units import units, constants, nbody_system, quantities from amuse.units import * #from amuse.lab import * from amuse.units.quantities import AdaptingVectorQuantity, VectorQuantity from amuse.datamodel import Particles, Particle from amuse.ext import sph_to_star from amuse.io import write_set_to_file, read_set_from_file from amuse.plot import scatter, xlabel, ylabel, plot, pynbody_column_density_plot, HAS_PYNBODY, _smart_length_units_for_pynbody_data, convert_particles_to_pynbody_data, UnitlessArgs, semilogx, semilogy, loglog, xlabel, ylabel from matplotlib import pyplot import pynbody import pynbody.plot.sph as pynbody_sph from pynbody.analysis import angmom from amuse.plot import scatter, xlabel, ylabel, plot, native_plot, sph_particles_plot, circle_with_radius, axvline from BinaryCalculations import * class Star: def __init__(self, particle1,particle2): if particle1 != None and particle2 != None: self.Star(particle1,particle2) else: self.position = (0.0, 0.0, 0.0) | units.m self.vx, self.vy, self.vz = (0.0 , 0.0, 0.0 ) | units.m / units.s self.v = 0.0 | units.m / units.s self.mass = 0.0 | units.kg def Star(self,particle1,particle2): particles = Particles() part1=particle1.copy() particles.add_particle(part1) part2 = Particle() part2.mass = particle2.mass part2.position = particle2.position part2.velocity = particle2.velocity part2.radius = particle2.radius particles.add_particle(part2) self.velocity = particles.center_of_mass_velocity() self.vx = self.velocity[0] self.vy = self.velocity[1] self.vz = self.velocity[2] self.position = particles.center_of_mass() self.x = self.position[0] self.y = self.position[1] self.z = self.position[2] self.mass = particles.total_mass() self.velocityDifference = CalculateVelocityDifference(particle1,particle2) self.separation = CalculateSeparation(particle1,particle2) self.specificEnergy = CalculateSpecificEnergy(self.velocityDifference,self.separation,particle1,particle2) print("inner specific energy: ", self.specificEnergy) self.potentialEnergy = particles.potential_energy() self.kineticEnergy = particles.kinetic_energy() particles.move_to_center() self.angularMomentum = particles.total_angular_momentum() self.omega = CalculateOmega(particles) class SphGiant: def __init__(self, gas_particles_file, dm_particles_file, opposite= False): self.gasParticles = read_set_from_file(gas_particles_file, format='amuse') if dm_particles_file is not None: dms = read_set_from_file(dm_particles_file, format='amuse') if opposite: #core is the first particle self.core = dms[0] else: self.core = dms[-1] else: self.core = Particle() self.core.mass = 0 | units.MSun self.core.position = (0.0, 0.0, 0.0) | units.AU self.core.vx = 0.0| units.m/units.s self.core.vy = 0.0 | units.m/units.s self.core.vz = 0.0 | units.m/units.s self.core.radius = 0.0 | units.RSun self.gas = Star(None, None) self.gas.mass = self.gasParticles.total_mass() self.gas.position = self.gasParticles.center_of_mass() self.gas.x , self.gas.y, self.gas.z = self.gasParticles.center_of_mass() self.gas.velocity = self.gasParticles.center_of_mass_velocity() #self.gas.vx, self.gas.vy, self.gas.vz = self.gasParticles.center_of_mass_velocity() self.gas.v = self.gas.velocity self.mass = self.gas.mass + self.core.mass self.position = (self.gas.position * self.gas.mass + self.core.position* self.core.mass)/self.mass self.velocity = (self.gas.velocity * self.gas.mass + self.core.velocity* self.core.mass)/self.mass self.x , self.y, self.z = self.position self.vx, self.vy, self.vz = self.velocity self.v = self.velocity self.radius = self.gasParticles.total_radius() self.dynamicalTime = 1.0/(constants.G*self.mass/((4*constants.pi*self.radius**3)/3))**0.5 self.kineticEnergy = 0.0 |units.kg*(units.km**2) / units.s**2 self.thermalEnergy = 0.0 |units.kg*(units.km**2) / units.s**2 self.potentialEnergy = 0.0 |units.kg*(units.km**2) / units.s**2 self.gasPotential= 0.0 | units.kg * (units.km ** 2) / units.s ** 2 self.gasKinetic = 0.0 | units.kg * (units.km ** 2) / units.s ** 2 self.omegaPotential = 0.0 | units.kg * (units.km ** 2) / units.s ** 2 #self.angularMomentum = totalGiant.total_angular_momentum() def CalculateEnergies(self,comV=None): self.gasKinetic = self.gasParticles.kinetic_energy() self.coreKinetic = 0.5 * self.core.mass * (CalculateVectorSize(self.core.velocity))**2 self.kineticEnergy = self.gasKinetic + self.coreKinetic self.thermalEnergy = self.gasParticles.thermal_energy() print("giant kinetic: ", self.kineticEnergy) print("giant thermal: ", self.thermalEnergy) self.gasPotential = self.GasPotentialEnergy() print("gas potential: ", self.gasPotential) self.potentialEnergy = self.gasPotential + self.potentialEnergyWithParticle(self.core) print("giant potential: ", self.potentialEnergy) #print "potential energies: ", self.gasPotential, self.gasParticles.mass[-1]*self.gas.mass*constants.G/self.radius #self.potentialEnergy = self.gasPotential + self.potentialEnergyWithParticle(self.core) def GasPotentialEnergy(self): return self.gasParticles.potential_energy() self.gasPotential = 0.0 |units.kg*(units.m**2) / units.s**2 mass = self.gasParticles.mass x_vector = self.gasParticles.x y_vector = self.gasParticles.y z_vector = self.gasParticles.z epsilon = self.gasParticles.epsilon for i in range(len(self.gasParticles) - 1): x = x_vector[i] y = y_vector[i] z = z_vector[i] dx = x - x_vector[i + 1:] dy = y - y_vector[i + 1:] dz = z - z_vector[i + 1:] dr_squared = (dx * dx) + (dy * dy) + (dz * dz) dr = (dr_squared + epsilon[i+1:]**2).sqrt() m_m = mass[i] * mass[i + 1:] energy_of_this_particle = constants.G * ((m_m / dr).sum()) self.gasPotential -= energy_of_this_particle return self.gasPotential def potentialEnergyWithParticle(self,particle, epsilon = None): energy = 0.0 | units.kg*(units.m**2) / units.s**2 for part in self.gasParticles: if epsilon is not None: energy += -1.0*constants.G*part.mass*particle.mass/(CalculateVectorSize(CalculateSeparation(particle,part))**2+epsilon**2)**0.5 else: energy += -1.0*constants.G*part.mass*particle.mass/(CalculateVectorSize(CalculateSeparation(particle,part))**2+part.epsilon**2)**0.5 return energy def gravityWithParticle(self,particle): force = VectorQuantity([0.0,0.0,0.0],units.kg*units.km*units.s**-2) for part in self.gasParticles: f = -1.0 * constants.G * part.mass * particle.mass / ( (CalculateVectorSize(CalculateSeparation(particle, part)) ** 2) ** 0.5) ** 3 force[0] += f * (part.x-particle.x) force[1] += f * (part.y - particle.y) force[2] += f * (part.z - particle.z) f = -1.0 * constants.G * part.mass * particle.mass / ( (CalculateVectorSize(CalculateSeparation(particle, self.core)) ** 2) ** 0.5) ** 3 force[0] += f * (self.core.x-particle.x) force[1] += f * (self.core.y - particle.y) force[2] += f * (self.core.z - particle.z) return force def GetAngularMomentum(self,comPos=None,comV=None): totalGiant = Particles() totalGiant.add_particles(self.gasParticles) totalGiant.add_particle(self.core) totGiant = totalGiant.copy() if comPos is not None: totGiant.position -= comPos if comV is not None: totGiant.velocity -= comV self.omegaPotential = CalculateOmega(totGiant) return totGiant.total_angular_momentum() def GetAngularMomentumOfGas(self, comPos=None, comV=None): gas = self.gasParticles.copy() if comPos is not None: gas.position -= comPos if comV is not None: gas.velocity -= comV return gas.total_angular_momentum() def CalculateInnerSPH(self, relativeParticle, localRadius=50.0 | units.RSun, com_position=[0.0,0.0,0.0] | units.m, com_velocity = [0.0,0.0,0.0] | units.m / units.s): self.innerGas = Star(None, None) radius = CalculateVectorSize(CalculateSeparation(relativeParticle, self.core)) print(time.ctime(), "beginning inner gas calculation") self.CalculateSphMassVelocityAndPositionInsideRadius(radius, includeCore=True, centeralParticle=relativeParticle, localRadius=localRadius, com_position_for_angular_momenta=com_position, com_velocity_for_angular_momenta=com_velocity) self.innerGas.x , self.innerGas.y, self.innerGas.z = self.innerGas.position self.innerGas.kineticEnergy = 0.5*self.innerGas.mass*CalculateVectorSize(self.innerGas.v)**2 print(time.ctime(), "calculated!") def CalculateTotalGasMassInsideRadius(self, radius): innerMass = self.core.mass for particle in self.gasParticles: separation = CalculateVectorSize(CalculateSeparation(particle, self.core)) if separation < radius: innerMass += particle.mass return innerMass def CalculateSphMassVelocityAndPositionInsideRadius(self,radius,includeCore=True,centeralParticle=None, localRadius=0.0 | units.RSun, com_position_for_angular_momenta=[0.0,0.0,0.0] | units.m, com_velocity_for_angular_momenta = [0.0,0.0,0.0] | units.m / units.s): self.innerGas.vxTot , self.innerGas.vyTot , self.innerGas.vzTot = ( 0.0 , 0.0, 0.0 )| units.m * units.s**-1 self.innerGas.xTot , self.innerGas.yTot , self.innerGas.zTot = ( 0.0 , 0.0, 0.0 )| units.m self.innerGas.lxTot, self.innerGas.lyTot, self.innerGas.lzTot = (0.0, 0.0, 0.0) | (units.g * units.m**2 * units.s ** -1) self.localMass = 0.0 | units.MSun if includeCore: self.innerGas.mass = self.core.mass cmass = self.core.mass.value_in(units.MSun) vx = self.core.vx vy= self.core.vy vz = self.core.vz x = self.core.x y = self.core.y z = self.core.z else: cmass = 0.0 | units.MSun vx = 0.0 | units.m / units.s vy= 0.0 | units.m / units.s vz = 0.0 | units.m / units.s x = 0.0 | units.AU y = 0.0 | units.AU z = 0.0 | units.AU velocityAndMass = [vx * cmass, vy* cmass, vz * cmass] positionAndMass = [x * cmass, y * cmass, z * cmass] angularmomentum = CalculateSpecificMomentum((x,y,z),(vx,vy,vz)) if cmass != 0.0: angularmomentum = [l*(cmass |units.MSun) for l in angularmomentum] particlesAroundCore = 0 particlesAroundCenteral = 0 i = 0 for particle in self.gasParticles: #print i i += 1 separationFromCore = CalculateVectorSize(CalculateSeparation(particle, self.core)) if separationFromCore < radius: pmass = particle.mass.value_in(units.MSun) self.innerGas.mass += particle.mass velocityAndMass[0] += particle.vx * pmass velocityAndMass[1] += particle.vy * pmass velocityAndMass[2] += particle.vz * pmass positionAndMass[0] += particle.x * pmass positionAndMass[1] += particle.y * pmass positionAndMass[2] += particle.z * pmass angularmomentumOfParticle = CalculateSpecificMomentum(particle.position-com_position_for_angular_momenta, particle.velocity-com_velocity_for_angular_momenta) angularmomentum[0] += angularmomentumOfParticle[0] * particle.mass angularmomentum[1] += angularmomentumOfParticle[1] * particle.mass angularmomentum[2] += angularmomentumOfParticle[2] * particle.mass particlesAroundCore += 1 if centeralParticle != None: separationFromCentral = CalculateVectorSize(CalculateSeparation(particle, centeralParticle)) if separationFromCentral < localRadius: self.localMass += particle.mass particlesAroundCenteral += 1 print(time.ctime(), particlesAroundCore, particlesAroundCenteral) if particlesAroundCore > 0: totalMass= self.innerGas.mass.value_in(units.MSun) self.innerGas.vxTot = velocityAndMass[0] / totalMass self.innerGas.vyTot = velocityAndMass[1] / totalMass self.innerGas.vzTot = velocityAndMass[2] / totalMass self.innerGas.xTot = positionAndMass[0] / totalMass self.innerGas.yTot = positionAndMass[1] / totalMass self.innerGas.zTot = positionAndMass[2] / totalMass self.innerGas.lxTot = angularmomentum[0] self.innerGas.lyTot = angularmomentum[1] self.innerGas.lzTot = angularmomentum[2] self.innerGas.v = (self.innerGas.vxTot, self.innerGas.vyTot, self.innerGas.vzTot) self.innerGas.position = (self.innerGas.xTot, self.innerGas.yTot, self.innerGas.zTot) self.innerGas.angularMomentum = (self.innerGas.lxTot, self.innerGas.lyTot, self.innerGas.lzTot) if particlesAroundCenteral > 0: self.localDensity = self.localMass / ((4.0*constants.pi*localRadius**3)/3.0) else: self.localDensity = 0.0 | units.g / units.m**3 def CountLeavingParticlesInsideRadius(self, com_position= [0.0,0.0,0.0] | units.m, com_velocity=[0.0,0.0,0.0] | units.m / units.s, companion = None, method="estimated"): self.leavingParticles = 0 self.totalUnboundedMass = 0 | units.MSun dynamicalVelocity= self.radius/self.dynamicalTime particlesExceedingMaxVelocity = 0 velocityLimitMax = 0.0 | units.cm/units.s gas = self.gasParticles.copy() gas.position -= com_position gas.velocity -= com_velocity specificKinetics = gas.specific_kinetic_energy() com_particle = Particle(mass=self.mass) com_particle.position = com_position com_particle.velocity = com_velocity extra_potential = [0.0 | units.erg / units.g for particle in self.gasParticles] if companion is not None: com_particle.mass += companion.mass extra_potential = [CalculatePotentialEnergy(particle, companion) / particle.mass for particle in self.gasParticles] print("using method ", method) if method == "estimated": specificEnergy = [CalculateSpecificEnergy(particle.velocity - com_velocity, particle.position - com_position, particle, com_particle) for particle in self.gasParticles] else: self.CalculateGasSpecificPotentials() specificEnergy = [self.gasSpesificPotentials[i] + CalculatePotentialEnergy(self.gasParticles[i], self.core) / self.gasParticles[i].mass \ + extra_potential[i] + specificKinetics[i] for i in range(len(self.gasParticles))] for i, particle in enumerate(self.gasParticles): volume = (4.0 / 3.0) * constants.pi * particle.radius ** 3 particleSoundSpeed = ((5.0 / 3.0) * particle.pressure / (particle.mass / volume)) ** 0.5 velocityLimit = min(dynamicalVelocity, particleSoundSpeed) velocityLimitMax = max(velocityLimitMax,velocityLimit) if CalculateVectorSize(particle.velocity) > velocityLimit: particlesExceedingMaxVelocity += 1 if specificEnergy[i] > 0 | specificEnergy[i].unit: self.leavingParticles += 1 self.totalUnboundedMass += particle.mass print("over speed ", particlesExceedingMaxVelocity*100.0 / len(self.gasParticles), "limit: ", velocityLimitMax) return self.leavingParticles def CalculateGasSpecificPotentials(self): n = len(self.gasParticles) max = 100000 * 100 # 100m floats block_size = max // n if block_size == 0: block_size = 1 # if more than 100m particles, then do 1 by one mass = self.gasParticles.mass x_vector = self.gasParticles.x y_vector = self.gasParticles.y z_vector = self.gasParticles.z potentials = VectorQuantity.zeros(len(mass), mass.unit / x_vector.unit) inf_len = numpy.inf | x_vector.unit offset = 0 newshape = (n, 1) x_vector_r = x_vector.reshape(newshape) y_vector_r = y_vector.reshape(newshape) z_vector_r = z_vector.reshape(newshape) mass_r = mass.reshape(newshape) while offset < n: if offset + block_size > n: block_size = n - offset x = x_vector[offset:offset + block_size] y = y_vector[offset:offset + block_size] z = z_vector[offset:offset + block_size] indices = numpy.arange(block_size) dx = x_vector_r - x dy = y_vector_r - y dz = z_vector_r - z dr_squared = (dx * dx) + (dy * dy) + (dz * dz) dr = (dr_squared).sqrt() index = (indices + offset, indices) dr[index] = inf_len potentials += (mass[offset:offset + block_size] / dr).sum(axis=1) offset += block_size self.gasSpesificPotentials = -constants.G * potentials def FindSmallestCell(self): smallestRadius = self.gasParticles.total_radius() for gasParticle in self.gasParticles: if gasParticle.radius < smallestRadius: smallestRadius = gasParticle.radius return smallestRadius def FindLowestNumberOfNeighbours(self): numberOfNeighbours = len(self.gasParticles) for gasParticle in self.gasParticles: if gasParticle.num_neighbours < numberOfNeighbours: numberOfNeighbours = gasParticle.num_neighbours return numberOfNeighbours def CalculateQuadropoleMoment(self): Qxx = (self.core.mass * (self.core.ax*self.core.x + 2 * self.core.vx * self.core.vx + self.core.x * self.core.ax - (2.0/3.0) * (self.core.ax * self.core.x + self.core.ay * self.core.y + self.core.az * self.core.z + CalculateVectorSize(self.core.velocity)**2))) Qxy = (self.core.mass * (self.core.ax * self.core.y + 2 * self.core.vx * self.core.vy + self.core.x * self.core.ay)) Qxz = (self.core.mass * (self.core.ax * self.core.z + 2 * self.core.vx * self.core.vz + self.core.x * self.core.az)) Qyx = (self.core.mass * (self.core.ay * self.core.x + 2 * self.core.vy * self.core.vx + self.core.y * self.core.ax)) Qyy = (self.core.mass * (self.core.ay*self.core.y + 2 * self.core.vy * self.core.vy + self.core.y * self.core.ay - (2.0/3.0) * (self.core.ax * self.core.x + self.core.ay * self.core.y + self.core.az * self.core.z + CalculateVectorSize(self.core.velocity)**2))) Qyz = (self.core.mass * (self.core.ay * self.core.z + 2 * self.core.vy * self.core.vz + self.core.y * self.core.az)) Qzx = (self.core.mass * (self.core.az * self.core.x + 2 * self.core.vz * self.core.vx + self.core.z * self.core.ax)) Qzy = (self.core.mass * (self.core.az * self.core.y + 2 * self.core.vz * self.core.vy + self.core.z * self.core.ay)) Qzz = (self.core.mass * (self.core.az * self.core.z + 2 * self.core.vz * self.core.vz + self.core.z * self.core.az - (2.0/3.0) * (self.core.ax * self.core.x + self.core.ay * self.core.y + self.core.az * self.core.z + CalculateVectorSize(self.core.velocity)**2))) for gasParticle in self.gasParticles: Qxx += (gasParticle.mass * (gasParticle.ax*gasParticle.x + 2 * gasParticle.vx * gasParticle.vx + gasParticle.x * gasParticle.ax - (2.0/3.0) * (gasParticle.ax * gasParticle.x + gasParticle.ay * gasParticle.y + gasParticle.az * gasParticle.z + CalculateVectorSize(gasParticle.velocity)**2))) Qxy += (gasParticle.mass * (gasParticle.ax * gasParticle.y + 2 * gasParticle.vx * gasParticle.vy + gasParticle.x * gasParticle.ay)) Qxz += (gasParticle.mass * (gasParticle.ax * gasParticle.z + 2 * gasParticle.vx * gasParticle.vz + gasParticle.x * gasParticle.az)) Qyx += (gasParticle.mass * (gasParticle.ay * gasParticle.x + 2 * gasParticle.vy * gasParticle.vx + gasParticle.y * gasParticle.ax)) Qyy += (gasParticle.mass * (gasParticle.ay*gasParticle.y + 2 * gasParticle.vy * gasParticle.vy + gasParticle.y * gasParticle.ay - (2.0/3.0) * (gasParticle.ax * gasParticle.x + gasParticle.ay * gasParticle.y + gasParticle.az * gasParticle.z + CalculateVectorSize(gasParticle.velocity)**2))) Qyz += (gasParticle.mass * (gasParticle.ay * gasParticle.z + 2 * gasParticle.vy * gasParticle.vz + gasParticle.y * gasParticle.az)) Qzx += (gasParticle.mass * (gasParticle.az * gasParticle.x + 2 * gasParticle.vz * gasParticle.vx + gasParticle.z * gasParticle.ax)) Qzy += (gasParticle.mass * (gasParticle.az * gasParticle.y + 2 * gasParticle.vz * gasParticle.vy + gasParticle.z * gasParticle.ay)) Qzz += (gasParticle.mass * (gasParticle.az * gasParticle.z + 2 * gasParticle.vz * gasParticle.vz + gasParticle.z * gasParticle.az - (2.0/3.0) * (gasParticle.ax * gasParticle.x + gasParticle.ay * gasParticle.y + gasParticle.az * gasParticle.z + CalculateVectorSize(gasParticle.velocity)**2))) return Qxx.value_in(units.m**2 * units.kg * units.s**-2),Qxy.value_in(units.m**2 * units.kg * units.s**-2),\ Qxz.value_in(units.m**2 * units.kg * units.s**-2),Qyx.value_in(units.m**2 * units.kg * units.s**-2),\ Qyy.value_in(units.m**2 * units.kg * units.s**-2),Qyz.value_in(units.m**2 * units.kg * units.s**-2),\ Qzx.value_in(units.m**2 * units.kg * units.s**-2),Qzy.value_in(units.m**2 * units.kg * units.s**-2),\ Qzz.value_in(units.m**2 * units.kg * units.s**-2) class MultiProcessArrayWithUnits: def __init__(self,size,units): self.array = multiprocessing.Array('f', [-1.0 for i in range(size)]) self.units = units def plot(self, filename, outputDir,timeStep, beginStep, toPlot): if self.units is None: array = [a for a in self.array] else: array = AdaptingVectorQuantity([a for a in self.array], self.units) Plot1Axe(array,filename, outputDir,timeStep, beginStep, toPlot) def LoadBinaries(file, opposite= False): load = read_set_from_file(file, format='amuse') #print load if not opposite: stars = Particles(2, particles= [load[0], load[1]]) else: #take the next stars = Particles(2, particles= [load[1], load[2]]) return stars def CalculateQuadropoleMomentOfParticle(particle): Qxx = (particle.mass * (particle.ax*particle.x + 2 * particle.vx * particle.vx + particle.x * particle.ax - (2.0/3.0) * (particle.ax * particle.x + particle.ay * particle.y + particle.az * particle.z + CalculateVectorSize(particle.velocity)**2))).value_in(units.m**2 * units.kg * units.s**-2) Qxy = (particle.mass * (particle.ax * particle.y + 2 * particle.vx * particle.vy + particle.x * particle.ay)).value_in(units.m**2 * units.kg * units.s**-2) Qxz = (particle.mass * (particle.ax * particle.z + 2 * particle.vx * particle.vz + particle.x * particle.az)).value_in(units.m**2 * units.kg * units.s**-2) Qyx = (particle.mass * (particle.ay * particle.x + 2 * particle.vy * particle.vx + particle.y * particle.ax)).value_in(units.m**2 * units.kg * units.s**-2) Qyy = (particle.mass * (particle.ay*particle.y + 2 * particle.vy * particle.vy + particle.y * particle.ay - (2.0/3.0) * (particle.ax * particle.x + particle.ay * particle.y + particle.az * particle.z + CalculateVectorSize(particle.velocity)**2))).value_in(units.m**2 * units.kg * units.s**-2) Qyz = (particle.mass * (particle.ay * particle.z + 2 * particle.vy * particle.vz + particle.y * particle.az)).value_in(units.m**2 * units.kg * units.s**-2) Qzx = (particle.mass * (particle.az * particle.x + 2 * particle.vz * particle.vx + particle.z * particle.ax)).value_in(units.m**2 * units.kg * units.s**-2) Qzy = (particle.mass * (particle.az * particle.y + 2 * particle.vz * particle.vy + particle.z * particle.ay)).value_in(units.m**2 * units.kg * units.s**-2) Qzz = (particle.mass * (particle.az * particle.z + 2 * particle.vz * particle.vz + particle.z * particle.az - (2.0/3.0) * (particle.ax * particle.x + particle.ay * particle.y + particle.az * particle.z + CalculateVectorSize(particle.velocity)**2))).value_in(units.m**2 * units.kg * units.s**-2) return float(Qxx),float(Qxy),float(Qxz),float(Qyx),float(Qyy),float(Qyz),float(Qzx),float(Qzy),float(Qzz) def GetPropertyAtRadius(mesaStarPropertyProfile, mesaStarRadiusProfile, radius): profileLength = len(mesaStarRadiusProfile) i = 0 while i < profileLength and mesaStarRadiusProfile[i] < radius: i += 1 return mesaStarPropertyProfile[min(i, profileLength - 1)] def CalculateCumulantiveMass(densityProfile, radiusProfile): profileLength = len(radiusProfile) cmass = [densityProfile[0] * 4.0/3.0 * constants.pi * radiusProfile[0] ** 3 for i in xrange(profileLength)] for i in xrange(1, profileLength): dr = radiusProfile[i] - radiusProfile[i-1] cmass[i] = (cmass[i-1] + densityProfile[i] * 4.0 * constants.pi*(radiusProfile[i] ** 2) * dr) vectormass = [m.value_in(units.MSun) for m in cmass] return vectormass def CalculateTau(densityProfile, radiusProfile, coreRadius, coreDensity,temperatureProfile, edgeRadius): profileLength = len(radiusProfile) radiusIndex = 0 while radiusProfile[radiusIndex] < edgeRadius: radiusIndex += 1 X= 0.73 Y = 0.25 Z= 0.02 #kappa = 0.2 * (1 + X) | (units.cm**2)*(units.g**-1) kappa = 12.0 | units.cm**2 / units.g #kappa = (3.8*10**22)*(1 + X)* (X + Y)* densityProfile * temperatureProfile**(-7.0/2) #print kappa tauPoint = [kappa * densityProfile[i] * (radiusProfile[i+1] - radiusProfile[i]) for i in xrange(0, radiusIndex)] tauPoint.append((0.0 |(units.g*units.cm**-2))*kappa) tau = tauPoint tau[radiusIndex] = tauPoint[radiusIndex] for i in xrange(radiusIndex - 1, 0 , -1 ): tau[i] = tau[i + 1] + tauPoint[i] #print tau[-1], tau[-100] i = radiusIndex while (tau[i] < 2.0/3.0 and i >= 0): i -= 1 j = radiusIndex while (tau[j] < 13.0 and j >= 0): j -= 1 #print "edge: ", radiusProfile[radiusIndex].as_quantity_in(units.RSun), " at index= ",radiusIndex, " photosphere radius: ", \ # radiusProfile[i].as_quantity_in(units.RSun), " at index= ", i, "tau is 13 at radius= ", radiusProfile[j].as_quantity_in(units.RSun) return tau def mu(X = None, Y = 0.25, Z = 0.02, x_ion = 0.1): """ Compute the mean molecular weight in kg (the average weight of particles in a gas) X, Y, and Z are the mass fractions of Hydrogen, of Helium, and of metals, respectively. x_ion is the ionisation fraction (0 < x_ion < 1), 1 means fully ionised """ if X is None: X = 1.0 - Y - Z elif abs(X + Y + Z - 1.0) > 1e-6: print("Error in calculating mu: mass fractions do not sum to 1.0") return constants.proton_mass / (X*(1.0+x_ion) + Y*(1.0+2.0*x_ion)/4.0 + Z*x_ion/2.0) def structure_from_star(star): radius_profile = star.radius density_profile = star.rho if hasattr(star, "get_mass_profile"): mass_profile = star.dmass * star.mass else: radii_cubed = radius_profile**3 radii_cubed.prepend(0|units.m**3) mass_profile = (4.0/3.0 * constants.pi) * density_profile * (radii_cubed[1:] - radii_cubed[:-1]) cumulative_mass_profile = CalculateCumulantiveMass(density_profile, radius_profile) tau = CalculateTau(density_profile, radius_profile, 0.0159 | units.RSun, (0.392|units.MSun)/((4.0/3.0)*constants.pi*(0.0159 |units.RSun)**3), star.temperature, radius_profile[-100]) sound_speed = star.temperature / star.temperature | units.cm / units.s for i in xrange(len(star.temperature)): sound_speed[i] = math.sqrt(((5.0/3.0) * constants.kB * star.temperature[i] / mu()).value_in(units.m **2 * units.s**-2)) | units.m / units.s return dict( radius = radius_profile.as_quantity_in(units.RSun), density = density_profile, mass = mass_profile, temperature = star.temperature, pressure = star.pressure, sound_speed = sound_speed, cumulative_mass = cumulative_mass_profile, tau = tau ) def velocity_softening_distribution(sphGiant,step,outputDir): sorted = sphGiant.gasParticles.pressure.argsort()[::-1] binned = sorted.reshape((-1, 1)) velocities = sphGiant.gasParticles.velocity[binned].sum(axis=1) textFile = open(outputDir + '/radial_profile/velocities_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(CalculateVectorSize(v)) for v in velocities])) textFile.close() h = sphGiant.gasParticles.radius[binned].sum(axis=1) textFile = open(outputDir + '/radial_profile/softenings_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(r) for r in h])) textFile.close() def temperature_density_plot(sphGiant, step, outputDir, toPlot = False, plotDust= False, dustRadius= 0.0 | units.RSun): if not HAS_PYNBODY: print("problem plotting") return width = 5.0 | units.AU length_unit, pynbody_unit = _smart_length_units_for_pynbody_data(width) sphGiant.gasParticles.temperature = 2.0/3.0 * sphGiant.gasParticles.u * mu() / constants.kB sphGiant.gasParticles.mu = mu() if sphGiant.core.mass > 0.0 | units.MSun: star = sph_to_star.convert_SPH_to_stellar_model(sphGiant.gasParticles, core_particle=sphGiant.core, particles_per_zone= 1 )#TODO: surround it by a code which adds the density of the core from mesa. else: star = sph_to_star.convert_SPH_to_stellar_model(sphGiant.gasParticles) data = structure_from_star(star) #sphGiant.gasParticles.radius = CalculateVectorSize((sphGiant.gasParticles.x,sphGiant.gasParticles.y,sphGiant.gasParticles.z)) #data = convert_particles_to_pynbody_data(sphGiant.gasParticles, length_unit, pynbody_unit) #plot to file print("writing data to files") textFile = open(outputDir + '/radial_profile/temperature_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["temperature"]])) textFile.close() textFile = open(outputDir + '/radial_profile/density_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["density"]])) textFile.close() textFile = open(outputDir + '/radial_profile/radius_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["radius"]])) textFile.close() textFile = open(outputDir + '/radial_profile/sound_speed_{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["sound_speed"]])) textFile.close() textFile = open(outputDir + '/radial_profile/mass_profile{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["mass"]])) textFile.close() textFile = open(outputDir + '/radial_profile/cumulative_mass_profile{0}'.format(step) + '.txt', 'w') textFile.write(', '.join([str(y) for y in data["cumulative_mass"]])) textFile.close() velocity_softening_distribution(sphGiant,step,outputDir) if toPlot: figure = pyplot.figure(figsize = (8, 10)) pyplot.subplot(1, 1, 1) ax = pyplot.gca() plotT = semilogy(data["radius"], data["temperature"], 'r-', label = r'$T(r)$', linewidth=3.0) xlabel('Radius', fontsize=24.0) ylabel('Temperature', fontsize= 24.0) ax.twinx() #plotrho = semilogy(data["radius"][:-1000], data["density"][:-1000].as_quantity_in(units.g * units.cm **-3), 'g-', label = r'$\rho(r)$', linewidth=3.0) plotrho = semilogy(data["radius"], data["density"].as_quantity_in(units.g * units.cm **-3), 'g-', label = r'$\rho(r)$', linewidth=3.0) plots = plotT + plotrho labels = [one_plot.get_label() for one_plot in plots] ax.legend(plots, labels, loc=3) ax.labelsize=20.0 ax.titlesize=24.0 ylabel('Density') #print "saved" pyplot.legend() pyplot.xticks(fontsize=20.0) pyplot.yticks(fontsize=20.0) pyplot.suptitle('Structure of a {0} star'.format(sphGiant.mass)) pyplot.savefig(outputDir + "/radial_profile/temperature_radial_proile_{0}.jpg".format(step), format='jpeg') #pyplot.close(figure) pyplot.clf() pyplot.cla() ''' figure = pyplot.figure(figsize = (15, 11)) #pyplot.subplot(1, 1,1) ax = pyplot.gca() pyplot.axes() plotC = semilogx(data["radius"][:-1000], (data["cumulative_mass"]/data["mass"][-1])[:-1000], 'r-', label = r'$Mint(r)/Mtot$',linewidth=3.0) print (data["radius"])[-1000] ax.twinx() plotRc= axvline(340.0 | units.RSun, linestyle='dashed', label = r'$Rc$',linewidth=3.0) legend = ax.legend(labels=[r'$Mint(r)/Mtot$', r'$Rc$'],ncol=3, loc=4, fontsize= 24.0) ax.set_yticklabels([]) ax.set_ylabel('') ax.set_xlabel('Radius [RSun]') loc = legend._get_loc() print loc xlabel('Radius', fontsize=24.0) ylabel('') ax.set_ylabel('') #ylabel('Cumulative Mass to Total Mass Ratio', fontsize=24.0) #pyplot.xlim(10,10000) pyplot.xlabel('Radius', fontsize=24.0) pyplot.xticks(fontsize = 20.0) #ax.set_xticklabels([10^1,10^2,10^3,10^4,10^5],fontsize=20) pyplot.yticks(fontsize= 20.0) pyplot.ylabel('') ax.set_ylabel('Cumulative Mass to Total Mass Ratio') ax.yaxis.set_label_coords(-0.1,0.5) #pyplot.ylabel('Cumulative Mass to Total Mass Ratio') #pyplot.axes.labelsize = 24.0 #pyplot.axes.titlesize = 24.0 pyplot.legend(bbox_to_anchor=(1.0,0.2),loc=0, fontsize=24.0) matplotlib.rcParams.update({'font.size': 20}) pyplot.tick_params(axis='y', which='both', labelleft='on', labelright='off') #pyplot.rc('text', usetex=True) #pyplot.suptitle('Cumulative mass ratio of {0} MSun Red Giant Star as a function of the distance from its core'.format(int(sphGiant.mass.value_in(units.MSun) * 100) / 100.0), fontsize=24) pyplot.savefig(outputDir + "/radial_profile/cumulative_mass_radial_proile_{0}".format(step)) ''' pyplot.close() if plotDust: print("calculating values") mdot = (4.0 * constants.pi * (dustRadius)**2 * GetPropertyAtRadius(data["density"],data["radius"], dustRadius) * GetPropertyAtRadius(data["sound_speed"],data["radius"],dustRadius)).as_quantity_in(units.MSun / units.yr) m = GetPropertyAtRadius(data["cumulative_mass"], data["radius"], dustRadius) M = GetPropertyAtRadius(data["cumulative_mass"], data["radius"], 7000.0 | units.RSun) print("Mdot at 340: ", mdot) print("cs at 340: ", GetPropertyAtRadius(data["sound_speed"],data["radius"], dustRadius)) #print "tau at 3000: ", GetPropertyAtRadius(data["tau"],data["radius"], 3000.0 | units.RSun) print("density at 340: ", GetPropertyAtRadius(data["density"],data["radius"], dustRadius)) print("m over 340: ", (M - m)) print("M total: ", M) print("time: ", ((M-m)/mdot)) def PlotDensity(sphGiant,core,binary,i, outputDir, vmin, vmax, plotDust=False, dustRadius=700 | units.RSun, width = 4.0 | units.AU, side_on = False, timeStep = 0.2): if not HAS_PYNBODY: print("problem plotting") return #width = 0.08 * sphGiant.position.lengths_squared().amax().sqrt() #width = 5.0 * sphGiant.position.lengths_squared().amax().sqrt() #width = 4.0 | units.AU length_unit, pynbody_unit = _smart_length_units_for_pynbody_data(width) pyndata = convert_particles_to_pynbody_data(sphGiant, length_unit, pynbody_unit) UnitlessArgs.strip([1]|length_unit, [1]|length_unit) if not side_on: with angmom.faceon(pyndata, cen=[0.0,0.0,0.0], vcen=[0.0,0.0,0.0]): pynbody_sph.image(pyndata, resolution=2000,width=width.value_in(length_unit), units='g cm^-3', vmin= vmin, vmax= vmax, cmap="hot", title = str(i * timeStep) + " days") UnitlessArgs.current_plot = native_plot.gca() '''native_plot.xlim(xmax=2, xmin=-10) native_plot.ylim(ymax=6, ymin=-6) native_plot.xticks([-10,-8,-6,-4,-2,0,2],[-6,-4,-2,0,2,4,6])''' native_plot.ylabel('y[AU]') yLabel = 'y[AU]' #pyplot.xlim(-5,-2) if core.mass != 0 | units.MSun: if core.x >= -1* width / 2.0 and core.x <= width/ 2.0 and core.y >= -1 * width/ 2.0 and core.y <= width / 2.0: #both coordinates are inside the boundaries- otherwise dont plot it scatter(core.x, core.y, c="r") scatter(binary.x, binary.y, c="w") #pyplot.xlim(-930, -350) #pyplot.ylim(-190,390) if plotDust: circle_with_radius(core.x, core.y,dustRadius, fill=False, color='white', linestyle= 'dashed', linewidth=3.0) else: outputDir += "/side_on" pyplot.rc('font',family='Serif',size=30) fig, (face, side) = pyplot.subplots(nrows=1,ncols=2, figsize=(40,14)) fig.subplots_adjust(wspace=0.01) with angmom.faceon(pyndata, cen=[0.0, 0.0, 0.0], vcen=[0.0, 0.0, 0.0]): pynbody_sph.image(pyndata, subplot=face, resolution=2000, width=width.value_in(length_unit), units='g cm^-3',show_cbar=False, clear=False, vmin=vmin, vmax=vmax, cmap="hot") face.set_adjustable('box-forced') if core.mass != 0 | units.MSun: if core.x >= -1* width / 2.0 and core.x <= width/ 2.0 and core.y >= -1 * width/ 2.0 and core.y <= width / 2.0: #both coordinates are inside the boundaries- otherwise dont plot it face.scatter(core.x.value_in(units.AU), core.y.value_in(units.AU), c="r") face.scatter(binary.x.value_in(units.AU), binary.y.value_in(units.AU), c="w") face.set_ylabel('y[AU]') face.set_xlabel('x[AU]') with angmom.sideon(pyndata, cen=[0.0, 0.0, 0.0], vcen=[0.0, 0.0, 0.0]): im2 = pynbody_sph.image(pyndata, subplot=side, resolution=2000, width=width.value_in(length_unit), units='g cm^-3', show_cbar=False, ret_im=True, clear=False, vmin=vmin, vmax=vmax, cmap="hot") side.set_adjustable('box-forced') if core.mass != 0 | units.MSun: if core.x >= -1 * width / 2.0 and core.x <= width / 2.0 and core.z >= -1 * width / 2.0 and core.z <= width / 2.0: # both coordinates are inside the boundaries- otherwise dont plot it side.scatter(core.x.value_in(units.AU), core.z.value_in(units.AU), c="r") side.scatter(binary.x.value_in(units.AU), binary.z.value_in(units.AU), c="w") side.set_ylabel('z[AU]') side.set_xlabel('x[AU]') fig.suptitle(str(i * timeStep) + " days") cbar = pyplot.colorbar(im2, aspect=10,fraction=0.08,pad=0.01,panchor=(0,0),anchor=(0,0)) cbar.set_label('Density $[g/cm^3]$') ''' with angmom.sideon(pyndata, cen=[0.0,0.0,0.0], vcen=[0.0,0.0,0.0]): pynbody_sph.sideon_image(pyndata, resolution=2000,width=width.value_in(length_unit), units='g cm^-3', vmin= vmin, vmax= vmax, cmap="hot", title = str(i * timeStep) + " days") UnitlessArgs.current_plot = native_plot.gca() native_plot.ylabel('z[AU]') yLabel = 'z[AU]' if core.mass != 0 | units.MSun: if core.x >= -1* width / 2.0 and core.x <= width/ 2.0 and core.z >= -1 * width/ 2.0 and core.z <= width / 2.0: #both coordinates are inside the boundaries- otherwise dont plot it scatter(core.x, core.z, c="r") scatter(binary.x, binary.z, c="w") if plotDust: circle_with_radius(core.x, core.z,dustRadius, fill=False, color='white', linestyle= 'dashed', linewidth=3.0) ''' #native_plot.colorbar(fontsize=20.0) matplotlib.rcParams.update({'font.size': 30, 'font.family': 'Serif'}) pyplot.rcParams.update({'font.size': 30, 'font.family': 'Serif'}) #pyplot.rc('text', usetex=True) #cbar.ax.set_yticklabels(cbar # .ax.get_yticklabels(), fontsize=24) #pyplot.axes.labelsize(24) pyplot.savefig(outputDir + "/plotting_{0}.jpg".format(i), transparent=False) pyplot.close() def PlotVelocity(sphGiant,core,binary,step, outputDir, vmin, vmax, timeStep = 0.2): if not HAS_PYNBODY: print(HAS_PYNBODY) print("problem plotting") return width = 1.7 * sphGiant.position.lengths_squared().amax().sqrt() length_unit, pynbody_unit = _smart_length_units_for_pynbody_data(width) pyndata = convert_particles_to_pynbody_data(sphGiant, length_unit, pynbody_unit) UnitlessArgs.strip([1]|length_unit, [1]|length_unit) pynbody_sph.velocity_image(pyndata, width=width.value_in(length_unit), units='g cm^-3',vmin= vmin, vmax= vmax, title = str(step * timeStep) + " days") UnitlessArgs.current_plot = native_plot.gca() #print core.mass #if core.mass != 0 |units.MSun: # scatter(core.x, core.y, c="r") scatter(core.x, core.y, c="r") scatter(binary.x, binary.y, c="w") pyplot.savefig(outputDir + "/velocity/velocity_plotting_{0}.jpg".format(step), transparent=False) pyplot.close() def Plot1Axe(x, fileName, outputDir, timeStep= 1400.0/7000.0, beginStep = 0, toPlot=False): if len(x) == 0: return beginTime = beginStep * timeStep timeLine = [beginTime + time * timeStep for time in xrange(len(x))] | units.day textFile = open(outputDir + '/' + fileName + 'time_' + str(beginTime) + "_to_" + str(beginTime + (len(x) - 1.0) * timeStep) + 'days.txt', 'w') textFile.write(', '.join([str(y) for y in x])) textFile.close() if toPlot: native_plot.figure(figsize= (20, 20), dpi= 80) plot(timeLine,x) xlabel('time[days]') native_plot.savefig(outputDir + '/' + fileName + 'time_' + str(beginTime) + "_to_" + str(beginTime + (len(x) - 1.0) * timeStep) + 'days.jpg') def PlotAdaptiveQuantities(arrayOfValueAndNamePairs, outputDir, beginStep = 0, timeStep= 1400.0/7000.0, toPlot = False): for a in arrayOfValueAndNamePairs: if a[0]: Plot1Axe(a[0], a[1], outputDir, timeStep, beginStep, toPlot) def PlotEccentricity(eccentricities, outputDir, beginStep = 0, timeStep= 1400.0/7000.0, toPlot = False): for e in eccentricities: if e[0] != []: Plot1Axe(e[0], e[1], outputDir, timeStep, beginStep, toPlot) def PlotBinaryDistance(distances, outputDir, beginStep = 0, timeStep= 1400.0/7000.0, toPlot = False): for d in distances: if d[0]: Plot1Axe(d[0], d[1], outputDir, timeStep, beginStep, toPlot) def PlotQuadropole(Qxx,Qxy,Qxz,Qyx, Qyy,Qyz,Qzx,Qzy,Qzz, outputDir = 0, timeStep = 1400.0/70000.0, beginStep = 0): if len(Qxx) == 0: return beginTime = beginStep * timeStep timeLine = [beginTime + time * timeStep for time in xrange(len(Qxx))] | units.day textFile = open(outputDir + '/quadropole_time_' + str(beginTime) + "_to_" + str(beginTime + (len(Qxx) - 1.0) * timeStep) + 'days.txt', 'w') textFile.write("Qxx,Qxy,Qxz,Qyx,Qyy,Qyz,Qzx,Qzy,Qzz\r\n") for i in xrange(0, len(Qxx)): textFile.write(' ,'.join([str(Qxx[i] * 10**40), str(Qxy[i] * 10**40), str(Qxz[i] * 10**40), str(Qyx[i] * 10**40), str(Qyy[i] * 10**40), str(Qyz[i] * 10**40), str(Qzx[i] * 10**40), str(Qzy[i] * 10**40), str(Qzz[i] * 10**40)])) textFile.write('\r\n') textFile.close() def AnalyzeBinaryChunk(savingDir,gasFiles,dmFiles,outputDir,chunk, vmin, vmax, beginStep, binaryDistances,binaryDistancesUnits, semmimajors,semmimajorsUnits, eccentricities, innerMass, innerMassUnits, pGas, pGasUnits, pGiant, pGiantUnits, pCompCore, pCompCoreUnits, pTot, pTotUnits, kGas, kGasUnits, uGiant, uGiantUnits, kCore, kCoreUnits, kComp, kCompUnits, eTot, eTotUnits, innerAngularMomenta, innerAngularMomentaUnits, companionAngularMomenta, companionAngularMomentaUnits, giantAngularMomenta, giantAngularMomentaUnits, gasAngularMomenta, gasAngularMomentaUnits, angularCores, angularCoresUnits, totAngularMomenta, totAngularMomentaUnits, massLoss, massLossUnits, Qxx,Qxy,Qxz,Qyx,Qyy,Qyz,Qzx,Qzy,Qzz, toPlot = False, plotDust=False, dustRadius= 340.0 | units.RSun, massLossMethod="estimated", timeStep=0.2): for index,step in enumerate(chunk): i = beginStep + index print("step #",i) for f in [obj for obj in gc.get_objects() if isinstance(obj, h5py.File)]: try: f.close() except: pass gas_particles_file = os.path.join(os.getcwd(), savingDir,gasFiles[step]) dm_particles_file = None if len(dmFiles) > 0: dm_particles_file = os.path.join(os.getcwd(),savingDir, dmFiles[step]) sphGiant = SphGiant(gas_particles_file, dm_particles_file, opposite=True) sphPointStar = Particle() sphPointStar.position = sphGiant.position sphPointStar.velocity = sphGiant.velocity sphPointStar.mass = sphGiant.mass sphPointStar.radius = sphGiant.radius try: binary = LoadBinaries(dm_particles_file) companion = binary[1] except: #no binary binary = [] companion = sphPointStar #print binary if len(binary) > 1: isBinary= True binary = Star(companion, sphPointStar) else: isBinary=False #binary = Star(sphPointStar, sphPointStar) centerOfMassPosition = [0.0,0.0,0.0] | units.m centerOfMassVelocity = [0.0,0.0,0.0] | units.m/units.s #print [CalculateVectorSize(part.velocity).as_quantity_in(units.m / units.s) for part in sphGiant.gasParticles] if isBinary: if CalculateVectorSize(CalculateSeparation(sphGiant.core, companion)) < min(sphGiant.core.radius, companion.radius): print("merger between companion and the giant! step: ", step) # break parts = Particles() parts.add_particle(sphGiant.core) parts.add_particles(sphGiant.gasParticles) parts.add_particle(companion) print("com: ", parts.center_of_mass(), step) print("com v: ", parts.center_of_mass_velocity(), i) centerOfMassPosition = parts.center_of_mass() centerOfMassVelocity = parts.center_of_mass_velocity() comParticle = Particle() comParticle.position = centerOfMassPosition comParticle.velocity = centerOfMassVelocity sphGiant.CountLeavingParticlesInsideRadius(com_position=centerOfMassPosition, com_velocity=centerOfMassVelocity, companion=companion, method=massLossMethod) print("leaving particles: ", sphGiant.leavingParticles) print("unbounded mass: ", sphGiant.totalUnboundedMass) massLoss[i] = sphGiant.totalUnboundedMass.value_in(massLossUnits) semmimajor = CalculateSemiMajor(CalculateVelocityDifference(companion, sphGiant.core), CalculateSeparation(companion, sphGiant.core),companion.mass + sphGiant.core.mass).as_quantity_in(units.AU) CalculateEccentricity(companion, sphGiant.core) #check if the companion is inside, take into account only the inner mass of the companion's orbit sphGiant.CalculateInnerSPH(companion, com_position=centerOfMassPosition, com_velocity=centerOfMassVelocity) #print "innerGasMass: ", sphGiant.innerGas.mass.value_in(units.MSun) innerMass[i] = sphGiant.innerGas.mass.value_in(innerMassUnits) newBinaryVelocityDifference = CalculateVelocityDifference(companion, sphGiant.innerGas) newBinarySeparation = CalculateSeparation(companion, sphGiant.innerGas) newBinaryMass = companion.mass + sphGiant.innerGas.mass newBinarySpecificEnergy = CalculateSpecificEnergy(newBinaryVelocityDifference,newBinarySeparation,sphGiant.innerGas,companion) semmimajor = CalculateSemiMajor(newBinaryVelocityDifference, newBinarySeparation, newBinaryMass).as_quantity_in(units.AU) eccentricity = CalculateEccentricity(companion, sphGiant.innerGas) eccentricities[i] = eccentricity binaryDistances[i] = CalculateVectorSize(newBinarySeparation).value_in(binaryDistancesUnits) sphGiant.CalculateEnergies(comV=centerOfMassVelocity) uGiant[i] = sphGiant.thermalEnergy.value_in(uGiantUnits) kGas[i] = sphGiant.gasKinetic.value_in(kGasUnits) kCore[i] = sphGiant.coreKinetic.value_in(kCoreUnits) kComp[i] = (0.5 * companion.mass * (CalculateVectorSize(companion.velocity))**2).value_in(kCompUnits) # total energies kTot = (sphGiant.kineticEnergy).value_in(kGasUnits) + kComp[i] pGas[i] = sphGiant.gasPotential.value_in(pGasUnits) pGiant[i] = sphGiant.potentialEnergy.value_in(pGiantUnits) pCompCore[i] = CalculatePotentialEnergy(sphGiant.core, companion).value_in(pCompCoreUnits) pCompGas = (sphGiant.potentialEnergyWithParticle(companion)).value_in(pGasUnits) pTot[i] = pGiant[i] + pCompGas + pCompCore[i] eTot[i] = kTot + pTot[i] + uGiant[i] try: separation = CalculateSeparation(companion, comParticle) specificAngularCOM = CalculateSpecificMomentum(CalculateVelocityDifference(companion, comParticle), separation) angularOuterCOMx = companion.mass * specificAngularCOM[0] angularOuterCOMy = companion.mass * specificAngularCOM[1] angularOuterCOMz = companion.mass * specificAngularCOM[2] companionAngularMomenta[i] = angularOuterCOMz.value_in(companionAngularMomentaUnits) companionAngularMomentaTot = ((angularOuterCOMx ** 2 + angularOuterCOMy ** 2 + angularOuterCOMz ** 2) ** 0.5).value_in( companionAngularMomentaUnits) gasAngularMomentaTot = sphGiant.GetAngularMomentumOfGas(centerOfMassPosition, centerOfMassVelocity) gasAngularMomenta[i] = gasAngularMomentaTot[2].value_in(gasAngularMomentaUnits) angularGiant = sphGiant.GetAngularMomentum(centerOfMassPosition, centerOfMassVelocity) giantAngularMomenta[i] = angularGiant[2].value_in(giantAngularMomentaUnits) angularCore = CalculateSpecificMomentum(CalculateVelocityDifference(sphGiant.core, comParticle), CalculateSeparation(sphGiant.core, comParticle)) angularCoresx = sphGiant.core.mass * angularCore[0] + angularOuterCOMx angularCoresy = sphGiant.core.mass * angularCore[1] + angularOuterCOMy angularCoresz = sphGiant.core.mass * angularCore[2] + angularOuterCOMz angularCores[i] = angularCoresz.value_in(angularCoresUnits) #((angularCoresx ** 2 + angularCoresy ** 2 + angularCoresz ** 2) ** 0.5).value_in(angularCoresUnits) angularTotx = angularGiant[0] + angularOuterCOMx angularToty = angularGiant[1] + angularOuterCOMy angularTotz = angularGiant[2] + angularOuterCOMz totAngularMomenta[i] = angularTotz.value_in(totAngularMomentaUnits) #((angularTotx ** 2 + angularToty ** 2 + angularTotz ** 2) ** 0.5).value_in(totAngularMomentaUnits) except: print("could not calculate angular momenta, ", sys.exc_info()[0]) semmimajors[i] = semmimajor.value_in(semmimajorsUnits) #check if the binary is breaking up if newBinarySpecificEnergy > 0 | (units.m **2 / units.s **2): print("binary is breaking up", binary.specificEnergy, step) Qxx_g,Qxy_g,Qxz_g,Qyx_g,Qyy_g,Qyz_g,Qzx_g,Qzy_g,Qzz_g = sphGiant.CalculateQuadropoleMoment() Qxx_p,Qxy_p,Qxz_p,Qyx_p,Qyy_p,Qyz_p,Qzx_p,Qzy_p,Qzz_p = CalculateQuadropoleMomentOfParticle(companion) # add the companion to the calculation print(Qxx_p, Qxx[i]+Qxx_p+Qxx_g) Qxx[i] = (Qxx[i]+Qxx_p+Qxx_g)/(10**40) print( Qxx[i]) Qxy[i] += (Qxy_p + Qxy_g)/(10**40) Qxz[i] += (Qxz_p + Qxz_g)/(10**40) Qyx[i] += (Qyx_p + Qyx_g)/(10**40) Qyy[i] += (Qyy_p + Qyy_g)/(10**40) Qyz[i] += (Qyz_p + Qyz_g)/(10**40) Qzx[i] += (Qzx_p + Qzx_g)/(10**40) Qzy[i] += (Qzy_p + Qzy_g)/(10**40) Qzz[i] += (Qzz_p + Qzz_g)/(10**40) temperature_density_plot(sphGiant, step, outputDir, toPlot) central_position = centerOfMassPosition central_velocity = centerOfMassVelocity sphGiant.gasParticles.position -= central_position sphGiant.gasParticles.velocity -= central_velocity sphGiant.core.position -= central_position sphGiant.core.velocity -= central_velocity companion.position -= central_position companion.velocity -= central_velocity innerAngularMomenta[i] = sphGiant.innerGas.angularMomentum[2].value_in(innerAngularMomentaUnits) if toPlot: PlotDensity(sphGiant.gasParticles,sphGiant.core,companion, step , outputDir, vmin, vmax, plotDust= plotDust, dustRadius=dustRadius, timeStep=timeStep) PlotDensity(sphGiant.gasParticles,sphGiant.core,companion, step, outputDir, vmin, vmax, plotDust= plotDust, dustRadius=dustRadius, side_on=True, timeStep=timeStep) PlotVelocity(sphGiant.gasParticles,sphGiant.core,companion, step, outputDir, vmin, vmax, timeStep=timeStep) for f in [obj for obj in gc.get_objects() if isinstance(obj,h5py.File)]: try: f.close() except: pass def AnalyzeTripleChunk(savingDir, gasFiles, dmFiles, outputDir, chunk, vmin, vmax, beginStep, binaryDistances, tripleDistances, triple1Distances, triple2Distances, aInners, aOuters, aOuters1, aOuters2, eInners, eOuters, eOuters1, eOuters2, inclinations, innerMass, innerMass1, innerMass2, localDensity, kInner, kOuter, kOuter1, kOuter2, pInner, pOuter, pOuter1, pOuter2, kGas, uGas, pGas, kCore, pOuterCore, pCores, pPartGas, force, omegaInner, omegaGiant, omegaTot, kTot, pTot, eTot, angularInner, angularOuter,angularOuter1,angularOuter2, angularOuterCOM1, angularOuterCOM2, angularOuterCOM, angularGasCOM, angularTot, localRadius=50.0|units.RSun, toPlot = False, opposite= False, axesOriginInInnerBinaryCenterOfMass= False, timeStep=0.2): energyUnits = units.kg*(units.km**2) / units.s**2 specificAngularMomentumUnits = (energyUnits * units.s / units.kg) / 10000 for i in [j - beginStep for j in chunk]: print(time.ctime(), "step: ", i) gas_particles_file = os.path.join(os.getcwd(), savingDir,gasFiles[i + beginStep]) dm_particles_file = os.path.join(os.getcwd(),savingDir, dmFiles[i + beginStep]) sphGiant = SphGiant(gas_particles_file, dm_particles_file, opposite= opposite) print(sphGiant.core) if i == 1: print(sphGiant.gasParticles[0]) #print "neigbbours:", sphGiant.FindLowestNumberOfNeighbours() #print "smallest cell radius: ", sphGiant.FindSmallestCell() #binary = Particles(2,pickle.load(open(os.path.join(os.getcwd(),savingDir,"binary.p"),"rb"))) binary = LoadBinaries(dm_particles_file, opposite= opposite) particle1 , particle2 = binary[0] , binary[1] innerBinary = Star(particle1,particle2) #change the position and velocity of center of mass to 0 centerOfMassPosition = (sphGiant.position * sphGiant.mass + innerBinary.position * innerBinary.mass) / (sphGiant.mass + innerBinary.mass) centerOfMassVelocity = (sphGiant.v * sphGiant.mass + innerBinary.velocity * innerBinary.mass) / (sphGiant.mass + innerBinary.mass) print("center of mass position: ", centerOfMassPosition) print("center of mass velocity: ", centerOfMassVelocity) comParticle = Particle() comParticle.position = centerOfMassPosition comParticle.velocity = centerOfMassVelocity triple1 = Star(particle1, sphGiant) triple2 = Star(particle2, sphGiant) aInner = CalculateSemiMajor(innerBinary.velocityDifference,innerBinary.separation, innerBinary.mass) eInner = CalculateEccentricity(particle1,particle2) if CalculateVectorSize(innerBinary.separation) <= particle1.radius+ particle2.radius: print("merger between the inner binary!" , innerBinary.separation.as_quantity_in(units.RSun) , i * timeStep) if CalculateVectorSize(CalculateSeparation(sphGiant.core,particle1)) <= sphGiant.core.radius + particle1.radius: print("merger between particle1 and the giant!" , i * timeStep) #break if CalculateVectorSize(CalculateSeparation(sphGiant.core, particle2)) <= sphGiant.core.radius+ particle2.radius: print("merger between particle 2 and the giant!" , i * timeStep) #break #check if the binry is breaking up if innerBinary.specificEnergy > 0 | (units.m **2 / units.s **2): print("binary is breaking up", innerBinary.specificEnergy , i * timeStep) #check if the couple particle1 + giant are breaking up if triple1.specificEnergy > 0 | (units.m **2 / units.s **2): print("triple1 is breaking up", triple1.specificEnergy , i * timeStep) #check if the couple particle2 + giant are also breaking up if triple2.specificEnergy > 0 | (units.m **2 / units.s **2): print("triple2 is also breaking up", triple2.specificEnergy , i * timeStep) #break #check if the couple particle2 + giant are breaking up if triple2.specificEnergy > 0 | (units.m **2 / units.s **2): print("triple2 is breaking up", triple2.specificEnergy, i * timeStep) separationStep = 0 #all the three are connected sphGiant.CountLeavingParticlesInsideRadius() print("leaving particles: ", sphGiant.leavingParticles) print("unbounded mass: ", sphGiant.totalUnboundedMass) print(time.ctime(), "beginning innerGas calculations of step ", i) sphGiant.CalculateInnerSPH(innerBinary, localRadius) innerMass[i] = sphGiant.innerGas.mass.value_in(units.MSun) tripleMass = innerBinary.mass + sphGiant.innerGas.mass tripleVelocityDifference = CalculateVelocityDifference(innerBinary,sphGiant.innerGas) tripleSeparation = CalculateSeparation(innerBinary,sphGiant.innerGas) aOuter = CalculateSemiMajor(tripleVelocityDifference, tripleSeparation, tripleMass) eOuter = CalculateEccentricity(innerBinary,sphGiant.innerGas) inclination = CalculateInclination(tripleVelocityDifference, tripleSeparation, innerBinary.velocityDifference, innerBinary.separation) binaryDistances[i] = CalculateVectorSize(innerBinary.separation).value_in(units.RSun) tripleDistances[i] = CalculateVectorSize(tripleSeparation).value_in(units.RSun) aInners[i] = aInner.value_in(units.AU) aOuters[i] = aOuter.value_in(units.AU) eInners[i] = eInner eOuters[i] = eOuter localDensity[i] = sphGiant.localDensity.value_in(units.MSun/units.RSun**3) inclinations[i] = inclination kInner[i]= innerBinary.kineticEnergy.value_in(energyUnits) pInner[i] = innerBinary.potentialEnergy.value_in(energyUnits) angularInner[i] = CalculateVectorSize(innerBinary.angularMomentum).value_in(specificAngularMomentumUnits * units.kg) omegaInner[i] = innerBinary.omega.value_in(energyUnits) giantForce = sphGiant.gravityWithParticle(particle1) + sphGiant.gravityWithParticle(particle2) force[i] = CalculateVectorSize(giantForce).value_in(energyUnits/units.km) #inner gas of the com of the inner binary kOuter[i] = kInner[i] + sphGiant.innerGas.kineticEnergy.value_in(energyUnits) pOuter[i] = -(constants.G*sphGiant.innerGas.mass*innerBinary.mass/ (tripleDistances[i] | units.RSun)).value_in(energyUnits) angularOuter[i] = (innerBinary.mass * sphGiant.innerGas.mass * (constants.G*aOuter/(innerBinary.mass+sphGiant.innerGas.mass))**0.5)\ .value_in(specificAngularMomentumUnits * units.kg) #inner gas of particle 1 innerMass1[i] , aOuters1[i], eOuters1[i], triple1Distances[i] = CalculateBinaryParameters(particle1, sphGiant) kOuter1[i] = (sphGiant.innerGas.kineticEnergy + 0.5*particle1.mass*(particle1.vx**2+particle1.vy**2+particle1.vz**2)).value_in(energyUnits) pOuter1[i] = -(constants.G*sphGiant.innerGas.mass*particle1.mass/ (triple1Distances[i] | units.RSun)).value_in(energyUnits) angularOuter1[i] = (particle1.mass*sphGiant.innerGas.mass* (constants.G*(aOuters1[i] | units.AU)/(particle1.mass+sphGiant.innerGas.mass))**0.5).value_in(specificAngularMomentumUnits* units.kg) #inner gas of particle2 innerMass2[i] , aOuters2[i], eOuters2[i], triple2Distances[i] = CalculateBinaryParameters(particle2, sphGiant) kOuter2[i] = (sphGiant.innerGas.kineticEnergy + 0.5*particle1.mass*(particle2.vx**2+particle2.vy**2+particle2.vz**2)).value_in(energyUnits) pOuter2[i] = (-constants.G*sphGiant.innerGas.mass*particle2.mass/ (triple2Distances[i] | units.RSun)).value_in(energyUnits) angularOuter2[i] = (particle2.mass*sphGiant.innerGas.mass* (constants.G*(aOuters2[i] | units.AU)/(particle2.mass+sphGiant.innerGas.mass))**0.5).value_in(specificAngularMomentumUnits * units.kg) #real energies sphGiant.CalculateEnergies() kGas[i] = sphGiant.gasKinetic.value_in(energyUnits) uGas[i] = sphGiant.thermalEnergy.value_in(energyUnits) pGas[i] = sphGiant.gasPotential.value_in(energyUnits) kCore[i] = sphGiant.coreKinetic.value_in(energyUnits) pOuterCore[i] = (CalculatePotentialEnergy(sphGiant.core,innerBinary)).value_in(energyUnits) pPartsCore = CalculatePotentialEnergy(sphGiant.core, particle1) + \ CalculatePotentialEnergy(sphGiant.core, particle2) pCores[i] = pPartsCore.value_in(energyUnits) pPartGas[i] = (sphGiant.potentialEnergyWithParticle(particle1,sphGiant.core.radius/2.8) + sphGiant.potentialEnergyWithParticle(particle2,sphGiant.core.radius/2.8)).value_in(energyUnits) #total energies kTot[i] = (sphGiant.kineticEnergy).value_in(energyUnits) + kInner[i] pTot[i] = sphGiant.potentialEnergy.value_in(energyUnits) + pInner[i] + pPartGas[i] + pCores[i] eTot[i] = kTot[i] + pTot[i] + uGas[i] print("pTot: ", pTot[i], pGas[i],pOuterCore[i],pInner[i]) print("kTot: ",kTot[i]) print("eTot: ", eTot[i]) try: separation1 = CalculateSeparation(particle1,comParticle) specificAngularCOM1 = CalculateSpecificMomentum(CalculateVelocityDifference(particle1,comParticle), separation1) angularOuterCOM1[i] = particle1.mass.value_in(units.kg)*CalculateVectorSize([specificAngularCOM1[0].value_in(specificAngularMomentumUnits), specificAngularCOM1[1].value_in(specificAngularMomentumUnits), specificAngularCOM1[2].value_in(specificAngularMomentumUnits)]) separation2 = CalculateSeparation(particle2, comParticle) specificAngularCOM2 = CalculateSpecificMomentum(CalculateVelocityDifference(particle2, comParticle),separation2) angularOuterCOM2[i] = particle2.mass.value_in(units.kg) * CalculateVectorSize([specificAngularCOM2[0].value_in(specificAngularMomentumUnits) ,specificAngularCOM2[1].value_in(specificAngularMomentumUnits) ,specificAngularCOM2[2].value_in(specificAngularMomentumUnits) ]) angularOuterCOMx = particle1.mass * specificAngularCOM1[0] + particle2.mass * specificAngularCOM2[0] angularOuterCOMy = particle1.mass * specificAngularCOM1[1] + particle2.mass * specificAngularCOM2[1] angularOuterCOMz = particle1.mass * specificAngularCOM1[2] + particle2.mass * specificAngularCOM2[2] angularOuterCOM[i] = ((angularOuterCOMx**2+angularOuterCOMy**2+angularOuterCOMz**2)**0.5).value_in(specificAngularMomentumUnits * units.kg) angularGasCOM[i] = CalculateVectorSize(sphGiant.GetAngularMomentumOfGas(centerOfMassPosition, centerOfMassVelocity)).value_in(specificAngularMomentumUnits * units.kg) angularGiant = sphGiant.GetAngularMomentum(centerOfMassPosition,centerOfMassVelocity) angularTotx = angularGiant[0] + angularOuterCOMx angularToty = angularGiant[1] + angularOuterCOMy angularTotz = angularGiant[2] + angularOuterCOMz angularTot[i] = ((angularTotx**2 + angularToty**2 + angularTotz**2)**0.5).value_in(specificAngularMomentumUnits * units.kg) omegaGiant[i] = sphGiant.omegaPotential.value_in(energyUnits) comp = Particles(particles=[particle1,particle2]) comp.move_to_center() comp.position -= comParticle.position comp.velocity -=comParticle.velocity omegaTot[i] = omegaInner[i] + omegaGiant[i] + CalculateOmega(comp).value_in(energyUnits) print("omega tot: ", omegaTot[i]) except: print("could not calculate angular momenta, ", sys.exc_info()[0]) print(time.ctime(), "temperature_density_plotting of step ", i) temperature_density_plot(sphGiant, i + beginStep , outputDir, toPlot) print(time.ctime(), "finished temperature plotting of step: ", i) if toPlot: central_position = sphGiant.gas.position central_velocity = sphGiant.gas.velocity ''' if axesOriginInInnerBinaryCenterOfMass: central_position = innerBinary.position central_velocity = innerBinary.velocity ''' sphGiant.gasParticles.position -= central_position sphGiant.gasParticles.velocity -= central_velocity sphGiant.core.position -= central_position sphGiant.core.velocity -= central_velocity binary[0].position -= central_position binary[0].velocity -= central_velocity binary[1].position -= central_position binary[1].velocity -= central_velocity if axesOriginInInnerBinaryCenterOfMass: PlotDensity(sphGiant.gasParticles,sphGiant.core,binary,i + beginStep, outputDir, vmin=5e29, vmax= 1e35, width= 30.0 * 3.0 | units.RSun, timeStep=timeStep) PlotDensity(sphGiant.gasParticles,sphGiant.core,binary,i + beginStep, outputDir, vmin=5e29, vmax= 1e35, width= 30.0 * 3.0 | units.RSun, side_on=True, timeStep=timeStep) else: PlotDensity(sphGiant.gasParticles,sphGiant.core,binary,i + beginStep, outputDir, vmin, vmax, width= 4.0 | units.AU, timeStep=timeStep) PlotDensity(sphGiant.gasParticles,sphGiant.core,binary,i + beginStep, outputDir, vmin, vmax, width= 4.0 | units.AU, side_on=True, timeStep=timeStep) PlotVelocity(sphGiant.gasParticles,sphGiant.core,binary,i + beginStep, outputDir, vmin, vmax) #close opened handles for f in [obj for obj in gc.get_objects() if isinstance(obj,h5py.File)]: try: f.close() except: pass def AnalyzeBinary(beginStep, lastStep, dmFiles, gasFiles, savingDir, outputDir, vmin, vmax, toPlot = False,cpus=10, skip=1,plotDust=False, dustRadius=700.0|units.RSun, massLossMethod="estimated", timeStep=0.2): if lastStep == 0 : # no boundary on last step lastStep = len(gasFiles) else: lastStep=min(lastStep, len(dmFiles)) print(lastStep) workingRange = range(beginStep, lastStep,skip) energyUnits = units.kg*(units.km**2)/(units.s**2) angularMomentaUnits = energyUnits * units.s * 10000 binaryDistances = MultiProcessArrayWithUnits(len(workingRange),units.RSun) semmimajors = MultiProcessArrayWithUnits(len(workingRange),units.AU) eccentricities = MultiProcessArrayWithUnits(len(workingRange),None) innerMass = MultiProcessArrayWithUnits(len(workingRange),units.MSun) pGas = MultiProcessArrayWithUnits(len(workingRange),energyUnits) pGiant = MultiProcessArrayWithUnits(len(workingRange),energyUnits) pCompCore = MultiProcessArrayWithUnits(len(workingRange),energyUnits) pTot = MultiProcessArrayWithUnits(len(workingRange),energyUnits) kGas = MultiProcessArrayWithUnits(len(workingRange),energyUnits) uGiant = MultiProcessArrayWithUnits(len(workingRange),energyUnits) kCore = MultiProcessArrayWithUnits(len(workingRange),energyUnits) kComp = MultiProcessArrayWithUnits(len(workingRange),energyUnits) eTot = MultiProcessArrayWithUnits(len(workingRange),energyUnits) innerAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) companionAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) giantAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) gasAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) coresAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) totAngularMomenta = MultiProcessArrayWithUnits(len(workingRange),angularMomentaUnits) massLoss = MultiProcessArrayWithUnits(len(workingRange), units.MSun) Qxx = multiprocessing.Array(c_float, [0.0 for i in workingRange]) Qxy = multiprocessing.Array('f', [0.0 for i in workingRange]) Qxz = multiprocessing.Array('f', [0.0 for i in workingRange]) Qyx = multiprocessing.Array('f', [0.0 for i in workingRange]) Qyy = multiprocessing.Array('f', [0.0 for i in workingRange]) Qyz = multiprocessing.Array('f', [0.0 for i in workingRange]) Qzx = multiprocessing.Array('f', [0.0 for i in workingRange]) Qzy = multiprocessing.Array('f', [0.0 for i in workingRange]) Qzz = multiprocessing.Array('f', [0.0 for i in workingRange]) #chunkSize = (lastStep - beginStep) / 8 chunkSize = int(math.floor(len(workingRange) / cpus)) if chunkSize == 0: if lastStep - beginStep == 0: return else: chunkSize = 1 leftovers = len(workingRange) - cpus * chunkSize chunks = [] chunks += [workingRange[i:i+min(chunkSize+1,len(workingRange)-i)] for i in xrange(0,leftovers*(chunkSize+1),chunkSize+1)] chunks += [workingRange[i:i+min(chunkSize,len(workingRange)-i)] for i in xrange(leftovers*(chunkSize+1),len(workingRange),chunkSize)] processes = [] print(chunks) i=0 for chunk in chunks: processes.append(multiprocessing.Process(target= AnalyzeBinaryChunk,args=(savingDir,gasFiles,dmFiles,outputDir, chunk, vmin, vmax, i, binaryDistances.array, binaryDistances.units, semmimajors.array, semmimajors.units, eccentricities.array, innerMass.array, innerMass.units, pGas.array, pGas.units, pGiant.array, pGiant.units, pCompCore.array, pCompCore.units, pTot.array, pTot.units, kGas.array, kGas.units, uGiant.array, uGiant.units, kCore.array, kCore.units, kComp.array, kComp.units, eTot.array, eTot.units, innerAngularMomenta.array, innerAngularMomenta.units, companionAngularMomenta.array, companionAngularMomenta.units, giantAngularMomenta.array, giantAngularMomenta.units, gasAngularMomenta.array, gasAngularMomenta.units, coresAngularMomenta.array, coresAngularMomenta.units, totAngularMomenta.array, totAngularMomenta.units, massLoss.array,massLoss.units, Qxx,Qxy,Qxz,Qyx,Qyy,Qyz,Qzx,Qzy,Qzz, toPlot, plotDust,dustRadius, massLossMethod, timeStep,))) i += len(chunk) #pool.map() for p in processes: p.start() for p in processes: p.join() binaryDistances.plot("InnerBinaryDistances", outputDir + "/graphs",timeStep*skip, 1.0*beginStep/skip,False) semmimajors.plot("aInners", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) innerMass.plot("InnerMass", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) eccentricities.plot("eInners", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) innerAngularMomenta.plot("innerAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) companionAngularMomenta.plot("companionAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) giantAngularMomenta.plot("giantAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) gasAngularMomenta.plot("gasAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) coresAngularMomenta.plot("coresAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) totAngularMomenta.plot("totAngularMomenta", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) pGas.plot("pGas", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) pGiant.plot("pGiant", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) pCompCore.plot("pCompCore", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) pTot.plot("pTot", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) kGas.plot("kGas", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) uGiant.plot("uGiant", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) kCore.plot("kCore", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) kComp.plot("kComp", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) eTot.plot("eTot", outputDir + "/graphs",timeStep*skip,1.0*beginStep/skip,False) massLoss.plot("mass loss", outputDir + "/graphs", timeStep*skip,1.0*beginStep/skip,False) #PlotQuadropole(Qxx,Qxy,Qxz,Qyx,Qyy,Qyz,Qzx,Qzy,Qzz,outputDir+"/graphs",timeStep*skip,1.0*beginStep/skip) def AnalyzeTriple(beginStep, lastStep, dmFiles, gasFiles, savingDir, outputDir, vmin, vmax, localRadius=50.0 | units.RSun ,toPlot = False, opposite= False, axesOriginInInnerBinaryCenterOfMass= False, timeStep=0.2): separationStep = multiprocessing.Value('i') if lastStep == 0 : # no boundary on last step lastStep = len(dmFiles) else: lastStep=min(lastStep, len(dmFiles)) print(lastStep) binaryDistances = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) tripleDistances = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) triple1Distances = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) triple2Distances = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) aInners = multiprocessing.Array('f', [0.0 for i in range(beginStep, lastStep)]) aOuters = multiprocessing.Array('f', [0.0 for i in range(beginStep, lastStep)]) aOuters1 = multiprocessing.Array('f', [0.0 for i in range(beginStep, lastStep)]) # for the couple particle1 + giant aOuters2 = multiprocessing.Array('f', [0.0 for i in range(beginStep, lastStep)]) # for the couple particle2 + giant eInners = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) eOuters = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) eOuters1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) # for the couple particle1 + giant eOuters2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) # for the couple particle2 + giant inclinations = multiprocessing.Array('f', range(beginStep, lastStep)) innerMass = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) innerMass1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) innerMass2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) localDensity = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kInner = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kOuter = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kOuter1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kOuter2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pInner = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pOuter = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pOuter1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pOuter2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kGas = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) uGas = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pGas = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kCore = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pOuterCore = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pCores = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pPartGas = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) force = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) omegaInner = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) omegaGiant = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) omegaTot = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) kTot = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) pTot = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) eTot = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularInner = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuter = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuter1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuter2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuterCOM1 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuterCOM2 = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularOuterCOM = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularGasCOM = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) angularTot = multiprocessing.Array('f', [-1.0 for i in range(beginStep, lastStep)]) #angularInner, angularOuter,angularOuter1,angularOuter2 angularOuterCOM1, angularOuterCOM2, angularOuterCOM, angularGasCOM, angularTot #kInner, kOuter, kOuter1, kOuter2, pInner, pOuter, pOuter1, pOuter2, uInner, uOuter, uOuter1, uOuter2, kGas, uGas, pGas, # kCore, pOuterCore, pCores, pPartGas, force, omegaInner, omegaGiant, omegaTot, kTot, pTot, uTot, eTot cpus = multiprocessing.cpu_count() - 6 chunkSize= (lastStep-beginStep)/(multiprocessing.cpu_count() - 6) print("using ", multiprocessing.cpu_count() - 6, " cpus") if chunkSize == 0: if lastStep - beginStep == 0: return else: chunkSize = 1 chunks = [xrange(i,i+chunkSize) for i in xrange(beginStep,lastStep,chunkSize)] if len(chunks) > 1: lastChunkBegin = chunks[-2][-1] + 1 else: lastChunkBegin = beginStep chunks[-1] = xrange(lastChunkBegin, lastStep) processes = [] print(chunks) for chunk in chunks: processes.append(multiprocessing.Process(target= AnalyzeTripleChunk,args=(savingDir, gasFiles, dmFiles, outputDir, chunk, vmin, vmax, beginStep, binaryDistances, tripleDistances, triple1Distances, triple2Distances, aInners, aOuters, aOuters1, aOuters2, eInners, eOuters, eOuters1, eOuters2, inclinations, innerMass, innerMass1, innerMass2,localDensity, kInner, kOuter, kOuter1, kOuter2, pInner, pOuter, pOuter1, pOuter2, kGas, uGas, pGas, kCore, pOuterCore, pCores, pPartGas, force, omegaInner, omegaGiant, omegaTot, kTot, pTot, eTot, angularInner, angularOuter, angularOuter1, angularOuter2, angularOuterCOM1, angularOuterCOM2, angularOuterCOM, angularGasCOM, angularTot, localRadius, toPlot, opposite, axesOriginInInnerBinaryCenterOfMass, timeStep,))) for p in processes: p.start() for p in processes: p.join() newBinaryDistances = AdaptingVectorQuantity() newTripleDistances = AdaptingVectorQuantity() newTriple1Distances = AdaptingVectorQuantity() newTriple2Distances = AdaptingVectorQuantity() newAInners = AdaptingVectorQuantity() newAOuters = AdaptingVectorQuantity() newAOuters1 = AdaptingVectorQuantity() newAOuters2 = AdaptingVectorQuantity() newInnerMass = AdaptingVectorQuantity() newInnerMass1 = AdaptingVectorQuantity() newInnerMass2 = AdaptingVectorQuantity() newLocalDensity = AdaptingVectorQuantity() for j in xrange(len(binaryDistances)-1): newBinaryDistances.append(float(binaryDistances[j]) | units.RSun) newTripleDistances.append(float(tripleDistances[j]) | units.RSun) newTriple1Distances.append(float(triple1Distances[j]) | units.RSun) newTriple2Distances.append(float(triple2Distances[j]) | units.RSun) newAInners.append(float(aInners[j]) | units.AU) newAOuters.append(float(aOuters[j]) | units.AU) newAOuters1.append(float(aOuters1[j]) | units.AU) newAOuters2.append(float(aOuters2[j]) | units.AU) newInnerMass.append(float(innerMass[j]) | units.MSun) newInnerMass1.append(float(innerMass1[j]) | units.MSun) newInnerMass2.append(float(innerMass2[j]) | units.MSun) newLocalDensity.append(float(localDensity[j]) | units.MSun / units.RSun**3) separationStep = int(separationStep.value) PlotBinaryDistance([(newBinaryDistances, "InnerBinaryDistances"), (newTripleDistances, "tripleDistances"), (newTriple1Distances, "triple1Distances"), (newTriple2Distances, "triple2Distances")], outputDir + "/graphs", beginStep,timeStep,toPlot) PlotAdaptiveQuantities([(newAInners,"aInners"),(newAOuters, "aOuters")], outputDir+"/graphs",beginStep,timeStep,toPlot) PlotAdaptiveQuantities([(newAOuters1, "aOuters1"), (newAOuters2, "aOuters2")], outputDir+ "/graphs", separationStep,timeStep,toPlot) PlotEccentricity([(eInners, "eInners"), (eOuters, "eOuters")], outputDir + "/graphs", beginStep, timeStep, toPlot) PlotEccentricity([(eOuters1, "eOuters1"), (eOuters2, "eOuters2")],outputDir + "/graphs", separationStep,timeStep,toPlot) Plot1Axe(inclinations,"inclinations", outputDir+"/graphs", beginStep=beginStep, toPlot=toPlot) PlotAdaptiveQuantities([(innerMass, "InnerMass"), (innerMass1, "InnerMass1"), (innerMass2, "InnerMass2"), (localDensity, "LocalDensity"),(kInner,"kInner"), (kOuter,"kOuter"), (kOuter1,"kOuter1"), (kOuter2,"kOuter2"),(pInner,"pInner"), (pOuter,"pOuter"), (pOuter1,"pOuter1"), (pOuter2,"pOuter2"),(kGas,"kGas"), (uGas,"uGas"), (pGas,"pGas"), (kCore,"kCore"), (pOuterCore,"pOuterCore"),(pCores,"pCores"), (pPartGas,"pPartGas"), (force,"force"), (omegaInner,"omegaInner"), (omegaGiant,"omegaGiant"), (omegaTot,"omegaTot"), (kTot,"kTot"), (pTot,"pTot"), (eTot,"eTot"), (angularInner,"angularInner"), (angularOuter,"angularOuter"), (angularOuter1,"angularOuter1"), (angularOuter2,"angularOuter2"), (angularOuterCOM1,"angularOuterCOM1"), (angularOuterCOM2,"angularOuterCOM2"), (angularOuterCOM,"angularOuterCOM"), (angularGasCOM,"angularGasCOM"), (angularTot,"angularTot")], outputDir + "/graphs", beginStep,timeStep, toPlot) def InitParser(): parser = argparse.ArgumentParser(description='') parser.add_argument('--beginStep', type=int, help='first step', default=0) parser.add_argument('--lastStep', type=int, help='last step', default=0) parser.add_argument('--timeStep', type=float, help='time between files in days', default=0.2) parser.add_argument('--skip', type=int, help='number of steps to skip', default=1) parser.add_argument('--source_dir', type=str, help='path to amuse files directory', default= sys.argv[0]) parser.add_argument('--savingDir', type=str, help='path to output directory', default= "evolution") parser.add_argument('--vmin', type=float, help='minimum density plotting', default=1e16) parser.add_argument('--vmax', type=float, help='maximum density plotting', default=1e34) parser.add_argument('--plot', type=lambda x: (str(x).lower() in ['true', '1', 'yes']), help='do you want to plot profiles?', default=False) parser.add_argument('--axesOriginInInnerBinaryCenterOfMass', type=lambda x: (str(x).lower() in ['true', '1', 'yes']), help='do you want to plot the inner binary at the origin?', default=False) parser.add_argument('--opposite', type=lambda x: (str(x).lower() in ['true', '1', 'yes']), help='do you want the main star to be a part of the inner binary?', default=False) parser.add_argument('--localRadius', type=float, help='maximum density plotting', default=50.0) parser.add_argument('--cpus', type=int, help='number of cpus', default=10) parser.add_argument('--massLossMethod', type=str, help='estimated or direct', default= "estimated") return parser def GetArgs(args): if len(args) > 1: directory=args[1] else: directory = args[0] if len(args) > 2: savingDir = directory + "/" + args[2] if args[2] == "snapshots": toCompare = False else: toCompare = True else: savingDir = directory + "/evolution" toCompare = True if len(args) > 3: beginStep = int(args[3]) else: beginStep = 0 if len(args) > 4: lastStep = int(args[4]) else: lastStep = 0 if len(args) > 5: vmin= float(args[5]) else: vmin = 1e16 if len(args) > 6: vmax = float(args[6]) else: vmax= 1e34 if len(args) >7: plot = bool(int(args[7])) else: plot = False if len(args) >8: axesOriginInInnerBinaryCenterOfMass = bool(int(args[8])) else: axesOriginInInnerBinaryCenterOfMass = False if len(args) >9: opposite = bool(int(args[9])) else: opposite = False if len(args) > 10: timeStep=float(args[10]) else: timeStep = 0.2 if len(args) > 11: localRadius = float(args[11]) | units.RSun else: localRadius = 50.0 | units.RSun outputDir = savingDir + "/pics" return savingDir, toCompare, beginStep, lastStep, vmin, vmax, outputDir, plot, axesOriginInInnerBinaryCenterOfMass, opposite, timeStep, localRadius def InitializeSnapshots(savingDir, toCompare=False, firstFile=0): ''' taking the snapshots directory of past run Returns: sorted dm snapshots and gas snapshots ''' snapshots = os.listdir(os.path.join(os.getcwd(),savingDir)) numberOfSnapshots = len(snapshots) / 2 dmFiles = [] gasFiles = [] for snapshotFile in snapshots: if 'dm' in snapshotFile: #if the word dm is in the filename dmFiles.append(snapshotFile) if 'gas' in snapshotFile: gasFiles.append(snapshotFile) if toCompare: dmFiles.sort(cmp=compare) gasFiles.sort(cmp= compare) else: dmFiles.sort() gasFiles.sort() numberOfCompanion = 0 if len(dmFiles) > 0: try: numberOfCompanion = len(read_set_from_file(os.path.join(os.getcwd(), savingDir,dmFiles[firstFile]), format='amuse')) except: numberOfCompanion = len(read_set_from_file(os.path.join(os.getcwd(), savingDir,dmFiles[0]), format='amuse')) return gasFiles, dmFiles, numberOfCompanion def compare(st1, st2): num1 = int(st1.split("_")[1].split(".")[0]) num2 = int(st2.split("_")[1].split(".")[0]) if num1 < num2: return -1 return 1 def main(args= ["../../BIGDATA/code/amuse-10.0/runs200000/run_003","evolution",0,1e16,1e34, 1]): parser=InitParser() args=parser.parse_args() savingDir = os.path.join(args.source_dir, args.savingDir) outputDir = os.path.join(savingDir,"pics") toCompare = (args.savingDir != "snapshots") print("plotting to " + outputDir + " plot- " + str(args.plot) + " from " + args.savingDir +" begin step = " , args.beginStep , \ " vmin, vmax = " , args.vmin, args.vmax, "special comparing = ", toCompare, "axes at the origin? ", \ args.axesOriginInInnerBinaryCenterOfMass, "opossite? ", args.opposite, "timeStep= ", args.timeStep, "localRadius= ",args.localRadius) '''savingDir, toCompare, beginStep, lastStep, vmin, vmax, outputDir, plot, axesOriginInInnerBinaryCenterOfMass, \ opposite, timeStep, localRadius = GetArgs(args) print "plotting to " + outputDir + " plot- " + str(plot) + " from " + savingDir +" begin step = " , beginStep , \ " vmin, vmax = " , vmin, vmax, "special comparing = ", toCompare, "axes at the origin? ", \ axesOriginInInnerBinaryCenterOfMass, "opossite? ", opposite, "timeStep= ", timeStep, "localRadius= ",localRadius ''' try: os.makedirs(outputDir) except(OSError): pass try: os.makedirs(outputDir + "/side_on") except(OSError): pass try: os.makedirs(outputDir + "/velocity") except(OSError): pass try: os.makedirs(outputDir + "/graphs") except (OSError): pass try: os.makedirs(outputDir + "/radial_profile") except(OSError): pass gasFiles, dmFiles, numberOfCompanion = InitializeSnapshots(savingDir, toCompare,args.beginStep) if numberOfCompanion <= 2: #binary print("analyzing binary") AnalyzeBinary(beginStep=args.beginStep,lastStep=args.lastStep, dmFiles=dmFiles, gasFiles=gasFiles, savingDir=savingDir, outputDir=outputDir, vmin=args.vmin, vmax=args.vmax, toPlot=args.plot, plotDust=False, timeStep=args.timeStep, skip=args.skip, cpus= args.cpus, massLossMethod=args.massLossMethod) elif numberOfCompanion ==3: #triple AnalyzeTriple(beginStep=args.beginStep, lastStep=args.lastStep, dmFiles=dmFiles, gasFiles=gasFiles, savingDir=savingDir, outputDir=outputDir, vmin=args.vmin, vmax=args.vmax, localRadius=args.localRadius, toPlot=args.plot, opposite=args.opposite, axesOriginInInnerBinaryCenterOfMass=args.axesOriginInInnerBinaryCenterOfMass, timeStep=args.timeStep) if __name__ == "__main__": for arg in sys.argv: print(arg) print(len(sys.argv)) main(sys.argv)
gpl-2.0
JVillella/tensorflow
tensorflow/examples/learn/hdf5_classification.py
75
2899
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, hdf5 format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf import h5py # pylint: disable=g-bad-import-order X_FEATURE = 'x' # Name of the input feature. def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Note that we are saving and load iris data as h5 format as a simple # demonstration here. h5f = h5py.File('/tmp/test_hdf5.h5', 'w') h5f.create_dataset('X_train', data=x_train) h5f.create_dataset('X_test', data=x_test) h5f.create_dataset('y_train', data=y_train) h5f.create_dataset('y_test', data=y_test) h5f.close() h5f = h5py.File('/tmp/test_hdf5.h5', 'r') x_train = np.array(h5f['X_train']) x_test = np.array(h5f['X_test']) y_train = np.array(h5f['y_train']) y_test = np.array(h5f['y_test']) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = [ tf.feature_column.numeric_column( X_FEATURE, shape=np.array(x_train).shape[1:])] classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=200) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class_ids'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
saullocastro/pyNastran
pyNastran/op2/tables/oes_stressStrain/real/oes_bars100.py
1
12846
from __future__ import (nested_scopes, generators, division, absolute_import, print_function, unicode_literals) from six import iteritems from itertools import count import numpy as np from numpy import zeros, searchsorted, ravel from pyNastran.op2.tables.oes_stressStrain.real.oes_objects import StressObject, StrainObject, OES_Object from pyNastran.f06.f06_formatting import write_floats_13e, _eigenvalue_header try: import pandas as pd except ImportError: pass class RealBar10NodesArray(OES_Object): def __init__(self, data_code, is_sort1, isubcase, dt): OES_Object.__init__(self, data_code, isubcase, apply_data_code=False) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.ielement = 0 self.nelements = 0 # result specific self.nnodes = None if is_sort1: if dt is not None: #self.add = self.add_sort1 self.add_new_eid = self.add_new_eid_sort1 #self.addNewNode = self.addNewNodeSort1 else: raise NotImplementedError('SORT2') #assert dt is not None #self.add = self.add_sort2 #self.add_new_eid = self.add_new_eid_sort2 #self.addNewNode = self.addNewNodeSort2 def is_real(self): return True def is_complex(self): return False def _reset_indices(self): self.itotal = 0 self.ielement = 0 def _get_msgs(self): raise NotImplementedError('%s needs to implement _get_msgs' % self.__class__.__name__) def get_headers(self): raise NotImplementedError('%s needs to implement get_headers' % self.__class__.__name__) def build(self): #print("self.ielement =", self.ielement) # print('RealBar10NodesArray isubcase=%s ntimes=%s nelements=%s ntotal=%s' % ( # self.isubcase, self.ntimes, self.nelements, self.ntotal)) if self.is_built: return assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] if self.element_type == 100: nnodes_per_element = 1 else: raise NotImplementedError(self.element_type) self.nnodes = nnodes_per_element self.nelements //= self.ntimes #self.ntotal = self.nelements #* 2 # for A/B #self.nelements //= nnodes_per_element self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("***name=%s type=%s nnodes_per_element=%s ntimes=%s nelements=%s ntotal=%s" % ( #self.element_name, self.element_type, nnodes_per_element, self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, int): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.ntotal, dtype='int32') #[sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS] self.data = zeros((self.ntimes, self.ntotal, 9), dtype='float32') def build_dataframe(self): headers = self.get_headers() if self.nonlinear_factor is not None: column_names, column_values = self._build_dataframe_transient_header() self.data_frame = pd.Panel(self.data, items=column_values, major_axis=self.element, minor_axis=headers).to_frame() self.data_frame.columns.names = column_names self.data_frame.index.names = ['ElementID', 'Item'] else: self.data_frame = pd.Panel(self.data, major_axis=self.element, minor_axis=headers).to_frame() self.data_frame.columns.names = ['Static'] self.data_frame.index.names = ['ElementID', 'Item'] def __eq__(self, table): assert self.is_sort1() == table.is_sort1() self._eq_header(table) if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1(): for itime in range(ntimes): for ieid, eid, in enumerate(self.element): t1 = self.data[itime, inid, :] t2 = table.data[itime, inid, :] (axial_stress1, equiv_stress1, total_strain1, effective_plastic_creep_strain1, effective_creep_strain1, linear_torsional_stress1) = t1 (axial_stress2, equiv_stress2, total_strain2, effective_plastic_creep_strain2, effective_creep_strain2, linear_torsional_stress2) = t2 if not np.allclose(t1, t2): #if not np.array_equal(t1, t2): msg += '%s\n (%s, %s, %s, %s, %s, %s)\n (%s, %s, %s, %s, %s, %s)\n' % ( eid, axial_stress1, equiv_stress1, total_strain1, effective_plastic_creep_strain1, effective_creep_strain1, linear_torsional_stress1, axial_stress2, equiv_stress2, total_strain2, effective_plastic_creep_strain2, effective_creep_strain2, linear_torsional_stress2) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2()) if i > 0: print(msg) raise ValueError(msg) return True def add_new_eid(self, eType, dt, eid, sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS): self.add_new_eid_sort1(eType, dt, eid, sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS) def add_new_eid_sort1(self, eType, dt, eid, sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS): self._times[self.itime] = dt # print('isubcase=%s itotal=%s ieid=%s eid=%s' % (self.isubcase, self.itotal, self.ielement, eid)) self.element[self.itotal] = eid self.data[self.itime, self.itotal, :] = [sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS] self.itotal += 1 self.ielement += 1 def get_stats(self): if not self.is_built: return ['<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes nnodes = self.nnodes ntotal = self.ntotal #nlayers = 2 nelements = self.ntotal // self.nnodes # // 2 msg = [] if self.nonlinear_factor is not None: # transient msg.append(' type=%s ntimes=%i nelements=%i nnodes_per_element=%i ntotal=%i\n' % (self.__class__.__name__, ntimes, nelements, nnodes, ntotal)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i nnodes_per_element=%i ntotal=%i\n' % (self.__class__.__name__, nelements, nnodes, ntotal)) ntimes_word = '1' headers = self.get_headers() n = len(headers) assert n == self.data.shape[2], 'nheaders=%s shape=%s' % (n, str(self.data.shape)) msg.append(' data: [%s, ntotal, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' element type: %s\n ' % self.element_name) msg += self.get_data_code() return msg def get_element_index(self, eids): # elements are always sorted; nodes are not itot = searchsorted(eids, self.element_node[:, 0]) #[0] return itot #def eid_to_element_node_index(self, eids): #ind = ravel([searchsorted(self.element_node[:, 0] == eid) for eid in eids]) ##ind = searchsorted(eids, self.element) ##ind = ind.reshape(ind.size) ##ind.sort() #return ind def write_f06(self, f, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg = self._get_msgs() #print('CBAR ntimes=%s ntotal=%s' % (ntimes, ntotal)) if self.is_sort1(): page_num = self._write_sort1_as_sort1(f, header, page_stamp, msg, page_num) else: raise RuntimeError() return page_num def _write_sort1_as_sort1(self, f06_file, header, page_stamp, msg, page_num): (ntimes, ntotal) = self.data.shape[:2] eids = self.element for itime in range(ntimes): dt = self._times[itime] header = _eigenvalue_header(self, header, itime, ntimes, dt) f06_file.write(''.join(header + msg)) sd = self.data[itime, :, 0] sxc = self.data[itime, :, 1] sxd = self.data[itime, :, 2] sxe = self.data[itime, :, 3] sxf = self.data[itime, :, 4] axial = self.data[itime, :, 5] smax = self.data[itime, :, 6] smin = self.data[itime, :, 7] MS = self.data[itime, :, 8] for (i, eid, sdi, sxci, sxdi, sxei, sxfi, axiali, smaxi, smini, MSi) in zip( count(), eids, sd, sxc, sxd, sxe, sxf, axial, smax, smin, MS): vals = [sdi, sxci, sxdi, sxei, sxfi, axiali, smaxi, smini, MSi] vals2 = write_floats_13e(vals) [sdi, sxci, sxdi, sxei, sxfi, axiali, smaxi, smini, MSi] = vals2 f06_file.write('0%8i %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s %s\n' % (eid, sdi, sxci, sxdi, sxei, sxfi, axiali, smaxi, smini, MSi)) f06_file.write(page_stamp % page_num) page_num += 1 if self.nonlinear_factor is None: page_num -= 1 return page_num class RealBar10NodesStressArray(RealBar10NodesArray, StressObject): def __init__(self, data_code, is_sort1, isubcase, dt): RealBar10NodesArray.__init__(self, data_code, is_sort1, isubcase, dt) StressObject.__init__(self, data_code, isubcase) def get_headers(self): #if self.is_fiber_distance(): #fiber_dist = 'fiber_distance' #else: #fiber_dist = 'fiber_curvature' #if self.is_von_mises(): #ovm = 'von_mises' #else: #ovm = 'max_shear' headers = ['sd', 'sxc', 'sxd', 'sxe', 'sxf', 'axial', 'smax', 'smin', 'MS'] return headers def _get_msgs(self): msg = [ ' S T R E S S D I S T R I B U T I O N I N B A R E L E M E N T S ( C B A R )\n' '0 ELEMENT STATION SXC SXD SXE SXF AXIAL S-MAX S-MIN M.S.-T\n' ' ID. (PCT) M.S.-C\n' #' 1 0.000 4.919032E+05 -4.348710E+05 -4.348710E+05 4.919032E+05 0.0 4.919032E+05 -4.348710E+05 \n' ] return msg class RealBar10NodesStrainArray(RealBar10NodesArray, StrainObject): def __init__(self, data_code, is_sort1, isubcase, dt): RealBar10NodesArray.__init__(self, data_code, is_sort1, isubcase, dt) StrainObject.__init__(self, data_code, isubcase) def get_headers(self): #if self.is_fiber_distance(): #fiber_dist = 'fiber_distance' #else: #fiber_dist = 'fiber_curvature' #if self.is_von_mises(): #ovm = 'von_mises' #else: #ovm = 'max_shear' headers = ['sd', 'sxc', 'sxd', 'sxe', 'sxf', 'axial', 'smax', 'smin', 'MS'] return headers def _get_msgs(self): msg = [ ' S T R A I N D I S T R I B U T I O N I N B A R E L E M E N T S ( C B A R )\n' '0 ELEMENT STATION SXC SXD SXE SXF AXIAL S-MAX S-MIN M.S.-T\n' ' ID. (PCT) M.S.-C\n' #' 1 0.000 4.919032E+05 -4.348710E+05 -4.348710E+05 4.919032E+05 0.0 4.919032E+05 -4.348710E+05 \n' ] return msg
lgpl-3.0
bnaul/scikit-learn
examples/text/plot_hashing_vs_dict_vectorizer.py
23
3253
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck # License: BSD 3 clause from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) # categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data, _ = fetch_20newsgroups(subset='train', categories=categories, return_X_y=True) data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
etamponi/mrca
mrca/evaluation/prepare_figures.py
1
13226
from collections import defaultdict import matplotlib import numpy import sys from mrca.evaluation.collect_results import prepare_data_per_profile, prepare_data_per_clustering, prepare_raw_data from mrca.evaluation import * __author__ = 'Emanuele Tamponi' NL = "\n" def main(): configure_matplotlib() from matplotlib import pyplot raw_data = prepare_raw_data() data_per_profile = prepare_data_per_profile() data_per_cluster = prepare_data_per_clustering() for classifier in CLASSIFIER_NAMES: prepare_performance_table(data_per_profile, classifier) prepare_mean_correlation_table(data_per_profile, classifier) for probe, clusterer, classifier in product(PROBE_NAMES, CLUSTER_NAMES, CLASSIFIER_NAMES): best_profile_conf, count = get_best_profile_confs(data_per_profile, 1, probe, clusterer, classifier)[0] prepare_profile_table(best_profile_conf, count, data_per_cluster, clusterer, classifier) for clusterer, classifier in product(CLUSTER_NAMES, CLASSIFIER_NAMES): prepare_best_result_table(data_per_cluster, clusterer, classifier) prepare_best_result_plots(pyplot, raw_data, data_per_cluster, clusterer, classifier) def prepare_performance_table(data_per_profile, classifier): table_name = "table_performance_{}".format(classifier) with open("figures/{}.tex".format(table_name), "w") as f: f.writelines((r"\begin{table}\centering", NL)) f.writelines((r"\renewcommand{\arraystretch}{1.2}", NL)) f.writelines((r"\renewcommand{\tabcolsep}{4pt}", NL)) f.writelines((r"\small", NL)) f.writelines(( r"\begin{tabularx}{0.80\textwidth}{*{2}{>{\raggedleft \arraybackslash}X}p{3mm}*{5}{r}p{3mm}*{5}{r}}", NL )) f.writelines((r"\toprule", NL)) f.writelines(( r" & & & \multicolumn{5}{c}{Imbalance Probe} & & \multicolumn{5}{c}{Linear Boundary} \\", NL, r"$\countn_1$ & $\countn_\profiledim$ & & 5 & 10 & 15 & 20 & 25 & & 5 & 10 & 15 & 20 & 25 \\", NL, r"\midrule", NL )) for smallest_size in [0.05, 0.10, 0.15, 0.20, 0.25]: for largest_size in [0.40, 0.45, 0.50, 0.55, 0.60]: size_range = (smallest_size, largest_size) if largest_size == 0.50: f.write(r"{}\%".format(int(100*smallest_size))) f.write(" & {}\% & ".format(int(100*largest_size))) for probe in PROBE_NAMES: for profile_dim in PROFILE_DIMS: corrs = numpy.asarray( [x[1] for x in data_per_profile[(probe, profile_dim, size_range), classifier]] ) positive = (corrs >= 0.80).sum() f.write("& {}".format(positive)) if probe == "imb": f.write("& ") if largest_size == 0.60 and smallest_size < 0.25: f.writelines((r" \\[3mm]", NL)) else: f.writelines((r" \\", NL)) f.writelines(( r"\bottomrule", NL, r"\end{tabularx}", NL )) caption = ( r"Number of positive results for each profile configuration. Classifier: {}".format(LEGEND[classifier]) ) f.writelines((r"\caption{%s}" % caption, NL)) f.writelines((r"\label{tab:%s}" % table_name, NL)) f.writelines((r"\end{table}", NL)) def prepare_mean_correlation_table(data_per_profile, classifier): table_name = "table_mean_correlation_{}".format(classifier) with open("figures/{}.tex".format(table_name), "w") as f: f.writelines((r"\begin{table}\centering", NL)) f.writelines((r"\renewcommand{\arraystretch}{1.2}", NL)) f.writelines((r"\renewcommand{\tabcolsep}{4pt}", NL)) f.writelines((r"\small", NL)) f.writelines(( r"\begin{tabularx}{0.80\textwidth}{*{2}{>{\raggedleft \arraybackslash}X}p{3mm}*{5}{r}p{3mm}*{5}{r}}", NL )) f.writelines((r"\toprule", NL)) f.writelines(( r" & & & \multicolumn{5}{c}{Imbalance Probe} & & \multicolumn{5}{c}{Linear Boundary} \\", NL, r"$\countn_1$ & $\countn_\profiledim$ & & 5 & 10 & 15 & 20 & 25 & & 5 & 10 & 15 & 20 & 25 \\", NL, r"\midrule", NL )) for smallest_size in [0.05, 0.10, 0.15, 0.20, 0.25]: for largest_size in [0.40, 0.45, 0.50, 0.55, 0.60]: size_range = (smallest_size, largest_size) if largest_size == 0.50: f.write(r"{}\%".format(int(100*smallest_size))) f.write(" & {}\% & ".format(int(100*largest_size))) for probe in PROBE_NAMES: for profile_dim in PROFILE_DIMS: corrs = numpy.asarray( [x[1] for x in data_per_profile[(probe, profile_dim, size_range), classifier]] ) positive = 100 * corrs[corrs >= 0.80].mean()**2 f.write("& {:.1f}".format(positive)) if probe == "imb": f.write("& ") if largest_size == 0.60 and smallest_size < 0.25: f.writelines((r" \\[3mm]", NL)) else: f.writelines((r" \\", NL)) f.writelines(( r"\bottomrule", NL, r"\end{tabularx}", NL )) caption = ( r"Number of positive results for each profile configuration. Classifier: {}".format(LEGEND[classifier]) ) f.writelines((r"\caption{%s}" % caption, NL)) f.writelines((r"\label{tab:%s}" % table_name, NL)) f.writelines((r"\end{table}", NL)) def prepare_best_result_plots(pyplot, raw_data, data_per_cluster, clusterer, classifier): for dataset, n_clusters in product(DATASET_NAMES, CLUSTER_NUMS): clustering_conf = (dataset, clusterer, n_clusters) profile_conf, corr = data_per_cluster[clustering_conf, classifier][0] data = raw_data[clustering_conf, profile_conf] draw_plot(pyplot, data, corr, clustering_conf, profile_conf, classifier) def draw_plot(pyplot, data, corr, clustering_conf, profile_conf, classifier): dataset, clusterer, n_clusters = clustering_conf figure_name = "best_plot_{}_{}_{}_{}".format(clusterer, n_clusters, classifier, dataset) sizes = data["size"] mris = data["mri"][sizes > 0] errs = data[classifier][sizes > 0] pyplot.figure() pyplot.gcf().set_size_inches(2, 2) pyplot.plot(mris, errs, "ko-") x_min, x_max = pyplot.xlim() y_min, y_max = pyplot.ylim() pyplot.xticks(numpy.linspace(x_min, x_max, 3)) pyplot.yticks(numpy.linspace(y_min, y_max, 3)) pyplot.axes().set_aspect((x_max - x_min) / (y_max - y_min)) pyplot.grid() pyplot.title(r"{:.1f}\%{}".format(100*corr*corr, r" $\bullet$" if corr >= 0.8 else "")) pyplot.savefig("figures/{}.pdf".format(figure_name), bbox_inches="tight") pyplot.close() def prepare_best_result_table(data_per_cluster, clusterer, classifier): table_name = "table_best_results_{}_{}".format(clusterer, classifier) totals = defaultdict(int) with open("figures/{}.tex".format(table_name), "w") as f: f.writelines((r"\begin{table}\centering", NL)) f.writelines((r"\renewcommand{\arraystretch}{1.1}", NL)) f.writelines((r"\renewcommand{\tabcolsep}{3pt}", NL)) f.writelines((r"\small", NL)) f.writelines((r"\begin{tabularx}{0.80\textwidth}{Xr@{.}l@{}lr@{.}l@{}lr@{.}l@{}lr@{.}l@{}lr@{.}l@{}l}", NL)) f.writelines((r"\toprule", NL)) f.writelines(( r" & \multicolumn{15}{c}{Number of clusters} \\", NL, r"\cmidrule{2-16}", NL, r"Dataset & \multicolumn{3}{c}{2} & \multicolumn{3}{c}{3} & \multicolumn{3}{c}{4}", r" & \multicolumn{3}{c}{5} & \multicolumn{3}{c}{6} \\", NL, r"\midrule", NL, )) for dataset in DATASET_NAMES: f.write("{} ".format(dataset)) for n_clusters in CLUSTER_NUMS: corr = data_per_cluster[(dataset, clusterer, n_clusters), classifier][0][1] corr_str = "{:.2f}".format( 100*corr**2 ).replace(".", "&") if corr >= 0.80: f.write(r"& {} & $\bullet$ ".format(corr_str)) totals[n_clusters] += 1 else: f.write(r"& {} & ".format(corr_str)) f.writelines((r" \\", NL)) f.writelines(( r"\midrule", NL, r"Positive results & ", r" & & ".join( ("\multicolumn{2}{r}{%d}" % totals[n]) for n in CLUSTER_NUMS ), r" & \\", NL, r"\bottomrule", NL, r"\end{tabularx}", NL )) caption = ( r"Best results for each dataset and number of clusters. Clusterer: {}. Compared classifier: {}.".format( LEGEND[clusterer], LEGEND[classifier] ) ) f.writelines((r"\caption{%s}" % caption, NL)) f.writelines((r"\label{tab:%s}" % table_name, NL)) f.writelines((r"\end{table}", NL)) def prepare_profile_table(profile_conf, count, data_per_cluster, clusterer, classifier): probe, profile_dim, size_range = profile_conf table_name = "table_profile_{}_{:02d}_{:02d}_{:02d}_{}_{}".format( probe, profile_dim, int(100*size_range[0]), int(100*size_range[1]), clusterer, classifier ) totals = defaultdict(int) with open("figures/{}.tex".format(table_name), "w") as f: f.writelines((r"\begin{table}\centering", NL)) f.writelines((r"\renewcommand{\arraystretch}{1.1}", NL)) f.writelines((r"\renewcommand{\tabcolsep}{3pt}", NL)) f.writelines((r"\small", NL)) f.writelines((r"\begin{tabularx}{0.80\textwidth}{Xr@{.}l@{}lr@{.}l@{}lr@{.}l@{}lr@{.}l@{}lr@{.}l@{}l}", NL)) f.writelines((r"\toprule", NL)) f.writelines(( r" & \multicolumn{15}{c}{Number of clusters} \\", NL, r"\cmidrule{2-16}", NL, r"Dataset & \multicolumn{3}{c}{2} & \multicolumn{3}{c}{3} & \multicolumn{3}{c}{4}", r" & \multicolumn{3}{c}{5} & \multicolumn{3}{c}{6} \\", NL, r"\midrule", NL, )) for dataset in DATASET_NAMES: f.write("{} ".format(dataset)) for n_clusters in CLUSTER_NUMS: corr = dict(data_per_cluster[(dataset, clusterer, n_clusters), classifier])[profile_conf] corr_str = "{:.2f}".format( 100*corr**2 ).replace(".", "&") if corr >= 0.80: f.write(r"& {} & $\bullet$ ".format(corr_str)) totals[n_clusters] += 1 else: f.write(r"& {} & ".format(corr_str)) f.writelines((r" \\", NL)) f.writelines(( r"\midrule", NL, r"Positive results & ", r" & & ".join( ("\multicolumn{2}{r}{%d}" % totals[n]) for n in CLUSTER_NUMS ), r" & \\", NL, r"\bottomrule", NL, r"\end{tabularx}", NL )) caption = ( r"Results for {} Probe, \profiledim = {}, $\countn_1 = {}\%$, $\countn_\profiledim = {}\%$. ".format( LEGEND[probe], profile_dim, int(100*size_range[0]), int(100*size_range[1])) ) caption += ( r"Clusterer: {}. Compared classifier: {}.".format(LEGEND[clusterer], LEGEND[classifier]) ) f.writelines((r"\caption{%s}" % caption, NL)) f.writelines((r"\label{tab:%s}" % table_name, NL)) f.writelines((r"\end{table}", NL)) def get_best_profile_confs(data_per_profile, n, probe, clusterer, classifier): print "Best {} {} profile confs".format(n, probe) counts = {} for profile_conf in PROFILE_CONFS: if profile_conf[0] != probe: continue corrs = numpy.asarray([x[1] for x in data_per_profile[profile_conf, classifier] if x[0][1] == clusterer]) counts[profile_conf] = (corrs >= 0.80).sum() sorted_counts = sorted(counts.items(), key=lambda x: -x[1]) for conf, count in sorted_counts[:n]: print conf, count return sorted_counts[:n] def configure_matplotlib(): matplotlib.use('pgf') pgf_rc = { "font.family": "serif", # use serif/main font for text elements "text.usetex": True, # use inline math for ticks "pgf.rcfonts": False, # don't setup fonts from rc parameters "pgf.texsystem": "pdflatex", "pgf.preamble": [ r"\usepackage[utf8]{inputenc}", r"\usepackage{microtype}", r"\usepackage{amsfonts}", r"\usepackage{amsmath}", r"\usepackage{amssymb}", r"\usepackage{booktabs}", r"\usepackage{fancyhdr}", r"\usepackage{graphicx}", r"\usepackage{nicefrac}", r"\usepackage{xspace}" ] } matplotlib.rcParams.update(pgf_rc) if __name__ == '__main__': main()
gpl-2.0
kaichogami/scikit-learn
examples/mixture/plot_gmm_sin.py
36
2804
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue', 'darkorange']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], color=color, s=4) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
pastephens/pysal
pysal/contrib/pdio/dbf.py
7
6661
"""miscellaneous file manipulation utilities """ import numpy as np import pysal as ps import pandas as pd def check_dups(li): """checks duplicates in list of ID values ID values must be read in as a list __author__ = "Luc Anselin <[email protected]> " Arguments --------- li : list of ID values Returns ------- a list with the duplicate IDs """ return list(set([x for x in li if li.count(x) > 1])) def dbfdups(dbfpath,idvar): """checks duplicates in a dBase file ID variable must be specified correctly __author__ = "Luc Anselin <[email protected]> " Arguments --------- dbfpath : file path to dBase file idvar : ID variable in dBase file Returns ------- a list with the duplicate IDs """ db = ps.open(dbfpath,'r') li = db.by_col(idvar) return list(set([x for x in li if li.count(x) > 1])) def df2dbf(df, dbf_path, my_specs=None): ''' Convert a pandas.DataFrame into a dbf. __author__ = "Dani Arribas-Bel <[email protected]>, Luc Anselin <[email protected]>" ... Arguments --------- df : DataFrame Pandas dataframe object to be entirely written out to a dbf dbf_path : str Path to the output dbf. It is also returned by the function my_specs : list List with the field_specs to use for each column. Defaults to None and applies the following scheme: * int: ('N', 14, 0) - for all ints * float: ('N', 14, 14) - for all floats * str: ('C', 14, 0) - for string, object and category with all variants for different type sizes Note: use of dtypes.name may not be fully robust, but preferred apprach of using isinstance seems too clumsy ''' if my_specs: specs = my_specs else: """ type2spec = {int: ('N', 20, 0), np.int64: ('N', 20, 0), np.int32: ('N', 20, 0), np.int16: ('N', 20, 0), np.int8: ('N', 20, 0), float: ('N', 36, 15), np.float64: ('N', 36, 15), np.float32: ('N', 36, 15), str: ('C', 14, 0) } types = [type(df[i].iloc[0]) for i in df.columns] """ # new approach using dtypes.name to avoid numpy name issue in type type2spec = {'int': ('N', 20, 0), 'int8': ('N', 20, 0), 'int16': ('N', 20, 0), 'int32': ('N', 20, 0), 'int64': ('N', 20, 0), 'float': ('N', 36, 15), 'float32': ('N', 36, 15), 'float64': ('N', 36, 15), 'str': ('C', 14, 0), 'object': ('C', 14, 0), 'category': ('C', 14, 0) } types = [df[i].dtypes.name for i in df.columns] specs = [type2spec[t] for t in types] db = ps.open(dbf_path, 'w') db.header = list(df.columns) db.field_spec = specs for i, row in df.T.iteritems(): db.write(row) db.close() return dbf_path def dbf2df(dbf_path, index=None, cols=False, incl_index=False): ''' Read a dbf file as a pandas.DataFrame, optionally selecting the index variable and which columns are to be loaded. __author__ = "Dani Arribas-Bel <[email protected]> " ... Arguments --------- dbf_path : str Path to the DBF file to be read index : str Name of the column to be used as the index of the DataFrame cols : list List with the names of the columns to be read into the DataFrame. Defaults to False, which reads the whole dbf incl_index : Boolean If True index is included in the DataFrame as a column too. Defaults to False Returns ------- df : DataFrame pandas.DataFrame object created ''' db = ps.open(dbf_path) if cols: if incl_index: cols.append(index) vars_to_read = cols else: vars_to_read = db.header data = dict([(var, db.by_col(var)) for var in vars_to_read]) if index: index = db.by_col(index) db.close() return pd.DataFrame(data, index=index, columns=vars_to_read) else: db.close() return pd.DataFrame(data,columns=vars_to_read) def dbfjoin(dbf1_path,dbf2_path,out_path,joinkey1,joinkey2): ''' Wrapper function to merge two dbf files into a new dbf file. __author__ = "Luc Anselin <[email protected]> " Uses dbf2df and df2dbf to read and write the dbf files into a pandas DataFrame. Uses all default settings for dbf2df and df2dbf (see docs for specifics). ... Arguments --------- dbf1_path : str Path to the first (left) dbf file dbf2_path : str Path to the second (right) dbf file out_path : str Path to the output dbf file (returned by the function) joinkey1 : str Variable name for the key in the first dbf. Must be specified. Key must take unique values. joinkey2 : str Variable name for the key in the second dbf. Must be specified. Key must take unique values. Returns ------- dbfpath : path to output file ''' df1 = dbf2df(dbf1_path,index=joinkey1) df2 = dbf2df(dbf2_path,index=joinkey2) dfbig = pd.merge(df1,df2,left_on=joinkey1,right_on=joinkey2,sort=False) dp = df2dbf(dfbig,out_path) return dp def dta2dbf(dta_path,dbf_path): """ Wrapper function to convert a stata dta file into a dbf file. __author__ = "Luc Anselin <[email protected]> " Uses df2dbf to write the dbf files from a pandas DataFrame. Uses all default settings for df2dbf (see docs for specifics). ... Arguments --------- dta_path : str Path to the Stata dta file dbf_path : str Path to the output dbf file Returns ------- dbf_path : path to output file """ db = pd.read_stata(dta_path) dp = df2dbf(db,dbf_path) return dp
bsd-3-clause
oxtopus/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/pyplot.py
69
77521
import sys import matplotlib from matplotlib import _pylab_helpers, interactive from matplotlib.cbook import dedent, silent_list, is_string_like, is_numlike from matplotlib.figure import Figure, figaspect from matplotlib.backend_bases import FigureCanvasBase from matplotlib.image import imread as _imread from matplotlib import rcParams, rcParamsDefault, get_backend from matplotlib.rcsetup import interactive_bk as _interactive_bk from matplotlib.artist import getp, get, Artist from matplotlib.artist import setp as _setp from matplotlib.axes import Axes from matplotlib.projections import PolarAxes from matplotlib import mlab # for csv2rec in plotfile from matplotlib.scale import get_scale_docs, get_scale_names from matplotlib import cm from matplotlib.cm import get_cmap # We may not need the following imports here: from matplotlib.colors import Normalize, normalize # latter for backwards compat. from matplotlib.lines import Line2D from matplotlib.text import Text, Annotation from matplotlib.patches import Polygon, Rectangle, Circle, Arrow from matplotlib.widgets import SubplotTool, Button, Slider, Widget from ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\ FuncFormatter, FormatStrFormatter, ScalarFormatter,\ LogFormatter, LogFormatterExponent, LogFormatterMathtext,\ Locator, IndexLocator, FixedLocator, NullLocator,\ LinearLocator, LogLocator, AutoLocator, MultipleLocator,\ MaxNLocator ## Backend detection ## def _backend_selection(): """ If rcParams['backend_fallback'] is true, check to see if the current backend is compatible with the current running event loop, and if not switches to a compatible one. """ backend = rcParams['backend'] if not rcParams['backend_fallback'] or \ backend not in _interactive_bk: return is_agg_backend = rcParams['backend'].endswith('Agg') if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'): import wx if wx.App.IsMainLoopRunning(): rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend elif 'qt' in sys.modules and not backend == 'QtAgg': import qt if not qt.qApp.startingUp(): # The mainloop is running. rcParams['backend'] = 'qtAgg' elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg': import PyQt4.QtGui if not PyQt4.QtGui.qApp.startingUp(): # The mainloop is running. rcParams['backend'] = 'qt4Agg' elif 'gtk' in sys.modules and not backend in ('GTK', 'GTKAgg', 'GTKCairo'): import gobject if gobject.MainLoop().is_running(): rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend elif 'Tkinter' in sys.modules and not backend == 'TkAgg': #import Tkinter pass #what if anything do we need to do for tkinter? _backend_selection() ## Global ## from matplotlib.backends import pylab_setup new_figure_manager, draw_if_interactive, show = pylab_setup() def findobj(o=None, match=None): if o is None: o = gcf() return o.findobj(match) findobj.__doc__ = Artist.findobj.__doc__ def switch_backend(newbackend): """ Switch the default backend to newbackend. This feature is **experimental**, and is only expected to work switching to an image backend. Eg, if you have a bunch of PostScript scripts that you want to run from an interactive ipython session, you may want to switch to the PS backend before running them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI backend to another, you will explode. Calling this command will close all open windows. """ close('all') global new_figure_manager, draw_if_interactive, show matplotlib.use(newbackend, warn=False) reload(matplotlib.backends) from matplotlib.backends import pylab_setup new_figure_manager, draw_if_interactive, show = pylab_setup() def isinteractive(): """ Return the interactive status """ return matplotlib.is_interactive() def ioff(): 'Turn interactive mode off.' matplotlib.interactive(False) def ion(): 'Turn interactive mode on.' matplotlib.interactive(True) def rc(*args, **kwargs): matplotlib.rc(*args, **kwargs) if matplotlib.rc.__doc__ is not None: rc.__doc__ = dedent(matplotlib.rc.__doc__) def rcdefaults(): matplotlib.rcdefaults() draw_if_interactive() if matplotlib.rcdefaults.__doc__ is not None: rcdefaults.__doc__ = dedent(matplotlib.rcdefaults.__doc__) # The current "image" (ScalarMappable) is tracked here on a # per-pylab-session basis: def gci(): """ Get the current :class:`~matplotlib.cm.ScalarMappable` instance (image or patch collection), or *None* if no images or patch collections have been defined. The commands :func:`~matplotlib.pyplot.imshow` and :func:`~matplotlib.pyplot.figimage` create :class:`~matplotlib.image.Image` instances, and the commands :func:`~matplotlib.pyplot.pcolor` and :func:`~matplotlib.pyplot.scatter` create :class:`~matplotlib.collections.Collection` instances. """ return gci._current gci._current = None def sci(im): """ Set the current image (target of colormap commands like :func:`~matplotlib.pyplot.jet`, :func:`~matplotlib.pyplot.hot` or :func:`~matplotlib.pyplot.clim`). """ gci._current = im ## Any Artist ## # (getp is simply imported) def setp(*args, **kwargs): ret = _setp(*args, **kwargs) draw_if_interactive() return ret if _setp.__doc__ is not None: setp.__doc__ = _setp.__doc__ ## Figures ## def figure(num=None, # autoincrement if None, else integer from 1-N figsize = None, # defaults to rc figure.figsize dpi = None, # defaults to rc figure.dpi facecolor = None, # defaults to rc figure.facecolor edgecolor = None, # defaults to rc figure.edgecolor frameon = True, FigureClass = Figure, **kwargs ): """ call signature:: figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') Create a new figure and return a :class:`matplotlib.figure.Figure` instance. If *num* = *None*, the figure number will be incremented and a new figure will be created. The returned figure objects have a *number* attribute holding this number. If *num* is an integer, and ``figure(num)`` already exists, make it active and return the handle to it. If ``figure(num)`` does not exist it will be created. Numbering starts at 1, matlab style:: figure(1) If you are creating many figures, make sure you explicitly call "close" on the figures you are not using, because this will enable pylab to properly clean up the memory. Optional keyword arguments: ========= ======================================================= Keyword Description ========= ======================================================= figsize width x height in inches; defaults to rc figure.figsize dpi resolution; defaults to rc figure.dpi facecolor the background color; defaults to rc figure.facecolor edgecolor the border color; defaults to rc figure.edgecolor ========= ======================================================= rcParams defines the default values, which can be modified in the matplotlibrc file *FigureClass* is a :class:`~matplotlib.figure.Figure` or derived class that will be passed on to :meth:`new_figure_manager` in the backends which allows you to hook custom Figure classes into the pylab interface. Additional kwargs will be passed on to your figure init function. """ if figsize is None : figsize = rcParams['figure.figsize'] if dpi is None : dpi = rcParams['figure.dpi'] if facecolor is None : facecolor = rcParams['figure.facecolor'] if edgecolor is None : edgecolor = rcParams['figure.edgecolor'] if num is None: allnums = [f.num for f in _pylab_helpers.Gcf.get_all_fig_managers()] if allnums: num = max(allnums) + 1 else: num = 1 else: num = int(num) # crude validation of num argument figManager = _pylab_helpers.Gcf.get_fig_manager(num) if figManager is None: if get_backend().lower() == 'ps': dpi = 72 figManager = new_figure_manager(num, figsize=figsize, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, frameon=frameon, FigureClass=FigureClass, **kwargs) # make this figure current on button press event def make_active(event): _pylab_helpers.Gcf.set_active(figManager) cid = figManager.canvas.mpl_connect('button_press_event', make_active) figManager._cidgcf = cid _pylab_helpers.Gcf.set_active(figManager) figManager.canvas.figure.number = num draw_if_interactive() return figManager.canvas.figure def gcf(): "Return a handle to the current figure." figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: return figManager.canvas.figure else: return figure() def get_current_fig_manager(): figManager = _pylab_helpers.Gcf.get_active() if figManager is None: gcf() # creates an active figure as a side effect figManager = _pylab_helpers.Gcf.get_active() return figManager # note we check for __doc__ is not None since py2exe optimize removes # the docstrings def connect(s, func): return get_current_fig_manager().canvas.mpl_connect(s, func) if FigureCanvasBase.mpl_connect.__doc__ is not None: connect.__doc__ = dedent(FigureCanvasBase.mpl_connect.__doc__) def disconnect(cid): return get_current_fig_manager().canvas.mpl_disconnect(cid) if FigureCanvasBase.mpl_disconnect.__doc__ is not None: disconnect.__doc__ = dedent(FigureCanvasBase.mpl_disconnect.__doc__) def close(*args): """ Close a figure window ``close()`` by itself closes the current figure ``close(num)`` closes figure number *num* ``close(h)`` where *h* is a :class:`Figure` instance, closes that figure ``close('all')`` closes all the figure windows """ if len(args)==0: figManager = _pylab_helpers.Gcf.get_active() if figManager is None: return else: figManager.canvas.mpl_disconnect(figManager._cidgcf) _pylab_helpers.Gcf.destroy(figManager.num) elif len(args)==1: arg = args[0] if arg=='all': for manager in _pylab_helpers.Gcf.get_all_fig_managers(): manager.canvas.mpl_disconnect(manager._cidgcf) _pylab_helpers.Gcf.destroy(manager.num) elif isinstance(arg, int): _pylab_helpers.Gcf.destroy(arg) elif isinstance(arg, Figure): for manager in _pylab_helpers.Gcf.get_all_fig_managers(): if manager.canvas.figure==arg: manager.canvas.mpl_disconnect(manager._cidgcf) _pylab_helpers.Gcf.destroy(manager.num) else: raise TypeError('Unrecognized argument type %s to close'%type(arg)) else: raise TypeError('close takes 0 or 1 arguments') def clf(): """ Clear the current figure """ gcf().clf() draw_if_interactive() def draw(): 'redraw the current figure' get_current_fig_manager().canvas.draw() def savefig(*args, **kwargs): fig = gcf() return fig.savefig(*args, **kwargs) if Figure.savefig.__doc__ is not None: savefig.__doc__ = dedent(Figure.savefig.__doc__) def ginput(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* clicks from the user and return a list of the coordinates of each click. If *timeout* is negative, does not timeout. """ return gcf().ginput(*args, **kwargs) if Figure.ginput.__doc__ is not None: ginput.__doc__ = dedent(Figure.ginput.__doc__) def waitforbuttonpress(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* key or mouse clicks from the user and return a list containing True's for keyboard clicks and False's for mouse clicks. If *timeout* is negative, does not timeout. """ return gcf().waitforbuttonpress(*args, **kwargs) if Figure.waitforbuttonpress.__doc__ is not None: waitforbuttonpress.__doc__ = dedent(Figure.waitforbuttonpress.__doc__) # Putting things in figures def figtext(*args, **kwargs): ret = gcf().text(*args, **kwargs) draw_if_interactive() return ret if Figure.text.__doc__ is not None: figtext.__doc__ = dedent(Figure.text.__doc__) def suptitle(*args, **kwargs): ret = gcf().suptitle(*args, **kwargs) draw_if_interactive() return ret if Figure.suptitle.__doc__ is not None: suptitle.__doc__ = dedent(Figure.suptitle.__doc__) def figimage(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False ret = gcf().figimage(*args, **kwargs) draw_if_interactive() gci._current = ret return ret if Figure.figimage.__doc__ is not None: figimage.__doc__ = dedent(Figure.figimage.__doc__) + """ Addition kwargs: hold = [True|False] overrides default hold state""" def figlegend(handles, labels, loc, **kwargs): """ Place a legend in the figure. *labels* a sequence of strings *handles* a sequence of :class:`~matplotlib.lines.Line2D` or :class:`~matplotlib.patches.Patch` instances *loc* can be a string or an integer specifying the legend location A :class:`matplotlib.legend.Legend` instance is returned. Example:: figlegend( (line1, line2, line3), ('label1', 'label2', 'label3'), 'upper right' ) .. seealso:: :func:`~matplotlib.pyplot.legend`: For information about the location codes """ l = gcf().legend(handles, labels, loc, **kwargs) draw_if_interactive() return l ## Figure and Axes hybrid ## def hold(b=None): """ Set the hold state. If *b* is None (default), toggle the hold state, else set the hold state to boolean value *b*:: hold() # toggle hold hold(True) # hold is on hold(False) # hold is off When *hold* is *True*, subsequent plot commands will be added to the current axes. When *hold* is *False*, the current axes and figure will be cleared on the next plot command. """ fig = gcf() ax = fig.gca() fig.hold(b) ax.hold(b) # b=None toggles the hold state, so let's get get the current hold # state; but should pyplot hold toggle the rc setting - me thinks # not b = ax.ishold() rc('axes', hold=b) def ishold(): """ Return the hold status of the current axes """ return gca().ishold() def over(func, *args, **kwargs): """ over calls:: func(*args, **kwargs) with ``hold(True)`` and then restores the hold state. """ h = ishold() hold(True) func(*args, **kwargs) hold(h) ## Axes ## def axes(*args, **kwargs): """ Add an axes at position rect specified by: - ``axes()`` by itself creates a default full ``subplot(111)`` window axis. - ``axes(rect, axisbg='w')`` where *rect* = [left, bottom, width, height] in normalized (0, 1) units. *axisbg* is the background color for the axis, default white. - ``axes(h)`` where *h* is an axes instance makes *h* the current axis. An :class:`~matplotlib.axes.Axes` instance is returned. ======= ============ ================================================ kwarg Accepts Desctiption ======= ============ ================================================ axisbg color the axes background color frameon [True|False] display the frame? sharex otherax current axes shares xaxis attribute with otherax sharey otherax current axes shares yaxis attribute with otherax polar [True|False] use a polar axes? ======= ============ ================================================ Examples: * :file:`examples/pylab_examples/axes_demo.py` places custom axes. * :file:`examples/pylab_examples/shared_axis_demo.py` uses *sharex* and *sharey*. """ nargs = len(args) if len(args)==0: return subplot(111, **kwargs) if nargs>1: raise TypeError('Only one non keyword arg to axes allowed') arg = args[0] if isinstance(arg, Axes): a = gcf().sca(arg) else: rect = arg a = gcf().add_axes(rect, **kwargs) draw_if_interactive() return a def delaxes(*args): """ ``delaxes(ax)``: remove *ax* from the current figure. If *ax* doesn't exist, an error will be raised. ``delaxes()``: delete the current axes """ if not len(args): ax = gca() else: ax = args[0] ret = gcf().delaxes(ax) draw_if_interactive() return ret def gca(**kwargs): """ Return the current axis instance. This can be used to control axis properties either using set or the :class:`~matplotlib.axes.Axes` methods, for example, setting the xaxis range:: plot(t,s) set(gca(), 'xlim', [0,10]) or:: plot(t,s) a = gca() a.set_xlim([0,10]) """ ax = gcf().gca(**kwargs) return ax # More ways of creating axes: def subplot(*args, **kwargs): """ Create a subplot command, creating axes with:: subplot(numRows, numCols, plotNum) where *plotNum* = 1 is the first plot number and increasing *plotNums* fill rows first. max(*plotNum*) == *numRows* * *numCols* You can leave out the commas if *numRows* <= *numCols* <= *plotNum* < 10, as in:: subplot(211) # 2 rows, 1 column, first (upper) plot ``subplot(111)`` is the default axis. New subplots that overlap old will delete the old axes. If you do not want this behavior, use :meth:`matplotlib.figure.Figure.add_subplot` or the :func:`~matplotlib.pyplot.axes` command. Eg.:: from pylab import * plot([1,2,3]) # implicitly creates subplot(111) subplot(211) # overlaps, subplot(111) is killed plot(rand(12), rand(12)) subplot(212, axisbg='y') # creates 2nd subplot with yellow background Keyword arguments: *axisbg*: The background color of the subplot, which can be any valid color specifier. See :mod:`matplotlib.colors` for more information. *polar*: A boolean flag indicating whether the subplot plot should be a polar projection. Defaults to False. *projection*: A string giving the name of a custom projection to be used for the subplot. This projection must have been previously registered. See :func:`matplotlib.projections.register_projection` .. seealso:: :func:`~matplotlib.pyplot.axes`: For additional information on :func:`axes` and :func:`subplot` keyword arguments. :file:`examples/pylab_examples/polar_scatter.py` **Example:** .. plot:: mpl_examples/pylab_examples/subplot_demo.py """ fig = gcf() a = fig.add_subplot(*args, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) draw_if_interactive() return a def twinx(ax=None): """ Make a second axes overlay *ax* (or the current axes if *ax* is *None*) sharing the xaxis. The ticks for *ax2* will be placed on the right, and the *ax2* instance is returned. .. seealso:: :file:`examples/api_examples/two_scales.py` """ if ax is None: ax=gca() ax1 = ax.twinx() draw_if_interactive() return ax1 def twiny(ax=None): """ Make a second axes overlay *ax* (or the current axes if *ax* is *None*) sharing the yaxis. The ticks for *ax2* will be placed on the top, and the *ax2* instance is returned. """ if ax is None: ax=gca() ax1 = ax.twiny() draw_if_interactive() return ax1 def subplots_adjust(*args, **kwargs): """ call signature:: subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) Tune the subplot layout via the :class:`matplotlib.figure.SubplotParams` mechanism. The parameter meanings (and suggested defaults) are:: left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for blank space between subplots hspace = 0.2 # the amount of height reserved for white space between subplots The actual defaults are controlled by the rc file """ fig = gcf() fig.subplots_adjust(*args, **kwargs) draw_if_interactive() def subplot_tool(targetfig=None): """ Launch a subplot tool window for *targetfig* (default gcf). A :class:`matplotlib.widgets.SubplotTool` instance is returned. """ tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig rcParams['toolbar'] = 'None' if targetfig is None: manager = get_current_fig_manager() targetfig = manager.canvas.figure else: # find the manager for this figure for manager in _pylab_helpers.Gcf._activeQue: if manager.canvas.figure==targetfig: break else: raise RuntimeError('Could not find manager for targetfig') toolfig = figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) ret = SubplotTool(targetfig, toolfig) rcParams['toolbar'] = tbar _pylab_helpers.Gcf.set_active(manager) # restore the current figure return ret def box(on=None): """ Turn the axes box on or off according to *on*. If *on* is *None*, toggle state. """ ax = gca() if on is None: on = not ax.get_frame_on() ax.set_frame_on(on) draw_if_interactive() def title(s, *args, **kwargs): """ Set the title of the current axis to *s*. Default font override is:: override = {'fontsize': 'medium', 'verticalalignment': 'bottom', 'horizontalalignment': 'center'} .. seealso:: :func:`~matplotlib.pyplot.text`: for information on how override and the optional args work. """ l = gca().set_title(s, *args, **kwargs) draw_if_interactive() return l ## Axis ## def axis(*v, **kwargs): """ Set/Get the axis properties: >>> axis() returns the current axes limits ``[xmin, xmax, ymin, ymax]``. >>> axis(v) sets the min and max of the x and y axes, with ``v = [xmin, xmax, ymin, ymax]``. >>> axis('off') turns off the axis lines and labels. >>> axis('equal') changes limits of *x* or *y* axis so that equal increments of *x* and *y* have the same length; a circle is circular. >>> axis('scaled') achieves the same result by changing the dimensions of the plot box instead of the axis data limits. >>> axis('tight') changes *x* and *y* axis limits such that all data is shown. If all data is already shown, it will move it to the center of the figure without modifying (*xmax* - *xmin*) or (*ymax* - *ymin*). Note this is slightly different than in matlab. >>> axis('image') is 'scaled' with the axis limits equal to the data limits. >>> axis('auto') and >>> axis('normal') are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit comfortably within the plot box. if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax* as kwargs selectively to alter just those limits without changing the others. The xmin, xmax, ymin, ymax tuple is returned .. seealso:: :func:`xlim`, :func:`ylim` """ ax = gca() v = ax.axis(*v, **kwargs) draw_if_interactive() return v def xlabel(s, *args, **kwargs): """ Set the *x* axis label of the current axis to *s* Default override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'top', 'horizontalalignment' : 'center' } .. seealso:: :func:`~matplotlib.pyplot.text`: For information on how override and the optional args work """ l = gca().set_xlabel(s, *args, **kwargs) draw_if_interactive() return l def ylabel(s, *args, **kwargs): """ Set the *y* axis label of the current axis to *s*. Defaults override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'center', 'horizontalalignment' : 'right', 'rotation'='vertical' : } .. seealso:: :func:`~matplotlib.pyplot.text`: For information on how override and the optional args work. """ l = gca().set_ylabel(s, *args, **kwargs) draw_if_interactive() return l def xlim(*args, **kwargs): """ Set/Get the xlimits of the current axes:: xmin, xmax = xlim() # return the current xlim xlim( (xmin, xmax) ) # set the xlim to xmin, xmax xlim( xmin, xmax ) # set the xlim to xmin, xmax If you do not specify args, you can pass the xmin and xmax as kwargs, eg.:: xlim(xmax=3) # adjust the max leaving min unchanged xlim(xmin=1) # adjust the min leaving max unchanged The new axis limits are returned as a length 2 tuple. """ ax = gca() ret = ax.set_xlim(*args, **kwargs) draw_if_interactive() return ret def ylim(*args, **kwargs): """ Set/Get the ylimits of the current axes:: ymin, ymax = ylim() # return the current ylim ylim( (ymin, ymax) ) # set the ylim to ymin, ymax ylim( ymin, ymax ) # set the ylim to ymin, ymax If you do not specify args, you can pass the *ymin* and *ymax* as kwargs, eg.:: ylim(ymax=3) # adjust the max leaving min unchanged ylim(ymin=1) # adjust the min leaving max unchanged The new axis limits are returned as a length 2 tuple. """ ax = gca() ret = ax.set_ylim(*args, **kwargs) draw_if_interactive() return ret def xscale(*args, **kwargs): """ call signature:: xscale(scale, **kwargs) Set the scaling for the x-axis: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ret = ax.set_xscale(*args, **kwargs) draw_if_interactive() return ret xscale.__doc__ = dedent(xscale.__doc__) % { 'scale': ' | '.join([repr(_x) for _x in get_scale_names()]), 'scale_docs': get_scale_docs()} def yscale(*args, **kwargs): """ call signature:: xscale(scale, **kwargs) Set the scaling for the y-axis: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ret = ax.set_yscale(*args, **kwargs) draw_if_interactive() return ret yscale.__doc__ = dedent(yscale.__doc__) % { 'scale': ' | '.join([repr(_x) for _x in get_scale_names()]), 'scale_docs': get_scale_docs()} def xticks(*args, **kwargs): """ Set/Get the xlimits of the current ticklocs and labels:: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = xticks() # set the locations of the xticks xticks( arange(6) ) # set the locations and labels of the xticks xticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. """ ax = gca() if len(args)==0: locs = ax.get_xticks() labels = ax.get_xticklabels() elif len(args)==1: locs = ax.set_xticks(args[0]) labels = ax.get_xticklabels() elif len(args)==2: locs = ax.set_xticks(args[0]) labels = ax.set_xticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to xticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return locs, silent_list('Text xticklabel', labels) def yticks(*args, **kwargs): """ Set/Get the ylimits of the current ticklocs and labels:: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = yticks() # set the locations of the yticks yticks( arange(6) ) # set the locations and labels of the yticks yticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. """ ax = gca() if len(args)==0: locs = ax.get_yticks() labels = ax.get_yticklabels() elif len(args)==1: locs = ax.set_yticks(args[0]) labels = ax.get_yticklabels() elif len(args)==2: locs = ax.set_yticks(args[0]) labels = ax.set_yticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to yticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return ( locs, silent_list('Text yticklabel', labels) ) def rgrids(*args, **kwargs): """ Set/Get the radial locations of the gridlines and ticklabels on a polar plot. call signatures:: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs) When called with no arguments, :func:`rgrid` simply returns the tuple (*lines*, *labels*), where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances). When called with arguments, the labels will appear at the specified radial distances and angles. *labels*, if not *None*, is a len(*radii*) list of strings of the labels to use at each angle. If *labels* is None, the rformatter will be used Examples:: # set the locations of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.yaxis.get_ticklines() labels = ax.yaxis.get_ticklabels() else: lines, labels = ax.set_rgrids(*args, **kwargs) draw_if_interactive() return ( silent_list('Line2D rgridline', lines), silent_list('Text rgridlabel', labels) ) def thetagrids(*args, **kwargs): """ Set/Get the theta locations of the gridlines and ticklabels. If no arguments are passed, return a tuple (*lines*, *labels*) where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances):: lines, labels = thetagrids() Otherwise the syntax is:: lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1) set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not *None*, is a len(angles) list of strings of the labels to use at each angle. If *labels* is *None*, the labels will be ``fmt%angle``. *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*lines*, *labels*): - *lines* are :class:`~matplotlib.lines.Line2D` instances - *labels* are :class:`~matplotlib.text.Text` instances. Note that on input, the *labels* argument is a list of strings, and on output it is a list of :class:`~matplotlib.text.Text` instances. Examples:: # set the locations of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90) ) # set the locations and labels of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.xaxis.get_ticklines() labels = ax.xaxis.get_ticklabels() else: lines, labels = ax.set_thetagrids(*args, **kwargs) draw_if_interactive() return (silent_list('Line2D thetagridline', lines), silent_list('Text thetagridlabel', labels) ) ## Plotting Info ## def plotting(): """ Plotting commands =============== ========================================================= Command Description =============== ========================================================= axes Create a new axes axis Set or return the current axis limits bar make a bar chart boxplot make a box and whiskers chart cla clear current axes clabel label a contour plot clf clear a figure window close close a figure window colorbar add a colorbar to the current figure cohere make a plot of coherence contour make a contour plot contourf make a filled contour plot csd make a plot of cross spectral density draw force a redraw of the current figure errorbar make an errorbar graph figlegend add a legend to the figure figimage add an image to the figure, w/o resampling figtext add text in figure coords figure create or change active figure fill make filled polygons fill_between make filled polygons gca return the current axes gcf return the current figure gci get the current image, or None getp get a handle graphics property hist make a histogram hold set the hold state on current axes legend add a legend to the axes loglog a log log plot imread load image file into array imshow plot image data matshow display a matrix in a new figure preserving aspect pcolor make a pseudocolor plot plot make a line plot plotfile plot data from a flat file psd make a plot of power spectral density quiver make a direction field (arrows) plot rc control the default params savefig save the current figure scatter make a scatter plot setp set a handle graphics property semilogx log x axis semilogy log y axis show show the figures specgram a spectrogram plot stem make a stem plot subplot make a subplot (numrows, numcols, axesnum) table add a table to the axes text add some text at location x,y to the current axes title add a title to the current axes xlabel add an xlabel to the current axes ylabel add a ylabel to the current axes =============== ========================================================= The following commands will set the default colormap accordingly: * autumn * bone * cool * copper * flag * gray * hot * hsv * jet * pink * prism * spring * summer * winter * spectral """ pass def get_plot_commands(): return ( 'axes', 'axis', 'bar', 'boxplot', 'cla', 'clf', 'close', 'colorbar', 'cohere', 'csd', 'draw', 'errorbar', 'figlegend', 'figtext', 'figimage', 'figure', 'fill', 'gca', 'gcf', 'gci', 'get', 'gray', 'barh', 'jet', 'hist', 'hold', 'imread', 'imshow', 'legend', 'loglog', 'quiver', 'rc', 'pcolor', 'pcolormesh', 'plot', 'psd', 'savefig', 'scatter', 'set', 'semilogx', 'semilogy', 'show', 'specgram', 'stem', 'subplot', 'table', 'text', 'title', 'xlabel', 'ylabel', 'pie', 'polar') def colors(): """ This is a do nothing function to provide you with help on how matplotlib handles colors. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter ===== ======= Alias Color ===== ======= 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ===== ======= For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1]. You can also use any legal html name for a color, for example:: color = 'red', color = 'burlywood' color = 'chartreuse' The example below creates a subplot with a dark slate gray background subplot(111, axisbg=(0.1843, 0.3098, 0.3098)) Here is an example that creates a pale turqoise title:: title('Is this the best color?', color='#afeeee') """ pass def colormaps(): """ matplotlib provides the following colormaps. * autumn * bone * cool * copper * flag * gray * hot * hsv * jet * pink * prism * spring * summer * winter * spectral You can set the colormap for an image, pcolor, scatter, etc, either as a keyword argument:: imshow(X, cmap=cm.hot) or post-hoc using the corresponding pylab interface function:: imshow(X) hot() jet() In interactive mode, this will update the colormap allowing you to see which one works best for your data. """ pass ## Plotting part 1: manually generated functions and wrappers ## from matplotlib.colorbar import colorbar_doc def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret colorbar.__doc__ = colorbar_doc def clim(vmin=None, vmax=None): """ Set the color limits of the current image To apply clim to all axes images do:: clim(0, 0.5) If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling. If you want to set the clim of multiple images, use, for example:: for im in gca().get_images(): im.set_clim(0, 0.05) """ im = gci() if im is None: raise RuntimeError('You must first define an image, eg with imshow') im.set_clim(vmin, vmax) draw_if_interactive() def imread(*args, **kwargs): return _imread(*args, **kwargs) if _imread.__doc__ is not None: imread.__doc__ = dedent(_imread.__doc__) def matshow(A, fignum=None, **kw): """ Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. With the exception of fignum, keyword arguments are passed to :func:`~matplotlib.pyplot.imshow`. *fignum*: [ None | integer | False ] By default, :func:`matshow` creates a new figure window with automatic numbering. If *fignum* is given as an integer, the created figure will use this figure number. Because of how :func:`matshow` tries to set the figure aspect ratio to be the one of the array, if you provide the number of an already existing figure, strange things may happen. If *fignum* is *False* or 0, a new figure window will **NOT** be created. """ if fignum is False or fignum is 0: ax = gca() else: # Extract actual aspect ratio of array and make appropriately sized figure fig = figure(fignum, figsize=figaspect(A)) ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) im = ax.matshow(A, **kw) gci._current = im draw_if_interactive() return im def polar(*args, **kwargs): """ call signature:: polar(theta, r, **kwargs) Make a polar plot. Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. """ ax = gca(polar=True) ret = ax.plot(*args, **kwargs) draw_if_interactive() return ret def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', **kwargs): """ Plot the data in *fname* *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, eg., integer column numbers in both or column names in both. *comments*, *skiprows*, *checkrows*, and *delimiter* are all passed on to :func:`matplotlib.pylab.csv2rec` to load the data into a record array. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) """ fig = figure() if len(cols)<1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = dict() r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter) def getname_val(identifier): 'return the name and column data for identifier' if is_string_like(identifier): return identifier, r[identifier] elif is_numlike(identifier): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) if len(cols)==1: ax1 = fig.add_subplot(1,1,1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_xlabel(xname) else: N = len(cols) for i in range(1,N): if i==1: ax = ax1 = fig.add_subplot(N-1,1,i) ax.grid(True) else: ax = fig.add_subplot(N-1,1,i, sharex=ax1) ax.grid(True) yname, y = getname_val(cols[i]) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if xname=='date': fig.autofmt_xdate() draw_if_interactive() ## Plotting part 2: autogenerated wrappers for axes methods ## # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def acorr(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().acorr(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.acorr.__doc__ is not None: acorr.__doc__ = dedent(Axes.acorr.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def arrow(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().arrow(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.arrow.__doc__ is not None: arrow.__doc__ = dedent(Axes.arrow.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def axhline(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().axhline(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.axhline.__doc__ is not None: axhline.__doc__ = dedent(Axes.axhline.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def axhspan(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().axhspan(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.axhspan.__doc__ is not None: axhspan.__doc__ = dedent(Axes.axhspan.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def axvline(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().axvline(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.axvline.__doc__ is not None: axvline.__doc__ = dedent(Axes.axvline.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def axvspan(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().axvspan(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.axvspan.__doc__ is not None: axvspan.__doc__ = dedent(Axes.axvspan.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def bar(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().bar(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.bar.__doc__ is not None: bar.__doc__ = dedent(Axes.bar.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def barh(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().barh(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.barh.__doc__ is not None: barh.__doc__ = dedent(Axes.barh.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def broken_barh(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().broken_barh(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.broken_barh.__doc__ is not None: broken_barh.__doc__ = dedent(Axes.broken_barh.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def boxplot(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().boxplot(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.boxplot.__doc__ is not None: boxplot.__doc__ = dedent(Axes.boxplot.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def cohere(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().cohere(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.cohere.__doc__ is not None: cohere.__doc__ = dedent(Axes.cohere.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def clabel(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().clabel(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.clabel.__doc__ is not None: clabel.__doc__ = dedent(Axes.clabel.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def contour(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().contour(*args, **kwargs) draw_if_interactive() except: hold(b) raise if ret._A is not None: gci._current = ret hold(b) return ret if Axes.contour.__doc__ is not None: contour.__doc__ = dedent(Axes.contour.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def contourf(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().contourf(*args, **kwargs) draw_if_interactive() except: hold(b) raise if ret._A is not None: gci._current = ret hold(b) return ret if Axes.contourf.__doc__ is not None: contourf.__doc__ = dedent(Axes.contourf.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def csd(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().csd(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.csd.__doc__ is not None: csd.__doc__ = dedent(Axes.csd.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def errorbar(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().errorbar(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.errorbar.__doc__ is not None: errorbar.__doc__ = dedent(Axes.errorbar.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def fill(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().fill(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.fill.__doc__ is not None: fill.__doc__ = dedent(Axes.fill.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def fill_between(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().fill_between(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.fill_between.__doc__ is not None: fill_between.__doc__ = dedent(Axes.fill_between.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hexbin(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().hexbin(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.hexbin.__doc__ is not None: hexbin.__doc__ = dedent(Axes.hexbin.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hist(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().hist(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.hist.__doc__ is not None: hist.__doc__ = dedent(Axes.hist.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hlines(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().hlines(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.hlines.__doc__ is not None: hlines.__doc__ = dedent(Axes.hlines.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def imshow(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().imshow(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.imshow.__doc__ is not None: imshow.__doc__ = dedent(Axes.imshow.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def loglog(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().loglog(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.loglog.__doc__ is not None: loglog.__doc__ = dedent(Axes.loglog.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pcolor(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().pcolor(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.pcolor.__doc__ is not None: pcolor.__doc__ = dedent(Axes.pcolor.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pcolormesh(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().pcolormesh(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.pcolormesh.__doc__ is not None: pcolormesh.__doc__ = dedent(Axes.pcolormesh.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pie(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().pie(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.pie.__doc__ is not None: pie.__doc__ = dedent(Axes.pie.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def plot(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().plot(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.plot.__doc__ is not None: plot.__doc__ = dedent(Axes.plot.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def plot_date(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().plot_date(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.plot_date.__doc__ is not None: plot_date.__doc__ = dedent(Axes.plot_date.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def psd(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().psd(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.psd.__doc__ is not None: psd.__doc__ = dedent(Axes.psd.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def quiver(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().quiver(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.quiver.__doc__ is not None: quiver.__doc__ = dedent(Axes.quiver.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def quiverkey(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().quiverkey(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.quiverkey.__doc__ is not None: quiverkey.__doc__ = dedent(Axes.quiverkey.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def scatter(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().scatter(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.scatter.__doc__ is not None: scatter.__doc__ = dedent(Axes.scatter.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def semilogx(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().semilogx(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.semilogx.__doc__ is not None: semilogx.__doc__ = dedent(Axes.semilogx.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def semilogy(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().semilogy(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.semilogy.__doc__ is not None: semilogy.__doc__ = dedent(Axes.semilogy.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def specgram(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().specgram(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret[-1] hold(b) return ret if Axes.specgram.__doc__ is not None: specgram.__doc__ = dedent(Axes.specgram.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spy(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().spy(*args, **kwargs) draw_if_interactive() except: hold(b) raise gci._current = ret hold(b) return ret if Axes.spy.__doc__ is not None: spy.__doc__ = dedent(Axes.spy.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def stem(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().stem(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.stem.__doc__ is not None: stem.__doc__ = dedent(Axes.stem.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def step(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().step(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.step.__doc__ is not None: step.__doc__ = dedent(Axes.step.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def vlines(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().vlines(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.vlines.__doc__ is not None: vlines.__doc__ = dedent(Axes.vlines.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def xcorr(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().xcorr(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.xcorr.__doc__ is not None: xcorr.__doc__ = dedent(Axes.xcorr.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def barbs(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False b = ishold() h = kwargs.pop('hold', None) if h is not None: hold(h) try: ret = gca().barbs(*args, **kwargs) draw_if_interactive() except: hold(b) raise hold(b) return ret if Axes.barbs.__doc__ is not None: barbs.__doc__ = dedent(Axes.barbs.__doc__) + """ Additional kwargs: hold = [True|False] overrides default hold state""" # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def cla(*args, **kwargs): ret = gca().cla(*args, **kwargs) draw_if_interactive() return ret if Axes.cla.__doc__ is not None: cla.__doc__ = dedent(Axes.cla.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def grid(*args, **kwargs): ret = gca().grid(*args, **kwargs) draw_if_interactive() return ret if Axes.grid.__doc__ is not None: grid.__doc__ = dedent(Axes.grid.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def legend(*args, **kwargs): ret = gca().legend(*args, **kwargs) draw_if_interactive() return ret if Axes.legend.__doc__ is not None: legend.__doc__ = dedent(Axes.legend.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def table(*args, **kwargs): ret = gca().table(*args, **kwargs) draw_if_interactive() return ret if Axes.table.__doc__ is not None: table.__doc__ = dedent(Axes.table.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def text(*args, **kwargs): ret = gca().text(*args, **kwargs) draw_if_interactive() return ret if Axes.text.__doc__ is not None: text.__doc__ = dedent(Axes.text.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def annotate(*args, **kwargs): ret = gca().annotate(*args, **kwargs) draw_if_interactive() return ret if Axes.annotate.__doc__ is not None: annotate.__doc__ = dedent(Axes.annotate.__doc__) # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def autumn(): ''' set the default colormap to autumn and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='autumn') im = gci() if im is not None: im.set_cmap(cm.autumn) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def bone(): ''' set the default colormap to bone and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='bone') im = gci() if im is not None: im.set_cmap(cm.bone) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def cool(): ''' set the default colormap to cool and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='cool') im = gci() if im is not None: im.set_cmap(cm.cool) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def copper(): ''' set the default colormap to copper and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='copper') im = gci() if im is not None: im.set_cmap(cm.copper) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def flag(): ''' set the default colormap to flag and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='flag') im = gci() if im is not None: im.set_cmap(cm.flag) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def gray(): ''' set the default colormap to gray and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='gray') im = gci() if im is not None: im.set_cmap(cm.gray) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hot(): ''' set the default colormap to hot and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hot') im = gci() if im is not None: im.set_cmap(cm.hot) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hsv(): ''' set the default colormap to hsv and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hsv') im = gci() if im is not None: im.set_cmap(cm.hsv) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def jet(): ''' set the default colormap to jet and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='jet') im = gci() if im is not None: im.set_cmap(cm.jet) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pink(): ''' set the default colormap to pink and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='pink') im = gci() if im is not None: im.set_cmap(cm.pink) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def prism(): ''' set the default colormap to prism and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='prism') im = gci() if im is not None: im.set_cmap(cm.prism) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spring(): ''' set the default colormap to spring and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spring') im = gci() if im is not None: im.set_cmap(cm.spring) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def summer(): ''' set the default colormap to summer and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='summer') im = gci() if im is not None: im.set_cmap(cm.summer) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def winter(): ''' set the default colormap to winter and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='winter') im = gci() if im is not None: im.set_cmap(cm.winter) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spectral(): ''' set the default colormap to spectral and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spectral') im = gci() if im is not None: im.set_cmap(cm.spectral) draw_if_interactive()
gpl-3.0
rhuelga/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/LPC.py
2
1193
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time from scipy.fftpack import fft, ifft import essentia.standard as ess sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF lpc = ess.LPC(order=14) N= 512 (fs, x) = UF.wavread('../../../sounds/soprano-E4.wav') first = 20000 last = first+N x1 = x[first:last] X = fft(hamming(N)*x1) mX = 20 * np.log10(abs(X[:N//2])) coeff = lpc(x1) Y = fft(coeff[0], N) mY = 20 * np.log10(abs(Y[:N//2])) plt.figure(1, figsize=(9, 5)) plt.subplot(2,1,1) plt.plot(np.arange(first, last)/float(fs), x[first:last], 'b', lw=1.5) plt.axis([first/float(fs), last/float(fs), min(x[first:last]), max(x[first:last])]) plt.title('x (soprano-E4.wav)') plt.subplot(2,1,2) plt.plot(np.arange(0, fs/2.0, fs/float(N)), mX-max(mX), 'r', lw=1.5, label="mX") plt.plot(np.arange(0, fs/2.0, fs/float(N)), -mY-max(-mY)-3, 'k', lw=1.5, label="mY") plt.legend() plt.axis([0, fs/2, -60, 3]) plt.title('mX + mY (LPC approximation)') plt.tight_layout() plt.savefig('LPC.png') plt.show()
agpl-3.0
kou/arrow
python/pyarrow/tests/test_extension_type.py
3
20909
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pickle import weakref import numpy as np import pyarrow as pa import pytest class IntegerType(pa.PyExtensionType): def __init__(self): pa.PyExtensionType.__init__(self, pa.int64()) def __reduce__(self): return IntegerType, () class UuidType(pa.PyExtensionType): def __init__(self): pa.PyExtensionType.__init__(self, pa.binary(16)) def __reduce__(self): return UuidType, () class ParamExtType(pa.PyExtensionType): def __init__(self, width): self._width = width pa.PyExtensionType.__init__(self, pa.binary(width)) @property def width(self): return self._width def __reduce__(self): return ParamExtType, (self.width,) class MyStructType(pa.PyExtensionType): storage_type = pa.struct([('left', pa.int64()), ('right', pa.int64())]) def __init__(self): pa.PyExtensionType.__init__(self, self.storage_type) def __reduce__(self): return MyStructType, () class MyListType(pa.PyExtensionType): def __init__(self, storage_type): pa.PyExtensionType.__init__(self, storage_type) def __reduce__(self): return MyListType, (self.storage_type,) def ipc_write_batch(batch): stream = pa.BufferOutputStream() writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) writer.close() return stream.getvalue() def ipc_read_batch(buf): reader = pa.RecordBatchStreamReader(buf) return reader.read_next_batch() def test_ext_type_basics(): ty = UuidType() assert ty.extension_name == "arrow.py_extension_type" def test_ext_type_str(): ty = IntegerType() expected = "extension<arrow.py_extension_type<IntegerType>>" assert str(ty) == expected assert pa.DataType.__str__(ty) == expected def test_ext_type_repr(): ty = IntegerType() assert repr(ty) == "IntegerType(DataType(int64))" def test_ext_type__lifetime(): ty = UuidType() wr = weakref.ref(ty) del ty assert wr() is None def test_ext_type__storage_type(): ty = UuidType() assert ty.storage_type == pa.binary(16) assert ty.__class__ is UuidType ty = ParamExtType(5) assert ty.storage_type == pa.binary(5) assert ty.__class__ is ParamExtType def test_uuid_type_pickle(): for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): ty = UuidType() ser = pickle.dumps(ty, protocol=proto) del ty ty = pickle.loads(ser) wr = weakref.ref(ty) assert ty.extension_name == "arrow.py_extension_type" del ty assert wr() is None def test_ext_type_equality(): a = ParamExtType(5) b = ParamExtType(6) c = ParamExtType(6) assert a != b assert b == c d = UuidType() e = UuidType() assert a != d assert d == e def test_ext_array_basics(): ty = ParamExtType(3) storage = pa.array([b"foo", b"bar"], type=pa.binary(3)) arr = pa.ExtensionArray.from_storage(ty, storage) arr.validate() assert arr.type is ty assert arr.storage.equals(storage) def test_ext_array_lifetime(): ty = ParamExtType(3) storage = pa.array([b"foo", b"bar"], type=pa.binary(3)) arr = pa.ExtensionArray.from_storage(ty, storage) refs = [weakref.ref(ty), weakref.ref(arr), weakref.ref(storage)] del ty, storage, arr for ref in refs: assert ref() is None def test_ext_array_errors(): ty = ParamExtType(4) storage = pa.array([b"foo", b"bar"], type=pa.binary(3)) with pytest.raises(TypeError, match="Incompatible storage type"): pa.ExtensionArray.from_storage(ty, storage) def test_ext_array_equality(): storage1 = pa.array([b"0123456789abcdef"], type=pa.binary(16)) storage2 = pa.array([b"0123456789abcdef"], type=pa.binary(16)) storage3 = pa.array([], type=pa.binary(16)) ty1 = UuidType() ty2 = ParamExtType(16) a = pa.ExtensionArray.from_storage(ty1, storage1) b = pa.ExtensionArray.from_storage(ty1, storage2) assert a.equals(b) c = pa.ExtensionArray.from_storage(ty1, storage3) assert not a.equals(c) d = pa.ExtensionArray.from_storage(ty2, storage1) assert not a.equals(d) e = pa.ExtensionArray.from_storage(ty2, storage2) assert d.equals(e) f = pa.ExtensionArray.from_storage(ty2, storage3) assert not d.equals(f) def test_ext_array_pickling(): for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): ty = ParamExtType(3) storage = pa.array([b"foo", b"bar"], type=pa.binary(3)) arr = pa.ExtensionArray.from_storage(ty, storage) ser = pickle.dumps(arr, protocol=proto) del ty, storage, arr arr = pickle.loads(ser) arr.validate() assert isinstance(arr, pa.ExtensionArray) assert arr.type == ParamExtType(3) assert arr.type.storage_type == pa.binary(3) assert arr.storage.type == pa.binary(3) assert arr.storage.to_pylist() == [b"foo", b"bar"] def test_ext_array_conversion_to_numpy(): storage1 = pa.array([1, 2, 3], type=pa.int64()) storage2 = pa.array([b"123", b"456", b"789"], type=pa.binary(3)) ty1 = IntegerType() ty2 = ParamExtType(3) arr1 = pa.ExtensionArray.from_storage(ty1, storage1) arr2 = pa.ExtensionArray.from_storage(ty2, storage2) result = arr1.to_numpy() expected = np.array([1, 2, 3], dtype="int64") np.testing.assert_array_equal(result, expected) with pytest.raises(ValueError, match="zero_copy_only was True"): arr2.to_numpy() result = arr2.to_numpy(zero_copy_only=False) expected = np.array([b"123", b"456", b"789"]) np.testing.assert_array_equal(result, expected) @pytest.mark.pandas def test_ext_array_conversion_to_pandas(): import pandas as pd storage1 = pa.array([1, 2, 3], type=pa.int64()) storage2 = pa.array([b"123", b"456", b"789"], type=pa.binary(3)) ty1 = IntegerType() ty2 = ParamExtType(3) arr1 = pa.ExtensionArray.from_storage(ty1, storage1) arr2 = pa.ExtensionArray.from_storage(ty2, storage2) result = arr1.to_pandas() expected = pd.Series([1, 2, 3], dtype="int64") pd.testing.assert_series_equal(result, expected) result = arr2.to_pandas() expected = pd.Series([b"123", b"456", b"789"], dtype=object) pd.testing.assert_series_equal(result, expected) def test_cast_kernel_on_extension_arrays(): # test array casting storage = pa.array([1, 2, 3, 4], pa.int64()) arr = pa.ExtensionArray.from_storage(IntegerType(), storage) # test that no allocation happens during identity cast allocated_before_cast = pa.total_allocated_bytes() casted = arr.cast(pa.int64()) assert pa.total_allocated_bytes() == allocated_before_cast cases = [ (pa.int64(), pa.Int64Array), (pa.int32(), pa.Int32Array), (pa.int16(), pa.Int16Array), (pa.uint64(), pa.UInt64Array), (pa.uint32(), pa.UInt32Array), (pa.uint16(), pa.UInt16Array) ] for typ, klass in cases: casted = arr.cast(typ) assert casted.type == typ assert isinstance(casted, klass) # test chunked array casting arr = pa.chunked_array([arr, arr]) casted = arr.cast(pa.int16()) assert casted.type == pa.int16() assert isinstance(casted, pa.ChunkedArray) def test_casting_to_extension_type_raises(): arr = pa.array([1, 2, 3, 4], pa.int64()) with pytest.raises(pa.ArrowNotImplementedError): arr.cast(IntegerType()) def example_batch(): ty = ParamExtType(3) storage = pa.array([b"foo", b"bar"], type=pa.binary(3)) arr = pa.ExtensionArray.from_storage(ty, storage) return pa.RecordBatch.from_arrays([arr], ["exts"]) def check_example_batch(batch): arr = batch.column(0) assert isinstance(arr, pa.ExtensionArray) assert arr.type.storage_type == pa.binary(3) assert arr.storage.to_pylist() == [b"foo", b"bar"] return arr def test_ipc(): batch = example_batch() buf = ipc_write_batch(batch) del batch batch = ipc_read_batch(buf) arr = check_example_batch(batch) assert arr.type == ParamExtType(3) def test_ipc_unknown_type(): batch = example_batch() buf = ipc_write_batch(batch) del batch orig_type = ParamExtType try: # Simulate the original Python type being unavailable. # Deserialization should not fail but return a placeholder type. del globals()['ParamExtType'] batch = ipc_read_batch(buf) arr = check_example_batch(batch) assert isinstance(arr.type, pa.UnknownExtensionType) # Can be serialized again buf2 = ipc_write_batch(batch) del batch, arr batch = ipc_read_batch(buf2) arr = check_example_batch(batch) assert isinstance(arr.type, pa.UnknownExtensionType) finally: globals()['ParamExtType'] = orig_type # Deserialize again with the type restored batch = ipc_read_batch(buf2) arr = check_example_batch(batch) assert arr.type == ParamExtType(3) class PeriodArray(pa.ExtensionArray): pass class PeriodType(pa.ExtensionType): def __init__(self, freq): # attributes need to be set first before calling # super init (as that calls serialize) self._freq = freq pa.ExtensionType.__init__(self, pa.int64(), 'test.period') @property def freq(self): return self._freq def __arrow_ext_serialize__(self): return "freq={}".format(self.freq).encode() @classmethod def __arrow_ext_deserialize__(cls, storage_type, serialized): serialized = serialized.decode() assert serialized.startswith("freq=") freq = serialized.split('=')[1] return PeriodType(freq) def __eq__(self, other): if isinstance(other, pa.BaseExtensionType): return (type(self) == type(other) and self.freq == other.freq) else: return NotImplemented class PeriodTypeWithClass(PeriodType): def __init__(self, freq): PeriodType.__init__(self, freq) def __arrow_ext_class__(self): return PeriodArray @classmethod def __arrow_ext_deserialize__(cls, storage_type, serialized): freq = PeriodType.__arrow_ext_deserialize__( storage_type, serialized).freq return PeriodTypeWithClass(freq) @pytest.fixture(params=[PeriodType('D'), PeriodTypeWithClass('D')]) def registered_period_type(request): # setup period_type = request.param period_class = period_type.__arrow_ext_class__() pa.register_extension_type(period_type) yield period_type, period_class # teardown try: pa.unregister_extension_type('test.period') except KeyError: pass def test_generic_ext_type(): period_type = PeriodType('D') assert period_type.extension_name == "test.period" assert period_type.storage_type == pa.int64() # default ext_class expected. assert period_type.__arrow_ext_class__() == pa.ExtensionArray def test_generic_ext_type_ipc(registered_period_type): period_type, period_class = registered_period_type storage = pa.array([1, 2, 3, 4], pa.int64()) arr = pa.ExtensionArray.from_storage(period_type, storage) batch = pa.RecordBatch.from_arrays([arr], ["ext"]) # check the built array has exactly the expected clss assert type(arr) == period_class buf = ipc_write_batch(batch) del batch batch = ipc_read_batch(buf) result = batch.column(0) # check the deserialized array class is the expected one assert type(result) == period_class assert result.type.extension_name == "test.period" assert arr.storage.to_pylist() == [1, 2, 3, 4] # we get back an actual PeriodType assert isinstance(result.type, PeriodType) assert result.type.freq == 'D' assert result.type == period_type # using different parametrization as how it was registered period_type_H = period_type.__class__('H') assert period_type_H.extension_name == "test.period" assert period_type_H.freq == 'H' arr = pa.ExtensionArray.from_storage(period_type_H, storage) batch = pa.RecordBatch.from_arrays([arr], ["ext"]) buf = ipc_write_batch(batch) del batch batch = ipc_read_batch(buf) result = batch.column(0) assert isinstance(result.type, PeriodType) assert result.type.freq == 'H' assert type(result) == period_class def test_generic_ext_type_ipc_unknown(registered_period_type): period_type, _ = registered_period_type storage = pa.array([1, 2, 3, 4], pa.int64()) arr = pa.ExtensionArray.from_storage(period_type, storage) batch = pa.RecordBatch.from_arrays([arr], ["ext"]) buf = ipc_write_batch(batch) del batch # unregister type before loading again => reading unknown extension type # as plain array (but metadata in schema's field are preserved) pa.unregister_extension_type('test.period') batch = ipc_read_batch(buf) result = batch.column(0) assert isinstance(result, pa.Int64Array) ext_field = batch.schema.field('ext') assert ext_field.metadata == { b'ARROW:extension:metadata': b'freq=D', b'ARROW:extension:name': b'test.period' } def test_generic_ext_type_equality(): period_type = PeriodType('D') assert period_type.extension_name == "test.period" period_type2 = PeriodType('D') period_type3 = PeriodType('H') assert period_type == period_type2 assert not period_type == period_type3 def test_generic_ext_type_register(registered_period_type): # test that trying to register other type does not segfault with pytest.raises(TypeError): pa.register_extension_type(pa.string()) # register second time raises KeyError period_type = PeriodType('D') with pytest.raises(KeyError): pa.register_extension_type(period_type) @pytest.mark.parquet def test_parquet_period(tmpdir, registered_period_type): # Parquet support for primitive extension types period_type, period_class = registered_period_type storage = pa.array([1, 2, 3, 4], pa.int64()) arr = pa.ExtensionArray.from_storage(period_type, storage) table = pa.table([arr], names=["ext"]) import pyarrow.parquet as pq filename = tmpdir / 'period_extension_type.parquet' pq.write_table(table, filename) # Stored in parquet as storage type but with extension metadata saved # in the serialized arrow schema meta = pq.read_metadata(filename) assert meta.schema.column(0).physical_type == "INT64" assert b"ARROW:schema" in meta.metadata import base64 decoded_schema = base64.b64decode(meta.metadata[b"ARROW:schema"]) schema = pa.ipc.read_schema(pa.BufferReader(decoded_schema)) # Since the type could be reconstructed, the extension type metadata is # absent. assert schema.field("ext").metadata == {} # When reading in, properly create extension type if it is registered result = pq.read_table(filename) assert result.schema.field("ext").type == period_type assert result.schema.field("ext").metadata == {} # Get the exact array class defined by the registered type. result_array = result.column("ext").chunk(0) assert type(result_array) is period_class # When the type is not registered, read in as storage type pa.unregister_extension_type(period_type.extension_name) result = pq.read_table(filename) assert result.schema.field("ext").type == pa.int64() # The extension metadata is present for roundtripping. assert result.schema.field("ext").metadata == { b'ARROW:extension:metadata': b'freq=D', b'ARROW:extension:name': b'test.period' } @pytest.mark.parquet def test_parquet_extension_with_nested_storage(tmpdir): # Parquet support for extension types with nested storage type import pyarrow.parquet as pq struct_array = pa.StructArray.from_arrays( [pa.array([0, 1], type="int64"), pa.array([4, 5], type="int64")], names=["left", "right"]) list_array = pa.array([[1, 2, 3], [4, 5]], type=pa.list_(pa.int32())) mystruct_array = pa.ExtensionArray.from_storage(MyStructType(), struct_array) mylist_array = pa.ExtensionArray.from_storage( MyListType(list_array.type), list_array) orig_table = pa.table({'structs': mystruct_array, 'lists': mylist_array}) filename = tmpdir / 'nested_extension_storage.parquet' pq.write_table(orig_table, filename) table = pq.read_table(filename) assert table.column('structs').type == mystruct_array.type assert table.column('lists').type == mylist_array.type assert table == orig_table @pytest.mark.parquet def test_parquet_nested_extension(tmpdir): # Parquet support for extension types nested in struct or list import pyarrow.parquet as pq ext_type = IntegerType() storage = pa.array([4, 5, 6, 7], type=pa.int64()) ext_array = pa.ExtensionArray.from_storage(ext_type, storage) # Struct of extensions struct_array = pa.StructArray.from_arrays( [storage, ext_array], names=['ints', 'exts']) orig_table = pa.table({'structs': struct_array}) filename = tmpdir / 'struct_of_ext.parquet' pq.write_table(orig_table, filename) table = pq.read_table(filename) assert table.column(0).type == struct_array.type assert table == orig_table # List of extensions list_array = pa.ListArray.from_arrays([0, 1, None, 3], ext_array) orig_table = pa.table({'lists': list_array}) filename = tmpdir / 'list_of_ext.parquet' pq.write_table(orig_table, filename) table = pq.read_table(filename) assert table.column(0).type == list_array.type assert table == orig_table # Large list of extensions list_array = pa.LargeListArray.from_arrays([0, 1, None, 3], ext_array) orig_table = pa.table({'lists': list_array}) filename = tmpdir / 'list_of_ext.parquet' pq.write_table(orig_table, filename) table = pq.read_table(filename) assert table.column(0).type == list_array.type assert table == orig_table @pytest.mark.parquet def test_parquet_extension_nested_in_extension(tmpdir): # Parquet support for extension<list<extension>> import pyarrow.parquet as pq inner_ext_type = IntegerType() inner_storage = pa.array([4, 5, 6, 7], type=pa.int64()) inner_ext_array = pa.ExtensionArray.from_storage(inner_ext_type, inner_storage) list_array = pa.ListArray.from_arrays([0, 1, None, 3], inner_ext_array) mylist_array = pa.ExtensionArray.from_storage( MyListType(list_array.type), list_array) orig_table = pa.table({'lists': mylist_array}) filename = tmpdir / 'ext_of_list_of_ext.parquet' pq.write_table(orig_table, filename) table = pq.read_table(filename) assert table.column(0).type == mylist_array.type assert table == orig_table def test_to_numpy(): period_type = PeriodType('D') storage = pa.array([1, 2, 3, 4], pa.int64()) arr = pa.ExtensionArray.from_storage(period_type, storage) expected = storage.to_numpy() result = arr.to_numpy() np.testing.assert_array_equal(result, expected) result = np.asarray(arr) np.testing.assert_array_equal(result, expected) # chunked array a1 = pa.chunked_array([arr, arr]) a2 = pa.chunked_array([arr, arr], type=period_type) expected = np.hstack([expected, expected]) for charr in [a1, a2]: assert charr.type == period_type for result in [np.asarray(charr), charr.to_numpy()]: assert result.dtype == np.int64 np.testing.assert_array_equal(result, expected) # zero chunks charr = pa.chunked_array([], type=period_type) assert charr.type == period_type for result in [np.asarray(charr), charr.to_numpy()]: assert result.dtype == np.int64 np.testing.assert_array_equal(result, np.array([], dtype='int64'))
apache-2.0
numenta-archive/htmresearch
projects/capybara/sandbox/sklearn/run_baseline.py
9
2773
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import numpy as np from sklearn.neural_network import MLPClassifier from htmresearch.frameworks.classification.utils.traces import loadTraces from utils import get_file_name, convert_to_sdrs def load_sdrs(start_idx, end_idx, exp_name): # Params input_width = 2048 * 32 active_cells_weight = 0 predicted_active_cells_weight = 1 network_config = 'sp=True_tm=True_tp=False_SDRClassifier' # load traces file_name = get_file_name(exp_name, network_config) traces = loadTraces(file_name) num_records = len(traces['sensorValue']) # start and end if start_idx < 0: start = num_records + start_idx else: start = start_idx if end_idx < 0: end = num_records + end_idx else: end = end_idx # input data sensor_values = traces['sensorValue'][start:end] categories = traces['actualCategory'][start:end] active_cells = traces['tmActiveCells'][start:end] predicted_active_cells = traces['tmPredictedActiveCells'][start:end] # generate sdrs to cluster active_cells_sdrs = convert_to_sdrs(active_cells, input_width) predicted_active_cells_sdrs = np.array( convert_to_sdrs(predicted_active_cells, input_width)) sdrs = (float(active_cells_weight) * np.array(active_cells_sdrs) + float(predicted_active_cells_weight) * predicted_active_cells_sdrs) return sdrs, categories def train_model(X, y): clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) clf.fit(X, y) return clf if __name__ == "__main__": exp_name = '1x.40000.body_acc_x' start_idx = 600 end_idx = 800 sdrs, categories = load_sdrs(start_idx, end_idx, exp_name) clf = train_model(sdrs, categories) predictions = clf.predict([sdrs[0], sdrs[1]]) print "Predictions: %s" % predictions
agpl-3.0
tangyouze/tushare
tushare/datayes/idx.py
17
1509
# -*- coding:utf-8 -*- """ 通联数据 Created on 2015/08/24 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from pandas.compat import StringIO import pandas as pd from tushare.util import vars as vs from tushare.util.common import Client from tushare.util import upass as up class Idx(): def __init__(self, client=None): if client is None: self.client = Client(up.get_token()) else: self.client = client def Idx(self, secID='', ticker='', field=''): """ 获取国内外指数的基本要素信息,包括指数名称、指数代码、发布机构、发布日期、基日、基点等。 """ code, result = self.client.getData(vs.IDX%(secID, ticker, field)) return _ret_data(code, result) def IdxCons(self, secID='', ticker='', intoDate='', isNew='', field=''): """ 获取国内外指数的成分构成情况,包括指数成分股名称、成分股代码、入选日期、剔除日期等。 """ code, result = self.client.getData(vs.IDXCONS%(secID, ticker, intoDate, intoDate, isNew, field)) return _ret_data(code, result) def _ret_data(code, result): if code==200: result = result.decode('utf-8') if vs.PY3 else result df = pd.read_csv(StringIO(result)) return df else: print(result) return None
bsd-3-clause
dotsdl/msmbuilder
msmbuilder/tests/test_commands.py
1
7972
from __future__ import print_function, division import os import sys import json import glob import shlex import itertools import tempfile import shutil import subprocess import numpy as np import mdtraj as md from mdtraj.testing import eq from mdtraj.testing import get_fn as get_mdtraj_fn, skipif from msmbuilder.utils import load from msmbuilder.dataset import dataset from msmbuilder.example_datasets import get_data_home from msmbuilder.example_datasets.alanine_dipeptide import fetch_alanine_dipeptide import sklearn.hmm DATADIR = HMM = None ################################################################################ # Fixtures ################################################################################ def setup_module(): global DATADIR, HMM DATADIR = tempfile.mkdtemp() # 4 components and 3 features. Each feature is going to be the x, y, z # coordinate of 1 atom HMM = sklearn.hmm.GaussianHMM(n_components=4) HMM.transmat_ = np.array([[0.9, 0.1, 0.0, 0.0], [0.1, 0.7, 0.2, 0.0], [0.0, 0.1, 0.8, 0.1], [0.0, 0.1, 0.1, 0.8]]) HMM.means_ = np.array([[-10, -10, -10], [-5, -5, -5], [5, 5, 5], [10, 10, 10]]) HMM.covars_ = np.array([[0.1, 0.1, 0.1], [0.5, 0.5, 0.5], [1, 1, 1], [4, 4, 4]]) HMM.startprob_ = np.array([1, 1, 1, 1]) / 4.0 # get a 1 atom topology topology = md.load(get_mdtraj_fn('native.pdb')).restrict_atoms([1]).topology # generate the trajectories and save them to disk for i in range(10): d, s = HMM.sample(100) t = md.Trajectory(xyz=d.reshape(len(d), 1, 3), topology=topology) t.save(os.path.join(DATADIR, 'Trajectory%d.h5' % i)) fetch_alanine_dipeptide() def teardown_module(): shutil.rmtree(DATADIR) class tempdir(object): def __enter__(self): self._curdir = os.path.abspath(os.curdir) self._tempdir = tempfile.mkdtemp() os.chdir(self._tempdir) def __exit__(self, *exc_info): os.chdir(self._curdir) shutil.rmtree(self._tempdir) def shell(str): # Capture stdout if sys.platform == 'win32': split = str.split() else: split = shlex.split(str) print(split) with open(os.devnull, 'w') as noout: assert subprocess.call(split, stdout=noout) == 0 ################################################################################ # Tests ################################################################################ def test_atomindices(): fn = get_mdtraj_fn('2EQQ.pdb') t = md.load(fn) with tempdir(): shell('msmb AtomIndices -o all.txt --all -a -p %s' % fn) shell('msmb AtomIndices -o all-pairs.txt --all -d -p %s' % fn) atoms = np.loadtxt('all.txt', int) pairs = np.loadtxt('all-pairs.txt', int) eq(t.n_atoms, len(atoms)) eq(int(t.n_atoms * (t.n_atoms-1) / 2), len(pairs)) with tempdir(): shell('msmb AtomIndices -o heavy.txt --heavy -a -p %s' % fn) shell('msmb AtomIndices -o heavy-pairs.txt --heavy -d -p %s' % fn) atoms = np.loadtxt('heavy.txt', int) pairs = np.loadtxt('heavy-pairs.txt', int) assert all(t.topology.atom(i).element.symbol != 'H' for i in atoms) assert sum(1 for a in t.topology.atoms if a.element.symbol != 'H') == len(atoms) eq(np.array(list(itertools.combinations(atoms, 2))), pairs) with tempdir(): shell('msmb AtomIndices -o alpha.txt --alpha -a -p %s' % fn) shell('msmb AtomIndices -o alpha-pairs.txt --alpha -d -p %s' % fn) atoms = np.loadtxt('alpha.txt', int) pairs = np.loadtxt('alpha-pairs.txt', int) assert all(t.topology.atom(i).name == 'CA' for i in atoms) assert sum(1 for a in t.topology.atoms if a.name == 'CA') == len(atoms) eq(np.array(list(itertools.combinations(atoms, 2))), pairs) with tempdir(): shell('msmb AtomIndices -o minimal.txt --minimal -a -p %s' % fn) shell('msmb AtomIndices -o minimal-pairs.txt --minimal -d -p %s' % fn) atoms = np.loadtxt('minimal.txt', int) pairs = np.loadtxt('minimal-pairs.txt', int) assert all(t.topology.atom(i).name in ['CA', 'CB', 'C', 'N' , 'O'] for i in atoms) eq(np.array(list(itertools.combinations(atoms, 2))), pairs) def test_superpose_featurizer(): with tempdir(): shell('msmb AtomIndices -o all.txt --all -a -p %s/alanine_dipeptide/ala2.pdb' % get_data_home()), shell("msmb SuperposeFeaturizer --trjs '{data_home}/alanine_dipeptide/*.dcd'" " --transformed distances --atom_indices all.txt" " --reference_traj {data_home}/alanine_dipeptide/ala2.pdb" " --top {data_home}/alanine_dipeptide/ala2.pdb".format( data_home=get_data_home())) ds = dataset('distances') assert len(ds) == 10 assert ds[0].shape[1] == len(np.loadtxt('all.txt')) print(ds.provenance) def test_atom_pairs_featurizer(): with tempdir(): shell('msmb AtomIndices -o all.txt --all -d -p %s/alanine_dipeptide/ala2.pdb' % get_data_home()), shell("msmb AtomPairsFeaturizer --trjs '{data_home}/alanine_dipeptide/*.dcd'" " --transformed pairs --pair_indices all.txt" " --top {data_home}/alanine_dipeptide/ala2.pdb".format( data_home=get_data_home())) ds = dataset('pairs') assert len(ds) == 10 assert ds[0].shape[1] == len(np.loadtxt('all.txt')**2) print(ds.provenance) def test_transform_command_1(): with tempdir(): shell("msmb KCenters -i {data_home}/alanine_dipeptide/*.dcd " "-o model.pkl --top {data_home}/alanine_dipeptide/ala2.pdb " "--metric rmsd".format(data_home=get_data_home())) shell("msmb TransformDataset -i {data_home}/alanine_dipeptide/*.dcd " "-m model.pkl -t transformed.h5 --top " "{data_home}/alanine_dipeptide/ala2.pdb".format(data_home=get_data_home())) eq(dataset('transformed.h5')[0], load('model.pkl').labels_[0]) with tempdir(): shell("msmb KCenters -i {data_home}/alanine_dipeptide/trajectory_0.dcd " "-o model.pkl --top {data_home}/alanine_dipeptide/ala2.pdb " "--metric rmsd".format(data_home=get_data_home())) def test_transform_command_2(): def test_transform_command_1(): with tempdir(): shell("msmb KCenters -i {data_home}/alanine_dipeptide/trajectory_0.dcd " "-o model.pkl --top {data_home}/alanine_dipeptide/ala2.pdb " "--metric rmsd " "--stride 2".format(data_home=get_data_home())) def test_help(): shell('msmb -h') def test_convert_chunked_project_1(): fetch_alanine_dipeptide() with tempdir(): root = os.path.join(get_data_home(), 'alanine_dipeptide') if sys.platform == 'win32': pattern = "*.dcd" else: pattern = "'*.dcd'" cmd = 'msmb ConvertChunkedProject out {root} --pattern {pattern} -t {root}/ala2.pdb'.format(root=root, pattern=pattern) shell(cmd) assert set(os.listdir('out')) == set(('traj-00000000.dcd', 'trajectories.jsonl')) # check that out/traj-00000.dcd really has concatenated all of # the input trajs length = len(md.open('out/traj-00000000.dcd')) assert length == sum(len(md.open(f)) for f in glob.glob('%s/*.dcd' % root)) with open('out/trajectories.jsonl') as f: record = json.load(f) assert set(record.keys()) == set(('filename', 'chunks')) assert record['filename'] == 'traj-00000000.dcd' assert sorted(glob.glob('%s/*.dcd' % root)) == record['chunks']
lgpl-2.1
jstraub/easyRobo
rangeSensor.py
1
4338
# Copyright (c) 2012, Julian Straub <[email protected]> # Licensed under the MIT license. See LICENSE.txt or # http://www.opensource.org/licenses/mit-license.php import numpy as np import matplotlib.pyplot as plt from aux import * class RangeSensor: def __init__(s,maxR,maxPhi,zCov): s.maxR = maxR s.maxPhi = maxPhi s.zCov = zCov def sense(s,world,x): obsts = world.obst obs_vis = [] for obst in obsts: z = np.dot(s.zCov,np.resize(np.random.randn(2),(2,1))) z[0] += dist(x[0:2],obst[0:2]) z[1] = ensureRange(z[1] + angle(x,obst[0:2])) if z[0] <= s.maxR and np.abs(z[1]) < s.maxPhi/2.0: plt.plot(obst[0],obst[1],'gx') obs_vis.append(np.array([z[0],z[1],obst[2]]).ravel()) return obs_vis def predict(s,x,l): # predict measurement based on robot pose x and landmark position l zPred = np.zeros((2,1)) dx, dy = l[0]-x[0], l[1]-x[1] # print 'prediction: dx={}; dy={}; atan={}'.format(dx,dy,np.arctan2(dy,dx) ) zPred[0], zPred[1] = np.sqrt(dx*dx+dy*dy), ensureRange(np.arctan2(dy,dx) - x[2]) return zPred class MultiModalRangeSensor(RangeSensor): def __init__(s,maxR,maxPhi,zCov): RangeSensor.__init__(s,maxR,maxPhi,zCov) def sense(s,world,x): obsts = world.obst obs_vis = [] for obst in obsts: z = np.dot(s.zCov,np.resize(np.random.randn(2),(2,1))) z[0] += dist(x[0:2],obst[0:2]) if np.random.rand(1)[0] > 0.5: # flip a coin to obtain multimodal outcome z[0] += 2 z[1] = ensureRange(z[1] + angle(x,obst[0:2])) if z[0] <= s.maxR and np.abs(z[1]) < s.maxPhi/2.0: plt.plot(obst[0],obst[1],'gx') obs_vis.append(np.array([z[0],z[1],obst[2]]).ravel()) return obs_vis class ScanerSensor(RangeSensor): def __init__(s,maxR,maxPhi,dPhi,zCov): s.dPhi = dPhi RangeSensor.__init__(s,maxR,maxPhi,zCov) def sense(s,world,x): # occupancy grid o o = np.zeros((np.ceil(s.maxR)*2,np.ceil(s.maxR)*2)) # number of observations n = np.zeros((np.ceil(s.maxR)*2,np.ceil(s.maxR)*2)) # all directions of the scanner phis = ensureRange(np.linspace(-s.maxPhi/2.0,s.maxPhi/2.0,s.maxPhi/s.dPhi)+x[2]) # x0: 0 in local coordinates of occupancy grid o x0 = np.ones(3); x0[0:2] = x[0:2,0] - np.floor(x[0:2,0]) + np.array([np.floor(s.maxR),np.floor(s.maxR)]) j0w = np.floor(x[0]) i0w = np.floor(x[1]) j0o = np.floor(s.maxR) i0o = np.floor(s.maxR) for phi in phis: xEnd = np.ones(3) xEnd[0] = x0[0] + np.cos(phi) * s.maxR xEnd[1] = x0[1] + np.sin(phi) * s.maxR l = np.cross(x0,xEnd) # print '-- phi={}'.format(toDeg(phi)) for x in np.linspace(np.floor(x0[0]),np.floor(xEnd[0]), np.abs(np.floor(x0[0])-np.floor(xEnd[0]))+1.0 ): a,b = [x,0.0,1.0],[x,1.0,1.0] lx = np.cross(a,b) y = np.cross(l,lx) y /= y[2] #plt.plot(x,y[1],'rx') i = np.floor(y[1]-0.5)-i0o j = np.floor(x-0.5)-j0o if 0<=i+i0w and i+i0w<world.world.shape[1] and 0<=j+j0w and j+j0w<world.world.shape[0] and 0<=i+i0o and i+i0o<o.shape[1] and 0<=j+j0o and j+j0o<o.shape[0] : # print 'x: ind={}'.format((i,j)) # print 'xo: ind={}'.format((i+i0o,j+j0o)) # print 'xw: ind={}'.format((i+i0w,j+j0w)) o[i+i0o,j+j0o] += world.world[int(i+i0w),int(j+j0w)] n[i+i0o,j+j0o] += 1 if world.world[int(i+i0w),int(j+j0w)] > 0: break for y in np.linspace(np.floor(x0[1]),np.floor(xEnd[1]), np.abs(np.floor(x0[1])-np.floor(xEnd[1]))+1.0 ): a,b = [0.0,y,1.0],[1.0,y,1.0] ly = np.cross(a,b) x = np.cross(l,ly) x /= x[2] #plt.plot(x[0],y,'rx') i = np.floor(y-0.5) - i0o j = np.floor(x[0]-0.5) - j0o if 0<=i+i0w and i+i0w<world.world.shape[1] and 0<=j+j0w and j+j0w<world.world.shape[0] and 0<=i+i0o and i+i0o<o.shape[1] and 0<=j+j0o and j+j0o<o.shape[0] : # print 'y: ind={}'.format((i,j)) # print 'yo: ind={}'.format((i+i0o,j+j0o)) # print 'yw: ind={}'.format((i+i0w,j+j0w)) o[i+i0o,j+j0o] += world.world[int(i+i0w),int(j+j0w)] n[i+i0o,j+j0o] += 1 if world.world[int(i+i0w),int(j+j0w)] > 0: break # print o return (o,n)
mit
kpespinosa/BuildingMachineLearningSystemsWithPython
ch02/figure4_5_sklearn.py
22
2475
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License COLOUR_FIGURE = False from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from load import load_dataset import numpy as np from sklearn.neighbors import KNeighborsClassifier feature_names = [ 'area', 'perimeter', 'compactness', 'length of kernel', 'width of kernel', 'asymmetry coefficien', 'length of kernel groove', ] def plot_decision(features, labels, num_neighbors=1): '''Plots decision boundary for KNN Parameters ---------- features : ndarray labels : sequence Returns ------- fig : Matplotlib Figure ax : Matplotlib Axes ''' y0, y1 = features[:, 2].min() * .9, features[:, 2].max() * 1.1 x0, x1 = features[:, 0].min() * .9, features[:, 0].max() * 1.1 X = np.linspace(x0, x1, 1000) Y = np.linspace(y0, y1, 1000) X, Y = np.meshgrid(X, Y) model = KNeighborsClassifier(num_neighbors) model.fit(features[:, (0,2)], labels) C = model.predict(np.vstack([X.ravel(), Y.ravel()]).T).reshape(X.shape) if COLOUR_FIGURE: cmap = ListedColormap([(1., .7, .7), (.7, 1., .7), (.7, .7, 1.)]) else: cmap = ListedColormap([(1., 1., 1.), (.2, .2, .2), (.6, .6, .6)]) fig,ax = plt.subplots() ax.set_xlim(x0, x1) ax.set_ylim(y0, y1) ax.set_xlabel(feature_names[0]) ax.set_ylabel(feature_names[2]) ax.pcolormesh(X, Y, C, cmap=cmap) if COLOUR_FIGURE: cmap = ListedColormap([(1., .0, .0), (.1, .6, .1), (.0, .0, 1.)]) ax.scatter(features[:, 0], features[:, 2], c=labels, cmap=cmap) else: for lab, ma in zip(range(3), "Do^"): ax.plot(features[labels == lab, 0], features[ labels == lab, 2], ma, c=(1., 1., 1.), ms=6) return fig,ax features, labels = load_dataset('seeds') names = sorted(set(labels)) labels = np.array([names.index(ell) for ell in labels]) fig,ax = plot_decision(features, labels) fig.tight_layout() fig.savefig('figure4sklearn.png') features -= features.mean(0) features /= features.std(0) fig,ax = plot_decision(features, labels) fig.tight_layout() fig.savefig('figure5sklearn.png') fig,ax = plot_decision(features, labels, 11) fig.tight_layout() fig.savefig('figure5sklearn_with_11_neighbors.png')
mit
rafaelvalle/MDI
nnet_full_bin_scaled.py
1
5732
# Code adapted from https://github.com/Newmu/Theano-Tutorials import sys, time, os from ntpath import basename from os.path import splitext from itertools import product import cPickle as pickle import theano from theano import tensor as T import numpy as np from sklearn.cross_validation import KFold from params import feats_train_folder, feats_test_folder def set_trace(): from IPython.core.debugger import Pdb import sys Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) def floatX(X): return np.asarray(X, dtype=theano.config.floatX) def init_weights(shape): return theano.shared(floatX(np.random.randn(*shape) * 0.01)) def sgd(cost, params, gamma): grads = T.grad(cost=cost, wrt=params) updates = [] for p, g in zip(params, grads): updates.append([p, p - g * gamma]) return updates def model(X, w_h, w_o): h = T.nnet.sigmoid(T.dot(X, w_h)) pyx = T.nnet.softmax(T.dot(h, w_o)) return pyx # train on every perturbed dataset filepaths = np.loadtxt("include_data.csv", dtype=object, delimiter=",") for (include, train_filename, test_filename) in filepaths: if include == '1': print '\nExecuting {}'.format(train_filename) # Load training and test sets set_trace() x_train = np.load(os.path.join(feats_train_folder, train_filename)) y_train = (np.eye(2)[x_train[:, -1].astype(int)]) x_test = np.load(os.path.join(feats_test_folder, test_filename)) y_test = (np.eye(2)[x_test[:, -1].astype(int)]) # remove label column from x_train and x_test x_train = x_train[:,:-1] x_test = x_test[:,:-1] # Network topology n_inputs = x_train.shape[1] n_outputs = len(np.unique(y_train)) # Cross-validation and Neural Net parameters # load params from best model #params_dict = pickle.load(open('params_dict.pkl', 'rb')) alphas = (9,) gammas = (0.1,) batch_sizes = (32,) max_epoch = 1 # Dictionary to store results results_dict = {} params_matrix = np.array([x for x in product(alphas, gammas, batch_sizes)]) params_matrix = np.column_stack((params_matrix, np.zeros(params_matrix.shape[0]), np.zeros(params_matrix.shape[0]), np.zeros(params_matrix.shape[0]))) for param_idx in xrange(params_matrix.shape[0]): alpha = params_matrix[param_idx, 0] gamma = params_matrix[param_idx, 1] batch_size = int(params_matrix[param_idx, 2]) n_hidden = (x_train.shape[0])/(alpha*(n_inputs+n_outputs)) # Initialize weights w_h = init_weights((n_inputs, n_hidden)) w_o = init_weights((n_hidden, n_outputs)) # Initialize NN classifier X = T.fmatrix() Y = T.fmatrix() py_x = model(X, w_h, w_o) y_x = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) params = [w_h, w_o] updates = sgd(cost, params, gamma=gamma) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) # Test on validation set model_str = 'alpha {} gamma {} batch size {}'.format(alpha, gamma, batch_size) print model_str error_rates = [] test_costs = [] running_time = [] start_time = time.time() for i in range(max_epoch): for start, end in zip(range(0, len(x_train), batch_size), range(batch_size, len(x_train), batch_size)): test_cost = train(x_train[start:end], y_train[start:end]) error_rate = 1 - np.mean(np.argmax(y_train, axis=1) == predict(x_train)) if (i % (max_epoch / 4)) == 0 and verbose: print 'fold {}, epoch {}, error rate {}, cost {}'.format(fold, i+1, error_rate, test_cost) error_rates.append(error_rate) test_costs.append(test_cost) running_time.append(np.around((time.time() - start_time) / 60., 1)) params_matrix[param_idx, 3] = np.mean(error_rate) params_matrix[param_idx, 4] = np.mean(test_cost) params_matrix[param_idx, 5] = np.mean(running_time) print 'alpha {} gamma {} batchsize {} error rate {} test cost {} running time {}'.format(params_matrix[param_idx,0], params_matrix[param_idx,1], params_matrix[param_idx,2], params_matrix[param_idx,3], params_matrix[param_idx,4], params_matrix[param_idx,5]) error_rate_test = 1 - np.mean(np.argmax(y_test, axis=1) == predict(x_test)) print 'Test Error rate : {}'.format(error_rate_test) # Save params matrix to disk params_matrix.dump('{}_results.np'.format(filename))
mit
nigroup/pypet
examples/example_11_large_scale_brian_simulation/clusternet.py
1
30137
