modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
readme
stringlengths
0
186k
embedding
sequence
allenai/cs_roberta_base
f56079f4997a5660c9deffca2827798eb39ac6cd
2021-05-20T13:02:35.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/cs_roberta_base
3,095
1
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
Wavepaw/DialoGPT-medium-WardenIngo
78044c2b1cda28107bd5b6d8e1fae32d96103210
2022-04-23T21:20:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Wavepaw
null
Wavepaw/DialoGPT-medium-WardenIngo
3,093
null
transformers
--- tags: - conversational --- # Warden Ingo DialoGPT Model
[ -0.053123053163290024, 0.004645736888051033, 0.002100412268191576, -0.036995138972997665, 0.03757556900382042, -0.058671873062849045, 0.22322465479373932, 0.005124442745000124, 0.06205340102314949, 0.00667716795578599, 0.007695036008954048, -0.06804350763559341, -0.0382518507540226, 0.03556392341852188, 0.01658288948237896, 0.08089578151702881, 0.01786310411989689, 0.0020705293864011765, -0.06216679513454437, 0.01559846755117178, -0.003711978904902935, 0.08188273012638092, 0.016642648726701736, 0.020168086513876915, -0.08789068460464478, -0.0548318512737751, -0.05805375054478645, 0.023866811767220497, 0.07207430154085159, -0.059794239699840546, -0.042672403156757355, 0.07305517047643661, 0.0590723380446434, 0.030901068821549416, -0.08515165746212006, 0.04446139931678772, 0.05367562547326088, 0.00317190564237535, -0.05346103012561798, -0.03375895321369171, -0.053812891244888306, 0.060727063566446304, -0.07022163271903992, -0.017729507759213448, 0.04246833175420761, -0.03736710175871849, -0.13596871495246887, -0.018362993374466896, -0.04289732500910759, -0.024494856595993042, -0.07955165952444077, -0.012632617726922035, 0.005828250665217638, 0.1195412427186966, -0.02263808622956276, 0.018028924241662025, -0.04865206405520439, -0.032011978328228, 0.07322709262371063, 0.03435150161385536, -0.04222768172621727, -0.017666609957814217, -0.09438173472881317, 0.047957584261894226, -0.027747169137001038, 0.0520755760371685, -0.0459420382976532, 0.03289823606610298, -0.0154527947306633, 0.06794163584709167, 0.012963072396814823, -0.011252007447183132, 0.007784631103277206, -0.06994841992855072, -0.01575586386024952, 0.05115015432238579, -0.03030785545706749, 0.006284763570874929, 0.05838875472545624, -0.06101745739579201, 0.04388817772269249, -0.06088782474398613, 0.043535638600587845, -0.010179374366998672, 0.018808789551258087, -0.0034216283820569515, -0.04212789610028267, -0.04791301488876343, 0.018862560391426086, 0.04906061664223671, -0.02080596797168255, -0.055086344480514526, 0.05347742885351181, -0.017204411327838898, 0.00945817120373249, 0.06044726446270943, -0.021647784858942032, -0.057202357798814774, -0.049077946692705154, 0.11188387870788574, -0.004384469706565142, 0.035458773374557495, -0.02136467769742012, -0.07472967356443405, 0.013970330357551575, 0.009932883083820343, 0.03205317631363869, -0.039897553622722626, 0.009101281873881817, 0.02829604037106037, -0.022809194400906563, -0.04319426044821739, 0.04648986831307411, -0.0073776585049927235, 0.07984559237957001, -0.060906533151865005, 0.012355836108326912, -0.03437395021319389, 0.04952043667435646, 0.026704125106334686, 0.006850333884358406, 0.01778172142803669, -0.06967480480670929, -0.03509385883808136, -0.00036742017255164683, 0.02629663795232773, -0.015825197100639343, -1.703885122659652e-33, 0.06225254759192467, 0.038095783442258835, 0.000046671353629790246, 0.09204495698213577, 0.06923089176416397, 0.04512159526348114, -0.05427144095301628, -0.03599999472498894, -0.03322033956646919, -0.0065186889842152596, -0.03861211985349655, -0.07210899144411087, -0.07652889937162399, 0.032522398978471756, 0.06330589950084686, -0.018611567094922066, -0.09547271579504013, 0.07055328041315079, -0.007089204154908657, -0.08725171536207199, 0.026808610185980797, 0.026356950402259827, -0.04491857811808586, 0.03690599650144577, 0.11089470982551575, 0.0938267707824707, 0.043516919016838074, -0.12645576894283295, 0.004893670789897442, 0.05928553640842438, -0.03764733672142029, 0.02857108600437641, -0.02159992977976799, 0.001586638274602592, -0.002716998802497983, -0.010806454345583916, 0.022049596533179283, -0.03931109607219696, -0.020030567422509193, -0.09383658319711685, -0.024224475026130676, -0.003310454310849309, -0.06753827631473541, -0.04759043827652931, -0.059358179569244385, -0.011587570421397686, -0.008436579257249832, 0.03543941304087639, 0.036808863282203674, -0.020341692492365837, -0.03818414360284805, 0.017075877636671066, -0.019888773560523987, -0.060622069984674454, 0.008334577083587646, -0.034369517117738724, -0.0014815895119681954, -0.01684698276221752, 0.023807352408766747, -0.006546278949826956, 0.026188962161540985, 0.0032615463715046644, 0.03401901200413704, -0.05207080394029617, 0.091631680727005, -0.028056560084223747, -0.07058455049991608, -0.020047197118401527, 0.04411819949746132, -0.03341076523065567, -0.07225538790225983, -0.0038668964989483356, -0.033566463738679886, 0.05843677371740341, -0.054332535713911057, 0.0011198214488103986, -0.01903803087770939, -0.047785673290491104, 0.03354187682271004, 0.06576856970787048, -0.051490601152181625, -0.06906302273273468, -0.07522745430469513, 0.061334993690252304, 0.010892413556575775, -0.08359523117542267, 0.07093023508787155, -0.11171170324087143, 0.01537596620619297, 0.07021855562925339, 0.03369662165641785, 0.07564578205347061, -0.06696714460849762, 0.016692958772182465, -0.11450417339801788, -2.4833498247246454e-34, -0.006695407908409834, -0.012187670916318893, -0.0752146765589714, 0.04304353892803192, -0.018358618021011353, 0.014826194383203983, 0.011894729919731617, 0.08419296145439148, 0.06645800918340683, -0.04813088849186897, -0.019235949963331223, 0.07743826508522034, 0.054711613804101944, 0.045389652252197266, 0.08458258211612701, -0.016339702531695366, 0.028039028868079185, -0.040822647511959076, 0.011109696701169014, 0.018495414406061172, 0.050664450973272324, -0.050905849784612656, -0.12823045253753662, 0.03657078370451927, -0.001239557284861803, -0.024718035012483597, -0.01717999018728733, 0.05388953164219856, 0.06913839280605316, -0.032124634832143784, -0.02958270162343979, -0.037964463233947754, -0.0218005683273077, 0.02230231463909149, 0.00435391440987587, -0.004448352847248316, 0.11041107773780823, -0.021028030663728714, -0.005220262799412012, 0.055450644344091415, 0.04678529128432274, -0.016643693670630455, -0.009980530478060246, -0.02659030072391033, -0.03726094961166382, -0.050073184072971344, -0.009520248509943485, -0.0003638320486061275, -0.11067958921194077, -0.00558274844661355, 0.029191235080361366, -0.027533888816833496, -0.07162048667669296, -0.01817893050611019, -0.08007565885782242, -0.03422462195158005, 0.018723903223872185, -0.09077959507703781, -0.06466060876846313, 0.03954651579260826, -0.00566817494109273, -0.02490239590406418, 0.02210770733654499, -0.03251640126109123, 0.04578747600317001, 0.033869706094264984, -0.027292056009173393, 0.024396507069468498, -0.02914743311703205, -0.08778827637434006, 0.12363717705011368, -0.0292381402105093, -0.006047720089554787, -0.00001536571107862983, 0.04533442482352257, -0.004402237944304943, 0.018138140439987183, -0.06767413020133972, 0.06198440119624138, -0.12420304864645004, -0.01019895076751709, 0.009642904624342918, 0.01718064583837986, 0.053646959364414215, -0.0001212595307151787, 0.018168434500694275, 0.02900432050228119, 0.07359107583761215, 0.04292534664273262, 0.021568341180682182, 0.003627142868936062, 0.026675105094909668, 0.02032172866165638, 0.10563953220844269, -0.020265208557248116, -2.681443689311891e-8, -0.11114000529050827, -0.016919953748583794, -0.007959861308336258, 0.05351977422833443, 0.007570653222501278, -0.021739529445767403, 0.06611113250255585, 0.00024857508833520114, -0.0566285103559494, -0.016100404784083366, 0.06959587335586548, 0.051781754940748215, -0.03337182104587555, 0.0352637879550457, 0.05627909675240517, 0.027369655668735504, -0.06297440826892853, 0.052120745182037354, -0.025523653253912926, -0.031617674976587296, 0.06501448154449463, 0.01915258727967739, -0.040709927678108215, 0.031154677271842957, -0.020062439143657684, -0.009171227924525738, -0.08394819498062134, 0.011799882166087627, 0.004889448639005423, 0.08831489831209183, 0.061342962086200714, 0.07854363322257996, -0.09204810112714767, 0.01901528611779213, -0.06003652885556221, 0.09294800460338593, -0.06240655481815338, -0.06678175926208496, 0.00607944093644619, -0.04641042277216911, 0.06226838007569313, -0.005851969588547945, -0.08894045650959015, -0.043393574655056, 0.0562632791697979, 0.0412314310669899, 0.007410647813230753, -0.09930716454982758, 0.015319684520363808, 0.034379638731479645, -0.03726782649755478, -0.00749689107760787, 0.0971323773264885, 0.04489705339074135, 0.03647920489311218, -0.024440843611955643, 0.06675857305526733, -0.02528393641114235, 0.08792971819639206, 0.02370082587003708, 0.06837555766105652, 0.05655165761709213, 0.0475982204079628, 0.019131653010845184 ]
KoboldAI/GPT-J-6B-Shinen
afa5a11b24cb23eee708e17c83b920a788e9e07b
2022-03-20T18:48:45.000Z
[ "pytorch", "gptj", "text-generation", "en", "arxiv:2101.00027", "transformers", "license:mit" ]
text-generation
false
KoboldAI
null
KoboldAI/GPT-J-6B-Shinen
3,092
1
transformers
--- language: en license: mit --- # GPT-J 6B - Shinen ## Model Description GPT-J 6B-Shinen is a finetune created using EleutherAI's GPT-J 6B model. Compared to GPT-Neo-2.7-Horni, this model is much heavier on the sexual content. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The training data contains user-generated stories from sexstories.com. All stories are tagged using the following way: ``` [Theme: <theme1>, <theme2> ,<theme3>] <Story goes here> ``` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-J-6B-Shinen') >>> generator("She was staring at me", do_sample=True, min_length=50) [{'generated_text': 'She was staring at me with a look that said it all. She wanted me so badly tonight that I wanted'}] ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model uses the following model as base: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
