Upload folder using huggingface_hub
Browse files- main/README.md +98 -0
- main/mod_controlnet_tile_sr_sdxl.py +1862 -0
main/README.md
CHANGED
@@ -53,6 +53,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
|
|
53 |
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
54 |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
55 |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
|
|
|
56 |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
|
57 |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
58 |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
@@ -2630,6 +2631,103 @@ image = pipe(
|
|
2630 |
|
2631 |

|
2632 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2633 |
### TensorRT Inpainting Stable Diffusion Pipeline
|
2634 |
|
2635 |
The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
|
|
|
53 |
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
54 |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
|
55 |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
|
56 |
+
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
|
57 |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
|
58 |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
59 |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
|
|
|
2631 |
|
2632 |

|
2633 |
|
2634 |
+
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL
|
2635 |
+
|
2636 |
+
This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.
|
2637 |
+
|
2638 |
+
This works better with 4x scales, but you can try adjusts parameters to higher scales.
|
2639 |
+
|
2640 |
+
````python
|
2641 |
+
import torch
|
2642 |
+
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
|
2643 |
+
from diffusers.utils import load_image
|
2644 |
+
from PIL import Image
|
2645 |
+
|
2646 |
+
device = "cuda"
|
2647 |
+
|
2648 |
+
# Initialize the models and pipeline
|
2649 |
+
controlnet = ControlNetUnionModel.from_pretrained(
|
2650 |
+
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
|
2651 |
+
).to(device=device)
|
2652 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
|
2653 |
+
|
2654 |
+
model_id = "SG161222/RealVisXL_V5.0"
|
2655 |
+
pipe = DiffusionPipeline.from_pretrained(
|
2656 |
+
model_id,
|
2657 |
+
torch_dtype=torch.float16,
|
2658 |
+
vae=vae,
|
2659 |
+
controlnet=controlnet,
|
2660 |
+
custom_pipeline="mod_controlnet_tile_sr_sdxl",
|
2661 |
+
use_safetensors=True,
|
2662 |
+
variant="fp16",
|
2663 |
+
).to(device)
|
2664 |
+
|
2665 |
+
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
|
2666 |
+
|
2667 |
+
#pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
|
2668 |
+
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
|
2669 |
+
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
|
2670 |
+
|
2671 |
+
# Set selected scheduler
|
2672 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
2673 |
+
|
2674 |
+
# Load image
|
2675 |
+
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
|
2676 |
+
original_height = control_image.height
|
2677 |
+
original_width = control_image.width
|
2678 |
+
print(f"Current resolution: H:{original_height} x W:{original_width}")
|
2679 |
+
|
2680 |
+
# Pre-upscale image for tiling
|
2681 |
+
resolution = 4096
|
2682 |
+
tile_gaussian_sigma = 0.3
|
2683 |
+
max_tile_size = 1024 # or 1280
|
2684 |
+
|
2685 |
+
current_size = max(control_image.size)
|
2686 |
+
scale_factor = max(2, resolution / current_size)
|
2687 |
+
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
|
2688 |
+
image = control_image.resize(new_size, Image.LANCZOS)
|
2689 |
+
|
2690 |
+
# Update target height and width
|
2691 |
+
target_height = image.height
|
2692 |
+
target_width = image.width
|
2693 |
+
print(f"Target resolution: H:{target_height} x W:{target_width}")
|
2694 |
+
|
2695 |
+
# Calculate overlap size
|
2696 |
+
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)
|
2697 |
+
|
2698 |
+
# Set other params
|
2699 |
+
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
|
2700 |
+
guidance_scale = 4
|
2701 |
+
num_inference_steps = 35
|
2702 |
+
denoising_strenght = 0.65
|
2703 |
+
controlnet_strength = 1.0
|
2704 |
+
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
|
2705 |
+
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"
|
2706 |
+
|
2707 |
+
# Image generation
|
2708 |
+
generated_image = pipe(
|
2709 |
+
image=image,
|
2710 |
+
control_image=control_image,
|
2711 |
+
control_mode=[6],
|
2712 |
+
controlnet_conditioning_scale=float(controlnet_strength),
|
2713 |
+
prompt=prompt,
|
2714 |
+
negative_prompt=negative_prompt,
|
2715 |
+
normal_tile_overlap=normal_tile_overlap,
|
2716 |
+
border_tile_overlap=border_tile_overlap,
|
2717 |
+
height=target_height,
|
2718 |
+
width=target_width,
|
2719 |
+
original_size=(original_width, original_height),
|
2720 |
+
target_size=(target_width, target_height),
|
2721 |
+
guidance_scale=guidance_scale,
|
2722 |
+
strength=float(denoising_strenght),
|
2723 |
+
tile_weighting_method=tile_weighting_method,
|
2724 |
+
max_tile_size=max_tile_size,
|
2725 |
+
tile_gaussian_sigma=float(tile_gaussian_sigma),
|
2726 |
+
num_inference_steps=num_inference_steps,
|
2727 |
+
)["images"][0]
|
2728 |
+
````
|
2729 |
+

|
2730 |
+
|
2731 |
### TensorRT Inpainting Stable Diffusion Pipeline
|
2732 |
|
2733 |
The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
|
main/mod_controlnet_tile_sr_sdxl.py
ADDED
@@ -0,0 +1,1862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from enum import Enum
|
17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from PIL import Image
|
23 |
+
from transformers import (
|
24 |
+
CLIPTextModel,
|
25 |
+
CLIPTextModelWithProjection,
|
26 |
+
CLIPTokenizer,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
30 |
+
from diffusers.loaders import (
|
31 |
+
FromSingleFileMixin,
|
32 |
+
StableDiffusionXLLoraLoaderMixin,
|
33 |
+
TextualInversionLoaderMixin,
|
34 |
+
)
|
35 |
+
from diffusers.models import (
|
36 |
+
AutoencoderKL,
|
37 |
+
ControlNetModel,
|
38 |
+
ControlNetUnionModel,
|
39 |
+
MultiControlNetModel,
|
40 |
+
UNet2DConditionModel,
|
41 |
+
)
|
42 |
+
from diffusers.models.attention_processor import (
|
43 |
+
AttnProcessor2_0,
|
44 |
+
XFormersAttnProcessor,
|
45 |
+
)
|
46 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
47 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
48 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
49 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
50 |
+
from diffusers.utils import (
|
51 |
+
USE_PEFT_BACKEND,
|
52 |
+
logging,
|
53 |
+
replace_example_docstring,
|
54 |
+
scale_lora_layers,
|
55 |
+
unscale_lora_layers,
|
56 |
+
)
|
57 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
58 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
59 |
+
|
60 |
+
|
61 |
+
if is_invisible_watermark_available():
|
62 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
63 |
+
|
64 |
+
from diffusers.utils import is_torch_xla_available
|
65 |
+
|
66 |
+
|
67 |
+
if is_torch_xla_available():
|
68 |
+
import torch_xla.core.xla_model as xm
|
69 |
+
|
70 |
+
XLA_AVAILABLE = True
|
71 |
+
else:
|
72 |
+
XLA_AVAILABLE = False
|
73 |
+
|
74 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
75 |
+
|
76 |
+
|
77 |
+
EXAMPLE_DOC_STRING = """
|
78 |
+
Examples:
|
79 |
+
```py
|
80 |
+
import torch
|
81 |
+
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler
|
82 |
+
from diffusers.utils import load_image
|
83 |
+
from PIL import Image
|
84 |
+
|
85 |
+
device = "cuda"
|
86 |
+
|
87 |
+
# Initialize the models and pipeline
|
88 |
+
controlnet = ControlNetUnionModel.from_pretrained(
|
89 |
+
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
|
90 |
+
).to(device=device)
|
91 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
|
92 |
+
|
93 |
+
model_id = "SG161222/RealVisXL_V5.0"
|
94 |
+
pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
|
95 |
+
model_id, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
|
96 |
+
).to(device)
|
97 |
+
|
98 |
+
pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
|
99 |
+
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
|
100 |
+
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
|
101 |
+
|
102 |
+
# Set selected scheduler
|
103 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
104 |
+
|
105 |
+
# Load image
|
106 |
+
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
|
107 |
+
original_height = control_image.height
|
108 |
+
original_width = control_image.width
|
109 |
+
print(f"Current resolution: H:{original_height} x W:{original_width}")
|
110 |
+
|
111 |
+
# Pre-upscale image for tiling
|
112 |
+
resolution = 4096
|
113 |
+
tile_gaussian_sigma = 0.3
|
114 |
+
max_tile_size = 1024 # or 1280
|
115 |
+
|
116 |
+
current_size = max(control_image.size)
|
117 |
+
scale_factor = max(2, resolution / current_size)
|
118 |
+
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
|
119 |
+
image = control_image.resize(new_size, Image.LANCZOS)
|
120 |
+
|
121 |
+
# Update target height and width
|
122 |
+
target_height = image.height
|
123 |
+
target_width = image.width
|
124 |
+
print(f"Target resolution: H:{target_height} x W:{target_width}")
|
125 |
+
|
126 |
+
# Calculate overlap size
|
127 |
+
normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height)
|
128 |
+
|
129 |
+
# Set other params
|
130 |
+
tile_weighting_method = TileWeightingMethod.COSINE.value
|
131 |
+
guidance_scale = 4
|
132 |
+
num_inference_steps = 35
|
133 |
+
denoising_strenght = 0.65
|
134 |
+
controlnet_strength = 1.0
|
135 |
+
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
|
136 |
+
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"
|
137 |
+
|
138 |
+
# Image generation
|
139 |
+
control_image = pipe(
|
140 |
+
image=image,
|
141 |
+
control_image=control_image,
|
142 |
+
control_mode=[6],
|
143 |
+
controlnet_conditioning_scale=float(controlnet_strength),
|
144 |
+
prompt=prompt,
|
145 |
+
negative_prompt=negative_prompt,
|
146 |
+
normal_tile_overlap=normal_tile_overlap,
|
147 |
+
border_tile_overlap=border_tile_overlap,
|
148 |
+
height=target_height,
|
149 |
+
width=target_width,
|
150 |
+
original_size=(original_width, original_height),
|
151 |
+
target_size=(target_width, target_height),
|
152 |
+
guidance_scale=guidance_scale,
|
153 |
+
strength=float(denoising_strenght),
|
154 |
+
tile_weighting_method=tile_weighting_method,
|
155 |
+
max_tile_size=max_tile_size,
|
156 |
+
tile_gaussian_sigma=float(tile_gaussian_sigma),
|
157 |
+
num_inference_steps=num_inference_steps,
|
158 |
+
)["images"][0]
|
159 |
+
```
|
160 |
+
"""
|
161 |
+
|
162 |
+
|
163 |
+
# This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
|
164 |
+
def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280):
|
165 |
+
"""
|
166 |
+
Calculate the adaptive tile size based on the image dimensions, ensuring the tile
|
167 |
+
respects the aspect ratio and stays within the specified size limits.
