Datasets:

ArXiv:
community-pipelines-mirror / main /cogvideox_ddim_inversion.py
diffusers-benchmarking-bot's picture
Upload folder using huggingface_hub
d913a15 verified
raw
history blame
28.6 kB
"""
This script performs DDIM inversion for video frames using a pre-trained model and generates
a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to
process video frames, apply the DDIM inverse scheduler, and produce an output video.
**Please notice that this script is based on the CogVideoX 5B model, and would not generate
a good result for 2B variants.**
Usage:
python cogvideox_ddim_inversion.py
--model-path /path/to/model
--prompt "a prompt"
--video-path /path/to/video.mp4
--output-path /path/to/output
For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`.
Author:
LittleNyima <littlenyima[at]163[dot]com>
"""
import argparse
import math
import os
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0
from diffusers.models.autoencoders import AutoencoderKLCogVideoX
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps
from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler
from diffusers.utils import export_to_video
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error.
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort: skip
class DDIMInversionArguments(TypedDict):
model_path: str
prompt: str
video_path: str
output_path: str
guidance_scale: float
num_inference_steps: int
skip_frames_start: int
skip_frames_end: int
frame_sample_step: Optional[int]
max_num_frames: int
width: int
height: int
fps: int
dtype: torch.dtype
seed: int
device: torch.device
def get_args() -> DDIMInversionArguments:
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model")
parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure")
parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion")
parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos")
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start")
parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end")
parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames")
parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames")
parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames")
parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames")
parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos")
parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model")
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator")
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference")
args = parser.parse_args()
args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16
args.device = torch.device(args.device)
return DDIMInversionArguments(**vars(args))
class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0):
def __init__(self):
super().__init__()
def calculate_attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn: Attention,
batch_size: int,
image_seq_length: int,
text_seq_length: int,
attention_mask: Optional[torch.Tensor],
image_rotary_emb: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Core attention computation with inversion-guided RoPE integration.
Args:
query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor
key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor
value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor
attn (`Attention`): Parent attention module with projection layers
batch_size (`int`): Effective batch size (after chunk splitting)
image_seq_length (`int`): Length of image feature sequence
text_seq_length (`int`): Length of text feature sequence
attention_mask (`Optional[torch.Tensor]`): Attention mask tensor
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) hidden_states: [batch_size, image_seq_length, dim] processed image features
(2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features
"""
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
if not attn.is_cross_attention:
if key.size(2) == query.size(2): # Attention for reference hidden states
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
else: # RoPE should be applied to each group of image tokens
key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb(
key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb
)
key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb(
key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb
)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
return hidden_states, encoder_hidden_states
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Process the dual-path attention for the inversion-guided denoising procedure.
Args:
attn (`Attention`): Parent attention module
hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens
encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens
attention_mask (`Optional[torch.Tensor]`): Optional attention mask
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens
(2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens
"""
image_seq_length = hidden_states.size(1)
text_seq_length = encoder_hidden_states.size(1)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query, query_reference = query.chunk(2)
key, key_reference = key.chunk(2)
value, value_reference = value.chunk(2)
batch_size = batch_size // 2
hidden_states, encoder_hidden_states = self.calculate_attention(
query=query,
key=torch.cat((key, key_reference), dim=1),
value=torch.cat((value, value_reference), dim=1),
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention(
query=query_reference,
key=key_reference,
value=value_reference,
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
return (
torch.cat((hidden_states, hidden_states_reference)),
torch.cat((encoder_hidden_states, encoder_hidden_states_reference)),
)
class OverrideAttnProcessors:
r"""
Context manager for temporarily overriding attention processors in CogVideo transformer blocks.
Designed for DDIM inversion process, replaces original attention processors with
`CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager
pattern to safely manage processor replacement.
Typical usage:
```python
with OverrideAttnProcessors(transformer):
# Perform DDIM inversion operations
```
Args:
transformer (`CogVideoXTransformer3DModel`):
The transformer model containing attention blocks to be modified. Should have
`transformer_blocks` attribute containing `CogVideoXBlock` instances.
