|
""" |
|
This script performs DDIM inversion for video frames using a pre-trained model and generates |
|
a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to |
|
process video frames, apply the DDIM inverse scheduler, and produce an output video. |
|
|
|
**Please notice that this script is based on the CogVideoX 5B model, and would not generate |
|
a good result for 2B variants.** |
|
|
|
Usage: |
|
python cogvideox_ddim_inversion.py |
|
--model-path /path/to/model |
|
--prompt "a prompt" |
|
--video-path /path/to/video.mp4 |
|
--output-path /path/to/output |
|
|
|
For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`. |
|
|
|
Author: |
|
LittleNyima <littlenyima[at]163[dot]com> |
|
""" |
|
|
|
import argparse |
|
import math |
|
import os |
|
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms as T |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0 |
|
from diffusers.models.autoencoders import AutoencoderKLCogVideoX |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel |
|
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps |
|
from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler |
|
from diffusers.utils import export_to_video |
|
|
|
|
|
|
|
|
|
import decord |
|
|
|
|
|
class DDIMInversionArguments(TypedDict): |
|
model_path: str |
|
prompt: str |
|
video_path: str |
|
output_path: str |
|
guidance_scale: float |
|
num_inference_steps: int |
|
skip_frames_start: int |
|
skip_frames_end: int |
|
frame_sample_step: Optional[int] |
|
max_num_frames: int |
|
width: int |
|
height: int |
|
fps: int |
|
dtype: torch.dtype |
|
seed: int |
|
device: torch.device |
|
|
|
|
|
def get_args() -> DDIMInversionArguments: |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model") |
|
parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure") |
|
parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion") |
|
parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos") |
|
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale") |
|
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") |
|
parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start") |
|
parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end") |
|
parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames") |
|
parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames") |
|
parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames") |
|
parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames") |
|
parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos") |
|
parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model") |
|
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator") |
|
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference") |
|
|
|
args = parser.parse_args() |
|
args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16 |
|
args.device = torch.device(args.device) |
|
|
|
return DDIMInversionArguments(**vars(args)) |
|
|
|
|
|
class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def calculate_attention( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attn: Attention, |
|
batch_size: int, |
|
image_seq_length: int, |
|
text_seq_length: int, |
|
attention_mask: Optional[torch.Tensor], |
|
image_rotary_emb: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Core attention computation with inversion-guided RoPE integration. |
|
|
|
Args: |
|
query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor |
|
key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor |
|
value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor |
|
attn (`Attention`): Parent attention module with projection layers |
|
batch_size (`int`): Effective batch size (after chunk splitting) |
|
image_seq_length (`int`): Length of image feature sequence |
|
text_seq_length (`int`): Length of text feature sequence |
|
attention_mask (`Optional[torch.Tensor]`): Attention mask tensor |
|
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, torch.Tensor]`: |
|
(1) hidden_states: [batch_size, image_seq_length, dim] processed image features |
|
(2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features |
|
""" |
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if image_rotary_emb is not None: |
|
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) |
|
if not attn.is_cross_attention: |
|
if key.size(2) == query.size(2): |
|
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) |
|
else: |
|
key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb( |
|
key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb |
|
) |
|
key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb( |
|
key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb |
|
) |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