"""Module to run the clustered Neural Network Simulations as in Litwin-Kumar & Doiron 2012""" __author__ = 'Robert Meyer' import os import numpy as np import matplotlib.pyplot as plt from pypet.trajectory import Trajectory from pypet.brian.parameter import BrianParameter, BrianMonitorResult from pypet.brian.network import NetworkComponent, NetworkRunner, NetworkAnalyser from brian.stdunits import ms from brian import NeuronGroup, rand, Connection, Equations, Network, SpikeMonitor, second, \ raster_plot, show, StateMonitor, clear, reinit_default_clock def _explored_parameters_in_group(traj, group_node): """Checks if one the parameters in `group_node` is explored. :param traj: Trajectory container :param group_node: Group node :return: `True` or `False` """ explored = False for param in traj.f_get_explored_parameters(): if param in group_node: explored = True break return explored class CNNeuronGroup(NetworkComponent): """Class to create neuron groups. Creates two groups of excitatory and inhibitory neurons. """ @staticmethod def add_parameters(traj): """Adds all neuron group parameters to `traj`.""" assert(isinstance(traj,Trajectory)) scale = traj.simulation.scale traj.v_standard_parameter = BrianParameter model_eqs = '''dV/dt= 1.0/tau_POST * (mu - V) + I_syn : 1 mu : 1 I_syn = - I_syn_i + I_syn_e : Hz ''' conn_eqs = '''I_syn_PRE = x_PRE/(tau2_PRE-tau1_PRE) : Hz dx_PRE/dt = -(normalization_PRE*y_PRE+x_PRE)*invtau1_PRE : 1 dy_PRE/dt = -y_PRE*invtau2_PRE : 1 ''' traj.f_add_parameter('model.eqs', model_eqs, comment='The differential equation for the neuron model') traj.f_add_parameter('model.synaptic.eqs', conn_eqs, comment='The differential equation for the synapses. ' 'PRE will be replaced by `i` or `e` depending ' 'on the source population') traj.f_add_parameter('model.synaptic.tau1', 1*ms, comment = 'The decay time') traj.f_add_parameter('model.synaptic.tau2_e', 3*ms, comment = 'The rise time, excitatory') traj.f_add_parameter('model.synaptic.tau2_i', 2*ms, comment = 'The rise time, inhibitory') traj.f_add_parameter('model.V_th', 1.0, comment = "Threshold value") traj.f_add_parameter('model.reset_func', 'V=0.0', comment = "String representation of reset function") traj.f_add_parameter('model.refractory', 5*ms, comment = "Absolute refractory period") traj.f_add_parameter('model.N_e', int(4000*scale), comment = "Amount of excitatory neurons") traj.f_add_parameter('model.N_i', int(1000*scale), comment = "Amount of inhibitory neurons") traj.f_add_parameter('model.tau_e', 15*ms, comment = "Membrane time constant, excitatory") traj.f_add_parameter('model.tau_i', 10*ms, comment = "Membrane time constant, inhibitory") traj.f_add_parameter('model.mu_e_min', 1.1, comment = "Lower bound for bias, excitatory") traj.f_add_parameter('model.mu_e_max', 1.2, comment = "Upper bound for bias, excitatory") traj.f_add_parameter('model.mu_i_min', 1.0, comment = "Lower bound for bias, inhibitory") traj.f_add_parameter('model.mu_i_max', 1.05, comment = "Upper bound for bias, inhibitory") @staticmethod def _build_model_eqs(traj): """Computes model equations for the excitatory and inhibitory population. Equation objects are created by fusing `model.eqs` and `model.synaptic.eqs` and replacing `PRE` by `i` (for inhibitory) or `e` (for excitatory) depending on the type of population. :return: Dictionary with 'i' equation object for inhibitory neurons and 'e' for excitatory """ model_eqs = traj.model.eqs post_eqs={} for name_post in ['i','e']: variables_dict ={} new_model_eqs=model_eqs.replace('POST', name_post) for name_pre in ['i', 'e']: conn_eqs = traj.model.synaptic.eqs new_conn_eqs = conn_eqs.replace('PRE', name_pre) new_model_eqs += new_conn_eqs tau1 = traj.model.synaptic['tau1'] tau2 = traj.model.synaptic['tau2_'+name_pre] normalization = (tau1-tau2) / tau2 invtau1=1.0/tau1 invtau2 = 1.0/tau2 variables_dict['invtau1_'+name_pre] = invtau1 variables_dict['invtau2_'+name_pre] = invtau2 variables_dict['normalization_'+name_pre] = normalization variables_dict['tau1_'+name_pre] = tau1 variables_dict['tau2_'+name_pre] = tau2 variables_dict['tau_'+name_post] = traj.model['tau_'+name_post] post_eqs[name_post] = Equations(new_model_eqs, **variables_dict) return post_eqs def pre_build(self, traj, brian_list, network_dict): """Pre-builds the neuron groups. Pre-build is only performed if none of the relevant parameters is explored. :param traj: Trajectory container :param brian_list: List of objects passed to BRIAN network constructor. Adds: Inhibitory neuron group Excitatory neuron group :param network_dict: Dictionary of elements shared among the components Adds: 'neurons_i': Inhibitory neuron group 'neurons_e': Excitatory neuron group """ self._pre_build = not _explored_parameters_in_group(traj, traj.parameters.model) if self._pre_build: self._build_model(traj, brian_list, network_dict) def build(self, traj, brian_list, network_dict): """Builds the neuron groups. Build is only performed if neuron group was not pre-build before. :param traj: Trajectory container :param brian_list: List of objects passed to BRIAN network constructor. Adds: Inhibitory neuron group Excitatory neuron group :param network_dict: Dictionary of elements shared among the components Adds: 'neurons_i': Inhibitory neuron group 'neurons_e': Excitatory neuron group """ if not hasattr(self, '_pre_build') or not self._pre_build: self._build_model(traj, brian_list, network_dict) def _build_model(self, traj, brian_list, network_dict): """Builds the neuron groups from `traj`. Adds the neuron groups to `brian_list` and `network_dict`. """ model = traj.parameters.model # Create the equations for both models eqs_dict = self._build_model_eqs(traj) # Create inhibitory neurons eqs_i = eqs_dict['i'] neurons_i = NeuronGroup(N=model.N_i, model = eqs_i, threshold=model.V_th, reset=model.reset_func, refractory=model.refractory, freeze=True, compile=True, method='Euler') # Create excitatory neurons eqs_e = eqs_dict['e'] neurons_e = NeuronGroup(N=model.N_e, model = eqs_e, threshold=model.V_th, reset=model.reset_func, refractory=model.refractory, freeze=True, compile=True, method='Euler') # Set the bias terms neurons_e.mu =rand(model.N_e) * (model.mu_e_max - model.mu_e_min) + model.mu_e_min neurons_i.mu =rand(model.N_i) * (model.mu_i_max - model.mu_i_min) + model.mu_i_min # Set initial membrane potentials neurons_e.V = rand(model.N_e) neurons_i.V = rand(model.N_i) # Add both groups to the `brian_list` and the `network_dict` brian_list.append(neurons_i) brian_list.append(neurons_e) network_dict['neurons_e']=neurons_e network_dict['neurons_i']=neurons_i class CNConnections(NetworkComponent): """Class to connect neuron groups. In case of no clustering `R_ee=1,0` there are 4 connection instances (i->i, i->e, e->i, e->e). Otherwise there are 3 + 3*N_c-2 connections with N_c the number of clusters (i->i, i->e, e->i, N_c conns within cluster, 2*N_c-2 connections from cluster to outside). """ @staticmethod def add_parameters(traj): """Adds all neuron group parameters to `traj`.""" assert(isinstance(traj,Trajectory)) traj.v_standard_parameter = BrianParameter scale = traj.simulation.scale traj.f_add_parameter('connections.R_ee', 1.0, comment='Scaling factor for clustering') traj.f_add_parameter('connections.clustersize_e', 80, comment='Size of a cluster') traj.f_add_parameter('connections.strength_factor', 1.9, comment='Factor for scaling cluster weights') traj.f_add_parameter('connections.p_ii', 0.5, comment='Connection probability from inhibitory to inhibitory' ) traj.f_add_parameter('connections.p_ei', 0.5, comment='Connection probability from inhibitory to excitatory' ) traj.f_add_parameter('connections.p_ie', 0.5, comment='Connection probability from excitatory to inhibitory' ) traj.f_add_parameter('connections.p_ee', 0.2, comment='Connection probability from excitatory to excitatory' ) traj.f_add_parameter('connections.J_ii', 0.057/np.sqrt(scale), comment='Connection strength from inhibitory to inhibitory') traj.f_add_parameter('connections.J_ei', 0.045/np.sqrt(scale), comment='Connection strength from inhibitory to excitatroy') traj.f_add_parameter('connections.J_ie', 0.014/np.sqrt(scale), comment='Connection strength from excitatory to inhibitory') traj.f_add_parameter('connections.J_ee', 0.024/np.sqrt(scale), comment='Connection strength from excitatory to excitatory') def pre_build(self, traj, brian_list, network_dict): """Pre-builds the connections. Pre-build is only performed if none of the relevant parameters is explored and the relevant neuron groups exist. :param traj: Trajectory container :param brian_list: List of objects passed to BRIAN network constructor. Adds: Connections, amount depends on clustering :param network_dict: Dictionary of elements shared among the components Expects: 'neurons_i': Inhibitory neuron group 'neurons_e': Excitatory neuron group Adds: Connections, amount depends on clustering """ self._pre_build = not _explored_parameters_in_group(traj, traj.parameters.connections) self._pre_build = (self._pre_build and 'neurons_i' in network_dict and 'neurons_e' in network_dict) if self._pre_build: self._build_connections(traj, brian_list, network_dict) def build(self, traj, brian_list, network_dict): """Builds the connections. Build is only performed if connections have not been pre-build. :param traj: Trajectory container :param brian_list: List of objects passed to BRIAN network constructor. Adds: Connections, amount depends on clustering :param network_dict: Dictionary of elements shared among the components Expects: 'neurons_i': Inhibitory neuron group 'neurons_e': Excitatory neuron group Adds: Connections, amount depends on clustering """ if not hasattr(self, '_pre_build') or not self._pre_build: self._build_connections(traj, brian_list, network_dict) def _build_connections(self, traj, brian_list, network_dict): """Connects neuron groups `neurons_i` and `neurons_e`. Adds all connections to `brian_list` and adds a list of connections with the key 'connections' to the `network_dict`. """ connections = traj.connections neurons_i = network_dict['neurons_i'] neurons_e = network_dict['neurons_e'] print 'Connecting ii' self.conn_ii = Connection(neurons_i,neurons_i, state='y_i', weight=connections.J_ii, sparseness=connections.p_ii) print 'Connecting ei' self.conn_ei = Connection(neurons_i,neurons_e,state='y_i', weight=connections.J_ei, sparseness=connections.p_ei) print 'Connecting ie' self.conn_ie = Connection(neurons_e,neurons_i,state='y_e', weight=connections.J_ie, sparseness=connections.p_ie) conns_list = [self.conn_ii, self.conn_ei, self.conn_ie] if connections.R_ee > 1.0: # If we come here we want to create clusters cluster_list=[] cluster_conns_list=[] model=traj.model # Compute the number of clusters clusters = model.N_e/connections.clustersize_e traj.f_add_derived_parameter('connections.clusters', clusters, comment='Number of clusters') # Compute outgoing connection probability p_out = (connections.p_ee*model.N_e) / \ (connections.R_ee*connections.clustersize_e+model.N_e- connections.clustersize_e) # Compute within cluster connection probability p_in = p_out * connections.R_ee # We keep these derived parameters traj.f_add_derived_parameter('connections.p_ee_in', p_in , comment='Connection prob within cluster') traj.f_add_derived_parameter('connections.p_ee_out', p_out , comment='Connection prob to outside of cluster') low_index = 0 high_index = connections.clustersize_e # Iterate through cluster and connect within clusters and to the rest of the neurons for irun in range(clusters): cluster = neurons_e[low_index:high_index] # Connections within cluster print 'Connecting ee cluster #%d of %d' % (irun, clusters) conn = Connection(cluster,cluster,state='y_e', weight=connections.J_ee*connections.strength_factor, sparseness=p_in) cluster_conns_list.append(conn) # Connections reaching out from cluster # A cluster consists of `clustersize_e` neurons with consecutive indices. # So usually the outside world consists of two groups, neurons with lower # indices than the cluster indices, and neurons with higher indices. # Only the clusters at the index boundaries project to neurons with only either # lower or higher indices if low_index > 0: rest_low = neurons_e[0:low_index] print 'Connecting cluster with other neurons of lower index' low_conn = Connection(cluster,rest_low,state='y_e', weight=connections.J_ee, sparseness=p_out) cluster_conns_list.append(low_conn) if high_index < model.N_e: rest_high = neurons_e[high_index:model.N_e] print 'Connecting cluster with other neurons of higher index' high_conn = Connection(cluster,rest_high,state='y_e', weight=connections.J_ee, sparseness=p_out) cluster_conns_list.append(high_conn) low_index=high_index high_index+=connections.clustersize_e self.cluster_conns=cluster_conns_list conns_list+=cluster_conns_list else: # Here we don't cluster and connection probabilities are homogeneous print 'Connectiong ee' self.conn_ee = Connection(neurons_e,neurons_e,state='y_e', weight=connections.J_ee, sparseness=connections.p_ee) conns_list.append(self.conn_ee) # Add the connections to the `brian_list` and the network dict brian_list.extend(conns_list) network_dict['connections'] = conns_list class CNNetworkRunner(NetworkRunner): """Runs the network experiments. Adds two BrianParameters, one for an initial run, and one for a run that is actually measured. """ def add_parameters(self, traj): """Adds all necessary parameters to `traj` container.""" par= traj.f_add_parameter(BrianParameter,'simulation.durations.initial_run', 500*ms, comment='Initialisation run for more realistic ' 'measurement conditions.') par.v_annotations.order=0 par=traj.f_add_parameter(BrianParameter,'simulation.durations.measurement_run', 2000*ms, comment='Measurement run that is considered for ' 'statistical evaluation') par.v_annotations.order=1 class CNFanoFactorComputer(NetworkAnalyser): """Computes the FanoFactor if the MonitorAnalyser has extracted data""" def add_parameters(self, traj): traj.f_add_parameter('analysis.statistics.time_window', 0.1 , 'Time window for FF computation') traj.f_add_parameter('analysis.statistics.neuron_ids', tuple(range(500)), comment= 'Neurons to be taken into account to compute FF') @staticmethod def _compute_fano_factor(spike_table, neuron_id, time_window, start_time, end_time): """Computes Fano Factor for one neuron. :param spike_table: DataFrame containing the spiketimes of all neurons :param neuron_id: Index of neuron for which FF is computed :param time_window: Length of the consecutive time windows to compute the FF :param start_time: Start time of measurement to consider :param end_time: End time of measurement to consider :return: Fano Factor (float) or returns 0 if mean firing activity is 0. """ assert(end_time >= start_time+time_window) # Number of time bins bins = (end_time-start_time)/float(time_window) bins = int(np.floor(bins)) # Arrays for binning of spike counts binned_spikes = np.zeros(bins) # DataFrame only containing spikes of the particular neuron spike_table_neuron = spike_table[spike_table.neuron==neuron_id] for bin in range(bins): # We iterate over the bins to calculate the spike counts lower_time = start_time+time_window*bin upper_time = start_time+time_window*(bin+1) # Filter the spikes spike_table_interval = spike_table_neuron[spike_table_neuron.spiketimes >= lower_time] spike_table_interval = spike_table_interval[spike_table_interval.spiketimes < upper_time] # Add count to bins spikes = len(spike_table_interval) binned_spikes[bin]=spikes var = np.var(binned_spikes) avg = np.mean(binned_spikes) if avg > 0: return var/float(avg) else: return 0 @staticmethod def _compute_mean_fano_factor( neuron_ids, spike_table, time_window, start_time, end_time): """Computes average Fano Factor over many neurons. :param neuron_ids: List of neuron indices to average over :param spike_table: DataFrame containing the spiketimes of all neurons :param time_window: Length of the consecutive time windows to compute the FF :param start_time: Start time of measurement to consider :param end_time: End time of measurement to consider :return: Average fano factor """ ffs = np.zeros(len(neuron_ids)) for idx, neuron_id in enumerate(neuron_ids): ff=CNFanoFactorComputer._compute_fano_factor( spike_table, neuron_id, time_window, start_time, end_time) ffs[idx]=ff mean_ff = np.mean(ffs) return mean_ff def analyse(self, traj, network, current_subrun, subrun_list, network_dict): """Calculates average Fano Factor of a network. :param traj: Trajectory container Expects: `results.monitors.spikes_e`: Data from SpikeMonitor for excitatory neurons Adds: `results.statistics.mean_fano_factor`: Average Fano Factor :param network: The BRIAN network :param current_subrun: BrianParameter :param subrun_list: Upcoming subruns, analysis is only performed if subruns is empty, aka the final subrun has finished. :param network_dict: Dictionary of items shared among componetns """ #Check if we finished all subruns if len(subrun_list)==0: spikes_e = traj.results.monitors.spikes_e time_window = traj.parameters.analysis.statistics.time_window start_time = float(traj.parameters.simulation.durations.initial_run) end_time = start_time+float(traj.parameters.simulation.durations.measurement_run) neuron_ids = traj.parameters.analysis.statistics.neuron_ids mean_ff = self._compute_mean_fano_factor( neuron_ids, spikes_e.spikes, time_window, start_time, end_time) traj.f_add_result('statistics.mean_fano_factor', mean_ff, comment='Average Fano ' 'Factor over all ' 'exc neurons') print 'R_ee: %f, Mean FF: %f' % (traj.R_ee, mean_ff) class CNMonitorAnalysis(NetworkAnalyser): """Adds monitors for recoding and plots the monitor output.""" @staticmethod def add_parameters( traj): traj.f_add_parameter('analysis.neuron_records',(0,1,100,101), comment='Neuron indices to record from.') traj.f_add_parameter('analysis.plot_folder', os.path.join('experiments', 'example_11', 'PLOTS'), comment='Folder for plots') traj.f_add_parameter('analysis.show_plots', 0, comment='Whether to show plots.') traj.f_add_parameter('analysis.make_plots', 1, comment='Whether to make plots.') def add_to_network(self, traj, network, current_subrun, subrun_list, network_dict): """Adds monitors to the network if the measurement run is carried out. :param traj: Trajectory container :param network: The BRIAN network :param current_subrun: BrianParameter :param subrun_list: List of coming subrun_list :param network_dict: Dictionary of items shared among the components Expects: 'neurons_e': Excitatory neuron group Adds: 'monitors': List of monitors 0. SpikeMonitor of excitatory neurons 1. StateMonitor of membrane potential of some excitatory neurons (specified in `neuron_records`) 2. StateMonitor of excitatory synaptic currents of some excitatory neurons 3. State monitor of inhibitory currents of some excitatory neurons """ if current_subrun.v_annotations.order == 1: self._add_monitors(traj, network, network_dict) def _add_monitors(self, traj, network, network_dict): """Adds monitors to the network""" neurons_e = network_dict['neurons_e'] monitor_list = [] # Spiketimes self.spike_monitor = SpikeMonitor(neurons_e, delay=0*ms) monitor_list.append(self.spike_monitor) # Membrane Potential self.V_monitor = StateMonitor(neurons_e,'V', record=list(traj.neuron_records)) monitor_list.append(self.V_monitor) # Exc. syn .Current self.I_syn_e_monitor = StateMonitor(neurons_e, 'I_syn_e', record=list(traj.neuron_records)) monitor_list.append(self.I_syn_e_monitor) # Inh. syn. Current self.I_syn_i_monitor = StateMonitor(neurons_e, 'I_syn_i', record=list(traj.neuron_records)) monitor_list.append(self.I_syn_i_monitor) # Add monitors to network and dictionary network.add(*monitor_list) network_dict['monitors'] = monitor_list def _make_folder(self, traj): """Makes a subfolder for plots. :return: Path name to print folder """ print_folder = os.path.join(traj.analysis.plot_folder, traj.v_name, traj.v_crun) print_folder = os.path.abspath(print_folder) if not os.path.isdir(print_folder): os.makedirs(print_folder) return print_folder def _plot_result(self, traj, result_name): """Plots a state variable graph for several neurons into one figure""" result = traj.f_get(result_name) values = result.values varname = result.varname unit = result.unit times = result.times record = result.record for idx, celia_neuron in enumerate(record): plt.subplot(len(record), 1, idx+1) plt.plot(times, values[idx,:]) if idx==0: plt.title('%s' % varname) if idx==1: plt.ylabel('%s/%s' % ( varname,unit)) if idx == len(record)-1: plt.xlabel('t/ms') def _print_graphs(self, traj): """Makes some plots and stores them into subfolders""" print_folder = self._make_folder(traj) # If we use BRIAN's own raster_plot functionality we # need to sue the SpikeMonitor directly raster_plot(self.spike_monitor, newfigure=True, xlabel='t', ylabel='Exc. Neurons', title='Spike Raster Plot') filename=os.path.join(print_folder,'spike.png') print 'Current plot: %s ' % filename plt.savefig(filename) plt.close() fig=plt.figure() self._plot_result(traj, 'monitors.V') filename=os.path.join(print_folder,'V.png') print 'Current plot: %s ' % filename fig.savefig(filename) plt.close() plt.figure() self._plot_result(traj, 'monitors.I_syn_e') filename=os.path.join(print_folder,'I_syn_e.png') print 'Current plot: %s ' % filename plt.savefig(filename) plt.close() plt.figure() self._plot_result(traj, 'monitors.I_syn_i') filename=os.path.join(print_folder,'I_syn_i.png') print 'Current plot: %s ' % filename plt.savefig(filename) plt.close() if not traj.analysis.show_plots: plt.close('all') else: plt.show() def analyse(self, traj, network, current_subrun, subrun_list, network_dict): """Extracts monitor data and plots. Data extraction is done if all subruns have been completed, i.e. `len(subrun_list)==0` First, extracts results from the monitors and stores them into `traj`. Next, uses the extracted data for plots. :param traj: Trajectory container Adds: Data from monitors :param network: The BRIAN network :param current_subrun: BrianParameter :param subrun_list: List of coming subruns :param network_dict: Dictionary of items shared among all components """ if len(subrun_list)==0: traj.f_add_result(BrianMonitorResult, 'monitors.spikes_e', self.spike_monitor, comment = 'The spiketimes of the excitatory population') traj.f_add_result(BrianMonitorResult, 'monitors.V', self.V_monitor, comment = 'Membrane voltage of four neurons from 2 clusters') traj.f_add_result(BrianMonitorResult, 'monitors.I_syn_e', self.I_syn_e_monitor, comment = 'I_syn_e of four neurons from 2 clusters') traj.f_add_result(BrianMonitorResult, 'monitors.I_syn_i', self.I_syn_i_monitor, comment = 'I_syn_i of four neurons from 2 clusters') print 'Plotting' if traj.parameters.analysis.make_plots: self._print_graphs(traj)
bsd-3-clause
Connor-R/nba_shot_charts
charting/helper_charting.py
1
21226
# A set of helper functions for the nba_shot_chart codebase import urllib import os import csv import sys import math import pandas as pd import numpy as np import matplotlib as mpb import matplotlib.pyplot as plt from matplotlib import offsetbox as osb from matplotlib.patches import RegularPolygon from datetime import date from py_data_getter import data_getter from py_db import db import helper_data db = db('nba_shots') # setting the color map we want to use mymap = mpb.cm.OrRd np.seterr(divide='ignore', invalid='ignore') #Drawing the outline of the court #Most of this code was recycled from Savvas Tjortjoglou [http://savvastjortjoglou.com] def draw_court(ax=None, color='white', lw=2, outer_lines=False): from matplotlib.patches import Circle, Rectangle, Arc if ax is None: ax = plt.gca() hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False) backboard = Rectangle((-30, -7.5), 60, -1, linewidth=lw, color=color) outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color, fill=False) inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color, fill=False) top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180, linewidth=lw, color=color, fill=False) bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0, linewidth=lw, color=color, linestyle='dashed') restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw, color=color) corner_three_a = Rectangle((-220, -50.0), 0, 140, linewidth=lw, color=color) corner_three_b = Rectangle((219.75, -50.0), 0, 140, linewidth=lw, color=color) three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw, color=color) center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0, linewidth=lw, color=color) center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0, linewidth=lw, color=color) court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw, bottom_free_throw, restricted, corner_three_a, corner_three_b, three_arc, center_outer_arc, center_inner_arc] if outer_lines: outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw, color=color, fill=False) court_elements.append(outer_lines) for element in court_elements: ax.add_patch(element) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) return ax # we set gridNum to be 30 (basically a grid of 30x30 hexagons) def shooting_plot(dataType, path, shot_df, _id, season_id, _title, _name, isCareer=False, min_year = 0, max_year = 0, plot_size=(24,24), gridNum=30): # get the shooting percentage and number of shots for all bins, all shots, and a subset of some shots (ShootingPctLocs, shotNumber), shot_count_all = find_shootingPcts(shot_df, gridNum) all_efg_percentile = float(helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'EFG_Percentile')) color_efg = max(min((all_efg_percentile/100),1.0),0.0) paa = float(helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'paa')) # set the figure for drawing on fig = plt.figure(figsize=(24,24)) # cmap will be used as our color map going forward cmap = mymap # where to place the plot within the figure, first two attributes are the x_min and y_min, and the next 2 are the % of the figure that is covered in the x_direction and y_direction (so in this case, our plot will go from (0.05, 0.15) at the bottom left, and stretches to (0.85,0.925) at the top right) ax = plt.axes([0.05, 0.15, 0.81, 0.775]) # setting the background color using a hex code (http://www.rapidtables.com/web/color/RGB_Color.htm) # ax.set_facecolor('#0C232E') ax.set_facecolor('#152535') # draw the outline of the court draw_court(outer_lines=False) # specify the dimensions of the court we draw plt.xlim(-250,250) plt.ylim(370, -30) # drawing the bottom right image zoom = 1 # we don't need to zoom the image at all if dataType == 'player': img = acquire_playerPic(_id, zoom) else: img = acquire_teamPic(season_id, _title, _id, zoom) ax.add_artist(img) # specify the % a zone that we want to correspond to a maximum sized hexagon [I have this set to any zone with >= 1% of all shots will have a maximum radius, but it's free to be changed based on personal preferences] max_radius_perc = 1.0 max_rad_multiplier = 100.0/max_radius_perc # changing to what power we want to scale the area of the hexagons as we increase/decrease the radius. This value can also be changed for personal preferences. area_multiplier = (3./4.) lg_efg = float(helper_data.get_lg_efg(season_id, isCareer)) # draw hexagons # i is the bin#, and shots is the shooting% for that bin for i, shots in enumerate(ShootingPctLocs): x,y = shotNumber.get_offsets()[i] # we check the distance from the hoop the bin is. If it in 3pt territory, we add a multiplier of 1.5 to the shooting% to properly encapsulate eFG% dist = math.sqrt(x**2 + y**2) mult = 1.0 if abs(x) >= 220: mult = 1.5 elif dist/10 >= 23.75: mult = 1.5 else: mult = 1.0 # Setting the eFG% for a bin, making sure it's never over 1 (our maximum color value) color_pct = ((shots*mult)/lg_efg)-0.5 bin_pct = max(min(color_pct, 1.0), 0.0) hexes = RegularPolygon( shotNumber.get_offsets()[i], #x/y coords numVertices=6, radius=(295/gridNum)*((max_rad_multiplier*((shotNumber.get_array()[i]))/shot_count_all)**(area_multiplier)), color=cmap(bin_pct), alpha=0.95, fill=True) # setting a maximum radius for our bins at 295 (personal preference) if hexes.radius > 295/gridNum: hexes.radius = 295/gridNum ax.add_patch(hexes) # creating the frequency legend # we want to have 4 ticks in this legend so we iterate through 4 items for i in range(0,4): base_rad = max_radius_perc/4 # the x,y coords for our patch (the first coordinate is (-205,415), and then we move up and left for each addition coordinate) patch_x = -205-(10*i) patch_y = 365-(14*i) # specifying the size of our hexagon in the frequency legend patch_rad = (299.9/gridNum)*((base_rad+(base_rad*i))**(area_multiplier)) patch_perc = base_rad+(i*base_rad) # the x,y coords for our text text_x = patch_x + patch_rad + 2 text_y = patch_y patch_axes = (patch_x, patch_y) # the text will be slightly different for our maximum sized hexagon, if i < 3: text_text = ' %s%% of Attempted Shots' % ('%.2f' % patch_perc) else: text_text = '$\geq$%s%% of Attempted Shots' %(str(patch_perc)) # draw the hexagon. the color=map(eff_fg_all_float/100) makes the hexagons in the legend the same color as the player's overall eFG% patch = RegularPolygon(patch_axes, numVertices=6, radius=patch_rad, color=cmap(color_efg), alpha=0.95, fill=True) ax.add_patch(patch) # add the text for the hexagon ax.text(text_x, text_y, text_text, fontsize=16, horizontalalignment='left', verticalalignment='center', family='DejaVu Sans', color='white', fontweight='bold') # Add a title to our frequency legend (the x/y coords are hardcoded). # Again, the color=map(eff_fg_all_float/100) makes the hexagons in the legend the same color as the player's overall eFG% ax.text(-235, 310, 'Zone Frequencies', fontsize=16, horizontalalignment='left', verticalalignment='bottom', family='DejaVu Sans', color=cmap(color_efg), fontweight='bold') # Add a title to our chart (just the player's name) chart_title = "%s | %s" % (_title.upper(), season_id) ax.text(31.25,-40, chart_title, fontsize=32, horizontalalignment='center', verticalalignment='bottom', family='DejaVu Sans', color=cmap(color_efg), fontweight='bold') # Add user text ax.text(-250,-31,'CHARTS BY CONNOR REED (@NBAChartBot)', fontsize=16, horizontalalignment='left', verticalalignment = 'bottom', family='DejaVu Sans', color='white', fontweight='bold') # Add data source text ax.text(31.25,-31,'DATA FROM STATS.NBA.COM', fontsize=16, horizontalalignment='center', verticalalignment = 'bottom', family='DejaVu Sans', color='white', fontweight='bold') # Add date text _date = date.today() ax.text(250,-31,'AS OF %s' % (str(_date)), fontsize=16, horizontalalignment='right', verticalalignment = 'bottom', family='DejaVu Sans', color='white', fontweight='bold') key_text = get_key_text(dataType, _id, season_id, isCareer) # adding breakdown of eFG% by shot zone at the bottom of the chart ax.text(307,380, key_text, fontsize=20, horizontalalignment='right', verticalalignment = 'top', family='DejaVu Sans', color='white', linespacing=1.5) if dataType == 'player': teams_text, team_len = get_teams_text(_id, season_id, isCareer) else: teams_text = _title team_len = 0 # adding which season the chart is for, as well as what teams the player is on if team_len > 12: ax.text(-250,380, season_id + ' Regular Season:\n' + teams_text, fontsize=20, horizontalalignment='left', verticalalignment = 'top', family='DejaVu Sans', color='white', linespacing=1.4) else: ax.text(-250,380, season_id + ' Regular Season:\n' + teams_text, fontsize=20, horizontalalignment='left', verticalalignment = 'top', family='DejaVu Sans', color='white', linespacing=1.6) # adding a color bar for reference ax2 = fig.add_axes([0.875, 0.15, 0.04, 0.775]) cb = mpb.colorbar.ColorbarBase(ax2,cmap=cmap, orientation='vertical') cbytick_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cbytick_obj, color='white', fontweight='bold',fontsize=16) cb.set_label('EFG+ (100 is League Average)', family='DejaVu Sans', color='white', fontweight='bold', labelpad=-4, fontsize=24) cb.set_ticks([0.0, 0.25, 0.5, 0.75, 1.0]) cb.set_ticklabels(['$\mathbf{\leq}$50','75', '100','125', '$\mathbf{\geq}$150']) figtit = path+'%s(%s)_%s.png' % (_name, _id, season_id.replace('PBP ERA (1996/97 onward)','').replace(' ','')) plt.savefig(figtit, facecolor='#2E3748', edgecolor='black') plt.clf() #Producing the text for the bottom of the shot chart def get_key_text(dataType, _id, season_id, isCareer, isTwitter=False): text = '' total_atts = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'r.attempts')) total_makes = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'b.makes')) total_games = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'r.games')) total_attPerGame = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'r.attempts/r.games')) vol_percentile = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'AttemptsPerGame_percentile')) vol_word = helper_data.get_text_description('AttemptsPerGame', vol_percentile) vol_text = '$\mathbf{' + vol_word.upper() + '}$ Volume | ' + str(total_makes) + ' for ' + str(total_atts) + ' in ' + str(total_games) + ' Games | ' + str(total_attPerGame) + ' FGA/Game, $\mathbf{P_{' + str(vol_percentile) + '}}$' vol_twitter_text = 'Volume: ' + vol_word.upper() + ' | P_' + str(vol_percentile) + ' (percentile)' shotSkillPlus = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'All', 's.ShotSkillPlus')) shotSkill_percentile = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'shotSkill_Percentile')) shotSkill_word = helper_data.get_text_description('shotSkill', shotSkill_percentile) shotSkill_text = '$\mathbf{' + shotSkill_word.upper() + '}$ Shot Skill | ' + str(shotSkillPlus) + ' ShotSkill+, $\mathbf{P_{' + str(shotSkill_percentile) + '}}$' shotSkill_twitter_text = 'Shot Skill: ' + shotSkill_word.upper() + ' | P_' + str(shotSkill_percentile) efg = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'All', 'd.efg*100')) efgPlus = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'All', 'r.efg_plus')) efg_percentile = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'EFG_Percentile')) efg_word = helper_data.get_text_description('EFG', efg_percentile) efg_text = '$\mathbf{' + efg_word.upper() + '}$ Efficiency | ' + str(efg) + ' EFG% | ' + str(efgPlus) + ' EFG+, $\mathbf{P_{' + str(efg_percentile) + '}}$' efg_twitter_text = 'Efficiency: ' + efg_word.upper() + ' | P_' + str(efg_percentile) PAA = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'All', 'r.paa')) PAAperGame = ("%.1f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'All', 'r.paa_per_game')) PAA_percentile = ("%.0f" % helper_data.get_metrics(dataType, _id, season_id, isCareer, 'all', 'PAAperGame_percentile')) PAA_word = helper_data.get_text_description('PAAperGame', PAA_percentile) PAA_text = '$\mathbf{' + PAA_word.upper() + '}$ Efficiency Value Added | ' + str(PAA) + ' Total PAA | ' + str(PAAperGame) + ' PAA/Game, $\mathbf{P_{' + str(PAA_percentile) + '}}$' PAA_twitter_text = 'Efficiency Value: ' + PAA_word.upper() + ' | P_' + str(PAA_percentile) fav_zone, fav_zoneVal = helper_data.get_extreme_zones(dataType, _id, season_id, isCareer, 'positive', 'ROUND(zone_pct_plus-100,0)') if fav_zoneVal >= 0: fav_zoneTextAdd = "+" else: fav_zoneTextAdd = "" fav_zoneTEXT = '$\mathbf{Favorite Zone}$ (Relative to League Averages) -- $\mathbf{' + str(fav_zone) + '}$ (' + str(fav_zoneTextAdd) + str(fav_zoneVal) + '% distribution)' fav_twitter_zoneTEXT = 'Favorite Zone: ' + str(fav_zone) skill_zone, skill_zoneVal = helper_data.get_extreme_zones(dataType, _id, season_id, isCareer, 'positive', 'ROUND(zone_efg_plus-100,0)') if skill_zoneVal >= 0: skill_zoneTextAdd = 'above' else: skill_zoneTextAdd = 'below' skill_zoneTEXT = '$\mathbf{Best Skill}$ -- $\mathbf{' + str(skill_zone) + '}$ (' + str(abs(skill_zoneVal)) + '% ' + str(skill_zoneTextAdd) + ' average)' skill_twitter_zoneTEXT = 'Best Skill Zone: ' + str(skill_zone) value_zone, value_zoneVal = helper_data.get_extreme_zones(dataType, _id, season_id, isCareer, 'positive', 'ROUND(paa, 0)') if value_zoneVal >= 0: value_zoneTextAdd = "+" else: value_zoneTextAdd = "" value_zoneTEXT = '$\mathbf{Best Value}$ -- $\mathbf{' + str(value_zone) + '}$ (' + str(value_zoneTextAdd) + str(value_zoneVal) + ' PAA)' value_twitter_zoneTEXT = 'Best Value Zone: ' + str(value_zone) LEASTskill_zone, LEASTskill_zoneVal = helper_data.get_extreme_zones(dataType, _id, season_id, isCareer, 'negative', 'ROUND(zone_efg_plus-100,0)') if LEASTskill_zoneVal >= 0: LEASTskill_zoneTextAdd = 'above' else: LEASTskill_zoneTextAdd = 'below' LEASTskill_zoneTEXT = '$\mathbf{Worst Skill}$ -- $\mathbf{' + str(LEASTskill_zone) + '}$ (' + str(abs(LEASTskill_zoneVal)) + '% ' + str(LEASTskill_zoneTextAdd) + ' average)' LEASTvalue_zone, LEASTvalue_zoneVal = helper_data.get_extreme_zones(dataType, _id, season_id, isCareer, 'negative', 'ROUND(paa, 0)') if LEASTvalue_zoneVal >= 0: LEASTvalue_zoneTextAdd = "+" else: LEASTvalue_zoneTextAdd = "" LEASTvalue_zoneTEXT = '$\mathbf{Least Value}$ -- $\mathbf{' + str(LEASTvalue_zone) + '}$ (' + str(LEASTvalue_zoneTextAdd) + str(LEASTvalue_zoneVal) + ' PAA)' if isTwitter is False: text += vol_text text += '\n'+shotSkill_text text += '\n'+efg_text text += '\n'+PAA_text text += '\n'+fav_zoneTEXT text += '\n'+skill_zoneTEXT text += ' | '+value_zoneTEXT text += '\n'+LEASTskill_zoneTEXT text += ' | '+LEASTvalue_zoneTEXT else: text += ':\n\n'+vol_twitter_text text += '\n'+shotSkill_twitter_text text += '\n'+efg_twitter_text text += '\n'+PAA_twitter_text text += '\n\n'+fav_twitter_zoneTEXT text += '\n'+skill_twitter_zoneTEXT text += '\n'+value_twitter_zoneTEXT return text #Getting the shooting percentages for each grid. #The general idea of this function, as well as a substantial block of the actual code was recycled from Dan Vatterott [http://www.danvatterott.com/] def find_shootingPcts(shot_df, gridNum): x = shot_df.LOC_X[shot_df['LOC_Y']<425.1] y = shot_df.LOC_Y[shot_df['LOC_Y']<425.1] # Grabbing the x and y coords, for all made shots x_made = shot_df.LOC_X[(shot_df['SHOT_MADE_FLAG']==1) & (shot_df['LOC_Y']<425.1)] y_made = shot_df.LOC_Y[(shot_df['SHOT_MADE_FLAG']==1) & (shot_df['LOC_Y']<425.1)] #compute number of shots made and taken from each hexbin location hb_shot = plt.hexbin(x, y, gridsize=gridNum, extent=(-250,250,425,-50)); plt.close() hb_made = plt.hexbin(x_made, y_made, gridsize=gridNum, extent=(-250,250,425,-50)); plt.close() #compute shooting percentage ShootingPctLocs = hb_made.get_array() / hb_shot.get_array() ShootingPctLocs[np.isnan(ShootingPctLocs)] = 0 #makes 0/0s=0 shot_count_all = len(shot_df.index) # Returning all values return (ShootingPctLocs, hb_shot), shot_count_all #Getting the player picture that we will later place in the chart #Most of this code was recycled from Savvas Tjortjoglou [http://savvastjortjoglou.com] def acquire_playerPic(player_id, zoom, offset=(250,370)): try: img_path = os.getcwd()+'/'+str(player_id)+'.png' player_pic = plt.imread(img_path) except (ValueError,IOError): try: pic = urllib.urlretrieve("https://ak-static.cms.nba.com/wp-content/uploads/headshots/nba/latest/260x190/"+str(player_id)+".png",str(player_id)+".png") player_pic = plt.imread(pic[0]) except (ValueError, IOError): try: pic = urllib.urlretrieve("http://stats.nba.com/media/players/230x185/"+str(player_id)+".png",str(player_id)+".png") player_pic = plt.imread(pic[0]) except (ValueError, IOError): img_path = os.getcwd()+'/chart_icon.png' player_pic = plt.imread(img_path) img = osb.OffsetImage(player_pic, zoom) img = osb.AnnotationBbox(img, offset,xycoords='data',pad=0.0, box_alignment=(1,0), frameon=False) return img #Getting the team picture that we will later place in the chart def acquire_teamPic(season_id, team_title, team_id, zoom, offset=(250,370)): abb_file = os.getcwd()+"/../csvs/team_abbreviations.csv" abb_list = {} with open(abb_file, 'rU') as f: mycsv = csv.reader(f) for row in mycsv: team, abb, imgurl = row abb_list[team] = [abb, imgurl] img_url = abb_list.get(team_title)[1] try: img_path = os.getcwd()+'/'+str(team_id)+'.png' team_pic = plt.imread(img_path) except IOError: try: pic = urllib.urlretrieve(img_url,str(team_id)+'.png') team_pic = plt.imread(pic[0]) except (ValueError, IOError): img_path = os.getcwd()+'/nba_logo.png' player_pic = plt.imread(img_path) img = osb.OffsetImage(team_pic, zoom) img = osb.AnnotationBbox(img, offset,xycoords='data',pad=0.0, box_alignment=(1,0), frameon=False) return img #Producing the text for the bottom of the shot chart def get_teams_text(player_id, season_id, isCareer): if isCareer is True: season_q = '' else: season_q = '\nAND season_id = %s' % (season_id.replace('-','')) team_q = """SELECT DISTINCT CONCAT(city, ' ', tname) FROM shots s JOIN teams t USING (team_id) WHERE player_id = %s%s AND LEFT(season_id, 4) >= t.start_year AND LEFT(season_id, 4) < t.end_year; """ team_qry = team_q % (player_id, season_q) # raw_input(team_qry) teams = db.query(team_qry) team_list = [] for team in teams: team_list.append(team[0]) team_text = "" if len(team_list) == 1: team_text = str(team_list[0]) else: i = 0 for team in team_list[0:-1]: if i%3 == 0 and i > 0: team_text += '\n' text_add = '%s, ' % str(team) team_text += text_add i += 1 if i%3 == 0: team_text += '\n' # raw_input(team_list) team_text += str(team_list[-1]) return team_text, len(team_list)
mit
chrisbarber/dask
dask/array/tests/test_slicing.py
2
18946
import pytest pytest.importorskip('numpy') import itertools from operator import getitem from dask.compatibility import skip import dask.array as da from dask.array.slicing import (slice_array, _slice_1d, take, new_blockdim, sanitize_index) from dask.array.utils import assert_eq import numpy as np from toolz import merge def same_keys(a, b): def key(k): if isinstance(k, str): return (k, -1, -1, -1) else: return k return sorted(a.dask, key=key) == sorted(b.dask, key=key) def test_slice_1d(): expected = {0: slice(10, 25, 1), 1: slice(None, None, None), 2: slice(0, 1, 1)} result = _slice_1d(100, [25] * 4, slice(10, 51, None)) assert expected == result # x[100:12:-3] expected = {0: slice(-2, -8, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} result = _slice_1d(100, [20] * 5, slice(100, 12, -3)) assert expected == result # x[102::-3] expected = {0: slice(-2, -21, -3), 1: slice(-1, -21, -3), 2: slice(-3, -21, -3), 3: slice(-2, -21, -3), 4: slice(-1, -21, -3)} result = _slice_1d(100, [20] * 5, slice(102, None, -3)) assert expected == result # x[::-4] expected = {0: slice(-1, -21, -4), 1: slice(-1, -21, -4), 2: slice(-1, -21, -4), 3: slice(-1, -21, -4), 4: slice(-1, -21, -4)} result = _slice_1d(100, [20] * 5, slice(None, None, -4)) assert expected == result # x[::-7] expected = {0: slice(-5, -21, -7), 1: slice(-4, -21, -7), 2: slice(-3, -21, -7), 3: slice(-2, -21, -7), 4: slice(-1, -21, -7)} result = _slice_1d(100, [20] * 5, slice(None, None, -7)) assert expected == result # x=range(115) # x[::-7] expected = {0: slice(-7, -24, -7), 1: slice(-2, -24, -7), 2: slice(-4, -24, -7), 3: slice(-6, -24, -7), 4: slice(-1, -24, -7)} result = _slice_1d(115, [23] * 5, slice(None, None, -7)) assert expected == result # x[79::-3] expected = {0: slice(-1, -21, -3), 1: slice(-3, -21, -3), 2: slice(-2, -21, -3), 3: slice(-1, -21, -3)} result = _slice_1d(100, [20] * 5, slice(79, None, -3)) assert expected == result # x[-1:-8:-1] expected = {4: slice(-1, -8, -1)} result = _slice_1d(100, [20, 20, 20, 20, 20], slice(-1, 92, -1)) assert expected == result # x[20:0:-1] expected = {0: slice(-1, -20, -1), 1: slice(-20, -21, -1)} result = _slice_1d(100, [20, 20, 20, 20, 20], slice(20, 0, -1)) assert expected == result # x[:0] expected = {} result = _slice_1d(100, [20, 20, 20, 20, 20], slice(0)) assert result # x=range(99) expected = {0: slice(-3, -21, -3), 1: slice(-2, -21, -3), 2: slice(-1, -21, -3), 3: slice(-2, -20, -3), 4: slice(-1, -21, -3)} # This array has non-uniformly sized blocks result = _slice_1d(99, [20, 20, 20, 19, 20], slice(100, None, -3)) assert expected == result # x=range(104) # x[::-3] expected = {0: slice(-1, -21, -3), 1: slice(-3, -24, -3), 2: slice(-3, -28, -3), 3: slice(-1, -14, -3), 4: slice(-1, -22, -3)} # This array has non-uniformly sized blocks result = _slice_1d(104, [20, 23, 27, 13, 21], slice(None, None, -3)) assert expected == result # x=range(104) # x[:27:-3] expected = {1: slice(-3, -16, -3), 2: slice(-3, -28, -3), 3: slice(-1, -14, -3), 4: slice(-1, -22, -3)} # This array has non-uniformly sized blocks result = _slice_1d(104, [20, 23, 27, 13, 21], slice(None, 27, -3)) assert expected == result # x=range(104) # x[100:27:-3] expected = {1: slice(-3, -16, -3), 2: slice(-3, -28, -3), 3: slice(-1, -14, -3), 4: slice(-4, -22, -3)} # This array has non-uniformly sized blocks result = _slice_1d(104, [20, 23, 27, 13, 21], slice(100, 27, -3)) assert expected == result def test_slice_singleton_value_on_boundary(): assert _slice_1d(15, [5, 5, 5], 10) == {2: 0} assert _slice_1d(30, (5, 5, 5, 5, 5, 5), 10) == {2: 0} def test_slice_array_1d(): #x[24::2] expected = {('y', 0): (getitem, ('x', 0), (slice(24, 25, 2),)), ('y', 1): (getitem, ('x', 1), (slice(1, 25, 2),)), ('y', 2): (getitem, ('x', 2), (slice(0, 25, 2),)), ('y', 3): (getitem, ('x', 3), (slice(1, 25, 2),))} result, chunks = slice_array('y', 'x', [[25] * 4], [slice(24, None, 2)]) assert expected == result #x[26::2] expected = {('y', 0): (getitem, ('x', 1), (slice(1, 25, 2),)), ('y', 1): (getitem, ('x', 2), (slice(0, 25, 2),)), ('y', 2): (getitem, ('x', 3), (slice(1, 25, 2),))} result, chunks = slice_array('y', 'x', [[25] * 4], [slice(26, None, 2)]) assert expected == result #x[24::2] expected = {('y', 0): (getitem, ('x', 0), (slice(24, 25, 2),)), ('y', 1): (getitem, ('x', 1), (slice(1, 25, 2),)), ('y', 2): (getitem, ('x', 2), (slice(0, 25, 2),)), ('y', 3): (getitem, ('x', 3), (slice(1, 25, 2),))} result, chunks = slice_array('y', 'x', [(25, ) * 4], (slice(24, None, 2), )) assert expected == result #x[26::2] expected = {('y', 0): (getitem, ('x', 1), (slice(1, 25, 2),)), ('y', 1): (getitem, ('x', 2), (slice(0, 25, 2),)), ('y', 2): (getitem, ('x', 3), (slice(1, 25, 2),))} result, chunks = slice_array('y', 'x', [(25, ) * 4], (slice(26, None, 2), )) assert expected == result def test_slice_array_2d(): #2d slices: x[13::2,10::1] expected = {('y', 0, 0): (getitem, ('x', 0, 0), (slice(13, 20, 2), slice(10, 20, 1))), ('y', 0, 1): (getitem, ('x', 0, 1), (slice(13, 20, 2), slice(None, None, None))), ('y', 0, 2): (getitem, ('x', 0, 2), (slice(13, 20, 2), slice(None, None, None)))} result, chunks = slice_array('y', 'x', [[20], [20, 20, 5]], [slice(13, None, 2), slice(10, None, 1)]) assert expected == result #2d slices with one dimension: x[5,10::1] expected = {('y', 0): (getitem, ('x', 0, 0), (5, slice(10, 20, 1))), ('y', 1): (getitem, ('x', 0, 1), (5, slice(None, None, None))), ('y', 2): (getitem, ('x', 0, 2), (5, slice(None, None, None)))} result, chunks = slice_array('y', 'x', ([20], [20, 20, 5]), [5, slice(10, None, 1)]) assert expected == result def test_slice_optimizations(): #bar[:] expected = {('foo', 0): ('bar', 0)} result, chunks = slice_array('foo', 'bar', [[100]], (slice(None, None, None),)) assert expected == result #bar[:,:,:] expected = {('foo', 0): ('bar', 0), ('foo', 1): ('bar', 1), ('foo', 2): ('bar', 2)} result, chunks = slice_array('foo', 'bar', [(100, 1000, 10000)], (slice(None, None, None), slice(None, None, None), slice(None, None, None))) assert expected == result def test_slicing_with_singleton_indices(): result, chunks = slice_array('y', 'x', ([5, 5], [5, 5]), (slice(0, 5), 8)) expected = {('y', 0): (getitem, ('x', 0, 1), (slice(None, None, None), 3))} assert expected == result def test_slicing_with_newaxis(): result, chunks = slice_array('y', 'x', ([5, 5], [5, 5]), (slice(0, 3), None, slice(None, None, None))) expected = { ('y', 0, 0, 0): (getitem, ('x', 0, 0), (slice(0, 3, 1), None, slice(None, None, None))), ('y', 0, 0, 1): (getitem, ('x', 0, 1), (slice(0, 3, 1), None, slice(None, None, None)))} assert expected == result assert chunks == ((3,), (1,), (5, 5)) def test_take(): chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [5, 1, 47, 3], axis=0) expected = {('y', 0): (getitem, (np.concatenate, [(getitem, ('x', 0), ([1, 3, 5],)), (getitem, ('x', 2), ([7],))], 0), ([2, 0, 3, 1], ))} assert dsk == expected assert chunks == ((4,),) chunks, dsk = take('y', 'x', [(20, 20, 20, 20), (20, 20)], [5, 1, 47, 3], axis=0) expected = {('y', 0, j): (getitem, (np.concatenate, [(getitem, ('x', 0, j), ([1, 3, 5], slice(None, None, None))), (getitem, ('x', 2, j), ([7], slice(None, None, None)))], 0), ([2, 0, 3, 1], slice(None, None, None))) for j in range(2)} assert dsk == expected assert chunks == ((4,), (20, 20)) chunks, dsk = take('y', 'x', [(20, 20, 20, 20), (20, 20)], [5, 1, 37, 3], axis=1) expected = {('y', i, 0): (getitem, (np.concatenate, [(getitem, ('x', i, 0), (slice(None, None, None), [1, 3, 5])), (getitem, ('x', i, 1), (slice(None, None, None), [17]))], 1), (slice(None, None, None), [2, 0, 3, 1])) for i in range(4)} assert dsk == expected assert chunks == ((20, 20, 20, 20), (4,)) def test_take_sorted(): chunks, dsk = take('y', 'x', [(20, 20, 20, 20)], [1, 3, 5, 47], axis=0) expected = {('y', 0): (getitem, ('x', 0), ([1, 3, 5],)), ('y', 1): (getitem, ('x', 2), ([7],))} assert dsk == expected assert chunks == ((3, 1),) chunks, dsk = take('y', 'x', [(20, 20, 20, 20), (20, 20)], [1, 3, 5, 37], axis=1) expected = merge(dict((('y', i, 0), (getitem, ('x', i, 0), (slice(None, None, None), [1, 3, 5]))) for i in range(4)), dict((('y', i, 1), (getitem, ('x', i, 1), (slice(None, None, None), [17]))) for i in range(4))) assert dsk == expected assert chunks == ((20, 20, 20, 20), (3, 1)) def test_slice_lists(): y, chunks = slice_array('y', 'x', ((3, 3, 3, 1), (3, 3, 3, 1)), ([2, 1, 9], slice(None, None, None))) exp = {('y', 0, i): (getitem, (np.concatenate, [(getitem, ('x', 0, i), ([1, 2], slice(None, None, None))), (getitem, ('x', 3, i), ([0], slice(None, None, None)))], 0), ([1, 0, 2], slice(None, None, None))) for i in range(4)} assert y == exp assert chunks == ((3,), (3, 3, 3, 1)) def test_slicing_chunks(): result, chunks = slice_array('y', 'x', ([5, 5], [5, 5]), (1, [2, 0, 3])) assert chunks == ((3,), ) result, chunks = slice_array('y', 'x', ([5, 5], [5, 5]), (slice(0, 7), [2, 0, 3])) assert chunks == ((5, 2), (3, )) result, chunks = slice_array('y', 'x', ([5, 5], [5, 5]), (slice(0, 7), 1)) assert chunks == ((5, 2), ) def test_slicing_with_numpy_arrays(): a, bd1 = slice_array('y', 'x', ((3, 3, 3, 1), (3, 3, 3, 1)), ([1, 2, 9], slice(None, None, None))) b, bd2 = slice_array('y', 'x', ((3, 3, 3, 1), (3, 3, 3, 1)), (np.array([1, 2, 9]), slice(None, None, None))) assert bd1 == bd2 assert a == b i = [False, True, True, False, False, False, False, False, False, True, False] c, bd3 = slice_array('y', 'x', ((3, 3, 3, 1), (3, 3, 3, 1)), (i, slice(None, None, None))) assert bd1 == bd3 assert a == c def test_slicing_and_chunks(): o = da.ones((24, 16), chunks=((4, 8, 8, 4), (2, 6, 6, 2))) t = o[4:-4, 2:-2] assert t.chunks == ((8, 8), (6, 6)) def test_slice_stop_0(): # from gh-125 a = da.ones(10, chunks=(10,))[:0].compute() b = np.ones(10)[:0] assert_eq(a, b) def test_slice_list_then_None(): x = da.zeros(shape=(5, 5), chunks=(3, 3)) y = x[[2, 1]][None] assert_eq(y, np.zeros((1, 2, 5))) class ReturnItem(object): def __getitem__(self, key): return key @skip def test_slicing_exhaustively(): x = np.random.rand(6, 7, 8) a = da.from_array(x, chunks=(3, 3, 3)) I = ReturnItem() # independent indexing along different axes indexers = [0, -2, I[:], I[:5], [0, 1], [0, 1, 2], [4, 2], I[::-1], None, I[:0], []] for i in indexers: assert_eq(x[i], a[i]), i for j in indexers: assert_eq(x[i][:, j], a[i][:, j]), (i, j) assert_eq(x[:, i][j], a[:, i][j]), (i, j) for k in indexers: assert_eq(x[..., i][:, j][k], a[..., i][:, j][k]), (i, j, k) # repeated indexing along the first axis first_indexers = [I[:], I[:5], np.arange(5), [3, 1, 4, 5, 0], np.arange(6) < 6] second_indexers = [0, -1, 3, I[:], I[:3], I[2:-1], [2, 4], [], I[:0]] for i in first_indexers: for j in second_indexers: assert_eq(x[i][j], a[i][j]), (i, j) def test_slicing_with_negative_step_flops_keys(): x = da.arange(10, chunks=5) y = x[:1:-1] assert (x.name, 1) in y.dask[(y.name, 0)] assert (x.name, 0) in y.dask[(y.name, 1)] assert_eq(y, np.arange(10)[:1:-1]) assert y.chunks == ((5, 3),) assert y.dask[(y.name, 0)] == (getitem, (x.name, 1), (slice(-1, -6, -1),)) assert y.dask[(y.name, 1)] == (getitem, (x.name, 0), (slice(-1, -4, -1),)) def test_empty_slice(): x = da.ones((5, 5), chunks=(2, 2), dtype='i4') y = x[:0] assert_eq(y, np.ones((5, 5), dtype='i4')[:0]) def test_multiple_list_slicing(): x = np.random.rand(6, 7, 8) a = da.from_array(x, chunks=(3, 3, 3)) assert_eq(x[:, [0, 1, 2]][[0, 1]], a[:, [0, 1, 2]][[0, 1]]) def test_uneven_chunks(): assert da.ones(20, chunks=5)[::2].chunks == ((3, 2, 3, 2),) def test_new_blockdim(): assert new_blockdim(20, [5, 5, 5, 5], slice(0, None, 2)) == [3, 2, 3, 2] def test_slicing_consistent_names(): x = np.arange(100).reshape((10, 10)) a = da.from_array(x, chunks=(5, 5)) assert same_keys(a[0], a[0]) assert same_keys(a[:, [1, 2, 3]], a[:, [1, 2, 3]]) assert same_keys(a[:, 5:2:-1], a[:, 5:2:-1]) def test_sanitize_index(): pd = pytest.importorskip('pandas') with pytest.raises(TypeError): sanitize_index('Hello!') assert sanitize_index(pd.Series([1, 2, 3])) == [1, 2, 3] assert sanitize_index((1, 2, 3)) == [1, 2, 3] def test_uneven_blockdims(): blockdims = ((31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30), (100,)) index = (slice(240, 270), slice(None)) dsk_out, bd_out = slice_array('in', 'out', blockdims, index) sol = {('in', 0, 0): (getitem, ('out', 7, 0), (slice(28, 31, 1), slice(None))), ('in', 1, 0): (getitem, ('out', 8, 0), (slice(0, 27, 1), slice(None)))} assert dsk_out == sol assert bd_out == ((3, 27), (100,)) blockdims = ((31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30),) * 2 index = (slice(240, 270), slice(180, 230)) dsk_out, bd_out = slice_array('in', 'out', blockdims, index) sol = {('in', 0, 0): (getitem, ('out', 7, 5), (slice(28, 31, 1), slice(29, 30, 1))), ('in', 0, 1): (getitem, ('out', 7, 6), (slice(28, 31, 1), slice(None))), ('in', 0, 2): (getitem, ('out', 7, 7), (slice(28, 31, 1), slice(0, 18, 1))), ('in', 1, 0): (getitem, ('out', 8, 5), (slice(0, 27, 1), slice(29, 30, 1))), ('in', 1, 1): (getitem, ('out', 8, 6), (slice(0, 27, 1), slice(None))), ('in', 1, 2): (getitem, ('out', 8, 7), (slice(0, 27, 1), slice(0, 18, 1)))} assert dsk_out == sol assert bd_out == ((3, 27), (1, 31, 18)) def test_oob_check(): x = da.ones(5, chunks=(2,)) with pytest.raises(IndexError): x[6] with pytest.raises(IndexError): x[[6]] with pytest.raises(IndexError): x[0, 0] def test_index_with_dask_array_errors(): x = da.ones((5, 5), chunks=2) with pytest.raises(NotImplementedError): x[0, x > 10] def test_cull(): x = da.ones(1000, chunks=(10,)) for slc in [1, slice(0, 30), slice(0, None, 100)]: y = x[slc] assert len(y.dask) < len(x.dask) @pytest.mark.parametrize('shape', [(2,), (2, 3), (2, 3, 5)]) @pytest.mark.parametrize('slice', [(Ellipsis,), (None, Ellipsis), (Ellipsis, None), (None, Ellipsis, None)]) def test_slicing_with_Nones(shape, slice): x = np.random.random(shape) d = da.from_array(x, chunks=shape) assert_eq(x[slice], d[slice]) indexers = [Ellipsis, slice(2), 0, 1, -2, -1, slice(-2, None), None] """ @pytest.mark.parametrize('a', indexers) @pytest.mark.parametrize('b', indexers) @pytest.mark.parametrize('c', indexers) @pytest.mark.parametrize('d', indexers) def test_slicing_none_int_ellipses(a, b, c, d): if (a, b, c, d).count(Ellipsis) > 1: return shape = (2,3,5,7,11) x = np.arange(np.prod(shape)).reshape(shape) y = da.core.asarray(x) xx = x[a, b, c, d] yy = y[a, b, c, d] assert_eq(xx, yy) """ def test_slicing_none_int_ellipes(): shape = (2,3,5,7,11) x = np.arange(np.prod(shape)).reshape(shape) y = da.core.asarray(x) for ind in itertools.product(indexers, indexers, indexers, indexers): if ind.count(Ellipsis) > 1: continue assert_eq(x[ind], y[ind]) def test_None_overlap_int(): a, b, c, d = (0, slice(None, 2, None), None, Ellipsis) shape = (2,3,5,7,11) x = np.arange(np.prod(shape)).reshape(shape) y = da.core.asarray(x) xx = x[a, b, c, d] yy = y[a, b, c, d] assert_eq(xx, yy) def test_negative_n_slicing(): assert_eq(da.ones(2, chunks=2)[-2], np.ones(2)[-2])
bsd-3-clause
mehdidc/py-earth
examples/plot_derivatives.py
4
1177
""" ============================================ Plotting derivatives of simple sine function ============================================ A simple example plotting a fit of the sine function and the derivatives computed by Earth. """ import numpy import matplotlib.pyplot as plt from pyearth import Earth # Create some fake data numpy.random.seed(2) m = 10000 n = 10 X = 20 * numpy.random.uniform(size=(m, n)) - 10 y = 10*numpy.sin(X[:, 6]) + 0.25*numpy.random.normal(size=m) # Compute the known true derivative with respect to the predictive variable y_prime = 10*numpy.cos(X[:, 6]) # Fit an Earth model model = Earth(max_degree=2, minspan_alpha=.5, smooth=True) model.fit(X, y) # Print the model print(model.trace()) print(model.summary()) # Get the predicted values and derivatives y_hat = model.predict(X) y_prime_hat = model.predict_deriv(X, 'x6') # Plot true and predicted function values and derivatives # for the predictive variable plt.subplot(211) plt.plot(X[:, 6], y, 'r.') plt.plot(X[:, 6], y_hat, 'b.') plt.ylabel('function') plt.subplot(212) plt.plot(X[:, 6], y_prime, 'r.') plt.plot(X[:, 6], y_prime_hat[:, 0], 'b.') plt.ylabel('derivative') plt.show()
bsd-3-clause
holla2040/valvestudio
projects/pentode/operatingPointDesign/src/babysteps/imd/imd-300-400.py
1
3440
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np freqset = '300-400' ampset = 'even20' ftable = { '100':(100,0,0), '300':(300,0,0), '400':(400,0,0), '300-400':(300,400,0), 'GDG':(98,147,196), 'Gm' :(196,247,294) } gtable = { 'test' : (0.00,1.0,2.0,0,0), 'clean' : (2.00,0,0,0,0), 'even1' : (2.0,500e-1,2.0,0,0), 'even20' : (2.0,1e-1,2.0,0,0), 'even40' : (2.0,1e-2,2.0,0,0), 'even60' : (2.0,1e-3,2.0,0,0), 'even1020' : (1.0,100e-1,2.0,100e-2,4.0), 'even2040' : (2.0,1e-1,2.0,1e-2,4.0), 'even6080' : (2.0,1e-3,2.0,1e-4,4.0), 'odd20' : (2.0,1e-1,3.0,0,0), 'odd40' : (2.0,1e-2,3.0,0,0), 'odd2040' : (2.0,1e-1,3.0,1e-2,5.0), 'odd6080' : (2.0,1e-3,3.0,1e-4,5.0), 'odd1020' : (1.0,100e-1,3.0,100e-2,5.0), 'tubeeven20': (26,27.0,-1.6,0.3,0), 'tubeeven40': (55,70.0,-1.0,0.05,0), 'tubeodd20' : (0,1.0,0.0,1.5,0), 'tubeodd40' : (0,5.0,0.0,0.35,0), } f1,f2,f3 = ftable[freqset] a0,a1,af1,a2,af2 = gtable[ampset] # print a0,a1,af1,a2,af2 Fs = 44000.0; # sampling rate Ts = 1.0/Fs; # sampling interval t = np.arange(0,1,Ts) # time vector vin1 = np.sin(2*np.pi*f1*t) vin2 = np.sin(2*np.pi*f2*t) vin3 = np.sin(2*np.pi*f3*t) vin = vin1 + vin2 + vin3 if ampset.count('tube'): vout = a0+a1*np.arctan(af1+a2*vin) else: vout = a0*vin + a1*(vin**af1) + a2*(vin**af2) # amplifier non-linear vout = vout + np.random.normal(0.0,0.1,Fs)/100.0 n = len(vout) # length of the signal k = np.arange(n) T = n/Fs frq = k/T # two sides frequency range frq = frq[range(n/2)] # one side frequency range Y = np.fft.fft(vout)/n # fft computing and normalization Y = Y[range(n/2)] mag = 20*np.log10(np.abs(Y)) peakindices = mag > -90 peakfrqs = frq[peakindices] peaks = mag[peakindices] peaksgtdc = len(frq[peakfrqs > 10]) fig, ax = plt.subplots(3, 1,figsize=(10, 20)) ax[0].plot(t,vin1,label='%dHz'%f1) if f2: ax[0].plot(t,vin2,label='%dHz'%f2) if f3: ax[0].plot(t,vin3,label='%dHz'%f3) ax[0].set_xlabel('Time') ax[0].set_xlim(0,5.0/f1) ax[0].set_ylabel('Amplitude') handles, labels = ax[0].get_legend_handles_labels() ax[0].legend(handles[::-1], labels[::-1]) ax[1].plot(t,vin, label='Vin') ax[1].plot(t,vout, label='Vout') ax[1].set_xlabel('Time') ax[1].set_xlim(0,5.0/f1) ax[1].set_ylabel('Amplitude') handles, labels = ax[1].get_legend_handles_labels() ax[1].legend(handles[::-1], labels[::-1]) if peaksgtdc == 1: plabel = "Peak" else: plabel = "Peaks" ax[2].semilogx(frq,mag,'r',label="%s\n%d %s"%(ampset,peaksgtdc,plabel)) # plotting the spectrum ax[2].set_xlabel('Freq (Hz)') ax[2].set_xlim(10,20000) ax[2].grid(True,'both') ax[2].set_ylabel('Vout dB') ax[2].set_ylim(-120,20) handles, labels = ax[2].get_legend_handles_labels() ax[2].legend(handles[::-1], labels[::-1]) for i in range(len(peakfrqs)): ax[2].annotate("%.0f,%.1f"%(peakfrqs[i],peaks[i]), xy=(peakfrqs[i],peaks[i]), xycoords='data', xytext=(-5,8), textcoords='offset points', verticalalignment='left', rotation=90, bbox=dict(boxstyle="round", fc="1.0"), size=10) print print peaksgtdc,"peaks above DC" print "Hz dB" for i in range(len(peakfrqs)): print "%-7.0f %-0.2f"%(peakfrqs[i],peaks[i]) mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.show()
mit
slinderman/pyhawkes
examples/inference/gibbs_ss_demo.py
1
8978
import numpy as np import os import pickle import gzip # np.seterr(all='raise') import matplotlib.pyplot as plt from sklearn.metrics import adjusted_mutual_info_score, \ adjusted_rand_score, roc_auc_score from pyhawkes.internals.network import StochasticBlockModel from pyhawkes.models import \ DiscreteTimeNetworkHawkesModelSpikeAndSlab, \ DiscreteTimeStandardHawkesModel def demo(seed=None): """ Create a discrete time Hawkes model and generate from it. :return: """ if seed is None: seed = np.random.randint(2**32) print("Setting seed to ", seed) np.random.seed(seed) ########################################################### # Load some example data. # See data/synthetic/generate.py to create more. ########################################################### data_path = os.path.join("data", "synthetic", "synthetic_K20_C4_T10000.pkl.gz") with gzip.open(data_path, 'r') as f: S, true_model = pickle.load(f) T = S.shape[0] K = true_model.K B = true_model.B dt = true_model.dt dt_max = true_model.dt_max ########################################################### # Initialize with MAP estimation on a standard Hawkes model ########################################################### init_with_map = True if init_with_map: init_len = T print("Initializing with BFGS on first ", init_len, " time bins.") init_model = DiscreteTimeStandardHawkesModel(K=K, dt=dt, dt_max=dt_max, B=B, alpha=1.0, beta=1.0) init_model.add_data(S[:init_len, :]) init_model.initialize_to_background_rate() init_model.fit_with_bfgs() else: init_model = None ########################################################### # Create a test spike and slab model ########################################################### # Copy the network hypers. # Give the test model p, but not c, v, or m network_hypers = true_model.network_hypers.copy() network_hypers['c'] = None network_hypers['v'] = None network_hypers['m'] = None test_network = StochasticBlockModel(K=K, **network_hypers) test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B, basis_hypers=true_model.basis_hypers, bkgd_hypers=true_model.bkgd_hypers, impulse_hypers=true_model.impulse_hypers, weight_hypers=true_model.weight_hypers, network=test_network) test_model.add_data(S) # F_test = test_model.basis.convolve_with_basis(S_test) # Initialize with the standard model parameters if init_model is not None: test_model.initialize_with_standard_model(init_model) # Initialize plots ln, im_net, im_clus = initialize_plots(true_model, test_model, S) ########################################################### # Fit the test model with Gibbs sampling ########################################################### N_samples = 50 samples = [] lps = [] # plls = [] for itr in range(N_samples): lps.append(test_model.log_probability()) # plls.append(test_model.heldout_log_likelihood(S_test, F=F_test)) samples.append(test_model.copy_sample()) print("") print("Gibbs iteration ", itr) print("LP: ", lps[-1]) test_model.resample_model() # Update plot if itr % 1 == 0: update_plots(itr, test_model, S, ln, im_clus, im_net) ########################################################### # Analyze the samples ########################################################### analyze_samples(true_model, init_model, samples, lps) def initialize_plots(true_model, test_model, S): K = true_model.K C = true_model.network.C R = true_model.compute_rate(S=S) T = S.shape[0] # Plot the true network # Figure 1 plt.figure(1) ax = plt.subplot(111) plt.ion() true_model.plot_adjacency_matrix(ax=ax, vmax=0.25) plt.pause(0.001) # Figure 2 # Plot the true and inferred firing rate plt.figure(2) plt.plot(np.arange(T), R[:,0], '-k', lw=2) plt.ion() ln = plt.plot(np.arange(T), test_model.compute_rate()[:,0], '-r')[0] plt.show() # Firgure 3 # Plot the block affiliations plt.figure(3) KC = np.zeros((K,C)) KC[np.arange(K), test_model.network.c] = 1.0 im_clus = plt.imshow(KC, interpolation="none", cmap="Greys", aspect=float(C)/K) # Figure 4 plt.figure(4) ax = plt.subplot(111) im_net = test_model.plot_adjacency_matrix(ax=ax, vmax=0.25) plt.pause(0.001) plt.show() plt.pause(0.001) return ln, im_net, im_clus def update_plots(itr, test_model, S, ln, im_clus, im_net): K = test_model.K C = test_model.network.C T = S.shape[0] plt.figure(2) ln.set_data(np.arange(T), test_model.compute_rate()[:,0]) plt.title("\lambda_{%d}. Iteration %d" % (0, itr)) plt.pause(0.001) plt.figure(3) KC = np.zeros((K,C)) KC[np.arange(K), test_model.network.c] = 1.0 im_clus.set_data(KC) plt.title("KxC: Iteration %d" % itr) plt.pause(0.001) plt.figure(4) plt.title("W: Iteration %d" % itr) im_net.set_data(test_model.weight_model.W_effective) plt.pause(0.001) def analyze_samples(true_model, init_model, samples, lps): N_samples = len(samples) # Compute sample statistics for second half of samples A_samples = np.array([s.weight_model.A for s in samples]) W_samples = np.array([s.weight_model.W for s in samples]) g_samples = np.array([s.impulse_model.g for s in samples]) lambda0_samples = np.array([s.bias_model.lambda0 for s in samples]) c_samples = np.array([s.network.c for s in samples]) p_samples = np.array([s.network.p for s in samples]) v_samples = np.array([s.network.v for s in samples]) lps = np.array(lps) offset = N_samples // 2 A_mean = A_samples[offset:, ...].mean(axis=0) W_mean = W_samples[offset:, ...].mean(axis=0) g_mean = g_samples[offset:, ...].mean(axis=0) lambda0_mean = lambda0_samples[offset:, ...].mean(axis=0) p_mean = p_samples[offset:, ...].mean(axis=0) v_mean = v_samples[offset:, ...].mean(axis=0) print("A true: ", true_model.weight_model.A) print("W true: ", true_model.weight_model.W) print("g true: ", true_model.impulse_model.g) print("lambda0 true: ", true_model.bias_model.lambda0) print("") print("A mean: ", A_mean) print("W mean: ", W_mean) print("g mean: ", g_mean) print("lambda0 mean: ", lambda0_mean) print("v mean: ", v_mean) print("p mean: ", p_mean) plt.figure() plt.plot(np.arange(N_samples), lps, 'k') plt.xlabel("Iteration") plt.ylabel("Log probability") plt.show() # # Predictive log likelihood # pll_init = init_model.heldout_log_likelihood(S_test) # plt.figure() # plt.plot(np.arange(N_samples), pll_init * np.ones(N_samples), 'k') # plt.plot(np.arange(N_samples), plls, 'r') # plt.xlabel("Iteration") # plt.ylabel("Predictive log probability") # plt.show() # Compute the link prediction accuracy curves auc_init = roc_auc_score(true_model.weight_model.A.ravel(), init_model.W.ravel()) auc_A_mean = roc_auc_score(true_model.weight_model.A.ravel(), A_mean.ravel()) auc_W_mean = roc_auc_score(true_model.weight_model.A.ravel(), W_mean.ravel()) aucs = [] for A in A_samples: aucs.append(roc_auc_score(true_model.weight_model.A.ravel(), A.ravel())) plt.figure() plt.plot(aucs, '-r') plt.plot(auc_A_mean * np.ones_like(aucs), '--r') plt.plot(auc_W_mean * np.ones_like(aucs), '--b') plt.plot(auc_init * np.ones_like(aucs), '--k') plt.xlabel("Iteration") plt.ylabel("Link prediction AUC") plt.show() # Compute the adjusted mutual info score of the clusterings amis = [] arss = [] for c in c_samples: amis.append(adjusted_mutual_info_score(true_model.network.c, c)) arss.append(adjusted_rand_score(true_model.network.c, c)) plt.figure() plt.plot(np.arange(N_samples), amis, '-r') plt.plot(np.arange(N_samples), arss, '-b') plt.xlabel("Iteration") plt.ylabel("Clustering score") plt.ioff() plt.show() demo(11223344)
mit
ebigelow/LOTlib
LOTlib/Examples/NumberGame/Model/Data.py
3
1600
from LOTlib.DataAndObjects import FunctionData def import_josh_data(path=None): """Script for loading Joshs' number game data. Data is originally in probability (i.e. float) format, so (# yes, # no) pairs are estimated by assuming 20 human participants. """ import os from scipy.io import loadmat if path is None: path = os.getcwd() mat = loadmat(path+'/number_game_data.mat') mat_data = mat['data'] number_game_data = [] for d in mat_data: input_data = d[0][0].tolist() output_data = {} for i in range(len(d[1][0])): key = d[1][0][i] associated_prob = d[2][0][i] associated_yes = int(associated_prob * 20) output_data[key] = (associated_yes, 20-associated_yes) # est. (# yes, # no) responses function_datum = FunctionData(input=input_data, output=output_data) number_game_data.append(function_datum) return number_game_data def import_pd_data(fname): import pandas as pd from collections import defaultdict df = pd.read_pickle(fname) grouped = df.groupby(['concept', 'target'], as_index=False) data = defaultdict(lambda: FunctionData(input=[], output={})) for (c, t), group in grouped: y = sum(group['rating']) n = len(group['rating']) - y try: concept = list(eval(c)) except: concept = [eval(c)] target = eval(t) data[c].input = concept data[c].output[target] = (y, n) return data.values() # josh_data = import_josh_data()
gpl-3.0
dhuang/incubator-airflow
airflow/contrib/operators/hive_to_dynamodb.py
1
3826
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from airflow.contrib.hooks.aws_dynamodb_hook import AwsDynamoDBHook from airflow.hooks.hive_hooks import HiveServer2Hook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class HiveToDynamoDBTransferOperator(BaseOperator): """ Moves data from Hive to DynamoDB, note that for now the data is loaded into memory before being pushed to DynamoDB, so this operator should be used for smallish amount of data. :param sql: SQL query to execute against the hive database :type sql: str :param table_name: target DynamoDB table :type table_name: str :param table_keys: partition key and sort key :type table_keys: list :param pre_process: implement pre-processing of source data :type pre_process: function :param pre_process_args: list of pre_process function arguments :type pre_process_args: list :param pre_process_kwargs: dict of pre_process function arguments :type pre_process_kwargs: dict :param region_name: aws region name (example: us-east-1) :type region_name: str :param schema: hive database schema :type schema: str :param hiveserver2_conn_id: source hive connection :type hiveserver2_conn_id: str :param aws_conn_id: aws connection :type aws_conn_id: str """ template_fields = ('sql',) template_ext = ('.sql',) ui_color = '#a0e08c' @apply_defaults def __init__( self, sql, table_name, table_keys, pre_process=None, pre_process_args=None, pre_process_kwargs=None, region_name=None, schema='default', hiveserver2_conn_id='hiveserver2_default', aws_conn_id='aws_default', *args, **kwargs): super(HiveToDynamoDBTransferOperator, self).__init__(*args, **kwargs) self.sql = sql self.table_name = table_name self.table_keys = table_keys self.pre_process = pre_process self.pre_process_args = pre_process_args self.pre_process_kwargs = pre_process_kwargs self.region_name = region_name self.schema = schema self.hiveserver2_conn_id = hiveserver2_conn_id self.aws_conn_id = aws_conn_id def execute(self, context): hive = HiveServer2Hook(hiveserver2_conn_id=self.hiveserver2_conn_id) self.log.info('Extracting data from Hive') self.log.info(self.sql) data = hive.get_pandas_df(self.sql, schema=self.schema) dynamodb = AwsDynamoDBHook(aws_conn_id=self.aws_conn_id, table_name=self.table_name, table_keys=self.table_keys, region_name=self.region_name) self.log.info('Inserting rows into dynamodb') if self.pre_process is None: dynamodb.write_batch_data( json.loads(data.to_json(orient='records'))) else: dynamodb.write_batch_data( self.pre_process(data=data, args=self.pre_process_args, kwargs=self.pre_process_kwargs)) self.log.info('Done.')