"""
def __init__(self, transformer: CogVideoXTransformer3DModel):
self.transformer = transformer
self.original_processors = {}
def __enter__(self):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
self.original_processors[id(block)] = block.attn1.get_processor()
block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion())
def __exit__(self, _0, _1, _2):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
block.attn1.set_processor(self.original_processors[id(block)])
def get_video_frames(
video_path: str,
width: int,
height: int,
skip_frames_start: int,
skip_frames_end: int,
max_num_frames: int,
frame_sample_step: Optional[int],
) -> torch.FloatTensor:
"""
Extract and preprocess video frames from a video file for VAE processing.
Args:
video_path (`str`): Path to input video file
width (`int`): Target frame width for decoding
height (`int`): Target frame height for decoding
skip_frames_start (`int`): Number of frames to skip at video start
skip_frames_end (`int`): Number of frames to skip at video end
max_num_frames (`int`): Maximum allowed number of output frames
frame_sample_step (`Optional[int]`):
Frame sampling step size. If None, automatically calculated as:
(total_frames - skipped_frames) // max_num_frames
Returns:
`torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where:
- `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility)
- `C`: Channels (3 for RGB)
- `H`: Frame height
- `W`: Frame width
"""
with decord.bridge.use_torch():
video_reader = decord.VideoReader(uri=video_path, width=width, height=height)
video_num_frames = len(video_reader)
start_frame = min(skip_frames_start, video_num_frames)
end_frame = max(0, video_num_frames - skip_frames_end)
if end_frame <= start_frame:
indices = [start_frame]
elif end_frame - start_frame <= max_num_frames:
indices = list(range(start_frame, end_frame))
else:
step = frame_sample_step or (end_frame - start_frame) // max_num_frames
indices = list(range(start_frame, end_frame, step))
frames = video_reader.get_batch(indices=indices)
frames = frames[:max_num_frames].float() # ensure that we don't go over the limit
# Choose first (4k + 1) frames as this is how many is required by the VAE
selected_num_frames = frames.size(0)
remainder = (3 + selected_num_frames) % 4
if remainder != 0:
frames = frames[:-remainder]
assert frames.size(0) % 4 == 1
# Normalize the frames
transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
frames = torch.stack(tuple(map(transform, frames)), dim=0)
return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W]
class CogVideoXDDIMInversionOutput:
inverse_latents: torch.FloatTensor
recon_latents: torch.FloatTensor
def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor):
self.inverse_latents = inverse_latents
self.recon_latents = recon_latents
class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline):
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel,
scheduler: CogVideoXDDIMScheduler,
):
super().__init__(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config)
def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor:
"""
Encode video frames into latent space using Variational Autoencoder.
Args:
video_frames (`torch.FloatTensor`):
Input frames tensor in `[F, C, H, W]` format from `get_video_frames()`
Returns:
`torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where:
- `F`: Number of frames (same as input)
- `D`: Latent channel dimension
- `H_latent`: Latent space height (H // 2^vae.downscale_factor)
- `W_latent`: Latent space width (W // 2^vae.downscale_factor)
"""
vae: AutoencoderKLCogVideoX = self.vae
video_frames = video_frames.to(device=vae.device, dtype=vae.dtype)
video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2)
return latent_dist * vae.config.scaling_factor
@torch.no_grad()
def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int):
r"""
Decode latent vectors into video and export as video file.
Args:
latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from
`encode_video_frames()`
video_path (`str`): Output path for video file
fps (`int`): Target frames per second for output video
"""
video = self.decode_latents(latents)
frames = self.video_processor.postprocess_video(video=video, output_type="pil")
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps)
# Modified from CogVideoXPipeline.__call__
@torch.no_grad()
def sample(
self,
latents: torch.FloatTensor,
scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler],
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 50,
guidance_scale: float = 6,
use_dynamic_cfg: bool = False,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
reference_latents: torch.FloatTensor = None,
) -> torch.FloatTensor:
r"""
Execute the core sampling loop for video generation/inversion using CogVideoX.
Implements the full denoising trajectory recording for both DDIM inversion and
generation processes. Supports dynamic classifier-free guidance and reference
latent conditioning.