[ -0.08336648344993591, 0.02847003936767578, -0.010457075200974941, 0.08082298934459686, 0.005438848864287138, -0.02593851275742054, -0.01720978505909443, 0.012822921387851238, -0.02447722665965557, -0.08372512459754944, -0.04064306244254112, 0.014758502133190632, 0.02365623600780964, 0.0084183095023036, 0.036147408187389374, 0.0386345311999321, -0.004789033439010382, 0.0208586435765028, -0.03630920499563217, -0.09437240660190582, 0.12846820056438446, 0.06613311171531677, 0.07425795495510101, 0.03913627937436104, -0.03384818509221077, -0.022599369287490845, -0.0051032924093306065, 0.03525448963046074, 0.019844118505716324, 0.029920659959316254, 0.04979931190609932, 0.0625184029340744, -0.046687833964824677, 0.03526720404624939, -0.07158658653497696, 0.08275730162858963, -0.04884172976016998, -0.02113017998635769, -0.00014523378922604024, 0.045411769300699234, 0.07491125911474228, -0.03452685847878456, -0.06565467268228531, -0.042070694267749786, 0.07489797472953796, -0.10815513879060745, -0.1345314085483551, -0.09271524101495743, -0.06316056102514267, -0.004374136682599783, -0.06703628599643707, -0.07583516091108322, 0.0012225197860971093, 0.02020547352731228, -0.025866791605949402, 0.061845943331718445, -0.008638019673526287, -0.09406852722167969, 0.08764379471540451, -0.10110907256603241, -0.011242564767599106, -0.020792430266737938, -0.07120125740766525, -0.0390327163040638, -0.0076993959955871105, -0.036512576043605804, 0.00721163721755147, 0.09773537516593933, 0.011303748935461044, 0.004497921094298363, -0.019312800839543343, 0.05488281697034836, -0.12079630047082901, 0.029143676161766052, -0.032836560159921646, 0.06229419633746147, 0.04825391620397568, -0.05794665217399597, -0.027263151481747627, -0.03961211442947388, 0.005063995718955994, -0.05726412683725357, 0.0446108914911747, 0.02895507402718067, -0.04321141913533211, 0.011829370632767677, 0.03907252103090286, 0.04319595545530319, -0.026929346844553947, 0.028733475133776665, -0.08102905005216599, -0.04391835629940033, 0.03626242280006409, 0.011443553492426872, -0.060712508857250214, 0.0010794906411319971, -0.02307300642132759, -0.04962560161948204, -0.031440846621990204, 0.0697236955165863, -0.01423693634569645, -0.004477505572140217, 0.03429454565048218, 0.034331779927015305, -0.08145178854465485, -0.08010111004114151, -0.0007662010029889643, 0.06463483721017838, -0.05470532551407814, -0.01029013842344284, 0.05655123293399811, -0.015053458511829376, -0.01768917217850685, -0.057360000908374786, 0.03881412371993065, 0.05004529654979706, -0.05775976926088333, -0.0038826270028948784, -0.034629277884960175, 0.12375231832265854, 0.06386371701955795, 0.0452127680182457, -0.07363584637641907, 0.09513518959283829, -0.017890799790620804, -0.05770449340343475, -0.011658113449811935, 6.909265593965547e-33, 0.04891517013311386, -0.0019158065551891923, 0.02943119779229164, 0.03581174463033676, 0.06224852055311203, 0.13750693202018738, 0.006915140897035599, -0.0766451507806778, -0.07584689557552338, -0.020572714507579803, -0.03676677122712135, 0.06311093270778656, -0.07443224638700485, -0.004389635287225246, -0.03306932374835014, -0.003822163213044405, 0.01530675683170557, 0.017793990671634674, -0.005757497623562813, 0.05771574005484581, 0.05017700791358948, 0.0659373328089714, -0.03444141522049904, -0.036609068512916565, -0.08461694419384003, 0.048601601272821426, -0.028433050960302353, -0.044789716601371765, -0.06519544869661331, 0.008774937130510807, -0.06850610673427582, -0.016167661175131798, 0.08553944528102875, 0.061636969447135925, 0.028007762506604195, -0.018779058009386063, 0.03044017404317856, -0.07936771214008331, 0.015527884475886822, -0.04901246726512909, 0.004956947173923254, -0.0012431662762537599, 0.0675184428691864, -0.03808407112956047, -0.06656625121831894, 0.056604333221912384, 0.025839662179350853, 0.023726290091872215, -0.017635714262723923, 0.06646724790334702, -0.061852503567934036, 0.10550728440284729, -0.058370765298604965, 0.023555191233754158, -0.021153585985302925, 0.03656698390841484, 0.04001432657241821, 0.015750223770737648, 0.10011398792266846, -0.024762023240327835, 0.08521717041730881, 0.0424552820622921, 0.03635881841182709, -0.005584369413554668, 0.045327078551054, 0.031131107360124588, 0.026221677660942078, 0.05203757807612419, 0.04794451966881752, 0.021116361021995544, -0.05537072569131851, 0.01947861909866333, -0.044403545558452606, 0.010343452915549278, 0.051796164363622665, -0.05546790733933449, 0.02115705981850624, -0.03747103363275528, -0.05199481174349785, 0.035429444164037704, -0.045491963624954224, -0.002534030005335808, -0.04368457943201065, -0.07726690918207169, -0.031502317637205124, 0.0002443855337332934, 0.034511469304561615, -0.03282016143202782, -0.008015268482267857, 0.0008890804019756615, -0.06022671237587929, -0.04918426647782326, -0.03306480497121811, -0.028320953249931335, -0.008265084587037563, -7.478306246151292e-33, 0.03716087341308594, 0.022481679916381836, -0.007558738812804222, 0.09264566004276276, 0.05191410332918167, -0.07226280868053436, 0.041111089289188385, 0.01894548162817955, -0.009059390984475613, -0.016601867973804474, 0.034596990793943405, -0.015506459400057793, -0.017405293881893158, -0.06567666679620743, 0.11583781987428665, 0.011187474243342876, -0.011632346548140049, -0.04168141260743141, -0.010400009341537952, 0.05109289661049843, -0.059228479862213135, 0.08164121955633163, -0.19119229912757874, 0.08187031745910645, -0.0009484285837970674, -0.02849092148244381, 0.02800469845533371, -0.009615478105843067, 0.032898277044296265, -0.006525902077555656, 0.005267659202218056, 0.015942050144076347, -0.053984880447387695, 0.03868967667222023, -0.0734330266714096, 0.010554392822086811, 0.08098824322223663, 0.031320054084062576, 0.011915030889213085, 0.11661230772733688, 0.03314460813999176, 0.004099555313587189, -0.060671620070934296, 0.0768970251083374, -0.048887304961681366, 0.07256262004375458, 0.0268689151853323, 0.007180522195994854, 0.017074380069971085, -0.000984557787887752, 0.0010897988686338067, -0.023700060322880745, -0.05657557025551796, -0.0031565751414746046, -0.04236060380935669, -0.16009733080863953, 0.024503277614712715, -0.007291204761713743, -0.08254746347665787, -0.0037580346688628197, 0.015624807216227055, -0.02556190825998783, -0.007431840058416128, -0.0816602036356926, -0.04423320293426514, -0.12134912610054016, -0.01654181070625782, -0.04543161764740944, 0.019734296947717667, 0.026959890499711037, 0.01939614675939083, -0.007371085695922375, 0.05145027115941048, -0.008292952552437782, -0.014151972718536854, -0.026437828317284584, -0.09062179177999496, -0.007563780061900616, -0.015786075964570045, -0.01766606979072094, -0.012514402158558369, 0.05326542258262634, 0.0544021911919117, 0.06398214399814606, 0.06889402121305466, -0.0521501824259758, 0.05860485881567001, 0.10686850547790527, -0.05582934990525246, -0.010713420808315277, -0.05709432438015938, 0.057790763676166534, -0.0008084829896688461, 0.054678160697221756, -0.03660566359758377, -5.60855859532694e-8, -0.017657959833741188, -0.08681433647871017, -0.09963632375001907, 0.07075276225805283, -0.01913798600435257, -0.007524365093559027, 0.008825232274830341, -0.006113145500421524, -0.02438204362988472, 0.008268374018371105, 0.01918480545282364, -0.04926086589694023, -0.020396124571561813, -0.023215401917696, 0.026750238612294197, 0.014607111923396587, 0.06873587518930435, 0.08566540479660034, -0.014876144006848335, -0.02943062037229538, 0.028782637789845467, 0.03904436528682709, -0.011215845122933388, -0.028866777196526527, -0.03580674156546593, 0.025853045284748077, -0.02790037915110588, 0.0023160127457231283, 0.003723245346918702, -0.0017193666426464915, 0.0758751854300499, -0.05110244080424309, -0.03391920030117035, 0.025393372401595116, 0.02902311645448208, 0.03717551380395889, 0.010690494440495968, 0.009855817072093487, 0.07784535735845566, 0.011671208776533604, 0.06641589850187302, 0.016804927960038185, -0.03653420880436897, 0.015402266755700111, -0.018812932074069977, 0.009735832922160625, -0.028053313493728638, -0.16890814900398254, 0.0703713670372963, 0.09974709153175354, -0.019146909937262535, -0.04175271838903427, -0.024283362552523613, -0.018754862248897552, 0.08113930374383926, -0.04262866824865341, 0.023072468116879463, 0.013112397864460945, -0.018269820138812065, 0.02739783562719822, 0.0374176912009716, 0.0010290972422808409, 0.04714606702327728, -0.0596732534468174 ]
pranavpsv/genre-story-generator-v2
b9950761c9c3fabf7d6365f4be8cf0d6b79673b4
2021-05-23T11:01:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
pranavpsv
null
pranavpsv/genre-story-generator-v2
3,090
1
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
uer/bart-base-chinese-cluecorpussmall
913015fd84e5f0ed219a1c7a8c3819b07006d179
2022-07-15T08:17:16.000Z
[ "pytorch", "tf", "bart", "text2text-generation", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "transformers", "autotrain_compatible" ]
text2text-generation
false
uer
null
uer/bart-base-chinese-cluecorpussmall
3,063
4
transformers