apache-2.0
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/scipy/signal/_arraytools.py
28
7553
""" Functions for acting on a axis of an array. """ from __future__ import division, print_function, absolute_import import numpy as np def axis_slice(a, start=None, stop=None, step=None, axis=-1): """Take a slice along axis 'axis' from 'a'. Parameters ---------- a : numpy.ndarray The array to be sliced. start, stop, step : int or None The slice parameters. axis : int, optional The axis of `a` to be sliced. Examples -------- >>> a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> axis_slice(a, start=0, stop=1, axis=1) array([[1], [4], [7]]) >>> axis_slice(a, start=1, axis=0) array([[4, 5, 6], [7, 8, 9]]) Notes ----- The keyword arguments start, stop and step are used by calling slice(start, stop, step). This implies axis_slice() does not handle its arguments the exacty the same as indexing. To select a single index k, for example, use axis_slice(a, start=k, stop=k+1) In this case, the length of the axis 'axis' in the result will be 1; the trivial dimension is not removed. (Use numpy.squeeze() to remove trivial axes.) """ a_slice = [slice(None)] * a.ndim a_slice[axis] = slice(start, stop, step) b = a[a_slice] return b def axis_reverse(a, axis=-1): """Reverse the 1-d slices of `a` along axis `axis`. Returns axis_slice(a, step=-1, axis=axis). """ return axis_slice(a, step=-1, axis=axis) def odd_ext(x, n, axis=-1): """ Odd extension at the boundaries of an array Generate a new ndarray by making an odd extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import odd_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> odd_ext(a, 2) array([[-1, 0, 1, 2, 3, 4, 5, 6, 7], [-4, -1, 0, 1, 4, 9, 16, 23, 28]]) Odd extension is a "180 degree rotation" at the endpoints of the original array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = odd_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='odd extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x if n > x.shape[axis] - 1: raise ValueError(("The extension length n (%d) is too big. " + "It must not exceed x.shape[axis]-1, which is %d.") % (n, x.shape[axis] - 1)) left_end = axis_slice(x, start=0, stop=1, axis=axis) left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) right_end = axis_slice(x, start=-1, axis=axis) right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) ext = np.concatenate((2 * left_end - left_ext, x, 2 * right_end - right_ext), axis=axis) return ext def even_ext(x, n, axis=-1): """ Even extension at the boundaries of an array Generate a new ndarray by making an even extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import even_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> even_ext(a, 2) array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3], [ 4, 1, 0, 1, 4, 9, 16, 9, 4]]) Even extension is a "mirror image" at the boundaries of the original array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = even_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='even extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x if n > x.shape[axis] - 1: raise ValueError(("The extension length n (%d) is too big. " + "It must not exceed x.shape[axis]-1, which is %d.") % (n, x.shape[axis] - 1)) left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) ext = np.concatenate((left_ext, x, right_ext), axis=axis) return ext def const_ext(x, n, axis=-1): """ Constant extension at the boundaries of an array Generate a new ndarray that is a constant extension of `x` along an axis. The extension repeats the values at the first and last element of the axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import const_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> const_ext(a, 2) array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5], [ 0, 0, 0, 1, 4, 9, 16, 16, 16]]) Constant extension continues with the same values as the endpoints of the array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = const_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='constant extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x left_end = axis_slice(x, start=0, stop=1, axis=axis) ones_shape = [1] * x.ndim ones_shape[axis] = n ones = np.ones(ones_shape, dtype=x.dtype) left_ext = ones * left_end right_end = axis_slice(x, start=-1, axis=axis) right_ext = ones * right_end ext = np.concatenate((left_ext, x, right_ext), axis=axis) return ext def zero_ext(x, n, axis=-1): """ Zero padding at the boundaries of an array Generate a new ndarray that is a zero padded extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import zero_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> zero_ext(a, 2) array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0], [ 0, 0, 0, 1, 4, 9, 16, 0, 0]]) """ if n < 1: return x zeros_shape = list(x.shape) zeros_shape[axis] = n zeros = np.zeros(zeros_shape, dtype=x.dtype) ext = np.concatenate((zeros, x, zeros), axis=axis) return ext
mit
alexeyum/scikit-learn
examples/linear_model/plot_ols.py
104
1936
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
scienceopen/python-matlab-examples
PlotExamples/xarray_matplotlib.py
1
1569
#!/usr/bin/env python """ matplotlib with datetime64 testing """ import xarray from datetime import datetime from matplotlib.pyplot import figure, show import matplotlib.dates as mdates import numpy as np def test_plot2d_datetime(): t = np.arange('2010-05-04T12:05:00', '2010-05-04T12:05:01', dtype='datetime64[ms]') y = np.random.randn(t.size) # t = t.astype(datetime) # Matplotlib < 2.2 ax = figure().gca() ax.plot(t, y) def test_plot2d_xarray(): t = np.arange('2010-05-04T12:05:00', '2010-05-04T12:05:01', dtype='datetime64[ms]') y = np.random.randn(t.size) dat = xarray.DataArray(y, coords={'time': t}, dims=['time']) dset = xarray.Dataset({'random1Dstuff': dat}) fg = figure() ax = fg.subplots(3, 1, sharex=True) dat.plot(ax=ax[0]) ax[1].plot(dat.time, dat) dset['random1Dstuff'].plot(ax=ax[2]) def test_imshow_datetime(): """ keogram using matplotlib imshow """ Ny = 500 # arbitrary t = np.arange('2010-05-04T12:05', '2010-05-04T12:06', dtype='datetime64[s]').astype(datetime) im = np.random.random((Ny, t.size)) y = range(t.size) # arbitrary mt = mdates.date2num((t[0], t[-1])) # at least through Matplotlib 2.2 fig = figure() ax = fig.gca() ax.imshow(im, extent=[mt[0], mt[1], y[0], y[-1]], aspect='auto') # %% datetime formatting ax.xaxis_date() # like "num2date" # ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S')) fig.autofmt_xdate() if __name__ == '__main__': np.testing.run_module_suite() show()
mit
yonglehou/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
anurag313/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
lokeshpancharia/BuildingMachineLearningSystemsWithPython
ch04/blei_lda.py
21
2601
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function from wordcloud import create_cloud try: from gensim import corpora, models, matutils except: print("import gensim failed.") print() print("Please install it") raise import matplotlib.pyplot as plt import numpy as np from os import path NUM_TOPICS = 100 # Check that data exists if not path.exists('./data/ap/ap.dat'): print('Error: Expected data to be present at data/ap/') print('Please cd into ./data & run ./download_ap.sh') # Load the data corpus = corpora.BleiCorpus('./data/ap/ap.dat', './data/ap/vocab.txt') # Build the topic model model = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=None) # Iterate over all the topics in the model for ti in range(model.num_topics): words = model.show_topic(ti, 64) tf = sum(f for f, w in words) with open('topics.txt', 'w') as output: output.write('\n'.join('{}:{}'.format(w, int(1000. * f / tf)) for f, w in words)) output.write("\n\n\n") # We first identify the most discussed topic, i.e., the one with the # highest total weight topics = matutils.corpus2dense(model[corpus], num_terms=model.num_topics) weight = topics.sum(1) max_topic = weight.argmax() # Get the top 64 words for this topic # Without the argument, show_topic would return only 10 words words = model.show_topic(max_topic, 64) # This function will actually check for the presence of pytagcloud and is otherwise a no-op create_cloud('cloud_blei_lda.png', words) num_topics_used = [len(model[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist(num_topics_used, np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') fig.tight_layout() fig.savefig('Figure_04_01.png') # Now, repeat the same exercise using alpha=1.0 # You can edit the constant below to play around with this parameter ALPHA = 1.0 model1 = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=ALPHA) num_topics_used1 = [len(model1[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist([num_topics_used, num_topics_used1], np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') # The coordinates below were fit by trial and error to look good ax.text(9, 223, r'default alpha') ax.text(26, 156, 'alpha=1.0') fig.tight_layout() fig.savefig('Figure_04_02.png')
mit
runninghack/CensorshipDetection
bin/drawingPruning.py
1
9006
#!/usr/bin/env python """ Draw a graph with matplotlib. You must have matplotlib for this to work. """ __author__ = """Aric Hagberg ([email protected])""" try: import matplotlib.pyplot as plt except: raise import time import networkx as nx def test1(): abnormalNodes = [] trueAbnormalNodes = [] resultNodes = [] fp = open("pruning_1.txt") edges = [] for i, line in enumerate(fp): if i == 0: count = 0 for item in line.rstrip().split(' '): if float(item.rstrip()) != 0.0: abnormalNodes.append(count) count = count + 1 if i == 1: for item in line.rstrip().split(' '): trueAbnormalNodes.append(int(item)) if i == 2: for item in line.rstrip().split(' '): resultNodes.append(int(item.rstrip())) if i >= 3: l0 = int(line.rstrip().split(' ')[0]) l1 = int(line.rstrip().split(' ')[1]) if l0 - l1 > 50 or l0 - l1 < -50: x = -1 elif l0%50 == 0 or l1%50 == 0: if l0%50 == 0 and (l1 - l0 == 49 or l1 - l0 == -49 ): x = -1 elif l1%50 == 0 and (l1 - l0 == 49 or l1 - l0 == -49 ): x = -1 else: edges.append((l0,l1)) else: edges.append((l0,l1)) fp.close() normalNodes = [item for item in range(2500) if item not in abnormalNodes] count = 0 for item in resultNodes: if item in trueAbnormalNodes: count = count + 1 print 'Precision is ',count*1.0 / len(resultNodes)*1.0, ' and recall is ',count*1.0 / len(trueAbnormalNodes)*1.0 pos = dict() count = 0 for i in range(50): for j in range(50): t = (i,j) pos[count] = t count = count + 1 G = nx.Graph() for item in range(2500): G.add_node(item) nx.draw_networkx_nodes(G,pos,node_size=50,nodelist=normalNodes,node_color='w') nx.draw_networkx_nodes(G,pos,node_size=50,nodelist=abnormalNodes,node_color='r') nx.draw_networkx_nodes(G,pos,node_size=10,nodelist=resultNodes,node_color='g') nx.draw_networkx_edges(G,pos,edgelist=edges, alpha=0.5,width=5,edge_color = 'm') plt.axis('off') plt.show() # display plt.close() def test2500(fileName): #all abnormal nodes ; true abnormal nodes ; result nodes ; edges AllAbnormalNodes = [] trueAbnormalNodes = [] components = dict() resultNodes = [] fp = open(fileName) edges = dict() for i, line in enumerate(fp): if i == 0: for item in line.rstrip().split(' '): AllAbnormalNodes.append(int(item.rstrip())) if i == 1: for item in line.rstrip().split(' '): trueAbnormalNodes.append(int(item.rstrip())) if i == 2: for item in line.rstrip().split(' '): resultNodes.append(int(item.rstrip())) if i == 3: count = 0 for items in line.rstrip().split('#'): edges[count] = [] if items == '' or items == ' ': continue for item in items.rstrip().split(';'): if item == '': continue print item l0 = int(item.rstrip().split(' ')[0]) l1 = int(item.rstrip().split(' ')[1]) if l0 - l1 > 50 or l0 - l1 < -50: x = -1 elif l0%50 == 0 or l1%50 == 0: if l0%50 == 0 and (l1 - l0 == 49 or l1 - l0 == -49 ): x = -1 elif l1%50 == 0 and (l1 - l0 == 49 or l1 - l0 == -49 ): x = -1 else: edges[count].append((l0,l1)) else: edges[count].append((l0,l1)) count = count + 1 fp.close() for item in edges: print item, edges[item] normalNodes = [item for item in range(2500) if item not in AllAbnormalNodes] count = 0 for item in resultNodes: if item in trueAbnormalNodes: count = count + 1 print 'Precision is ',count*1.0 / len(resultNodes)*1.0, ' and recall is ',count*1.0 / len(trueAbnormalNodes)*1.0 pos = dict() count = 0 for i in range(50): for j in range(50): t = (i,j) pos[count] = t count = count + 1 G = nx.Graph() for item in range(2500): G.add_node(item) nx.draw_networkx_nodes(G,pos,node_size=60,nodelist=resultNodes,node_color='r',node_shape="s") nx.draw_networkx_nodes(G,pos,node_size=30,nodelist=normalNodes,node_color='w') #nx.draw_networkx_nodes(G,pos,node_size=40,nodelist=trueAbnormalNodes,node_color='k') nx.draw_networkx_nodes(G,pos,node_size=30,nodelist=AllAbnormalNodes,node_color='k') #nx.draw_networkx_edges(G,pos,edgelist=edges[0], alpha=0.5,width=5,edge_color = 'm') #nx.draw_networkx_edges(G,pos,edgelist=edges[1], alpha=0.5,width=5,edge_color = 'y') #nx.draw_networkx_edges(G,pos,edgelist=edges[2], alpha=0.5,width=5,edge_color = 'b') #nx.draw_networkx_edges(G,pos,edgelist=edges[3], alpha=0.5,width=5,edge_color = 'c') plt.axis('off') plt.show() # display plt.close() def test3600(fileName): #all abnormal nodes ; true abnormal nodes ; result nodes ; edges AllAbnormalNodes = [] trueAbnormalNodes = [] components = dict() resultNodes = [] fp = open(fileName) edges = dict() for i, line in enumerate(fp): if i == 0: for item in line.rstrip().split(' '): AllAbnormalNodes.append(int(item.rstrip())) if i == 1: for item in line.rstrip().split(' '): trueAbnormalNodes.append(int(item.rstrip())) if i == 2: for item in line.rstrip().split(' '): resultNodes.append(int(item.rstrip())) if i == 3: count = 0 for items in line.rstrip().split('#'): edges[count] = [] if items == '' or items == ' ': continue for item in items.rstrip().split(';'): if item == '': continue print item l0 = int(item.rstrip().split(' ')[0]) l1 = int(item.rstrip().split(' ')[1]) if l0 - l1 > 60 or l0 - l1 < -60: x = -1 elif l0%60 == 0 or l1%60 == 0: if l0%60 == 0 and (l1 - l0 == 59 or l1 - l0 == -59 ): x = -1 elif l1%60 == 0 and (l1 - l0 == 59 or l1 - l0 == -59 ): x = -1 else: edges[count].append((l0,l1)) else: edges[count].append((l0,l1)) count = count + 1 fp.close() for item in edges: print item, edges[item] normalNodes = [item for item in range(3600) if item not in AllAbnormalNodes] count = 0 for item in resultNodes: if item in trueAbnormalNodes: count = count + 1 print 'Precision is ',count*1.0 / len(resultNodes)*1.0, ' and recall is ',count*1.0 / len(trueAbnormalNodes)*1.0 pos = dict() count = 0 for i in range(60): for j in range(60): t = (i,j) pos[count] = t count = count + 1 G = nx.Graph() for item in range(3600): G.add_node(item) nx.draw_networkx_nodes(G,pos,node_size=60,nodelist=resultNodes,node_color='r',node_shape="s") nx.draw_networkx_nodes(G,pos,node_size=30,nodelist=normalNodes,node_color='w') #nx.draw_networkx_nodes(G,pos,node_size=60,nodelist=AllAbnormalNodes,node_color='r') nx.draw_networkx_nodes(G,pos,node_size=30,nodelist=AllAbnormalNodes,node_color='k') #nx.draw_networkx_edges(G,pos,edgelist=edges[0], alpha=0.5,width=5,edge_color = 'y') #nx.draw_networkx_edges(G,pos,edgelist=edges[1], alpha=0.5,width=5,edge_color = 'm') #nx.draw_networkx_edges(G,pos,edgelist=edges[2], alpha=0.5,width=5,edge_color = 'b') #nx.draw_networkx_edges(G,pos,edgelist=edges[3], alpha=0.5,width=5,edge_color = 'c') plt.axis('off') plt.show() # display plt.close() if __name__ == '__main__': #test2500("grid_2500_precen_0.05_numCC_4_0.02_trueS.txt") test3600("grid_3600_precen_0.05_numCC_4_0.02_trueS.txt")
gpl-2.0
subutai/nupic.research
projects/continuous_learning/correlation_experiment.py
3
12568
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2020, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # import time import matplotlib.pyplot as plt import numpy as np from cont_speech_experiment import ContinuousSpeechExperiment from nupic.research.frameworks.continuous_learning.correlation_metrics import ( plot_metrics, register_act, ) from nupic.research.support import parse_config def train_sequential(experiment, print_acc=False): """ Trains a ContinuousSpeechExperiment sequentially, i.e. by pairs of labels :param experiment: ContinuousSpeechExperiment """ np.random.seed(np.random.randint(0, 100)) train_labels = np.reshape(np.random.permutation(np.arange(1, 11)), (5, 2)) epochs = 1 # 1 run per class pair entropies, duty_cycles = [], [] for label in train_labels: print("training on class {}".format(label)) freeze_indices = np.hstack( # class indices to freeze in output layer [ 0, np.delete( train_labels, np.where(train_labels == label)[0], axis=0 ).flatten(), ] ) for epoch in range(epochs): experiment.train(epoch, label, indices=freeze_indices) mt = experiment.test() if print_acc: print("Mean accuracy: {}".format(mt["mean_accuracy"])) entropies.append(get_entropies(experiment)) duty_cycles.append(get_duty_cycles(experiment)) return entropies, duty_cycles def get_duty_cycles(experiment): duty_cycles = [] for module in experiment.model: dc = module.state_dict() if "duty_cycle" in dc: duty_cycles.append(dc["duty_cycle"].detach().cpu().numpy()) return duty_cycles def get_entropies(experiment): entropies = [] for module in experiment.model.modules(): if module == experiment.model: continue if hasattr(module, "entropy"): entropy = module.entropy() entropies.append(entropy.detach().cpu().numpy()) return entropies class SparseCorrExperiment(object): def __init__(self, config_file): self.dense_network = "denseCNN2" self.sparse_network = "sparseCNN2" self.entropies = [] self.duty_cycles = [] self.config_file = "experiments.cfg" def config_init(self, exp): with open(self.config_file) as cf: config = parse_config(cf) exp_config = config[exp] exp_config["name"] = exp return exp_config def reset_ents_dcs(self): self.entropies = [] self.duty_cycles = [] def model_comparison(self, freeze_linear=False, sequential=False, shuffled=False): """ Compare metrics on dense and sparse CNN""" self.reset_ents_dcs() odcorrs, dcorrs = [], [] oddotproducts, ddotproducts = [], [] output = [odcorrs, dcorrs, oddotproducts, ddotproducts] if shuffled: shodcorrs, shdcorrs = [], [] shoddotproducts, shddotproducts = [], [] sh_output = [shodcorrs, shdcorrs, shoddotproducts, shddotproducts] for exp in [self.dense_network, self.sparse_network]: config = self.config_init(exp) if freeze_linear: config["freeze_params"] = "output" else: config["freeze_params"] = [] if shuffled: outputs, sh_outputs = self.run_experiment( config, sequential=sequential, shuffled=True ) [output[k].append(outputs[k]) for k in range(len(outputs))] [sh_output[k].append(sh_outputs[k]) for k in range(len(sh_outputs))] else: outputs = self.run_experiment( config, sequential=sequential, shuffled=False ) [output[k].append(outputs[k]) for k in range(len(outputs))] plot_metrics(output) if shuffled: plot_metrics(sh_output) return output, sh_output else: return output def act_fn_comparison(self, freeze_linear=False, sequential=False, shuffled=False): """ Compare k-winner and ReLU activations on sparse and dense weights. """ self.reset_ents_dcs() cnn_weight_sparsities = [(1.0, 1.0), (0.5, 0.2)] linear_weight_sparsities = [(1.0,), (0.1,)] cnn_percent_on = [(0.095, 0.125), (1.0, 1.0)] linear_percent_on = [(0.1,), (1.0,)] exp = self.sparse_network odcorrs, dcorrs = [], [] oddotproducts, ddotproducts = [], [] output = [odcorrs, dcorrs, oddotproducts, ddotproducts] if shuffled: shodcorrs, shdcorrs = [], [] shoddotproducts, shddotproducts = [], [] sh_output = [shodcorrs, shdcorrs, shoddotproducts, shddotproducts] for i in range(2): for j in range(2): config = self.config_init(exp) config["cnn_weight_sparsity"] = cnn_weight_sparsities[i] config["weight_sparsity"] = linear_weight_sparsities[i] config["cnn_percent_on"] = cnn_percent_on[j] config["linear_percent_on"] = linear_percent_on[j] if freeze_linear: config["freeze_params"] = "output" else: config["freeze_params"] = [] if shuffled: outputs, sh_outputs = self.run_experiment(config, shuffled=shuffled) [output[k].append(outputs[k]) for k in range(len(outputs))] [sh_output[k].append(sh_outputs[k]) for k in range(len(sh_outputs))] else: outputs = self.run_experiment(config, shuffled=shuffled) [output[k].append(outputs[k]) for k in range(len(outputs))] leg = ["dense + k-winner", "dense + ReLU", "sparse + k-winner", "sparse + ReLU"] plot_metrics(output, legend_=leg) if shuffled: plot_metrics(sh_output, legend_=leg) return output, sh_output else: return output def layer_size_comparison( self, layer_sizes, compare_models=False, freeze_linear=False, sequential=False, shuffled=False, ): """Get metrics for specified layer sizes :param layer_sizes: list of desired CNN layer sizes :param compare_models (Boolean): will also run a dense CNN """ self.reset_ents_dcs() # get a factor to multiply the weight sparsity and percent on with sparse_factor = [layer_sizes[0] / k for k in layer_sizes] odcorrs, dcorrs = [], [] oddotproducts, ddotproducts = [], [] output = [odcorrs, dcorrs, oddotproducts, ddotproducts] if shuffled: shodcorrs, shdcorrs = [], [] shoddotproducts, shddotproducts = [], [] sh_output = [shodcorrs, shdcorrs, shoddotproducts, shddotproducts] if compare_models: experiments = [self.dense_network, self.sparse_network] else: experiments = [self.sparse_network] for exp in experiments: for ind in range(len(layer_sizes)): config = self.config_init(exp) # get the default sparsity in the config file # to multiply with "sparse_factor" curr_sparsity = config["cnn_weight_sparsity"] curr_percent_on = config["cnn_percent_on"] if freeze_linear: config["freeze_params"] = "output" else: config["freeze_params"] = [] config["cnn_out_channels"] = (layer_sizes[ind], layer_sizes[ind]) config["cnn_weight_sparsity"] = ( curr_sparsity[0] * sparse_factor[ind], curr_sparsity[1] * sparse_factor[ind], ) config["cnn_percent_on"] = ( curr_percent_on[0] * sparse_factor[ind], curr_percent_on[1] * sparse_factor[ind], ) if shuffled: outputs, sh_outputs = self.run_experiment( config, layer_sizes[ind], shuffled=shuffled ) [output[k].append(outputs[k]) for k in range(len(outputs))] [sh_output[k].append(sh_outputs[k]) for k in range(len(sh_outputs))] else: outputs = self.run_experiment( config, layer_sizes[ind], shuffled=shuffled ) [output[k].append(outputs[k]) for k in range(len(outputs))] leg = list(zip(np.repeat(experiments, len(layer_sizes)), 3 * layer_sizes)) plot_metrics(output, legend_=leg) if shuffled: plot_metrics(sh_output, legend_=leg) return output, sh_output else: return output def run_experiment( self, config, layer_size=None, sequential=False, shuffled=False, boosting=True, duty_cycle_period=1000, ): if not boosting: config["boost_strength"] = 0.0 config["boost_strength_factor"] = 0.0 config["duty_cycle_period"] = duty_cycle_period experiment = ContinuousSpeechExperiment(config=config) start_time = time.time() if sequential: entropies, duty_cycles = train_sequential(experiment) self.entropies.append(entropies) self.duty_cycles.append(duty_cycles) else: experiment.train_entire_dataset(0) end_time = np.round(time.time() - start_time, 3) if layer_size is not None: print("{} layer size network trained in {} s".format(layer_size, end_time)) else: print("Network trained in {} s".format(end_time)) if shuffled: corrs, shuffled_corrs = register_act(experiment, shuffle=True) return corrs, shuffled_corrs else: corrs = register_act(experiment) return corrs def plot_duty_cycles(experiment): for dc in experiment.duty_cycles: if len(dc[0]) > 0: dc_flat = [item.flatten() for sublist in dc for item in sublist] plt.figure(figsize=(10, 12)) items = ["conv1", "conv2", "linear1"] for idx in range(len(items)): plt.subplot(2, 2, idx + 1) ks = dc_flat[idx :: len(items)] alpha = 0.12 / np.log(ks[0].shape[0]) plt.plot(ks, "k.", alpha=0.3) plt.plot(ks, "k", alpha=alpha) plt.xticks(np.arange(5), np.arange(1, 6)) plt.ylim((0.0, 0.2)) plt.title(items[idx]) plt.xlabel("Training iteration") plt.ylabel("Duty cycle") def plot_entropies(experiment): for ents in experiment.entropies: if len(ents[0]) > 0: ents_flat = [item.flatten() for sublist in ents for item in sublist] plt.figure(figsize=(10, 12)) items = ["conv1", "conv2", "linear1"] for idx in range(len(items)): plt.subplot(2, 2, idx + 1) ks = ents_flat[idx :: len(items)] plt.plot(ks, "k.", alpha=0.6) plt.plot(ks, "k", alpha=0.2) plt.xticks(np.arange(5), np.arange(1, 6)) plt.title(items[idx]) plt.xlabel("Training iteration") plt.ylabel("Entropy")
agpl-3.0
laputian/dml
equation/beginner_theano_2.py
1
1849
import theano import theano.tensor as T import theano.tensor.nnet as nnet import numpy as np import matplotlib.pyplot as plt inputs = np.array([0, 1, 2, 3, 4, 5]).reshape(6,1) #training data X len_inp = inputs.shape[0] exp_y = np.array([0.0, 0.5, 1, 1.5, 1.0, 1.5]) x = T.dvector() y = T.dscalar() def layer(x, w): b = np.array([1], dtype=theano.config.floatX) new_x = T.concatenate([x, b]) m = T.dot(w.T, new_x) #theta1: 3x3 * x: 3x1 = 3x1 ;;; theta2: 1x4 * 4x1 h = 2 * nnet.sigmoid(m) return h def grad_desc(cost, theta): alpha = 0.1 #learning rate return theta - (alpha * T.grad(cost, wrt=theta)) theta1 = theano.shared(np.array(np.random.rand(2,len_inp -1), dtype=theano.config.floatX)) # randomly initialize theta2 = theano.shared(np.array(np.random.rand(len_inp,1), dtype=theano.config.floatX)) hid1 = layer(x, theta1) #hidden layer out1 = T.sum(layer(hid1, theta2)) #output layer fc = (out1 - y)**2 #cost expression cost = theano.function(inputs=[x, y], outputs=fc, updates=[ (theta1, grad_desc(fc, theta1)), (theta2, grad_desc(fc, theta2))]) cur_cost = 0 for i in range(30000): for k in range(len(inputs)): cur_cost = cost(inputs[k], exp_y[k]) #call our Theano-compiled cost function, it will auto update weights if i % 500 == 0: #only print the cost every 500 epochs/iterations (to save space) print('Cost: %s' % (cur_cost,)) run_forward = theano.function(inputs=[x], outputs=out1) marg = 1 inf_ax = np.min(inputs)-marg sup_ax = np.max(inputs)+marg interval = np.linspace(inf_ax ,sup_ax ,100) output=[] for x in np.nditer(interval): output.append(run_forward([x])) plt.axis([inf_ax, sup_ax, np.min(exp_y)-marg, np.max(exp_y) +marg]) plt.plot(interval, np.asarray(output)) plt.plot(inputs, exp_y , marker='o', color='r', linestyle='', label='Expected') plt.show()
mit
RomainBrault/scikit-learn
benchmarks/bench_plot_svd.py
72
2914
"""Benchmarks of Singular Value Decomposition (Exact and Approximate) The data is mostly low rank but is a fat infinite tail. """ import gc from time import time import numpy as np from collections import defaultdict import six from scipy.linalg import svd from sklearn.utils.extmath import randomized_svd from sklearn.datasets.samples_generator import make_low_rank_matrix def compute_bench(samples_range, features_range, n_iter=3, rank=50): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') X = make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2) gc.collect() print("benchmarking scipy svd: ") tstart = time() svd(X, full_matrices=False) results['scipy svd'].append(time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=0") tstart = time() randomized_svd(X, rank, n_iter=0) results['scikit-learn randomized_svd (n_iter=0)'].append( time() - tstart) gc.collect() print("benchmarking scikit-learn randomized_svd: n_iter=%d " % n_iter) tstart = time() randomized_svd(X, rank, n_iter=n_iter) results['scikit-learn randomized_svd (n_iter=%d)' % n_iter].append(time() - tstart) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(2, 1000, 4).astype(np.int) features_range = np.linspace(2, 1000, 4).astype(np.int) results = compute_bench(samples_range, features_range) label = 'scikit-learn singular value decomposition benchmark results' fig = plt.figure(label) ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbg', sorted(six.iteritems(results))): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.legend() plt.show()
bsd-3-clause
ch3ll0v3k/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
jimgoo/zipline-fork
zipline/finance/risk/period.py
1
9089
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logbook import math import numpy as np import numpy.linalg as la from six import iteritems import pandas as pd from . import risk from . risk import ( check_entry, ) from empyrical import ( alpha_beta_aligned, annual_volatility, cum_returns, downside_risk, information_ratio, max_drawdown, sharpe_ratio, sortino_ratio ) from zipline.utils.serialization_utils import ( VERSION_LABEL ) log = logbook.Logger('Risk Period') choose_treasury = functools.partial(risk.choose_treasury, risk.select_treasury_duration) class RiskMetricsPeriod(object): def __init__(self, start_date, end_date, returns, env, benchmark_returns=None, algorithm_leverages=None): self.env = env treasury_curves = env.treasury_curves if treasury_curves.index[-1] >= start_date: mask = ((treasury_curves.index >= start_date) & (treasury_curves.index <= end_date)) self.treasury_curves = treasury_curves[mask] else: # our test is beyond the treasury curve history # so we'll use the last available treasury curve self.treasury_curves = treasury_curves[-1:] self.start_date = start_date self.end_date = end_date if benchmark_returns is None: br = env.benchmark_returns benchmark_returns = br[(br.index >= returns.index[0]) & (br.index <= returns.index[-1])] self.algorithm_returns = self.mask_returns_to_period(returns, env) self.benchmark_returns = self.mask_returns_to_period(benchmark_returns, env) self.algorithm_leverages = algorithm_leverages self.calculate_metrics() def calculate_metrics(self): #print('-'*100) #print(self.benchmark_returns.head()) #print(self.algorithm_returns.head()) self.benchmark_period_returns = \ cum_returns(self.benchmark_returns).iloc[-1] self.algorithm_period_returns = \ cum_returns(self.algorithm_returns).iloc[-1] # fix the case when the indices don't match if not self.algorithm_returns.index.equals(self.benchmark_returns.index): joined = self.algorithm_returns.align(self.benchmark_returns, join='outer') self.algorithm_returns = joined[0].fillna(method='ffill') self.benchmark_returns = joined[1].fillna(method='ffill') if not self.algorithm_returns.index.equals(self.benchmark_returns.index): message = "Mismatch between benchmark_returns ({bm_count}) and \ algorithm_returns ({algo_count}) in range {start} : {end}" message = message.format( bm_count=len(self.benchmark_returns), algo_count=len(self.algorithm_returns), start=self.start_date, end=self.end_date ) # save for debugging import pickle pickle.dump((self.algorithm_returns, self.benchmark_returns), open('/tmp/zp-returns.pkl', 'wb')) raise Exception(message) self.num_trading_days = len(self.benchmark_returns) ## begin empyrical metrics self.mean_algorithm_returns = ( self.algorithm_returns.cumsum() / np.arange(1, self.num_trading_days + 1, dtype=np.float64) ) self.benchmark_volatility = annual_volatility(self.benchmark_returns) self.algorithm_volatility = annual_volatility(self.algorithm_returns) self.treasury_period_return = choose_treasury( self.treasury_curves, self.start_date, self.end_date, self.env, ) self.sharpe = sharpe_ratio( self.algorithm_returns, ) # The consumer currently expects a 0.0 value for sharpe in period, # this differs from cumulative which was np.nan. # When factoring out the sharpe_ratio, the different return types # were collapsed into `np.nan`. # TODO: Either fix consumer to accept `np.nan` or make the # `sharpe_ratio` return type configurable. # In the meantime, convert nan values to 0.0 if pd.isnull(self.sharpe): self.sharpe = 0.0 self.downside_risk = downside_risk( self.algorithm_returns.values ) self.sortino = sortino_ratio( self.algorithm_returns.values, _downside_risk=self.downside_risk, ) self.information = information_ratio( self.algorithm_returns.values, self.benchmark_returns.values, ) self.alpha, self.beta = alpha_beta_aligned( self.algorithm_returns.values, self.benchmark_returns.values, ) self.excess_return = self.algorithm_period_returns - \ self.treasury_period_return self.max_drawdown = max_drawdown(self.algorithm_returns.values) self.max_leverage = self.calculate_max_leverage() def to_dict(self): """ Creates a dictionary representing the state of the risk report. Returns a dict object of the form: """ period_label = self.end_date.strftime("%Y-%m") rval = { 'trading_days': self.num_trading_days, 'benchmark_volatility': self.benchmark_volatility, 'algo_volatility': self.algorithm_volatility, 'treasury_period_return': self.treasury_period_return, 'algorithm_period_return': self.algorithm_period_returns, 'benchmark_period_return': self.benchmark_period_returns, 'sharpe': self.sharpe, 'sortino': self.sortino, 'information': self.information, 'beta': self.beta, 'alpha': self.alpha, 'excess_return': self.excess_return, 'max_drawdown': self.max_drawdown, 'max_leverage': self.max_leverage, 'period_label': period_label } return {k: None if check_entry(k, v) else v for k, v in iteritems(rval)} def __repr__(self): statements = [] metrics = [ "algorithm_period_returns", "benchmark_period_returns", "excess_return", "num_trading_days", "benchmark_volatility", "algorithm_volatility", "sharpe", "sortino", "information", # "algorithm_covariance", # "benchmark_variance", "beta", "alpha", "max_drawdown", "max_leverage", "algorithm_returns", "benchmark_returns", # "condition_number", # "eigen_values" ] for metric in metrics: value = getattr(self, metric) statements.append("{m}:{v}".format(m=metric, v=value)) return '\n'.join(statements) def mask_returns_to_period(self, daily_returns, env): if isinstance(daily_returns, list): returns = pd.Series([x.returns for x in daily_returns], index=[x.date for x in daily_returns]) else: # otherwise we're receiving an index already returns = daily_returns trade_days = env.trading_days trade_day_mask = returns.index.normalize().isin(trade_days) mask = ((returns.index >= self.start_date) & (returns.index <= self.end_date) & trade_day_mask) returns = returns[mask] return returns def calculate_max_leverage(self): if self.algorithm_leverages is None: return 0.0 else: return max(self.algorithm_leverages) def __getstate__(self): state_dict = {k: v for k, v in iteritems(self.__dict__) if not k.startswith('_')} STATE_VERSION = 3 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 3 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("RiskMetricsPeriod saved state \ is too old.") self.__dict__.update(state)
apache-2.0
coreymbryant/libmesh
doc/statistics/libmesh_citations.py
1
2369
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Number of "papers using libmesh" by year. # # Note 1: this does not count citations "only," the authors must have actually # used libmesh in part of their work. Therefore, these counts do not include # things like Wolfgang citing us in his papers to show how Deal.II is # superior... # # Note 2: I typically update this data after regenerating the web page, # since bibtex2html renumbers the references starting from "1" each year. # # Note 3: These citations include anything that is not a dissertation/thesis. # So, some are conference papers, some are journal articles, etc. # # Note 4: The libmesh paper came out in 2006, but there are some citations # prior to that date, obviously. These counts include citations of the # website libmesh.sf.net as well... # # Note 5: Preprints are listed as the "current year + 1" and are constantly # being moved to their respective years after being published. data = [ '2004', 5, '\'05', 2, '\'06', 13, '\'07', 8, '\'08', 24, '\'09', 30, '\'10', 24, '\'11', 37, '\'12', 50, '\'13', 80, '\'14', 63, '\'15', 71, '\'16', 44, 'P', 10, # Preprints 'T', 51 # Theses ] # Extract the x-axis labels from the data array xlabels = data[0::2] # Extract the publication counts from the data array n_papers = data[1::2] # The number of data points N = len(xlabels); # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Create an x-axis for plotting x = np.linspace(1, N, N) # Width of the bars width = 0.8 # Make the bar chart. Plot years in blue, preprints and theses in green. ax.bar(x[0:N-2], n_papers[0:N-2], width, color='b') ax.bar(x[N-2:N], n_papers[N-2:N], width, color='g') # Label the x-axis plt.xlabel('P=Preprints, T=Theses') # Set up the xtick locations and labels. Note that you have to offset # the position of the ticks by width/2, where width is the width of # the bars. ax.set_xticks(np.linspace(1,N,N) + width/2) ax.set_xticklabels(xlabels) # Create a title string title_string = 'Papers by People Using LibMesh, (' + str(sum(n_papers)) + ' Total)' fig.suptitle(title_string) # Save as PDF plt.savefig('libmesh_citations.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
Barmaley-exe/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
wateraccounting/wa
Generator/Sheet4/main.py
1
13145
# -*- coding: utf-8 -*- """ Authors: Tim Hessels UNESCO-IHE 2017 Contact: [email protected] Repository: https://github.com/wateraccounting/wa Module: Function/Four """ # import general python modules import os import numpy as np import pandas as pd from netCDF4 import Dataset def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, LAI_Product, ETref_Product, Runoff_Product, Startdate, Enddate, Simulation): """ This functions is the main framework for calculating sheet 4. Parameters ---------- Basin : str Name of the basin P_Product : str Name of the rainfall product that will be used ET_Product : str Name of the evapotranspiration product that will be used LAI_Product : str Name of the LAI product that will be used Runoff_Product : str Name of the Runoff product that will be used Moving_Averiging_Length, int Defines the length of the moving average Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation """ ######################### Import WA modules ################################### from wa.General import raster_conversions as RC from wa.General import data_conversions as DC import wa.Functions.Four as Four import wa.Functions.Start as Start import wa.Generator.Sheet4 as Generate import wa.Functions.Start.Get_Dictionaries as GD ######################### Set General Parameters ############################## # Get environmental variable for the Home folder if WA_HOME_folder == '': WA_env_paths = os.environ["WA_HOME"].split(';') Dir_Home = WA_env_paths[0] else: Dir_Home = WA_HOME_folder # Create the Basin folder Dir_Basin = os.path.join(Dir_Home, Basin) output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation) if not os.path.exists(output_dir): os.makedirs(output_dir) # Get the boundaries of the basin based on the shapefile of the watershed # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin) Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home) # Find the maximum moving window value ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0') Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values()) ############## Cut dates into pieces if it is needed ###################### # Check the years that needs to be calculated years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: # Create .nc file if not exists nc_outname = os.path.join(output_dir, "%d.nc" % year) if not os.path.exists(nc_outname): DC.Create_new_NC_file(nc_outname, Example_dataset, Basin) # Open variables in netcdf fh = Dataset(nc_outname) Variables_NC = [var for var in fh.variables] fh.close() # Create Start and End date for time chunk Startdate_part = '%d-01-01' %int(year) Enddate_part = '%s-12-31' %int(year) if int(year) == int(years[0]): Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail) Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d') else: Startdate_Moving_Average_String = Startdate_part ############################# Download Data ################################### # Download data if not "Precipitation" in Variables_NC: Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product) if not "Actual_Evapotranspiration" in Variables_NC: Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product) if not "Reference_Evapotranspiration" in Variables_NC: Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product) if not "Grey_Water_Footprint" in Variables_NC: Data_Path_GWF = Start.Download_Data.GWF(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']]) if not "Theta_Saturated_Topsoil" in Variables_NC: Data_Path_ThetaSat_topsoil = Start.Download_Data.Soil_Properties(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Para = 'ThetaSat_TopSoil') ###################### Save Data as netCDF files ############################## #______________________________Precipitation_______________________________ # 1.) Precipitation data if not "Precipitation" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01) del DataCube_Prec #_______________________Reference Evaporation______________________________ # 2.) Reference Evapotranspiration data if not "Reference_Evapotranspiration" in Variables_NC: # Get the data of Precipitation and save as nc DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01) del DataCube_ETref #_______________________________Evaporation________________________________ # 3.) Evapotranspiration data if not "Actual_Evapotranspiration" in Variables_NC: # Get the data of Evaporation and save as nc DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset) DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01) del DataCube_ET #_____________________________________GWF__________________________________ # 4.) Grey Water Footprint data if not "Grey_Water_Footprint" in Variables_NC: # Get the data of grey water footprint and save as nc GWF_Filepath = os.path.join(Dir_Basin, Data_Path_GWF, "Gray_Water_Footprint_Fraction.tif") dest_GWF = RC.reproject_dataset_example(GWF_Filepath, Example_dataset, method=1) DataCube_GWF = dest_GWF.GetRasterBand(1).ReadAsArray() DC.Add_NC_Array_Static(nc_outname, DataCube_GWF, "Grey_Water_Footprint", "fraction", 0.0001) del DataCube_GWF ####################### Calculations Sheet 4 ############################## ############## Cut dates into pieces if it is needed ###################### years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1) for year in years: if len(years) > 1.0: if year is years[0]: Startdate_part = Startdate Enddate_part = '%s-12-31' %year if year is years[-1]: Startdate_part = '%s-01-01' %year Enddate_part = Enddate else: Startdate_part = Startdate Enddate_part = Enddate #____________ Evapotranspiration data split in ETblue and ETgreen ____________ if not ("Blue_Evapotranspiration" in Variables_NC or "Green_Evapotranspiration" in Variables_NC): # Calculate Blue and Green ET DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green(Dir_Basin, nc_outname, ETref_Product, P_Product, Startdate, Enddate) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETblue, "Blue_Evapotranspiration", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_ETgreen, "Green_Evapotranspiration", "mm/month", 0.01) del DataCube_ETblue, DataCube_ETgreen #____________ Calculate non-consumend and Total supply maps by using fractions and consumed maps (blue ET) ____________ if not ("Total_Supply" in Variables_NC or "Non_Consumed_Water" in Variables_NC): # Do the calculations DataCube_Total_Supply, DataCube_Non_Consumed = Four.Total_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part) # Save the Total Supply and non consumed data as NetCDF files DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply, "Total_Supply", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_Non_Consumed, "Non_Consumed_Water", "mm/month", 0.01) del DataCube_Total_Supply, DataCube_Non_Consumed #____________ Apply fractions over total supply to calculate gw and sw supply ____________ if not ("Total_Supply_Surface_Water" in Variables_NC or "Total_Supply_Ground_Water" in Variables_NC): # Do the calculations DataCube_Total_Supply_SW, DataCube_Total_Supply_GW = Four.SplitGW_SW_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part) # Save the Total Supply surface water and Total Supply ground water data as NetCDF files DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_SW, "Total_Supply_Surface_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_GW, "Total_Supply_Ground_Water", "mm/month", 0.01) del DataCube_Total_Supply_SW, DataCube_Total_Supply_GW #____________ Apply gray water footprint fractions to calculated non recoverable flow based on the non consumed flow ____________ if not ("Non_Recovable_Flow" in Variables_NC or "Recovable_Flow" in Variables_NC): # Calculate the non recovable flow and recovable flow by using Grey Water Footprint values DataCube_NonRecovableFlow, Datacube_RecovableFlow = Four.SplitNonConsumed_NonRecov.GWF_Based(nc_outname, Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow, "Non_Recovable_Flow", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow, "Recovable_Flow", "mm/month", 0.01) del DataCube_NonRecovableFlow, Datacube_RecovableFlow #____________Apply fractions to calculate the non recovarable SW/GW and recovarable SW/GW ____________ # 1. Non recovarable flow if not ("Non_Recovable_Flow_Ground_Water" in Variables_NC or "Non_Recovable_Flow_Surface_Water" in Variables_NC): # Calculate the non recovable return flow to ground and surface water DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Non_Recovable_Flow", Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow_Return_GW, "Non_Recovable_Flow_Ground_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_NonRecovableFlow_Return_SW, "Non_Recovable_Flow_Surface_Water", "mm/month", 0.01) del DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW # 2. Recovarable flow if not ("Recovable_Flow_Ground_Water" in Variables_NC or "Recovable_Flow_Surface_Water" in Variables_NC): # Calculate the non recovable return flow to ground and surface water DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Recovable_Flow", Startdate_part, Enddate_part) # Get the data of Evaporation and save as nc DC.Add_NC_Array_Variable(nc_outname, DataCube_RecovableFlow_Return_GW, "Recovable_Flow_Ground_Water", "mm/month", 0.01) DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow_Return_SW, "Recovable_Flow_Surface_Water", "mm/month", 0.01) del DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW ############################ Create CSV 4 ################################# Dir_Basin_CSV, Unit_front = Generate.CSV.Create(Dir_Basin, Simulation, Basin, Startdate_part, Enddate_part, nc_outname) ############################ Create Sheet 4 ############################### Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV, Unit_front) return()
apache-2.0
rishikksh20/scikit-learn
examples/applications/topics_extraction_with_nmf_lda.py
21
4784
""" ======================================================================================= Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation ======================================================================================= This is an example of applying :class:`sklearn.decomposition.NMF` and :class:`sklearn.decomposition.LatentDirichletAllocation` on a corpus of documents and extract additive models of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). Non-negative Matrix Factorization is applied with two different objective functions: the Frobenius norm, and the generalized Kullback-Leibler divergence. The latter is equivalent to Probabilistic Latent Semantic Indexing. The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations). """ # Author: Olivier Grisel <[email protected]> # Lars Buitinck # Chyi-Kwei Yau <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): message = "Topic #%d: " % topic_idx message += " ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]) print(message) print() # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. print("Loading dataset...") t0 = time() dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) data_samples = dataset.data[:n_samples] print("done in %0.3fs." % (time() - t0)) # Use tf-idf features for NMF. print("Extracting tf-idf features for NMF...") tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tfidf = tfidf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) print() # Fit the NMF model print("Fitting the NMF model (Frobenius norm) with tf-idf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model (Frobenius norm):") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) # Fit the NMF model print("Fitting the NMF model (generalized Kullback-Leibler divergence) with " "tf-idf features, n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, beta_loss='kullback-leibler', solver='mu', max_iter=1000, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model (generalized Kullback-Leibler divergence):") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) print("Fitting LDA models with tf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50., random_state=0) t0 = time() lda.fit(tf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words)
bsd-3-clause
giorgiop/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
84
1221
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([[x1, x2]]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
NelisVerhoef/scikit-learn
sklearn/tests/test_naive_bayes.py
70
17509
import pickle from io import BytesIO import numpy as np import scipy.sparse from sklearn.datasets import load_digits, load_iris from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_discrete_prior(): # Test whether class priors are properly set. for cls in [BernoulliNB, MultinomialNB]: clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) def test_mnnb(): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. for X in [X2, scipy.sparse.csr_matrix(X2)]: # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def check_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0]], [0, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) assert_array_equal(clf1.feature_count_, clf3.feature_count_) def test_discretenb_partial_fit(): for cls in [MultinomialNB, BernoulliNB]: yield check_partial_fit, cls def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_discretenb_pickle(): # Test picklability of discrete naive Bayes classifiers for cls in [BernoulliNB, MultinomialNB, GaussianNB]: clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) if cls is not GaussianNB: # TODO re-enable me when partial_fit is implemented for GaussianNB # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) def test_input_check_fit(): # Test input checks for the fit method for cls in [BernoulliNB, MultinomialNB, GaussianNB]: # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_input_check_partial_fit(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict(X[-1:]), 2) assert_equal(clf.predict_proba([X[0]]).shape, (1, 2)) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict_proba(X[0:1]).shape, (1, 3)) assert_equal(clf.predict_proba(X[:2]).shape, (2, 3)) assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) def test_discretenb_uniform_prior(): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None for cls in [BernoulliNB, MultinomialNB]: clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) def test_discretenb_provide_prior(): # Test whether discrete NB classes use provided prior for cls in [BernoulliNB, MultinomialNB]: clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) def test_discretenb_provide_prior_with_partial_fit(): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for cls in [BernoulliNB, MultinomialNB]: for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) def test_sample_weight_multiclass(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency for number of samples at fit time yield check_sample_weight_multiclass, cls def check_sample_weight_multiclass(cls): X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) def test_sample_weight_mnb(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([[1, 0]]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_coef_intercept_shape(): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification for clf in [MultinomialNB(), BernoulliNB()]: clf.fit(X, y) assert_equal(clf.coef_.shape, (1, 3)) assert_equal(clf.intercept_.shape, (1,)) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset digits = load_digits() X, y = digits.data, digits.target binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert_greater(scores.mean(), 0.86) scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.94) # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert_greater(scores.mean(), 0.83) scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert_greater(scores.mean(), 0.92) # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert_greater(scores.mean(), 0.77) scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.86) def test_feature_log_prob_bnb(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_equal(clf.feature_log_prob_, (num - denom)) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([[0, 1, 1, 0, 0, 1]]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)
bsd-3-clause
yyjiang/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
rmcgibbo/scipy
scipy/stats/_binned_statistic.py
17
17622
from __future__ import division, print_function, absolute_import import warnings import numpy as np from scipy._lib.six import callable from collections import namedtuple def binned_statistic(x, values, statistic='mean', bins=10, range=None): """ Compute a binned statistic for a set of data. This is a generalization of a histogram function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- x : array_like A sequence of values to be binned. values : array_like The values on which the statistic will be computed. This must be the same shape as `x`. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10 by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Values in `x` that are smaller than lowest bin edge are assigned to bin number 0, values beyond the highest bin are assigned to ``bins[-1]``. range : (float, float) or [(float, float)], optional The lower and upper range of the bins. If not provided, range is simply ``(x.min(), x.max())``. Values outside the range are ignored. Returns ------- statistic : array The values of the selected statistic in each bin. bin_edges : array of dtype float Return the bin edges ``(length(statistic)+1)``. binnumber : 1-D ndarray of ints This assigns to each observation an integer that represents the bin in which this observation falls. Array has the same length as values. See Also -------- numpy.histogram, binned_statistic_2d, binned_statistic_dd Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt First a basic example: >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean', ... bins=3) (array([ 1., 2., 4.]), array([ 1., 2., 3., 4.]), array([1, 2, 1, 2, 3])) As a second example, we now generate some random data of sailing boat speed as a function of wind speed, and then determine how fast our boat is for certain wind speeds: >>> windspeed = 8 * np.random.rand(500) >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed, ... boatspeed, statistic='median', bins=[1,2,3,4,5,6,7]) >>> plt.figure() >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5, ... label='binned statistic of data') >>> plt.legend() Now we can use ``binnumber`` to select all datapoints with a windspeed below 1: >>> low_boatspeed = boatspeed[binnumber == 0] As a final example, we will use ``bin_edges`` and ``binnumber`` to make a plot of a distribution that shows the mean and distribution around that mean per bin, on top of a regular histogram and the probability distribution function: >>> x = np.linspace(0, 5, num=500) >>> x_pdf = stats.maxwell.pdf(x) >>> samples = stats.maxwell.rvs(size=10000) >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf, ... statistic='mean', bins=25) >>> bin_width = (bin_edges[1] - bin_edges[0]) >>> bin_centers = bin_edges[1:] - bin_width/2 >>> plt.figure() >>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled', alpha=0.2, ... label='histogram of data') >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf') >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2, ... label='binned statistic of data') >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5) >>> plt.legend(fontsize=10) >>> plt.show() """ try: N = len(bins) except TypeError: N = 1 if N != 1: bins = [np.asarray(bins, float)] if range is not None: if len(range) == 2: range = [range] medians, edges, xy = binned_statistic_dd([x], values, statistic, bins, range) BinnedStatisticResult = namedtuple('BinnedStatisticResult', ('statistic', 'bin_edges', 'binnumber')) return BinnedStatisticResult(medians, edges[0], xy) def binned_statistic_2d(x, y, values, statistic='mean', bins=10, range=None): """ Compute a bidimensional binned statistic for a set of data. This is a generalization of a histogram2d function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- x : (N,) array_like A sequence of values to be binned along the first dimension. y : (M,) array_like A sequence of values to be binned along the second dimension. values : (N,) array_like The values on which the statistic will be computed. This must be the same shape as `x`. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * the number of bins for the two dimensions (nx=ny=bins), * the number of bins in each dimension (nx, ny = bins), * the bin edges for the two dimensions (x_edges = y_edges = bins), * the bin edges in each dimension (x_edges, y_edges = bins). range : (2,2) array_like, optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. Returns ------- statistic : (nx, ny) ndarray The values of the selected statistic in each two-dimensional bin x_edges : (nx + 1) ndarray The bin edges along the first dimension. y_edges : (ny + 1) ndarray The bin edges along the second dimension. binnumber : 1-D ndarray of ints This assigns to each observation an integer that represents the bin in which this observation falls. Array has the same length as `values`. See Also -------- numpy.histogram2d, binned_statistic, binned_statistic_dd Notes ----- .. versionadded:: 0.11.0 """ # This code is based on np.histogram2d try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = np.asarray(bins, float) bins = [xedges, yedges] medians, edges, xy = binned_statistic_dd([x, y], values, statistic, bins, range) BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult', ('statistic', 'x_edge', 'y_edge', 'binnumber')) return BinnedStatistic2dResult(medians, edges[0], edges[1], xy) def binned_statistic_dd(sample, values, statistic='mean', bins=10, range=None): """ Compute a multidimensional binned statistic for a set of data. This is a generalization of a histogramdd function. A histogram divides the space into bins, and returns the count of the number of points in each bin. This function allows the computation of the sum, mean, median, or other statistic of the values within each bin. Parameters ---------- sample : array_like Data to histogram passed as a sequence of D arrays of length N, or as an (N,D) array. values : array_like The values on which the statistic will be computed. This must be the same shape as x. statistic : string or callable, optional The statistic to compute (default is 'mean'). The following statistics are available: * 'mean' : compute the mean of values for points within each bin. Empty bins will be represented by NaN. * 'median' : compute the median of values for points within each bin. Empty bins will be represented by NaN. * 'count' : compute the count of points within each bin. This is identical to an unweighted histogram. `values` array is not referenced. * 'sum' : compute the sum of values for points within each bin. This is identical to a weighted histogram. * function : a user-defined function which takes a 1D array of values, and outputs a single numerical statistic. This function will be called on the values in each bin. Empty bins will be represented by function([]), or NaN if this returns an error. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. Returns ------- statistic : ndarray, shape(nx1, nx2, nx3,...) The values of the selected statistic in each two-dimensional bin bin_edges : list of ndarrays A list of D arrays describing the (nxi + 1) bin edges for each dimension binnumber : 1-D ndarray of ints This assigns to each observation an integer that represents the bin in which this observation falls. Array has the same length as values. See Also -------- np.histogramdd, binned_statistic, binned_statistic_2d Notes ----- .. versionadded:: 0.11.0 """ known_stats = ['mean', 'median', 'count', 'sum', 'std'] if not callable(statistic) and statistic not in known_stats: raise ValueError('invalid statistic %r' % (statistic,)) # This code is based on np.histogramdd try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = np.atleast_2d(sample).T N, D = sample.shape nbin = np.empty(D, int) edges = D * [None] dedges = D * [None] try: M = len(bins) if M != D: raise AttributeError('The dimension of bins must be equal ' 'to the dimension of the sample x.') except TypeError: bins = D * [bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = np.atleast_1d(np.array(sample.min(0), float)) smax = np.atleast_1d(np.array(sample.max(0), float)) else: smin = np.zeros(D) smax = np.zeros(D) for i in np.arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in np.arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in np.arange(D): if np.isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1) else: edges[i] = np.asarray(bins[i], float) nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = np.diff(edges[i]) nbin = np.asarray(nbin) # Compute the bin number each sample falls into. Ncount = {} for i in np.arange(D): Ncount[i] = np.digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in np.arange(D): # Rounding precision decimal = int(-np.log10(dedges[i].min())) + 6 # Find which points are on the rightmost edge. on_edge = np.where(np.around(sample[:, i], decimal) == np.around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Compute the sample indices in the flattened statistic matrix. ni = nbin.argsort() xy = np.zeros(N, int) for i in np.arange(0, D - 1): xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod() xy += Ncount[ni[-1]] result = np.empty(nbin.prod(), float) if statistic == 'mean': result.fill(np.nan) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) a = flatcount.nonzero() result[a] = flatsum[a] / flatcount[a] elif statistic == 'std': result.fill(0) flatcount = np.bincount(xy, None) flatsum = np.bincount(xy, values) flatsum2 = np.bincount(xy, values ** 2) a = flatcount.nonzero() result[a] = np.sqrt(flatsum2[a] / flatcount[a] - (flatsum[a] / flatcount[a]) ** 2) elif statistic == 'count': result.fill(0) flatcount = np.bincount(xy, None) a = np.arange(len(flatcount)) result[a] = flatcount elif statistic == 'sum': result.fill(0) flatsum = np.bincount(xy, values) a = np.arange(len(flatsum)) result[a] = flatsum elif statistic == 'median': result.fill(np.nan) for i in np.unique(xy): result[i] = np.median(values[xy == i]) elif callable(statistic): with warnings.catch_warnings(): # Numpy generates a warnings for mean/std/... with empty list warnings.filterwarnings('ignore', category=RuntimeWarning) old = np.seterr(invalid='ignore') try: null = statistic([]) except: null = np.nan np.seterr(**old) result.fill(null) for i in np.unique(xy): result[i] = statistic(values[xy == i]) # Shape into a proper matrix result = result.reshape(np.sort(nbin)) for i in np.arange(nbin.size): j = ni.argsort()[i] result = result.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D * [slice(1, -1)] result = result[core] if (result.shape != nbin - 2).any(): raise RuntimeError('Internal Shape Error') BinnedStatisticddResult = namedtuple('BinnedStatisticddResult', ('statistic', 'bin_edges', 'binnumber')) return BinnedStatisticddResult(result, edges, xy)
bsd-3-clause
rvraghav93/scikit-learn
examples/svm/plot_svm_margin.py
88
2540
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors (margin away from hyperplane in direction # perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in # 2-d. margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy - np.sqrt(1 + a ** 2) * margin yy_up = yy + np.sqrt(1 + a ** 2) * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10, edgecolors='k') plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k') plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
festeh/BuildingMachineLearningSystemsWithPython
ch06/utils.py
22
6937
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os import sys import collections import csv import json from matplotlib import pylab import numpy as np DATA_DIR = "data" CHART_DIR = "charts" if not os.path.exists(DATA_DIR): raise RuntimeError("Expecting directory 'data' in current path") if not os.path.exists(CHART_DIR): os.mkdir(CHART_DIR) def tweak_labels(Y, pos_sent_list): pos = Y == pos_sent_list[0] for sent_label in pos_sent_list[1:]: pos |= Y == sent_label Y = np.zeros(Y.shape[0]) Y[pos] = 1 Y = Y.astype(int) return Y def load_sanders_data(dirname=".", line_count=-1): count = 0 topics = [] labels = [] tweets = [] with open(os.path.join(DATA_DIR, dirname, "corpus.csv"), "r") as csvfile: metareader = csv.reader(csvfile, delimiter=',', quotechar='"') for line in metareader: count += 1 if line_count > 0 and count > line_count: break topic, label, tweet_id = line tweet_fn = os.path.join( DATA_DIR, dirname, 'rawdata', '%s.json' % tweet_id) try: tweet = json.load(open(tweet_fn, "r")) except IOError: print(("Tweet '%s' not found. Skip." % tweet_fn)) continue if 'text' in tweet and tweet['user']['lang'] == "en": topics.append(topic) labels.append(label) tweets.append(tweet['text']) tweets = np.asarray(tweets) labels = np.asarray(labels) return tweets, labels def plot_pr(auc_score, name, phase, precision, recall, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.fill_between(recall, precision, alpha=0.5) pylab.plot(recall, precision, lw=1) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label)) filename = name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" % (filename, phase)), bbox_inches="tight") def show_most_informative_features(vectorizer, clf, n=20): c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names())) top = list(zip(c_f[:n], c_f[:-(n + 1):-1])) for (c1, f1), (c2, f2) in top: print("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) def plot_log(): pylab.clf() pylab.figure(num=None, figsize=(6, 5)) x = np.arange(0.001, 1, 0.001) y = np.log(x) pylab.title('Relationship between probabilities and their logarithm') pylab.plot(x, y) pylab.grid(True) pylab.xlabel('P') pylab.ylabel('log(P)') filename = 'log_probs.png' pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(list(range(len(coef)))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_bias_variance(data_sizes, train_errors, test_errors, name): pylab.clf() pylab.ylim([0.0, 1.0]) pylab.xlabel('Data set size') pylab.ylabel('Error') pylab.title("Bias-Variance for '%s'" % name) pylab.plot( data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1) pylab.legend(["train error", "test error"], loc="upper right") pylab.grid() pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png")) def load_sent_word_net(): sent_scores = collections.defaultdict(list) sentiwordnet_path = os.path.join(DATA_DIR, "SentiWordNet_3.0.0_20130122.txt") if not os.path.exists(sentiwordnet_path): print("Please download SentiWordNet_3.0.0 from http://sentiwordnet.isti.cnr.it/download.php, extract it and put it into the data directory") sys.exit(1) with open(sentiwordnet_path, 'r') as csvfile: reader = csv.reader(csvfile, delimiter='\t', quotechar='"') for line in reader: if line[0].startswith("#"): continue if len(line) == 1: continue POS, ID, PosScore, NegScore, SynsetTerms, Gloss = line if len(POS) == 0 or len(ID) == 0: continue # print POS,PosScore,NegScore,SynsetTerms for term in SynsetTerms.split(" "): # drop #number at the end of every term term = term.split("#")[0] term = term.replace("-", " ").replace("_", " ") key = "%s/%s" % (POS, term.split("#")[0]) sent_scores[key].append((float(PosScore), float(NegScore))) for key, value in sent_scores.items(): sent_scores[key] = np.mean(value, axis=0) return sent_scores def log_false_positives(clf, X, y, name): with open("FP_" + name.replace(" ", "_") + ".tsv", "w") as f: false_positive = clf.predict(X) != y for tweet, false_class in zip(X[false_positive], y[false_positive]): f.write("%s\t%s\n" % (false_class, tweet.encode("ascii", "ignore"))) if __name__ == '__main__': plot_log()
mit
phdowling/scikit-learn
sklearn/kernel_approximation.py
258
17973
""" The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import check_array, check_random_state, as_float_array from .utils.extmath import safe_sparse_dot from .utils.validation import check_is_fitted from .metrics.pairwise import pairwise_kernels class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. It implements a variant of Random Kitchen Sinks.[1] Read more in the :ref:`User Guide <rbf_kernel_approx>`. Parameters ---------- gamma : float Parameter of RBF kernel: exp(-gamma * x^2) n_components : int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. [1] "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning" by A. Rahimi and Benjamin Recht. (http://www.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = check_array(X, accept_sparse='csr') projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = as_float_array(X, copy=True) X = check_array(X, copy=False) if (X < 0).any(): raise ValueError("X may not contain entries smaller than zero.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi2 kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set parameters.""" X = check_array(X, accept_sparse='csr') if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.sample_interval return self def transform(self, X, y=None): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new : {array, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ msg = ("%(name)s is not fitted. Call fit to set the parameters before" " calling transform") check_is_fitted(self, "sample_interval_", msg=msg) X = check_array(X, accept_sparse='csr') sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Read more in the :ref:`User Guide <nystroem_kernel_approx>`. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Attributes ---------- components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of ``components_`` in the training set. normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystroem method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.kernel_params = kernel_params self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ X = check_array(X, accept_sparse='csr') rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **self._get_kernel_params()) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) S = np.maximum(S, 1e-12) self.normalization_ = np.dot(U * 1. / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X, accept_sparse='csr') kernel_params = self._get_kernel_params() embedded = pairwise_kernels(X, self.components_, metric=self.kernel, filter_params=True, **kernel_params) return np.dot(embedded, self.normalization_.T) def _get_kernel_params(self): params = self.kernel_params if params is None: params = {} if not callable(self.kernel): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 return params
bsd-3-clause
Sentient07/scikit-learn
benchmarks/bench_sgd_regression.py
61
5612
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) plt.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): plt.subplot(m, 2, i + 1) plt.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") plt.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") plt.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") plt.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") plt.legend(prop={"size": 10}) plt.xlabel("n_train") plt.ylabel("RMSE") plt.title("Test error - %d features" % list_n_features[j]) i += 1 plt.subplot(m, 2, i + 1) plt.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") plt.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") plt.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") plt.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") plt.legend(prop={"size": 10}) plt.xlabel("n_train") plt.ylabel("Time [sec]") plt.title("Training time - %d features" % list_n_features[j]) i += 1 plt.subplots_adjust(hspace=.30) plt.show()
bsd-3-clause
jaeilepp/mne-python
mne/decoding/search_light.py
1
24632