|
168 |
+
"""
|
169 |
+
width, height = image_size
|
170 |
+
aspect_ratio = width / height
|
171 |
+
|
172 |
+
if aspect_ratio > 1:
|
173 |
+
# Landscape orientation
|
174 |
+
tile_width = min(width, max_tile_size)
|
175 |
+
tile_height = min(int(tile_width / aspect_ratio), max_tile_size)
|
176 |
+
else:
|
177 |
+
# Portrait or square orientation
|
178 |
+
tile_height = min(height, max_tile_size)
|
179 |
+
tile_width = min(int(tile_height * aspect_ratio), max_tile_size)
|
180 |
+
|
181 |
+
# Ensure the tile size is not smaller than the base_tile_size
|
182 |
+
tile_width = max(tile_width, base_tile_size)
|
183 |
+
tile_height = max(tile_height, base_tile_size)
|
184 |
+
|
185 |
+
return tile_width, tile_height
|
186 |
+
|
187 |
+
|
188 |
+
# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
|
189 |
+
def _tile2pixel_indices(
|
190 |
+
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
191 |
+
):
|
192 |
+
"""Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
|
193 |
+
|
194 |
+
Returns a tuple with:
|
195 |
+
- Starting coordinates of rows in pixel space
|
196 |
+
- Ending coordinates of rows in pixel space
|
197 |
+
- Starting coordinates of columns in pixel space
|
198 |
+
- Ending coordinates of columns in pixel space
|
199 |
+
"""
|
200 |
+
# Calculate initial indices
|
201 |
+
px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
|
202 |
+
px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
|
203 |
+
|
204 |
+
# Calculate end indices
|
205 |
+
px_row_end = px_row_init + tile_height
|
206 |
+
px_col_end = px_col_init + tile_width
|
207 |
+
|
208 |
+
# Ensure the last tile does not exceed the image dimensions
|
209 |
+
px_row_end = min(px_row_end, image_height)
|
210 |
+
px_col_end = min(px_col_end, image_width)
|
211 |
+
|
212 |
+
return px_row_init, px_row_end, px_col_init, px_col_end
|
213 |
+
|
214 |
+
|
215 |
+
# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
|
216 |
+
def _tile2latent_indices(
|
217 |
+
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
218 |
+
):
|
219 |
+
"""Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
|
220 |
+
|
221 |
+
Returns a tuple with:
|
222 |
+
- Starting coordinates of rows in latent space
|
223 |
+
- Ending coordinates of rows in latent space
|
224 |
+
- Starting coordinates of columns in latent space
|
225 |
+
- Ending coordinates of columns in latent space
|
226 |
+
"""
|
227 |
+
# Get pixel indices
|
228 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
229 |
+
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
230 |
+
)
|
231 |
+
|
232 |
+
# Convert to latent space
|
233 |
+
latent_row_init = px_row_init // 8
|
234 |
+
latent_row_end = px_row_end // 8
|
235 |
+
latent_col_init = px_col_init // 8
|
236 |
+
latent_col_end = px_col_end // 8
|
237 |
+
latent_height = image_height // 8
|
238 |
+
latent_width = image_width // 8
|
239 |
+
|
240 |
+
# Ensure the last tile does not exceed the latent dimensions
|
241 |
+
latent_row_end = min(latent_row_end, latent_height)
|
242 |
+
latent_col_end = min(latent_col_end, latent_width)
|
243 |
+
|
244 |
+
return latent_row_init, latent_row_end, latent_col_init, latent_col_end
|
245 |
+
|
246 |
+
|
247 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
248 |
+
def retrieve_latents(
|
249 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
250 |
+
):
|
251 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
252 |
+
return encoder_output.latent_dist.sample(generator)
|
253 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
254 |
+
return encoder_output.latent_dist.mode()
|
255 |
+
elif hasattr(encoder_output, "latents"):
|
256 |
+
return encoder_output.latents
|
257 |
+
else:
|
258 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
259 |
+
|
260 |
+
|
261 |
+
class StableDiffusionXLControlNetTileSRPipeline(
|
262 |
+
DiffusionPipeline,
|
263 |
+
StableDiffusionMixin,
|
264 |
+
TextualInversionLoaderMixin,
|
265 |
+
StableDiffusionXLLoraLoaderMixin,
|
266 |
+
FromSingleFileMixin,
|
267 |
+
):
|
268 |
+
r"""
|
269 |
+
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
270 |
+
|
271 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
272 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
273 |
+
|
274 |
+
The pipeline also inherits the following loading methods:
|
275 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
276 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
277 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
278 |
+
|
279 |
+
Args:
|
280 |
+
vae ([`AutoencoderKL`]):
|
281 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
282 |
+
text_encoder ([`CLIPTextModel`]):
|
283 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
284 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
285 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
286 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
287 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
288 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
289 |
+
specifically the
|
290 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
291 |
+
variant.
|
292 |
+
tokenizer (`CLIPTokenizer`):
|
293 |
+
Tokenizer of class
|
294 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
295 |
+
tokenizer_2 (`CLIPTokenizer`):
|
296 |
+
Second Tokenizer of class
|
297 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
298 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
299 |
+
controlnet ([`ControlNetUnionModel`]):
|
300 |
+
Provides additional conditioning to the unet during the denoising process.
|
301 |
+
scheduler ([`SchedulerMixin`]):
|
302 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
303 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
304 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
305 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
306 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
307 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
308 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
309 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
310 |
+
add_watermarker (`bool`, *optional*):
|
311 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
312 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
313 |
+
watermarker will be used.
|
314 |
+
"""
|
315 |
+
|
316 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
317 |
+
_optional_components = [
|
318 |
+
"tokenizer",
|
319 |
+
"tokenizer_2",
|
320 |
+
"text_encoder",
|
321 |
+
"text_encoder_2",
|
322 |
+
]
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
vae: AutoencoderKL,
|
327 |
+
text_encoder: CLIPTextModel,
|
328 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
329 |
+
tokenizer: CLIPTokenizer,
|
330 |
+
tokenizer_2: CLIPTokenizer,
|
331 |
+
unet: UNet2DConditionModel,
|
332 |
+
controlnet: ControlNetUnionModel,
|
333 |
+
scheduler: KarrasDiffusionSchedulers,
|
334 |
+
requires_aesthetics_score: bool = False,
|
335 |
+
force_zeros_for_empty_prompt: bool = True,
|
336 |
+
add_watermarker: Optional[bool] = None,
|
337 |
+
):
|
338 |
+
super().__init__()
|
339 |
+
|
340 |
+
if not isinstance(controlnet, ControlNetUnionModel):
|
341 |
+
raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
|
342 |
+
|
343 |
+
self.register_modules(
|
344 |
+
vae=vae,
|
345 |
+
text_encoder=text_encoder,
|
346 |
+
text_encoder_2=text_encoder_2,
|
347 |
+
tokenizer=tokenizer,
|
348 |
+
tokenizer_2=tokenizer_2,
|
349 |
+
unet=unet,
|
350 |
+
controlnet=controlnet,
|
351 |
+
scheduler=scheduler,
|
352 |
+
)
|
353 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
354 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
355 |
+
self.control_image_processor = VaeImageProcessor(
|
356 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
357 |
+
)
|
358 |
+
self.mask_processor = VaeImageProcessor(
|
359 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
360 |
+
)
|
361 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
362 |
+
|
363 |
+
if add_watermarker:
|
364 |
+
self.watermark = StableDiffusionXLWatermarker()
|
365 |
+
else:
|
366 |
+
self.watermark = None
|
367 |
+
|
368 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
369 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
370 |
+
|
371 |
+
def calculate_overlap(self, width, height, base_overlap=128):
|
372 |
+
"""
|
373 |
+
Calculates dynamic overlap based on the image's aspect ratio.
|
374 |
+
|
375 |
+
Args:
|
376 |
+
width (int): Width of the image in pixels.
|
377 |
+
height (int): Height of the image in pixels.
|
378 |
+
base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
tuple: A tuple containing:
|
382 |
+
- row_overlap (int): Overlap between tiles in consecutive rows.
|
383 |
+
- col_overlap (int): Overlap between tiles in consecutive columns.
|
384 |
+
"""
|
385 |
+
ratio = height / width
|
386 |
+
if ratio < 1: # Image is wider than tall
|
387 |
+
return base_overlap // 2, base_overlap
|
388 |
+
else: # Image is taller than wide
|
389 |
+
return base_overlap, base_overlap * 2
|
390 |
+
|
391 |
+
class TileWeightingMethod(Enum):
|
392 |
+
"""Mode in which the tile weights will be generated"""
|
393 |
+
|
394 |
+
COSINE = "Cosine"
|
395 |
+
GAUSSIAN = "Gaussian"
|
396 |
+
|
397 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
398 |
+
def encode_prompt(
|
399 |
+
self,
|
400 |
+
prompt: str,
|
401 |
+
prompt_2: Optional[str] = None,
|
402 |
+
device: Optional[torch.device] = None,
|
403 |
+
num_images_per_prompt: int = 1,
|
404 |
+
do_classifier_free_guidance: bool = True,
|
405 |
+
negative_prompt: Optional[str] = None,
|
406 |
+
negative_prompt_2: Optional[str] = None,
|
407 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
408 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
409 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
410 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
411 |
+
lora_scale: Optional[float] = None,
|
412 |
+
clip_skip: Optional[int] = None,
|
413 |
+
):
|
414 |
+
r"""
|
415 |
+
Encodes the prompt into text encoder hidden states.
|
416 |
+
|
417 |
+
Args:
|
418 |
+
prompt (`str` or `List[str]`, *optional*):
|
419 |
+
prompt to be encoded
|
420 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
421 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
422 |
+
used in both text-encoders
|
423 |
+
device: (`torch.device`):
|
424 |
+
torch device
|
425 |
+
num_images_per_prompt (`int`):
|
426 |
+
number of images that should be generated per prompt
|
427 |
+
do_classifier_free_guidance (`bool`):
|
428 |
+
whether to use classifier free guidance or not
|
429 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
430 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
431 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
432 |
+
less than `1`).
|
433 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
434 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
435 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
436 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
437 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
438 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
439 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
440 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
441 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
442 |
+
argument.
|
443 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
444 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
445 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
446 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
447 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
448 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
449 |
+
input argument.
|
450 |
+
lora_scale (`float`, *optional*):
|
451 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
452 |
+
clip_skip (`int`, *optional*):
|
453 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
454 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
455 |
+
"""
|
456 |
+
device = device or self._execution_device
|
457 |
+
|
458 |
+
# set lora scale so that monkey patched LoRA
|
459 |
+
# function of text encoder can correctly access it
|
460 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
461 |
+
self._lora_scale = lora_scale
|
462 |
+
|
463 |
+
# dynamically adjust the LoRA scale
|
464 |
+
if self.text_encoder is not None:
|
465 |
+
if not USE_PEFT_BACKEND:
|
466 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
467 |
+
else:
|
468 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
469 |
+
|
470 |
+
if self.text_encoder_2 is not None:
|
471 |
+
if not USE_PEFT_BACKEND:
|
472 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
473 |
+
else:
|
474 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
475 |
+
|
476 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
477 |
+
|
478 |
+
if prompt is not None:
|
479 |
+
batch_size = len(prompt)
|
480 |
+
else:
|
481 |
+
batch_size = prompt_embeds.shape[0]
|
482 |
+
|
483 |
+
# Define tokenizers and text encoders
|
484 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
485 |
+
text_encoders = (
|
486 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
487 |
+
)
|
488 |
+
dtype = text_encoders[0].dtype
|
489 |
+
if prompt_embeds is None:
|
490 |
+
prompt_2 = prompt_2 or prompt
|
491 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
492 |
+
|
493 |
+
# textual inversion: process multi-vector tokens if necessary
|
494 |
+
prompt_embeds_list = []
|
495 |
+
prompts = [prompt, prompt_2]
|
496 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
497 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
498 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
499 |
+
|
500 |
+
text_inputs = tokenizer(
|
501 |
+
prompt,
|
502 |
+
padding="max_length",
|
503 |
+
max_length=tokenizer.model_max_length,
|
504 |
+
truncation=True,
|
505 |
+
return_tensors="pt",
|
506 |
+
)
|
507 |
+
|
508 |
+
text_input_ids = text_inputs.input_ids
|
509 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
510 |
+
|
511 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
512 |
+
text_input_ids, untruncated_ids
|
513 |
+
):
|
514 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
515 |
+
logger.warning(
|
516 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
517 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
518 |
+
)
|
519 |
+
text_encoder.to(dtype)
|
520 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
521 |
+
|
522 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
523 |
+
if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
|
524 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
525 |
+
|
526 |
+
if clip_skip is None:
|
527 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
528 |
+
else:
|
529 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
530 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
531 |
+
|
532 |
+
prompt_embeds_list.append(prompt_embeds)
|
533 |
+
|
534 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
535 |
+
|
536 |
+
# get unconditional embeddings for classifier free guidance
|
537 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
538 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
539 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
540 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
541 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
542 |
+
negative_prompt = negative_prompt or ""
|
543 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
544 |
+
|
545 |
+
# normalize str to list
|
546 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
547 |
+
negative_prompt_2 = (
|
548 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
549 |
+
)
|
550 |
+
|
551 |
+
uncond_tokens: List[str]
|
552 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
553 |
+
raise TypeError(
|
554 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
555 |
+
f" {type(prompt)}."
|
556 |
+
)
|
557 |
+
elif batch_size != len(negative_prompt):
|
558 |
+
raise ValueError(
|
559 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
560 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
561 |
+
" the batch size of `prompt`."
|
562 |
+
)
|
563 |
+
else:
|
564 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
565 |
+
|
566 |
+
negative_prompt_embeds_list = []
|
567 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
568 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
569 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
570 |
+
|
571 |
+
max_length = prompt_embeds.shape[1]
|
572 |
+
uncond_input = tokenizer(
|
573 |
+
negative_prompt,
|
574 |
+
padding="max_length",
|
575 |
+
max_length=max_length,
|
576 |
+
truncation=True,
|
577 |
+
return_tensors="pt",
|
578 |
+
)
|
579 |
+
|
580 |
+
negative_prompt_embeds = text_encoder(
|
581 |
+
uncond_input.input_ids.to(device),
|
582 |
+
output_hidden_states=True,
|
583 |
+
)
|
584 |
+
|
585 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
586 |
+
if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
|
587 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
588 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
589 |
+
|
590 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
591 |
+
|
592 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
593 |
+
|
594 |
+
if self.text_encoder_2 is not None:
|
595 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
596 |
+
else:
|
597 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
598 |
+
|
599 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
600 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
601 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
602 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
603 |
+
|
604 |
+
if do_classifier_free_guidance:
|
605 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
606 |
+
seq_len = negative_prompt_embeds.shape[1]
|
607 |
+
|
608 |
+
if self.text_encoder_2 is not None:
|
609 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
610 |
+
else:
|
611 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
612 |
+
|
613 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
614 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
615 |
+
|
616 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
617 |
+
bs_embed * num_images_per_prompt, -1
|
618 |
+
)
|
619 |
+
if do_classifier_free_guidance:
|
620 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
621 |
+
bs_embed * num_images_per_prompt, -1
|
622 |
+
)
|
623 |
+
|
624 |
+
if self.text_encoder is not None:
|
625 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
626 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
627 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
628 |
+
|
629 |
+
if self.text_encoder_2 is not None:
|
630 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
631 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
632 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
633 |
+
|
634 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
635 |
+
|
636 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
637 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
638 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
639 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
640 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
641 |
+
# and should be between [0, 1]
|
642 |
+
|
643 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
644 |
+
extra_step_kwargs = {}
|
645 |
+
if accepts_eta:
|
646 |
+
extra_step_kwargs["eta"] = eta
|
647 |
+
|
648 |
+
# check if the scheduler accepts generator
|
649 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
650 |
+
if accepts_generator:
|
651 |
+
extra_step_kwargs["generator"] = generator
|
652 |
+
return extra_step_kwargs
|
653 |
+
|
654 |
+
def check_inputs(
|
655 |
+
self,
|
656 |
+
prompt,
|
657 |
+
height,
|
658 |
+
width,
|
659 |
+
image,
|
660 |
+
strength,
|
661 |
+
num_inference_steps,
|
662 |
+
normal_tile_overlap,
|
663 |
+
border_tile_overlap,
|
664 |
+
max_tile_size,
|
665 |
+
tile_gaussian_sigma,
|
666 |
+
tile_weighting_method,
|
667 |
+
controlnet_conditioning_scale=1.0,
|
668 |
+
control_guidance_start=0.0,
|
669 |
+
control_guidance_end=1.0,
|
670 |
+
):
|
671 |
+
if height % 8 != 0 or width % 8 != 0:
|
672 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
673 |
+
|
674 |
+
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
675 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
676 |
+
|
677 |
+
if strength < 0 or strength > 1:
|
678 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
679 |
+
if num_inference_steps is None:
|
680 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
681 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
682 |
+
raise ValueError(
|
683 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
684 |
+
f" {type(num_inference_steps)}."
|
685 |
+
)
|
686 |
+
if normal_tile_overlap is None:
|
687 |
+
raise ValueError("`normal_tile_overlap` cannot be None.")
|
688 |
+
elif not isinstance(normal_tile_overlap, int) or normal_tile_overlap < 64:
|
689 |
+
raise ValueError(
|
690 |
+
f"`normal_tile_overlap` has to be greater than 64 but is {normal_tile_overlap} of type"
|
691 |
+
f" {type(normal_tile_overlap)}."
|
692 |
+
)
|
693 |
+
if border_tile_overlap is None:
|
694 |
+
raise ValueError("`border_tile_overlap` cannot be None.")
|
695 |
+
elif not isinstance(border_tile_overlap, int) or border_tile_overlap < 128:
|
696 |
+
raise ValueError(
|
697 |
+
f"`border_tile_overlap` has to be greater than 128 but is {border_tile_overlap} of type"
|
698 |
+
f" {type(border_tile_overlap)}."
|
699 |
+
)
|
700 |
+
if max_tile_size is None:
|
701 |
+
raise ValueError("`max_tile_size` cannot be None.")
|
702 |
+
elif not isinstance(max_tile_size, int) or max_tile_size not in (1024, 1280):
|
703 |
+
raise ValueError(
|
704 |
+
f"`max_tile_size` has to be in 1024 or 1280 but is {max_tile_size} of type" f" {type(max_tile_size)}."
|
705 |
+
)
|
706 |
+
if tile_gaussian_sigma is None:
|
707 |
+
raise ValueError("`tile_gaussian_sigma` cannot be None.")
|
708 |
+
elif not isinstance(tile_gaussian_sigma, float) or tile_gaussian_sigma <= 0:
|
709 |
+
raise ValueError(
|
710 |
+
f"`tile_gaussian_sigma` has to be a positive float but is {tile_gaussian_sigma} of type"
|
711 |
+
f" {type(tile_gaussian_sigma)}."
|
712 |
+
)
|
713 |
+
if tile_weighting_method is None:
|
714 |
+
raise ValueError("`tile_weighting_method` cannot be None.")
|
715 |
+
elif not isinstance(tile_weighting_method, str) or tile_weighting_method not in [
|
716 |
+
t.value for t in self.TileWeightingMethod
|
717 |
+
]:
|
718 |
+
raise ValueError(
|
719 |
+
f"`tile_weighting_method` has to be a string in ({[t.value for t in self.TileWeightingMethod]}) but is {tile_weighting_method} of type"
|
720 |
+
f" {type(tile_weighting_method)}."
|
721 |
+
)
|
722 |
+
|
723 |
+
# Check `image`
|
724 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
725 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
726 |
+
)
|
727 |
+
if (
|
728 |
+
isinstance(self.controlnet, ControlNetModel)
|
729 |
+
or is_compiled
|
730 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
731 |
+
):
|
732 |
+
self.check_image(image, prompt)
|
733 |
+
elif (
|
734 |
+
isinstance(self.controlnet, ControlNetUnionModel)
|
735 |
+
or is_compiled
|
736 |
+
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
737 |
+
):
|
738 |
+
self.check_image(image, prompt)
|
739 |
+
else:
|
740 |
+
assert False
|
741 |
+
|
742 |
+
# Check `controlnet_conditioning_scale`
|
743 |
+
if (
|
744 |
+
isinstance(self.controlnet, ControlNetUnionModel)
|
745 |
+
or is_compiled
|
746 |
+
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
747 |
+
) or (
|
748 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
749 |
+
or is_compiled
|
750 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
751 |
+
):
|
752 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
753 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
754 |
+
elif (
|
755 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
756 |
+
or is_compiled
|
757 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
758 |
+
):
|
759 |
+
if isinstance(controlnet_conditioning_scale, list):
|
760 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
761 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
762 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
763 |
+
self.controlnet.nets
|
764 |
+
):
|
765 |
+
raise ValueError(
|
766 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
767 |
+
" the same length as the number of controlnets"
|
768 |
+
)
|
769 |
+
else:
|
770 |
+
assert False
|
771 |
+
|
772 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
773 |
+
control_guidance_start = [control_guidance_start]
|
774 |
+
|
775 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
776 |
+
control_guidance_end = [control_guidance_end]
|
777 |
+
|
778 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
779 |
+
raise ValueError(
|
780 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
781 |
+
)
|
782 |
+
|
783 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
784 |
+
if start >= end:
|
785 |
+
raise ValueError(
|
786 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
787 |
+
)
|
788 |
+
if start < 0.0:
|
789 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
790 |
+
if end > 1.0:
|
791 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
792 |
+
|
793 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
794 |
+
def check_image(self, image, prompt):
|
795 |
+
image_is_pil = isinstance(image, Image.Image)
|
796 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
797 |
+
image_is_np = isinstance(image, np.ndarray)
|
798 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], Image.Image)
|
799 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
800 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
801 |
+
|
802 |
+
if (
|
803 |
+
not image_is_pil
|
804 |
+
and not image_is_tensor
|
805 |
+
and not image_is_np
|
806 |
+
and not image_is_pil_list
|
807 |
+
and not image_is_tensor_list
|
808 |
+
and not image_is_np_list
|
809 |
+
):
|
810 |
+
raise TypeError(
|
811 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
812 |
+
)
|
813 |
+
|
814 |
+
if image_is_pil:
|
815 |
+
image_batch_size = 1
|
816 |
+
else:
|
817 |
+
image_batch_size = len(image)
|
818 |
+
|
819 |
+
if prompt is not None and isinstance(prompt, str):
|
820 |
+
prompt_batch_size = 1
|
821 |
+
elif prompt is not None and isinstance(prompt, list):
|
822 |
+
prompt_batch_size = len(prompt)
|
823 |
+
|
824 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
825 |
+
raise ValueError(
|
826 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
827 |
+
)
|
828 |
+
|
829 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
830 |
+
def prepare_control_image(
|
831 |
+
self,
|
832 |
+
image,
|
833 |
+
width,
|
834 |
+
height,
|
835 |
+
batch_size,
|
836 |
+
num_images_per_prompt,
|
837 |
+
device,
|
838 |
+
dtype,
|
839 |
+
do_classifier_free_guidance=False,
|
840 |
+
guess_mode=False,
|
841 |
+
):
|
842 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
843 |
+
image_batch_size = image.shape[0]
|
844 |
+
|
845 |
+
if image_batch_size == 1:
|
846 |
+
repeat_by = batch_size
|
847 |
+
else:
|
848 |
+
# image batch size is the same as prompt batch size
|
849 |
+
repeat_by = num_images_per_prompt
|
850 |
+
|
851 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
852 |
+
|
853 |
+
image = image.to(device=device, dtype=dtype)
|
854 |
+
|
855 |
+
if do_classifier_free_guidance and not guess_mode:
|
856 |
+
image = torch.cat([image] * 2)
|
857 |
+
|
858 |
+
return image
|
859 |
+
|
860 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
861 |
+
def get_timesteps(self, num_inference_steps, strength):
|
862 |
+
# get the original timestep using init_timestep
|
863 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
864 |
+
|
865 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
866 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
867 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
868 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
869 |
+
|
870 |
+
return timesteps, num_inference_steps - t_start
|
871 |
+
|
872 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
873 |
+
def prepare_latents(
|
874 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
875 |
+
):
|
876 |
+
if not isinstance(image, (torch.Tensor, Image.Image, list)):
|
877 |
+
raise ValueError(
|
878 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
879 |
+
)
|
880 |
+
|
881 |
+
latents_mean = latents_std = None
|
882 |
+
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
|
883 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
884 |
+
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
|
885 |
+
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
886 |
+
|
887 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
888 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
889 |
+
self.text_encoder_2.to("cpu")
|
890 |
+
torch.cuda.empty_cache()
|
891 |
+
|
892 |
+
image = image.to(device=device, dtype=dtype)
|
893 |
+
|
894 |
+
batch_size = batch_size * num_images_per_prompt
|
895 |
+
|
896 |
+
if image.shape[1] == 4:
|
897 |
+
init_latents = image
|
898 |
+
|
899 |
+
else:
|
900 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
901 |
+
if self.vae.config.force_upcast:
|
902 |
+
image = image.float()
|
903 |
+
self.vae.to(dtype=torch.float32)
|
904 |
+
|
905 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
906 |
+
raise ValueError(
|
907 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
908 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
909 |
+
)
|
910 |
+
|
911 |
+
elif isinstance(generator, list):
|
912 |
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
913 |
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
914 |
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
915 |
+
raise ValueError(
|
916 |
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
917 |
+
)
|
918 |
+
|
919 |
+
init_latents = [
|
920 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
921 |
+
for i in range(batch_size)
|
922 |
+
]
|
923 |
+
init_latents = torch.cat(init_latents, dim=0)
|
924 |
+
else:
|
925 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
926 |
+
|
927 |
+
if self.vae.config.force_upcast:
|
928 |
+
self.vae.to(dtype)
|
929 |
+
|
930 |
+
init_latents = init_latents.to(dtype)
|
931 |
+
if latents_mean is not None and latents_std is not None:
|
932 |
+
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
933 |
+
latents_std = latents_std.to(device=device, dtype=dtype)
|
934 |
+
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
|
935 |
+
else:
|
936 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
937 |
+
|
938 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
939 |
+
# expand init_latents for batch_size
|
940 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
941 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
942 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
943 |
+
raise ValueError(
|
944 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
945 |
+
)
|
946 |
+
else:
|
947 |
+
init_latents = torch.cat([init_latents], dim=0)
|
948 |
+
|
949 |
+
if add_noise:
|
950 |
+
shape = init_latents.shape
|
951 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
952 |
+
# get latents
|
953 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
954 |
+
|
955 |
+
latents = init_latents
|
956 |
+
|
957 |
+
return latents
|
958 |
+
|
959 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
960 |
+
def _get_add_time_ids(
|
961 |
+
self,
|
962 |
+
original_size,
|
963 |
+
crops_coords_top_left,
|
964 |
+
target_size,
|
965 |
+
aesthetic_score,
|
966 |
+
negative_aesthetic_score,
|
967 |
+
negative_original_size,
|
968 |
+
negative_crops_coords_top_left,
|
969 |
+
negative_target_size,
|
970 |
+
dtype,
|
971 |
+
text_encoder_projection_dim=None,
|
972 |
+
):
|
973 |
+
if self.config.requires_aesthetics_score:
|
974 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
975 |
+
add_neg_time_ids = list(
|
976 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
977 |
+
)
|
978 |
+
else:
|
979 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
980 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
981 |
+
|
982 |
+
passed_add_embed_dim = (
|
983 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
984 |
+
)
|
985 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
986 |
+
|
987 |
+
if (
|
988 |
+
expected_add_embed_dim > passed_add_embed_dim
|
989 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
990 |
+
):
|
991 |
+
raise ValueError(
|
992 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
993 |
+
)
|
994 |
+
elif (
|
995 |
+
expected_add_embed_dim < passed_add_embed_dim
|
996 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
997 |
+
):
|
998 |
+
raise ValueError(
|
999 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1000 |
+
)
|
1001 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1002 |
+
raise ValueError(
|
1003 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1007 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1008 |
+
|
1009 |
+
return add_time_ids, add_neg_time_ids
|
1010 |
+
|
1011 |
+
def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype):
|
1012 |
+
"""
|
1013 |
+
Generates cosine weights as a PyTorch tensor for blending tiles.
|
1014 |
+
|
1015 |
+
Args:
|
1016 |
+
tile_width (int): Width of the tile in pixels.
|
1017 |
+
tile_height (int): Height of the tile in pixels.
|
1018 |
+
nbatches (int): Number of batches.
|
1019 |
+
device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
|
1020 |
+
dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
|
1021 |
+
|
1022 |
+
Returns:
|
1023 |
+
torch.Tensor: A tensor containing cosine weights for blending tiles, expanded to match batch and channel dimensions.
|
1024 |
+
"""
|
1025 |
+
# Convert tile dimensions to latent space
|
1026 |
+
latent_width = tile_width // 8
|
1027 |
+
latent_height = tile_height // 8
|
1028 |
+
|
1029 |
+
# Generate x and y coordinates in latent space
|
1030 |
+
x = np.arange(0, latent_width)
|
1031 |
+
y = np.arange(0, latent_height)
|
1032 |
+
|
1033 |
+
# Calculate midpoints
|
1034 |
+
midpoint_x = (latent_width - 1) / 2
|
1035 |
+
midpoint_y = (latent_height - 1) / 2
|
1036 |
+
|
1037 |
+
# Compute cosine probabilities for x and y
|
1038 |
+
x_probs = np.cos(np.pi * (x - midpoint_x) / latent_width)
|
1039 |
+
y_probs = np.cos(np.pi * (y - midpoint_y) / latent_height)
|
1040 |
+
|
1041 |
+
# Create a 2D weight matrix using the outer product
|
1042 |
+
weights_np = np.outer(y_probs, x_probs)
|
1043 |
+
|
1044 |
+
# Convert to a PyTorch tensor with the correct device and dtype
|
1045 |
+
weights_torch = torch.tensor(weights_np, device=device, dtype=dtype)
|
1046 |
+
|
1047 |
+
# Expand for batch and channel dimensions
|
1048 |
+
tile_weights_expanded = torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
|
1049 |
+
|
1050 |
+
return tile_weights_expanded
|
1051 |
+
|
1052 |
+
def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.05):
|
1053 |
+
"""
|
1054 |
+
Generates Gaussian weights as a PyTorch tensor for blending tiles in latent space.
|
1055 |
+
|
1056 |
+
Args:
|
1057 |
+
tile_width (int): Width of the tile in pixels.
|
1058 |
+
tile_height (int): Height of the tile in pixels.
|
1059 |
+
nbatches (int): Number of batches.
|
1060 |
+
device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
|
1061 |
+
dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
|
1062 |
+
sigma (float, optional): Standard deviation of the Gaussian distribution. Controls the smoothness of the weights. Defaults to 0.05.
|
1063 |
+
|
1064 |
+
Returns:
|
1065 |
+
torch.Tensor: A tensor containing Gaussian weights for blending tiles, expanded to match batch and channel dimensions.
|
1066 |
+
"""
|
1067 |
+
# Convert tile dimensions to latent space
|
1068 |
+
latent_width = tile_width // 8
|
1069 |
+
latent_height = tile_height // 8
|
1070 |
+
|
1071 |
+
# Generate Gaussian weights in latent space
|
1072 |
+
x = np.linspace(-1, 1, latent_width)
|
1073 |
+
y = np.linspace(-1, 1, latent_height)
|
1074 |
+
xx, yy = np.meshgrid(x, y)
|
1075 |
+
gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
|
1076 |
+
|
1077 |
+
# Convert to a PyTorch tensor with the correct device and dtype
|
1078 |
+
weights_torch = torch.tensor(gaussian_weight, device=device, dtype=dtype)
|
1079 |
+
|
1080 |
+
# Expand for batch and channel dimensions
|
1081 |
+
weights_expanded = weights_torch.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions
|
1082 |
+
weights_expanded = weights_expanded.expand(nbatches, -1, -1, -1) # Expand to the number of batches
|
1083 |
+
|
1084 |
+
return weights_expanded
|
1085 |
+
|
1086 |
+
def _get_num_tiles(self, height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap):
|
1087 |
+
"""
|
1088 |
+
Calculates the number of tiles needed to cover an image, choosing the appropriate formula based on the
|
1089 |
+
ratio between the image size and the tile size.
|
1090 |
+
|
1091 |
+
This function automatically selects between two formulas:
|
1092 |
+
1. A universal formula for typical cases (image-to-tile ratio <= 6:1).
|
1093 |
+
2. A specialized formula with border tile overlap for larger or atypical cases (image-to-tile ratio > 6:1).
|
1094 |
+
|
1095 |
+
Args:
|
1096 |
+
height (int): Height of the image in pixels.
|
1097 |
+
width (int): Width of the image in pixels.
|
1098 |
+
tile_height (int): Height of each tile in pixels.
|
1099 |
+
tile_width (int): Width of each tile in pixels.
|
1100 |
+
normal_tile_overlap (int): Overlap between tiles in pixels for normal (non-border) tiles.
|
1101 |
+
border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
|
1102 |
+
|
1103 |
+
Returns:
|
1104 |
+
tuple: A tuple containing:
|
1105 |
+
- grid_rows (int): Number of rows in the tile grid.
|
1106 |
+
- grid_cols (int): Number of columns in the tile grid.
|
1107 |
+
|
1108 |
+
Notes:
|
1109 |
+
- The function uses the universal formula (without border_tile_overlap) for typical cases where the
|
1110 |
+
image-to-tile ratio is 6:1 or smaller.
|
1111 |
+
- For larger or atypical cases (image-to-tile ratio > 6:1), it uses a specialized formula that includes
|
1112 |
+
border_tile_overlap to ensure complete coverage of the image, especially at the edges.
|
1113 |
+
"""
|
1114 |
+
# Calculate the ratio between the image size and the tile size
|
1115 |
+
height_ratio = height / tile_height
|
1116 |
+
width_ratio = width / tile_width
|
1117 |
+
|
1118 |
+
# If the ratio is greater than 6:1, use the formula with border_tile_overlap
|
1119 |
+
if height_ratio > 6 or width_ratio > 6:
|
1120 |
+
grid_rows = int(np.ceil((height - border_tile_overlap) / (tile_height - normal_tile_overlap))) + 1
|
1121 |
+
grid_cols = int(np.ceil((width - border_tile_overlap) / (tile_width - normal_tile_overlap))) + 1
|
1122 |
+
else:
|
1123 |
+
# Otherwise, use the universal formula
|
1124 |
+
grid_rows = int(np.ceil((height - normal_tile_overlap) / (tile_height - normal_tile_overlap)))
|
1125 |
+
grid_cols = int(np.ceil((width - normal_tile_overlap) / (tile_width - normal_tile_overlap)))
|
1126 |
+
|
1127 |
+
return grid_rows, grid_cols
|
1128 |
+
|
1129 |
+
def prepare_tiles(
|
1130 |
+
self,
|
1131 |
+
grid_rows,
|
1132 |
+
grid_cols,
|
1133 |
+
tile_weighting_method,
|
1134 |
+
tile_width,
|
1135 |
+
tile_height,
|
1136 |
+
normal_tile_overlap,
|
1137 |
+
border_tile_overlap,
|
1138 |
+
width,
|
1139 |
+
height,
|
1140 |
+
tile_sigma,
|
1141 |
+
batch_size,
|
1142 |
+
device,
|
1143 |
+
dtype,
|
1144 |
+
):
|
1145 |
+
"""
|
1146 |
+
Processes image tiles by dynamically adjusting overlap and calculating Gaussian or cosine weights.
|
1147 |
+
|
1148 |
+
Args:
|
1149 |
+
grid_rows (int): Number of rows in the tile grid.
|
1150 |
+
grid_cols (int): Number of columns in the tile grid.
|
1151 |
+
tile_weighting_method (str): Method for weighting tiles. Options: "Gaussian" or "Cosine".
|
1152 |
+
tile_width (int): Width of each tile in pixels.
|
1153 |
+
tile_height (int): Height of each tile in pixels.
|
1154 |
+
normal_tile_overlap (int): Overlap between tiles in pixels for normal tiles.
|
1155 |
+
border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
|
1156 |
+
width (int): Width of the image in pixels.
|
1157 |
+
height (int): Height of the image in pixels.
|
1158 |
+
tile_sigma (float): Sigma parameter for Gaussian weighting.
|
1159 |
+
batch_size (int): Batch size for weight tiles.
|
1160 |
+
device (torch.device): Device where tensors will be allocated (e.g., 'cuda' or 'cpu').
|
1161 |
+
dtype (torch.dtype): Data type of the tensors (e.g., torch.float32).
|
1162 |
+
|
1163 |
+
Returns:
|
1164 |
+
tuple: A tuple containing:
|
1165 |
+
- tile_weights (np.ndarray): Array of weights for each tile.
|
1166 |
+
- tile_row_overlaps (np.ndarray): Array of row overlaps for each tile.
|
1167 |
+
- tile_col_overlaps (np.ndarray): Array of column overlaps for each tile.
|
1168 |
+
"""
|
1169 |
+
|
1170 |
+
# Create arrays to store dynamic overlaps and weights
|
1171 |
+
tile_row_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
|
1172 |
+
tile_col_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
|
1173 |
+
tile_weights = np.empty((grid_rows, grid_cols), dtype=object) # Stores Gaussian or cosine weights
|
1174 |
+
|
1175 |
+
# Iterate over tiles to adjust overlap and calculate weights
|
1176 |
+
for row in range(grid_rows):
|
1177 |
+
for col in range(grid_cols):
|
1178 |
+
# Calculate the size of the current tile
|
1179 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
1180 |
+
row, col, tile_width, tile_height, normal_tile_overlap, normal_tile_overlap, width, height
|
1181 |
+
)
|
1182 |
+
current_tile_width = px_col_end - px_col_init
|
1183 |
+
current_tile_height = px_row_end - px_row_init
|
1184 |
+
sigma = tile_sigma
|
1185 |
+
|
1186 |
+
# Adjust overlap for smaller tiles
|
1187 |
+
if current_tile_width < tile_width:
|
1188 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
1189 |
+
row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
|
1190 |
+
)
|
1191 |
+
current_tile_width = px_col_end - px_col_init
|
1192 |
+
tile_col_overlaps[row, col] = border_tile_overlap
|
1193 |
+
sigma = tile_sigma * 1.2
|
1194 |
+
if current_tile_height < tile_height:
|
1195 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
1196 |
+
row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
|
1197 |
+
)
|
1198 |
+
current_tile_height = px_row_end - px_row_init
|
1199 |
+
tile_row_overlaps[row, col] = border_tile_overlap
|
1200 |
+
sigma = tile_sigma * 1.2
|
1201 |
+
|
1202 |
+
# Calculate weights for the current tile
|
1203 |
+
if tile_weighting_method == self.TileWeightingMethod.COSINE.value:
|
1204 |
+
tile_weights[row, col] = self._generate_cosine_weights(
|
1205 |
+
tile_width=current_tile_width,
|
1206 |
+
tile_height=current_tile_height,
|
1207 |
+
nbatches=batch_size,
|
1208 |
+
device=device,
|
1209 |
+
dtype=torch.float32,
|
1210 |
+
)
|
1211 |
+
else:
|
1212 |
+
tile_weights[row, col] = self._generate_gaussian_weights(
|
1213 |
+
tile_width=current_tile_width,
|
1214 |
+
tile_height=current_tile_height,
|
1215 |
+
nbatches=batch_size,
|
1216 |
+
device=device,
|
1217 |
+
dtype=dtype,
|
1218 |
+
sigma=sigma,
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
return tile_weights, tile_row_overlaps, tile_col_overlaps
|
1222 |
+
|
1223 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1224 |
+
def upcast_vae(self):
|
1225 |
+
dtype = self.vae.dtype
|
1226 |
+
self.vae.to(dtype=torch.float32)
|
1227 |
+
use_torch_2_0_or_xformers = isinstance(
|
1228 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1229 |
+
(
|
1230 |
+
AttnProcessor2_0,
|
1231 |
+
XFormersAttnProcessor,
|
1232 |
+
),
|
1233 |
+
)
|
1234 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1235 |
+
# to be in float32 which can save lots of memory
|
1236 |
+
if use_torch_2_0_or_xformers:
|
1237 |
+
self.vae.post_quant_conv.to(dtype)
|
1238 |
+
self.vae.decoder.conv_in.to(dtype)
|
1239 |
+
self.vae.decoder.mid_block.to(dtype)
|
1240 |
+
|
1241 |
+
@property
|
1242 |
+
def guidance_scale(self):
|
1243 |
+
return self._guidance_scale
|
1244 |
+
|
1245 |
+
@property
|
1246 |
+
def clip_skip(self):
|
1247 |
+
return self._clip_skip
|
1248 |
+
|
1249 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1250 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1251 |
+
# corresponds to doing no classifier free guidance.
|
1252 |
+
@property
|
1253 |
+
def do_classifier_free_guidance(self):
|
1254 |
+
return self._guidance_scale > 1
|
1255 |
+
|
1256 |
+
@property
|
1257 |
+
def cross_attention_kwargs(self):
|
1258 |
+
return self._cross_attention_kwargs
|
1259 |
+
|
1260 |
+
@property
|
1261 |
+
def num_timesteps(self):
|
1262 |
+
return self._num_timesteps
|
1263 |
+
|
1264 |
+
@property
|
1265 |
+
def interrupt(self):
|
1266 |
+
return self._interrupt
|
1267 |
+
|
1268 |
+
@torch.no_grad()
|
1269 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1270 |
+
def __call__(
|
1271 |
+
self,
|
1272 |
+
prompt: Union[str, List[str]] = None,
|
1273 |
+
image: PipelineImageInput = None,
|
1274 |
+
control_image: PipelineImageInput = None,
|
1275 |
+
height: Optional[int] = None,
|
1276 |
+
width: Optional[int] = None,
|
1277 |
+
strength: float = 0.9999,
|
1278 |
+
num_inference_steps: int = 50,
|
1279 |
+
guidance_scale: float = 5.0,
|
1280 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1281 |
+
num_images_per_prompt: Optional[int] = 1,
|
1282 |
+
eta: float = 0.0,
|
1283 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1284 |
+
latents: Optional[torch.Tensor] = None,
|
1285 |
+
output_type: Optional[str] = "pil",
|
1286 |
+
return_dict: bool = True,
|
1287 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1288 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
1289 |
+
guess_mode: bool = False,
|
1290 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
1291 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
1292 |
+
control_mode: Optional[Union[int, List[int]]] = None,
|
1293 |
+
original_size: Tuple[int, int] = None,
|
1294 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1295 |
+
target_size: Tuple[int, int] = None,
|
1296 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1297 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1298 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1299 |
+
aesthetic_score: float = 6.0,
|
1300 |
+
negative_aesthetic_score: float = 2.5,
|
1301 |
+
clip_skip: Optional[int] = None,
|
1302 |
+
normal_tile_overlap: int = 64,
|
1303 |
+
border_tile_overlap: int = 128,
|
1304 |
+
max_tile_size: int = 1024,
|
1305 |
+
tile_gaussian_sigma: float = 0.05,
|
1306 |
+
tile_weighting_method: str = "Cosine",
|
1307 |
+
**kwargs,
|
1308 |
+
):
|
1309 |
+
r"""
|
1310 |
+
Function invoked when calling the pipeline for generation.
|
1311 |
+
|
1312 |
+
Args:
|
1313 |
+
prompt (`str` or `List[str]`, *optional*):
|
1314 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1315 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, *optional*):
|
1316 |
+
The initial image to be used as the starting point for the image generation process. Can also accept
|
1317 |
+
image latents as `image`, if passing latents directly, they will not be encoded again.
|
1318 |
+
control_image (`PipelineImageInput`, *optional*):
|
1319 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance for Unet.
|
1320 |
+
If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
1321 |
+
be accepted as an image. The dimensions of the output image default to `image`'s dimensions. If height
|
1322 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
1323 |
+
init, images must be passed as a list such that each element of the list can be correctly batched for
|
1324 |
+
input to a single ControlNet.
|
1325 |
+
height (`int`, *optional*):
|
1326 |
+
The height in pixels of the generated image. If not provided, defaults to the height of `control_image`.
|
1327 |
+
width (`int`, *optional*):
|
1328 |
+
The width in pixels of the generated image. If not provided, defaults to the width of `control_image`.
|
1329 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
1330 |
+
Indicates the extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1331 |
+
starting point, and more noise is added the higher the `strength`. The number of denoising steps depends
|
1332 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum, and the denoising
|
1333 |
+
process runs for the full number of iterations specified in `num_inference_steps`.
|
1334 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1335 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1336 |
+
expense of slower inference.
|
1337 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1338 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1339 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
1340 |
+
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
|
1341 |
+
images closely linked to the text `prompt`, usually at the expense of lower image quality.
|
1342 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1343 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1344 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1345 |
+
less than `1`).
|
1346 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1347 |
+
The number of images to generate per prompt.
|
1348 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1349 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1350 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1351 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1352 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1353 |
+
to make generation deterministic.
|
1354 |
+
latents (`torch.Tensor`, *optional*):
|
1355 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1356 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1357 |
+
tensor will be generated by sampling using the supplied random `generator`.
|
1358 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1359 |
+
The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/):
|
1360 |
+
`PIL.Image.Image` or `np.array`.
|
1361 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1362 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1363 |
+
plain tuple.
|
1364 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1365 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1366 |
+
`self.processor` in
|
1367 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1368 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1369 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
1370 |
+
to the residual in the original UNet. If multiple ControlNets are specified in init, you can set the
|
1371 |
+
corresponding scale as a list.
|
1372 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
1373 |
+
In this mode, the ControlNet encoder will try to recognize the content of the input image even if
|
1374 |
+
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
1375 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1376 |
+
The percentage of total steps at which the ControlNet starts applying.
|
1377 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1378 |
+
The percentage of total steps at which the ControlNet stops applying.
|
1379 |
+
control_mode (`int` or `List[int]`, *optional*):
|
1380 |
+
The mode of ControlNet guidance. Can be used to specify different behaviors for multiple ControlNets.
|
1381 |
+
original_size (`Tuple[int, int]`, *optional*):
|
1382 |
+
If `original_size` is not the same as `target_size`, the image will appear to be down- or upsampled.
|
1383 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning.
|
1384 |
+
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
|
1385 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1386 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1387 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning.
|
1388 |
+
target_size (`Tuple[int, int]`, *optional*):
|
1389 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1390 |
+
not specified, it will default to `(height, width)`. Part of SDXL's micro-conditioning.
|
1391 |
+
negative_original_size (`Tuple[int, int]`, *optional*):
|
1392 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1393 |
+
micro-conditioning.
|
1394 |
+
negative_crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
|
1395 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1396 |
+
micro-conditioning.
|
1397 |
+
negative_target_size (`Tuple[int, int]`, *optional*):
|
1398 |
+
To negatively condition the generation process based on a target image resolution. It should be the same
|
1399 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning.
|
1400 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1401 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1402 |
+
Part of SDXL's micro-conditioning.
|
1403 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1404 |
+
Used to simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1405 |
+
Part of SDXL's micro-conditioning.
|
1406 |
+
clip_skip (`int`, *optional*):
|
1407 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1408 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1409 |
+
normal_tile_overlap (`int`, *optional*, defaults to 64):
|
1410 |
+
Number of overlapping pixels between tiles in consecutive rows.
|
1411 |
+
border_tile_overlap (`int`, *optional*, defaults to 128):
|
1412 |
+
Number of overlapping pixels between tiles at the borders.
|
1413 |
+
max_tile_size (`int`, *optional*, defaults to 1024):
|
1414 |
+
Maximum size of a tile in pixels.
|
1415 |
+
tile_gaussian_sigma (`float`, *optional*, defaults to 0.3):
|
1416 |
+
Sigma parameter for Gaussian weighting of tiles.
|
1417 |
+
tile_weighting_method (`str`, *optional*, defaults to "Cosine"):
|
1418 |
+
Method for weighting tiles. Options: "Cosine" or "Gaussian".
|
1419 |
+
|
1420 |
+
Examples:
|
1421 |
+
|
1422 |
+
Returns:
|
1423 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1424 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1425 |
+
containing the output images.
|
1426 |
+
"""
|
1427 |
+
|
1428 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1429 |
+
|
1430 |
+
# align format for control guidance
|
1431 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1432 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1433 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1434 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1435 |
+
|
1436 |
+
if not isinstance(control_image, list):
|
1437 |
+
control_image = [control_image]
|
1438 |
+
else:
|
1439 |
+
control_image = control_image.copy()
|
1440 |
+
|
1441 |
+
if control_mode is None or isinstance(control_mode, list) and len(control_mode) == 0:
|
1442 |
+
raise ValueError("The value for `control_mode` is expected!")
|
1443 |
+
|
1444 |
+
if not isinstance(control_mode, list):
|
1445 |
+
control_mode = [control_mode]
|
1446 |
+
|
1447 |
+
if len(control_image) != len(control_mode):
|
1448 |
+
raise ValueError("Expected len(control_image) == len(control_mode)")
|
1449 |
+
|
1450 |
+
num_control_type = controlnet.config.num_control_type
|
1451 |
+
|
1452 |
+
# 0. Set internal use parameters
|
1453 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1454 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1455 |
+
original_size = original_size or (height, width)
|
1456 |
+
target_size = target_size or (height, width)
|
1457 |
+
negative_original_size = negative_original_size or original_size
|
1458 |
+
negative_target_size = negative_target_size or target_size
|
1459 |
+
control_type = [0 for _ in range(num_control_type)]
|
1460 |
+
control_type = torch.Tensor(control_type)
|
1461 |
+
self._guidance_scale = guidance_scale
|
1462 |
+
self._clip_skip = clip_skip
|
1463 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1464 |
+
self._interrupt = False
|
1465 |
+
batch_size = 1
|
1466 |
+
device = self._execution_device
|
1467 |
+
global_pool_conditions = controlnet.config.global_pool_conditions
|
1468 |
+
guess_mode = guess_mode or global_pool_conditions
|
1469 |
+
|
1470 |
+
# 1. Check inputs
|
1471 |
+
for _image, control_idx in zip(control_image, control_mode):
|
1472 |
+
control_type[control_idx] = 1
|
1473 |
+
self.check_inputs(
|
1474 |
+
prompt,
|
1475 |
+
height,
|
1476 |
+
width,
|
1477 |
+
_image,
|
1478 |
+
strength,
|
1479 |
+
num_inference_steps,
|
1480 |
+
normal_tile_overlap,
|
1481 |
+
border_tile_overlap,
|
1482 |
+
max_tile_size,
|
1483 |
+
tile_gaussian_sigma,
|
1484 |
+
tile_weighting_method,
|
1485 |
+
controlnet_conditioning_scale,
|
1486 |
+
control_guidance_start,
|
1487 |
+
control_guidance_end,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
# 2 Get tile width and tile height size
|
1491 |
+
tile_width, tile_height = _adaptive_tile_size((width, height), max_tile_size=max_tile_size)
|
1492 |
+
|
1493 |
+
# 2.1 Calculate the number of tiles needed
|
1494 |
+
grid_rows, grid_cols = self._get_num_tiles(
|
1495 |
+
height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap
|
1496 |
+
)
|
1497 |
+
|
1498 |
+
# 2.2 Expand prompt to number of tiles
|
1499 |
+
if not isinstance(prompt, list):
|
1500 |
+
prompt = [[prompt] * grid_cols] * grid_rows
|
1501 |
+
|
1502 |
+
# 2.3 Update height and width tile size by tile size and tile overlap size
|
1503 |
+
width = (grid_cols - 1) * (tile_width - normal_tile_overlap) + min(
|
1504 |
+
tile_width, width - (grid_cols - 1) * (tile_width - normal_tile_overlap)
|
1505 |
+
)
|
1506 |
+
height = (grid_rows - 1) * (tile_height - normal_tile_overlap) + min(
|
1507 |
+
tile_height, height - (grid_rows - 1) * (tile_height - normal_tile_overlap)
|
1508 |
+
)
|
1509 |
+
|
1510 |
+
# 3. Encode input prompt
|
1511 |
+
text_encoder_lora_scale = (
|
1512 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1513 |
+
)
|
1514 |
+
text_embeddings = [
|
1515 |
+
[
|
1516 |
+
self.encode_prompt(
|
1517 |
+
prompt=col,
|
1518 |
+
device=device,
|
1519 |
+
num_images_per_prompt=num_images_per_prompt,
|
1520 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1521 |
+
negative_prompt=negative_prompt,
|
1522 |
+
prompt_embeds=None,
|
1523 |
+
negative_prompt_embeds=None,
|
1524 |
+
pooled_prompt_embeds=None,
|
1525 |
+
negative_pooled_prompt_embeds=None,
|
1526 |
+
lora_scale=text_encoder_lora_scale,
|
1527 |
+
clip_skip=self.clip_skip,
|
1528 |
+
)
|
1529 |
+
for col in row
|
1530 |
+
]
|
1531 |
+
for row in prompt
|
1532 |
+
]
|
1533 |
+
|
1534 |
+
# 4. Prepare latent image
|
1535 |
+
image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1536 |
+
|
1537 |
+
# 4.1 Prepare controlnet_conditioning_image
|
1538 |
+
control_image = self.prepare_control_image(
|
1539 |
+
image=image,
|
1540 |
+
width=width,
|
1541 |
+
height=height,
|
1542 |
+
batch_size=batch_size * num_images_per_prompt,
|
1543 |
+
num_images_per_prompt=num_images_per_prompt,
|
1544 |
+
device=device,
|
1545 |
+
dtype=controlnet.dtype,
|
1546 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1547 |
+
guess_mode=guess_mode,
|
1548 |
+
)
|
1549 |
+
control_type = (
|
1550 |
+
control_type.reshape(1, -1)
|
1551 |
+
.to(device, dtype=controlnet.dtype)
|
1552 |
+
.repeat(batch_size * num_images_per_prompt * 2, 1)
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
# 5. Prepare timesteps
|
1556 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
1557 |
+
extra_set_kwargs = {}
|
1558 |
+
if accepts_offset:
|
1559 |
+
extra_set_kwargs["offset"] = 1
|
1560 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
1561 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
|
1562 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1563 |
+
self._num_timesteps = len(timesteps)
|
1564 |
+
|
1565 |
+
# 6. Prepare latent variables
|
1566 |
+
dtype = text_embeddings[0][0][0].dtype
|
1567 |
+
if latents is None:
|
1568 |
+
latents = self.prepare_latents(
|
1569 |
+
image_tensor,
|
1570 |
+
latent_timestep,
|
1571 |
+
batch_size,
|
1572 |
+
num_images_per_prompt,
|
1573 |
+
dtype,
|
1574 |
+
device,
|
1575 |
+
generator,
|
1576 |
+
True,
|
1577 |
+
)
|
1578 |
+
|
1579 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
1580 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
1581 |
+
latents = latents * self.scheduler.sigmas[0]
|
1582 |
+
|
1583 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1584 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1585 |
+
|
1586 |
+
# 8. Create tensor stating which controlnets to keep
|
1587 |
+
controlnet_keep = []
|
1588 |
+
for i in range(len(timesteps)):
|
1589 |
+
controlnet_keep.append(
|
1590 |
+
1.0
|
1591 |
+
- float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
|
1592 |
+
)
|
1593 |
+
|
1594 |
+
# 8.1 Prepare added time ids & embeddings
|
1595 |
+
# text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
1596 |
+
embeddings_and_added_time = []
|
1597 |
+
crops_coords_top_left = negative_crops_coords_top_left = (tile_width, tile_height)
|
1598 |
+
for row in range(grid_rows):
|
1599 |
+
addition_embed_type_row = []
|
1600 |
+
for col in range(grid_cols):
|
1601 |
+
# extract generated values
|
1602 |
+
prompt_embeds = text_embeddings[row][col][0]
|
1603 |
+
negative_prompt_embeds = text_embeddings[row][col][1]
|
1604 |
+
pooled_prompt_embeds = text_embeddings[row][col][2]
|
1605 |
+
negative_pooled_prompt_embeds = text_embeddings[row][col][3]
|
1606 |
+
|
1607 |
+
if negative_original_size is None:
|
1608 |
+
negative_original_size = original_size
|
1609 |
+
if negative_target_size is None:
|
1610 |
+
negative_target_size = target_size
|
1611 |
+
add_text_embeds = pooled_prompt_embeds
|
1612 |
+
|
1613 |
+
if self.text_encoder_2 is None:
|
1614 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1615 |
+
else:
|
1616 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1617 |
+
|
1618 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1619 |
+
original_size,
|
1620 |
+
crops_coords_top_left,
|
1621 |
+
target_size,
|
1622 |
+
aesthetic_score,
|
1623 |
+
negative_aesthetic_score,
|
1624 |
+
negative_original_size,
|
1625 |
+
negative_crops_coords_top_left,
|
1626 |
+
negative_target_size,
|
1627 |
+
dtype=prompt_embeds.dtype,
|
1628 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1629 |
+
)
|
1630 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1631 |
+
|
1632 |
+
if self.do_classifier_free_guidance:
|
1633 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1634 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1635 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1636 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1637 |
+
|
1638 |
+
prompt_embeds = prompt_embeds.to(device)
|
1639 |
+
add_text_embeds = add_text_embeds.to(device)
|
1640 |
+
add_time_ids = add_time_ids.to(device)
|
1641 |
+
addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))
|
1642 |
+
|
1643 |
+
embeddings_and_added_time.append(addition_embed_type_row)
|
1644 |
+
|
1645 |
+
# 9. Prepare tiles weights and latent overlaps size to denoising process
|
1646 |
+
tile_weights, tile_row_overlaps, tile_col_overlaps = self.prepare_tiles(
|
1647 |
+
grid_rows,
|
1648 |
+
grid_cols,
|
1649 |
+
tile_weighting_method,
|
1650 |
+
tile_width,
|
1651 |
+
tile_height,
|
1652 |
+
normal_tile_overlap,
|
1653 |
+
border_tile_overlap,
|
1654 |
+
width,
|
1655 |
+
height,
|
1656 |
+
tile_gaussian_sigma,
|
1657 |
+
batch_size,
|
1658 |
+
device,
|
1659 |
+
dtype,
|
1660 |
+
)
|
1661 |
+
|
1662 |
+
# 10. Denoising loop
|
1663 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1664 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1665 |
+
for i, t in enumerate(timesteps):
|
1666 |
+
# Diffuse each tile
|
1667 |
+
noise_preds = []
|
1668 |
+
for row in range(grid_rows):
|
1669 |
+
noise_preds_row = []
|
1670 |
+
for col in range(grid_cols):
|
1671 |
+
if self.interrupt:
|
1672 |
+
continue
|
1673 |
+
tile_row_overlap = tile_row_overlaps[row, col]
|
1674 |
+
tile_col_overlap = tile_col_overlaps[row, col]
|
1675 |
+
|
1676 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
|
1677 |
+
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
1678 |
+
)
|
1679 |
+
|
1680 |
+
tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
|
1681 |
+
|
1682 |
+
# expand the latents if we are doing classifier free guidance
|
1683 |
+
latent_model_input = (
|
1684 |
+
torch.cat([tile_latents] * 2)
|
1685 |
+
if self.do_classifier_free_guidance
|
1686 |
+
else tile_latents # 1, 4, ...
|
1687 |
+
)
|
1688 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1689 |
+
|
1690 |
+
# predict the noise residual
|
1691 |
+
added_cond_kwargs = {
|
1692 |
+
"text_embeds": embeddings_and_added_time[row][col][1],
|
1693 |
+
"time_ids": embeddings_and_added_time[row][col][2],
|
1694 |
+
}
|
1695 |
+
|
1696 |
+
# controlnet(s) inference
|
1697 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1698 |
+
# Infer ControlNet only for the conditional batch.
|
1699 |
+
control_model_input = tile_latents
|
1700 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1701 |
+
controlnet_prompt_embeds = embeddings_and_added_time[row][col][0].chunk(2)[1]
|
1702 |
+
controlnet_added_cond_kwargs = {
|
1703 |
+
"text_embeds": embeddings_and_added_time[row][col][1].chunk(2)[1],
|
1704 |
+
"time_ids": embeddings_and_added_time[row][col][2].chunk(2)[1],
|
1705 |
+
}
|
1706 |
+
else:
|
1707 |
+
control_model_input = latent_model_input
|
1708 |
+
controlnet_prompt_embeds = embeddings_and_added_time[row][col][0]
|
1709 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1710 |
+
|
1711 |
+
if isinstance(controlnet_keep[i], list):
|
1712 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1713 |
+
else:
|
1714 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1715 |
+
if isinstance(controlnet_cond_scale, list):
|
1716 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1717 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1718 |
+
|
1719 |
+
px_row_init_pixel, px_row_end_pixel, px_col_init_pixel, px_col_end_pixel = _tile2pixel_indices(
|
1720 |
+
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
tile_control_image = control_image[
|
1724 |
+
:, :, px_row_init_pixel:px_row_end_pixel, px_col_init_pixel:px_col_end_pixel
|
1725 |
+
]
|
1726 |
+
|
1727 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1728 |
+
control_model_input,
|
1729 |
+
t,
|
1730 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1731 |
+
controlnet_cond=[tile_control_image],
|
1732 |
+
control_type=control_type,
|
1733 |
+
control_type_idx=control_mode,
|
1734 |
+
conditioning_scale=cond_scale,
|
1735 |
+
guess_mode=guess_mode,
|
1736 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1737 |
+
return_dict=False,
|
1738 |
+
)
|
1739 |
+
|
1740 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1741 |
+
# Inferred ControlNet only for the conditional batch.
|
1742 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1743 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1744 |
+
down_block_res_samples = [
|
1745 |
+
torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples
|
1746 |
+
]
|
1747 |
+
mid_block_res_sample = torch.cat(
|
1748 |
+
[torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
|
1749 |
+
)
|
1750 |
+
|
1751 |
+
# predict the noise residual
|
1752 |
+
with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype):
|
1753 |
+
noise_pred = self.unet(
|
1754 |
+
latent_model_input,
|
1755 |
+
t,
|
1756 |
+
encoder_hidden_states=embeddings_and_added_time[row][col][0],
|
1757 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1758 |
+
down_block_additional_residuals=down_block_res_samples,
|
1759 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1760 |
+
added_cond_kwargs=added_cond_kwargs,
|
1761 |
+
return_dict=False,
|
1762 |
+
)[0]
|
1763 |
+
|
1764 |
+
# perform guidance
|
1765 |
+
if self.do_classifier_free_guidance:
|
1766 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1767 |
+
noise_pred_tile = noise_pred_uncond + guidance_scale * (
|
1768 |
+
noise_pred_text - noise_pred_uncond
|
1769 |
+
)
|
1770 |
+
noise_preds_row.append(noise_pred_tile)
|
1771 |
+
noise_preds.append(noise_preds_row)
|
1772 |
+
|
1773 |
+
# Stitch noise predictions for all tiles
|
1774 |
+
noise_pred = torch.zeros(latents.shape, device=device)
|
1775 |
+
contributors = torch.zeros(latents.shape, device=device)
|
1776 |
+
|
1777 |
+
# Add each tile contribution to overall latents
|
1778 |
+
for row in range(grid_rows):
|
1779 |
+
for col in range(grid_cols):
|
1780 |
+
tile_row_overlap = tile_row_overlaps[row, col]
|
1781 |
+
tile_col_overlap = tile_col_overlaps[row, col]
|
1782 |
+
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
|
1783 |
+
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
1784 |
+
)
|
1785 |
+
tile_weights_resized = tile_weights[row, col]
|
1786 |
+
|
1787 |
+
noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
|
1788 |
+
noise_preds[row][col] * tile_weights_resized
|
1789 |
+
)
|
1790 |
+
contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights_resized
|
1791 |
+
|
1792 |
+
# Average overlapping areas with more than 1 contributor
|
1793 |
+
noise_pred /= contributors
|
1794 |
+
noise_pred = noise_pred.to(dtype)
|
1795 |
+
|
1796 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1797 |
+
latents_dtype = latents.dtype
|
1798 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1799 |
+
if latents.dtype != latents_dtype:
|
1800 |
+
if torch.backends.mps.is_available():
|
1801 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1802 |
+
latents = latents.to(latents_dtype)
|
1803 |
+
|
1804 |
+
# update progress bar
|
1805 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1806 |
+
progress_bar.update()
|
1807 |
+
|
1808 |
+
if XLA_AVAILABLE:
|
1809 |
+
xm.mark_step()
|
1810 |
+
|
1811 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1812 |
+
# manually for max memory savings
|
1813 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1814 |
+
self.unet.to("cpu")
|
1815 |
+
self.controlnet.to("cpu")
|
1816 |
+
torch.cuda.empty_cache()
|
1817 |
+
|
1818 |
+
if not output_type == "latent":
|
1819 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1820 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1821 |
+
|
1822 |
+
if needs_upcasting:
|
1823 |
+
self.upcast_vae()
|
1824 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1825 |
+
|
1826 |
+
# unscale/denormalize the latents
|
1827 |
+
# denormalize with the mean and std if available and not None
|
1828 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1829 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1830 |
+
if has_latents_mean and has_latents_std:
|
1831 |
+
latents_mean = (
|
1832 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1833 |
+
)
|
1834 |
+
latents_std = (
|
1835 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1836 |
+
)
|
1837 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1838 |
+
else:
|
1839 |
+
latents = latents / self.vae.config.scaling_factor
|
1840 |
+
|
1841 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1842 |
+
|
1843 |
+
# cast back to fp16 if needed
|
1844 |
+
if needs_upcasting:
|
1845 |
+
self.vae.to(dtype=torch.float16)
|
1846 |
+
|
1847 |
+
# apply watermark if available
|
1848 |
+
if self.watermark is not None:
|
1849 |
+
image = self.watermark.apply_watermark(image)
|
1850 |
+
|
1851 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1852 |
+
else:
|
1853 |
+
image = latents
|
1854 |
+
|
1855 |
+
# Offload all models
|
1856 |
+
self.maybe_free_model_hooks()
|
1857 |
+
|
1858 |
+
result = StableDiffusionXLPipelineOutput(images=image)
|
1859 |
+
if not return_dict:
|
1860 |
+
return (image,)
|
1861 |
+
|
1862 |
+
return result
|