--- language: zh datasets: CLUECorpusSmall widget: - text: "作为电子[MASK]的平台,京东绝对是领先者。如今的刘强[MASK]已经是身价过[MASK]的老板。" --- # Chinese BART ## Model description This model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). You can download the set of Chinese BART models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | Link | | ----------------- | :----------------------------: | | **BART-Base** | [**L=6/H=768 (Base)**][base] | | **BART-Large** | [**L=12/H=1024 (Large)**][large] | ## How to use You can use this model directly with a pipeline for text2text generation (take the case of BART-Base): ```python >>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/bart-base-chinese-cluecorpussmall") >>> model = BartForConditionalGeneration.from_pretrained("uer/bart-base-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False) [{'generated_text': '中 国 的 首 都 是 北 京'}] ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 512. Taking the case of BART-Base ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --data_processor bart ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_bart_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bart/base_config.json \ --output_model_path models/cluecorpussmall_bart_base_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 5e-5 --batch_size 8 \ --span_masking --span_max_length 3 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path cluecorpussmall_bart_base_seq512_model.bin-1000000 \ --output_model_path pytorch_model.bin \ --layers_num 6 ``` ### BibTeX entry and citation info ``` @article{lewis2019bart, title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension}, author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:1910.13461}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [base]:https://huggingface.co/uer/bart-base-chinese-cluecorpussmall [large]:https://huggingface.co/uer/bart-large-chinese-cluecorpussmall
[ -0.09160938113927841, -0.02788405679166317, 0.07121438533067703, -0.0012630769051611423, -0.0361480712890625, 0.0755472183227539, -0.018255943432450294, -0.0018830489134415984, 0.0012223231606185436, -0.021688055247068405, 0.0864364355802536, -0.04519790783524513, 0.03732806816697121, 0.017286183312535286, 0.06652085483074188, 0.006929123308509588, 0.032427847385406494, 0.002266921568661928, 0.041355110704898834, -0.013235974125564098, 0.06326054781675339, 0.004623189568519592, 0.037782348692417145, -0.05490463227033615, -0.0026594761293381453, -0.0694405734539032, -0.012132842093706131, -0.0630282536149025, 0.07756340503692627, 0.010562127456068993, -0.0213584266602993, 0.020224783569574356, 0.07293102890253067, 0.029611743986606598, 0.04994228482246399, 0.0722116157412529, 0.08104820549488068, 0.04878198355436325, -0.00024487634073011577, 0.04777109995484352, 0.015608157031238079, 0.04431982338428497, -0.01457028929144144, -0.012167710810899734, 0.08932182937860489, -0.020531250163912773, -0.018863495439291, 0.021808279678225517, -0.08801876753568649, -0.015700172632932663, -0.07750508189201355, -0.007509422488510609, 0.07473420351743698, -0.00537147605791688, 0.002208857564255595, 0.013457597233355045, 0.026349375024437904, -0.02875438705086708, 0.054409418255090714, -0.06957563012838364, -0.0819014459848404, 0.03508685901761055, -0.029770122841000557, 0.01997341401875019, -0.040306542068719864, 0.031363312155008316, -0.0384690947830677, 0.08298464864492416, -0.03027929738163948, 0.02577224001288414, -0.028060482814908028, -0.020613329485058784, 0.04419917240738869, -0.0482332818210125, -0.025059500709176064, -0.10582119226455688, 0.08243197202682495, -0.06611370295286179, -0.025092273950576782, -0.050902705639600754, -0.028387807309627533, -0.02065170928835869, 0.05452084541320801, 0.050667185336351395, 0.02193591371178627, -0.009157104417681694, -0.008507538586854935, -0.01872207596898079, 0.003128145821392536, 0.0029556925874203444, -0.011221721768379211, -0.0576668418943882, -0.04320378601551056, 0.01796448789536953, -0.029743878170847893, 0.02965935319662094, 0.03909048065543175, 0.01884196512401104, -0.05301668494939804, 0.06283173710107803, 0.07425370067358017, 0.0035438381601125, 0.06166648864746094, -0.0887681245803833, 0.043935831636190414, 0.053111523389816284, -0.062298379838466644, -0.04297798499464989, 0.11483285576105118, 0.008937125094234943, -0.046566881239414215, -0.051580943167209625, -0.02668916806578636, -0.10205156356096268, -0.028687609359622, -0.04933050647377968, 0.0007908322149887681, -0.039001770317554474, 0.0050998409278690815, -0.019380783662199974, 0.04744979739189148, 0.02674189768731594, 0.0353105254471302, 0.018656810745596886, -0.07154962420463562, -0.0017735621659085155, 0.016042133793234825, -2.0227600058392756e-33, 0.016693368554115295, 0.01063965167850256, -0.008358174934983253, -0.016989799216389656, 0.00912699569016695, 0.00542267644777894, 0.07319983094930649, 0.004509414546191692, -0.07016213238239288, -0.041093263775110245, 0.002072972944006324, 0.02946660853922367, -0.14056281745433807, 0.0886591225862503, -0.05413970351219177, -0.00596365612000227, -0.06746456772089005, 0.018537836149334908, 0.06347833573818207, 0.000782790535595268, 0.102253757417202, -0.0010200466495007277, 0.004434359725564718, -0.0881003737449646, 0.012349161319434643, 0.06907647848129272, 0.06234268471598625, -0.10533220320940018, -0.05531421676278114, 0.04784492030739784, -0.08174276351928711, 0.0846058800816536, -0.0028043428901582956, -0.010272625833749771, -0.08141162991523743, -0.007620023563504219, -0.046752333641052246, -0.07477813959121704, -0.03101201355457306, -0.06726387143135071, -0.00681333290413022, 0.008738270029425621, 0.0006147322710603476, -0.06254876405000687, -0.06693749129772186, -0.013620984740555286, 0.0022019855678081512, -0.07009430229663849, 0.012531314976513386, -0.0008173588430508971, 0.02467826008796692, -0.03618909418582916, -0.0850701779127121, 0.0482095330953598, 0.006035711616277695, -0.08580109477043152, 0.0007767865317873657, 0.02491900324821472, 0.026812303811311722, -0.024861689656972885, 0.02870495431125164, -0.027963705360889435, 0.05386378616094589, 0.02687452919781208, 0.044587504118680954, 0.03278703987598419, -0.020661165937781334, -0.012977907434105873, 0.016469823196530342, 0.018300238996744156, -0.040757860988378525, -0.031171146780252457, 0.006538121495395899, 0.017050622031092644, -0.033466458320617676, -0.04171395301818848, -0.06509577482938766, -0.026248574256896973, -0.0175138209015131, 0.042742058634757996, -0.025457115843892097, -0.010272564366459846, -0.028007710352540016, 0.01681791990995407, -0.04562865197658539, -0.014064855873584747, 0.13763397932052612, -0.017878420650959015, -0.013156033121049404, -0.023616837337613106, -0.04138410463929176, -0.0860367938876152, 0.04277414828538895, -0.017870184034109116, -0.07199890911579132, -1.426242173203059e-33, -0.03489596024155617, 0.06383388489484787, -0.04212641716003418, -0.009373604319989681, -0.06750618666410446, -0.11076775193214417, 0.0712476298213005, 0.18250630795955658, 0.008999256417155266, -0.01753035932779312, -0.04641369357705116, -0.044899530708789825, 0.05431282892823219, -0.006701440084725618, 0.08738867193460464, 0.05843104422092438, 0.028081173077225685, 0.06998473405838013, 0.0022413507103919983, -0.019444232806563377, 0.0675208568572998, -0.07110142707824707, -0.12220486998558044, 0.10223302245140076, 0.04413989931344986, 0.020461129024624825, 0.03804663196206093, -0.006497279740869999, -0.027524009346961975, -0.02864277921617031, -0.05674920231103897, 0.031080376356840134, 0.0015983518678694963, 0.09378717094659805, -0.07922520488500595, 0.0221722349524498, -0.052185386419296265, 0.03147697448730469, -0.024388877674937248, -0.007469189818948507, 0.08738096803426743, -0.023867156356573105, -0.05592723563313484, 0.04844645783305168, -0.01784880831837654, 0.014193209819495678, -0.12129106372594833, -0.020161012187600136, 0.015926741063594818, -0.07034420222043991, 0.0046648187562823296, 0.002866952447220683, -0.061579760164022446, -0.06314124166965485, -0.12140009552240372, -0.03596964105963707, 0.04005119577050209, -0.029564375057816505, -0.05405149981379509, -0.07017537206411362, -0.07510019838809967, -0.0059370924718678, -0.005222553852945566, 0.06205184385180473, 0.010243081487715244, -0.04519195854663849, 0.035164400935173035, -0.011250904761254787, -0.01616959646344185, -0.05149183049798012, 0.036371972411870956, 0.09057112038135529, 0.04711072891950607, 0.06284314393997192, 0.0317816361784935, 0.026929263025522232, -0.018284624442458153, -0.03719661757349968, 0.004618807230144739, -0.05272853001952171, -0.01395784318447113, -0.05969653278589249, 0.11796668916940689, 0.04487783834338188, -0.010512088425457478, 0.015966396778821945, -0.045970410108566284, 0.060383234173059464, 0.032705243676900864, 0.017712794244289398, -0.0010890050325542688, 0.02207341231405735, -0.023652473464608192, 0.04590798169374466, 0.005662001669406891, -4.7404448366705765e-8, -0.05558279901742935, -0.06985776126384735, 0.014273496344685555, -0.008576683700084686, -0.1549677848815918, 0.002566693117842078, 0.004951844923198223, -0.030551305040717125, 0.002830065321177244, -0.021718665957450867, 0.057932425290346146, 0.06613753736019135, -0.059468045830726624, 0.05591071397066116, -0.04184267297387123, 0.04363025352358818, 0.026166105642914772, 0.06219201534986496, -0.01488490030169487, -0.02284654602408409, 0.02742859348654747, 0.04913126304745674, 0.06441696733236313, -0.008497880771756172, -0.013402332551777363, -0.051980651915073395, -0.13025067746639252, 0.07006049156188965, -0.038366612046957016, -0.024136412888765335, -0.0017906520515680313, -0.016165195032954216, -0.04131676256656647, 0.0024620480835437775, 0.06548815220594406, 0.09009777754545212, -0.05836551636457443, -0.10164288431406021, -0.014237585477530956, 0.04726499319076538, 0.06730661541223526, -0.022873563691973686, -0.02434351295232773, -0.023816311731934547, 0.13001714646816254, 0.021556345745921135, 0.03057565726339817, -0.1131574735045433, 0.0880676880478859, 0.04665597900748253, 0.00043984747026115656, -0.03509930893778801, 0.0005829600850120187, -0.07576209306716919, -0.044217802584171295, 0.03524484857916832, -0.07878077030181885, 0.0037351909559220076, 0.04433329775929451, -0.0440676175057888, 0.032756365835666656, 0.07468773424625397, 0.036858391016721725, 0.07298166304826736 ]