# Author: Jean-Remi King <[email protected]> # # License: BSD (3-clause) import numpy as np from .mixin import TransformerMixin from .base import BaseEstimator, _check_estimator from ..parallel import parallel_func class SlidingEstimator(BaseEstimator, TransformerMixin): """Search Light. Fit, predict and score a series of models to each subset of the dataset along the last dimension. Each entry in the last dimension is referred to as a task. Parameters ---------- base_estimator : object The base estimator to iteratively fit on a subset of the dataset. scoring : callable, string, defaults to None Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. Note that the predict_method is automatically identified if scoring is a string (e.g. scoring="roc_auc" calls predict_proba) but is not automatically set if scoring is a callable (e.g. scoring=sklearn.metrics.roc_auc_score). n_jobs : int, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. Attributes ---------- ``estimators_`` : array-like, shape (n_tasks,) List of fitted scikit-learn estimators (one per task). """ def __init__(self, base_estimator, scoring=None, n_jobs=1): # noqa: D102 _check_estimator(base_estimator) self.base_estimator = base_estimator self.n_jobs = n_jobs self.scoring = scoring if not isinstance(self.n_jobs, int): raise ValueError('n_jobs must be int, got %s' % n_jobs) def __repr__(self): # noqa: D105 repr_str = '<' + super(SlidingEstimator, self).__repr__() if hasattr(self, 'estimators_'): repr_str = repr_str[:-1] repr_str += ', fitted with %i estimators' % len(self.estimators_) return repr_str + '>' def fit(self, X, y): """Fit a series of independent estimators to the dataset. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The training input samples. For each data slice, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- self : object Return self. """ self._check_Xy(X, y) self.estimators_ = list() # For fitting, the parallelization is across estimators. parallel, p_func, n_jobs = parallel_func(_sl_fit, self.n_jobs) n_jobs = min(n_jobs, X.shape[-1]) estimators = parallel( p_func(self.base_estimator, split, y) for split in np.array_split(X, n_jobs, axis=-1)) self.estimators_ = np.concatenate(estimators, 0) return self def fit_transform(self, X, y): """Fit and transform a series of independent estimators to the dataset. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The training input samples. For each task, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- y_pred : array, shape (n_samples, n_tasks) | (n_samples, n_tasks, n_targets) The predicted values for each estimator. """ # noqa: E501 return self.fit(X, y).transform(X) def _transform(self, X, method): """Aux. function to make parallel predictions/transformation.""" self._check_Xy(X) method = _check_method(self.base_estimator, method) if X.shape[-1] != len(self.estimators_): raise ValueError('The number of estimators does not match ' 'X.shape[-1]') # For predictions/transforms the parallelization is across the data and # not across the estimators to avoid memory load. parallel, p_func, n_jobs = parallel_func(_sl_transform, self.n_jobs) n_jobs = min(n_jobs, X.shape[-1]) X_splits = np.array_split(X, n_jobs, axis=-1) est_splits = np.array_split(self.estimators_, n_jobs) y_pred = parallel(p_func(est, x, method) for (est, x) in zip(est_splits, X_splits)) y_pred = np.concatenate(y_pred, axis=1) return y_pred def transform(self, X): """Transform each data slice/task with a series of independent estimators. The number of tasks in X should match the number of tasks/estimators given at fit time. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The input samples. For each data slice/task, the corresponding estimator makes a transformation of the data, e.g. ``[estimators[ii].transform(X[..., ii]) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) Returns ------- Xt : array, shape (n_samples, n_estimators) The transformed values generated by each estimator. """ # noqa: E501 return self._transform(X, 'transform') def predict(self, X): """Predict each data slice/task with a series of independent estimators. The number of tasks in X should match the number of tasks/estimators given at fit time. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The input samples. For each data slice, the corresponding estimator makes the sample predictions, e.g.: ``[estimators[ii].predict(X[..., ii]) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) Returns ------- y_pred : array, shape (n_samples, n_estimators) | (n_samples, n_tasks, n_targets) Predicted values for each estimator/data slice. """ # noqa: E501 return self._transform(X, 'predict') def predict_proba(self, X): """Predict each data slice with a series of independent estimators. The number of tasks in X should match the number of tasks/estimators given at fit time. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The input samples. For each data slice, the corresponding estimator makes the sample probabilistic predictions, e.g.: ``[estimators[ii].predict_proba(X[..., ii]) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) Returns ------- y_pred : array, shape (n_samples, n_tasks, n_classes) Predicted probabilities for each estimator/data slice/task. """ # noqa: E501 return self._transform(X, 'predict_proba') def decision_function(self, X): """Estimate distances of each data slice to the hyperplanes. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The input samples. For each data slice, the corresponding estimator outputs the distance to the hyperplane, e.g.: ``[estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) Returns ------- y_pred : array, shape (n_samples, n_estimators, n_classes * (n_classes-1) // 2) Predicted distances for each estimator/data slice. Notes ----- This requires base_estimator to have a ``decision_function`` method. """ # noqa: E501 return self._transform(X, 'decision_function') def _check_Xy(self, X, y=None): """Aux. function to check input data.""" if y is not None: if len(X) != len(y) or len(y) < 1: raise ValueError('X and y must have the same length.') if X.ndim < 3: raise ValueError('X must have at least 3 dimensions.') def score(self, X, y): """Score each estimator on each task. The number of tasks in X should match the number of tasks/estimators given at fit time, i.e. we need ``X.shape[-1] == len(self.estimators_)``. Parameters ---------- X : array, shape (n_samples, nd_features, n_tasks) The input samples. For each data slice, the corresponding estimator scores the prediction, e.g.: ``[estimators[ii].score(X[..., ii], y) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- score : array, shape (n_samples, n_estimators) Score for each estimator/task. """ # noqa: E501 from sklearn.metrics.scorer import check_scoring self._check_Xy(X) if X.shape[-1] != len(self.estimators_): raise ValueError('The number of estimators does not match ' 'X.shape[-1]') scoring = check_scoring(self.base_estimator, self.scoring) y = _fix_auc(scoring, y) # For predictions/transforms the parallelization is across the data and # not across the estimators to avoid memory load. parallel, p_func, n_jobs = parallel_func(_sl_score, self.n_jobs) n_jobs = min(n_jobs, X.shape[-1]) X_splits = np.array_split(X, n_jobs, axis=-1) est_splits = np.array_split(self.estimators_, n_jobs) score = parallel(p_func(est, scoring, x, y) for (est, x) in zip(est_splits, X_splits)) score = np.concatenate(score, axis=0) return score def _sl_fit(estimator, X, y): """Aux. function to fit SlidingEstimator in parallel. Fit a clone estimator to each slice of data. Parameters ---------- base_estimator : object The base estimator to iteratively fit on a subset of the dataset. X : array, shape (n_samples, nd_features, n_estimators) The target data. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) y : array, shape (n_sample, ) The target values. Returns ------- estimators_ : list of estimators The fitted estimators. """ from sklearn.base import clone estimators_ = list() for ii in range(X.shape[-1]): est = clone(estimator) est.fit(X[..., ii], y) estimators_.append(est) return estimators_ def _sl_transform(estimators, X, method): """Aux. function to transform SlidingEstimator in parallel. Applies transform/predict/decision_function etc for each slice of data. Parameters ---------- estimators : list of estimators The fitted estimators. X : array, shape (n_samples, nd_features, n_estimators) The target data. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) method : str The estimator method to use (e.g. 'predict', 'transform'). Returns ------- y_pred : array, shape (n_samples, n_estimators, n_classes * (n_classes-1) // 2) The transformations for each slice of data. """ # noqa: E501 for ii, est in enumerate(estimators): transform = getattr(est, method) _y_pred = transform(X[..., ii]) # Initialize array of predictions on the first transform iteration if ii == 0: y_pred = _sl_init_pred(_y_pred, X) y_pred[:, ii, ...] = _y_pred return y_pred def _sl_init_pred(y_pred, X): """Aux. function to SlidingEstimator to initialize y_pred.""" n_sample, n_tasks = X.shape[0], X.shape[-1] y_pred = np.zeros((n_sample, n_tasks) + y_pred.shape[1:], y_pred.dtype) return y_pred def _sl_score(estimators, scoring, X, y): """Aux. function to score SlidingEstimator in parallel. Predict and score each slice of data. Parameters ---------- estimators : list, shape (n_tasks,) The fitted estimators. X : array, shape (n_samples, nd_features, n_tasks) The target data. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks) scoring : callable, string or None If scoring is None (default), the predictions are internally generated by estimator.score(). Else, we must first get the predictions to pass them to ad-hoc scorer. y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- score : array, shape (n_tasks,) The score for each task / slice of data. """ n_tasks = X.shape[-1] score = np.zeros(n_tasks) for ii, est in enumerate(estimators): score[ii] = scoring(est, X[..., ii], y) return score def _check_method(estimator, method): """Check that an estimator has the method attribute. If method == 'transform' and estimator does not have 'transform', use 'predict' instead. """ if method == 'transform' and not hasattr(estimator, 'transform'): method = 'predict' if not hasattr(estimator, method): ValueError('base_estimator does not have `%s` method.' % method) return method class GeneralizingEstimator(SlidingEstimator): """Generalization Light. Fit a search-light along the last dimension and use them to apply a systematic cross-tasks generalization. Parameters ---------- base_estimator : object The base estimator to iteratively fit on a subset of the dataset. scoring : callable | string | None Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. Note that the predict_method is automatically identified if scoring is a string (e.g. scoring="roc_auc" calls predict_proba) but is not automatically set if scoring is a callable (e.g. scoring=sklearn.metrics.roc_auc_score). n_jobs : int, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. """ def __repr__(self): # noqa: D105 repr_str = super(GeneralizingEstimator, self).__repr__() if hasattr(self, 'estimators_'): repr_str = repr_str[:-1] repr_str += ', fitted with %i estimators>' % len(self.estimators_) return repr_str def _transform(self, X, method): """Aux. function to make parallel predictions/transformation.""" self._check_Xy(X) method = _check_method(self.base_estimator, method) parallel, p_func, n_jobs = parallel_func(_gl_transform, self.n_jobs) n_jobs = min(n_jobs, X.shape[-1]) y_pred = parallel( p_func(self.estimators_, x_split, method) for x_split in np.array_split(X, n_jobs, axis=-1)) y_pred = np.concatenate(y_pred, axis=2) return y_pred def transform(self, X): """Transform each data slice with all possible estimators. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The input samples. For estimator the corresponding data slice is used to make a transformation. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) Returns ------- Xt : array, shape (n_samples, n_estimators, n_slices) The transformed values generated by each estimator. """ return self._transform(X, 'transform') def predict(self, X): """Predict each data slice with all possible estimators. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The training input samples. For each data slice, a fitted estimator predicts each slice of the data independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) Returns ------- y_pred : array, shape (n_samples, n_estimators, n_slices) | (n_samples, n_estimators, n_slices, n_targets) The predicted values for each estimator. """ # noqa: E501 return self._transform(X, 'predict') def predict_proba(self, X): """Estimate probabilistic estimates of each data slice with all possible estimators. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The training input samples. For each data slice, a fitted estimator predicts a slice of the data. The feature dimension can be multidimensional e.g. ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``. Returns ------- y_pred : array, shape (n_samples, n_estimators, n_slices, n_classes) The predicted values for each estimator. Notes ----- This requires base_estimator to have a `predict_proba` method. """ # noqa: E501 return self._transform(X, 'predict_proba') def decision_function(self, X): """Estimate distances of each data slice to all hyperplanes. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The training input samples. Each estimator outputs the distance to its hyperplane, e.g.: ``[estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]``. The feature dimension can be multidimensional e.g. ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``. Returns ------- y_pred : array, shape (n_samples, n_estimators, n_slices, n_classes * (n_classes-1) // 2) The predicted values for each estimator. Notes ----- This requires base_estimator to have a ``decision_function`` method. """ # noqa: E501 return self._transform(X, 'decision_function') def score(self, X, y): """Score each of the estimators on the tested dimensions. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The input samples. For each data slice, the corresponding estimator scores the prediction, e.g.: ``[estimators[ii].score(X[..., ii], y) for ii in range(n_slices)]``. The feature dimension can be multidimensional e.g. ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``. y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- score : array, shape (n_samples, n_estimators, n_slices) Score for each estimator / data slice couple. """ # noqa: E501 from sklearn.metrics.scorer import check_scoring self._check_Xy(X) # For predictions/transforms the parallelization is across the data and # not across the estimators to avoid memory load. parallel, p_func, n_jobs = parallel_func(_gl_score, self.n_jobs) n_jobs = min(n_jobs, X.shape[-1]) X_splits = np.array_split(X, n_jobs, axis=-1) scoring = check_scoring(self.base_estimator, self.scoring) y = _fix_auc(scoring, y) score = parallel(p_func(self.estimators_, scoring, x, y) for x in X_splits) score = np.concatenate(score, axis=1) return score def _gl_transform(estimators, X, method): """Transform the dataset. This will apply each estimator to all slices of the data. Parameters ---------- X : array, shape (n_samples, nd_features, n_slices) The training input samples. For each data slice, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) Returns ------- Xt : array, shape (n_samples, n_slices) The transformed values generated by each estimator. """ n_sample, n_iter = X.shape[0], X.shape[-1] for ii, est in enumerate(estimators): # stack generalized data for faster prediction X_stack = X.transpose(np.r_[0, X.ndim - 1, range(1, X.ndim - 1)]) X_stack = X_stack.reshape(np.r_[n_sample * n_iter, X_stack.shape[2:]]) transform = getattr(est, method) _y_pred = transform(X_stack) # unstack generalizations if _y_pred.ndim == 2: _y_pred = np.reshape(_y_pred, [n_sample, n_iter, _y_pred.shape[1]]) else: shape = np.r_[n_sample, n_iter, _y_pred.shape[1:]].astype(int) _y_pred = np.reshape(_y_pred, shape) # Initialize array of predictions on the first transform iteration if ii == 0: y_pred = _gl_init_pred(_y_pred, X, len(estimators)) y_pred[:, ii, ...] = _y_pred return y_pred def _gl_init_pred(y_pred, X, n_train): """Aux. function to GeneralizingEstimator to initialize y_pred.""" n_sample, n_iter = X.shape[0], X.shape[-1] if y_pred.ndim == 3: y_pred = np.zeros((n_sample, n_train, n_iter, y_pred.shape[-1]), y_pred.dtype) else: y_pred = np.zeros((n_sample, n_train, n_iter), y_pred.dtype) return y_pred def _gl_score(estimators, scoring, X, y): """Score GeneralizingEstimator in parallel. Predict and score each slice of data. Parameters ---------- estimators : list of estimators The fitted estimators. scoring : callable, string or None If scoring is None (default), the predictions are internally generated by estimator.score(). Else, we must first get the predictions to pass them to ad-hoc scorer. X : array, shape (n_samples, nd_features, n_slices) The target data. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) y : array, shape (n_samples,) | (n_samples, n_targets) The target values. Returns ------- score : array, shape (n_estimators, n_slices) The score for each slice of data. """ # FIXME: The level parallization may be a bit high, and might be memory # consuming. Perhaps need to lower it down to the loop across X slices. score_shape = [len(estimators), X.shape[-1]] for ii, est in enumerate(estimators): for jj in range(X.shape[-1]): _score = scoring(est, X[..., jj], y) # Initialize array of predictions on the first score iteration if (ii == 0) & (jj == 0): dtype = type(_score) score = np.zeros(score_shape, dtype) score[ii, jj, ...] = _score return score def _fix_auc(scoring, y): from sklearn.preprocessing import LabelEncoder # This fixes sklearn's inability to compute roc_auc when y not in [0, 1] # scikit-learn/scikit-learn#6874 if scoring is not None: if ( hasattr(scoring, '_score_func') and hasattr(scoring._score_func, '__name__') and scoring._score_func.__name__ == 'roc_auc_score' ): if np.ndim(y) != 1 or len(set(y)) != 2: raise ValueError('roc_auc scoring can only be computed for ' 'two-class problems.') y = LabelEncoder().fit_transform(y) return y
bsd-3-clause
ZenDevelopmentSystems/scikit-learn
sklearn/preprocessing/__init__.py
268
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
rexshihaoren/scikit-learn
sklearn/metrics/cluster/supervised.py
207
27395
"""Utilities to evaluate the clustering performance of models Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # License: BSD 3 clause from math import log from scipy.misc import comb from scipy.sparse import coo_matrix import numpy as np from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None): """Build a contengency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps: None or float If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. Returns ------- contingency: array, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. """ classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int).toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Read more in the :ref:`User Guide <adjusted_rand_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari : float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://www.springerlink.com/content/x64124718341j1j0/ .. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 or classes.shape[0] == clusters.shape[0] == len(labels_true)): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) # Compute the ARI using the contingency data sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0)) sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten()) prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c) / 2. return ((sum_comb - prod_comb) / (mean_comb - prod_comb)) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure: float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) MI = mutual_info_score(labels_true, labels_pred) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <homogeneity_completeness>`. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency: None or array, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi: float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
homeslike/OpticalTweezer
scripts/p0.4_at0.1/vCOMhistogram.py
28
2448
import math import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab from subprocess import call from scipy.stats import norm # proc = call("ls *.dat",shell=True) # datetime = "170123_2033_" datetime = sys.argv[1]+"_" gasTempDataIn = np.genfromtxt(datetime+"gasTempData.dat",usecols=0,skip_header=100) gasTempDataOut = np.genfromtxt(datetime+"gasTempData.dat",usecols=1,skip_header=100) vCOMData_x = np.genfromtxt(datetime+"vCOMData.dat",usecols=0,skip_header=100) vCOMData_y = np.genfromtxt(datetime+"vCOMData.dat",usecols=1,skip_header=100) vCOMData_z = np.genfromtxt(datetime+"vCOMData.dat",usecols=2,skip_header=100) N = 32 vSqd = [] for i in range(0,len(vCOMData_x)): vSqd.append((vCOMData_x[i]*vCOMData_x[i]+vCOMData_x[i]*vCOMData_x[i]+vCOMData_x[i]*vCOMData_x[i])*0.5) vSqdMean = np.mean(vSqd) histogram_x,bins_x = np.histogram(vCOMData_x,bins=100,normed=True) histogram_y,bins_y = np.histogram(vCOMData_y,bins=100,normed=True) histogram_z,bins_z = np.histogram(vCOMData_z,bins=100,normed=True) inTemp = np.mean(gasTempDataIn) outTemp = np.mean(gasTempDataOut) statistics = open(datetime+"statistics.dat","w") statistics.write("GasIn: " + str(inTemp)+"\n") statistics.write("GasOut: " + str(outTemp)+"\n") statistics.write("T_COM: " + str(2./3. * vSqdMean)+"\n") statistics.write("Mu_x " + str(np.mean(vCOMData_x))+"\n") statistics.write("Sigma_x: " + str(np.std(vCOMData_x))+"\n") statistics.write("Mu_y " + str(np.mean(vCOMData_y))+"\n") statistics.write("Sigma_y: " + str(np.std(vCOMData_y))+"\n") statistics.write("Mu_z " + str(np.mean(vCOMData_z))+"\n") statistics.write("Sigma_z: " + str(np.std(vCOMData_z))+"\n") histogram_x_file = open(datetime+"histogram_vx.dat","w") histogram_y_file = open(datetime+"histogram_vy.dat","w") histogram_z_file = open(datetime+"histogram_vz.dat","w") for i in range(0,len(histogram_x)): histogram_x_file.write(str(bins_x[i]) + "\t" + str(histogram_x[i]) + "\n") histogram_y_file.write(str(bins_y[i]) + "\t" + str(histogram_y[i]) + "\n") histogram_z_file.write(str(bins_z[i]) + "\t" + str(histogram_z[i]) + "\n") # plt.figure(1) # plt.hist(vCOMData_x,bins=100) # plt.figure(2) # plt.hist(vCOMData_y,bins=100) # plt.figure(3) # plt.hist(vCOMData_z,bins=100) # plt.show() # plt.figure(1) # plt.plot(vSqd) # plt.plot((0,700),(vSqdMean,vSqdMean)) # plt.figure(2) # plt.hist(vCOMData_x,bins=100,normed=True) # plt.plot(x,gasInPDF) # plt.show()
mit
dgwakeman/mne-python
examples/plot_compute_mne_inverse.py
21
1885
""" ================================================ Compute MNE-dSPM inverse solution on evoked data ================================================ Compute dSPM inverse solution on MNE evoked dataset and stores the solution in stc files for visualisation. """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt from mne.datasets import sample from mne import read_evokeds from mne.minimum_norm import apply_inverse, read_inverse_operator print(__doc__) data_path = sample.data_path() fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' subjects_dir = data_path + '/subjects' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Load data evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) inverse_operator = read_inverse_operator(fname_inv) # Compute inverse solution stc = apply_inverse(evoked, inverse_operator, lambda2, method, pick_ori=None) # Save result in stc files stc.save('mne_%s_inverse' % method) ############################################################################### # View activation time-series plt.plot(1e3 * stc.times, stc.data[::100, :].T) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) plt.show() # Plot brain in 3D with PySurfer if available brain = stc.plot(hemi='rh', subjects_dir=subjects_dir) brain.show_view('lateral') # use peak getter to move vizualization to the time point of the peak vertno_max, time_idx = stc.get_peak(hemi='rh', time_as_index=True) brain.set_data_time_index(time_idx) # draw marker at maximum peaking vertex brain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue', scale_factor=0.6) brain.save_image('dSPM_map.png')
bsd-3-clause
silverfield/pythonsessions
s10_complexity/complexity.py
1
7757
__author__ = 'ferrard' # --------------------------------------------------------------- # Imports # --------------------------------------------------------------- import time import matplotlib.pyplot as plt import numpy as np import random # --------------------------------------------------------------- # Interface - Timing function # --------------------------------------------------------------- def time_them(k, m, *functions): """Times the functions (accepting one argument - n) on k values of n up to m Stops the timing once the function's execution takes: - more then 2 sec - more then 1 sec longer then on previous value of n """ n_values = list(range(1, m)) if m > k: n_values = list(range(1, m, m//k)) results = [] for i in range(len(functions)): results_for_f = [] for n in n_values: before = time.time() functions[i](n) after = time.time() results_for_f.append(after - before) if results_for_f[-1] > 2 or (len(results_for_f) > 1 and results_for_f[-1] - results_for_f[-2] > 1): break results.append(results_for_f) for i in range(len(functions)): plt.plot(n_values[:len(results[i])], results[i], label=functions[i].__name__) plt.legend() plt.show() # --------------------------------------------------------------- # Interface - try out # --------------------------------------------------------------- def n_sqrt_n(n): res = 0 for i in range(n*int(sp.sqrt(n))): res += 1 return res def n_squared(n): res = 0 for i in range(n*n): res += 1 return res # --------------------------------------------------------------- # Interface - Sum to # --------------------------------------------------------------- def sum_builtin(n): """Sums numbers up to n using built-in function - O(n)""" print(sum(range(n))) def sum_explicit(n): """Sums numbers up to n explicitely - O(n)""" total = 0 for i in range(n): total += i print(total) def sum_analytic(n): """Sums numbers up to n, analytically - O(1)""" print(n*(n + 1)//2) # --------------------------------------------------------------- # Interface - Sum of squares to # --------------------------------------------------------------- def sum_sq_builtin(n): """Sums squares of numbers up to n using built-in function - O(n)""" print(sum(i*i for i in range(n))) def sum_sq_explicit(n): """Sums squares of numbers up to n explicitely - O(n)""" total = 0 for i in range(n): total += i*i print(total) def sum_sq_analytic(n): """Sums squares of numbers up to n, analytically - O(1)""" print(n*(n + 1)*(2*n + 1)//6) # --------------------------------------------------------------- # Sorting # --------------------------------------------------------------- MAX_SORT_NUMBER = 1000 def check_is_sorted(l): n = len(l) print(str(n) + " - Sorted OK" if all(l[i] <= l[i + 1] for i in range(n - 1)) else "Sorted NOK") def sort_quadratic(n): """Sort n random numbers - using inefficient quadratic sort - O(n^2)""" l = list(np.random.random_integers(0, MAX_SORT_NUMBER, n)) for i in range(n): for j in range(i + 1, n): if l[i] > l[j]: tmp = l[i] l[i] = l[j] l[j] = tmp check_is_sorted(l) def sort_inbuilt(n): """Sorts n random numbers - using efficient inbuilt function - O(n log n)""" l = list(np.random.random_integers(0, MAX_SORT_NUMBER, n)) l.sort() check_is_sorted(l) def sort_counting(n): """Sorts n random numbers bounded in a small range - using efficient linear sort - O(n)""" l = list(np.random.random_integers(0, MAX_SORT_NUMBER, n)) counts = [0]*(MAX_SORT_NUMBER + 1) for i in l: counts[i] += 1 counter = 0 for i in range(len(counts)): for j in range(counts[i]): l[counter] = i counter += 1 check_is_sorted(l) # --------------------------------------------------------------- # Fibonnachi numbers # --------------------------------------------------------------- def fib_n_naive(n): """Naive (recursive) way to compute Fibonacci's numbers. O(F(n))""" if n == 0: return 0 if n == 1: return 1 return fib_n_naive(n - 1) + fib_n_naive(n - 2) def fib_n(n): """Efficient way to compute Fibonacci's numbers. Complexity = O(n)""" fibs = [0, 1] # we don't need to store all along the way, but the memory is still as good as in the naive alg for i in range(2, n + 1): fibs.append(fibs[-2] + fibs[-1]) print(fibs[-1]) return fibs[-1] def fib_n_closed(n): """Closed-form computation Fibonacci's numbers. Complexity = O(n) WRONG! Problems with precision! """ fi = (1 + np.sqrt(5))/2 res = int(np.round((fi**n - (-fi)**(-n))/np.sqrt(5))) print(res) return res # --------------------------------------------------------------- # Primality tests # --------------------------------------------------------------- def check_hundred_primes_naive(n): """Checks 100 random numbers with n digits - if they are prime, using the naive alg. O(2^(sqrt(n))""" for i in range(100): number = random.randint(10**n, 10**(n + 1)) primality_test_naive(number) def check_hundred_primes_miller_rabin(n): """Checks 100 random numbers with n digits - if they are prime, using Miller-Rabin test. O(n)""" for i in range(100): number = random.randint(10**n, 10**(n + 1)) primality_test_miller_rabin(number) def primality_test_naive(n): """Does primality test for n in a naive way. Complexity O(sqrt(n))""" print("Checking " + str(n)) if n % 2 == 0: n += 1 for i in range(2, n): if i*i > n: break if n % i == 0: print(str(n) + " is composite") return False print(str(n) + " is prime") return True def modular_exp(a, b, n): """Computes a^b mod n. Complexity O(log(b))""" res = 1 q = a while b > 0: if b % 2 == 1: res = q*res % n q = q*q % n b //= 2 return res def primality_test_miller_rabin(n): """Miller-Rabin primality test. Complexity O(log(n))""" print("Checking " + str(n)) if n % 2 == 0: n += 1 # write m as t*2^s s = 0 x = 2 while (n - 1) % x == 0: s += 1 x *= 2 s -= 1 x //= 2 t = (n - 1)//x # do k iterations, looking for witnesses k = 10 for i in range(k): b = random.randint(2, n - 2) l = modular_exp(b, t, n) if l in [1, n - 1]: continue for j in range(1, s): l = l*l % n if l == n - 1: break if l != n - 1: # found witness print(str(n) + " is composite") return False print(str(n) + " is prime with probability > " + str(1 - (1/4)**k)) return True # --------------------------------------------------------------- # Main # --------------------------------------------------------------- def main(): print(modular_exp(111, 98, 197)) exit() time_them(20, 1000000, sum_builtin, sum_explicit, sum_analytic) time_them(20, 100000, sum_sq_builtin, sum_sq_explicit, sum_sq_analytic) time_them(25, 50, fib_n, fib_n_naive) time_them(25, 500, fib_n, fib_n_closed) time_them(10, 10000, sort_counting, sort_inbuilt, sort_quadratic) time_them(10, 1000000, sort_counting, sort_inbuilt) time_them(30, 80, check_hundred_primes_naive, check_hundred_primes_miller_rabin) if __name__ == '__main__': main()
mit
equialgo/scikit-learn
sklearn/utils/random.py
46
10523
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if p is not None: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if p is not None: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if p is not None: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
jseabold/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
yuraic/koza4ok
test/run1/draw_roc_sklearn_vs_skTMVA_electrons.py
1
1458
import ROOT from ROOT import TGraphErrors from array import array from mva_tools.build_roc_simple import build_roc if __name__ == "__main__": path = "/Users/musthero/Documents/Yura/Applications/tmva_local/BDT_score_distributions_electrons.root" hsig_skTMVA_path = "histo_tmva_sig" hbkg_skTMVA_path = "histo_tmva_bkg" hsig_sklearn_path = "histo_sk_sig" hbkg_sklearn_path = "histo_sk_bkg" rootfile = ROOT.TFile.Open(path) if rootfile.IsZombie(): print "Root file is corrupt" hSig_skTMVA = rootfile.Get(hsig_skTMVA_path) hBkg_skTMVA = rootfile.Get(hbkg_skTMVA_path) hSig_sklearn = rootfile.Get(hsig_sklearn_path) hBkg_sklearn = rootfile.Get(hbkg_sklearn_path) # Stack for keeping plots plots = [] # Getting ROC-curve for skTMVA g1 = build_roc(hSig_skTMVA, hBkg_skTMVA) g1.SetName("g1") g1.SetTitle("ROC curve [electrons]") plots.append(g1) g1.SetLineColor(ROOT.kBlue) g1.Draw("AL") # draw TGraph with no marker dots # Getting ROC-curve for sklearn g2 = build_roc(hSig_sklearn, hBkg_sklearn) g2.SetName("g2") g2.SetTitle("ROC curve [electrons]") plots.append(g2) g2.SetLineStyle(7) g2.SetLineColor(ROOT.kRed) g2.Draw("SAME") # draw TGraph with no marker dots leg = ROOT. TLegend(0.1,0.5,0.3,0.4) #leg.SetHeader("ROC curve") leg.AddEntry("g1","skTMVA","l") leg.AddEntry("g2","sklearn","l") leg.Draw()
mit
jkthompson/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/quiver.py
69
36790
""" Support for plotting vector fields. Presently this contains Quiver and Barb. Quiver plots an arrow in the direction of the vector, with the size of the arrow related to the magnitude of the vector. Barbs are like quiver in that they point along a vector, but the magnitude of the vector is given schematically by the presence of barbs or flags on the barb. This will also become a home for things such as standard deviation ellipses, which can and will be derived very easily from the Quiver code. """ import numpy as np from numpy import ma import matplotlib.collections as collections import matplotlib.transforms as transforms import matplotlib.text as mtext import matplotlib.artist as martist import matplotlib.font_manager as font_manager from matplotlib.cbook import delete_masked_points from matplotlib.patches import CirclePolygon import math _quiver_doc = """ Plot a 2-D field of arrows. call signatures:: quiver(U, V, **kw) quiver(U, V, C, **kw) quiver(X, Y, U, V, **kw) quiver(X, Y, U, V, C, **kw) Arguments: *X*, *Y*: The x and y coordinates of the arrow locations (default is tail of arrow; see *pivot* kwarg) *U*, *V*: give the *x* and *y* components of the arrow vectors *C*: an optional array used to map colors to the arrows All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*) match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present. Keyword arguments: *units*: ['width' | 'height' | 'dots' | 'inches' | 'x' | 'y' ] arrow units; the arrow dimensions *except for length* are in multiples of this unit. * 'width' or 'height': the width or height of the axes * 'dots' or 'inches': pixels or inches, based on the figure dpi * 'x' or 'y': *X* or *Y* data units The arrows scale differently depending on the units. For 'x' or 'y', the arrows get larger as one zooms in; for other units, the arrow size is independent of the zoom state. For 'width or 'height', the arrow size increases with the width and height of the axes, respectively, when the the window is resized; for 'dots' or 'inches', resizing does not change the arrows. *angles*: ['uv' | 'xy' | array] With the default 'uv', the arrow aspect ratio is 1, so that if *U*==*V* the angle of the arrow on the plot is 45 degrees CCW from the *x*-axis. With 'xy', the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary angles may be specified as an array of values in degrees, CCW from the *x*-axis. *scale*: [ None | float ] data units per arrow unit, e.g. m/s per plot width; a smaller scale parameter makes the arrow longer. If *None*, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. *width*: shaft width in arrow units; default depends on choice of units, above, and number of vectors; a typical starting value is about 0.005 times the width of the plot. *headwidth*: scalar head width as multiple of shaft width, default is 3 *headlength*: scalar head length as multiple of shaft width, default is 5 *headaxislength*: scalar head length at shaft intersection, default is 4.5 *minshaft*: scalar length below which arrow scales, in units of head length. Do not set this to less than 1, or small arrows will look terrible! Default is 1 *minlength*: scalar minimum length as a multiple of shaft width; if an arrow length is less than this, plot a dot (hexagon) of this diameter instead. Default is 1. *pivot*: [ 'tail' | 'middle' | 'tip' ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. *color*: [ color | color sequence ] This is a synonym for the :class:`~matplotlib.collections.PolyCollection` facecolor kwarg. If *C* has been set, *color* has no effect. The defaults give a slightly swept-back arrow; to make the head a triangle, make *headaxislength* the same as *headlength*. To make the arrow more pointed, reduce *headwidth* or increase *headlength* and *headaxislength*. To make the head smaller relative to the shaft, scale down all the head parameters. You will probably do best to leave minshaft alone. linewidths and edgecolors can be used to customize the arrow outlines. Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s """ % martist.kwdocd _quiverkey_doc = """ Add a key to a quiver plot. call signature:: quiverkey(Q, X, Y, U, label, **kw) Arguments: *Q*: The Quiver instance returned by a call to quiver. *X*, *Y*: The location of the key; additional explanation follows. *U*: The length of the key *label*: a string with the length and units of the key Keyword arguments: *coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ] Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are normalized coordinate systems with 0,0 in the lower left and 1,1 in the upper right; 'data' are the axes data coordinates (used for the locations of the vectors in the quiver plot itself); 'inches' is position in the figure in inches, with 0,0 at the lower left corner. *color*: overrides face and edge colors from *Q*. *labelpos* = [ 'N' | 'S' | 'E' | 'W' ] Position the label above, below, to the right, to the left of the arrow, respectively. *labelsep*: Distance in inches between the arrow and the label. Default is 0.1 *labelcolor*: defaults to default :class:`~matplotlib.text.Text` color. *fontproperties*: A dictionary with keyword arguments accepted by the :class:`~matplotlib.font_manager.FontProperties` initializer: *family*, *style*, *variant*, *size*, *weight* Any additional keyword arguments are used to override vector properties taken from *Q*. The positioning of the key depends on *X*, *Y*, *coordinates*, and *labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y* positions the head, and if *labelpos* is 'W', *X*, *Y* positions the tail; in either of these two cases, *X*, *Y* is somewhere in the middle of the arrow+label key object. """ class QuiverKey(martist.Artist): """ Labelled arrow for use as a quiver plot scale key. """ halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'} valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'} pivot = {'N': 'mid', 'S': 'mid', 'E': 'tip', 'W': 'tail'} def __init__(self, Q, X, Y, U, label, **kw): martist.Artist.__init__(self) self.Q = Q self.X = X self.Y = Y self.U = U self.coord = kw.pop('coordinates', 'axes') self.color = kw.pop('color', None) self.label = label self._labelsep_inches = kw.pop('labelsep', 0.1) self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi) def on_dpi_change(fig): self.labelsep = (self._labelsep_inches * fig.dpi) self._initialized = False # simple brute force update # works because _init is called # at the start of draw. Q.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) self.labelpos = kw.pop('labelpos', 'N') self.labelcolor = kw.pop('labelcolor', None) self.fontproperties = kw.pop('fontproperties', dict()) self.kw = kw _fp = self.fontproperties #boxprops = dict(facecolor='red') self.text = mtext.Text(text=label, # bbox=boxprops, horizontalalignment=self.halign[self.labelpos], verticalalignment=self.valign[self.labelpos], fontproperties=font_manager.FontProperties(**_fp)) if self.labelcolor is not None: self.text.set_color(self.labelcolor) self._initialized = False self.zorder = Q.zorder + 0.1 __init__.__doc__ = _quiverkey_doc def _init(self): if True: ##not self._initialized: self._set_transform() _pivot = self.Q.pivot self.Q.pivot = self.pivot[self.labelpos] self.verts = self.Q._make_verts(np.array([self.U]), np.zeros((1,))) self.Q.pivot = _pivot kw = self.Q.polykw kw.update(self.kw) self.vector = collections.PolyCollection(self.verts, offsets=[(self.X,self.Y)], transOffset=self.get_transform(), **kw) if self.color is not None: self.vector.set_color(self.color) self.vector.set_transform(self.Q.get_transform()) self._initialized = True def _text_x(self, x): if self.labelpos == 'E': return x + self.labelsep elif self.labelpos == 'W': return x - self.labelsep else: return x def _text_y(self, y): if self.labelpos == 'N': return y + self.labelsep elif self.labelpos == 'S': return y - self.labelsep else: return y def draw(self, renderer): self._init() self.vector.draw(renderer) x, y = self.get_transform().transform_point((self.X, self.Y)) self.text.set_x(self._text_x(x)) self.text.set_y(self._text_y(y)) self.text.draw(renderer) def _set_transform(self): if self.coord == 'data': self.set_transform(self.Q.ax.transData) elif self.coord == 'axes': self.set_transform(self.Q.ax.transAxes) elif self.coord == 'figure': self.set_transform(self.Q.ax.figure.transFigure) elif self.coord == 'inches': self.set_transform(self.Q.ax.figure.dpi_scale_trans) else: raise ValueError('unrecognized coordinates') def set_figure(self, fig): martist.Artist.set_figure(self, fig) self.text.set_figure(fig) def contains(self, mouseevent): # Maybe the dictionary should allow one to # distinguish between a text hit and a vector hit. if (self.text.contains(mouseevent)[0] or self.vector.contains(mouseevent)[0]): return True, {} return False, {} quiverkey_doc = _quiverkey_doc class Quiver(collections.PolyCollection): """ Specialized PolyCollection for arrows. The only API method is set_UVC(), which can be used to change the size, orientation, and color of the arrows; their locations are fixed when the class is instantiated. Possibly this method will be useful in animations. Much of the work in this class is done in the draw() method so that as much information as possible is available about the plot. In subsequent draw() calls, recalculation is limited to things that might have changed, so there should be no performance penalty from putting the calculations in the draw() method. """ def __init__(self, ax, *args, **kw): self.ax = ax X, Y, U, V, C = self._parse_args(*args) self.X = X self.Y = Y self.XY = np.hstack((X[:,np.newaxis], Y[:,np.newaxis])) self.N = len(X) self.scale = kw.pop('scale', None) self.headwidth = kw.pop('headwidth', 3) self.headlength = float(kw.pop('headlength', 5)) self.headaxislength = kw.pop('headaxislength', 4.5) self.minshaft = kw.pop('minshaft', 1) self.minlength = kw.pop('minlength', 1) self.units = kw.pop('units', 'width') self.angles = kw.pop('angles', 'uv') self.width = kw.pop('width', None) self.color = kw.pop('color', 'k') self.pivot = kw.pop('pivot', 'tail') kw.setdefault('facecolors', self.color) kw.setdefault('linewidths', (0,)) collections.PolyCollection.__init__(self, [], offsets=self.XY, transOffset=ax.transData, closed=False, **kw) self.polykw = kw self.set_UVC(U, V, C) self._initialized = False self.keyvec = None self.keytext = None def on_dpi_change(fig): self._new_UV = True # vertices depend on width, span # which in turn depend on dpi self._initialized = False # simple brute force update # works because _init is called # at the start of draw. self.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) __init__.__doc__ = """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %s""" % _quiver_doc def _parse_args(self, *args): X, Y, U, V, C = [None]*5 args = list(args) if len(args) == 3 or len(args) == 5: C = ma.asarray(args.pop(-1)).ravel() V = ma.asarray(args.pop(-1)) U = ma.asarray(args.pop(-1)) nn = np.shape(U) nc = nn[0] nr = 1 if len(nn) > 1: nr = nn[1] if len(args) == 2: # remaining after removing U,V,C X, Y = [np.array(a).ravel() for a in args] if len(X) == nc and len(Y) == nr: X, Y = [a.ravel() for a in np.meshgrid(X, Y)] else: indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) X, Y = [np.ravel(a) for a in indexgrid] return X, Y, U, V, C def _init(self): """initialization delayed until first draw; allow time for axes setup. """ # It seems that there are not enough event notifications # available to have this work on an as-needed basis at present. if True: ##not self._initialized: trans = self._set_transform() ax = self.ax sx, sy = trans.inverted().transform_point( (ax.bbox.width, ax.bbox.height)) self.span = sx sn = max(8, min(25, math.sqrt(self.N))) if self.width is None: self.width = 0.06 * self.span / sn def draw(self, renderer): self._init() if self._new_UV or self.angles == 'xy': verts = self._make_verts(self.U, self.V) self.set_verts(verts, closed=False) self._new_UV = False collections.PolyCollection.draw(self, renderer) def set_UVC(self, U, V, C=None): self.U = U.ravel() self.V = V.ravel() if C is not None: self.set_array(C.ravel()) self._new_UV = True def _set_transform(self): ax = self.ax if self.units in ('x', 'y'): if self.units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height dx = dx1/dx0 else: if self.units == 'width': dx = ax.bbox.width elif self.units == 'height': dx = ax.bbox.height elif self.units == 'dots': dx = 1.0 elif self.units == 'inches': dx = ax.figure.dpi else: raise ValueError('unrecognized units') trans = transforms.Affine2D().scale(dx) self.set_transform(trans) return trans def _angles(self, U, V, eps=0.001): xy = self.ax.transData.transform(self.XY) uv = ma.hstack((U[:,np.newaxis], V[:,np.newaxis])).filled(0) xyp = self.ax.transData.transform(self.XY + eps * uv) dxy = xyp - xy ang = ma.arctan2(dxy[:,1], dxy[:,0]) return ang def _make_verts(self, U, V): uv = ma.asarray(U+V*1j) a = ma.absolute(uv) if self.scale is None: sn = max(10, math.sqrt(self.N)) scale = 1.8 * a.mean() * sn / self.span # crude auto-scaling self.scale = scale length = a/(self.scale*self.width) X, Y = self._h_arrows(length) if self.angles == 'xy': theta = self._angles(U, V).filled(0)[:,np.newaxis] elif self.angles == 'uv': theta = np.angle(ma.asarray(uv[..., np.newaxis]).filled(0)) else: theta = ma.asarray(self.angles*np.pi/180.0).filled(0) xy = (X+Y*1j) * np.exp(1j*theta)*self.width xy = xy[:,:,np.newaxis] XY = ma.concatenate((xy.real, xy.imag), axis=2) return XY def _h_arrows(self, length): """ length is in arrow width units """ # It might be possible to streamline the code # and speed it up a bit by using complex (x,y) # instead of separate arrays; but any gain would be slight. minsh = self.minshaft * self.headlength N = len(length) length = length.reshape(N, 1) # x, y: normal horizontal arrow x = np.array([0, -self.headaxislength, -self.headlength, 0], np.float64) x = x + np.array([0,1,1,1]) * length y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) y = np.repeat(y[np.newaxis,:], N, axis=0) # x0, y0: arrow without shaft, for short vectors x0 = np.array([0, minsh-self.headaxislength, minsh-self.headlength, minsh], np.float64) y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) ii = [0,1,2,3,2,1,0] X = x.take(ii, 1) Y = y.take(ii, 1) Y[:, 3:] *= -1 X0 = x0.take(ii) Y0 = y0.take(ii) Y0[3:] *= -1 shrink = length/minsh X0 = shrink * X0[np.newaxis,:] Y0 = shrink * Y0[np.newaxis,:] short = np.repeat(length < minsh, 7, axis=1) #print 'short', length < minsh # Now select X0, Y0 if short, otherwise X, Y X = ma.where(short, X0, X) Y = ma.where(short, Y0, Y) if self.pivot[:3] == 'mid': X -= 0.5 * X[:,3, np.newaxis] elif self.pivot[:3] == 'tip': X = X - X[:,3, np.newaxis] #numpy bug? using -= does not # work here unless we multiply # by a float first, as with 'mid'. tooshort = length < self.minlength if tooshort.any(): # Use a heptagonal dot: th = np.arange(0,7,1, np.float64) * (np.pi/3.0) x1 = np.cos(th) * self.minlength * 0.5 y1 = np.sin(th) * self.minlength * 0.5 X1 = np.repeat(x1[np.newaxis, :], N, axis=0) Y1 = np.repeat(y1[np.newaxis, :], N, axis=0) tooshort = ma.repeat(tooshort, 7, 1) X = ma.where(tooshort, X1, X) Y = ma.where(tooshort, Y1, Y) return X, Y quiver_doc = _quiver_doc _barbs_doc = """ Plot a 2-D field of barbs. call signatures:: barb(U, V, **kw) barb(U, V, C, **kw) barb(X, Y, U, V, **kw) barb(X, Y, U, V, C, **kw) Arguments: *X*, *Y*: The x and y coordinates of the barb locations (default is head of barb; see *pivot* kwarg) *U*, *V*: give the *x* and *y* components of the barb shaft *C*: an optional array used to map colors to the barbs All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*) match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present. Keyword arguments: *length*: Length of the barb in points; the other parts of the barb are scaled against this. Default is 9 *pivot*: [ 'tip' | 'middle' ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. Default is 'tip' *barbcolor*: [ color | color sequence ] Specifies the color all parts of the barb except any flags. This parameter is analagous to the *edgecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. *flagcolor*: [ color | color sequence ] Specifies the color of any flags on the barb. This parameter is analagous to the *facecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. If this is not set (and *C* has not either) then *flagcolor* will be set to match *barbcolor* so that the barb has a uniform color. If *C* has been set, *flagcolor* has no effect. *sizes*: A dictionary of coefficients specifying the ratio of a given feature to the length of the barb. Only those values one wishes to override need to be included. These features include: - 'spacing' - space between features (flags, full/half barbs) - 'height' - height (distance from shaft to top) of a flag or full barb - 'width' - width of a flag, twice the width of a full barb - 'emptybarb' - radius of the circle used for low magnitudes *fill_empty*: A flag on whether the empty barbs (circles) that are drawn should be filled with the flag color. If they are not filled, they will be drawn such that no color is applied to the center. Default is False *rounding*: A flag to indicate whether the vector magnitude should be rounded when allocating barb components. If True, the magnitude is rounded to the nearest multiple of the half-barb increment. If False, the magnitude is simply truncated to the next lowest multiple. Default is True *barb_increments*: A dictionary of increments specifying values to associate with different parts of the barb. Only those values one wishes to override need to be included. - 'half' - half barbs (Default is 5) - 'full' - full barbs (Default is 10) - 'flag' - flags (default is 50) *flip_barb*: Either a single boolean flag or an array of booleans. Single boolean indicates whether the lines and flags should point opposite to normal for all barbs. An array (which should be the same size as the other data arrays) indicates whether to flip for each individual barb. Normal behavior is for the barbs and lines to point right (comes from wind barbs having these features point towards low pressure in the Northern Hemisphere.) Default is False Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observations, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows, which give vector magnitude by the length of the arrow, the barbs give more quantitative information about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude, as show schematically below:: : /\ \\ : / \ \\ : / \ \ \\ : / \ \ \\ : ------------------------------ .. note the double \\ at the end of each line to make the figure .. render correctly The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5. linewidths and edgecolors can be used to customize the barb. Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s """ % martist.kwdocd class Barbs(collections.PolyCollection): ''' Specialized PolyCollection for barbs. The only API method is :meth:`set_UVC`, which can be used to change the size, orientation, and color of the arrows. Locations are changed using the :meth:`set_offsets` collection method. Possibly this method will be useful in animations. There is one internal function :meth:`_find_tails` which finds exactly what should be put on the barb given the vector magnitude. From there :meth:`_make_barbs` is used to find the vertices of the polygon to represent the barb based on this information. ''' #This may be an abuse of polygons here to render what is essentially maybe #1 triangle and a series of lines. It works fine as far as I can tell #however. def __init__(self, ax, *args, **kw): self._pivot = kw.pop('pivot', 'tip') self._length = kw.pop('length', 7) barbcolor = kw.pop('barbcolor', None) flagcolor = kw.pop('flagcolor', None) self.sizes = kw.pop('sizes', dict()) self.fill_empty = kw.pop('fill_empty', False) self.barb_increments = kw.pop('barb_increments', dict()) self.rounding = kw.pop('rounding', True) self.flip = kw.pop('flip_barb', False) #Flagcolor and and barbcolor provide convenience parameters for setting #the facecolor and edgecolor, respectively, of the barb polygon. We #also work here to make the flag the same color as the rest of the barb #by default if None in (barbcolor, flagcolor): kw['edgecolors'] = 'face' if flagcolor: kw['facecolors'] = flagcolor elif barbcolor: kw['facecolors'] = barbcolor else: #Set to facecolor passed in or default to black kw.setdefault('facecolors', 'k') else: kw['edgecolors'] = barbcolor kw['facecolors'] = flagcolor #Parse out the data arrays from the various configurations supported x, y, u, v, c = self._parse_args(*args) self.x = x self.y = y xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) #Make a collection barb_size = self._length**2 / 4 #Empirically determined collections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy, transOffset=ax.transData, **kw) self.set_transform(transforms.IdentityTransform()) self.set_UVC(u, v, c) __init__.__doc__ = """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %s""" % _barbs_doc def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): ''' Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (ie. >= 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. ''' #If rounding, round to the nearest multiple of half, the smallest #increment if rounding: mag = half * (mag / half + 0.5).astype(np.int) num_flags = np.floor(mag / flag).astype(np.int) mag = np.mod(mag, flag) num_barb = np.floor(mag / full).astype(np.int) mag = np.mod(mag, full) half_flag = mag >= half empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0)) return num_flags, num_barb, half_flag, empty_flag def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, pivot, sizes, fill_empty, flip): ''' This function actually creates the wind barbs. *u* and *v* are components of the vector in the *x* and *y* directions, respectively. *nflags*, *nbarbs*, and *half_barb*, empty_flag* are, *respectively, the number of flags, number of barbs, flag for *half a barb, and flag for empty barb, ostensibly obtained *from :meth:`_find_tails`. *length* is the length of the barb staff in points. *pivot* specifies the point on the barb around which the entire barb should be rotated. Right now, valid options are 'head' and 'middle'. *sizes* is a dictionary of coefficients specifying the ratio of a given feature to the length of the barb. These features include: - *spacing*: space between features (flags, full/half barbs) - *height*: distance from shaft of top of a flag or full barb - *width* - width of a flag, twice the width of a full barb - *emptybarb* - radius of the circle used for low magnitudes *fill_empty* specifies whether the circle representing an empty barb should be filled or not (this changes the drawing of the polygon). *flip* is a flag indicating whether the features should be flipped to the other side of the barb (useful for winds in the southern hemisphere. This function returns list of arrays of vertices, defining a polygon for each of the wind barbs. These polygons have been rotated to properly align with the vector direction. ''' #These control the spacing and size of barb elements relative to the #length of the shaft spacing = length * sizes.get('spacing', 0.125) full_height = length * sizes.get('height', 0.4) full_width = length * sizes.get('width', 0.25) empty_rad = length * sizes.get('emptybarb', 0.15) #Controls y point where to pivot the barb. pivot_points = dict(tip=0.0, middle=-length/2.) #Check for flip if flip: full_height = -full_height endx = 0.0 endy = pivot_points[pivot.lower()] #Get the appropriate angle for the vector components. The offset is due #to the way the barb is initially drawn, going down the y-axis. This #makes sense in a meteorological mode of thinking since there 0 degrees #corresponds to north (the y-axis traditionally) angles = -(ma.arctan2(v, u) + np.pi/2) #Used for low magnitude. We just get the vertices, so if we make it #out here, it can be reused. The center set here should put the #center of the circle at the location(offset), rather than at the #same point as the barb pivot; this seems more sensible. circ = CirclePolygon((0,0), radius=empty_rad).get_verts() if fill_empty: empty_barb = circ else: #If we don't want the empty one filled, we make a degenerate polygon #that wraps back over itself empty_barb = np.concatenate((circ, circ[::-1])) barb_list = [] for index, angle in np.ndenumerate(angles): #If the vector magnitude is too weak to draw anything, plot an #empty circle instead if empty_flag[index]: #We can skip the transform since the circle has no preferred #orientation barb_list.append(empty_barb) continue poly_verts = [(endx, endy)] offset = length #Add vertices for each flag for i in range(nflags[index]): #The spacing that works for the barbs is a little to much for #the flags, but this only occurs when we have more than 1 flag. if offset != length: offset += spacing / 2. poly_verts.extend([[endx, endy + offset], [endx + full_height, endy - full_width/2 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing #Add vertices for each barb. These really are lines, but works #great adding 3 vertices that basically pull the polygon out and #back down the line for i in range(nbarbs[index]): poly_verts.extend([(endx, endy + offset), (endx + full_height, endy + offset + full_width/2), (endx, endy + offset)]) offset -= spacing #Add the vertices for half a barb, if needed if half_barb[index]: #If the half barb is the first on the staff, traditionally it is #offset from the end to make it easy to distinguish from a barb #with a full one if offset == length: poly_verts.append((endx, endy + offset)) offset -= 1.5 * spacing poly_verts.extend([(endx, endy + offset), (endx + full_height/2, endy + offset + full_width/4), (endx, endy + offset)]) #Rotate the barb according the angle. Making the barb first and then #rotating it made the math for drawing the barb really easy. Also, #the transform framework makes doing the rotation simple. poly_verts = transforms.Affine2D().rotate(-angle).transform( poly_verts) barb_list.append(poly_verts) return barb_list #Taken shamelessly from Quiver def _parse_args(self, *args): X, Y, U, V, C = [None]*5 args = list(args) if len(args) == 3 or len(args) == 5: C = ma.asarray(args.pop(-1)).ravel() V = ma.asarray(args.pop(-1)) U = ma.asarray(args.pop(-1)) nn = np.shape(U) nc = nn[0] nr = 1 if len(nn) > 1: nr = nn[1] if len(args) == 2: # remaining after removing U,V,C X, Y = [np.array(a).ravel() for a in args] if len(X) == nc and len(Y) == nr: X, Y = [a.ravel() for a in np.meshgrid(X, Y)] else: indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) X, Y = [np.ravel(a) for a in indexgrid] return X, Y, U, V, C def set_UVC(self, U, V, C=None): self.u = ma.asarray(U).ravel() self.v = ma.asarray(V).ravel() if C is not None: c = ma.asarray(C).ravel() x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v, c) else: x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) magnitude = np.sqrt(u*u + v*v) flags, barbs, halves, empty = self._find_tails(magnitude, self.rounding, **self.barb_increments) #Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip) self.set_verts(plot_barbs) #Set the color array if C is not None: self.set_array(c) #Update the offsets in case the masked data changed xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) self._offsets = xy def set_offsets(self, xy): ''' Set the offsets for the barb polygons. This saves the offets passed in and actually sets version masked as appropriate for the existing U/V data. *offsets* should be a sequence. ACCEPTS: sequence of pairs of floats ''' self.x = xy[:,0] self.y = xy[:,1] x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) collections.PolyCollection.set_offsets(self, xy) set_offsets.__doc__ = collections.PolyCollection.set_offsets.__doc__ barbs_doc = _barbs_doc
gpl-3.0
mhdella/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
216
8091
from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
pcubillos/MCcubed
MCcubed/plots/mcplots.py
1
20081
# Copyright (c) 2015-2019 Patricio Cubillos and contributors. # MC3 is open-source software under the MIT license (see LICENSE). __all__ = ["trace", "pairwise", "histogram", "RMS", "modelfit", "subplotter"] import os import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import scipy.interpolate as si from . import colormaps as cm from .. import utils as mu sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../lib') import binarray as ba if sys.version_info.major == 2: range = xrange def trace(posterior, Zchain=None, pnames=None, thinning=1, burnin=0, fignum=100, savefile=None, fmt=".", ms=2.5, fs=11): """ Plot parameter trace MCMC sampling. Parameters ---------- posterior: 2D float ndarray An MCMC posterior sampling with dimension: [nsamples, npars]. Zchain: 1D integer ndarray the chain index for each posterior sample. pnames: Iterable (strings) Label names for parameters. thinning: Integer Thinning factor for plotting (plot every thinning-th value). burnin: Integer Thinned burn-in number of iteration (only used when Zchain is not None). fignum: Integer The figure number. savefile: Boolean If not None, name of file to save the plot. fmt: String The format string for the line and marker. ms: Float Marker size. fs: Float Fontsize of texts. Returns ------- axes: 1D axes ndarray The array of axes containing the marginal posterior distributions. Uncredited Developers --------------------- Kevin Stevenson (UCF) """ # Get indices for samples considered in final analysis: if Zchain is not None: nchains = np.amax(Zchain) + 1 good = np.zeros(len(Zchain), bool) for c in range(nchains): good[np.where(Zchain == c)[0][burnin:]] = True # Values accepted for posterior stats: posterior = posterior[good] Zchain = Zchain [good] # Sort the posterior by chain: zsort = np.lexsort([Zchain]) posterior = posterior[zsort] Zchain = Zchain [zsort] # Get location for chains separations: xsep = np.where(np.ediff1d(Zchain[0::thinning]))[0] # Get number of parameters and length of chain: nsamples, npars = np.shape(posterior) # Number of samples (thinned): xmax = len(posterior[0::thinning]) # Set default parameter names: if pnames is None: pnames = mu.default_parnames(npars) npanels = 12 # Max number of panels per page npages = int(1 + (npars-1)/npanels) # Make the trace plot: axes = [] i = 0 for page in range(npages): fig = plt.figure(page, figsize=(8.5,11.0)) plt.clf() plt.subplots_adjust(left=0.15, right=0.95, bottom=0.05, top=0.97, hspace=0.15) while i < npars: ax = plt.subplot(npanels, 1, i%npanels+1) axes.append(ax) ax.plot(posterior[0::thinning,i], fmt, ms=ms) yran = ax.get_ylim() if Zchain is not None: ax.vlines(xsep, yran[0], yran[1], "0.5") # Y-axis adjustments: ax.set_ylim(yran) ax.locator_params(axis='y', nbins=5, tight=True) ax.tick_params(labelsize=fs-1) ax.set_ylabel(pnames[i], size=fs, multialignment='center') # X-axis adjustments: ax.set_xlim(0, xmax) ax.get_xaxis().set_visible(False) i += 1 if i%npanels == 0: break ax.set_xlabel('MCMC sample', size=fs) ax.get_xaxis().set_visible(True) if savefile is not None: if npages > 1: sf = os.path.splitext(savefile) try: bbox = fig.get_tightbbox(fig._cachedRenderer).padded(0.1) bbox_points = bbox.get_points() bbox_points[:,0] = 0.0, 8.5 bbox.set_points(bbox_points) except: # May fail for ssh connection without X display ylow = 9.479 - 0.862*np.amin([npanels-1, npars-npanels*page-1]) bbox = mpl.transforms.Bbox([[0.0, ylow], [8.5, 11]]) fig.savefig("{:s}_page{:02d}{:s}".format(sf[0], page, sf[1]), bbox_inches=bbox) else: fig.savefig(savefile, bbox_inches='tight') return axes def pairwise(posterior, pnames=None, thinning=1, fignum=200, savefile=None, bestp=None, nbins=35, nlevels=20, absolute_dens=False, ranges=None, fs=11, rect=None, margin=0.01): """ Plot parameter pairwise posterior distributions. Parameters ---------- posterior: 2D ndarray An MCMC posterior sampling with dimension: [nsamples, nparameters]. pnames: Iterable (strings) Label names for parameters. thinning: Integer Thinning factor for plotting (plot every thinning-th value). fignum: Integer The figure number. savefile: Boolean If not None, name of file to save the plot. bestp: 1D float ndarray If not None, plot the best-fitting values for each parameter given by bestp. nbins: Integer The number of grid bins for the 2D histograms. nlevels: Integer The number of contour color levels. ranges: List of 2-element arrays List with custom (lower,upper) x-ranges for each parameter. Leave None for default, e.g., ranges=[(1.0,2.0), None, (0, 1000)]. fs: Float Fontsize of texts. rect: 1D list/ndarray If not None, plot the pairwise plots in current figure, within the ranges defined by rect (xleft, ybottom, xright, ytop). margin: Float Margins between panels (when rect is not None). Returns ------- axes: 2D axes ndarray The grid of axes containing the pairwise posterior distributions. cb: axes The colorbar axes instance. Notes ----- Note that rect delimits the boundaries of the panels. The labels and ticklabels will appear right outside rect, so the user needs to leave some wiggle room for them. Uncredited Developers --------------------- Kevin Stevenson (UCF) Ryan Hardy (UCF) """ # Get number of parameters and length of chain: nsamples, npars = np.shape(posterior) # Don't plot if there are no pairs: if npars == 1: return if ranges is None: ranges = np.repeat(None, npars) else: # Set default ranges if necessary: for i in range(npars): if ranges[i] is None: ranges[i] = (np.nanmin(posterior[0::thinning,i]), np.nanmax(posterior[0::thinning,i])) # Set default parameter names: if pnames is None: pnames = mu.default_parnames(npars) # Set palette color: palette = cm.viridis_r palette.set_under(color='w') palette.set_bad(color='w') # Gather 2D histograms: hist = [] xran, yran, lmax = [], [], [] for j in range(1, npars): # Rows for i in range(j): # Columns ran = None if ranges[i] is not None: ran = [ranges[i], ranges[j]] h,x,y = np.histogram2d(posterior[0::thinning,i], posterior[0::thinning,j], bins=nbins, range=ran, normed=False) hist.append(h.T) xran.append(x) yran.append(y) lmax.append(np.amax(h)+1) # Reset upper boundary to absolute maximum value if requested: if absolute_dens: lmax = npars*(npars+1)*2 * [np.amax(lmax)] if rect is None: rect = (0.15, 0.15, 0.95, 0.95) plt.figure(fignum, figsize=(8,8)) plt.clf() axes = np.tile(None, (npars-1, npars-1)) # Plot: k = 0 # Histogram index for j in range(1, npars): # Rows for i in range(j): # Columns h = (npars-1)*(j-1) + i + 1 # Subplot index ax = axes[i,j-1] = subplotter(rect, margin, h, npars-1) # Labels: ax.tick_params(labelsize=fs-1) if i == 0: ax.set_ylabel(pnames[j], size=fs) else: ax.get_yaxis().set_visible(False) if j == npars-1: ax.set_xlabel(pnames[i], size=fs) plt.setp(ax.xaxis.get_majorticklabels(), rotation=90) else: ax.get_xaxis().set_visible(False) # The plot: a = ax.contourf(hist[k], cmap=palette, vmin=1, origin='lower', levels=[0]+list(np.linspace(1,lmax[k], nlevels)), extent=(xran[k][0], xran[k][-1], yran[k][0], yran[k][-1])) for c in a.collections: c.set_edgecolor("face") if bestp is not None: ax.axvline(bestp[i], dashes=(6,4), color="0.5", lw=1.0) ax.axhline(bestp[j], dashes=(6,4), color="0.5", lw=1.0) if ranges[i] is not None: ax.set_xlim(ranges[i]) if ranges[i] is not None: ax.set_ylim(ranges[j]) k += 1 # The colorbar: bounds = np.linspace(0, 1.0, nlevels) norm = mpl.colors.BoundaryNorm(bounds, palette.N) if rect is not None: dx = (rect[2]-rect[0])*0.05 dy = (rect[3]-rect[1])*0.45 ax2 = plt.axes([rect[2]-dx, rect[3]-dy, dx, dy]) else: ax2 = plt.axes([0.85, 0.57, 0.025, 0.36]) cb = mpl.colorbar.ColorbarBase(ax2, cmap=palette, norm=norm, spacing='proportional', boundaries=bounds, format='%.1f') cb.set_label("Posterior density", fontsize=fs) cb.ax.yaxis.set_ticks_position('left') cb.ax.yaxis.set_label_position('left') cb.ax.tick_params(labelsize=fs-1) cb.set_ticks(np.linspace(0, 1, 5)) for c in ax2.collections: c.set_edgecolor("face") plt.draw() # Save file: if savefile is not None: plt.savefig(savefile) return axes, cb def histogram(posterior, pnames=None, thinning=1, fignum=300, savefile=None, bestp=None, percentile=None, pdf=None, xpdf=None, ranges=None, axes=None, lw=2.0, fs=11): """ Plot parameter marginal posterior distributions Parameters ---------- posterior: 1D or 2D float ndarray An MCMC posterior sampling with dimension [nsamples] or [nsamples, nparameters]. pnames: Iterable (strings) Label names for parameters. thinning: Integer Thinning factor for plotting (plot every thinning-th value). fignum: Integer The figure number. savefile: Boolean If not None, name of file to save the plot. bestp: 1D float ndarray If not None, plot the best-fitting values for each parameter given by bestp. percentile: Float If not None, plot the percentile- highest posterior density region of the distribution. Note that this should actually be the fractional part, i.e. set percentile=0.68 for a 68% HPD. pdf: 1D float ndarray or list of ndarrays A smoothed PDF of the distribution for each parameter. xpdf: 1D float ndarray or list of ndarrays The X coordinates of the PDFs. ranges: List of 2-element arrays List with custom (lower,upper) x-ranges for each parameter. Leave None for default, e.g., ranges=[(1.0,2.0), None, (0, 1000)]. axes: List of matplotlib.axes If not None, plot histograms in the currently existing axes. lw: Float Linewidth of the histogram contour. fs: Float Font size for texts. Returns ------- axes: 1D axes ndarray The array of axes containing the marginal posterior distributions. Uncredited Developers --------------------- Kevin Stevenson (UCF) """ if np.ndim(posterior) == 1: posterior = np.expand_dims(posterior, axis=1) nsamples, npars = np.shape(posterior) if pdf is None: # Make list of Nones pdf = [None]*npars xpdf = [None]*npars if not isinstance(pdf, list): # Put single arrays into list pdf = [pdf] xpdf = [xpdf] # Histogram keywords depending whether one wants the HPD or not: hkw = {'edgecolor':'navy', 'color':'b'} # Bestfit keywords: bkw = {'zorder':2, 'color':'orange'} if percentile is not None: hkw = {'histtype':'step', 'lw':lw, 'edgecolor':'b'} bkw = {'zorder':-1, 'color':'red'} # Set default parameter names: if pnames is None: pnames = mu.default_parnames(npars) # Xranges: if ranges is None: ranges = np.repeat(None, npars) # Set number of rows: nrows, ncolumns, npanels = 4, 3, 12 npages = int(1 + (npars-1)/npanels) if axes is None: newfig = True axes = [] else: newfig = False npages = 1 # Assume there's only one page figs = np.tile(None, npages) maxylim = 0 # Max Y limit i = 0 for j in range(npages): if newfig: figs[j] = plt.figure(fignum+j, figsize=(8.5, 11.0)) plt.clf() plt.subplots_adjust(left=0.1, right=0.97, bottom=0.08, top=0.98, hspace=0.5, wspace=0.1) else: figs[j] = axes[0].get_figure() while i < npars: if newfig: ax = plt.subplot(nrows, ncolumns, i%npanels+1) axes.append(ax) if i%ncolumns == 0: ax.set_ylabel(r"$N$ samples", fontsize=fs) else: ax.get_yaxis().set_visible(False) else: ax = axes[i] ax.get_yaxis().set_visible(False) # No ylabel/yticklabels by default ax.tick_params(labelsize=fs-1) plt.setp(ax.xaxis.get_majorticklabels(), rotation=90) ax.set_xlabel(pnames[i], size=fs) vals, bins, h = ax.hist(posterior[0::thinning, i], bins=25, range=ranges[i], normed=False, zorder=0, **hkw) # Plot HPD region: if percentile is not None: PDF, Xpdf, HPDmin = mu.credregion(posterior[:,i], percentile, pdf[i], xpdf[i]) vals = np.r_[0, vals, 0] bins = np.r_[bins[0] - (bins[1]-bins[0]), bins] # interpolate xpdf into the histogram: f = si.interp1d(bins+0.5*(bins[1]-bins[0]), vals, kind='nearest') # Plot the HPD region as shaded areas: if ranges[i] is not None: xran = np.argwhere((Xpdf>ranges[i][0]) & (Xpdf<ranges[i][1])) Xpdf = Xpdf[np.amin(xran):np.amax(xran)] PDF = PDF [np.amin(xran):np.amax(xran)] ax.fill_between(Xpdf, 0, f(Xpdf), where=PDF>=HPDmin, facecolor='0.75', edgecolor='none', interpolate=False, zorder=-2) if bestp is not None: ax.axvline(bestp[i], dashes=(7,4), lw=1.0, **bkw) maxylim = np.amax((maxylim, ax.get_ylim()[1])) i += 1 if i%npanels == 0: break # Set uniform height and save: for ax in axes: ax.set_ylim(0, maxylim) # Save: if savefile is not None: for j in range(npages): if npages > 1: sf = os.path.splitext(savefile) figs[j].savefig("{:s}_page{:02d}{:s}".format(sf[0], j+1, sf[1]), bbox_inches='tight') else: figs[j].savefig(savefile, bbox_inches='tight') return axes def RMS(binsz, rms, stderr, rmslo, rmshi, cadence=None, binstep=1, timepoints=[], ratio=False, fignum=-40, yran=None, xran=None, savefile=None): """ Plot the RMS vs binsize curve. Parameters ---------- binsz: 1D ndarray Array of bin sizes. rms: 1D ndarray RMS of dataset at given binsz. stderr: 1D ndarray Gaussian-noise rms Extrapolation rmslo: 1D ndarray RMS lower uncertainty rmshi: 1D ndarray RMS upper uncertainty cadence: Float Time between datapoints in seconds. binstep: Integer Plot every-binstep point. timepoints: List Plot a vertical line at each time-points. ratio: Boolean If True, plot rms/stderr, else, plot both curves. fignum: Integer Figure number yran: 2-elements tuple Minimum and Maximum y-axis ranges. xran: 2-elements tuple Minimum and Maximum x-axis ranges. savefile: String If not None, name of file to save the plot. """ if np.size(rms) <= 1: return # Set cadence: if cadence is None: cadence = 1.0 xlabel = "Bin size" else: xlabel = "Bin size (sec)" # Set plotting limits: if yran is None: #yran = np.amin(rms), np.amax(rms) yran = [np.amin(rms-rmslo), np.amax(rms+rmshi)] yran[0] = np.amin([yran[0],stderr[-1]]) if ratio: yran = [0, np.amax(rms/stderr) + 1.0] if xran is None: xran = [cadence, np.amax(binsz*cadence)] fs = 14 # Font size if ratio: ylabel = r"$\beta$ = RMS / std error" else: ylabel = "RMS" plt.figure(fignum, (8,6)) plt.clf() ax = plt.subplot(111) if ratio: # Plot the residuals-to-Gaussian RMS ratio: ax.errorbar(binsz[::binstep]*cadence, (rms/stderr)[::binstep], yerr=[(rmslo/stderr)[::binstep], (rmshi/stderr)[::binstep]], fmt='k-', ecolor='0.5', capsize=0, label="__nolabel__") ax.semilogx(xran, [1,1], "r-", lw=2) else: # Plot residuals and Gaussian RMS individually: # Residuals RMS: ax.errorbar(binsz[::binstep]*cadence, rms[::binstep], yerr=[rmslo[::binstep], rmshi[::binstep]], fmt='k-', ecolor='0.5', capsize=0, label="RMS") # Gaussian noise projection: ax.loglog(binsz*cadence, stderr, color='red', ls='-', lw=2, label="Gaussian std.") ax.legend(loc="best") for time in timepoints: ax.vlines(time, yran[0], yran[1], 'b', 'dashed', lw=2) ax.tick_params(labelsize=fs-1) ax.set_ylim(yran) ax.set_xlim(xran) ax.set_ylabel(ylabel, fontsize=fs) ax.set_xlabel(xlabel, fontsize=fs) if savefile is not None: plt.savefig(savefile) def modelfit(data, uncert, indparams, model, nbins=75, fignum=-50, savefile=None, fmt="."): """ Plot the binned dataset with given uncertainties and model curves as a function of indparams. In a lower panel, plot the residuals bewteen the data and model. Parameters ---------- data: 1D float ndarray Input data set. uncert: 1D float ndarray One-sigma uncertainties of the data points. indparams: 1D float ndarray Independent variable (X axis) of the data points. model: 1D float ndarray Model of data. nbins: Integer Number of bins in the output plot. fignum: Integer The figure number. savefile: Boolean If not None, name of file to save the plot. fmt: String Format of the plotted markers. """ # Bin down array: binsize = int((np.size(data)-1)/nbins + 1) bindata, binuncert, binindp = ba.binarray(data, uncert, indparams, binsize) binmodel = ba.weightedbin(model, binsize) fs = 12 # Font-size plt.figure(fignum, figsize=(8,6)) plt.clf() # Residuals: rax = plt.axes([0.15, 0.1, 0.8, 0.2]) rax.errorbar(binindp, bindata-binmodel, binuncert, fmt='ko', ms=4) rax.plot([indparams[0], indparams[-1]], [0,0],'k:',lw=1.5) rax.tick_params(labelsize=fs-1) rax.set_xlabel("x", fontsize=fs) rax.set_ylabel('Residuals', fontsize=fs) # Data and Model: ax = plt.axes([0.15, 0.35, 0.8, 0.55]) ax.errorbar(binindp, bindata, binuncert, fmt='ko', ms=4, label='Binned Data') ax.plot(indparams, model, "b", lw=2, label='Best Fit') ax.get_xaxis().set_visible(False) ax.tick_params(labelsize=fs-1) ax.set_ylabel('y', fontsize=fs) ax.legend(loc='best') if savefile is not None: plt.savefig(savefile) def subplotter(rect, margin, ipan, nx, ny=None, ymargin=None): """ Create an axis instance for one panel (with index ipan) of a grid of npanels, where the grid located inside rect (xleft, ybottom, xright, ytop). Parameters ---------- rect: 1D List/ndarray Rectangle with xlo, ylo, xhi, yhi positions of the grid boundaries. margin: Float Width of margin between panels. ipan: Integer Index of panel to create (as in plt.subplots). nx: Integer Number of panels along the x axis. ny: Integer Number of panels along the y axis. If None, assume ny=nx. ymargin: Float Width of margin between panels along y axes (if None, adopt margin). Returns ------- axes: axes instance A matplotlib axes instance at the specified position. """ if ny is None: ny = nx if ymargin is None: ymargin = margin # Size of a panel: Dx = rect[2] - rect[0] Dy = rect[3] - rect[1] dx = Dx/nx - (nx-1.0)* margin/nx dy = Dy/ny - (ny-1.0)*ymargin/ny # Position of panel ipan: # Follow plt's scheme, where panel 1 is at the top left panel, # panel 2 is to the right of panel 1, and so on: xloc = (ipan-1) % nx yloc = (ny-1) - ((ipan-1) // nx) # Bottom-left corner of panel: xpanel = rect[0] + xloc*(dx+ margin) ypanel = rect[1] + yloc*(dy+ymargin) return plt.axes([xpanel, ypanel, dx, dy])
mit