encoder_hidden_states, hidden_states = hidden_states.split( |
|
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 |
|
) |
|
return hidden_states, encoder_hidden_states |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Process the dual-path attention for the inversion-guided denoising procedure. |
|
|
|
Args: |
|
attn (`Attention`): Parent attention module |
|
hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens |
|
encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens |
|
attention_mask (`Optional[torch.Tensor]`): Optional attention mask |
|
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, torch.Tensor]`: |
|
(1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens |
|
(2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens |
|
""" |
|
image_seq_length = hidden_states.size(1) |
|
text_seq_length = encoder_hidden_states.size(1) |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
query, query_reference = query.chunk(2) |
|
key, key_reference = key.chunk(2) |
|
value, value_reference = value.chunk(2) |
|
batch_size = batch_size // 2 |
|
|
|
hidden_states, encoder_hidden_states = self.calculate_attention( |
|
query=query, |
|
key=torch.cat((key, key_reference), dim=1), |
|
value=torch.cat((value, value_reference), dim=1), |
|
attn=attn, |
|
batch_size=batch_size, |
|
image_seq_length=image_seq_length, |
|
text_seq_length=text_seq_length, |
|
attention_mask=attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention( |
|
query=query_reference, |
|
key=key_reference, |
|
value=value_reference, |
|
attn=attn, |
|
batch_size=batch_size, |
|
image_seq_length=image_seq_length, |
|
text_seq_length=text_seq_length, |
|
attention_mask=attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
return ( |
|
torch.cat((hidden_states, hidden_states_reference)), |
|
torch.cat((encoder_hidden_states, encoder_hidden_states_reference)), |
|
) |
|
|
|
|
|
class OverrideAttnProcessors: |
|
r""" |
|
Context manager for temporarily overriding attention processors in CogVideo transformer blocks. |
|
|
|
Designed for DDIM inversion process, replaces original attention processors with |
|
`CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager |
|
pattern to safely manage processor replacement. |
|
|
|
Typical usage: |
|
```python |
|
with OverrideAttnProcessors(transformer): |
|
# Perform DDIM inversion operations |
|
``` |
|
|
|
Args: |
|
transformer (`CogVideoXTransformer3DModel`): |
|
The transformer model containing attention blocks to be modified. Should have |
|
`transformer_blocks` attribute containing `CogVideoXBlock` instances. |
|
""" |
|
|
|
def __init__(self, transformer: CogVideoXTransformer3DModel): |
|
self.transformer = transformer |
|
self.original_processors = {} |
|
|
|
def __enter__(self): |
|
for block in self.transformer.transformer_blocks: |
|
block = cast(CogVideoXBlock, block) |
|
self.original_processors[id(block)] = block.attn1.get_processor() |
|
block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion()) |
|
|
|
def __exit__(self, _0, _1, _2): |
|
for block in self.transformer.transformer_blocks: |
|
block = cast(CogVideoXBlock, block) |
|
block.attn1.set_processor(self.original_processors[id(block)]) |
|
|
|
|
|
def get_video_frames( |
|
video_path: str, |
|
width: int, |
|
height: int, |
|
skip_frames_start: int, |
|
skip_frames_end: int, |
|
max_num_frames: int, |
|
frame_sample_step: Optional[int], |
|
) -> torch.FloatTensor: |
|
""" |
|
Extract and preprocess video frames from a video file for VAE processing. |
|
|
|
Args: |
|
video_path (`str`): Path to input video file |
|
width (`int`): Target frame width for decoding |
|
height (`int`): Target frame height for decoding |
|
skip_frames_start (`int`): Number of frames to skip at video start |
|
skip_frames_end (`int`): Number of frames to skip at video end |
|
max_num_frames (`int`): Maximum allowed number of output frames |
|
frame_sample_step (`Optional[int]`): |
|
Frame sampling step size. If None, automatically calculated as: |
|
(total_frames - skipped_frames) // max_num_frames |
|
|
|
Returns: |
|
`torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where: |
|
- `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility) |
|
- `C`: Channels (3 for RGB) |
|
- `H`: Frame height |
|
- `W`: Frame width |
|
""" |
|
with decord.bridge.use_torch(): |
|
video_reader = decord.VideoReader(uri=video_path, width=width, height=height) |
|
video_num_frames = len(video_reader) |
|
start_frame = min(skip_frames_start, video_num_frames) |
|
end_frame = max(0, video_num_frames - skip_frames_end) |
|
|
|
if end_frame <= start_frame: |
|
indices = [start_frame] |
|
elif end_frame - start_frame <= max_num_frames: |
|