gagan3012/k2t
57b9e3132e50734633ce283fdc96e463837b6cb6
2021-09-22T08:27:36.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WebNLG", "dataset:Dart", "transformers", "keytotext", "k2t", "Keywords to Sentences", "license:mit", "autotrain_compatible" ]
text2text-generation
false
gagan3012
null
gagan3012/k2t
3,054
null
transformers
--- language: en thumbnail: Keywords to Sentences tags: - keytotext - k2t - Keywords to Sentences license: mit datasets: - WebNLG - Dart metrics: - NLG --- # keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
[ -0.08639142662286758, 0.014906492084264755, 0.010412236675620079, -0.01271976437419653, 0.026354726403951645, 0.06640716642141342, 0.07711213827133179, -0.03710361197590828, 0.00682399608194828, -0.028035085648298264, 0.03174244239926338, -0.04752771928906441, 0.1264314353466034, 0.006841250229626894, 0.06286109238862991, 0.03985648602247238, -0.05546389892697334, 0.06303709000349045, -0.06474361568689346, -0.0711473748087883, 0.1088334396481514, -0.00546354241669178, 0.0860673263669014, -0.0468708761036396, -0.048332568258047104, 0.08534009009599686, -0.003937178757041693, 0.005800290498882532, 0.048420585691928864, 0.005396752618253231, 0.04088176414370537, -0.0025084586814045906, 0.02825705148279667, 0.08293388038873672, -0.01325206458568573, 0.04216558858752251, -0.0659041777253151, 0.059870924800634384, -0.03204542398452759, -0.04462602734565735, -0.019015703350305557, -0.05116875842213631, -0.03041761927306652, 0.012231848202645779, 0.1308668702840805, -0.01792226918041706, -0.10773609578609467, -0.002116328338161111, -0.03400535508990288, 0.013980276882648468, -0.13680700957775116, -0.05363713949918747, 0.007432752754539251, -0.043879155069589615, -0.002759758848696947, 0.025069406256079674, -0.0013191591715440154, -0.09085962176322937, 0.02003588154911995, -0.08409114927053452, 0.04734103009104729, 0.017652859911322594, -0.030232977122068405, -0.012949148193001747, -0.0011071407934650779, 0.009097675792872906, 0.032879263162612915, 0.08224430680274963, 0.025736847892403603, 0.03742239996790886, -0.02683105133473873, -0.015508539974689484, 0.02624564804136753, -0.07741151005029678, -0.029482852667570114, 0.02371688187122345, -0.0013477443717420101, -0.039731256663799286, 0.02316761575639248, -0.054824311286211014, -0.025038830935955048, -0.06584291160106659, 0.06216134503483772, 0.06307815760374069, 0.07547388970851898, 0.044223133474588394, 0.029411612078547478, -0.03735700249671936, -0.050153013318777084, 0.030053535476326942, -0.0355861522257328, -0.10896333307027817, 0.06885257363319397, 0.024620287120342255, -0.009257667697966099, 0.04677562043070793, -0.0008488744497299194, -0.09601826965808868, -0.04445844143629074, 0.08701155334711075, -0.04357835277915001, -0.004693223629146814, -0.030557356774806976, -0.12475904822349548, 0.02905714325606823, 0.011535780504345894, 0.02653435803949833, -0.03621869161725044, 0.010383561253547668, -0.025888897478580475, -0.014759916812181473, 0.018820639699697495, -0.08048263937234879, -0.03979982063174248, 0.008160502649843693, 0.00433713523671031, -0.013368592597544193, -0.020600538700819016, 0.11127343773841858, 0.06532176584005356, 0.04679478704929352, 0.046499453485012054, -0.10396476089954376, 0.02215898036956787, -0.06221260502934456, -0.058215633034706116, 0.02164292521774769, 7.138083650876767e-33, 0.08165940642356873, 0.04377109184861183, 0.032828353345394135, -0.026942742988467216, 0.02609930746257305, 0.004239984788000584, -0.05082085728645325, -0.049057383090257645, -0.06363600492477417, -0.03375815972685814, -0.02447802759706974, -0.005428798962384462, -0.05605531111359596, 0.05478779226541519, 0.035522591322660446, -0.07224803417921066, -0.06185455992817879, 0.05376013368368149, 0.04374661296606064, 0.009800189174711704, -0.02253848873078823, -0.014272144064307213, 0.02233794890344143, -0.06545137614011765, -0.04998644068837166, 0.09638746082782745, 0.04737352952361107, -0.005936041008681059, -0.07856500148773193, 0.022361911833286285, -0.03428089991211891, -0.04551931470632553, 0.0333954393863678, -0.007709038909524679, -0.03694332018494606, -0.054258059710264206, 0.011447537690401077, -0.04062134400010109, -0.004414423834532499, -0.027484919875860214, -0.0372978039085865, -0.03816176950931549, 0.02336251549422741, -0.09500344097614288, -0.0702924057841301, 0.02944764867424965, -0.006524689495563507, 0.04868096485733986, 0.03005683235824108, 0.012318439781665802, -0.012961525470018387, 0.056270401924848557, -0.0439610593020916, -0.019840674474835396, -0.02973402664065361, -0.008089662529528141, 0.06244231387972832, 0.018684716895222664, 0.056635551154613495, -0.041110847145318985, -0.048059482127428055, 0.025948531925678253, 0.14732445776462555, 0.0000865792972035706, 0.07137967646121979, 0.02678299881517887, -0.007789393421262503, -0.016056625172495842, 0.033922579139471054, -0.03782181441783905, -0.044209375977516174, 0.022529324516654015, -0.01969945803284645, 0.003272020723670721, 0.04173143208026886, -0.019581133499741554, 0.031692150980234146, -0.032778300344944, -0.020563218742609024, 0.03460006043314934, 0.0024613486602902412, -0.017160924151539803, 0.023876158520579338, -0.01922094263136387, 0.0409889817237854, 0.014029835350811481, 0.02223276160657406, -0.11361486464738846, -0.0067470078356564045, -0.01616556942462921, -0.06306073069572449, -0.02759343571960926, 0.005768440663814545, -0.10022852569818497, -0.0500975102186203, -7.689741680349728e-33, 0.08285751938819885, 0.045189667493104935, -0.04307846352458, 0.05306718870997429, 0.06619368493556976, -0.026732420548796654, -0.0060609327629208565, 0.07364170253276825, 0.0037911233957856894, -0.011012732982635498, -0.044700223952531815, 0.018648765981197357, 0.02073138765990734, -0.06604012846946716, 0.04858747497200966, -0.017055682837963104, 0.031388260424137115, 0.04583945870399475, 0.038023363798856735, 0.05721542239189148, 0.06657705456018448, 0.015284724533557892, -0.07683469355106354, 0.07698831707239151, -0.06927430629730225, 0.03388653323054314, 0.04741756245493889, 0.05949903652071953, -0.00776034826412797, -0.02988039329648018, 0.061599940061569214, 0.005319260526448488, -0.0944753885269165, 0.017981290817260742, -0.09099384397268295, -0.0606733113527298, 0.013619611039757729, -0.004995743278414011, -0.0374947227537632, 0.12027011066675186, 0.10497893393039703, -0.00027579101151786745, -0.06522159278392792, -0.038387224078178406, -0.05424903333187103, -0.025606943294405937, -0.056827329099178314, -0.01381139550358057, -0.0007843022467568517, -0.00991485733538866, 0.052909042686223984, -0.0007022452191449702, -0.09610460698604584, -0.028180589899420738, -0.07151950895786285, -0.042124684900045395, -0.014913707971572876, -0.03815792128443718, -0.022183427587151527, 0.0009679138311184943, -0.08082763850688934, -0.06357615441083908, 0.0459003746509552, -0.003148420248180628, 0.06453397125005722, -0.09868398308753967, -0.029137227684259415, -0.00026877890923060477, -0.036904022097587585, -0.030875492841005325, 0.04050855711102486, 0.005043954588472843, 0.04632300138473511, 0.10080903023481369, 0.01946915313601494, 0.020002348348498344, 0.018077172338962555, 0.005044457968324423, 0.09145309031009674, -0.09184250235557556, 0.024112533777952194, -0.023932302370667458, 0.07492684572935104, 0.039176132529973984, 0.055823516100645065, 0.019668851047754288, -0.010771951638162136, 0.08510751277208328, 0.07996337115764618, -0.011272347532212734, -0.00024353618209715933, 0.057283833622932434, 0.07200218737125397, 0.09569545090198517, 0.06160005182027817, -6.411641351178332e-8, -0.060616135597229004, 0.020171891897916794, -0.06969981640577316, 0.045233871787786484, -0.11351776868104935, -0.02403872273862362, 0.012077449820935726, -0.05854114517569542, 0.036854855716228485, -0.10971222072839737, 0.1005786880850792, 0.021850991994142532, -0.08360321074724197, -0.014830535277724266, -0.043762076646089554, 0.10800990462303162, -0.05784069374203682, 0.06558817625045776, -0.0012842576252296567, -0.06599776446819305, 0.033443253487348557, 0.038804080337285995, -0.051198866218328476, 0.011476757936179638, 0.016107069328427315, 0.03632146865129471, -0.06946207582950592, 0.07858014851808548, -0.0031273802742362022, -0.023315606638789177, 0.052064307034015656, -0.010627693496644497, -0.0032497388310730457, -0.024157429113984108, 0.011110049672424793, 0.018170764669775963, -0.016466716304421425, -0.10634341090917587, 0.04818892106413841, 0.06968441605567932, 0.04789314791560173, -0.004466956946998835, -0.10023285448551178, -0.012688787654042244, -0.006287903990596533, 0.045384541153907776, 0.057408031076192856, -0.06705500930547714, 0.034485939890146255, -0.00927425641566515, -0.03377991542220116, -0.013811933808028698, -0.05954139679670334, -0.0763753354549408, 0.010272162966430187, 0.06553521007299423, 0.022431630641222, 0.043839119374752045, 0.09331068396568298, 0.0193606186658144, 0.05134516581892967, 0.0036889745388180017, -0.03102853149175644, 0.03773566707968712 ]
castorini/tct_colbert-v2-hnp-msmarco
3b46a821282996e0ada304e4bcc5d659712972a8
2021-08-12T01:05:56.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/tct_colbert-v2-hnp-msmarco
3,050
null
transformers
This model is to reproduce a variant of TCT-ColBERT-V2 dense retrieval models described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [In-Batch Negatives for Knowledge Distillation with Tightly-CoupledTeachers for Dense Retrieval.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_2021_RepL4NLP.pdf) _RepL4NLP 2021_. You can find our reproduction report in Pyserini [here](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md).
[ -0.06552200764417648, 0.000058389607147546485, 0.027566729113459587, 0.02865372784435749, -0.0338166318833828, -0.02888583205640316, 0.009454486891627312, -0.026040788739919662, 0.019496437162160873, -0.025860048830509186, -0.03151804953813553, 0.00042619623127393425, 0.07251160591840744, 0.03885521739721298, -0.039182644337415695, 0.0056867096573114395, 0.14014050364494324, 0.0000892202733666636, -0.038582026958465576, -0.08106247335672379, -0.030217504128813744, 0.03647250309586525, 0.013598630204796791, -0.05549664795398712, -0.054617639631032944, -0.08698343485593796, -0.09954982995986938, -0.13087674975395203, 0.06066317483782768, -0.091403529047966, 0.02857282944023609, 0.04080758988857269, -0.08862943202257156, 0.08369533717632294, -0.03175317123532295, 0.04657581448554993, -0.07859865576028824, 0.06276510655879974, 0.020139213651418686, 0.0797201544046402, 0.038443367928266525, 0.1104363426566124, -0.08548920601606369, 0.030856210738420486, 0.055233292281627655, -0.0240398570895195, -0.016426794230937958, -0.03263535723090172, 0.0012003992451354861, -0.049025461077690125, -0.04402880743145943, 0.055912572890520096, -0.001299801398999989, 0.04434642195701599, 0.023782258853316307, -0.0006296649225987494, 0.008849818259477615, -0.0032210249919444323, -0.0968170166015625, -0.03599094972014427, 0.02963446080684662, -0.0628385841846466, -0.11139549314975739, -0.05552215874195099, 0.09259888529777527, 0.006672578398138285, -0.025966007262468338, 0.09266193211078644, 0.04476410150527954, -0.018047627061605453, -0.06205762177705765, 0.09195561707019806, -0.08898194879293442, -0.06442049890756607, 0.018693359568715096, 0.06678235530853271, 0.04093093052506447, -0.013650004751980305, -0.021542277187108994, -0.03862485662102699, -0.018625227734446526, -0.06369225680828094, 0.03594082221388817, -0.10047119855880737, 0.057608578354120255, -0.05608290433883667, -0.00059797108406201, -0.04988684877753258, 0.05793888121843338, -0.016841435804963112, 0.03279927745461464, 0.019128425046801567, -0.019889766350388527, -0.04313817620277405, 0.009939586743712425, 0.015844576060771942, 0.09965202212333679, -0.0107114901766181, 0.03008376806974411, 0.10497894883155823, -0.01799013651907444, 0.10488715022802353, 0.02080347016453743, -0.09579846262931824, 0.028302278369665146, -0.029966210946440697, -0.008418013341724873, 0.05257394537329674, 0.028826627880334854, -0.0876169353723526, -0.00013527952251024544, 0.07789786159992218, 0.03105873242020607, -0.028638148680329323, -0.04308353736996651, -0.015051915310323238, -0.008353689685463905, 0.03738444298505783, -0.010693114250898361, -0.03097233921289444, -0.021693943068385124, -0.014884384348988533, -0.03822555020451546, -0.009253693744540215, -0.05684266239404678, 0.0031433466356247663, -0.02921431139111519, 2.8916047984014838e-33, 0.00639967480674386, 0.022496938705444336, 0.022362366318702698, 0.006077449303120375, 0.028782395645976067, 0.014448706991970539, 0.04428304731845856, -0.03817877173423767, -0.071678526699543, -0.0013012213166803122, -0.02142452634871006, 0.01375502161681652, -0.07261835038661957, 0.04568508267402649, -0.0325024388730526, -0.0833761915564537, -0.060363177210092545, 0.06228477880358696, -0.019246824085712433, -0.0389782190322876, 0.09231830388307571, 0.0349465012550354, -0.007389503996819258, -0.09399697929620743, -0.007289293687790632, -0.068391352891922, 0.02439524047076702, 0.016430364921689034, -0.06194885075092316, 0.017210692167282104, -0.05813579633831978, 0.054756078869104385, 0.018292857334017754, 0.07085178792476654, -0.046551551669836044, -0.011709166690707207, -0.01053999736905098, -0.022297710180282593, 0.04990213364362717, -0.07927227765321732, 0.02410275861620903, 0.04029271379113197, 0.08067166060209274, -0.060791898518800735, -0.13009697198867798, -0.047061771154403687, 0.07571867853403091, 0.00891770701855421, 0.01882002502679825, -0.01159472856670618, 0.024271266534924507, -0.00787921529263258, -0.0750865787267685, -0.038768917322158813, 0.07034046947956085, 0.009606078267097473, 0.09102720767259598, 0.06440087407827377, 0.0685427114367485, 0.09175073355436325, 0.04232662543654442, 0.01924450509250164, 0.00008471695036860183, 0.005925728008151054, 0.050814852118492126, 0.00025734564405865967, -0.1018020287156105, 0.011106966994702816, 0.1043127104640007, 0.019839005544781685, 0.010518732480704784, 0.0520947203040123, 0.05515294522047043, -0.14775767922401428, 0.12049369513988495, -0.10830747336149216, -0.01613825373351574, -0.10747577995061874, 0.033479269593954086, -0.04715580493211746, -0.010051899589598179, -0.1369124948978424, 0.008689514361321926, -0.0417947992682457, -0.10082445293664932, -0.004175179172307253, 0.016665248200297356, -0.09752865135669708, -0.010352354496717453, -0.09748473763465881, -0.028001055121421814, 0.06587488204240799, 0.00834812130779028, 0.01049806922674179, 0.049701984971761703, -2.3968697155251074e-33, -0.008683137595653534, -0.01574787311255932, -0.017224902287125587, 0.08855876326560974, 0.041075561195611954, -0.035281699150800705, -0.015126668848097324, 0.023379290476441383, -0.05358194187283516, -0.04372020065784454, 0.017849590629339218, 0.030899014323949814, -0.02576831355690956, -0.0016038573812693357, 0.008993654511868954, -0.011466111056506634, 0.0791444331407547, -0.03660322353243828, -0.007903357967734337, 0.02263760194182396, -0.017694778740406036, -0.0405568853020668, -0.11616618186235428, 0.04751692712306976, 0.07362685352563858, 0.022656945511698723, -0.009610106237232685, 0.03545993193984032, -0.013352676294744015, 0.03212137892842293, -0.0063040852546691895, 0.016554147005081177, 0.011569014750421047, 0.02773820422589779, -0.048447754234075546, 0.005825436674058437, 0.06626954674720764, 0.04848959296941757, -0.0696960836648941, 0.08321774750947952, -0.037075821310281754, 0.029842378571629524, -0.06923579424619675, 0.0030368573497980833, 0.030977461487054825, 0.06122254580259323, -0.06579910963773727, 0.0021987806539982557, 0.11733733117580414, 0.042295847088098526, 0.06020481511950493, -0.008553546853363514, -0.0021327140275388956, 0.08353278785943985, -0.060970231890678406, 0.04415334761142731, -0.01157286949455738, -0.05245355889201164, 0.017823580652475357, -0.01030973345041275, -0.02390805445611477, -0.028628000989556313, 0.0008810880244709551, -0.03306811675429344, 0.024756355211138725, -0.04513293877243996, 0.012352077290415764, 0.03941994532942772, 0.0003296479117125273, 0.018269674852490425, -0.00979618914425373, 0.0005954161169938743, 0.05492573231458664, -0.05705109238624573, 0.039036739617586136, 0.03658609464764595, 0.04649624973535538, 0.0210450179874897, -0.030133437365293503, 0.005614611320197582, -0.08140776306390762, 0.04462121054530144, 0.06080979108810425, 0.030209308490157127, 0.02990819327533245, 0.010438752360641956, -0.03199005499482155, -0.0014156802790239453, -0.018432749435305595, 0.03961370140314102, 0.007654346060007811, -0.049490492790937424, 0.03764679655432701, 0.048591192811727524, 0.09532391279935837, -4.7900286404001235e-8, -0.04227442666888237, -0.05907237529754639, -0.08861266076564789, 0.04430428519845009, 0.03961068019270897, -0.0345374159514904, 0.0067137423902750015, 0.04890606552362442, -0.06282272189855576, 0.015599899925291538, -0.0035378688480705023, 0.020445087924599648, -0.0236747357994318, -0.05163266509771347, 0.09336017817258835, 0.05905446037650108, 0.04985262081027031, 0.039021968841552734, -0.030904991552233696, -0.0028118693735450506, 0.07961538434028625, -0.008738324046134949, 0.09299842268228531, -0.02026420086622238, 0.0021845558658242226, 0.005380804650485516, -0.02619870938360691, 0.04581069201231003, 0.0471164733171463, 0.04405439645051956, 0.007289363071322441, 0.008326039649546146, -0.002049881499260664, -0.0329008623957634, 0.04138391464948654, 0.10513217002153397, -0.08390583097934723, -0.010781912133097649, -0.020915551111102104, 0.037238046526908875, 0.005243427585810423, -0.007307755295187235, -0.009507620707154274, 0.037783026695251465, 0.04431367293000221, -0.014659078791737556, -0.055872295051813126, -0.00032391175045631826, 0.08571166545152664, 0.06982062011957169, 0.031489577144384384, 0.020075833424925804, -0.03195672109723091, 0.005755839869379997, 0.03893188759684563, 0.04724116623401642, -0.054790642112493515, -0.033809415996074677, -0.005703093484044075, -0.0774904265999794, 0.09286750853061676, -0.016679147258400917, -0.007359853480011225, -0.0012526011560112238 ]
hfl/chinese-pert-base
54f84f9b553c9184d92e1d476010299aac42cf86
2022-02-24T02:57:09.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "zh", "transformers", "license:cc-by-nc-sa-4.0" ]
feature-extraction
false
hfl
null
hfl/chinese-pert-base
3,043
4
transformers
--- language: - zh license: "cc-by-nc-sa-4.0" --- # Please use 'Bert' related functions to load this model! Under construction... Please visit our GitHub repo for more information: https://github.com/ymcui/PERT
[ -0.12923598289489746, -0.018512636423110962, -0.0004741573939099908, -0.013131977058947086, -0.0017897309735417366, 0.0610409751534462, 0.011662166565656662, 0.047987572848796844, 0.013258756138384342, 0.02254491113126278, 0.07376112788915634, -0.08120303601026535, -0.0025661978870630264, 0.06571333855390549, 0.03673092648386955, 0.11702848970890045, -0.003589663887396455, -0.008796547539532185, 0.05659417062997818, -0.0037628458812832832, 0.02817552350461483, 0.07863412797451019, 0.03087080456316471, -0.029272951185703278, 0.01802046410739422, -0.061344392597675323, -0.05752941220998764, 0.030810218304395676, 0.06944942474365234, 0.02108507975935936, 0.03207305818796158, 0.047584086656570435, 0.07329251617193222, 0.09064754843711853, 0.10156797617673874, 0.03984937071800232, -0.004934605211019516, -0.06367447972297668, -0.03237669914960861, 0.023529628291726112, -0.016288455575704575, 0.006110745016485453, 0.004631986375898123, -0.04063720256090164, 0.08338017016649246, -0.029715070500969887, 0.008410758338868618, 0.00030456349486485124, -0.028721123933792114, -0.05830256640911102, -0.06570542603731155, -0.050039030611515045, 0.01101426500827074, -0.03195278346538544, 0.025020593777298927, -0.002971215872094035, -0.05324367806315422, -0.042424507439136505, -0.02878481335937977, -0.09378588199615479, -0.06265624612569809, 0.011388624086976051, -0.047671351581811905, 0.013011740520596504, -0.007165675982832909, 0.06861501187086105, -0.05718676745891571, 0.04518861696124077, -0.050100985914468765, -0.04130970686674118, -0.027679190039634705, -0.05787593126296997, 0.022908514365553856, 0.0077895973809063435, -0.0013560460647568107, -0.005701874382793903, 0.08378371596336365, -0.06522887945175171, 0.04636232182383537, -0.09042834490537643, -0.04568847641348839, 0.023911412805318832, 0.06310350447893143, 0.05342746898531914, 0.08351384103298187, 0.05255836248397827, 0.010434398427605629, -0.036133524030447006, -0.009853018447756767, -0.02874349243938923, -0.02830456756055355, -0.050200991332530975, -0.02817036770284176, 0.0182985607534647, -0.09047749638557434, -0.005318205803632736, 0.06777548789978027, -0.02316160872578621, -0.02823624573647976, 0.08525726199150085, -0.03257032111287117, 0.06494150310754776, 0.10050229728221893, -0.04099456965923309, -0.006441172678023577, 0.07416383922100067, 0.05484291538596153, 0.0010504620149731636, 0.004097574856132269, -0.0608861930668354, -0.06116409972310066, 0.010005215182900429, -0.03707411140203476, -0.10693453252315521, -0.007982387207448483, -0.031170787289738655, -0.03684964030981064, 0.018435468897223473, 0.06234508007764816, -0.014394786208868027, -0.05484136566519737, -0.013802285306155682, -0.10943259298801422, 0.055558942258358, -0.045901354402303696, -0.014244657009840012, 0.027120014652609825, 3.550217706860155e-34, 0.003796109464019537, 0.031640902161598206, 0.01812124438583851, 0.017713233828544617, 0.03904947638511658, 0.029641808941960335, 0.04439457505941391, -0.0503147654235363, -0.10066010802984238, -0.009691298939287663, -0.006512122228741646, -0.054155439138412476, -0.10133186727762222, 0.013887189328670502, -0.09561844170093536, -0.021278951317071915, 0.006080287508666515, 0.01884954608976841, 0.06625881791114807, 0.0033359124790877104, 0.08742926269769669, 0.06097802519798279, -0.010062388144433498, -0.08843550831079483, -0.028843989595770836, 0.07341750711202621, 0.11665353178977966, -0.11620746552944183, 0.0047335876151919365, 0.04707707464694977, -0.0032456088811159134, 0.10415321588516235, -0.03058914840221405, -0.05745863541960716, -0.002662905026227236, -0.03151887655258179, -0.008292271755635738, -0.004424066282808781, -0.004894298501312733, -0.04087227210402489, 0.014097226783633232, 0.03818047419190407, -0.042046722024679184, -0.05695146694779396, -0.023209845647215843, -0.008551491424441338, 0.04955184832215309, 0.08574365079402924, 0.06293590366840363, 0.010278352536261082, -0.0013906335225328803, 0.001184638706035912, -0.1276485174894333, 0.054845813661813736, -0.007343862671405077, -0.058528680354356766, 0.018381772562861443, 0.05907537043094635, 0.06029075011610985, -0.020161177963018417, 0.009740151464939117, -0.0064237527549266815, -0.022737642750144005, -0.03687125816941261, 0.0988253504037857, -0.056154973804950714, -0.09784182161092758, -0.06011875718832016, 0.06522849202156067, 0.061826061457395554, -0.027300791814923286, -0.016376323997974396, 0.049501676112413406, 0.03726595640182495, 0.025391949340701103, -0.07592149078845978, -0.038231298327445984, -0.050794824957847595, 0.08570615947246552, -0.028358664363622665, -0.08885154128074646, 0.02970464900135994, -0.04872675985097885, -0.03691519424319267, 0.04940095916390419, -0.009274200536310673, 0.03899942338466644, -0.057125747203826904, -0.0303916335105896, -0.009603639133274555, 0.05738584324717522, -0.10349065065383911, 0.03733550012111664, -0.00753966486081481, -0.11376528441905975, -1.1264260023765997e-33, -0.05494670569896698, 0.05986429750919342, -0.09394079446792603, -0.005748421419411898, -0.03913240507245064, -0.11569488793611526, 0.034342240542173386, 0.11699915677309036, 0.029503535479307175, -0.0031792782247066498, 0.009191400371491909, -0.06416063010692596, 0.04630282148718834, -0.017700353637337685, 0.14671777188777924, 0.03231849521398544, -0.02827352285385132, 0.02354155108332634, -0.018636386841535568, 0.044457659125328064, -0.021375538781285286, 0.016879495233297348, -0.029238320887088776, 0.066282719373703, 0.010106551460921764, 0.033863384276628494, 0.012503995560109615, 0.08182650804519653, 0.03761724382638931, -0.01751866564154625, -0.02235371433198452, 0.050651587545871735, -0.08327173441648483, 0.037968579679727554, -0.0982799381017685, -0.022932177409529686, 0.014380873180925846, 0.08619602024555206, -0.015197870321571827, -0.01473687868565321, 0.08115525543689728, -0.01874224655330181, -0.11842580884695053, 0.01135655865073204, 0.018087318167090416, 0.034367404878139496, -0.017772739753127098, -0.042322833091020584, 0.0223257876932621, -0.06571101397275925, 0.02162647433578968, -0.09149239957332611, 0.011906792409718037, -0.06916426122188568, -0.061213284730911255, 0.018311677500605583, 0.06029774248600006, -0.043052420020103455, 0.005529648624360561, -0.08133391290903091, -0.0756162777543068, -0.029952386394143105, 0.059543427079916, -0.01741541177034378, 0.040672264993190765, -0.05516893044114113, -0.04159339889883995, 0.020513925701379776, 0.030061520636081696, -0.05955956503748894, 0.004528730176389217, 0.07789464294910431, 0.013474411331117153, -0.04265544191002846, -0.03452587127685547, -0.0166045892983675, -0.032741811126470566, -0.041525550186634064, 0.040414515882730484, -0.0074431574903428555, -0.035023629665374756, 0.026660777628421783, 0.10141996294260025, 0.07465779781341553, -0.03603312373161316, 0.01767299696803093, 0.08698553591966629, 0.051261767745018005, 0.004379456862807274, 0.02462385967373848, -0.008936458267271519, 0.10388224571943283, 0.0376911386847496, 0.1361260563135147, 0.023234285414218903, -4.014469823232503e-8, -0.07331808656454086, -0.047486137598752975, -0.060612134635448456, 0.03424645587801933, -0.0067790960893034935, -0.017025411128997803, -0.010979312472045422, -0.046939667314291, -0.005744980648159981, -0.007706987205892801, 0.03851311653852463, 0.0523034892976284, -0.03742307424545288, -0.006504340097308159, -0.027879836037755013, 0.04992368072271347, 0.024736158549785614, 0.05701468512415886, -0.01336917094886303, -0.05340183526277542, -0.05938003957271576, 0.008925025351345539, 0.04814376309514046, 0.030580053105950356, -0.04832862690091133, -0.017585888504981995, -0.03654449060559273, 0.09521213173866272, 0.04159201309084892, -0.03278389200568199, 0.014366637915372849, 0.025061754509806633, -0.0336531363427639, 0.006308683194220066, 0.04292600601911545, 0.02367093227803707, -0.024501340463757515, -0.05429227650165558, 0.01731819473206997, -0.021548526361584663, 0.08309400081634521, 0.050385843962430954, -0.04280586540699005, 0.007125850301235914, 0.10625652968883514, -0.01105034165084362, -0.05266684666275978, -0.07792714983224869, 0.0400112122297287, 0.02692778781056404, 0.025637228041887283, -0.04448695853352547, -0.07930754125118256, 0.037372469902038574, -0.04132803529500961, 0.024484004825353622, -0.043764904141426086, -0.015976468101143837, 0.010787603445351124, -0.0338372141122818, -0.029382269829511642, 0.025884881615638733, 0.05676000192761421, 0.0009684168035164475 ]
Luyu/co-condenser-marco
e0cef0ab2410aae0f0994366ddefb5649a266709
2021-08-13T13:54:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Luyu
null
Luyu/co-condenser-marco
3,030
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
minimaxir/magic-the-gathering
c0c296822d2bf6584d7ffa2fbb3d1c893dab1311
2021-05-23T09:35:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
minimaxir
null
minimaxir/magic-the-gathering
3,025
null
transformers
# magic-the-gathering A small (~1M parameters) GPT-2 model trained on Magic: The Gathering cards from sets up to and including _Strixhaven_ and _Commander 2021_. The model was trained 8 hours on a V100 on about ~22k unique encoded cards, with 10 permutations of each possible card. Examples of encoded cards: ``` <|toughness|><|text|>Counter target spell unless its controller pays {X}.<|power|><|type|>Instant<|loyalty|><|manaCost|>{X}{U}<|name|>Clash of Wills ``` ``` <|loyalty|><|text|>~ enters the battlefield tapped. {T}: Add {C}. {T}: Add {U} or {R}. ~ deals 1 damage to you.<|toughness|><|name|>Caldera Lake<|power|><|manaCost|><|type|>Land ``` ``` <|loyalty|>5<|text|>+1: Scry 1, then draw a card. −2: Return target creature to its owner's hand. −8: You get an emblem with "Whenever an opponent casts their first spell each turn, counter that spell."<|name|>Jace, Unraveler of Secrets<|toughness|><|type|>Legendary Planeswalker — Jace<|manaCost|>{3}{U}{U}<|power|> ``` The generated cards follow a similar schema, however because the model learns all possible permutations of the schema, the user can prompt the generation with any combination of schema.
[ -0.07631202787160873, 0.008557764813303947, -0.0690014660358429, 0.012271730229258537, -0.015097047202289104, -0.021149083971977234, 0.0393780916929245, 0.03353429213166237, -0.02276848815381527, -0.08853849768638611, -0.012026028707623482, -0.0834113359451294, 0.020452139899134636, -0.043449874967336655, -0.07302678376436234, 0.03498112037777901, -0.021603131666779518, -0.008671157993376255, -0.014365583658218384, 0.009169312193989754, 0.02986089140176773, 0.015299133025109768, -0.01785152405500412, 0.0764157697558403, -0.0323781855404377, 0.03056969866156578, -0.05049196258187294, 0.002078753663226962, -0.009793534874916077, -0.0410955548286438, 0.011427235789597034, 0.07399430871009827, -0.025480641052126884, 0.02727787382900715, -0.02247978001832962, 0.018098527565598488, -0.10038372874259949, -0.013441435992717743, -0.010151851922273636, -0.014498108066618443, 0.02742750383913517, -0.007459886837750673, -0.0264744870364666, 0.026538798585534096, 0.006092702969908714, 0.0011537937680259347, 0.00466945581138134, 0.014043333940207958, -0.06410165131092072, -0.019040951505303383, -0.04034470394253731, 0.026091819629073143, -0.033663954585790634, -0.029684016481041908, 0.05388730764389038, -0.008241276256740093, -0.12097068130970001, -0.08741651475429535, 0.004504511598497629, -0.07451409846544266, 0.016423841938376427, -0.06044542416930199, -0.037414103746414185, 0.02460198663175106, 0.007056947331875563, -0.030788181349635124, -0.018652671948075294, 0.0376681312918663, 0.04924444854259491, -0.0506378598511219, 0.04136787727475166, 0.06987712532281876, -0.05675129592418671, -0.06061027944087982, 0.009103553369641304, 0.10539724677801132, -0.015051806345582008, -0.04499652609229088, 0.01072670053690672, -0.061672892421483994, -0.04654167219996452, -0.039375655353069305, 0.04257122054696083, 0.0022991765290498734, 0.05431574583053589, -0.000515562598593533, 0.0556083545088768, 0.11081643402576447, 0.12661831080913544, -0.03172450140118599, 0.037351325154304504, 0.05993133783340454, 0.04294295236468315, 0.046217698603868484, -0.009286902844905853, 0.02682524174451828, 0.06406847387552261, -0.033751506358385086, -0.12905371189117432, 0.08874095976352692, 0.024661395698785782, 0.022327497601509094, 0.005999726243317127, 0.021745307371020317, 0.028041033074259758, -0.002588150789961219, -0.03707289695739746, 0.0542159229516983, -0.01445190142840147, -0.08009041100740433, 0.05416867136955261, -0.0286415982991457, -0.02174927480518818, -0.021018462255597115, -0.01990339159965515, 0.1219443753361702, -0.04923626780509949, 0.017490876838564873, -0.01843930594623089, 0.074259914457798, -0.03274895250797272, -0.0809185579419136, -0.016344621777534485, -0.004084549378603697, -0.045817047357559204, -0.026655280962586403, -0.0027375726494938135, 2.931478852478322e-33, 0.011699606664478779, 0.009081054478883743, -0.05647364258766174, 0.02052537351846695, 0.01564324088394642, 0.005578183103352785, -0.02794376201927662, -0.03100016340613365, 0.006057970225811005, 0.04072796180844307, -0.06759275496006012, 0.01874011941254139, -0.004602125380188227, 0.10940447449684143, -0.003111670957878232, -0.04871216416358948, -0.008665665052831173, -0.025830885395407677, -0.025306761264801025, -0.01701829582452774, 0.051748063415288925, 0.07442064583301544, -0.03880561515688896, -0.10089041292667389, -0.05503019317984581, 0.0005751373246312141, -0.04952802509069443, -0.037869591265916824, 0.044996228069067, 0.049306999891996384, -0.005917791277170181, -0.07431533932685852, 0.006804279983043671, -0.005823841318488121, 0.06655294448137283, 0.027554437518119812, 0.08049879968166351, -0.07370108366012573, 0.02668577991425991, -0.01992654614150524, -0.05314858630299568, -0.005852108355611563, 0.06340929120779037, -0.10652513056993484, -0.004798092879354954, -0.05795111134648323, -0.008286978118121624, 0.02482283115386963, -0.0999397411942482, 0.06801529228687286, -0.05315865948796272, -0.005907940212637186, -0.016667984426021576, 0.049217209219932556, -0.03454288840293884, 0.02224808558821678, -0.022899296134710312, 0.03508581221103668, 0.050375621765851974, 0.13905979692935944, -0.03502439707517624, -0.06310801953077316, 0.004948441870510578, 0.026681862771511078, -0.030283769592642784, 0.041876420378685, -0.09739919751882553, -0.0361025296151638, 0.08169177174568176, 0.015026241540908813, -0.05262398719787598, 0.030396871268749237, -0.016272934153676033, -0.05419382452964783, 0.048609409481287, -0.06501208990812302, 0.08945706486701965, 0.02834749035537243, -0.13160216808319092, 0.07574209570884705, -0.10359066724777222, 0.05297648534178734, -0.07379911839962006, 0.027780408039689064, 0.006872319616377354, -0.020271891728043556, 0.04413219541311264, -0.1079234927892685, -0.07813841104507446, 0.02938341721892357, -0.046769533306360245, 0.00020297379523981363, 0.09219356626272202, -0.059596117585897446, 0.09411616623401642, -5.2119766476529384e-33, -0.028046298772096634, 0.011177717708051205, 0.082991823554039, 0.08551149815320969, 0.04446300119161606, -0.11630026251077652, 0.08068118989467621, 0.041462916880846024, 0.01166238822042942, -0.024292629212141037, -0.019682418555021286, 0.10845252871513367, -0.03507915884256363, -0.03788023814558983, 0.06038970127701759, -0.08893866091966629, -0.01075404416769743, 0.03948899358510971, 0.039938490837812424, 0.04878613352775574, 0.0455741249024868, 0.0745568498969078, -0.09354628622531891, 0.06413780152797699, 0.027715710923075676, 0.11043240875005722, 0.01066048163920641, -0.039630256593227386, 0.030897231772542, -0.03130012005567551, 0.03150646761059761, 0.029579095542430878, -0.029683703556656837, 0.08217676728963852, -0.08478638529777527, 0.046121153980493546, 0.1460907757282257, 0.10337581485509872, -0.02425849623978138, 0.06766711175441742, 0.09162376821041107, -0.00029208287014625967, 0.0002231018734164536, 0.05015510320663452, -0.059131260961294174, 0.025075985118746758, 0.07988812029361725, -0.007862770929932594, 0.022753175348043442, -0.01722702942788601, 0.04024564474821091, -0.06775664538145065, -0.08339709043502808, 0.05011406168341637, 0.019233116880059242, -0.0809669941663742, 