tallakahath/pymatgen
pymatgen/electronic_structure/plotter.py
1
139849
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals, print_function import logging import math import itertools import warnings from collections import OrderedDict import numpy as np from matplotlib import patches from monty.json import jsanitize from pymatgen import Element from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine from pymatgen.util.plotting import pretty_plot, \ add_fig_kwargs, get_ax3d_fig_plt from pymatgen.core.units import Energy from pymatgen.electronic_structure.boltztrap import BoltztrapError from pymatgen.symmetry.bandstructure import HighSymmKpath """ This module implements plotter for DOS and band structure. """ __author__ = "Shyue Ping Ong, Geoffroy Hautier, Anubhav Jain" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "May 1, 2012" logger = logging.getLogger(__name__) class DosPlotter(object): """ Class for plotting DOSs. Note that the interface is extremely flexible given that there are many different ways in which people want to view DOS. The typical usage is:: # Initializes plotter with some optional args. Defaults are usually # fine, plotter = DosPlotter() # Adds a DOS with a label. plotter.add_dos("Total DOS", dos) # Alternatively, you can add a dict of DOSs. This is the typical # form returned by CompleteDos.get_spd/element/others_dos(). plotter.add_dos_dict({"dos1": dos1, "dos2": dos2}) plotter.add_dos_dict(complete_dos.get_spd_dos()) Args: zero_at_efermi: Whether to shift all Dos to have zero energy at the fermi energy. Defaults to True. stack: Whether to plot the DOS as a stacked area graph key_sort_func: function used to sort the dos_dict keys. sigma: A float specifying a standard deviation for Gaussian smearing the DOS for nicer looking plots. Defaults to None for no smearing. """ def __init__(self, zero_at_efermi=True, stack=False, sigma=None): self.zero_at_efermi = zero_at_efermi self.stack = stack self.sigma = sigma self._doses = OrderedDict() def add_dos(self, label, dos): """ Adds a dos for plotting. Args: label: label for the DOS. Must be unique. dos: Dos object """ energies = dos.energies - dos.efermi if self.zero_at_efermi \ else dos.energies densities = dos.get_smeared_densities(self.sigma) if self.sigma \ else dos.densities efermi = dos.efermi self._doses[label] = {'energies': energies, 'densities': densities, 'efermi': efermi} def add_dos_dict(self, dos_dict, key_sort_func=None): """ Add a dictionary of doses, with an optional sorting function for the keys. Args: dos_dict: dict of {label: Dos} key_sort_func: function used to sort the dos_dict keys. """ if key_sort_func: keys = sorted(dos_dict.keys(), key=key_sort_func) else: keys = dos_dict.keys() for label in keys: self.add_dos(label, dos_dict[label]) def get_dos_dict(self): """ Returns the added doses as a json-serializable dict. Note that if you have specified smearing for the DOS plot, the densities returned will be the smeared densities, not the original densities. Returns: Dict of dos data. Generally of the form, {label: {'energies':.., 'densities': {'up':...}, 'efermi':efermi}} """ return jsanitize(self._doses) def get_plot(self, xlim=None, ylim=None): """ Get a matplotlib plot showing the DOS. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. """ ncolors = max(3, len(self._doses)) ncolors = min(9, ncolors) import palettable colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors y = None alldensities = [] allenergies = [] plt = pretty_plot(12, 8) # Note that this complicated processing of energies is to allow for # stacked plots in matplotlib. for key, dos in self._doses.items(): energies = dos['energies'] densities = dos['densities'] if not y: y = {Spin.up: np.zeros(energies.shape), Spin.down: np.zeros(energies.shape)} newdens = {} for spin in [Spin.up, Spin.down]: if spin in densities: if self.stack: y[spin] += densities[spin] newdens[spin] = y[spin].copy() else: newdens[spin] = densities[spin] allenergies.append(energies) alldensities.append(newdens) keys = list(self._doses.keys()) keys.reverse() alldensities.reverse() allenergies.reverse() allpts = [] for i, key in enumerate(keys): x = [] y = [] for spin in [Spin.up, Spin.down]: if spin in alldensities[i]: densities = list(int(spin) * alldensities[i][spin]) energies = list(allenergies[i]) if spin == Spin.down: energies.reverse() densities.reverse() x.extend(energies) y.extend(densities) allpts.extend(list(zip(x, y))) if self.stack: plt.fill(x, y, color=colors[i % ncolors], label=str(key)) else: plt.plot(x, y, color=colors[i % ncolors], label=str(key), linewidth=3) if not self.zero_at_efermi: ylim = plt.ylim() plt.plot([self._doses[key]['efermi'], self._doses[key]['efermi']], ylim, color=colors[i % ncolors], linestyle='--', linewidth=2) if xlim: plt.xlim(xlim) if ylim: plt.ylim(ylim) else: xlim = plt.xlim() relevanty = [p[1] for p in allpts if xlim[0] < p[0] < xlim[1]] plt.ylim((min(relevanty), max(relevanty))) if self.zero_at_efermi: ylim = plt.ylim() plt.plot([0, 0], ylim, 'k--', linewidth=2) plt.xlabel('Energies (eV)') plt.ylabel('Density of states') plt.legend() leg = plt.gca().get_legend() ltext = leg.get_texts() # all the text.Text instance in the legend plt.setp(ltext, fontsize=30) plt.tight_layout() return plt def save_plot(self, filename, img_format="eps", xlim=None, ylim=None): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. """ plt = self.get_plot(xlim, ylim) plt.savefig(filename, format=img_format) def show(self, xlim=None, ylim=None): """ Show the plot using matplotlib. Args: xlim: Specifies the x-axis limits. Set to None for automatic determination. ylim: Specifies the y-axis limits. """ plt = self.get_plot(xlim, ylim) plt.show() class BSPlotter(object): """ Class to plot or get data to facilitate the plot of band structure objects. Args: bs: A BandStructureSymmLine object. """ def __init__(self, bs): if not isinstance(bs, BandStructureSymmLine): raise ValueError( "BSPlotter only works with BandStructureSymmLine objects. " "A BandStructure object (on a uniform grid for instance and " "not along symmetry lines won't work)") self._bs = bs # TODO: come with an intelligent way to cut the highest unconverged # bands self._nb_bands = self._bs.nb_bands def _maketicks(self, plt): """ utility private method to add ticks to a band structure """ ticks = self.get_ticks() # Sanitize only plot the uniq values uniq_d = [] uniq_l = [] temp_ticks = list(zip(ticks['distance'], ticks['label'])) for i in range(len(temp_ticks)): if i == 0: uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) else: if temp_ticks[i][1] == temp_ticks[i - 1][1]: logger.debug("Skipping label {i}".format( i=temp_ticks[i][1])) else: logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Unique labels are %s" % list(zip(uniq_d, uniq_l))) plt.gca().set_xticks(uniq_d) plt.gca().set_xticklabels(uniq_l) for i in range(len(ticks['label'])): if ticks['label'][i] is not None: # don't print the same label twice if i != 0: if ticks['label'][i] == ticks['label'][i - 1]: logger.debug("already print label... " "skipping label {i}".format( i=ticks['label'][i])) else: logger.debug("Adding a line at {d}" " for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') else: logger.debug("Adding a line at {d} for label {l}".format( d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(ticks['distance'][i], color='k') return plt def bs_plot_data(self, zero_to_efermi=True): """ Get the data nicely formatted for a plot Args: zero_to_efermi: Automatically subtract off the Fermi energy from the eigenvalues and plot. Returns: A dict of the following format: ticks: A dict with the 'distances' at which there is a kpoint (the x axis) and the labels (None if no label) energy: A dict storing bands for spin up and spin down data [{Spin:[band_index][k_point_index]}] as a list (one element for each branch) of energy for each kpoint. The data is stored by branch to facilitate the plotting vbm: A list of tuples (distance,energy) marking the vbms. The energies are shifted with respect to the fermi level is the option has been selected. cbm: A list of tuples (distance,energy) marking the cbms. The energies are shifted with respect to the fermi level is the option has been selected. lattice: The reciprocal lattice. zero_energy: This is the energy used as zero for the plot. band_gap:A string indicating the band gap and its nature (empty if it's a metal). is_metal: True if the band structure is metallic (i.e., there is at least one band crossing the fermi level). """ distance = [] energy = [] if self._bs.is_metal(): zero_energy = self._bs.efermi else: zero_energy = self._bs.get_vbm()['energy'] if not zero_to_efermi: zero_energy = 0.0 for b in self._bs.branches: if self._bs.is_spin_polarized: energy.append({str(Spin.up): [], str(Spin.down): []}) else: energy.append({str(Spin.up): []}) distance.append([self._bs.distance[j] for j in range(b['start_index'], b['end_index'] + 1)]) ticks = self.get_ticks() for i in range(self._nb_bands): energy[-1][str(Spin.up)].append( [self._bs.bands[Spin.up][i][j] - zero_energy for j in range(b['start_index'], b['end_index'] + 1)]) if self._bs.is_spin_polarized: for i in range(self._nb_bands): energy[-1][str(Spin.down)].append( [self._bs.bands[Spin.down][i][j] - zero_energy for j in range(b['start_index'], b['end_index'] + 1)]) vbm = self._bs.get_vbm() cbm = self._bs.get_cbm() vbm_plot = [] cbm_plot = [] for index in cbm['kpoint_index']: cbm_plot.append((self._bs.distance[index], cbm['energy'] - zero_energy if zero_to_efermi else cbm['energy'])) for index in vbm['kpoint_index']: vbm_plot.append((self._bs.distance[index], vbm['energy'] - zero_energy if zero_to_efermi else vbm['energy'])) bg = self._bs.get_band_gap() direct = "Indirect" if bg['direct']: direct = "Direct" return {'ticks': ticks, 'distances': distance, 'energy': energy, 'vbm': vbm_plot, 'cbm': cbm_plot, 'lattice': self._bs.lattice_rec.as_dict(), 'zero_energy': zero_energy, 'is_metal': self._bs.is_metal(), 'band_gap': "{} {} bandgap = {}".format(direct, bg['transition'], bg['energy']) if not self._bs.is_metal() else ""} def get_plot(self, zero_to_efermi=True, ylim=None, smooth=False, vbm_cbm_marker=False,smooth_tol=None): """ Get a matplotlib object for the bandstructure plot. Blue lines are up spin, red lines are down spin. Args: zero_to_efermi: Automatically subtract off the Fermi energy from the eigenvalues and plot (E-Ef). ylim: Specify the y-axis (energy) limits; by default None let the code choose. It is vbm-4 and cbm+4 if insulator efermi-10 and efermi+10 if metal smooth: interpolates the bands by a spline cubic smooth_tol (float) : tolerance for fitting spline to band data. Default is None such that no tolerance will be used. """ plt = pretty_plot(12, 8) from matplotlib import rc import scipy.interpolate as scint try: rc('text', usetex=True) except: # Fall back on non Tex if errored. rc('text', usetex=False) # main internal config options e_min = -4 e_max = 4 if self._bs.is_metal(): e_min = -10 e_max = 10 #band_linewidth = 3 band_linewidth = 1 data = self.bs_plot_data(zero_to_efermi) if not smooth: for d in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][d], [data['energy'][d][str(Spin.up)][i][j] for j in range(len(data['distances'][d]))], 'b-', linewidth=band_linewidth) if self._bs.is_spin_polarized: plt.plot(data['distances'][d], [data['energy'][d][str(Spin.down)][i][j] for j in range(len(data['distances'][d]))], 'r--', linewidth=band_linewidth) else: # Interpolation failure can be caused by trying to fit an entire # band with one spline rather than fitting with piecewise splines # (splines are ill-suited to fit discontinuities). # # The number of splines used to fit a band is determined by the # number of branches (high symmetry lines) defined in the # BandStructureSymmLine object (see BandStructureSymmLine._branches). warning = "WARNING! Distance / branch {d}, band {i} cannot be "+\ "interpolated.\n"+\ "See full warning in source.\n"+\ "If this is not a mistake, try increasing "+\ "smooth_tol.\nCurrent smooth_tol is {s}." for d in range(len(data['distances'])): for i in range(self._nb_bands): tck = scint.splrep( data['distances'][d], [data['energy'][d][str(Spin.up)][i][j] for j in range(len(data['distances'][d]))], s = smooth_tol) step = (data['distances'][d][-1] - data['distances'][d][0]) / 1000 xs = [x * step + data['distances'][d][0] for x in range(1000)] ys = [scint.splev(x * step + data['distances'][d][0], tck, der=0) for x in range(1000)] for y in ys: if np.isnan(y): print(warning.format(d=str(d),i=str(i), s=str(smooth_tol))) break plt.plot(xs, ys, 'b-', linewidth=band_linewidth) if self._bs.is_spin_polarized: tck = scint.splrep( data['distances'][d], [data['energy'][d][str(Spin.down)][i][j] for j in range(len(data['distances'][d]))], s = smooth_tol) step = (data['distances'][d][-1] - data['distances'][d][0]) / 1000 xs = [x * step + data['distances'][d][0] for x in range(1000)] ys = [scint.splev( x * step + data['distances'][d][0], tck, der=0) for x in range(1000)] for y in ys: if np.isnan(y): print(warning.format(d=str(d),i=str(i), s=str(smooth_tol))) break plt.plot(xs, ys, 'r--', linewidth=band_linewidth) # plt.plot([x * step + data['distances'][d][0] # for x in range(1000)], # [scint.splev( # x * step + data['distances'][d][0], # tck, der=0) # for x in range(1000)], 'r--', # linewidth=band_linewidth) self._maketicks(plt) # Main X and Y Labels plt.xlabel(r'$\mathrm{Wave\ Vector}$', fontsize=30) ylabel = r'$\mathrm{E\ -\ E_f\ (eV)}$' if zero_to_efermi \ else r'$\mathrm{Energy\ (eV)}$' plt.ylabel(ylabel, fontsize=30) # Draw Fermi energy, only if not the zero if not zero_to_efermi: ef = self._bs.efermi plt.axhline(ef, linewidth=2, color='k') # X range (K) # last distance point x_max = data['distances'][-1][-1] plt.xlim(0, x_max) if ylim is None: if self._bs.is_metal(): # Plot A Metal if zero_to_efermi: plt.ylim(e_min, e_max) else: plt.ylim(self._bs.efermi + e_min, self._bs.efermi + e_max) else: if vbm_cbm_marker: for cbm in data['cbm']: plt.scatter(cbm[0], cbm[1], color='r', marker='o', s=100) for vbm in data['vbm']: plt.scatter(vbm[0], vbm[1], color='g', marker='o', s=100) plt.ylim(data['vbm'][0][1] + e_min, data['cbm'][0][1] + e_max) else: plt.ylim(ylim) plt.tight_layout() return plt def show(self, zero_to_efermi=True, ylim=None, smooth=False, smooth_tol=None): """ Show the plot using matplotlib. Args: zero_to_efermi: Automatically subtract off the Fermi energy from the eigenvalues and plot (E-Ef). ylim: Specify the y-axis (energy) limits; by default None let the code choose. It is vbm-4 and cbm+4 if insulator efermi-10 and efermi+10 if metal smooth: interpolates the bands by a spline cubic smooth_tol (float) : tolerance for fitting spline to band data. Default is None such that no tolerance will be used. """ plt = self.get_plot(zero_to_efermi, ylim, smooth) plt.show() def save_plot(self, filename, img_format="eps", ylim=None, zero_to_efermi=True, smooth=False): """ Save matplotlib plot to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. ylim: Specifies the y-axis limits. """ plt = self.get_plot(ylim=ylim, zero_to_efermi=zero_to_efermi, smooth=smooth) plt.savefig(filename, format=img_format) plt.close() def get_ticks(self): """ Get all ticks and labels for a band structure plot. Returns: A dict with 'distance': a list of distance at which ticks should be set and 'label': a list of label for each of those ticks. """ tick_distance = [] tick_labels = [] previous_label = self._bs.kpoints[0].label previous_branch = self._bs.branches[0]['name'] for i, c in enumerate(self._bs.kpoints): if c.label is not None: tick_distance.append(self._bs.distance[i]) this_branch = None for b in self._bs.branches: if b['start_index'] <= i <= b['end_index']: this_branch = b['name'] break if c.label != previous_label \ and previous_branch != this_branch: label1 = c.label if label1.startswith("\\") or label1.find("_") != -1: label1 = "$" + label1 + "$" label0 = previous_label if label0.startswith("\\") or label0.find("_") != -1: label0 = "$" + label0 + "$" tick_labels.pop() tick_distance.pop() tick_labels.append(label0 + "$\\mid$" + label1) else: if c.label.startswith("\\") or c.label.find("_") != -1: tick_labels.append("$" + c.label + "$") else: tick_labels.append(c.label) previous_label = c.label previous_branch = this_branch return {'distance': tick_distance, 'label': tick_labels} def plot_compare(self, other_plotter, legend=True): """ plot two band structure for comparison. One is in red the other in blue (no difference in spins). The two band structures need to be defined on the same symmetry lines! and the distance between symmetry lines is the one of the band structure used to build the BSPlotter Args: another band structure object defined along the same symmetry lines Returns: a matplotlib object with both band structures """ # TODO: add exception if the band structures are not compatible import matplotlib.lines as mlines plt = self.get_plot() data_orig = self.bs_plot_data() data = other_plotter.bs_plot_data() band_linewidth = 1 for i in range(other_plotter._nb_bands): for d in range(len(data_orig['distances'])): plt.plot(data_orig['distances'][d], [e[str(Spin.up)][i] for e in data['energy']][d], 'c-', linewidth=band_linewidth) if other_plotter._bs.is_spin_polarized: plt.plot(data_orig['distances'][d], [e[str(Spin.down)][i] for e in data['energy']][d], 'm--', linewidth=band_linewidth) if legend: handles = [mlines.Line2D([], [], linewidth=2, color='b', label='bs 1 up'), mlines.Line2D([], [], linewidth=2, color='r', label='bs 1 down', linestyle="--"), mlines.Line2D([], [], linewidth=2, color='c', label='bs 2 up'), mlines.Line2D([], [], linewidth=2, color='m', linestyle="--", label='bs 2 down')] plt.legend(handles=handles) return plt def plot_brillouin(self): """ plot the Brillouin zone """ # get labels and lines labels = {} for k in self._bs.kpoints: if k.label: labels[k.label] = k.frac_coords lines = [] for b in self._bs.branches: lines.append([self._bs.kpoints[b['start_index']].frac_coords, self._bs.kpoints[b['end_index']].frac_coords]) plot_brillouin_zone(self._bs.lattice_rec, lines=lines, labels=labels) class BSPlotterProjected(BSPlotter): """ Class to plot or get data to facilitate the plot of band structure objects projected along orbitals, elements or sites. Args: bs: A BandStructureSymmLine object with projections. """ def __init__(self, bs): if len(bs.projections) == 0: raise ValueError("try to plot projections" " on a band structure without any") super(BSPlotterProjected, self).__init__(bs) def _get_projections_by_branches(self, dictio): proj = self._bs.get_projections_on_elements_and_orbitals(dictio) proj_br = [] for b in self._bs.branches: if self._bs.is_spin_polarized: proj_br.append( {str(Spin.up): [[] for l in range(self._nb_bands)], str(Spin.down): [[] for l in range(self._nb_bands)]}) else: proj_br.append( {str(Spin.up): [[] for l in range(self._nb_bands)]}) for i in range(self._nb_bands): for j in range(b['start_index'], b['end_index'] + 1): proj_br[-1][str(Spin.up)][i].append( {e: {o: proj[Spin.up][i][j][e][o] for o in proj[Spin.up][i][j][e]} for e in proj[Spin.up][i][j]}) if self._bs.is_spin_polarized: for b in self._bs.branches: for i in range(self._nb_bands): for j in range(b['start_index'], b['end_index'] + 1): proj_br[-1][str(Spin.down)][i].append( {e: {o: proj[Spin.down][i][j][e][o] for o in proj[Spin.down][i][j][e]} for e in proj[Spin.down][i][j]}) return proj_br def get_projected_plots_dots(self, dictio, zero_to_efermi=True, ylim=None, vbm_cbm_marker=False): """ Method returning a plot composed of subplots along different elements and orbitals. Args: dictio: The element and orbitals you want a projection on. The format is {Element:[Orbitals]} for instance {'Cu':['d','s'],'O':['p']} will give projections for Cu on d and s orbitals and on oxygen p. Returns: a pylab object with different subfigures for each projection The blue and red colors are for spin up and spin down. The bigger the red or blue dot in the band structure the higher character for the corresponding element and orbital. """ band_linewidth = 1.0 fig_number = sum([len(v) for v in dictio.values()]) proj = self._get_projections_by_branches(dictio) data = self.bs_plot_data(zero_to_efermi) plt = pretty_plot(12, 8) e_min = -4 e_max = 4 if self._bs.is_metal(): e_min = -10 e_max = 10 count = 1 for el in dictio: for o in dictio[el]: plt.subplot(100 * math.ceil(fig_number / 2) + 20 + count) self._maketicks(plt) for b in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][b], [data['energy'][b][str(Spin.up)][i][j] for j in range(len(data['distances'][b]))], 'b-', linewidth=band_linewidth) if self._bs.is_spin_polarized: plt.plot(data['distances'][b], [data['energy'][b][str(Spin.down)][i][j] for j in range(len(data['distances'][b]))], 'r--', linewidth=band_linewidth) for j in range( len(data['energy'][b][str(Spin.up)][i])): plt.plot(data['distances'][b][j], data['energy'][b][str(Spin.down)][i][ j], 'ro', markersize= proj[b][str(Spin.down)][i][j][str(el)][ o] * 15.0) for j in range(len(data['energy'][b][str(Spin.up)][i])): plt.plot(data['distances'][b][j], data['energy'][b][str(Spin.up)][i][j], 'bo', markersize= proj[b][str(Spin.up)][i][j][str(el)][ o] * 15.0) if ylim is None: if self._bs.is_metal(): if zero_to_efermi: plt.ylim(e_min, e_max) else: plt.ylim(self._bs.efermi + e_min, self._bs.efermi + e_max) else: if vbm_cbm_marker: for cbm in data['cbm']: plt.scatter(cbm[0], cbm[1], color='r', marker='o', s=100) for vbm in data['vbm']: plt.scatter(vbm[0], vbm[1], color='g', marker='o', s=100) plt.ylim(data['vbm'][0][1] + e_min, data['cbm'][0][1] + e_max) else: plt.ylim(ylim) plt.title(str(el) + " " + str(o)) count += 1 return plt def get_elt_projected_plots(self, zero_to_efermi=True, ylim=None, vbm_cbm_marker=False): """ Method returning a plot composed of subplots along different elements Returns: a pylab object with different subfigures for each projection The blue and red colors are for spin up and spin down The bigger the red or blue dot in the band structure the higher character for the corresponding element and orbital """ band_linewidth = 1.0 proj = self._get_projections_by_branches({e.symbol: ['s', 'p', 'd'] for e in self._bs.structure.composition.elements}) data = self.bs_plot_data(zero_to_efermi) plt = pretty_plot(12, 8) e_min = -4 e_max = 4 if self._bs.is_metal(): e_min = -10 e_max = 10 count = 1 for el in self._bs.structure.composition.elements: plt.subplot(220 + count) self._maketicks(plt) for b in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][b], [data['energy'][b][str(Spin.up)][i][j] for j in range(len(data['distances'][b]))], '-', color=[192/255,192/255,192/255], linewidth=band_linewidth) if self._bs.is_spin_polarized: plt.plot(data['distances'][b], [data['energy'][b][str(Spin.down)][i][j] for j in range(len(data['distances'][b]))], '--', color=[128/255,128/255,128/255], linewidth=band_linewidth) for j in range(len(data['energy'][b][str(Spin.up)][i])): markerscale = sum([proj[b][str(Spin.down)][i][ j][str(el)][o] for o in proj[b] [str(Spin.down)][i][j][ str(el)]]) plt.plot(data['distances'][b][j], data['energy'][b][str(Spin.down)][i][j], 'bo', markersize=markerscale*15.0,color=[markerscale,0.3*markerscale,0.4*markerscale]) for j in range(len(data['energy'][b][str(Spin.up)][i])): markerscale = sum( [proj[b][str(Spin.up)][i][j][str(el)][o] for o in proj[b] [str(Spin.up)][i][j][str(el)]]) plt.plot(data['distances'][b][j], data['energy'][b][str(Spin.up)][i][j], 'o', markersize=markerscale*15.0, color=[markerscale, 0.3*markerscale, 0.4*markerscale]) if ylim is None: if self._bs.is_metal(): if zero_to_efermi: plt.ylim(e_min, e_max) else: plt.ylim(self._bs.efermi + e_min, self._bs.efermi + e_max) else: if vbm_cbm_marker: for cbm in data['cbm']: plt.scatter(cbm[0], cbm[1], color='r', marker='o', s=100) for vbm in data['vbm']: plt.scatter(vbm[0], vbm[1], color='g', marker='o', s=100) plt.ylim(data['vbm'][0][1] + e_min, data['cbm'][0][1] + e_max) else: plt.ylim(ylim) plt.title(str(el)) count += 1 return plt def get_elt_projected_plots_color(self, zero_to_efermi=True, elt_ordered=None): """ returns a pylab plot object with one plot where the band structure line color depends on the character of the band (along different elements). Each element is associated with red, green or blue and the corresponding rgb color depending on the character of the band is used. The method can only deal with binary and ternary compounds spin up and spin down are differientiated by a '-' and a '--' line Args: elt_ordered: A list of Element ordered. The first one is red, second green, last blue Returns: a pylab object """ band_linewidth = 3.0 if len(self._bs.structure.composition.elements) > 3: raise ValueError if elt_ordered is None: elt_ordered = self._bs.structure.composition.elements proj = self._get_projections_by_branches( {e.symbol: ['s', 'p', 'd'] for e in self._bs.structure.composition.elements}) data = self.bs_plot_data(zero_to_efermi) plt = pretty_plot(12, 8) spins = [Spin.up] if self._bs.is_spin_polarized: spins = [Spin.up, Spin.down] self._maketicks(plt) for s in spins: for b in range(len(data['distances'])): for i in range(self._nb_bands): for j in range(len(data['energy'][b][str(s)][i]) - 1): sum_e = 0.0 for el in elt_ordered: sum_e = sum_e + \ sum([proj[b][str(s)][i][j][str(el)][o] for o in proj[b][str(s)][i][j][str(el)]]) if sum_e == 0.0: color = [0.0] * len(elt_ordered) else: color = [sum([proj[b][str(s)][i][j][str(el)][o] for o in proj[b][str(s)][i][j][str(el)]]) / sum_e for el in elt_ordered] if len(color) == 2: color.append(0.0) color[2] = color[1] color[1] = 0.0 sign = '-' if s == Spin.down: sign = '--' plt.plot([data['distances'][b][j], data['distances'][b][j + 1]], [data['energy'][b][str(s)][i][j], data['energy'][b][str(s)][i][j + 1]], sign, color=color, linewidth=band_linewidth) if self._bs.is_metal(): if zero_to_efermi: e_min = -10 e_max = 10 plt.ylim(e_min, e_max) plt.ylim(self._bs.efermi + e_min, self._bs.efermi + e_max) else: plt.ylim(data['vbm'][0][1] - 4.0, data['cbm'][0][1] + 2.0) return plt def _get_projections_by_branches_patom_pmorb(self, dictio, dictpa, sum_atoms, sum_morbs, selected_branches): import copy setos = {'s': 0, 'py': 1, 'pz': 2, 'px': 3, 'dxy': 4, 'dyz': 5, 'dz2': 6, 'dxz': 7, 'dx2': 8, 'f_3': 9, 'f_2': 10, 'f_1': 11, 'f0': 12, 'f1': 13, 'f2': 14, 'f3': 15} num_branches = len(self._bs.branches) if selected_branches is not None: indices = [] if not isinstance(selected_branches, list): raise TypeError("You do not give a correct type of 'selected_branches'. It should be 'list' type.") elif len(selected_branches) == 0: raise ValueError("The 'selected_branches' is empty. We cannot do anything.") else: for index in selected_branches: if not isinstance(index, int): raise ValueError("You do not give a correct type of index of symmetry lines. It should be " "'int' type") elif index > num_branches or index < 1: raise ValueError("You give a incorrect index of symmetry lines: %s. The index should be in " "range of [1, %s]." % (str(index), str(num_branches))) else: indices.append(index-1) else: indices = range(0, num_branches) proj = self._bs.projections proj_br = [] for index in indices: b = self._bs.branches[index] print(b) if self._bs.is_spin_polarized: proj_br.append( {str(Spin.up): [[] for l in range(self._nb_bands)], str(Spin.down): [[] for l in range(self._nb_bands)]}) else: proj_br.append( {str(Spin.up): [[] for l in range(self._nb_bands)]}) for i in range(self._nb_bands): for j in range(b['start_index'], b['end_index'] + 1): edict = {} for elt in dictpa: for anum in dictpa[elt]: edict[elt + str(anum)] = {} for morb in dictio[elt]: edict[elt + str(anum)][morb] = proj[Spin.up][i][j][setos[morb]][anum-1] proj_br[-1][str(Spin.up)][i].append(edict) if self._bs.is_spin_polarized: for i in range(self._nb_bands): for j in range(b['start_index'], b['end_index'] + 1): edict = {} for elt in dictpa: for anum in dictpa[elt]: edict[elt + str(anum)] = {} for morb in dictio[elt]: edict[elt + str(anum)][morb] = proj[Spin.up][i][j][setos[morb]][anum-1] proj_br[-1][str(Spin.down)][i].append(edict) # Adjusting projections for plot dictio_d, dictpa_d = self._summarize_keys_for_plot(dictio, dictpa, sum_atoms, sum_morbs) print('dictio_d: %s' % str(dictio_d)) print('dictpa_d: %s' % str(dictpa_d)) if (sum_atoms is None) and (sum_morbs is None): proj_br_d = copy.deepcopy(proj_br) else: proj_br_d = [] branch = -1 for index in indices: branch += 1 br = self._bs.branches[index] if self._bs.is_spin_polarized: proj_br_d.append( {str(Spin.up): [[] for l in range(self._nb_bands)], str(Spin.down): [[] for l in range(self._nb_bands)]}) else: proj_br_d.append( {str(Spin.up): [[] for l in range(self._nb_bands)]}) if (sum_atoms is not None) and (sum_morbs is None): for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.up)][i][j]) edict = {} for elt in dictpa: if elt in sum_atoms: for anum in dictpa_d[elt][:-1]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio[elt]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) proj_br_d[-1][str(Spin.up)][i].append(edict) if self._bs.is_spin_polarized: for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.down)][i][j]) edict = {} for elt in dictpa: if elt in sum_atoms: for anum in dictpa_d[elt][:-1]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio[elt]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) proj_br_d[-1][str(Spin.down)][i].append(edict) elif (sum_atoms is None) and (sum_morbs is not None): for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.up)][i][j]) edict = {} for elt in dictpa: if elt in sum_morbs: for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) proj_br_d[-1][str(Spin.up)][i].append(edict) if self._bs.is_spin_polarized: for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.down)][i][j]) edict = {} for elt in dictpa: if elt in sum_morbs: for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) proj_br_d[-1][str(Spin.down)][i].append(edict) else: for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.up)][i][j]) edict = {} for elt in dictpa: if (elt in sum_atoms) and (elt in sum_morbs): for anum in dictpa_d[elt][:-1]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio_d[elt][:-1]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection sprojection = 0.0 for anum in sum_atoms[elt]: for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][dictio_d[elt][-1]] = sprojection elif (elt in sum_atoms) and (elt not in sum_morbs): for anum in dictpa_d[elt][:-1]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio[elt]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection elif (elt not in sum_atoms) and (elt in sum_morbs): for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] proj_br_d[-1][str(Spin.up)][i].append(edict) if self._bs.is_spin_polarized: for i in range(self._nb_bands): for j in range(br['end_index'] - br['start_index'] + 1): atoms_morbs = copy.deepcopy(proj_br[branch][str(Spin.down)][i][j]) edict = {} for elt in dictpa: if (elt in sum_atoms) and (elt in sum_morbs): for anum in dictpa_d[elt][:-1]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio_d[elt][:-1]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection sprojection = 0.0 for anum in sum_atoms[elt]: for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][dictio_d[elt][-1]] = sprojection elif (elt in sum_atoms) and (elt not in sum_morbs): for anum in dictpa_d[elt][:-1]: edict[elt + anum] = copy.deepcopy(atoms_morbs[elt + anum]) edict[elt + dictpa_d[elt][-1]] = {} for morb in dictio[elt]: sprojection = 0.0 for anum in sum_atoms[elt]: sprojection += atoms_morbs[elt + str(anum)][morb] edict[elt + dictpa_d[elt][-1]][morb] = sprojection elif (elt not in sum_atoms) and (elt in sum_morbs): for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt][:-1]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] sprojection = 0.0 for morb in sum_morbs[elt]: sprojection += atoms_morbs[elt + anum][morb] edict[elt + anum][dictio_d[elt][-1]] = sprojection else: for anum in dictpa_d[elt]: edict[elt + anum] = {} for morb in dictio_d[elt]: edict[elt + anum][morb] = atoms_morbs[elt + anum][morb] proj_br_d[-1][str(Spin.down)][i].append(edict) return proj_br_d, dictio_d, dictpa_d, indices def get_projected_plots_dots_patom_pmorb(self, dictio, dictpa, sum_atoms=None, sum_morbs=None, zero_to_efermi=True, ylim=None, vbm_cbm_marker=False, selected_branches=None, w_h_size=(12,8), num_column = None): """ Method returns a plot composed of subplots for different atoms and orbitals (subshell orbitals such as 's', 'p', 'd' and 'f' defined by azimuthal quantum numbers l = 0, 1, 2 and 3, respectively or individual orbitals like 'px', 'py' and 'pz' defined by magnetic quantum numbers m = -1, 1 and 0, respectively). This is an extension of "get_projected_plots_dots" method. Args: dictio: The elements and the orbitals you need to project on. The format is {Element:[Orbitals]}, for instance: {'Cu':['dxy','s','px'],'O':['px','py','pz']} will give projections for Cu on orbitals dxy, s, px and for O on orbitals px, py, pz. If you want to sum over all individual orbitals of subshell orbitals, for example, 'px', 'py' and 'pz' of O, just simply set {'Cu':['dxy','s','px'],'O':['p']} and set sum_morbs (see explainations below) as {'O':[p],...}. Otherwise, you will get an error. dictpa: The elements and their sites (defined by site numbers) you need to project on. The format is {Element: [Site numbers]}, for instance: {'Cu':[1,5],'O':[3,4]} will give projections for Cu on site-1 and on site-5, O on site-3 and on site-4 in the cell. Attention: The correct site numbers of atoms are consistent with themselves in the structure computed. Normally, the structure should be totally similar with POSCAR file, however, sometimes VASP can rotate or translate the cell. Thus, it would be safe if using Vasprun class to get the final_structure and as a result, correct index numbers of atoms. sum_atoms: Sum projection of the similar atoms together (e.g.: Cu on site-1 and Cu on site-5). The format is {Element: [Site numbers]}, for instance: {'Cu': [1,5], 'O': [3,4]} means summing projections over Cu on site-1 and Cu on site-5 and O on site-3 and on site-4. If you do not want to use this functional, just turn it off by setting sum_atoms = None. sum_morbs: Sum projections of individual orbitals of similar atoms together (e.g.: 'dxy' and 'dxz'). The format is {Element: [individual orbitals]}, for instance: {'Cu': ['dxy', 'dxz'], 'O': ['px', 'py']} means summing projections over 'dxy' and 'dxz' of Cu and 'px' and 'py' of O. If you do not want to use this functional, just turn it off by setting sum_morbs = None. selected_branches: The index of symmetry lines you chose for plotting. This can be useful when the number of symmetry lines (in KPOINTS file) are manny while you only want to show for certain ones. The format is [index of line], for instance: [1, 3, 4] means you just need to do projection along lines number 1, 3 and 4 while neglecting lines number 2 and so on. By default, this is None type and all symmetry lines will be plotted. w_h_size: This variable help you to control the width and height of figure. By default, width = 12 and height = 8 (inches). The width/height ratio is kept the same for subfigures and the size of each depends on how many number of subfigures are plotted. num_column: This variable help you to manage how the subfigures are arranged in the figure by setting up the number of columns of subfigures. The value should be an int number. For example, num_column = 3 means you want to plot subfigures in 3 columns. By default, num_column = None and subfigures are aligned in 2 columns. Returns: A pylab object with different subfigures for different projections. The blue and red colors lines are bands for spin up and spin down. The green and cyan dots are projections for spin up and spin down. The bigger the green or cyan dots in the projected band structures, the higher character for the corresponding elements and orbitals. List of individual orbitals and their numbers (set up by VASP and no special meaning): s = 0; py = 1 pz = 2 px = 3; dxy = 4 dyz = 5 dz2 = 6 dxz = 7 dx2 = 8; f_3 = 9 f_2 = 10 f_1 = 11 f0 = 12 f1 = 13 f2 = 14 f3 = 15 """ dictio, sum_morbs = self._Orbitals_SumOrbitals(dictio, sum_morbs) dictpa, sum_atoms, number_figs = self._number_of_subfigures(dictio, dictpa, sum_atoms, sum_morbs) print('Number of subfigures: %s' % str(number_figs)) if number_figs > 9: print("The number of sub-figures %s might be too manny and the implementation might take a long time.\n" "A smaller number or a plot with selected symmetry lines (selected_branches) might be better.\n" % str(number_figs)) import math from pymatgen.util.plotting import pretty_plot band_linewidth = 0.5 plt = pretty_plot(w_h_size[0], w_h_size[1]) proj_br_d, dictio_d, dictpa_d, branches = self._get_projections_by_branches_patom_pmorb(dictio, dictpa, sum_atoms, sum_morbs, selected_branches) data = self.bs_plot_data(zero_to_efermi) e_min = -4 e_max = 4 if self._bs.is_metal(): e_min = -10 e_max = 10 count = 0 for elt in dictpa_d: for numa in dictpa_d[elt]: for o in dictio_d[elt]: count += 1 if num_column is None: if number_figs == 1: plt.subplot(1,1,1) else: row = number_figs/2 if number_figs % 2 == 0: plt.subplot(row,2,count) else: plt.subplot(row+1,2,count) elif isinstance(num_column, int): row = number_figs/num_column if number_figs % num_column == 0: plt.subplot(row,num_column,count) else: plt.subplot(row+1,num_column,count) else: raise ValueError("The invalid 'num_column' is assigned. It should be an integer.") plt, shift = self._maketicks_selected(plt, branches) br = -1 for b in branches: br += 1 for i in range(self._nb_bands): plt.plot(map(lambda x: x-shift[br], data['distances'][b]), [data['energy'][b][str(Spin.up)][i][j] for j in range(len(data['distances'][b]))], 'b-', linewidth=band_linewidth) if self._bs.is_spin_polarized: plt.plot(map(lambda x: x-shift[br], data['distances'][b]), [data['energy'][b][str(Spin.down)][i][j] for j in range(len(data['distances'][b]))], 'r--', linewidth=band_linewidth) for j in range(len(data['energy'][b][str(Spin.up)][i])): plt.plot(data['distances'][b][j] - shift[br], data['energy'][b][str(Spin.down)][i][j], 'co', markersize=\ proj_br_d[br][str(Spin.down)][i][j][elt + numa][o] * 15.0) for j in range(len(data['energy'][b][str(Spin.up)][i])): plt.plot(data['distances'][b][j] - shift[br], data['energy'][b][str(Spin.up)][i][j], 'go', markersize=\ proj_br_d[br][str(Spin.up)][i][j][elt + numa][o] * 15.0) if ylim is None: if self._bs.is_metal(): if zero_to_efermi: plt.ylim(e_min, e_max) else: plt.ylim(self._bs.efermi + e_min, self._bs._efermi + e_max) else: if vbm_cbm_marker: for cbm in data['cbm']: plt.scatter(cbm[0], cbm[1], color='r', marker='o', s=100) for vbm in data['vbm']: plt.scatter(vbm[0], vbm[1], color='g', marker='o', s=100) plt.ylim(data['vbm'][0][1] + e_min, data['cbm'][0][1] + e_max) else: plt.ylim(ylim) plt.title(elt + "_" + numa + "_" + str(o)) return plt def _Orbitals_SumOrbitals(self, dictio, sum_morbs): from pymatgen.core.periodic_table import Element from collections import Counter import copy all_orbitals = ['s', 'p', 'd', 'f', 'px', 'py', 'pz', 'dxy', 'dyz', 'dxz', 'dx2', 'dz2', 'f_3', 'f_2', 'f_1', 'f0', 'f1', 'f2', 'f3'] individual_orbs = {'p': ['px', 'py', 'pz'], 'd': ['dxy', 'dyz', 'dxz', 'dx2', 'dz2'], 'f': ['f_3', 'f_2', 'f_1', 'f0', 'f1', 'f2', 'f3']} if (not isinstance(dictio, dict)): raise TypeError("The invalid type of 'dictio' was bound. It should be dict type.") elif len(dictio.keys()) == 0: raise KeyError("The 'dictio' is empty. We cannot do anything.") else: for elt in dictio: if Element.is_valid_symbol(elt): if isinstance(dictio[elt], list): if len(dictio[elt]) == 0: raise ValueError("The dictio[%s] is empty. We cannot do anything" % elt) for orb in dictio[elt]: if not isinstance(orb, str): raise ValueError("The invalid format of orbitals is in 'dictio[%s]': %s. " "They should be string." % (elt,str(orb))) elif orb not in all_orbitals: raise ValueError("The invalid name of orbital is given in 'dictio[%s]'." % elt) else: if orb in individual_orbs.keys(): if len(set(dictio[elt]).intersection(individual_orbs[orb])) != 0: raise ValueError("The 'dictio[%s]' contains orbitals repeated." % elt) else: pass else: pass nelems = Counter(dictio[elt]).values() if sum(nelems) > len(nelems): raise ValueError("You put in at least two similar orbitals in dictio[%s]." % elt) else: raise TypeError("The invalid type of value was put into 'dictio[%s]'. It should be list " "type." % elt) else: raise KeyError("The invalid element was put into 'dictio' as a key: %s" % elt) if sum_morbs is None: print("You do not want to sum projection over orbitals.") elif (not isinstance(sum_morbs, dict)): raise TypeError("The invalid type of 'sum_orbs' was bound. It should be dict or 'None' type.") elif len(sum_morbs.keys()) == 0: raise KeyError("The 'sum_morbs' is empty. We cannot do anything") else: for elt in sum_morbs: if Element.is_valid_symbol(elt): if isinstance(sum_morbs[elt], list): for orb in sum_morbs[elt]: if not isinstance(orb, str): raise TypeError("The invalid format of orbitals is in 'sum_morbs[%s]': %s. " "They should be string." % (elt,str(orb))) elif orb not in all_orbitals: raise ValueError("The invalid name of orbital in 'sum_morbs[%s]' is given." % elt) else: if orb in individual_orbs.keys(): if len(set(sum_morbs[elt]).intersection(individual_orbs[orb])) != 0: raise ValueError("The 'sum_morbs[%s]' contains orbitals repeated." % elt) else: pass else: pass nelems = Counter(sum_morbs[elt]).values() if sum(nelems) > len(nelems): raise ValueError("You put in at least two similar orbitals in sum_morbs[%s]." % elt) else: raise TypeError("The invalid type of value was put into 'sum_morbs[%s]'. It should be list " "type." % elt) if elt not in dictio.keys(): raise ValueError("You cannot sum projection over orbitals of atoms '%s' because they are not " "mentioned in 'dictio'." % elt) else: raise KeyError("The invalid element was put into 'sum_morbs' as a key: %s" % elt) for elt in dictio: if len(dictio[elt]) == 1: if len(dictio[elt][0]) > 1: if elt in sum_morbs.keys(): raise ValueError("You cannot sum projection over one individual orbital '%s' of '%s'." % (dictio[elt][0], elt)) else: pass else: if sum_morbs is None: pass elif elt not in sum_morbs.keys(): print("You do not want to sum projection over orbitals of element: %s" % elt) else: if len(sum_morbs[elt]) == 0: raise ValueError("The empty list is an invalid value for sum_morbs[%s]." % elt) elif len(sum_morbs[elt]) > 1: for orb in sum_morbs[elt]: if dictio[elt][0] not in orb: raise ValueError("The invalid orbital '%s' was put into 'sum_morbs[%s]'." % (orb, elt)) else: pass else: if (orb == 's' or len(orb) > 1): raise ValueError("The invalid orbital '%s' was put into sum_orbs['%s']." % (orb, elt)) else: sum_morbs[elt] = individual_orbs[dictio[elt][0]] else: duplicate = copy.deepcopy(dictio[elt]) for orb in dictio[elt]: if orb in individual_orbs.keys(): duplicate.remove(orb) for o in individual_orbs[orb]: duplicate.append(o) else: pass dictio[elt] = copy.deepcopy(duplicate) if sum_morbs is None: pass elif elt not in sum_morbs.keys(): print("You do not want to sum projection over orbitals of element: %s" % elt) else: if len(sum_morbs[elt]) == 0: raise ValueError("The empty list is an invalid value for sum_morbs[%s]." % elt) elif len(sum_morbs[elt]) == 1: orb = sum_morbs[elt][0] if orb == 's': raise ValueError("We do not sum projection over only 's' orbital of the same " "type of element.") elif orb in individual_orbs.keys(): sum_morbs[elt].pop(0) for o in individual_orbs[orb]: sum_morbs[elt].append(o) else: raise ValueError("You never sum projection over one orbital in sum_morbs[%s]" % elt) else: duplicate = copy.deepcopy(sum_morbs[elt]) for orb in sum_morbs[elt]: if orb in individual_orbs.keys(): duplicate.remove(orb) for o in individual_orbs[orb]: duplicate.append(o) else: pass sum_morbs[elt] = copy.deepcopy(duplicate) for orb in sum_morbs[elt]: if orb not in dictio[elt]: raise ValueError("The orbitals of sum_morbs[%s] conflict with those of dictio[%s]." % (elt, elt)) return dictio, sum_morbs def _number_of_subfigures(self, dictio, dictpa, sum_atoms, sum_morbs): from pymatgen.core.periodic_table import Element from collections import Counter if (not isinstance(dictpa, dict)): raise TypeError("The invalid type of 'dictpa' was bound. It should be dict type.") elif len(dictpa.keys()) == 0: raise KeyError("The 'dictpa' is empty. We cannot do anything.") else: for elt in dictpa: if Element.is_valid_symbol(elt): if isinstance(dictpa[elt], list): if len(dictpa[elt]) == 0: raise ValueError("The dictpa[%s] is empty. We cannot do anything" % elt) _sites = self._bs.structure.sites indices = [] for i in range(0, len(_sites)): if _sites[i]._species.keys()[0].__eq__(Element(elt)): indices.append(i+1) for number in dictpa[elt]: if isinstance(number, str): if 'all' == number.lower(): dictpa[elt] = indices print("You want to consider all '%s' atoms." % elt) break else: raise ValueError("You put wrong site numbers in 'dictpa[%s]': %s." % (elt,str(number))) elif isinstance(number, int): if number not in indices: raise ValueError("You put wrong site numbers in 'dictpa[%s]': %s." % (elt,str(number))) else: raise ValueError("You put wrong site numbers in 'dictpa[%s]': %s." % (elt,str(number))) nelems = Counter(dictpa[elt]).values() if sum(nelems) > len(nelems): raise ValueError("You put at least two similar site numbers into 'dictpa[%s]'." % elt) else: raise TypeError("The invalid type of value was put into 'dictpa[%s]'. It should be list " "type." % elt) else: raise KeyError("The invalid element was put into 'dictpa' as a key: %s" % elt) if len(dictio.keys()) != len(dictpa.keys()): raise KeyError("The number of keys in 'dictio' and 'dictpa' are not the same.") else: for elt in dictio.keys(): if elt not in dictpa.keys(): raise KeyError("The element '%s' is not in both dictpa and dictio." % elt) for elt in dictpa.keys(): if elt not in dictio.keys(): raise KeyError("The element '%s' in not in both dictpa and dictio." % elt) if sum_atoms is None: print("You do not want to sum projection over atoms.") elif (not isinstance(sum_atoms, dict)): raise TypeError("The invalid type of 'sum_atoms' was bound. It should be dict type.") elif len(sum_atoms.keys()) == 0: raise KeyError("The 'sum_atoms' is empty. We cannot do anything.") else: for elt in sum_atoms: if Element.is_valid_symbol(elt): if isinstance(sum_atoms[elt], list): if len(sum_atoms[elt]) == 0: raise ValueError("The sum_atoms[%s] is empty. We cannot do anything" % elt) _sites = self._bs.structure.sites indices = [] for i in range(0, len(_sites)): if _sites[i]._species.keys()[0].__eq__(Element(elt)): indices.append(i+1) for number in sum_atoms[elt]: if isinstance(number, str): if 'all' == number.lower(): sum_atoms[elt] = indices print("You want to sum projection over all '%s' atoms." % elt) break else: raise ValueError("You put wrong site numbers in 'sum_atoms[%s]'." % elt) elif isinstance(number, int): if number not in indices: raise ValueError("You put wrong site numbers in 'sum_atoms[%s]'." % elt) elif number not in dictpa[elt]: raise ValueError("You cannot sum projection with atom number '%s' because it is not " "metioned in dicpta[%s]" % (str(number), elt)) else: raise ValueError("You put wrong site numbers in 'sum_atoms[%s]'." % elt) nelems = Counter(sum_atoms[elt]).values() if sum(nelems) > len(nelems): raise ValueError("You put at least two similar site numbers into 'sum_atoms[%s]'." % elt) else: raise TypeError("The invalid type of value was put into 'sum_atoms[%s]'. It should be list " "type." % elt) if elt not in dictpa.keys(): raise ValueError("You cannot sum projection over atoms '%s' because it is not " "mentioned in 'dictio'." % elt) else: raise KeyError("The invalid element was put into 'sum_atoms' as a key: %s" % elt) if len(sum_atoms[elt]) == 1: raise ValueError("We do not sum projection over only one atom: %s" % elt) max_number_figs = 0 decrease = 0 for elt in dictio: max_number_figs += len(dictio[elt]) * len(dictpa[elt]) if (sum_atoms is None) and (sum_morbs is None): number_figs = max_number_figs elif (sum_atoms is not None) and (sum_morbs is None): for elt in sum_atoms: decrease += (len(sum_atoms[elt]) - 1) * len(dictio[elt]) number_figs = max_number_figs - decrease elif (sum_atoms is None) and (sum_morbs is not None): for elt in sum_morbs: decrease += (len(sum_morbs[elt]) - 1) * len(dictpa[elt]) number_figs = max_number_figs - decrease elif (sum_atoms is not None) and (sum_morbs is not None): for elt in sum_atoms: decrease += (len(sum_atoms[elt]) - 1) * len(dictio[elt]) for elt in sum_morbs: if elt in sum_atoms: decrease += (len(sum_morbs[elt]) - 1) * (len(dictpa[elt]) - len(sum_atoms[elt]) + 1) else: decrease += (len(sum_morbs[elt]) - 1) * len(dictpa[elt]) number_figs = max_number_figs - decrease else: raise ValueError("Invalid format of 'sum_atoms' and 'sum_morbs'.") return dictpa, sum_atoms, number_figs def _summarize_keys_for_plot(self, dictio, dictpa, sum_atoms, sum_morbs): from pymatgen.core.periodic_table import Element individual_orbs = {'p': ['px', 'py', 'pz'], 'd': ['dxy', 'dyz', 'dxz', 'dx2', 'dz2'], 'f': ['f_3', 'f_2', 'f_1', 'f0', 'f1', 'f2', 'f3']} def number_label(list_numbers): list_numbers = sorted(list_numbers) divide = [[]] divide[0].append(list_numbers[0]) group = 0 for i in range(1, len(list_numbers)): if list_numbers[i] == list_numbers[i-1] + 1: divide[group].append(list_numbers[i]) else: group += 1 divide.append([list_numbers[i]]) label = "" for elem in divide: if len(elem) > 1: label += str(elem[0]) + "-" + str(elem[-1]) + "," else: label += str(elem[0]) + "," return label[:-1] def orbital_label(list_orbitals): divide = {} for orb in list_orbitals: if orb[0] in divide: divide[orb[0]].append(orb) else: divide[orb[0]] = [] divide[orb[0]].append(orb) label = "" for elem in divide: if elem == 's': label += "s" + "," else: if len(divide[elem]) == len(individual_orbs[elem]): label += elem + "," else: l = [o[1:] for o in divide[elem]] label += elem + str(l).replace("['","").replace("']","").replace("', '","-") + "," return label[:-1] if (sum_atoms is None) and (sum_morbs is None): dictio_d = dictio dictpa_d = {elt: [str(anum) for anum in dictpa[elt]] for elt in dictpa} elif (sum_atoms is not None) and (sum_morbs is None): dictio_d = dictio dictpa_d = {} for elt in dictpa: dictpa_d[elt] = [] if elt in sum_atoms: _sites = self._bs.structure.sites indices = [] for i in range(0, len(_sites)): if _sites[i]._species.keys()[0].__eq__(Element(elt)): indices.append(i+1) flag_1 = len(set(dictpa[elt]).intersection(indices)) flag_2 = len(set(sum_atoms[elt]).intersection(indices)) if flag_1 == len(indices) and flag_2 == len(indices): dictpa_d[elt].append('all') else: for anum in dictpa[elt]: if anum not in sum_atoms[elt]: dictpa_d[elt].append(str(anum)) label = number_label(sum_atoms[elt]) dictpa_d[elt].append(label) else: for anum in dictpa[elt]: dictpa_d[elt].append(str(anum)) elif (sum_atoms is None) and (sum_morbs is not None): dictio_d = {} for elt in dictio: dictio_d[elt] = [] if elt in sum_morbs: for morb in dictio[elt]: if morb not in sum_morbs[elt]: dictio_d[elt].append(morb) label = orbital_label(sum_morbs[elt]) dictio_d[elt].append(label) else: dictio_d[elt] = dictio[elt] dictpa_d = {elt: [str(anum) for anum in dictpa[elt]] for elt in dictpa} else: dictio_d = {} for elt in dictio: dictio_d[elt] = [] if elt in sum_morbs: for morb in dictio[elt]: if morb not in sum_morbs[elt]: dictio_d[elt].append(morb) label = orbital_label(sum_morbs[elt]) dictio_d[elt].append(label) else: dictio_d[elt] = dictio[elt] dictpa_d = {} for elt in dictpa: dictpa_d[elt] = [] if elt in sum_atoms: _sites = self._bs.structure.sites indices = [] for i in range(0, len(_sites)): if _sites[i]._species.keys()[0].__eq__(Element(elt)): indices.append(i + 1) flag_1 = len(set(dictpa[elt]).intersection(indices)) flag_2 = len(set(sum_atoms[elt]).intersection(indices)) if flag_1 == len(indices) and flag_2 == len(indices): dictpa_d[elt].append('all') else: for anum in dictpa[elt]: if anum not in sum_atoms[elt]: dictpa_d[elt].append(str(anum)) label = number_label(sum_atoms[elt]) dictpa_d[elt].append(label) else: for anum in dictpa[elt]: dictpa_d[elt].append(str(anum)) return dictio_d, dictpa_d def _maketicks_selected(self, plt, branches): """ utility private method to add ticks to a band structure with selected branches """ ticks = self.get_ticks() distance = [] label = [] rm_elems = [] for i in range(1, len(ticks['distance'])): if ticks['label'][i] == ticks['label'][i-1]: rm_elems.append(i) for i in range(len(ticks['distance'])): if i not in rm_elems: distance.append(ticks['distance'][i]) label.append(ticks['label'][i]) l_branches = [distance[i]-distance[i-1] for i in range(1,len(distance))] n_distance = [] n_label = [] for branch in branches: n_distance.append(l_branches[branch]) if ("$\\mid$" not in label[branch]) and ("$\\mid$" not in label[branch+1]): n_label.append([label[branch], label[branch+1]]) elif ("$\\mid$" in label[branch]) and ("$\\mid$" not in label[branch+1]): n_label.append([label[branch].split("$")[-1], label[branch+1]]) elif ("$\\mid$" not in label[branch]) and ("$\\mid$" in label[branch+1]): n_label.append([label[branch], label[branch+1].split("$")[0]]) else: n_label.append([label[branch].split("$")[-1], label[branch+1].split("$")[0]]) f_distance = [] rf_distance = [] f_label = [] f_label.append(n_label[0][0]) f_label.append(n_label[0][1]) f_distance.append(0.0) f_distance.append(n_distance[0]) rf_distance.append(0.0) rf_distance.append(n_distance[0]) length = n_distance[0] for i in range(1, len(n_distance)): if n_label[i][0] == n_label[i-1][1]: f_distance.append(length) f_distance.append(length + n_distance[i]) f_label.append(n_label[i][0]) f_label.append(n_label[i][1]) else: f_distance.append(length + n_distance[i]) f_label[-1] = n_label[i-1][1] + "$\\mid$" + n_label[i][0] f_label.append(n_label[i][1]) rf_distance.append(length + n_distance[i]) length += n_distance[i] n_ticks = {'distance': f_distance, 'label': f_label} uniq_d = [] uniq_l = [] temp_ticks = list(zip(n_ticks['distance'], n_ticks['label'])) for i in range(len(temp_ticks)): if i == 0: uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) else: if temp_ticks[i][1] == temp_ticks[i - 1][1]: logger.debug("Skipping label {i}".format( i=temp_ticks[i][1])) else: logger.debug("Adding label {l} at {d}".format( l=temp_ticks[i][0], d=temp_ticks[i][1])) uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) logger.debug("Unique labels are %s" % list(zip(uniq_d, uniq_l))) plt.gca().set_xticks(uniq_d) plt.gca().set_xticklabels(uniq_l) for i in range(len(n_ticks['label'])): if n_ticks['label'][i] is not None: # don't print the same label twice if i != 0: if n_ticks['label'][i] == n_ticks['label'][i - 1]: logger.debug("already print label... " "skipping label {i}".format( i=n_ticks['label'][i])) else: logger.debug("Adding a line at {d}" " for label {l}".format( d=n_ticks['distance'][i], l=n_ticks['label'][i])) plt.axvline(n_ticks['distance'][i], color='k') else: logger.debug("Adding a line at {d} for label {l}".format( d=n_ticks['distance'][i], l=n_ticks['label'][i])) plt.axvline(n_ticks['distance'][i], color='k') shift = [] br = -1 for branch in branches: br += 1 shift.append(distance[branch]-rf_distance[br]) return plt, shift class BSDOSPlotter(object): """ A joint, aligned band structure and density of states plot. Contributions from Jan Pohls as well as the online example from Germain Salvato-Vallverdu: http://gvallver.perso.univ-pau.fr/?p=587 """ def __init__(self, bs_projection="elements", dos_projection="elements", vb_energy_range=4, cb_energy_range=4, fixed_cb_energy=False, egrid_interval=1, font="Times New Roman", axis_fontsize=20, tick_fontsize=15, legend_fontsize=14, bs_legend="best", dos_legend="best", rgb_legend=True, fig_size=(11, 8.5)): """ Instantiate plotter settings. Args: bs_projection (str): "elements" or None dos_projection (str): "elements", "orbitals", or None vb_energy_range (float): energy in eV to show of valence bands cb_energy_range (float): energy in eV to show of conduction bands fixed_cb_energy (bool): If true, the cb_energy_range will be interpreted as constant (i.e., no gap correction for cb energy) egrid_interval (float): interval for grid marks font (str): font family axis_fontsize (float): font size for axis tick_fontsize (float): font size for axis tick labels legend_fontsize (float): font size for legends bs_legend (str): matplotlib string location for legend or None dos_legend (str): matplotlib string location for legend or None rgb_legend (bool): (T/F) whether to draw RGB triangle/bar for element proj. fig_size(tuple): dimensions of figure size (width, height) """ self.bs_projection = bs_projection self.dos_projection = dos_projection self.vb_energy_range = vb_energy_range self.cb_energy_range = cb_energy_range self.fixed_cb_energy = fixed_cb_energy self.egrid_interval = egrid_interval self.font = font self.axis_fontsize = axis_fontsize self.tick_fontsize = tick_fontsize self.legend_fontsize = legend_fontsize self.bs_legend = bs_legend self.dos_legend = dos_legend self.rgb_legend = rgb_legend self.fig_size = fig_size def get_plot(self, bs, dos): """ Get a matplotlib plot object. Args: bs (BandStructureSymmLine): the bandstructure to plot. Projection data must exist for projected plots. dos (Dos): the Dos to plot. Projection data must exist (i.e., CompleteDos) for projected plots. Returns: matplotlib.pyplot object on which you can call commands like show() and savefig() """ import matplotlib.lines as mlines from matplotlib.gridspec import GridSpec import matplotlib.pyplot as mplt # make sure the user-specified band structure projection is valid elements = [e.symbol for e in dos.structure.composition.elements] bs_projection = self.bs_projection rgb_legend = self.rgb_legend and bs_projection and \ bs_projection.lower() == "elements" and \ len(elements) in [2, 3] if bs_projection and bs_projection.lower() == "elements" and \ (len(elements) not in [2, 3] or not bs.get_projection_on_elements()): warnings.warn( "Cannot get element projected data; either the projection data " "doesn't exist, or you don't have a compound with exactly 2 or 3" " unique elements.") bs_projection = None # specify energy range of plot emin = -self.vb_energy_range emax = self.cb_energy_range if self.fixed_cb_energy else \ self.cb_energy_range + bs.get_band_gap()["energy"] # initialize all the k-point labels and k-point x-distances for bs plot xlabels = [] # all symmetry point labels on x-axis xlabel_distances = [] # positions of symmetry point x-labels x_distances = [] # x positions of kpoint data prev_right_klabel = None # used to determine which branches require a midline separator for idx, l in enumerate(bs.branches): # get left and right kpoint labels of this branch left_k, right_k = l["name"].split("-") # add $ notation for LaTeX kpoint labels if left_k[0] == "\\" or "_" in left_k: left_k = "$"+left_k+"$" if right_k[0] == "\\" or "_" in right_k: right_k = "$"+right_k+"$" # add left k label to list of labels if prev_right_klabel is None: xlabels.append(left_k) xlabel_distances.append(0) elif prev_right_klabel != left_k: # used for pipe separator xlabels[-1] = xlabels[-1]+ "$\\mid$ " + left_k # add right k label to list of labels xlabels.append(right_k) prev_right_klabel = right_k # add x-coordinates for labels left_kpoint = bs.kpoints[l["start_index"]].cart_coords right_kpoint = bs.kpoints[l["end_index"]].cart_coords distance = np.linalg.norm(right_kpoint - left_kpoint) xlabel_distances.append(xlabel_distances[-1] + distance) # add x-coordinates for kpoint data npts = l["end_index"] - l["start_index"] distance_interval = distance/npts x_distances.append(xlabel_distances[-2]) for i in range(npts): x_distances.append(x_distances[-1] + distance_interval) # set up bs and dos plot gs = GridSpec(1, 2, width_ratios=[2, 1]) fig = mplt.figure(figsize=self.fig_size) fig.patch.set_facecolor('white') bs_ax = mplt.subplot(gs[0]) dos_ax = mplt.subplot(gs[1]) # set basic axes limits for the plot bs_ax.set_xlim(0, x_distances[-1]) bs_ax.set_ylim(emin, emax) dos_ax.set_ylim(emin, emax) # add BS xticks, labels, etc. bs_ax.set_xticks(xlabel_distances) bs_ax.set_xticklabels(xlabels, size=self.tick_fontsize) bs_ax.set_xlabel('Wavevector $k$', fontsize=self.axis_fontsize, family=self.font) bs_ax.set_ylabel('$E-E_F$ / eV', fontsize=self.axis_fontsize, family=self.font) # add BS fermi level line at E=0 and gridlines bs_ax.hlines(y=0, xmin=0, xmax=x_distances[-1], color="k", lw=2) bs_ax.set_yticks(np.arange(emin, emax+1E-5, self.egrid_interval)) bs_ax.set_yticklabels(np.arange(emin, emax+1E-5, self.egrid_interval), size=self.tick_fontsize) dos_ax.set_yticks(np.arange(emin, emax+1E-5, self.egrid_interval)) bs_ax.set_axisbelow(True) bs_ax.grid(color=[0.5, 0.5, 0.5], linestyle='dotted', linewidth=1) dos_ax.set_yticklabels([]) dos_ax.grid(color=[0.5, 0.5, 0.5], linestyle='dotted', linewidth=1) # renormalize the band energy to the Fermi level band_energies = {} for spin in (Spin.up, Spin.down): if spin in bs.bands: band_energies[spin] = [] for band in bs.bands[spin]: band_energies[spin].append([e - bs.efermi for e in band]) # renormalize the DOS energies to Fermi level dos_energies = [e - dos.efermi for e in dos.energies] # get the projection data to set colors for the band structure colordata = self._get_colordata(bs, elements, bs_projection) # plot the colored band structure lines for spin in (Spin.up, Spin.down): if spin in band_energies: linestyles = "solid" if spin == Spin.up else "dotted" for band_idx, band in enumerate(band_energies[spin]): self._rgbline(bs_ax, x_distances, band, colordata[spin][band_idx, :, 0], colordata[spin][band_idx, :, 1], colordata[spin][band_idx, :, 2], linestyles=linestyles) # Plot the DOS and projected DOS for spin in (Spin.up, Spin.down): if spin in dos.densities: # plot the total DOS dos_densities = dos.densities[spin] * int(spin) label = "total" if spin == Spin.up else None dos_ax.plot(dos_densities, dos_energies, color=(0.6, 0.6, 0.6), label=label) dos_ax.fill_between(dos_densities, 0, dos_energies, color=(0.7, 0.7, 0.7), facecolor=(0.7, 0.7, 0.7)) # plot the atom-projected DOS if self.dos_projection.lower() == "elements": colors = ['b', 'r', 'g', 'm', 'y', 'c', 'k', 'w'] el_dos = dos.get_element_dos() for idx, el in enumerate(elements): dos_densities = el_dos[Element(el)].densities[spin] *\ int(spin) label = el if spin == Spin.up else None dos_ax.plot(dos_densities, dos_energies, color=colors[idx], label=label) elif self.dos_projection.lower() == "orbitals": # plot each of the atomic projected DOS colors = ['b', 'r', 'g', 'm'] spd_dos = dos.get_spd_dos() for idx, orb in enumerate([OrbitalType.s, OrbitalType.p, OrbitalType.d, OrbitalType.f]): if orb in spd_dos: dos_densities = spd_dos[orb].densities[spin] *\ int(spin) label = orb if spin == Spin.up else None dos_ax.plot(dos_densities, dos_energies, color=colors[idx], label=label) # get index of lowest and highest energy being plotted, used to help auto-scale DOS x-axis emin_idx = next(x[0] for x in enumerate(dos_energies) if x[1] >= emin) emax_idx = len(dos_energies) - next(x[0] for x in enumerate(reversed(dos_energies)) if x[1] <= emax) # determine DOS x-axis range dos_xmin = 0 if Spin.down not in dos.densities else -max( dos.densities[Spin.down][emin_idx:emax_idx+1] * 1.05) dos_xmax = max([max(dos.densities[Spin.up][emin_idx:emax_idx]) * 1.05, abs(dos_xmin)]) # set up the DOS x-axis and add Fermi level line dos_ax.set_xlim(dos_xmin, dos_xmax) dos_ax.set_xticklabels([]) dos_ax.hlines(y=0, xmin=dos_xmin, xmax=dos_xmax, color="k", lw=2) dos_ax.set_xlabel('DOS', fontsize=self.axis_fontsize, family=self.font) # add legend for band structure if self.bs_legend and not rgb_legend: handles = [] if bs_projection is None: handles = [mlines.Line2D([], [], linewidth=2, color='k', label='spin up'), mlines.Line2D([], [], linewidth=2, color='b', linestyle="dotted", label='spin down')] elif bs_projection.lower() == "elements": colors = ['b', 'r', 'g'] for idx, el in enumerate(elements): handles.append(mlines.Line2D([], [], linewidth=2, color=colors[idx], label=el)) bs_ax.legend(handles=handles, fancybox=True, prop={'size': self.legend_fontsize, 'family': self.font}, loc=self.bs_legend) elif self.bs_legend and rgb_legend: if len(elements) == 2: self._rb_line(bs_ax, elements[1], elements[0], loc=self.bs_legend) elif len(elements) == 3: self._rgb_triangle(bs_ax, elements[1], elements[2], elements[0], loc=self.bs_legend) # add legend for DOS if self.dos_legend: dos_ax.legend(fancybox=True, prop={'size': self.legend_fontsize, 'family': self.font}, loc=self.dos_legend) mplt.subplots_adjust(wspace=0.1) return mplt @staticmethod def _rgbline(ax, k, e, red, green, blue, alpha=1, linestyles="solid"): """ An RGB colored line for plotting. creation of segments based on: http://nbviewer.ipython.org/urls/raw.github.com/dpsanders/matplotlib-examples/master/colorline.ipynb Args: ax: matplotlib axis k: x-axis data (k-points) e: y-axis data (energies) red: red data green: green data blue: blue data alpha: alpha values data linestyles: linestyle for plot (e.g., "solid" or "dotted") """ from matplotlib.collections import LineCollection pts = np.array([k, e]).T.reshape(-1, 1, 2) seg = np.concatenate([pts[:-1], pts[1:]], axis=1) nseg = len(k) - 1 r = [0.5 * (red[i] + red[i + 1]) for i in range(nseg)] g = [0.5 * (green[i] + green[i + 1]) for i in range(nseg)] b = [0.5 * (blue[i] + blue[i + 1]) for i in range(nseg)] a = np.ones(nseg, np.float) * alpha lc = LineCollection(seg, colors=list(zip(r, g, b, a)), linewidth=2, linestyles=linestyles) ax.add_collection(lc) @staticmethod def _get_colordata(bs, elements, bs_projection): """ Get color data, including projected band structures Args: bs: Bandstructure object elements: elements (in desired order) for setting to blue, red, green bs_projection: None for no projection, "elements" for element projection Returns: """ contribs = {} if bs_projection and bs_projection.lower() == "elements": projections = bs.get_projection_on_elements() for spin in (Spin.up, Spin.down): if spin in bs.bands: contribs[spin] = [] for band_idx in range(bs.nb_bands): colors = [] for k_idx in range(len(bs.kpoints)): if bs_projection and bs_projection.lower() == "elements": c = [0, 0, 0] projs = projections[spin][band_idx][k_idx] # note: squared color interpolations are smoother # see: https://youtu.be/LKnqECcg6Gw projs = dict([(k, v**2) for k, v in projs.items()]) total = sum(projs.values()) if total > 0: for idx, e in enumerate(elements): c[idx] = math.sqrt(projs[e]/total) # min is to handle round errors c = [c[1], c[2], c[0]] # prefer blue, then red, then green else: c = [0, 0, 0] if spin == Spin.up \ else [0, 0, 1] # black for spin up, blue for spin down colors.append(c) contribs[spin].append(colors) contribs[spin] = np.array(contribs[spin]) return contribs @staticmethod def _rgb_triangle(ax, r_label, g_label, b_label, loc): """ Draw an RGB triangle legend on the desired axis """ if not loc in range(1, 11): loc = 2 from mpl_toolkits.axes_grid.inset_locator import inset_axes inset_ax = inset_axes(ax, width=1, height=1, loc=loc) mesh = 35 x = [] y = [] color = [] for r in range(0, mesh): for g in range(0, mesh): for b in range(0, mesh): if not (r == 0 and b == 0 and g == 0): r1 = r / (r + g + b) g1 = g / (r + g + b) b1 = b / (r + g + b) x.append(0.33 * (2. * g1 + r1) / (r1 + b1 + g1)) y.append(0.33 * np.sqrt(3) * r1 / (r1 + b1 + g1)) rc = math.sqrt(r**2 / (r**2 + g**2 + b**2)) gc = math.sqrt(g**2 / (r**2 + g**2 + b**2)) bc = math.sqrt(b**2 / (r**2 + g**2 + b**2)) color.append([rc, gc, bc]) # x = [n + 0.25 for n in x] # nudge x coordinates # y = [n + (max_y - 1) for n in y] # shift y coordinates to top # plot the triangle inset_ax.scatter(x, y, s=7, marker='.', edgecolor=color) inset_ax.set_xlim([-0.35, 1.00]) inset_ax.set_ylim([-0.35, 1.00]) # add the labels inset_ax.text(0.70, -0.2, g_label, fontsize=13, family='Times New Roman', color=(0, 0, 0), horizontalalignment='left') inset_ax.text(0.325, 0.70, r_label, fontsize=13, family='Times New Roman', color=(0, 0, 0), horizontalalignment='center') inset_ax.text(-0.05, -0.2, b_label, fontsize=13, family='Times New Roman', color=(0, 0, 0), horizontalalignment='right') inset_ax.get_xaxis().set_visible(False) inset_ax.get_yaxis().set_visible(False) @staticmethod def _rb_line(ax, r_label, b_label, loc): # Draw an rb bar legend on the desired axis if not loc in range(1, 11): loc = 2 from mpl_toolkits.axes_grid.inset_locator import inset_axes inset_ax = inset_axes(ax, width=1.2, height=0.4, loc=loc) x = [] y = [] color = [] for i in range(0, 1000): x.append(i / 1800. + 0.55) y.append(0) color.append([math.sqrt(c) for c in [1 - (i/1000)**2, 0, (i / 1000)**2]]) # plot the bar inset_ax.scatter(x, y, s=250., marker='s', edgecolor=color) inset_ax.set_xlim([-0.1, 1.7]) inset_ax.text(1.35, 0, b_label, fontsize=13, family='Times New Roman', color=(0, 0, 0), horizontalalignment="left", verticalalignment="center") inset_ax.text(0.30, 0, r_label, fontsize=13, family='Times New Roman', color=(0, 0, 0), horizontalalignment="right", verticalalignment="center") inset_ax.get_xaxis().set_visible(False) inset_ax.get_yaxis().set_visible(False) class BoltztrapPlotter(object): """ class containing methods to plot the data from Boltztrap. Args: bz: a BoltztrapAnalyzer object """ def __init__(self, bz): self._bz = bz def _plot_doping(self, temp): import matplotlib.pyplot as plt if len(self._bz.doping) != 0: limit = 2.21e15 plt.axvline(self._bz.mu_doping['n'][temp][0], linewidth=3.0, linestyle="--") plt.text(self._bz.mu_doping['n'][temp][0] + 0.01, limit, "$n$=10$^{" + str( math.log10(self._bz.doping['n'][0])) + "}$", color='b') plt.axvline(self._bz.mu_doping['n'][temp][-1], linewidth=3.0, linestyle="--") plt.text(self._bz.mu_doping['n'][temp][-1] + 0.01, limit, "$n$=10$^{" + str(math.log10(self._bz.doping['n'][-1])) + "}$", color='b') plt.axvline(self._bz.mu_doping['p'][temp][0], linewidth=3.0, linestyle="--") plt.text(self._bz.mu_doping['p'][temp][0] + 0.01, limit, "$p$=10$^{" + str( math.log10(self._bz.doping['p'][0])) + "}$", color='b') plt.axvline(self._bz.mu_doping['p'][temp][-1], linewidth=3.0, linestyle="--") plt.text(self._bz.mu_doping['p'][temp][-1] + 0.01, limit, "$p$=10$^{" + str(math.log10(self._bz.doping['p'][-1])) + "}$", color='b') def _plot_bg_limits(self): import matplotlib.pyplot as plt plt.axvline(0.0, color='k', linewidth=3.0) plt.axvline(self._bz.gap, color='k', linewidth=3.0) def plot_seebeck_mu(self, temp=600, output='eig', xlim=None): """ Plot the seebeck coefficient in function of Fermi level Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) Returns: a matplotlib object """ import matplotlib.pyplot as plt seebeck = self._bz.get_seebeck(output=output, doping_levels=False)[ temp] plt.plot(self._bz.mu_steps, seebeck, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['S$_1$', 'S$_2$', 'S$_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim[0], xlim[1]) plt.ylabel("Seebeck \n coefficient ($\\mu$V/K)", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_conductivity_mu(self, temp=600, output='eig', relaxation_time=1e-14, xlim=None): """ Plot the conductivity in function of Fermi level. Semi-log plot Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object """ import matplotlib.pyplot as plt cond = self._bz.get_conductivity(relaxation_time=relaxation_time, output=output, doping_levels=False)[ temp] plt.semilogy(self._bz.mu_steps, cond, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['$\\Sigma_1$', '$\\Sigma_2$', '$\\Sigma_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim) plt.ylim([1e13 * relaxation_time, 1e20 * relaxation_time]) plt.ylabel("conductivity,\n $\\Sigma$ (1/($\\Omega$ m))", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_power_factor_mu(self, temp=600, output='eig', relaxation_time=1e-14, xlim=None): """ Plot the power factor in function of Fermi level. Semi-log plot Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object """ import matplotlib.pyplot as plt pf = self._bz.get_power_factor(relaxation_time=relaxation_time, output=output, doping_levels=False)[ temp] plt.semilogy(self._bz.mu_steps, pf, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['PF$_1$', 'PF$_2$', 'PF$_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim) plt.ylabel("Power factor, ($\\mu$W/(mK$^2$))", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_zt_mu(self, temp=600, output='eig', relaxation_time=1e-14, xlim=None): """ Plot the ZT in function of Fermi level. Args: temp: the temperature xlim: a list of min and max fermi energy by default (0, and band gap) tau: A relaxation time in s. By default none and the plot is by units of relaxation time Returns: a matplotlib object """ import matplotlib.pyplot as plt zt = self._bz.get_zt(relaxation_time=relaxation_time, output=output, doping_levels=False)[temp] plt.plot(self._bz.mu_steps, zt, linewidth=3.0) self._plot_bg_limits() self._plot_doping(temp) if output == 'eig': plt.legend(['ZT$_1$', 'ZT$_2$', 'ZT$_3$']) if xlim is None: plt.xlim(-0.5, self._bz.gap + 0.5) else: plt.xlim(xlim) plt.ylabel("ZT", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_dos(self, sigma=0.05): """ plot dos Args: sigma: a smearing Returns: a matplotlib object """ plotter = DosPlotter(sigma=sigma) plotter.add_dos("t", self._bz.dos) return plotter.get_plot() def plot_carriers(self, temp=300): """ Plot the carrier concentration in function of Fermi level Args: temp: the temperature Returns: a matplotlib object """ import matplotlib.pyplot as plt plt.semilogy(self._bz.mu_steps, abs(self._bz.carrier_conc[temp] / (self._bz.vol * 1e-24)), linewidth=3.0, color='r') self._plot_bg_limits() self._plot_doping(temp) plt.xlim(-0.5, self._bz.gap + 0.5) plt.ylim(1e14, 1e22) plt.ylabel("carrier concentration (cm-3)", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_hall_carriers(self, temp=300): """ Plot the Hall carrier concentration in function of Fermi level Args: temp: the temperature Returns: a matplotlib object """ import matplotlib.pyplot as plt hall_carriers = [abs(i) for i in self._bz.get_hall_carrier_concentration()[temp]] plt.semilogy(self._bz.mu_steps, hall_carriers, linewidth=3.0, color='r') self._plot_bg_limits() self._plot_doping(temp) plt.xlim(-0.5, self._bz.gap + 0.5) plt.ylim(1e14, 1e22) plt.ylabel("Hall carrier concentration (cm-3)", fontsize=30.0) plt.xlabel("E-E$_f$ (eV)", fontsize=30) plt.xticks(fontsize=25) plt.yticks(fontsize=25) return plt def plot_fermi_surface(data, structure, cbm, energy_levels=[], multiple_figure=True, mlab_figure = None, kpoints_dict={}, color=(0,0,1), transparency_factor=[], labels_scale_factor=0.05, points_scale_factor=0.02, interative=True): """ Plot the Fermi surface at specific energy value. Args: data: energy values in a 3D grid from a CUBE file via read_cube_file function, or from a BoltztrapAnalyzer.fermi_surface_data structure: structure object of the material energy_levels: list of energy value of the fermi surface. Default: max energy value + 0.01 eV cbm: Boolean value to specify if the considered band is a conduction band or not multiple_figure: if True a figure for each energy level will be shown. If False all the surfaces will be shown in the same figure. In this las case, tune the transparency factor. mlab_figure: provide a previous figure to plot a new surface on it. kpoints_dict: dictionary of kpoints to show in the plot. example: {"K":[0.5,0.0,0.5]}, where the coords are fractional. color: tuple (r,g,b) of integers to define the color of the surface. transparency_factor: list of values in the range [0,1] to tune the opacity of the surfaces. labels_scale_factor: factor to tune the size of the kpoint labels points_scale_factor: factor to tune the size of the kpoint points interative: if True an interactive figure will be shown. If False a non interactive figure will be shown, but it is possible to plot other surfaces on the same figure. To make it interactive, run mlab.show(). Returns: a Mayavi figure and a mlab module to control the plot. Note: Experimental. Please, double check the surface shown by using some other software and report issues. """ try: from mayavi import mlab except ImportError: raise BoltztrapError( "Mayavi package should be installed to use this function") bz = structure.lattice.reciprocal_lattice.get_wigner_seitz_cell() cell = structure.lattice.reciprocal_lattice.matrix fact = 1 if cbm == False else -1 en_min = np.min(fact*data.ravel()) en_max = np.max(fact*data.ravel()) if energy_levels == []: energy_levels = [en_min + 0.01] if cbm == True else \ [en_max - 0.01] print("Energy level set to: " + str(energy_levels[0])+" eV") else: for e in energy_levels: if e > en_max or e < en_min: raise BoltztrapError("energy level " + str(e) + " not in the range of possible energies: [" + str(en_min) + ", " + str(en_max) + "]") if transparency_factor == []: transparency_factor = [1]*len(energy_levels) if mlab_figure: fig=mlab_figure if mlab_figure == None and not multiple_figure: fig = mlab.figure(size = (1024,768),bgcolor = (1,1,1)) for iface in range(len(bz)): for line in itertools.combinations(bz[iface], 2): for jface in range(len(bz)): if iface < jface and any(np.all(line[0] == x) for x in bz[jface]) and \ any(np.all(line[1] == x) for x in bz[jface]): mlab.plot3d(*zip(line[0], line[1]),color=(0,0,0), tube_radius=None, figure = fig) for label,coords in kpoints_dict.iteritems(): label_coords = structure.lattice.reciprocal_lattice \ .get_cartesian_coords(coords) mlab.points3d(*label_coords, scale_factor=points_scale_factor, color=(0,0,0), figure = fig) mlab.text3d(*label_coords, text=label, scale=labels_scale_factor, color=(0,0,0), figure = fig) for isolevel,alpha in zip(energy_levels,transparency_factor): if multiple_figure: fig = mlab.figure(size = (1024,768),bgcolor = (1,1,1)) for iface in range(len(bz)): for line in itertools.combinations(bz[iface], 2): for jface in range(len(bz)): if iface < jface and any(np.all(line[0] == x) for x in bz[jface]) and \ any(np.all(line[1] == x) for x in bz[jface]): mlab.plot3d(*zip(line[0], line[1]),color=(0,0,0), tube_radius=None, figure = fig) for label,coords in kpoints_dict.iteritems(): label_coords = structure.lattice.reciprocal_lattice \ .get_cartesian_coords(coords) mlab.points3d(*label_coords, scale_factor=points_scale_factor, color=(0,0,0), figure = fig) mlab.text3d(*label_coords, text=label, scale=labels_scale_factor, color=(0,0,0), figure = fig) cp = mlab.contour3d(fact*data,contours=[isolevel], transparent=True, colormap='hot', color=color, opacity=alpha, figure = fig) polydata = cp.actor.actors[0].mapper.input pts = np.array(polydata.points) #- 1 polydata.points = np.dot(pts, cell / np.array(data.shape)[:, np.newaxis]) cx,cy,cz = [np.mean(np.array(polydata.points)[:, i]) for i in range(3)] polydata.points = (np.array(polydata.points) - [cx,cy,cz]) * 2 mlab.view(distance='auto') if interative == True: mlab.show() return fig, mlab def plot_wigner_seitz(lattice, ax=None, **kwargs): """ Adds the skeleton of the Wigner-Seitz cell of the lattice to a matplotlib Axes Args: lattice: Lattice object ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to black and linewidth to 1. Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "k" if "linewidth" not in kwargs: kwargs["linewidth"] = 1 bz = lattice.get_wigner_seitz_cell() ax, fig, plt = get_ax3d_fig_plt(ax) for iface in range(len(bz)): for line in itertools.combinations(bz[iface], 2): for jface in range(len(bz)): if iface < jface and any(np.all(line[0] == x) for x in bz[jface])\ and any(np.all(line[1] == x) for x in bz[jface]): ax.plot(*zip(line[0], line[1]), **kwargs) return fig, ax def plot_lattice_vectors(lattice, ax=None, **kwargs): """ Adds the basis vectors of the lattice provided to a matplotlib Axes Args: lattice: Lattice object ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to green and linewidth to 3. Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "g" if "linewidth" not in kwargs: kwargs["linewidth"] = 3 vertex1 = lattice.get_cartesian_coords([0.0, 0.0, 0.0]) vertex2 = lattice.get_cartesian_coords([1.0, 0.0, 0.0]) ax.plot(*zip(vertex1, vertex2), **kwargs) vertex2 = lattice.get_cartesian_coords([0.0, 1.0, 0.0]) ax.plot(*zip(vertex1, vertex2), **kwargs) vertex2 = lattice.get_cartesian_coords([0.0, 0.0, 1.0]) ax.plot(*zip(vertex1, vertex2), **kwargs) return fig, ax def plot_path(line, lattice=None, coords_are_cartesian=False, ax=None, **kwargs): """ Adds a line passing through the coordinates listed in 'line' to a matplotlib Axes Args: line: list of coordinates. lattice: Lattice object used to convert from reciprocal to cartesian coordinates coords_are_cartesian: Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. Requires lattice if False. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to red and linewidth to 3. Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "r" if "linewidth" not in kwargs: kwargs["linewidth"] = 3 for k in range(1, len(line)): vertex1 = line[k-1] vertex2 = line[k] if not coords_are_cartesian: if lattice is None: raise ValueError("coords_are_cartesian False requires the lattice") vertex1 = lattice.get_cartesian_coords(vertex1) vertex2 = lattice.get_cartesian_coords(vertex2) ax.plot(*zip(vertex1, vertex2), **kwargs) return fig, ax def plot_labels(labels, lattice=None, coords_are_cartesian=False, ax=None, **kwargs): """ Adds labels to a matplotlib Axes Args: labels: dict containing the label as a key and the coordinates as value. lattice: Lattice object used to convert from reciprocal to cartesian coordinates coords_are_cartesian: Set to True if you are providing. coordinates in cartesian coordinates. Defaults to False. Requires lattice if False. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'text'. Color defaults to blue and size to 25. Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "b" if "size" not in kwargs: kwargs["size"] = 25 for k, coords in labels.items(): label = k if k.startswith("\\") or k.find("_") != -1: label = "$" + k + "$" off = 0.01 if coords_are_cartesian: coords = np.array(coords) else: if lattice is None: raise ValueError("coords_are_cartesian False requires the lattice") coords = lattice.get_cartesian_coords(coords) ax.text(*(coords + off), s=label, **kwargs) return fig, ax def fold_point(p, lattice, coords_are_cartesian=False): """ Folds a point with coordinates p inside the first Brillouin zone of the lattice. Args: p: coordinates of one point lattice: Lattice object used to convert from reciprocal to cartesian coordinates coords_are_cartesian: Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. Returns: The cartesian coordinates folded inside the first Brillouin zone """ if coords_are_cartesian: p = lattice.get_fractional_coords(p) else: p = np.array(p) p = np.mod(p+0.5-1e-10, 1)-0.5+1e-10 p = lattice.get_cartesian_coords(p) closest_lattice_point = None smallest_distance = 10000 for i in (-1, 0, 1): for j in (-1, 0, 1): for k in (-1, 0, 1): lattice_point = np.dot((i, j, k), lattice.matrix) dist = np.linalg.norm(p - lattice_point) if closest_lattice_point is None or dist < smallest_distance: closest_lattice_point = lattice_point smallest_distance = dist if not np.allclose(closest_lattice_point, (0, 0, 0)): p = p - closest_lattice_point return p def plot_points(points, lattice=None, coords_are_cartesian=False, fold=False, ax=None, **kwargs): """ Adds Points to a matplotlib Axes Args: points: list of coordinates lattice: Lattice object used to convert from reciprocal to cartesian coordinates coords_are_cartesian: Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. Requires lattice if False. fold: whether the points should be folded inside the first Brillouin Zone. Defaults to False. Requires lattice if True. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'scatter'. Color defaults to blue Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "b" if (not coords_are_cartesian or fold) and lattice is None: raise ValueError("coords_are_cartesian False or fold True require the lattice") for p in points: if fold: p = fold_point(p, lattice, coords_are_cartesian=coords_are_cartesian) elif not coords_are_cartesian: p = lattice.get_cartesian_coords(p) ax.scatter(*p, **kwargs) return fig, ax @add_fig_kwargs def plot_brillouin_zone_from_kpath(kpath, ax=None, **kwargs): """ Gives the plot (as a matplotlib object) of the symmetry line path in the Brillouin Zone. Args: kpath (HighSymmKpath): a HighSymmKPath object ax: matplotlib :class:`Axes` or None if a new figure should be created. **kwargs: provided by add_fig_kwargs decorator Returns: matplotlib figure """ lines = [[kpath.kpath['kpoints'][k] for k in p] for p in kpath.kpath['path']] return plot_brillouin_zone(bz_lattice=kpath.prim_rec, lines=lines, ax=ax, labels=kpath.kpath['kpoints'], **kwargs) @add_fig_kwargs def plot_brillouin_zone(bz_lattice, lines=None, labels=None, kpoints=None, fold=False, coords_are_cartesian=False, ax=None, **kwargs): """ Plots a 3D representation of the Brillouin zone of the structure. Can add to the plot paths, labels and kpoints Args: bz_lattice: Lattice object of the Brillouin zone lines: list of lists of coordinates. Each list represent a different path labels: dict containing the label as a key and the coordinates as value. kpoints: list of coordinates fold: whether the points should be folded inside the first Brillouin Zone. Defaults to False. Requires lattice if True. coords_are_cartesian: Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: provided by add_fig_kwargs decorator Returns: matplotlib figure """ fig, ax = plot_lattice_vectors(bz_lattice, ax=ax) plot_wigner_seitz(bz_lattice, ax=ax) if lines is not None: for line in lines: plot_path(line, bz_lattice, coords_are_cartesian=coords_are_cartesian, ax=ax) if labels is not None: plot_labels(labels, bz_lattice, coords_are_cartesian=coords_are_cartesian, ax=ax) plot_points(labels.values(), bz_lattice, coords_are_cartesian=coords_are_cartesian, fold=False, ax=ax) if kpoints is not None: plot_points(kpoints, bz_lattice, coords_are_cartesian=coords_are_cartesian, ax=ax, fold=fold) ax.set_xlim3d(-1, 1) ax.set_ylim3d(-1, 1) ax.set_zlim3d(-1, 1) ax.set_aspect('equal') ax.axis("off") return fig def plot_ellipsoid(hessian, center, lattice=None, rescale=1.0, ax=None, coords_are_cartesian=False, **kwargs): """ Plots a 3D ellipsoid rappresenting the Hessian matrix in input. Useful to get a graphical visualization of the effective mass of a band in a single k-point. Args: hessian: the Hessian matrix center: the center of the ellipsoid in reciprocal coords (Default) lattice: Lattice object of the Brillouin zone rescale: factor for size scaling of the ellipsoid ax: matplotlib :class:`Axes` or None if a new figure should be created. coords_are_cartesian: Set to True if you are providing a center in cartesian coordinates. Defaults to False. kwargs: kwargs passed to the matplotlib function 'plot_wireframe'. Color defaults to blue, rstride and cstride default to 4, alpha defaults to 0.2. Returns: matplotlib figure and matplotlib ax Example of use: fig,ax=plot_wigner_seitz(struct.reciprocal_lattice) plot_ellipsoid(hessian,[0.0,0.0,0.0], struct.reciprocal_lattice,ax=ax) """ if (not coords_are_cartesian) and lattice is None: raise ValueError("coords_are_cartesian False or fold True require the lattice") if not coords_are_cartesian: center = lattice.get_cartesian_coords(center) if "color" not in kwargs: kwargs["color"] = "b" if "rstride" not in kwargs: kwargs["rstride"] = 4 if "cstride" not in kwargs: kwargs["cstride"] = 4 if "alpha" not in kwargs: kwargs["alpha"] = 0.2 # calculate the ellipsoid # find the rotation matrix and radii of the axes U, s, rotation = np.linalg.svd(hessian) radii = 1.0/np.sqrt(s) # from polar coordinates u = np.linspace(0.0, 2.0 * np.pi, 100) v = np.linspace(0.0, np.pi, 100) x = radii[0] * np.outer(np.cos(u), np.sin(v)) y = radii[1] * np.outer(np.sin(u), np.sin(v)) z = radii[2] * np.outer(np.ones_like(u), np.cos(v)) for i in range(len(x)): for j in range(len(x)): [x[i, j], y[i, j], z[i, j]] = np.dot([x[i, j], y[i, j], z[i, j]], rotation)*rescale + center # add the ellipsoid to the current axes ax, fig, plt = get_ax3d_fig_plt(ax) ax.plot_wireframe(x, y, z, **kwargs) return fig, ax
mit
shyamalschandra/scikit-learn
sklearn/neighbors/regression.py
32
11019
"""Nearest Neighbor Regression""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin from .base import RadiusNeighborsMixin, SupervisedFloatMixin from ..base import RegressorMixin from ..utils import check_array class KNeighborsRegressor(NeighborsBase, KNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsRegressor >>> neigh = KNeighborsRegressor(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors RadiusNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.mean(_y[neigh_ind], axis=1) else: y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64) denom = np.sum(weights, axis=1) for j in range(_y.shape[1]): num = np.sum(_y[neigh_ind, j] * weights, axis=1) y_pred[:, j] = num / denom if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on neighbors within a fixed radius. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsRegressor >>> neigh = RadiusNeighborsRegressor(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors KNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.radius_neighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.array([np.mean(_y[ind, :], axis=0) for ind in neigh_ind]) else: y_pred = np.array([(np.average(_y[ind, :], axis=0, weights=weights[i])) for (i, ind) in enumerate(neigh_ind)]) if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
bmroach/Reverb-Simulator
Working-Directory/Reverb/mainReverb.py
2
2406
""" Filename: mainReverb.py See README.md Developed under the Apache License 2.0 """ #______________________________________________________________________________ #Header Imports import array import contextlib import wave import matplotlib.pyplot as plt import numpy as np import math import copy import sys sys.path.append('../Utilities') import utilities as ut #______________________________________________________________________________ #Start mainReverb.py # Global parameters dirIn = "../../Original-Audio-Samples/" dirOut = "../../Output-Audio-Samples/Reverb/" numChannels = 1 # mono sampleWidth = 2 # in bytes, a 16-bit short sampleRate = 44100 #______________________________________________________________________________ def reverb(signal, preDelay = 0, Decay = .25, trim = True): """fileName: name of file in string form preDelay: delay before reverb begins (seconds) Decay: hang time of signal (seconds) """ signal = [int(x) for x in signal] pdSamples = int(preDelay * sampleRate) dSamples = int(Decay * sampleRate) if trim: #trim to 10 seconds signal = signal[:441000] lengthIn = len(signal) logArray = [(math.e**(-1*(x/dSamples))) for x in range(dSamples)] avg = ut.signalAvg(signal)[0] goalAmp = avg * 1.2 outputSignal = [0 for x in range(len(signal) + pdSamples + dSamples)] length = len(outputSignal) for i in range(lengthIn): #for all input samples currentSample = signal[i] outputSignal[i] = currentSample for x in range(1,dSamples): #for all reverb samples index = i + x + pdSamples outputSignal[index] += (currentSample * logArray[x]) while ut.signalAvg(outputSignal)[0] > goalAmp: outputSignal = [x*.90 for x in outputSignal] outputSignal = [int(x) for x in outputSignal] return outputSignal def reverbDemo(): # jfk = ut.readWaveFile(dirIn + "jfk.wav") # jfkReverb = reverb(jfk) # ut.writeWaveFile(dirOut + "JFK_Distortion.wav", jfkDist) piano = ut.readWaveFile(dirIn+"piano.wav") pianoReverb = reverb(piano) ut.writeWaveFile(dirOut + "Piano_Reverb.wav", pianoReverb) print("Reverb Demo Complete.") reverbDemo()
apache-2.0
IndraVikas/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
230
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
slinderman/pyhsmm_spiketrains
experiments/fit_hipp_data.py
1
12257
""" Fit a sequence of models to the rat hippocampal recordings """ import os import time import gzip import cPickle import numpy as np from scipy.io import loadmat from collections import namedtuple from pybasicbayes.util.text import progprint_xrange import matplotlib.pyplot as plt import brewer2mpl allcolors = brewer2mpl.get_map("Set1", "Qualitative", 9).mpl_colors import pyhsmm_spiketrains.models reload(pyhsmm_spiketrains.models) from pyhsmm_spiketrains.internals.utils import \ log_expected_pll, split_train_test # Set the seed # seed = np.random.randint(0, 2**16) seed = 0 print "setting seed to ", seed np.random.seed(seed) def load_hipp_data(dataname="hipp_2dtrack_b", trainfrac=0.8): raw_data = loadmat("data/%s.mat" % dataname) S = raw_data['S'].astype(np.int).copy("C") # Get the time stamps T,N = S.shape dt = 0.25 ts = np.arange(T) * dt # Get the corresponding position pos = raw_data['pos'] S_train, pos_train, S_test, pos_test = split_train_test(S, pos, trainfrac=trainfrac) if "cp" in raw_data and "r" in raw_data: center = raw_data['cp'].ravel() radius = np.float(raw_data['r']) else: center = radius = None return N, S_train, pos_train, S_test, pos_test, center, radius Results = namedtuple( "Results", ["name", "loglikes", "predictive_lls", "N_used", "alphas", "gammas", "rates", "obs_hypers", "samples", "timestamps"]) def fit(name, model, test_data, N_iter=1000, init_state_seq=None): def evaluate(model): ll = model.log_likelihood() pll = model.log_likelihood(test_data) N_used = len(model.used_states) trans = model.trans_distn alpha = trans.alpha gamma = trans.gamma if hasattr(trans, "gamma") else None rates = model.rates.copy() obs_hypers = model.obs_hypers # print 'N_states: {}, \tPLL:{}\n'.format(len(model.used_states), pll), return ll, pll, N_used, alpha, gamma, rates, obs_hypers def sample(model): tic = time.time() model.resample_model() timestep = time.time() - tic return evaluate(model), timestep # Initialize with given state seq if init_state_seq is not None: model.states_list[0].stateseq = init_state_seq for _ in xrange(100): model.resample_obs_distns() init_val = evaluate(model) vals, timesteps = zip(*[sample(model) for _ in progprint_xrange(N_iter)]) lls, plls, N_used, alphas, gammas, rates, obs_hypers = \ zip(*((init_val,) + vals)) timestamps = np.cumsum((0.,) + timesteps) return Results(name, lls, plls, N_used, alphas, gammas, rates, obs_hypers, model.copy_sample(), timestamps) def fit_vb(name, model, test_data, N_iter=1000, init_state_seq=None): def evaluate(model): ll = model.log_likelihood() pll = model.log_likelihood(test_data) N_used = len(model.used_states) trans = model.trans_distn alpha = trans.alpha gamma = trans.gamma if hasattr(trans, "gamma") else None rates = model.rates.copy() obs_hypers = model.obs_hypers # print 'N_states: {}, \tPLL:{}\n'.format(len(model.used_states), pll), return ll, pll, N_used, alpha, gamma, rates, obs_hypers def sample(model): tic = time.time() model.meanfield_coordinate_descent_step() timestep = time.time() - tic # Resample from mean field posterior model._resample_from_mf() return evaluate(model), timestep # Initialize with given state seq if init_state_seq is not None: model.states_list[0].stateseq = init_state_seq for _ in xrange(100): model.resample_obs_distns() init_val = evaluate(model) vals, timesteps = zip(*[sample(model) for _ in progprint_xrange(200)]) lls, plls, N_used, alphas, gammas, rates, obs_hypers = \ zip(*((init_val,) + vals)) timestamps = np.cumsum((0.,) + timesteps) return Results(name, lls, plls, N_used, alphas, gammas, rates, obs_hypers, model.copy_sample(), timestamps) def make_hmm_models(N, S_train, Ks=np.arange(5,25, step=5), **kwargs): # Define a sequence of models names_list = [] fnames_list = [] hmm_list = [] color_list = [] for K in Ks: names_list.append("HMM (K=%d)" % K) fnames_list.append("hmm_K%d" % K) color_list.append(allcolors[0]) hmm = \ pyhsmm_spiketrains.models.PoissonHMM( N=N, K=K, alpha_a_0=5.0, alpha_b_0=1.0, init_state_concentration=1.0, **kwargs) hmm.add_data(S_train) hmm_list.append(hmm) return names_list, fnames_list, color_list, hmm_list def make_hdphmm_models(N, S_train, K_max=100, alpha_obs=1.0, beta_obs=1.0): # Define a sequence of models names_list = [] fnames_list = [] hmm_list = [] color_list = [] method_list = [] # Standard HDP-HMM (Scale resampling) names_list.append("HDP-HMM (Scale)") fnames_list.append("hdphmm_scale") color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K_max, alpha_a_0=5.0, alpha_b_0=1.0, gamma_a_0=5.0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm_list.append(hmm) method_list.append(fit) # Standard HDP-HSMM (Scale resampling) names_list.append("HDP-HSMM (Scale)") fnames_list.append("hdphsmm_scale") color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonIntNegBinHDPHSMM( N=N, K_max=K_max, alpha_a_0=5.0, alpha_b_0=1.0, gamma_a_0=5.0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm_list.append(hmm) method_list.append(fit) # Vary the hyperparameters of the scale resampling model for alpha_a_0 in [1.0, 5.0, 10.0, 100.0]: names_list.append("HDP-HMM (Scale)") fnames_list.append("hdphmm_scale_alpha_a_0%.1f" % alpha_a_0) color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K_max, alpha_a_0=alpha_a_0, alpha_b_0=1.0, gamma_a_0=5.0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm_list.append(hmm) method_list.append(fit) for gamma_a_0 in [1.0, 5.0, 10.0, 100.0]: names_list.append("HDP-HMM (Scale)") fnames_list.append("hdphmm_scale_gamma_a_0%.1f" % gamma_a_0) color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K_max, alpha_a_0=5.0, alpha_b_0=1.0, gamma_a_0=gamma_a_0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm_list.append(hmm) method_list.append(fit) # # for new_alpha_obs in [0.1, 0.5, 1.0, 2.0, 2.5, 5.0, 10.0]: # names_list.append("HDP-HMM (Scale) (alpha_obs=%.1f)" % new_alpha_obs) # fnames_list.append("hdphmm_scale_alpha_obs%.1f" % new_alpha_obs) # color_list.append(allcolors[1]) # hmm = \ # pyhsmm_spiketrains.models.PoissonHDPHMM( # N=N, K_max=K_max, # alpha_a_0=5.0, alpha_b_0=1.0, # gamma_a_0=5.0, gamma_b_0=1.0, # init_state_concentration=1.0, # alpha_obs=new_alpha_obs, # beta_obs=beta_obs) # hmm.add_data(S_train) # hmm_list.append(hmm) # HDP-HMM with HMC for hyperparameters names_list.append("HDP-HMM (HMC)") fnames_list.append("hdphmm_hmc") color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K_max, alpha_a_0=5.0, alpha_b_0=1.0, gamma_a_0=5.0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm._resample_obs_method = "resample_obs_hypers_hmc" hmm_list.append(hmm) method_list.append(fit) # HDP-HMM with hypers set by empirical bayes names_list.append("HDP-HMM (EB)") fnames_list.append("hdphmm_eb") color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonHDPHMM( N=N, K_max=K_max, alpha_a_0=5.0, alpha_b_0=1.0, gamma_a_0=5.0, gamma_b_0=1.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train) hmm.init_obs_hypers_via_empirical_bayes() hmm._resample_obs_method = "resample_obs_hypers_null" hmm_list.append(hmm) method_list.append(fit) names_list.append("HDP-HMM (VB)") fnames_list.append("hdphmm_vb") color_list.append(allcolors[1]) hmm = \ pyhsmm_spiketrains.models.PoissonDATruncHDPHMM( N=N, K_max=K_max, alpha=12.0, gamma=12.0, init_state_concentration=1.0, alpha_obs=alpha_obs, beta_obs=beta_obs) hmm.add_data(S_train, stateseq=np.random.randint(50, size=(S_train.shape[0],))) hmm.init_obs_hypers_via_empirical_bayes() hmm_list.append(hmm) method_list.append(fit_vb) return names_list, fnames_list, color_list, hmm_list, method_list def run_experiment(): # Set output parameters dataname = "hipp_2dtrack_a" runnum = 1 output_dir = os.path.join("results", dataname, "run%03d" % runnum) assert os.path.exists(output_dir) # Load the data N, S_train, pos_train, S_test, pos_test, center, radius = \ load_hipp_data(dataname) print "Running Experiment" print "Dataset:\t", dataname print "N:\t\t", N print "T_train:\t", S_train.shape[0] print "T_test:\t", S_test.shape[0] # Fit the baseline model static_model = pyhsmm_spiketrains.models.PoissonStatic(N) static_model.add_data(S_train) static_model.max_likelihood() static_ll = static_model.log_likelihood(S_test) # Define a set of HMMs names_list = [] fnames_list = [] color_list = [] model_list = [] method_list = [] # Add parametric HMMs # nl, fnl, cl, ml = \ # make_hmm_models(N, S_train, Ks=np.arange(5,90,step=10), # alpha_obs=1.0, beta_obs=1.0) # names_list.extend(nl) # fnames_list.extend(fnl) # color_list.extend(cl) # model_list.extend(ml) # Add HDP_HMMs nl, fnl, cl, ml, mthdl = \ make_hdphmm_models(N, S_train, K_max=100, alpha_obs=1.0, beta_obs=1.0) names_list.extend(nl) fnames_list.extend(fnl) color_list.extend(cl) model_list.extend(ml) method_list.extend(mthdl) # Fit the models with Gibbs sampling N_iter = 5000 for model_name, model_fname, model, method in \ zip(names_list, fnames_list, model_list, method_list): print "Model: ", model_name print "File: ", model_fname print "" output_file = os.path.join(output_dir, model_fname + ".pkl.gz") # Check for existing results if os.path.exists(output_file): # print "Loading results from: ", output_file # with gzip.open(output_file, "r") as f: # res = cPickle.load(f) print "Results already exist at: ", output_file else: res = method(model_name, model, S_test, N_iter=N_iter) # Save results with gzip.open(output_file, "w") as f: print "Saving results to: ", output_file cPickle.dump(res, f, protocol=-1) if __name__ == "__main__": run_experiment()
mit
nextgenusfs/amptk
amptk/info.py
2
2029
#!/usr/bin/env python from __future__ import (absolute_import, division, print_function, unicode_literals) import sys import os import pandas as pd from amptk import amptklib from amptk.__version__ import __version__ def getVersion(): git_version = amptklib.git_version() if git_version: version = __version__+'-'+git_version else: version = __version__ return version def main(): parentdir = os.path.join(os.path.dirname(amptklib.__file__)) db_list = [] okay_list = [] search_path = os.path.join(parentdir, 'DB') for file in os.listdir(search_path): file_data = [] if file.endswith(".udb"): if file.startswith('.'): continue okay_list.append(file) info_file = file + '.txt' file_data.append(file.rstrip('.udb')) with open(os.path.join(search_path, info_file), 'r') as info: for line in info: line = line.strip() if '\t' in line: file_data += line.split('\t') else: file_data += line.split(' ') db_list.append(file_data) if len(db_list) < 1: db_print = "No DB configured, run 'amptk install' or 'amptk database' command." else: df = pd.DataFrame(db_list) df.columns = ['DB_name', 'DB_type', 'FASTA', 'Fwd Primer', 'Rev Primer', 'Records', 'Source', 'Version', 'Date'] dfsort = df.sort_values(by='DB_name') db_print = dfsort.to_string(index=False, justify='center') print('------------------------------') print('Running AMPtk v {:}'.format(getVersion())) print('------------------------------') print('Taxonomy Databases Installed: {:}'.format(os.path.join( parentdir, 'DB'))) print('------------------------------') print(db_print) print('------------------------------') if __name__ == "__main__": main()
bsd-2-clause
stephenliu1989/msmbuilder
msmbuilder/tests/test_agglomerative.py
1
1925
import numpy as np from mdtraj.testing import eq from sklearn.base import clone from sklearn.metrics import adjusted_rand_score from msmbuilder.cluster import LandmarkAgglomerative random = np.random.RandomState(2) def test_1(): x = [random.randn(10, 2), random.randn(10, 2)] n_clusters = 2 model1 = LandmarkAgglomerative(n_clusters=n_clusters) model2 = LandmarkAgglomerative(n_clusters=n_clusters, n_landmarks=sum(len(s) for s in x)) labels0 = clone(model1).fit(x).predict(x) labels1 = model1.fit_predict(x) labels2 = model2.fit_predict(x) assert len(labels0) == 2 assert len(labels1) == 2 assert len(labels2) == 2 eq(labels0[0], labels1[0]) eq(labels0[1], labels1[1]) eq(labels0[0], labels2[0]) eq(labels0[1], labels2[1]) assert len(np.unique(np.concatenate(labels0))) == n_clusters def test_2(): # this should be a really easy clustering problem x = [random.randn(20, 2) + 10, random.randn(20, 2)] n_clusters = 2 model1 = LandmarkAgglomerative(n_clusters=n_clusters) model2 = LandmarkAgglomerative(n_clusters=n_clusters, landmark_strategy='random', random_state=random, n_landmarks=20) labels1 = model1.fit_predict(x) labels2 = model2.fit_predict(x) assert adjusted_rand_score(np.concatenate(labels1), np.concatenate(labels2)) == 1.0 def test_callable_metric(): def my_euc(target, ref, i): return np.sqrt(np.sum((target - ref[i]) ** 2, axis=1)) model1 = LandmarkAgglomerative(n_clusters=10, n_landmarks=20, metric='euclidean') model2 = LandmarkAgglomerative(n_clusters=10, n_landmarks=20, metric=my_euc) data = np.random.RandomState(0).randn(100, 2) eq(model1.fit_predict([data])[0], model2.fit_predict([data])[0])
lgpl-2.1
abhisg/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/matplotlib/tri/trirefine.py
20
14567
""" Mesh refinement for triangular grids. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from matplotlib.tri.triangulation import Triangulation import matplotlib.tri.triinterpolate class TriRefiner(object): """ Abstract base class for classes implementing mesh refinement. A TriRefiner encapsulates a Triangulation object and provides tools for mesh refinement and interpolation. Derived classes must implements: - ``refine_triangulation(return_tri_index=False, **kwargs)`` , where the optional keyword arguments *kwargs* are defined in each TriRefiner concrete implementation, and which returns : - a refined triangulation - optionally (depending on *return_tri_index*), for each point of the refined triangulation: the index of the initial triangulation triangle to which it belongs. - ``refine_field(z, triinterpolator=None, **kwargs)`` , where: - *z* array of field values (to refine) defined at the base triangulation nodes - *triinterpolator* is a :class:`~matplotlib.tri.TriInterpolator` (optional) - the other optional keyword arguments *kwargs* are defined in each TriRefiner concrete implementation and which returns (as a tuple) a refined triangular mesh and the interpolated values of the field at the refined triangulation nodes. """ def __init__(self, triangulation): if not isinstance(triangulation, Triangulation): raise ValueError("Expected a Triangulation object") self._triangulation = triangulation class UniformTriRefiner(TriRefiner): """ Uniform mesh refinement by recursive subdivisions. Parameters ---------- triangulation : :class:`~matplotlib.tri.Triangulation` The encapsulated triangulation (to be refined) """ # See Also # -------- # :class:`~matplotlib.tri.CubicTriInterpolator` and # :class:`~matplotlib.tri.TriAnalyzer`. # """ def __init__(self, triangulation): TriRefiner.__init__(self, triangulation) def refine_triangulation(self, return_tri_index=False, subdiv=3): """ Computes an uniformly refined triangulation *refi_triangulation* of the encapsulated :attr:`triangulation`. This function refines the encapsulated triangulation by splitting each father triangle into 4 child sub-triangles built on the edges midside nodes, recursively (level of recursion *subdiv*). In the end, each triangle is hence divided into ``4**subdiv`` child triangles. The default value for *subdiv* is 3 resulting in 64 refined subtriangles for each triangle of the initial triangulation. Parameters ---------- return_tri_index : boolean, optional Boolean indicating whether an index table indicating the father triangle index of each point will be returned. Default value False. subdiv : integer, optional Recursion level for the subdivision. Defaults value 3. Each triangle will be divided into ``4**subdiv`` child triangles. Returns ------- refi_triangulation : :class:`~matplotlib.tri.Triangulation` The returned refined triangulation found_index : array-like of integers Index of the initial triangulation containing triangle, for each point of *refi_triangulation*. Returned only if *return_tri_index* is set to True. """ refi_triangulation = self._triangulation ntri = refi_triangulation.triangles.shape[0] # Computes the triangulation ancestors numbers in the reference # triangulation. ancestors = np.arange(ntri, dtype=np.int32) for _ in range(subdiv): refi_triangulation, ancestors = self._refine_triangulation_once( refi_triangulation, ancestors) refi_npts = refi_triangulation.x.shape[0] refi_triangles = refi_triangulation.triangles # Now we compute found_index table if needed if return_tri_index: # We have to initialize found_index with -1 because some nodes # may very well belong to no triangle at all, e.g., in case of # Delaunay Triangulation with DuplicatePointWarning. found_index = - np.ones(refi_npts, dtype=np.int32) tri_mask = self._triangulation.mask if tri_mask is None: found_index[refi_triangles] = np.repeat(ancestors, 3).reshape(-1, 3) else: # There is a subtlety here: we want to avoid whenever possible # that refined points container is a masked triangle (which # would result in artifacts in plots). # So we impose the numbering from masked ancestors first, # then overwrite it with unmasked ancestor numbers. ancestor_mask = tri_mask[ancestors] found_index[refi_triangles[ancestor_mask, :] ] = np.repeat(ancestors[ancestor_mask], 3).reshape(-1, 3) found_index[refi_triangles[~ancestor_mask, :] ] = np.repeat(ancestors[~ancestor_mask], 3).reshape(-1, 3) return refi_triangulation, found_index else: return refi_triangulation def refine_field(self, z, triinterpolator=None, subdiv=3): """ Refines a field defined on the encapsulated triangulation. Returns *refi_tri* (refined triangulation), *refi_z* (interpolated values of the field at the node of the refined triangulation). Parameters ---------- z : 1d-array-like of length ``n_points`` Values of the field to refine, defined at the nodes of the encapsulated triangulation. (``n_points`` is the number of points in the initial triangulation) triinterpolator : :class:`~matplotlib.tri.TriInterpolator`, optional Interpolator used for field interpolation. If not specified, a :class:`~matplotlib.tri.CubicTriInterpolator` will be used. subdiv : integer, optional Recursion level for the subdivision. Defaults to 3. Each triangle will be divided into ``4**subdiv`` child triangles. Returns ------- refi_tri : :class:`~matplotlib.tri.Triangulation` object The returned refined triangulation refi_z : 1d array of length: *refi_tri* node count. The returned interpolated field (at *refi_tri* nodes) Examples -------- The main application of this method is to plot high-quality iso-contours on a coarse triangular grid (e.g., triangulation built from relatively sparse test data): .. plot:: mpl_examples/pylab_examples/tricontour_smooth_user.py """ if triinterpolator is None: interp = matplotlib.tri.CubicTriInterpolator( self._triangulation, z) else: if not isinstance(triinterpolator, matplotlib.tri.TriInterpolator): raise ValueError("Expected a TriInterpolator object") interp = triinterpolator refi_tri, found_index = self.refine_triangulation( subdiv=subdiv, return_tri_index=True) refi_z = interp._interpolate_multikeys( refi_tri.x, refi_tri.y, tri_index=found_index)[0] return refi_tri, refi_z @staticmethod def _refine_triangulation_once(triangulation, ancestors=None): """ This function refines a matplotlib.tri *triangulation* by splitting each triangle into 4 child-masked_triangles built on the edges midside nodes. The masked triangles, if present, are also splitted but their children returned masked. If *ancestors* is not provided, returns only a new triangulation: child_triangulation. If the array-like key table *ancestor* is given, it shall be of shape (ntri,) where ntri is the number of *triangulation* masked_triangles. In this case, the function returns (child_triangulation, child_ancestors) child_ancestors is defined so that the 4 child masked_triangles share the same index as their father: child_ancestors.shape = (4 * ntri,). """ x = triangulation.x y = triangulation.y # According to tri.triangulation doc: # neighbors[i,j] is the triangle that is the neighbor # to the edge from point index masked_triangles[i,j] to point # index masked_triangles[i,(j+1)%3]. neighbors = triangulation.neighbors triangles = triangulation.triangles npts = np.shape(x)[0] ntri = np.shape(triangles)[0] if ancestors is not None: ancestors = np.asarray(ancestors) if np.shape(ancestors) != (ntri,): raise ValueError( "Incompatible shapes provide for triangulation" ".masked_triangles and ancestors: {0} and {1}".format( np.shape(triangles), np.shape(ancestors))) # Initiating tables refi_x and refi_y of the refined triangulation # points # hint: each apex is shared by 2 masked_triangles except the borders. borders = np.sum(neighbors == -1) added_pts = (3*ntri + borders) // 2 refi_npts = npts + added_pts refi_x = np.zeros(refi_npts) refi_y = np.zeros(refi_npts) # First part of refi_x, refi_y is just the initial points refi_x[:npts] = x refi_y[:npts] = y # Second part contains the edge midside nodes. # Each edge belongs to 1 triangle (if border edge) or is shared by 2 # masked_triangles (interior edge). # We first build 2 * ntri arrays of edge starting nodes (edge_elems, # edge_apexes) ; we then extract only the masters to avoid overlaps. # The so-called 'master' is the triangle with biggest index # The 'slave' is the triangle with lower index # (can be -1 if border edge) # For slave and master we will identify the apex pointing to the edge # start edge_elems = np.ravel(np.vstack([np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32), np.arange(ntri, dtype=np.int32)])) edge_apexes = np.ravel(np.vstack([np.zeros(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32), np.ones(ntri, dtype=np.int32)*2])) edge_neighbors = neighbors[edge_elems, edge_apexes] mask_masters = (edge_elems > edge_neighbors) # Identifying the "masters" and adding to refi_x, refi_y vec masters = edge_elems[mask_masters] apex_masters = edge_apexes[mask_masters] x_add = (x[triangles[masters, apex_masters]] + x[triangles[masters, (apex_masters+1) % 3]]) * 0.5 y_add = (y[triangles[masters, apex_masters]] + y[triangles[masters, (apex_masters+1) % 3]]) * 0.5 refi_x[npts:] = x_add refi_y[npts:] = y_add # Building the new masked_triangles ; each old masked_triangles hosts # 4 new masked_triangles # there are 6 pts to identify per 'old' triangle, 3 new_pt_corner and # 3 new_pt_midside new_pt_corner = triangles # What is the index in refi_x, refi_y of point at middle of apex iapex # of elem ielem ? # If ielem is the apex master: simple count, given the way refi_x was # built. # If ielem is the apex slave: yet we do not know ; but we will soon # using the neighbors table. new_pt_midside = np.empty([ntri, 3], dtype=np.int32) cum_sum = npts for imid in range(3): mask_st_loc = (imid == apex_masters) n_masters_loc = np.sum(mask_st_loc) elem_masters_loc = masters[mask_st_loc] new_pt_midside[:, imid][elem_masters_loc] = np.arange( n_masters_loc, dtype=np.int32) + cum_sum cum_sum += n_masters_loc # Now dealing with slave elems. # for each slave element we identify the master and then the inode # onces slave_masters is indentified, slave_masters_apex is such that: # neighbors[slaves_masters, slave_masters_apex] == slaves mask_slaves = np.logical_not(mask_masters) slaves = edge_elems[mask_slaves] slaves_masters = edge_neighbors[mask_slaves] diff_table = np.abs(neighbors[slaves_masters, :] - np.outer(slaves, np.ones(3, dtype=np.int32))) slave_masters_apex = np.argmin(diff_table, axis=1) slaves_apex = edge_apexes[mask_slaves] new_pt_midside[slaves, slaves_apex] = new_pt_midside[ slaves_masters, slave_masters_apex] # Builds the 4 child masked_triangles child_triangles = np.empty([ntri*4, 3], dtype=np.int32) child_triangles[0::4, :] = np.vstack([ new_pt_corner[:, 0], new_pt_midside[:, 0], new_pt_midside[:, 2]]).T child_triangles[1::4, :] = np.vstack([ new_pt_corner[:, 1], new_pt_midside[:, 1], new_pt_midside[:, 0]]).T child_triangles[2::4, :] = np.vstack([ new_pt_corner[:, 2], new_pt_midside[:, 2], new_pt_midside[:, 1]]).T child_triangles[3::4, :] = np.vstack([ new_pt_midside[:, 0], new_pt_midside[:, 1], new_pt_midside[:, 2]]).T child_triangulation = Triangulation(refi_x, refi_y, child_triangles) # Builds the child mask if triangulation.mask is not None: child_triangulation.set_mask(np.repeat(triangulation.mask, 4)) if ancestors is None: return child_triangulation else: return child_triangulation, np.repeat(ancestors, 4)
gpl-2.0
surligas/gnuradio
gr-filter/examples/reconstruction.py
49
5015
#!/usr/bin/env python # # Copyright 2010,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital from gnuradio import filter from gnuradio import blocks import sys try: from gnuradio import channels except ImportError: print "Error: Program requires gr-channels." sys.exit(1) try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) fftlen = 8192 def main(): N = 10000 fs = 2000.0 Ts = 1.0/fs t = scipy.arange(0, N*Ts, Ts) # When playing with the number of channels, be careful about the filter # specs and the channel map of the synthesizer set below. nchans = 10 # Build the filter(s) bw = 1000 tb = 400 proto_taps = filter.firdes.low_pass_2(1, nchans*fs, bw, tb, 80, filter.firdes.WIN_BLACKMAN_hARRIS) print "Filter length: ", len(proto_taps) # Create a modulated signal npwr = 0.01 data = scipy.random.randint(0, 256, N) rrc_taps = filter.firdes.root_raised_cosine(1, 2, 1, 0.35, 41) src = blocks.vector_source_b(data.astype(scipy.uint8).tolist(), False) mod = digital.bpsk_mod(samples_per_symbol=2) chan = channels.channel_model(npwr) rrc = filter.fft_filter_ccc(1, rrc_taps) # Split it up into pieces channelizer = filter.pfb.channelizer_ccf(nchans, proto_taps, 2) # Put the pieces back together again syn_taps = [nchans*t for t in proto_taps] synthesizer = filter.pfb_synthesizer_ccf(nchans, syn_taps, True) src_snk = blocks.vector_sink_c() snk = blocks.vector_sink_c() # Remap the location of the channels # Can be done in synth or channelizer (watch out for rotattions in # the channelizer) synthesizer.set_channel_map([ 0, 1, 2, 3, 4, 15, 16, 17, 18, 19]) tb = gr.top_block() tb.connect(src, mod, chan, rrc, channelizer) tb.connect(rrc, src_snk) vsnk = [] for i in xrange(nchans): tb.connect((channelizer,i), (synthesizer, i)) vsnk.append(blocks.vector_sink_c()) tb.connect((channelizer,i), vsnk[i]) tb.connect(synthesizer, snk) tb.run() sin = scipy.array(src_snk.data()[1000:]) sout = scipy.array(snk.data()[1000:]) # Plot original signal fs_in = nchans*fs f1 = pylab.figure(1, figsize=(16,12), facecolor='w') s11 = f1.add_subplot(2,2,1) s11.psd(sin, NFFT=fftlen, Fs=fs_in) s11.set_title("PSD of Original Signal") s11.set_ylim([-200, -20]) s12 = f1.add_subplot(2,2,2) s12.plot(sin.real[1000:1500], "o-b") s12.plot(sin.imag[1000:1500], "o-r") s12.set_title("Original Signal in Time") start = 1 skip = 2 s13 = f1.add_subplot(2,2,3) s13.plot(sin.real[start::skip], sin.imag[start::skip], "o") s13.set_title("Constellation") s13.set_xlim([-2, 2]) s13.set_ylim([-2, 2]) # Plot channels nrows = int(scipy.sqrt(nchans)) ncols = int(scipy.ceil(float(nchans)/float(nrows))) f2 = pylab.figure(2, figsize=(16,12), facecolor='w') for n in xrange(nchans): s = f2.add_subplot(nrows, ncols, n+1) s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in) s.set_title("Channel {0}".format(n)) s.set_ylim([-200, -20]) # Plot reconstructed signal fs_out = 2*nchans*fs f3 = pylab.figure(3, figsize=(16,12), facecolor='w') s31 = f3.add_subplot(2,2,1) s31.psd(sout, NFFT=fftlen, Fs=fs_out) s31.set_title("PSD of Reconstructed Signal") s31.set_ylim([-200, -20]) s32 = f3.add_subplot(2,2,2) s32.plot(sout.real[1000:1500], "o-b") s32.plot(sout.imag[1000:1500], "o-r") s32.set_title("Reconstructed Signal in Time") start = 0 skip = 4 s33 = f3.add_subplot(2,2,3) s33.plot(sout.real[start::skip], sout.imag[start::skip], "o") s33.set_title("Constellation") s33.set_xlim([-2, 2]) s33.set_ylim([-2, 2]) pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
cspang1/4534-08
src/supervisory/test_protocol/test_serial_com.py
1
1683
import serial import sys import time import matplotlib.pyplot as plt import numpy def update_line(h1, x, y): h1.set_xdata(numpy.append(h1.get_xdata(), x)) h1.set_ydata(numpy.append(h1.get_ydata(), y)) plt.draw() ''' __author__ = 'tjd08a' ''' port = None for arg in sys.argv: port = arg ser = serial.Serial(port, baudrate=57600, timeout=10) readNum = False counter = 0 seconds = 0 # h1, = plt.plot([], []) # Reboot sequence below ser.write('$$$') time.sleep(1) ser.write('reboot\r') time.sleep(3) start = None stop = None initial = True #plt.show(h1) while 1: #ser.write("hello world") bytesWaiting = ser.inWaiting() if bytesWaiting: # print bytesWaiting letter = ser.read(1) val = ord(letter) if not readNum: if val >= 128 : #print "Ready To Receive" ser.write("r") readNum = True if initial: start = time.time() initial = False else: end = time.time() # print "Received %i" % val if (end - start >= 1): seconds += 1 print "%d: Total Messages Received - %d" % (seconds, counter) start = time.time() if (val > 100): if(val == 255): #print "Stop byte received" ser.write('e') readNum = False else: print "Error: Incorrect value received" print val #print val #update_line(h1, counter, val) counter += 1 ser.flush()
gpl-3.0
maurov/xraysloth
sloth/math/gridxyz.py
1
2757
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Utilities to work with 2D grids and interpolation ================================================= """ from __future__ import division, print_function import numpy as np from sloth.utils.logging import getLogger _logger = getLogger('gridxyz') ### GLOBAL VARIABLES ### MODNAME = '_math' def gridxyz(xcol, ycol, zcol, xystep=None, lib='scipy', method='cubic'): """Grid (X, Y, Z) 1D data on a 2D regular mesh Parameters ---------- xcol, ycol, zcol : 1D arrays repesenting the map (z is the intensity) xystep : the step size of the XY grid lib : library used for griddata [scipy] matplotlib method : interpolation method Returns ------- xgrid, ygrid : 1D arrays giving abscissa and ordinate of the map zz : 2D array with the gridded intensity map See also -------- - MultipleScanToMeshPlugin in PyMca """ if xystep is None: xystep = 0.1 _logger.warning("'xystep' not given: using a default value of {0}".format(xystep)) #create the XY meshgrid and interpolate the Z on the grid nxpoints = int((xcol.max()-xcol.min())/xystep) nypoints = int((ycol.max()-ycol.min())/xystep) xgrid = np.linspace(xcol.min(), xcol.max(), num=nxpoints) ygrid = np.linspace(ycol.min(), ycol.max(), num=nypoints) xx, yy = np.meshgrid(xgrid, ygrid) if ('matplotlib' in lib.lower()): try: from matplotlib.mlab import griddata except ImportError: _logger.error("Cannot load griddata from Matplotlib") return if not (method == 'nn' or method == 'nearest'): _logger.warning("Interpolation method {0} not supported by {1}".format(method, lib)) _logger.info("Gridding data with {0}...".format(lib)) zz = griddata(xcol, ycol, zcol, xx, yy) return xgrid, ygrid, zz elif ('scipy' in lib.lower()): try: from scipy.interpolate import griddata except ImportError: _logger.error("Cannot load griddata from Scipy") return _logger.info("Gridding data with {0}...".format(lib)) zz = griddata((xcol, ycol), zcol, (xgrid[None,:], ygrid[:,None]), method=method, fill_value=0) return xgrid, ygrid, zz ### LARCH ### def gridxyz_larch(xcol, ycol, zcol, xystep=None, method='cubic', lib='scipy', _larch=None): """Larch equivalent of gridxyz() """ if _larch is None: raise Warning("Larch broken?") return gridxyz(xcol, ycol, zcol, xystep=xystep, method=method, lib=lib) gridxyz_larch.__doc__ += gridxyz.__doc__ def registerLarchPlugin(): return (MODNAME, {'gridxyz': gridxyz_larch}) if __name__ == '__main__': pass
bsd-3-clause
aprotopopov/lifetimes
lifetimes/datasets/__init__.py
1
1813
# -*- coding: utf-8 -*- # modified from https://github.com/CamDavidsonPilon/lifelines/ import pandas as pd from .. import utils from pkg_resources import resource_filename __all__ = [ 'load_cdnow_summary', 'load_transaction_data', 'load_cdnow_summary_data_with_monetary_value', 'load_donations' ] def load_dataset(filename, **kwargs): """ Load a dataset from lifetimes.datasets. Parameters: filename: for example "larynx.csv" usecols: list of columns in file to use Returns: Pandas dataframe """ return pd.read_csv(resource_filename('lifetimes', 'datasets/' + filename), **kwargs) def load_donations(**kwargs): """Load donations dataset as pandas DataFrame.""" return load_dataset('donations.csv', **kwargs) def load_cdnow_summary(**kwargs): """Load cdnow customers summary pandas DataFrame.""" return load_dataset('cdnow_customers_summary.csv', **kwargs) def load_transaction_data(**kwargs): """ Return a Pandas dataframe of transactional data. Looks like: date id 0 2014-03-08 00:00:00 0 1 2014-05-21 00:00:00 1 2 2014-03-14 00:00:00 2 3 2014-04-09 00:00:00 2 4 2014-05-21 00:00:00 2 The data was artificially created using Lifetimes data generation routines. Data was generated between 2014-01-01 to 2014-12-31. """ return load_dataset('example_transactions.csv', **kwargs) def load_cdnow_summary_data_with_monetary_value(**kwargs): """Load cdnow customers summary with monetary value as pandas DataFrame.""" df = load_dataset('cdnow_customers_summary_with_transactions.csv', **kwargs) df.columns = ['customer_id', 'frequency', 'recency', 'T', 'monetary_value'] df = df.set_index('customer_id') return df
mit
jonhadfield/acli
lib/acli/output/cloudwatch.py
1
6718
# -*- coding: utf-8 -*- from __future__ import (absolute_import, print_function, unicode_literals) def output_ec2_cpu(dates=None, values=None, instance_id=None, output_type=None): """ @type dates: list @type values: list @type instance_id: unicode @type output_type: unicode """ try: import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: exit('matplotlib required to output graphs.') if output_type in ('graph', None): plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) ax = plt.gca() xfmt = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) plt.plot(dates, values) plt.gcf().autofmt_xdate() plt.title('CPU statistics for: {0}'.format(instance_id)) plt.xlabel('Time (UTC)') plt.ylabel('CPU %') plt.grid(True) plt.ylim([0, 100]) plt.show() exit(0) def output_ec2_mem(dates=None, values=None, instance_id=None, output_type=None): """ @type dates: list @type values: list @type instance_id: unicode @type output_type: unicode """ try: import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: exit('matplotlib required to output graphs.') if output_type in ('graph', None): plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) ax = plt.gca() xfmt = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) plt.plot(dates, values) plt.gcf().autofmt_xdate() plt.title(' Memory usage for: {0}'.format(instance_id)) plt.xlabel('Time (UTC)') plt.ylabel('Memory Usage %') plt.grid(True) plt.show() exit(0) def output_ec2_net(in_dates=None, in_values=None, out_dates=None, out_values=None, instance_id=None, output_type=None): """ @type in_dates: list @type in_values: list @type out_dates: list @type out_values: list @type instance_id: unicode @type output_type: unicode """ try: import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: exit('matplotlib required to output graphs.') if output_type in ('graph', None): plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) ax = plt.gca() xfmt = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) in_line = plt.plot(in_dates, in_values) out_line = plt.plot(out_dates, out_values) plt.setp(in_line, color='g', linewidth=2.0, label='inbound') plt.setp(out_line, color='b', linewidth=2.0, label='outbound') plt.gcf().autofmt_xdate() plt.title('Network statistics for: {0}'.format(instance_id)) plt.xlabel('Time (UTC)') plt.ylabel('Network (Bytes/s)') handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) plt.grid() plt.show() exit(0) def output_ec2_vols(vols_datapoints=None, instance_id=None, output_type=None): """ @type vols_datapoints: list @type instance_id: unicode @type output_type: unicode """ try: import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: exit('matplotlib required to output graphs.') try: import numpy as np except ImportError: exit('install numpy.') if output_type in ('graph', None): num_plots = len(vols_datapoints) f, axarr = plt.subplots(num_plots, sharex=True, sharey=True) f.suptitle('Volumes for instance: {0}'.format(instance_id), fontsize=16) plt.ylabel('Bytes') if isinstance(axarr, np.ndarray): for index, vol_set in enumerate(vols_datapoints): read_dates = vol_set.get('read_dates') read_values = vol_set.get('read_values') write_dates = vol_set.get('write_dates') write_values = vol_set.get('write_values') axarr[index].set_title(vol_set.get('device_name')) axarr[index].grid(True) axarr[index].plot(write_dates, write_values, label='write') axarr[index].plot(read_dates, read_values, label='read') axarr[index].legend(loc="upper right", title=None, fancybox=False) plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) plt.xlabel('Time (UTC)') else: read_dates = vols_datapoints[0].get('read_dates') read_values = vols_datapoints[0].get('read_values') write_dates = vols_datapoints[0].get('write_dates') write_values = vols_datapoints[0].get('write_values') axarr.set_title(vols_datapoints[0].get('device_name')) axarr.plot(write_dates, write_values, label='write') axarr.plot(read_dates, read_values, label='read') axarr.legend(loc="upper right", title=None, fancybox=False) axarr.grid(True) plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) plt.xlabel('Time (UTC)') ax = plt.gca() ax.set_ylim(bottom=0) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) xfmt = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) plt.grid(True) plt.show() exit(0) def output_asg_cpu(dates=None, values=None, asg_name=None, output_type=None): """ @type dates: list @type values: list @type asg_name: unicode @type output_type: unicode """ try: import matplotlib.pyplot as plt import matplotlib.dates as mdates except ImportError: exit('matplotlib required to output graphs.') if output_type in ('graph', None): plt.subplots_adjust(bottom=0.2) plt.xticks(rotation=25) ax = plt.gca() xfmt = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') ax.xaxis.set_major_formatter(xfmt) plt.plot(dates, values) plt.gcf().autofmt_xdate() plt.title('CPU statistics for: {0}'.format(asg_name)) plt.xlabel('Time (UTC)') plt.ylabel('CPU %') plt.grid() plt.ylim([0, 100]) plt.show() exit(0)
mit
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/matplotlib/tests/test_ticker.py
3
18980
from __future__ import (absolute_import, division, print_function, unicode_literals) import nose.tools from nose.tools import assert_equal, assert_raises from numpy.testing import assert_almost_equal import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker from matplotlib.testing.decorators import cleanup import warnings @cleanup(style='classic') def test_MaxNLocator(): loc = mticker.MaxNLocator(nbins=5) test_value = np.array([20., 40., 60., 80., 100.]) assert_almost_equal(loc.tick_values(20, 100), test_value) test_value = np.array([0., 0.0002, 0.0004, 0.0006, 0.0008, 0.001]) assert_almost_equal(loc.tick_values(0.001, 0.0001), test_value) test_value = np.array([-1.0e+15, -5.0e+14, 0e+00, 5e+14, 1.0e+15]) assert_almost_equal(loc.tick_values(-1e15, 1e15), test_value) @cleanup def test_MaxNLocator_integer(): loc = mticker.MaxNLocator(nbins=5, integer=True) test_value = np.array([-1, 0, 1, 2]) assert_almost_equal(loc.tick_values(-0.1, 1.1), test_value) test_value = np.array([-0.25, 0, 0.25, 0.5, 0.75, 1.0]) assert_almost_equal(loc.tick_values(-0.1, 0.95), test_value) loc = mticker.MaxNLocator(nbins=5, integer=True, steps=[1, 1.5, 5, 6, 10]) test_value = np.array([0, 15, 30, 45, 60]) assert_almost_equal(loc.tick_values(1, 55), test_value) def test_LinearLocator(): loc = mticker.LinearLocator(numticks=3) test_value = np.array([-0.8, -0.3, 0.2]) assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value) def test_MultipleLocator(): loc = mticker.MultipleLocator(base=3.147) test_value = np.array([-9.441, -6.294, -3.147, 0., 3.147, 6.294, 9.441, 12.588]) assert_almost_equal(loc.tick_values(-7, 10), test_value) @cleanup def test_AutoMinorLocator(): fig, ax = plt.subplots() ax.set_xlim(0, 1.39) ax.minorticks_on() test_value = np.array([0.05, 0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.55, 0.65, 0.7, 0.75, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.25, 1.3, 1.35]) assert_almost_equal(ax.xaxis.get_ticklocs(minor=True), test_value) def test_LogLocator(): loc = mticker.LogLocator(numticks=5) assert_raises(ValueError, loc.tick_values, 0, 1000) test_value = np.array([1.00000000e-05, 1.00000000e-03, 1.00000000e-01, 1.00000000e+01, 1.00000000e+03, 1.00000000e+05, 1.00000000e+07, 1.000000000e+09]) assert_almost_equal(loc.tick_values(0.001, 1.1e5), test_value) loc = mticker.LogLocator(base=2) test_value = np.array([0.5, 1., 2., 4., 8., 16., 32., 64., 128., 256.]) assert_almost_equal(loc.tick_values(1, 100), test_value) def test_LinearLocator_set_params(): """ Create linear locator with presets={}, numticks=2 and change it to something else. See if change was successful. Should not exception. """ loc = mticker.LinearLocator(numticks=2) loc.set_params(numticks=8, presets={(0, 1): []}) nose.tools.assert_equal(loc.numticks, 8) nose.tools.assert_equal(loc.presets, {(0, 1): []}) def test_LogLocator_set_params(): """ Create log locator with default value, base=10.0, subs=[1.0], numdecs=4, numticks=15 and change it to something else. See if change was successful. Should not exception. """ loc = mticker.LogLocator() loc.set_params(numticks=7, numdecs=8, subs=[2.0], base=4) nose.tools.assert_equal(loc.numticks, 7) nose.tools.assert_equal(loc.numdecs, 8) nose.tools.assert_equal(loc._base, 4) nose.tools.assert_equal(list(loc._subs), [2.0]) def test_NullLocator_set_params(): """ Create null locator, and attempt to call set_params() on it. Should not exception, and should raise a warning. """ loc = mticker.NullLocator() with warnings.catch_warnings(record=True) as w: loc.set_params() nose.tools.assert_equal(len(w), 1) def test_MultipleLocator_set_params(): """ Create multiple locator with 0.7 base, and change it to something else. See if change was successful. Should not exception. """ mult = mticker.MultipleLocator(base=0.7) mult.set_params(base=1.7) nose.tools.assert_equal(mult._base, 1.7) def test_LogitLocator_set_params(): """ Create logit locator with default minor=False, and change it to something else. See if change was successful. Should not exception. """ loc = mticker.LogitLocator() # Defaults to false. loc.set_params(minor=True) nose.tools.assert_true(loc.minor) def test_FixedLocator_set_params(): """ Create fixed locator with 5 nbins, and change it to something else. See if change was successful. Should not exception. """ fixed = mticker.FixedLocator(range(0, 24), nbins=5) fixed.set_params(nbins=7) nose.tools.assert_equal(fixed.nbins, 7) def test_IndexLocator_set_params(): """ Create index locator with 3 base, 4 offset. and change it to something else. See if change was successful. Should not exception. """ index = mticker.IndexLocator(base=3, offset=4) index.set_params(base=7, offset=7) nose.tools.assert_equal(index._base, 7) nose.tools.assert_equal(index.offset, 7) def test_SymmetricalLogLocator_set_params(): """ Create symmetrical log locator with default subs =[1.0] numticks = 15, and change it to something else. See if change was successful. Should not exception. """ sym = mticker.SymmetricalLogLocator(base=10, linthresh=1) sym.set_params(subs=[2.0], numticks=8) nose.tools.assert_equal(sym._subs, [2.0]) nose.tools.assert_equal(sym.numticks, 8) @cleanup(style='classic') def test_ScalarFormatter_offset_value(): fig, ax = plt.subplots() formatter = ax.get_xaxis().get_major_formatter() def check_offset_for(left, right, offset): with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', 'Attempting to set identical', UserWarning) ax.set_xlim(left, right) assert_equal(len(w), 1 if left == right else 0) # Update ticks. next(ax.get_xaxis().iter_ticks()) assert_equal(formatter.offset, offset) test_data = [(123, 189, 0), (-189, -123, 0), (12341, 12349, 12340), (-12349, -12341, -12340), (99999.5, 100010.5, 100000), (-100010.5, -99999.5, -100000), (99990.5, 100000.5, 100000), (-100000.5, -99990.5, -100000), (1233999, 1234001, 1234000), (-1234001, -1233999, -1234000), (1, 1, 1), (123, 123, 120), # Test cases courtesy of @WeatherGod (.4538, .4578, .45), (3789.12, 3783.1, 3780), (45124.3, 45831.75, 45000), (0.000721, 0.0007243, 0.00072), (12592.82, 12591.43, 12590), (9., 12., 0), (900., 1200., 0), (1900., 1200., 0), (0.99, 1.01, 1), (9.99, 10.01, 10), (99.99, 100.01, 100), (5.99, 6.01, 6), (15.99, 16.01, 16), (-0.452, 0.492, 0), (-0.492, 0.492, 0), (12331.4, 12350.5, 12300), (-12335.3, 12335.3, 0)] for left, right, offset in test_data: yield check_offset_for, left, right, offset yield check_offset_for, right, left, offset def _sub_labels(axis, subs=()): "Test whether locator marks subs to be labeled" fmt = axis.get_minor_formatter() minor_tlocs = axis.get_minorticklocs() fmt.set_locs(minor_tlocs) coefs = minor_tlocs / 10**(np.floor(np.log10(minor_tlocs))) label_expected = [np.round(c) in subs for c in coefs] label_test = [fmt(x) != '' for x in minor_tlocs] assert_equal(label_test, label_expected) @cleanup(style='default') def test_LogFormatter_sublabel(): # test label locator fig, ax = plt.subplots() ax.set_xscale('log') ax.xaxis.set_major_locator(mticker.LogLocator(base=10, subs=[])) ax.xaxis.set_minor_locator(mticker.LogLocator(base=10, subs=np.arange(2, 10))) ax.xaxis.set_major_formatter(mticker.LogFormatter(labelOnlyBase=True)) ax.xaxis.set_minor_formatter(mticker.LogFormatter(labelOnlyBase=False)) # axis range above 3 decades, only bases are labeled ax.set_xlim(1, 1e4) fmt = ax.xaxis.get_major_formatter() fmt.set_locs(ax.xaxis.get_majorticklocs()) show_major_labels = [fmt(x) != '' for x in ax.xaxis.get_majorticklocs()] assert np.all(show_major_labels) _sub_labels(ax.xaxis, subs=[]) # For the next two, if the numdec threshold in LogFormatter.set_locs # were 3, then the label sub would be 3 for 2-3 decades and (2,5) # for 1-2 decades. With a threshold of 1, subs are not labeled. # axis range at 2 to 3 decades ax.set_xlim(1, 800) _sub_labels(ax.xaxis, subs=[]) # axis range at 1 to 2 decades ax.set_xlim(1, 80) _sub_labels(ax.xaxis, subs=[]) # axis range at 0.4 to 1 decades, label subs 2, 3, 4, 6 ax.set_xlim(1, 8) _sub_labels(ax.xaxis, subs=[2, 3, 4, 6]) # axis range at 0 to 0.4 decades, label all ax.set_xlim(0.5, 0.9) _sub_labels(ax.xaxis, subs=np.arange(2, 10, dtype=int)) def _logfe_helper(formatter, base, locs, i, expected_result): vals = base**locs labels = [formatter(x, pos) for (x, pos) in zip(vals, i)] nose.tools.assert_equal(labels, expected_result) def test_LogFormatterExponent(): class FakeAxis(object): """Allow Formatter to be called without having a "full" plot set up.""" def __init__(self, vmin=1, vmax=10): self.vmin = vmin self.vmax = vmax def get_view_interval(self): return self.vmin, self.vmax i = np.arange(-3, 4, dtype=float) expected_result = ['-3', '-2', '-1', '0', '1', '2', '3'] for base in [2, 5.0, 10.0, np.pi, np.e]: formatter = mticker.LogFormatterExponent(base=base) formatter.axis = FakeAxis(1, base**4) yield _logfe_helper, formatter, base, i, i, expected_result # Should be a blank string for non-integer powers if labelOnlyBase=True formatter = mticker.LogFormatterExponent(base=10, labelOnlyBase=True) formatter.axis = FakeAxis() nose.tools.assert_equal(formatter(10**0.1), '') # Otherwise, non-integer powers should be nicely formatted locs = np.array([0.1, 0.00001, np.pi, 0.2, -0.2, -0.00001]) i = range(len(locs)) expected_result = ['0.1', '1e-05', '3.14', '0.2', '-0.2', '-1e-05'] for base in [2, 5, 10, np.pi, np.e]: formatter = mticker.LogFormatterExponent(base, labelOnlyBase=False) formatter.axis = FakeAxis(1, base**10) yield _logfe_helper, formatter, base, locs, i, expected_result expected_result = ['3', '5', '12', '42'] locs = np.array([3, 5, 12, 42], dtype='float') for base in [2, 5.0, 10.0, np.pi, np.e]: formatter = mticker.LogFormatterExponent(base, labelOnlyBase=False) formatter.axis = FakeAxis(1, base**50) yield _logfe_helper, formatter, base, locs, i, expected_result def test_LogFormatterSciNotation(): test_cases = { 10: ( (-1, '${-10^{0}}$'), (1e-05, '${10^{-5}}$'), (1, '${10^{0}}$'), (100000, '${10^{5}}$'), (2e-05, '${2\\times10^{-5}}$'), (2, '${2\\times10^{0}}$'), (200000, '${2\\times10^{5}}$'), (5e-05, '${5\\times10^{-5}}$'), (5, '${5\\times10^{0}}$'), (500000, '${5\\times10^{5}}$'), ), 2: ( (0.03125, '${2^{-5}}$'), (1, '${2^{0}}$'), (32, '${2^{5}}$'), (0.0375, '${1.2\\times2^{-5}}$'), (1.2, '${1.2\\times2^{0}}$'), (38.4, '${1.2\\times2^{5}}$'), ) } for base in test_cases.keys(): formatter = mticker.LogFormatterSciNotation(base=base) formatter.sublabel = set([1, 2, 5, 1.2]) for value, expected in test_cases[base]: with matplotlib.rc_context({'text.usetex': False}): nose.tools.assert_equal(formatter(value), expected) def _pprint_helper(value, domain, expected): fmt = mticker.LogFormatter() label = fmt.pprint_val(value, domain) nose.tools.assert_equal(label, expected) def test_logformatter_pprint(): test_cases = ( (3.141592654e-05, 0.001, '3.142e-5'), (0.0003141592654, 0.001, '3.142e-4'), (0.003141592654, 0.001, '3.142e-3'), (0.03141592654, 0.001, '3.142e-2'), (0.3141592654, 0.001, '3.142e-1'), (3.141592654, 0.001, '3.142'), (31.41592654, 0.001, '3.142e1'), (314.1592654, 0.001, '3.142e2'), (3141.592654, 0.001, '3.142e3'), (31415.92654, 0.001, '3.142e4'), (314159.2654, 0.001, '3.142e5'), (1e-05, 0.001, '1e-5'), (0.0001, 0.001, '1e-4'), (0.001, 0.001, '1e-3'), (0.01, 0.001, '1e-2'), (0.1, 0.001, '1e-1'), (1, 0.001, '1'), (10, 0.001, '10'), (100, 0.001, '100'), (1000, 0.001, '1000'), (10000, 0.001, '1e4'), (100000, 0.001, '1e5'), (3.141592654e-05, 0.015, '0'), (0.0003141592654, 0.015, '0'), (0.003141592654, 0.015, '0.003'), (0.03141592654, 0.015, '0.031'), (0.3141592654, 0.015, '0.314'), (3.141592654, 0.015, '3.142'), (31.41592654, 0.015, '31.416'), (314.1592654, 0.015, '314.159'), (3141.592654, 0.015, '3141.593'), (31415.92654, 0.015, '31415.927'), (314159.2654, 0.015, '314159.265'), (1e-05, 0.015, '0'), (0.0001, 0.015, '0'), (0.001, 0.015, '0.001'), (0.01, 0.015, '0.01'), (0.1, 0.015, '0.1'), (1, 0.015, '1'), (10, 0.015, '10'), (100, 0.015, '100'), (1000, 0.015, '1000'), (10000, 0.015, '10000'), (100000, 0.015, '100000'), (3.141592654e-05, 0.5, '0'), (0.0003141592654, 0.5, '0'), (0.003141592654, 0.5, '0.003'), (0.03141592654, 0.5, '0.031'), (0.3141592654, 0.5, '0.314'), (3.141592654, 0.5, '3.142'), (31.41592654, 0.5, '31.416'), (314.1592654, 0.5, '314.159'), (3141.592654, 0.5, '3141.593'), (31415.92654, 0.5, '31415.927'), (314159.2654, 0.5, '314159.265'), (1e-05, 0.5, '0'), (0.0001, 0.5, '0'), (0.001, 0.5, '0.001'), (0.01, 0.5, '0.01'), (0.1, 0.5, '0.1'), (1, 0.5, '1'), (10, 0.5, '10'), (100, 0.5, '100'), (1000, 0.5, '1000'), (10000, 0.5, '10000'), (100000, 0.5, '100000'), (3.141592654e-05, 5, '0'), (0.0003141592654, 5, '0'), (0.003141592654, 5, '0'), (0.03141592654, 5, '0.03'), (0.3141592654, 5, '0.31'), (3.141592654, 5, '3.14'), (31.41592654, 5, '31.42'), (314.1592654, 5, '314.16'), (3141.592654, 5, '3141.59'), (31415.92654, 5, '31415.93'), (314159.2654, 5, '314159.27'), (1e-05, 5, '0'), (0.0001, 5, '0'), (0.001, 5, '0'), (0.01, 5, '0.01'), (0.1, 5, '0.1'), (1, 5, '1'), (10, 5, '10'), (100, 5, '100'), (1000, 5, '1000'), (10000, 5, '10000'), (100000, 5, '100000'), (3.141592654e-05, 100, '0'), (0.0003141592654, 100, '0'), (0.003141592654, 100, '0'), (0.03141592654, 100, '0'), (0.3141592654, 100, '0.3'), (3.141592654, 100, '3.1'), (31.41592654, 100, '31.4'), (314.1592654, 100, '314.2'), (3141.592654, 100, '3141.6'), (31415.92654, 100, '31415.9'), (314159.2654, 100, '314159.3'), (1e-05, 100, '0'), (0.0001, 100, '0'), (0.001, 100, '0'), (0.01, 100, '0'), (0.1, 100, '0.1'), (1, 100, '1'), (10, 100, '10'), (100, 100, '100'), (1000, 100, '1000'), (10000, 100, '10000'), (100000, 100, '100000'), (3.141592654e-05, 1000000.0, '3.1e-5'), (0.0003141592654, 1000000.0, '3.1e-4'), (0.003141592654, 1000000.0, '3.1e-3'), (0.03141592654, 1000000.0, '3.1e-2'), (0.3141592654, 1000000.0, '3.1e-1'), (3.141592654, 1000000.0, '3.1'), (31.41592654, 1000000.0, '3.1e1'), (314.1592654, 1000000.0, '3.1e2'), (3141.592654, 1000000.0, '3.1e3'), (31415.92654, 1000000.0, '3.1e4'), (314159.2654, 1000000.0, '3.1e5'), (1e-05, 1000000.0, '1e-5'), (0.0001, 1000000.0, '1e-4'), (0.001, 1000000.0, '1e-3'), (0.01, 1000000.0, '1e-2'), (0.1, 1000000.0, '1e-1'), (1, 1000000.0, '1'), (10, 1000000.0, '10'), (100, 1000000.0, '100'), (1000, 1000000.0, '1000'), (10000, 1000000.0, '1e4'), (100000, 1000000.0, '1e5') ) for value, domain, expected in test_cases: yield _pprint_helper, value, domain, expected def test_use_offset(): for use_offset in [True, False]: with matplotlib.rc_context({'axes.formatter.useoffset': use_offset}): tmp_form = mticker.ScalarFormatter() nose.tools.assert_equal(use_offset, tmp_form.get_useOffset()) def test_formatstrformatter(): # test % style formatter tmp_form = mticker.FormatStrFormatter('%05d') nose.tools.assert_equal('00002', tmp_form(2)) # test str.format() style formatter tmp_form = mticker.StrMethodFormatter('{x:05d}') nose.tools.assert_equal('00002', tmp_form(2)) def test_EngFormatter_formatting(): """ Create two instances of EngFormatter with default parameters, with and without a unit string ('s' for seconds). Test the formatting in some cases, especially the case when no SI prefix is present, for values in [1, 1000). Should not raise exceptions. """ unitless = mticker.EngFormatter() nose.tools.assert_equal(unitless(0.1), u'100 m') nose.tools.assert_equal(unitless(1), u'1') nose.tools.assert_equal(unitless(999.9), u'999.9') nose.tools.assert_equal(unitless(1001), u'1.001 k') with_unit = mticker.EngFormatter(unit=u's') nose.tools.assert_equal(with_unit(0.1), u'100 ms') nose.tools.assert_equal(with_unit(1), u'1 s') nose.tools.assert_equal(with_unit(999.9), u'999.9 s') nose.tools.assert_equal(with_unit(1001), u'1.001 ks') if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
apache-2.0
yonglehou/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause