Upload folder using huggingface_hub
Browse files- main/README.md +37 -0
- main/cogvideox_ddim_inversion.py +645 -0
main/README.md
CHANGED
@@ -83,6 +83,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
|
|
83 |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [](https://huggingface.co/spaces/pcuenq/mdm) [](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
|
84 |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
|
85 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
|
|
86 |
|
87 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
88 |
|
@@ -5222,3 +5223,39 @@ with torch.no_grad():
|
|
5222 |
|
5223 |
In the folder examples/pixart there is also a script that can be used to train new models.
|
5224 |
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [](https://huggingface.co/spaces/pcuenq/mdm) [](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
|
84 |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
|
85 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
86 |
+
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
|
87 |
|
88 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
89 |
|
|
|
5223 |
|
5224 |
In the folder examples/pixart there is also a script that can be used to train new models.
|
5225 |
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
|
5226 |
+
|
5227 |
+
# CogVideoX DDIM Inversion Pipeline
|
5228 |
+
|
5229 |
+
This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.
|
5230 |
+
|
5231 |
+
## Example Usage
|
5232 |
+
|
5233 |
+
```python
|
5234 |
+
import torch
|
5235 |
+
|
5236 |
+
from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion
|
5237 |
+
|
5238 |
+
|
5239 |
+
# Load pretrained pipeline
|
5240 |
+
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
|
5241 |
+
"THUDM/CogVideoX1.5-5B",
|
5242 |
+
torch_dtype=torch.bfloat16,
|
5243 |
+
).to("cuda")
|
5244 |
+
|
5245 |
+
# Run DDIM inversion, and the videos will be generated in the output_path
|
5246 |
+
output = pipeline_for_inversion(
|
5247 |
+
prompt="prompt that describes the edited video",
|
5248 |
+
video_path="path/to/input.mp4",
|
5249 |
+
guidance_scale=6.0,
|
5250 |
+
num_inference_steps=50,
|
5251 |
+
skip_frames_start=0,
|
5252 |
+
skip_frames_end=0,
|
5253 |
+
frame_sample_step=None,
|
5254 |
+
max_num_frames=81,
|
5255 |
+
width=720,
|
5256 |
+
height=480,
|
5257 |
+
seed=42,
|
5258 |
+
)
|
5259 |
+
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
|
5260 |
+
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
|
5261 |
+
```
|
main/cogvideox_ddim_inversion.py
ADDED
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This script performs DDIM inversion for video frames using a pre-trained model and generates
|
3 |
+
a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to
|
4 |
+
process video frames, apply the DDIM inverse scheduler, and produce an output video.
|
5 |
+
|
6 |
+
**Please notice that this script is based on the CogVideoX 5B model, and would not generate
|
7 |
+
a good result for 2B variants.**
|
8 |
+
|
9 |
+
Usage:
|
10 |
+
python cogvideox_ddim_inversion.py
|
11 |
+
--model-path /path/to/model
|
12 |
+
--prompt "a prompt"
|
13 |
+
--video-path /path/to/video.mp4
|
14 |
+
--output-path /path/to/output
|
15 |
+
|
16 |
+
For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`.
|
17 |
+
|
18 |
+
Author:
|
19 |
+
LittleNyima <littlenyima[at]163[dot]com>
|
20 |
+
"""
|
21 |
+
|
22 |
+
import argparse
|
23 |
+
import math
|
24 |
+
import os
|
25 |
+
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torchvision.transforms as T
|
30 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
31 |
+
|
32 |
+
from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0
|
33 |
+
from diffusers.models.autoencoders import AutoencoderKLCogVideoX
|
34 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
35 |
+
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel
|
36 |
+
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps
|
37 |
+
from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler
|
38 |
+
from diffusers.utils import export_to_video
|
39 |
+
|
40 |
+
|
41 |
+
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error.
|
42 |
+
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
43 |
+
import decord # isort: skip
|
44 |
+
|
45 |
+
|
46 |
+
class DDIMInversionArguments(TypedDict):
|
47 |
+
model_path: str
|
48 |
+
prompt: str
|
49 |
+
video_path: str
|
50 |
+
output_path: str
|
51 |
+
guidance_scale: float
|
52 |
+
num_inference_steps: int
|
53 |
+
skip_frames_start: int
|
54 |
+
skip_frames_end: int
|
55 |
+
frame_sample_step: Optional[int]
|
56 |
+
max_num_frames: int
|
57 |
+
width: int
|
58 |
+
height: int
|
59 |
+
fps: int
|
60 |
+
dtype: torch.dtype
|
61 |
+
seed: int
|
62 |
+
device: torch.device
|
63 |
+
|
64 |
+
|
65 |
+
def get_args() -> DDIMInversionArguments:
|
66 |
+
parser = argparse.ArgumentParser()
|
67 |
+
|
68 |
+
parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model")
|
69 |
+
parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure")
|
70 |
+
parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion")
|
71 |
+
parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos")
|
72 |
+
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale")
|
73 |
+
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
|
74 |
+
parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start")
|
75 |
+
parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end")
|
76 |
+
parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames")
|
77 |
+
parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames")
|
78 |
+
parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames")
|
79 |
+
parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames")
|
80 |
+
parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos")
|
81 |
+
parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model")
|
82 |
+
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator")
|
83 |
+
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference")
|
84 |
+
|
85 |
+
args = parser.parse_args()
|
86 |
+
args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16
|
87 |
+
args.device = torch.device(args.device)
|
88 |
+
|
89 |
+
return DDIMInversionArguments(**vars(args))
|
90 |
+
|
91 |
+
|
92 |
+
class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0):
|
93 |
+
def __init__(self):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
def calculate_attention(
|
97 |
+
self,
|
98 |
+
query: torch.Tensor,
|
99 |
+
key: torch.Tensor,
|
100 |
+
value: torch.Tensor,
|
101 |
+
attn: Attention,
|
102 |
+
batch_size: int,
|
103 |
+
image_seq_length: int,
|
104 |
+
text_seq_length: int,
|
105 |
+
attention_mask: Optional[torch.Tensor],
|
106 |
+
image_rotary_emb: Optional[torch.Tensor],
|
107 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
108 |
+
r"""
|
109 |
+
Core attention computation with inversion-guided RoPE integration.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor
|
113 |
+
key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor
|
114 |
+
value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor
|
115 |
+
attn (`Attention`): Parent attention module with projection layers
|
116 |
+
batch_size (`int`): Effective batch size (after chunk splitting)
|
117 |
+
image_seq_length (`int`): Length of image feature sequence
|
118 |
+
text_seq_length (`int`): Length of text feature sequence
|
119 |
+
attention_mask (`Optional[torch.Tensor]`): Attention mask tensor
|
120 |
+
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
`Tuple[torch.Tensor, torch.Tensor]`:
|
124 |
+
(1) hidden_states: [batch_size, image_seq_length, dim] processed image features
|
125 |
+
(2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features
|
126 |
+
"""
|
127 |
+
inner_dim = key.shape[-1]
|
128 |
+
head_dim = inner_dim // attn.heads
|
129 |
+
|
130 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
131 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
132 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
133 |
+
|
134 |
+
if attn.norm_q is not None:
|
135 |
+
query = attn.norm_q(query)
|
136 |
+
if attn.norm_k is not None:
|
137 |
+
key = attn.norm_k(key)
|
138 |
+
|
139 |
+
# Apply RoPE if needed
|
140 |
+
if image_rotary_emb is not None:
|
141 |
+
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
142 |
+
if not attn.is_cross_attention:
|
143 |
+
if key.size(2) == query.size(2): # Attention for reference hidden states
|
144 |
+
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
145 |
+
else: # RoPE should be applied to each group of image tokens
|
146 |
+
key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb(
|
147 |
+
key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb
|
148 |
+
)
|
149 |
+
key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb(
|
150 |
+
key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb
|
151 |
+
)
|
152 |
+
|
153 |
+
hidden_states = F.scaled_dot_product_attention(
|
154 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
155 |
+
)
|
156 |
+
|
157 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
158 |
+
|
159 |
+
# linear proj
|
160 |
+
hidden_states = attn.to_out[0](hidden_states)
|
161 |
+
# dropout
|
162 |
+
hidden_states = attn.to_out[1](hidden_states)
|
163 |
+
|
164 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
165 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
166 |
+
)
|
167 |
+
return hidden_states, encoder_hidden_states
|
168 |
+
|
169 |
+
def __call__(
|
170 |
+
self,
|
171 |
+
attn: Attention,
|
172 |
+
hidden_states: torch.Tensor,
|
173 |
+
encoder_hidden_states: torch.Tensor,
|
174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
175 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
176 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
177 |
+
r"""
|
178 |
+
Process the dual-path attention for the inversion-guided denoising procedure.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
attn (`Attention`): Parent attention module
|
182 |
+
hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens
|
183 |
+
encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens
|
184 |
+
attention_mask (`Optional[torch.Tensor]`): Optional attention mask
|
185 |
+
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
`Tuple[torch.Tensor, torch.Tensor]`:
|
189 |
+
(1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens
|
190 |
+
(2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens
|
191 |
+
"""
|
192 |
+
image_seq_length = hidden_states.size(1)
|
193 |
+
text_seq_length = encoder_hidden_states.size(1)
|
194 |
+
|
195 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
196 |
+
|
197 |
+
batch_size, sequence_length, _ = (
|
198 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
199 |
+
)
|
200 |
+
|
201 |
+
if attention_mask is not None:
|
202 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
203 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
204 |
+
|
205 |
+
query = attn.to_q(hidden_states)
|
206 |
+
key = attn.to_k(hidden_states)
|
207 |
+
value = attn.to_v(hidden_states)
|
208 |
+
|
209 |
+
query, query_reference = query.chunk(2)
|
210 |
+
key, key_reference = key.chunk(2)
|
211 |
+
value, value_reference = value.chunk(2)
|
212 |
+
batch_size = batch_size // 2
|
213 |
+
|
214 |
+
hidden_states, encoder_hidden_states = self.calculate_attention(
|
215 |
+
query=query,
|
216 |
+
key=torch.cat((key, key_reference), dim=1),
|
217 |
+
value=torch.cat((value, value_reference), dim=1),
|
218 |
+
attn=attn,
|
219 |
+
batch_size=batch_size,
|
220 |
+
image_seq_length=image_seq_length,
|
221 |
+
text_seq_length=text_seq_length,
|
222 |
+
attention_mask=attention_mask,
|
223 |
+
image_rotary_emb=image_rotary_emb,
|
224 |
+
)
|
225 |
+
hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention(
|
226 |
+
query=query_reference,
|
227 |
+
key=key_reference,
|
228 |
+
value=value_reference,
|
229 |
+
attn=attn,
|
230 |
+
batch_size=batch_size,
|
231 |
+
image_seq_length=image_seq_length,
|
232 |
+
text_seq_length=text_seq_length,
|
233 |
+
attention_mask=attention_mask,
|
234 |
+
image_rotary_emb=image_rotary_emb,
|
235 |
+
)
|
236 |
+
|
237 |
+
return (
|
238 |
+
torch.cat((hidden_states, hidden_states_reference)),
|
239 |
+
torch.cat((encoder_hidden_states, encoder_hidden_states_reference)),
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
class OverrideAttnProcessors:
|
244 |
+
r"""
|
245 |
+
Context manager for temporarily overriding attention processors in CogVideo transformer blocks.
|
246 |
+
|
247 |
+
Designed for DDIM inversion process, replaces original attention processors with
|
248 |
+
`CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager
|
249 |
+
pattern to safely manage processor replacement.
|
250 |
+
|
251 |
+
Typical usage:
|
252 |
+
```python
|
253 |
+
with OverrideAttnProcessors(transformer):
|
254 |
+
# Perform DDIM inversion operations
|
255 |
+
```
|
256 |
+
|
257 |
+
Args:
|
258 |
+
transformer (`CogVideoXTransformer3DModel`):
|
259 |
+
The transformer model containing attention blocks to be modified. Should have
|
260 |
+
`transformer_blocks` attribute containing `CogVideoXBlock` instances.
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(self, transformer: CogVideoXTransformer3DModel):
|
264 |
+
self.transformer = transformer
|
265 |
+
self.original_processors = {}
|
266 |
+
|
267 |
+
def __enter__(self):
|
268 |
+
for block in self.transformer.transformer_blocks:
|
269 |
+
block = cast(CogVideoXBlock, block)
|
270 |
+
self.original_processors[id(block)] = block.attn1.get_processor()
|
271 |
+
block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion())
|
272 |
+
|
273 |
+
def __exit__(self, _0, _1, _2):
|
274 |
+
for block in self.transformer.transformer_blocks:
|
275 |
+
block = cast(CogVideoXBlock, block)
|
276 |
+
block.attn1.set_processor(self.original_processors[id(block)])
|
277 |
+
|
278 |
+
|
279 |
+
def get_video_frames(
|
280 |
+
video_path: str,
|
281 |
+
width: int,
|
282 |
+
height: int,
|
283 |
+
skip_frames_start: int,
|
284 |
+
skip_frames_end: int,
|
285 |
+
max_num_frames: int,
|
286 |
+
frame_sample_step: Optional[int],
|
287 |
+
) -> torch.FloatTensor:
|
288 |
+
"""
|
289 |
+
Extract and preprocess video frames from a video file for VAE processing.
|
290 |
+
|
291 |
+
Args:
|
292 |
+
video_path (`str`): Path to input video file
|
293 |
+
width (`int`): Target frame width for decoding
|
294 |
+
height (`int`): Target frame height for decoding
|
295 |
+
skip_frames_start (`int`): Number of frames to skip at video start
|
296 |
+
skip_frames_end (`int`): Number of frames to skip at video end
|
297 |
+
max_num_frames (`int`): Maximum allowed number of output frames
|
298 |
+
frame_sample_step (`Optional[int]`):
|
299 |
+
Frame sampling step size. If None, automatically calculated as:
|
300 |
+
(total_frames - skipped_frames) // max_num_frames
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
`torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where:
|
304 |
+
- `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility)
|
305 |
+
- `C`: Channels (3 for RGB)
|
306 |
+
- `H`: Frame height
|
307 |
+
- `W`: Frame width
|
308 |
+
"""
|
309 |
+
with decord.bridge.use_torch():
|
310 |
+
video_reader = decord.VideoReader(uri=video_path, width=width, height=height)
|
311 |
+
video_num_frames = len(video_reader)
|
312 |
+
start_frame = min(skip_frames_start, video_num_frames)
|
313 |
+
end_frame = max(0, video_num_frames - skip_frames_end)
|
314 |
+
|
315 |
+
if end_frame <= start_frame:
|
316 |
+
indices = [start_frame]
|
317 |
+
elif end_frame - start_frame <= max_num_frames:
|
318 |
+
indices = list(range(start_frame, end_frame))
|
319 |
+
else:
|
320 |
+
step = frame_sample_step or (end_frame - start_frame) // max_num_frames
|
321 |
+
indices = list(range(start_frame, end_frame, step))
|
322 |
+
|
323 |
+
frames = video_reader.get_batch(indices=indices)
|
324 |
+
frames = frames[:max_num_frames].float() # ensure that we don't go over the limit
|
325 |
+
|
326 |
+
# Choose first (4k + 1) frames as this is how many is required by the VAE
|
327 |
+
selected_num_frames = frames.size(0)
|
328 |
+
remainder = (3 + selected_num_frames) % 4
|
329 |
+
if remainder != 0:
|
330 |
+
frames = frames[:-remainder]
|
331 |
+
assert frames.size(0) % 4 == 1
|
332 |
+
|
333 |
+
# Normalize the frames
|
334 |
+
transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
|
335 |
+
frames = torch.stack(tuple(map(transform, frames)), dim=0)
|
336 |
+
|
337 |
+
return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W]
|
338 |
+
|
339 |
+
|
340 |
+
class CogVideoXDDIMInversionOutput:
|
341 |
+
inverse_latents: torch.FloatTensor
|
342 |
+
recon_latents: torch.FloatTensor
|
343 |
+
|
344 |
+
def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor):
|
345 |
+
self.inverse_latents = inverse_latents
|
346 |
+
self.recon_latents = recon_latents
|
347 |
+
|
348 |
+
|
349 |
+
class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline):
|
350 |
+
def __init__(
|
351 |
+
self,
|
352 |
+
tokenizer: T5Tokenizer,
|
353 |
+
text_encoder: T5EncoderModel,
|
354 |
+
vae: AutoencoderKLCogVideoX,
|
355 |
+
transformer: CogVideoXTransformer3DModel,
|
356 |
+
scheduler: CogVideoXDDIMScheduler,
|
357 |
+
):
|
358 |
+
super().__init__(
|
359 |
+
tokenizer=tokenizer,
|
360 |
+
text_encoder=text_encoder,
|
361 |
+
vae=vae,
|
362 |
+
transformer=transformer,
|
363 |
+
scheduler=scheduler,
|
364 |
+
)
|
365 |
+
self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config)
|
366 |
+
|
367 |
+
def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor:
|
368 |
+
"""
|
369 |
+
Encode video frames into latent space using Variational Autoencoder.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
video_frames (`torch.FloatTensor`):
|
373 |
+
Input frames tensor in `[F, C, H, W]` format from `get_video_frames()`
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
`torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where:
|
377 |
+
- `F`: Number of frames (same as input)
|
378 |
+
- `D`: Latent channel dimension
|
379 |
+
- `H_latent`: Latent space height (H // 2^vae.downscale_factor)
|
380 |
+
- `W_latent`: Latent space width (W // 2^vae.downscale_factor)
|
381 |
+
"""
|
382 |
+
vae: AutoencoderKLCogVideoX = self.vae
|
383 |
+
video_frames = video_frames.to(device=vae.device, dtype=vae.dtype)
|
384 |
+
video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
|
385 |
+
latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2)
|
386 |
+
return latent_dist * vae.config.scaling_factor
|
387 |
+
|
388 |
+
@torch.no_grad()
|
389 |
+
def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int):
|
390 |
+
r"""
|
391 |
+
Decode latent vectors into video and export as video file.
|
392 |
+
|
393 |
+
Args:
|
394 |
+
latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from
|
395 |
+
`encode_video_frames()`
|
396 |
+
video_path (`str`): Output path for video file
|
397 |
+
fps (`int`): Target frames per second for output video
|
398 |
+
"""
|
399 |
+
video = self.decode_latents(latents)
|
400 |
+
frames = self.video_processor.postprocess_video(video=video, output_type="pil")
|
401 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
402 |
+
export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps)
|
403 |
+
|
404 |
+
# Modified from CogVideoXPipeline.__call__
|
405 |
+
@torch.no_grad()
|
406 |
+
def sample(
|
407 |
+
self,
|
408 |
+
latents: torch.FloatTensor,
|
409 |
+
scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler],
|
410 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
411 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
412 |
+
num_inference_steps: int = 50,
|
413 |
+
guidance_scale: float = 6,
|
414 |
+
use_dynamic_cfg: bool = False,
|
415 |
+
eta: float = 0.0,
|
416 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
417 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
418 |
+
reference_latents: torch.FloatTensor = None,
|
419 |
+
) -> torch.FloatTensor:
|
420 |
+
r"""
|
421 |
+
Execute the core sampling loop for video generation/inversion using CogVideoX.
|
422 |
+
|
423 |
+
Implements the full denoising trajectory recording for both DDIM inversion and
|
424 |
+
generation processes. Supports dynamic classifier-free guidance and reference
|
425 |
+
latent conditioning.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
latents (`torch.FloatTensor`):
|
429 |
+
Initial noise tensor of shape `[B, F, C, H, W]`.
|
430 |
+
scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`):
|
431 |
+
Scheduling strategy for diffusion process. Use:
|
432 |
+
(1) `DDIMInverseScheduler` for inversion
|
433 |
+
(2) `CogVideoXDDIMScheduler` for generation
|
434 |
+
prompt (`Optional[Union[str, List[str]]]`):
|
435 |
+
Text prompt(s) for conditional generation. Defaults to unconditional.
|
436 |
+
negative_prompt (`Optional[Union[str, List[str]]]`):
|
437 |
+
Negative prompt(s) for guidance. Requires `guidance_scale > 1`.
|
438 |
+
num_inference_steps (`int`):
|
439 |
+
Number of denoising steps. Affects quality/compute trade-off.
|
440 |
+
guidance_scale (`float`):
|
441 |
+
Classifier-free guidance weight. 1.0 = no guidance.
|
442 |
+
use_dynamic_cfg (`bool`):
|
443 |
+
Enable time-varying guidance scale (cosine schedule)
|
444 |
+
eta (`float`):
|
445 |
+
DDIM variance parameter (0 = deterministic process)
|
446 |
+
generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`):
|
447 |
+
Random number generator(s) for reproducibility
|
448 |
+
attention_kwargs (`Optional[Dict[str, Any]]`):
|
449 |
+
Custom parameters for attention modules
|
450 |
+
reference_latents (`torch.FloatTensor`):
|
451 |
+
Reference latent trajectory for conditional sampling. Shape should match
|
452 |
+
`[T, B, F, C, H, W]` where `T` is number of timesteps
|
453 |
+
|
454 |
+
Returns:
|
455 |
+
`torch.FloatTensor`:
|
456 |
+
Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`.
|
457 |
+
"""
|
458 |
+
self._guidance_scale = guidance_scale
|
459 |
+
self._attention_kwargs = attention_kwargs
|
460 |
+
self._interrupt = False
|
461 |
+
|
462 |
+
device = self._execution_device
|
463 |
+
|
464 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
465 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
466 |
+
# corresponds to doing no classifier free guidance.
|
467 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
468 |
+
|
469 |
+
# 3. Encode input prompt
|
470 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
471 |
+
prompt,
|
472 |
+
negative_prompt,
|
473 |
+
do_classifier_free_guidance,
|
474 |
+
device=device,
|
475 |
+
)
|
476 |
+
if do_classifier_free_guidance:
|
477 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
478 |
+
if reference_latents is not None:
|
479 |
+
prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0)
|
480 |
+
|
481 |
+
# 4. Prepare timesteps
|
482 |
+
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device)
|
483 |
+
self._num_timesteps = len(timesteps)
|
484 |
+
|
485 |
+
# 5. Prepare latents.
|
486 |
+
latents = latents.to(device=device) * scheduler.init_noise_sigma
|
487 |
+
|
488 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
489 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
490 |
+
if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs
|
491 |
+
extra_step_kwargs = {}
|
492 |
+
|
493 |
+
# 7. Create rotary embeds if required
|
494 |
+
image_rotary_emb = (
|
495 |
+
self._prepare_rotary_positional_embeddings(
|
496 |
+
height=latents.size(3) * self.vae_scale_factor_spatial,
|
497 |
+
width=latents.size(4) * self.vae_scale_factor_spatial,
|
498 |
+
num_frames=latents.size(1),
|
499 |
+
device=device,
|
500 |
+
)
|
501 |
+
if self.transformer.config.use_rotary_positional_embeddings
|
502 |
+
else None
|
503 |
+
)
|
504 |
+
|
505 |
+
# 8. Denoising loop
|
506 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0)
|
507 |
+
|
508 |
+
trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1)
|
509 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
510 |
+
for i, t in enumerate(timesteps):
|
511 |
+
if self.interrupt:
|
512 |
+
continue
|
513 |
+
|
514 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
515 |
+
if reference_latents is not None:
|
516 |
+
reference = reference_latents[i]
|
517 |
+
reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference
|
518 |
+
latent_model_input = torch.cat([latent_model_input, reference], dim=0)
|
519 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
520 |
+
|
521 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
522 |
+
timestep = t.expand(latent_model_input.shape[0])
|
523 |
+
|
524 |
+
# predict noise model_output
|
525 |
+
noise_pred = self.transformer(
|
526 |
+
hidden_states=latent_model_input,
|
527 |
+
encoder_hidden_states=prompt_embeds,
|
528 |
+
timestep=timestep,
|
529 |
+
image_rotary_emb=image_rotary_emb,
|
530 |
+
attention_kwargs=attention_kwargs,
|
531 |
+
return_dict=False,
|
532 |
+
)[0]
|
533 |
+
noise_pred = noise_pred.float()
|
534 |
+
|
535 |
+
if reference_latents is not None: # Recover the original batch size
|
536 |
+
noise_pred, _ = noise_pred.chunk(2)
|
537 |
+
|
538 |
+
# perform guidance
|
539 |
+
if use_dynamic_cfg:
|
540 |
+
self._guidance_scale = 1 + guidance_scale * (
|
541 |
+
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
542 |
+
)
|
543 |
+
if do_classifier_free_guidance:
|
544 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
545 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
546 |
+
|
547 |
+
# compute the noisy sample x_t-1 -> x_t
|
548 |
+
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
549 |
+
latents = latents.to(prompt_embeds.dtype)
|
550 |
+
trajectory[i] = latents
|
551 |
+
|
552 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
|
553 |
+
progress_bar.update()
|
554 |
+
|
555 |
+
# Offload all models
|
556 |
+
self.maybe_free_model_hooks()
|
557 |
+
|
558 |
+
return trajectory
|
559 |
+
|
560 |
+
@torch.no_grad()
|
561 |
+
def __call__(
|
562 |
+
self,
|
563 |
+
prompt: str,
|
564 |
+
video_path: str,
|
565 |
+
guidance_scale: float,
|
566 |
+
num_inference_steps: int,
|
567 |
+
skip_frames_start: int,
|
568 |
+
skip_frames_end: int,
|
569 |
+
frame_sample_step: Optional[int],
|
570 |
+
max_num_frames: int,
|
571 |
+
width: int,
|
572 |
+
height: int,
|
573 |
+
seed: int,
|
574 |
+
):
|
575 |
+
"""
|
576 |
+
Performs DDIM inversion on a video to reconstruct it with a new prompt.
|
577 |
+
|
578 |
+
Args:
|
579 |
+
prompt (`str`): The text prompt to guide the reconstruction.
|
580 |
+
video_path (`str`): Path to the input video file.
|
581 |
+
guidance_scale (`float`): Scale for classifier-free guidance.
|
582 |
+
num_inference_steps (`int`): Number of denoising steps.
|
583 |
+
skip_frames_start (`int`): Number of frames to skip from the beginning of the video.
|
584 |
+
skip_frames_end (`int`): Number of frames to skip from the end of the video.
|
585 |
+
frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used.
|
586 |
+
max_num_frames (`int`): Maximum number of frames to process.
|
587 |
+
width (`int`): Width of the output video frames.
|
588 |
+
height (`int`): Height of the output video frames.
|
589 |
+
seed (`int`): Random seed for reproducibility.
|
590 |
+
|
591 |
+
Returns:
|
592 |
+
`CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents.
|
593 |
+
"""
|
594 |
+
if not self.transformer.config.use_rotary_positional_embeddings:
|
595 |
+
raise NotImplementedError("This script supports CogVideoX 5B model only.")
|
596 |
+
video_frames = get_video_frames(
|
597 |
+
video_path=video_path,
|
598 |
+
width=width,
|
599 |
+
height=height,
|
600 |
+
skip_frames_start=skip_frames_start,
|
601 |
+
skip_frames_end=skip_frames_end,
|
602 |
+
max_num_frames=max_num_frames,
|
603 |
+
frame_sample_step=frame_sample_step,
|
604 |
+
).to(device=self.device)
|
605 |
+
video_latents = self.encode_video_frames(video_frames=video_frames)
|
606 |
+
inverse_latents = self.sample(
|
607 |
+
latents=video_latents,
|
608 |
+
scheduler=self.inverse_scheduler,
|
609 |
+
prompt="",
|
610 |
+
num_inference_steps=num_inference_steps,
|
611 |
+
guidance_scale=guidance_scale,
|
612 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
613 |
+
)
|
614 |
+
with OverrideAttnProcessors(transformer=self.transformer):
|
615 |
+
recon_latents = self.sample(
|
616 |
+
latents=torch.randn_like(video_latents),
|
617 |
+
scheduler=self.scheduler,
|
618 |
+
prompt=prompt,
|
619 |
+
num_inference_steps=num_inference_steps,
|
620 |
+
guidance_scale=guidance_scale,
|
621 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
622 |
+
reference_latents=reversed(inverse_latents),
|
623 |
+
)
|
624 |
+
return CogVideoXDDIMInversionOutput(
|
625 |
+
inverse_latents=inverse_latents,
|
626 |
+
recon_latents=recon_latents,
|
627 |
+
)
|
628 |
+
|
629 |
+
|
630 |
+
if __name__ == "__main__":
|
631 |
+
arguments = get_args()
|
632 |
+
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
|
633 |
+
arguments.pop("model_path"),
|
634 |
+
torch_dtype=arguments.pop("dtype"),
|
635 |
+
).to(device=arguments.pop("device"))
|
636 |
+
|
637 |
+
output_path = arguments.pop("output_path")
|
638 |
+
fps = arguments.pop("fps")
|
639 |
+
inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4")
|
640 |
+
recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4")
|
641 |
+
|
642 |
+
# Run DDIM inversion
|
643 |
+
output = pipeline(**arguments)
|
644 |
+
pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps)
|
645 |
+
pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps)
|