indices = list(range(start_frame, end_frame)) |
|
else: |
|
step = frame_sample_step or (end_frame - start_frame) // max_num_frames |
|
indices = list(range(start_frame, end_frame, step)) |
|
|
|
frames = video_reader.get_batch(indices=indices) |
|
frames = frames[:max_num_frames].float() |
|
|
|
|
|
selected_num_frames = frames.size(0) |
|
remainder = (3 + selected_num_frames) % 4 |
|
if remainder != 0: |
|
frames = frames[:-remainder] |
|
assert frames.size(0) % 4 == 1 |
|
|
|
|
|
transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0) |
|
frames = torch.stack(tuple(map(transform, frames)), dim=0) |
|
|
|
return frames.permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
class CogVideoXDDIMInversionOutput: |
|
inverse_latents: torch.FloatTensor |
|
recon_latents: torch.FloatTensor |
|
|
|
def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor): |
|
self.inverse_latents = inverse_latents |
|
self.recon_latents = recon_latents |
|
|
|
|
|
class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline): |
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
vae: AutoencoderKLCogVideoX, |
|
transformer: CogVideoXTransformer3DModel, |
|
scheduler: CogVideoXDDIMScheduler, |
|
): |
|
super().__init__( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config) |
|
|
|
def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
Encode video frames into latent space using Variational Autoencoder. |
|
|
|
Args: |
|
video_frames (`torch.FloatTensor`): |
|
Input frames tensor in `[F, C, H, W]` format from `get_video_frames()` |
|
|
|
Returns: |
|
`torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where: |
|
- `F`: Number of frames (same as input) |
|
- `D`: Latent channel dimension |
|
- `H_latent`: Latent space height (H // 2^vae.downscale_factor) |
|
- `W_latent`: Latent space width (W // 2^vae.downscale_factor) |
|
""" |
|
vae: AutoencoderKLCogVideoX = self.vae |
|
video_frames = video_frames.to(device=vae.device, dtype=vae.dtype) |
|
video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) |
|
latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2) |
|
return latent_dist * vae.config.scaling_factor |
|
|
|
@torch.no_grad() |
|
def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int): |
|
r""" |
|
Decode latent vectors into video and export as video file. |
|
|
|
Args: |
|
latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from |
|
`encode_video_frames()` |
|
video_path (`str`): Output path for video file |
|
fps (`int`): Target frames per second for output video |
|
""" |
|
video = self.decode_latents(latents) |
|
frames = self.video_processor.postprocess_video(video=video, output_type="pil") |
|
os.makedirs(os.path.dirname(video_path), exist_ok=True) |
|
export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps) |
|
|
|
|
|
@torch.no_grad() |
|
def sample( |
|
self, |
|
latents: torch.FloatTensor, |
|
scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler], |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 6, |
|
use_dynamic_cfg: bool = False, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
reference_latents: torch.FloatTensor = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Execute the core sampling loop for video generation/inversion using CogVideoX. |
|
|
|
Implements the full denoising trajectory recording for both DDIM inversion and |
|
generation processes. Supports dynamic classifier-free guidance and reference |
|
latent conditioning. |
|
|
|
Args: |
|
latents (`torch.FloatTensor`): |
|
Initial noise tensor of shape `[B, F, C, H, W]`. |
|
scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`): |
|
Scheduling strategy for diffusion process. Use: |
|
(1) `DDIMInverseScheduler` for inversion |
|
(2) `CogVideoXDDIMScheduler` for generation |
|
prompt (`Optional[Union[str, List[str]]]`): |
|
Text prompt(s) for conditional generation. Defaults to unconditional. |
|
negative_prompt (`Optional[Union[str, List[str]]]`): |
|
Negative prompt(s) for guidance. Requires `guidance_scale > 1`. |
|
num_inference_steps (`int`): |
|
Number of denoising steps. Affects quality/compute trade-off. |
|
guidance_scale (`float`): |
|
Classifier-free guidance weight. 1.0 = no guidance. |
|
use_dynamic_cfg (`bool`): |
|
Enable time-varying guidance scale (cosine schedule) |
|
eta (`float`): |
|
DDIM variance parameter (0 = deterministic process) |
|
generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`): |
|
Random number generator(s) for reproducibility |
|
attention_kwargs (`Optional[Dict[str, Any]]`): |
|
Custom parameters for attention modules |
|
reference_latents (`torch.FloatTensor`): |
|
Reference latent trajectory for conditional sampling. Shape should match |
|
`[T, B, F, C, H, W]` where `T` is number of timesteps |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`. |
|
""" |
|
self._guidance_scale = guidance_scale |
|
self._attention_kwargs = attention_kwargs |
|
self._interrupt = False |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
negative_prompt, |
|
do_classifier_free_guidance, |
|
device=device, |
|
) |
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
if reference_latents is not None: |
|
prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latents = latents.to(device=device) * scheduler.init_noise_sigma |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
if isinstance(scheduler, DDIMInverseScheduler): |
|
extra_step_kwargs = {} |
|
|
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings( |
|
height=latents.size(3) * self.vae_scale_factor_spatial, |
|
width=latents.size(4) * self.vae_scale_factor_spatial, |
|
num_frames=latents.size(1), |
|
device=device, |
|
) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0) |
|
|
|
trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
if reference_latents is not None: |
|
reference = reference_latents[i] |
|
reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference |
|
latent_model_input = torch.cat([latent_model_input, reference], dim=0) |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
if reference_latents is not None: |
|
noise_pred, _ = noise_pred.chunk(2) |
|
|
|
|
|
if use_dynamic_cfg: |
|
self._guidance_scale = 1 + guidance_scale * ( |
|
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 |
|
) |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
latents = latents.to(prompt_embeds.dtype) |
|
trajectory[i] = latents |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return trajectory |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: str, |
|
video_path: str, |
|
guidance_scale: float, |
|
num_inference_steps: int, |
|
skip_frames_start: int, |
|
skip_frames_end: int, |
|
frame_sample_step: Optional[int], |
|
max_num_frames: int, |
|
width: int, |
|
height: int, |
|
seed: int, |
|
): |
|
""" |
|
Performs DDIM inversion on a video to reconstruct it with a new prompt. |
|
|
|
Args: |
|
prompt (`str`): The text prompt to guide the reconstruction. |
|
video_path (`str`): Path to the input video file. |
|
guidance_scale (`float`): Scale for classifier-free guidance. |
|
num_inference_steps (`int`): Number of denoising steps. |
|
skip_frames_start (`int`): Number of frames to skip from the beginning of the video. |
|
skip_frames_end (`int`): Number of frames to skip from the end of the video. |
|
frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used. |
|
max_num_frames (`int`): Maximum number of frames to process. |
|
width (`int`): Width of the output video frames. |
|
height (`int`): Height of the output video frames. |
|
seed (`int`): Random seed for reproducibility. |
|
|
|
Returns: |
|
`CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents. |
|
""" |
|
if not self.transformer.config.use_rotary_positional_embeddings: |
|
raise NotImplementedError("This script supports CogVideoX 5B model only.") |
|
video_frames = get_video_frames( |
|
video_path=video_path, |
|
width=width, |
|
height=height, |
|
skip_frames_start=skip_frames_start, |
|
skip_frames_end=skip_frames_end, |
|
max_num_frames=max_num_frames, |
|
frame_sample_step=frame_sample_step, |
|
).to(device=self.device) |
|
video_latents = self.encode_video_frames(video_frames=video_frames) |
|
inverse_latents = self.sample( |
|
latents=video_latents, |
|
scheduler=self.inverse_scheduler, |
|
prompt="", |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator(device=self.device).manual_seed(seed), |
|
) |
|
with OverrideAttnProcessors(transformer=self.transformer): |
|
recon_latents = self.sample( |
|
latents=torch.randn_like(video_latents), |
|
scheduler=self.scheduler, |
|
prompt=prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator(device=self.device).manual_seed(seed), |
|
reference_latents=reversed(inverse_latents), |
|
) |
|
return CogVideoXDDIMInversionOutput( |
|
inverse_latents=inverse_latents, |
|
recon_latents=recon_latents, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
arguments = get_args() |
|
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained( |
|
arguments.pop("model_path"), |
|
torch_dtype=arguments.pop("dtype"), |
|
).to(device=arguments.pop("device")) |
|
|
|
output_path = arguments.pop("output_path") |
|
fps = arguments.pop("fps") |
|
inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4") |
|
recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4") |
|
|
|
|
|
output = pipeline(**arguments) |
|
pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps) |
|
pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps) |
|
|