Args:
latents (`torch.FloatTensor`):
Initial noise tensor of shape `[B, F, C, H, W]`.
scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`):
Scheduling strategy for diffusion process. Use:
(1) `DDIMInverseScheduler` for inversion
(2) `CogVideoXDDIMScheduler` for generation
prompt (`Optional[Union[str, List[str]]]`):
Text prompt(s) for conditional generation. Defaults to unconditional.
negative_prompt (`Optional[Union[str, List[str]]]`):
Negative prompt(s) for guidance. Requires `guidance_scale > 1`.
num_inference_steps (`int`):
Number of denoising steps. Affects quality/compute trade-off.
guidance_scale (`float`):
Classifier-free guidance weight. 1.0 = no guidance.
use_dynamic_cfg (`bool`):
Enable time-varying guidance scale (cosine schedule)
eta (`float`):
DDIM variance parameter (0 = deterministic process)
generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`):
Random number generator(s) for reproducibility
attention_kwargs (`Optional[Dict[str, Any]]`):
Custom parameters for attention modules
reference_latents (`torch.FloatTensor`):
Reference latent trajectory for conditional sampling. Shape should match
`[T, B, F, C, H, W]` where `T` is number of timesteps
Returns:
`torch.FloatTensor`:
Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`.
"""
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._interrupt = False
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
negative_prompt,
do_classifier_free_guidance,
device=device,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
if reference_latents is not None:
prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device)
self._num_timesteps = len(timesteps)
# 5. Prepare latents.
latents = latents.to(device=device) * scheduler.init_noise_sigma
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs
extra_step_kwargs = {}
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(
height=latents.size(3) * self.vae_scale_factor_spatial,
width=latents.size(4) * self.vae_scale_factor_spatial,
num_frames=latents.size(1),
device=device,
)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0)
trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if reference_latents is not None:
reference = reference_latents[i]
reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference
latent_model_input = torch.cat([latent_model_input, reference], dim=0)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
if reference_latents is not None: # Recover the original batch size
noise_pred, _ = noise_pred.chunk(2)
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the noisy sample x_t-1 -> x_t
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
latents = latents.to(prompt_embeds.dtype)
trajectory[i] = latents
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
# Offload all models
self.maybe_free_model_hooks()
return trajectory
@torch.no_grad()
def __call__(
self,
prompt: str,
video_path: str,
guidance_scale: float,
num_inference_steps: int,
skip_frames_start: int,
skip_frames_end: int,
frame_sample_step: Optional[int],
max_num_frames: int,
width: int,
height: int,
seed: int,
):
"""
Performs DDIM inversion on a video to reconstruct it with a new prompt.
Args:
prompt (`str`): The text prompt to guide the reconstruction.
video_path (`str`): Path to the input video file.
guidance_scale (`float`): Scale for classifier-free guidance.
num_inference_steps (`int`): Number of denoising steps.
skip_frames_start (`int`): Number of frames to skip from the beginning of the video.
skip_frames_end (`int`): Number of frames to skip from the end of the video.
frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used.
max_num_frames (`int`): Maximum number of frames to process.
width (`int`): Width of the output video frames.
height (`int`): Height of the output video frames.
seed (`int`): Random seed for reproducibility.
Returns:
`CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents.
"""
if not self.transformer.config.use_rotary_positional_embeddings:
raise NotImplementedError("This script supports CogVideoX 5B model only.")
video_frames = get_video_frames(
video_path=video_path,
width=width,
height=height,
skip_frames_start=skip_frames_start,
skip_frames_end=skip_frames_end,
max_num_frames=max_num_frames,
frame_sample_step=frame_sample_step,
).to(device=self.device)
video_latents = self.encode_video_frames(video_frames=video_frames)
inverse_latents = self.sample(
latents=video_latents,
scheduler=self.inverse_scheduler,
prompt="",
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
)
with OverrideAttnProcessors(transformer=self.transformer):
recon_latents = self.sample(
latents=torch.randn_like(video_latents),
scheduler=self.scheduler,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
reference_latents=reversed(inverse_latents),
)
return CogVideoXDDIMInversionOutput(
inverse_latents=inverse_latents,
recon_latents=recon_latents,
)
if __name__ == "__main__":
arguments = get_args()
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
arguments.pop("model_path"),
torch_dtype=arguments.pop("dtype"),
).to(device=arguments.pop("device"))
output_path = arguments.pop("output_path")
fps = arguments.pop("fps")
inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4")
recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4")
# Run DDIM inversion
output = pipeline(**arguments)
pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps)
pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps)