File size: 28,574 Bytes
d913a15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
"""
This script performs DDIM inversion for video frames using a pre-trained model and generates
a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to
process video frames, apply the DDIM inverse scheduler, and produce an output video.
**Please notice that this script is based on the CogVideoX 5B model, and would not generate
a good result for 2B variants.**
Usage:
python cogvideox_ddim_inversion.py
--model-path /path/to/model
--prompt "a prompt"
--video-path /path/to/video.mp4
--output-path /path/to/output
For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`.
Author:
LittleNyima <littlenyima[at]163[dot]com>
"""
import argparse
import math
import os
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0
from diffusers.models.autoencoders import AutoencoderKLCogVideoX
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps
from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler
from diffusers.utils import export_to_video
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error.
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort: skip
class DDIMInversionArguments(TypedDict):
model_path: str
prompt: str
video_path: str
output_path: str
guidance_scale: float
num_inference_steps: int
skip_frames_start: int
skip_frames_end: int
frame_sample_step: Optional[int]
max_num_frames: int
width: int
height: int
fps: int
dtype: torch.dtype
seed: int
device: torch.device
def get_args() -> DDIMInversionArguments:
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model")
parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure")
parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion")
parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos")
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start")
parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end")
parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames")
parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames")
parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames")
parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames")
parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos")
parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model")
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator")
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference")
args = parser.parse_args()
args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16
args.device = torch.device(args.device)
return DDIMInversionArguments(**vars(args))
class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0):
def __init__(self):
super().__init__()
def calculate_attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn: Attention,
batch_size: int,
image_seq_length: int,
text_seq_length: int,
attention_mask: Optional[torch.Tensor],
image_rotary_emb: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Core attention computation with inversion-guided RoPE integration.
Args:
query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor
key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor
value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor
attn (`Attention`): Parent attention module with projection layers
batch_size (`int`): Effective batch size (after chunk splitting)
image_seq_length (`int`): Length of image feature sequence
text_seq_length (`int`): Length of text feature sequence
attention_mask (`Optional[torch.Tensor]`): Attention mask tensor
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) hidden_states: [batch_size, image_seq_length, dim] processed image features
(2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features
"""
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
if not attn.is_cross_attention:
if key.size(2) == query.size(2): # Attention for reference hidden states
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
else: # RoPE should be applied to each group of image tokens
key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb(
key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb
)
key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb(
key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb
)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
return hidden_states, encoder_hidden_states
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Process the dual-path attention for the inversion-guided denoising procedure.
Args:
attn (`Attention`): Parent attention module
hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens
encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens
attention_mask (`Optional[torch.Tensor]`): Optional attention mask
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens
(2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens
"""
image_seq_length = hidden_states.size(1)
text_seq_length = encoder_hidden_states.size(1)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query, query_reference = query.chunk(2)
key, key_reference = key.chunk(2)
value, value_reference = value.chunk(2)
batch_size = batch_size // 2
hidden_states, encoder_hidden_states = self.calculate_attention(
query=query,
key=torch.cat((key, key_reference), dim=1),
value=torch.cat((value, value_reference), dim=1),
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention(
query=query_reference,
key=key_reference,
value=value_reference,
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
return (
torch.cat((hidden_states, hidden_states_reference)),
torch.cat((encoder_hidden_states, encoder_hidden_states_reference)),
)
class OverrideAttnProcessors:
r"""
Context manager for temporarily overriding attention processors in CogVideo transformer blocks.
Designed for DDIM inversion process, replaces original attention processors with
`CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager
pattern to safely manage processor replacement.
Typical usage:
```python
with OverrideAttnProcessors(transformer):
# Perform DDIM inversion operations
```
Args:
transformer (`CogVideoXTransformer3DModel`):
The transformer model containing attention blocks to be modified. Should have
`transformer_blocks` attribute containing `CogVideoXBlock` instances.
"""
def __init__(self, transformer: CogVideoXTransformer3DModel):
self.transformer = transformer
self.original_processors = {}
def __enter__(self):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
self.original_processors[id(block)] = block.attn1.get_processor()
block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion())
def __exit__(self, _0, _1, _2):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
block.attn1.set_processor(self.original_processors[id(block)])
def get_video_frames(
video_path: str,
width: int,
height: int,
skip_frames_start: int,
skip_frames_end: int,
max_num_frames: int,
frame_sample_step: Optional[int],
) -> torch.FloatTensor:
"""
Extract and preprocess video frames from a video file for VAE processing.
Args:
video_path (`str`): Path to input video file
width (`int`): Target frame width for decoding
height (`int`): Target frame height for decoding
skip_frames_start (`int`): Number of frames to skip at video start
skip_frames_end (`int`): Number of frames to skip at video end
max_num_frames (`int`): Maximum allowed number of output frames
frame_sample_step (`Optional[int]`):
Frame sampling step size. If None, automatically calculated as:
(total_frames - skipped_frames) // max_num_frames
Returns:
`torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where:
- `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility)
- `C`: Channels (3 for RGB)
- `H`: Frame height
- `W`: Frame width
"""
with decord.bridge.use_torch():
video_reader = decord.VideoReader(uri=video_path, width=width, height=height)
video_num_frames = len(video_reader)
start_frame = min(skip_frames_start, video_num_frames)
end_frame = max(0, video_num_frames - skip_frames_end)
if end_frame <= start_frame:
indices = [start_frame]
elif end_frame - start_frame <= max_num_frames:
indices = list(range(start_frame, end_frame))
else:
step = frame_sample_step or (end_frame - start_frame) // max_num_frames
indices = list(range(start_frame, end_frame, step))
frames = video_reader.get_batch(indices=indices)
frames = frames[:max_num_frames].float() # ensure that we don't go over the limit
# Choose first (4k + 1) frames as this is how many is required by the VAE
selected_num_frames = frames.size(0)
remainder = (3 + selected_num_frames) % 4
if remainder != 0:
frames = frames[:-remainder]
assert frames.size(0) % 4 == 1
# Normalize the frames
transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
frames = torch.stack(tuple(map(transform, frames)), dim=0)
return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W]
class CogVideoXDDIMInversionOutput:
inverse_latents: torch.FloatTensor
recon_latents: torch.FloatTensor
def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor):
self.inverse_latents = inverse_latents
self.recon_latents = recon_latents
class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline):
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel,
scheduler: CogVideoXDDIMScheduler,
):
super().__init__(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config)
def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor:
"""
Encode video frames into latent space using Variational Autoencoder.
Args:
video_frames (`torch.FloatTensor`):
Input frames tensor in `[F, C, H, W]` format from `get_video_frames()`
Returns:
`torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where:
- `F`: Number of frames (same as input)
- `D`: Latent channel dimension
- `H_latent`: Latent space height (H // 2^vae.downscale_factor)
- `W_latent`: Latent space width (W // 2^vae.downscale_factor)
"""
vae: AutoencoderKLCogVideoX = self.vae
video_frames = video_frames.to(device=vae.device, dtype=vae.dtype)
video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2)
return latent_dist * vae.config.scaling_factor
@torch.no_grad()
def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int):
r"""
Decode latent vectors into video and export as video file.
Args:
latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from
`encode_video_frames()`
video_path (`str`): Output path for video file
fps (`int`): Target frames per second for output video
"""
video = self.decode_latents(latents)
frames = self.video_processor.postprocess_video(video=video, output_type="pil")
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps)
# Modified from CogVideoXPipeline.__call__
@torch.no_grad()
def sample(
self,
latents: torch.FloatTensor,
scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler],
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 50,
guidance_scale: float = 6,
use_dynamic_cfg: bool = False,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
reference_latents: torch.FloatTensor = None,
) -> torch.FloatTensor:
r"""
Execute the core sampling loop for video generation/inversion using CogVideoX.
Implements the full denoising trajectory recording for both DDIM inversion and
generation processes. Supports dynamic classifier-free guidance and reference
latent conditioning.
Args:
latents (`torch.FloatTensor`):
Initial noise tensor of shape `[B, F, C, H, W]`.
scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`):
Scheduling strategy for diffusion process. Use:
(1) `DDIMInverseScheduler` for inversion
(2) `CogVideoXDDIMScheduler` for generation
prompt (`Optional[Union[str, List[str]]]`):
Text prompt(s) for conditional generation. Defaults to unconditional.
negative_prompt (`Optional[Union[str, List[str]]]`):
Negative prompt(s) for guidance. Requires `guidance_scale > 1`.
num_inference_steps (`int`):
Number of denoising steps. Affects quality/compute trade-off.
guidance_scale (`float`):
Classifier-free guidance weight. 1.0 = no guidance.
use_dynamic_cfg (`bool`):
Enable time-varying guidance scale (cosine schedule)
eta (`float`):
DDIM variance parameter (0 = deterministic process)
generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`):
Random number generator(s) for reproducibility
attention_kwargs (`Optional[Dict[str, Any]]`):
Custom parameters for attention modules
reference_latents (`torch.FloatTensor`):
Reference latent trajectory for conditional sampling. Shape should match
`[T, B, F, C, H, W]` where `T` is number of timesteps
Returns:
`torch.FloatTensor`:
Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`.
"""
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._interrupt = False
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
negative_prompt,
do_classifier_free_guidance,
device=device,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
if reference_latents is not None:
prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device)
self._num_timesteps = len(timesteps)
# 5. Prepare latents.
latents = latents.to(device=device) * scheduler.init_noise_sigma
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs
extra_step_kwargs = {}
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(
height=latents.size(3) * self.vae_scale_factor_spatial,
width=latents.size(4) * self.vae_scale_factor_spatial,
num_frames=latents.size(1),
device=device,
)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0)
trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if reference_latents is not None:
reference = reference_latents[i]
reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference
latent_model_input = torch.cat([latent_model_input, reference], dim=0)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
if reference_latents is not None: # Recover the original batch size
noise_pred, _ = noise_pred.chunk(2)
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the noisy sample x_t-1 -> x_t
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
latents = latents.to(prompt_embeds.dtype)
trajectory[i] = latents
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
# Offload all models
self.maybe_free_model_hooks()
return trajectory
@torch.no_grad()
def __call__(
self,
prompt: str,
video_path: str,
guidance_scale: float,
num_inference_steps: int,
skip_frames_start: int,
skip_frames_end: int,
frame_sample_step: Optional[int],
max_num_frames: int,
width: int,
height: int,
seed: int,
):
"""
Performs DDIM inversion on a video to reconstruct it with a new prompt.
Args:
prompt (`str`): The text prompt to guide the reconstruction.
video_path (`str`): Path to the input video file.
guidance_scale (`float`): Scale for classifier-free guidance.
num_inference_steps (`int`): Number of denoising steps.
skip_frames_start (`int`): Number of frames to skip from the beginning of the video.
skip_frames_end (`int`): Number of frames to skip from the end of the video.
frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used.
max_num_frames (`int`): Maximum number of frames to process.
width (`int`): Width of the output video frames.
height (`int`): Height of the output video frames.
seed (`int`): Random seed for reproducibility.
Returns:
`CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents.
"""
if not self.transformer.config.use_rotary_positional_embeddings:
raise NotImplementedError("This script supports CogVideoX 5B model only.")
video_frames = get_video_frames(
video_path=video_path,
width=width,
height=height,
skip_frames_start=skip_frames_start,
skip_frames_end=skip_frames_end,
max_num_frames=max_num_frames,
frame_sample_step=frame_sample_step,
).to(device=self.device)
video_latents = self.encode_video_frames(video_frames=video_frames)
inverse_latents = self.sample(
latents=video_latents,
scheduler=self.inverse_scheduler,
prompt="",
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
)
with OverrideAttnProcessors(transformer=self.transformer):
recon_latents = self.sample(
latents=torch.randn_like(video_latents),
scheduler=self.scheduler,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
reference_latents=reversed(inverse_latents),
)
return CogVideoXDDIMInversionOutput(
inverse_latents=inverse_latents,
recon_latents=recon_latents,
)
if __name__ == "__main__":
arguments = get_args()
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
arguments.pop("model_path"),
torch_dtype=arguments.pop("dtype"),
).to(device=arguments.pop("device"))
output_path = arguments.pop("output_path")
fps = arguments.pop("fps")
inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4")
recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4")
# Run DDIM inversion
output = pipeline(**arguments)
pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps)
pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps)
|