0.04422289505600929, -0.032485075294971466, -0.04587646201252937, 0.003658676752820611, 0.013133702799677849, -0.030420886352658272, 0.02411239966750145, -0.012674886733293533, 0.006099590100347996, -0.04532203450798988, -0.07433668524026871, 0.024294910952448845, 0.00909041240811348, 0.03720066696405411, -0.0711335688829422, 0.042062822729349136, -0.027494873851537704, -0.039740342646837234, 0.0245429128408432, -0.013019493781030178, -0.10204777121543884, -0.020232127979397774, 0.04903925210237503, -0.08619167655706406, -0.05070999637246132, -0.04607377573847771, 0.01797676272690296, 0.012765629217028618, 0.05596167966723442, 0.015855858102440834, 0.05266337841749191, -0.04264850541949272, -0.011389918625354767, -0.04558569937944412, -0.028452634811401367, 0.0842687338590622, 0.08455465734004974, 0.040172431617975235, -0.04775160178542137, -6.772029337298591e-8, -0.005970214959233999, 0.01544034481048584, -0.025894535705447197, 0.008503418415784836, 0.00934555009007454, -0.06320907175540924, -0.00815316941589117, -0.02532004751265049, -0.05084317922592163, -0.061910681426525116, 0.09276694059371948, -0.012901756912469864, -0.013722231611609459, -0.10010276734828949, 0.04726885259151459, 0.006503364536911249, -0.04155709594488144, -0.0603204220533371, -0.07919922471046448, -0.03721233457326889, 0.008332902565598488, -0.041568003594875336, -0.014027637429535389, -0.037643395364284515, -0.06734848022460938, 0.015428779646754265, -0.0016767259221524, -0.03141259402036667, 0.06683600693941116, 0.01505696028470993, 0.1040235310792923, -0.08524751663208008, 0.05476919189095497, 0.05916684865951538, 0.06919775903224945, 0.0016812176909297705, -0.1009623259305954, -0.007262944243848324, 0.03510400280356407, 0.0302655678242445, -0.016637787222862244, -0.000401566328946501, 0.011908433400094509, -0.018251970410346985, 0.017945338040590286, -0.03323215991258621, -0.052092526108026505, -0.07474544644355774, -0.00205072364769876, 0.0030104753095656633, 0.003233365248888731, 0.03635207563638687, -0.00032448131241835654, -0.0013979197246953845, 0.04990732669830322, -0.04214075952768326, 0.03134269267320633, -0.03842734917998314, -0.018670016899704933, -0.030567843466997147, 0.03487417846918106, -0.004144697450101376, -0.08732772618532181, -0.010368670336902142 ]
KoboldAI/GPT-Neo-2.7B-Horni-LN
40eb749c615988ae901c51f4cc7308ac08e8c2a4
2021-12-30T12:18:58.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
KoboldAI
null
KoboldAI/GPT-Neo-2.7B-Horni-LN
3,023
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
9e8a155701c0fa9a84fed4adfcf5edb4ada4342c
2022-07-27T23:36:42.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "zh", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
3,023
6
transformers
--- language: zh datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Chinese (zh-CN) by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice zh-CN type: common_voice args: zh-CN metrics: - name: Test WER type: wer value: 82.37 - name: Test CER type: cer value: 19.03 --- # Fine-tuned XLSR-53 large model for speech recognition in Chinese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chinese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [ST-CMDS](http://www.openslr.org/38/). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "zh-CN" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | 宋朝末年年间定居粉岭围。 | 宋朝末年年间定居分定为 | | 渐渐行动不便 | 建境行动不片 | | 二十一年去世。 | 二十一年去世 | | 他们自称恰哈拉。 | 他们自称家哈<unk> | | 局部干涩的例子包括有口干、眼睛干燥、及阴道干燥。 | 菊物干寺的例子包括有口肝眼睛干照以及阴到干<unk> | | 嘉靖三十八年,登进士第三甲第二名。 | 嘉靖三十八年登进士第三甲第二名 | | 这一名称一直沿用至今。 | 这一名称一直沿用是心 | | 同时乔凡尼还得到包税合同和许多明矾矿的经营权。 | 同时桥凡妮还得到包税合同和许多民繁矿的经营权 | | 为了惩罚西扎城和塞尔柱的结盟,盟军在抵达后将外城烧毁。 | 为了曾罚西扎城和塞尔素的节盟盟军在抵达后将外曾烧毁 | | 河内盛产黄色无鱼鳞的鳍射鱼。 | 合类生场环色无鱼林的骑射鱼 | ## Evaluation The model can be evaluated as follows on the Chinese (zh-CN) test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "zh-CN" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-13). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn | **82.37%** | **19.03%** | | ydshieh/wav2vec2-large-xlsr-53-chinese-zh-cn-gpt | 84.01% | 20.95% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-chinese, title={Fine-tuned {XLSR}-53 large model for speech recognition in {C}hinese}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn}}, year={2021} } ```
[ -0.14335742592811584, 0.0003548183012753725, 0.032126959413290024, -0.07487169653177261, 0.052972324192523956, 0.04533425718545914, -0.01097940281033516, -0.015149196609854698, -0.07390313595533371, -0.11262983828783035, 0.041863903403282166, -0.14432907104492188, -0.005091923754662275, 0.003603231394663453, 0.006638195365667343, -0.032352183014154434, -0.025559604167938232, -0.008418932557106018, -0.07015040516853333, -0.044917844235897064, 0.016341406852006912, 0.03853416442871094, 0.046720750629901886, 0.015691891312599182, 0.01592038758099079, -0.031336460262537, -0.046127576380968094, 0.0532805435359478, 0.07353778183460236, -0.017979614436626434, 0.057294029742479324, 0.08112818002700806, 0.07572583109140396, 0.0444500595331192, 0.02974686026573181, 0.025125078856945038, 0.006718513555824757, -0.01628178358078003, -0.006732855457812548, 0.006325908936560154, 0.017545286566019058, 0.005946807097643614, 0.04304763302206993, -0.061869774013757706, 0.03982117399573326, 0.069974385201931, -0.0658273696899414, -0.05799578130245209, -0.06799234449863434, 0.04515165835618973, -0.04993078485131264, 0.009016752243041992, 0.041501376777887344, 0.13966213166713715, -0.03944054991006851, 0.0308220311999321, -0.02735769748687744, 0.04911326617002487, 0.008641757071018219, 0.00802245270460844, -0.09938876330852509, 0.01521478034555912, -0.062412288039922714, -0.010710008442401886, -0.010973169468343258, 0.011012233793735504, -0.09169648587703705, -0.03681809827685356, -0.02537183277308941, 0.0055065518245100975, -0.05519627407193184, 0.054234810173511505, -0.015732986852526665, 0.01348644495010376, -0.05879409238696098, -0.005123276729136705, 0.03570564463734627, -0.07566466182470322, 0.024663731455802917, -0.10152101516723633, -0.026451922953128815, -0.017932388931512833, 0.03949315845966339, -0.0911896750330925, 0.0999322310090065, 0.005329869221895933, -0.031227534636855125, -0.004054677207022905, -0.050640325993299484, -0.01279474887996912, 0.042705386877059937, 0.01819157786667347, -0.0010583873372524977, 0.13191157579421997, 0.023359552025794983, 0.09015598893165588, 0.009427765384316444, 0.07337035238742828, 0.03328786417841911, 0.06682845205068588, 0.018913395702838898, -0.01727224513888359, 0.044880691915750504, -0.027869082987308502, -0.000633789284620434, -0.05843614786863327, 0.050349071621894836, 0.022051671519875526, 0.04492533206939697, -0.0020436400081962347, 0.040962185710668564, -0.003602509154006839, -0.0020340161863714457, -0.031113767996430397, -0.0028087457176297903, 0.04165714234113693, -0.09453314542770386, -0.0003597356553655118, -0.040450166910886765, 0.025038253515958786, -0.08677317947149277, -0.03235037252306938, 0.0005528798792511225, -0.02425888180732727, 0.04803105443716049, -0.03534313291311264, 0.027017006650567055, 5.744722809731092e-33, -0.021030008792877197, 0.05236247926950455, -0.004745750222355127, -0.038027457892894745, -0.0406821072101593, -0.024908462539315224, -0.043371252715587616, 0.0038666485343128443, -0.07302767783403397, 0.00849151611328125, -0.07604556530714035, 0.033219002187252045, -0.10631123185157776, -0.01421809196472168, 0.021474134176969528, 0.03667602315545082, -0.020388854667544365, -0.004604470916092396, -0.04849080741405487, 0.0036841141991317272, 0.20661556720733643, 0.03192479535937309, 0.037516262382268906, -0.05865310877561569, 0.04515884071588516, 0.0002173309330828488, 0.06083521991968155, -0.08079276978969574, -0.021292632445693016, 0.03992708399891853, -0.0968737006187439, -0.02507256157696247, 0.013635022565722466, 0.024973347783088684, 0.010822495445609093, 0.030665477737784386, 0.012820825912058353, 0.03780418634414673, -0.06859447807073593, -0.06372903287410736, 0.04170713201165199, 0.009404821321368217, 0.009040169417858124, -0.041231393814086914, -0.014350987039506435, -0.058501821011304855, -0.023267431184649467, -0.0003139738691970706, 0.0380307137966156, 0.013464093208312988, -0.05153605714440346, -0.0305520910769701, -0.06148846819996834, 0.032363224774599075, -0.016175154596567154, -0.057648248970508575, 0.059787239879369736, 0.04111426696181297, -0.010455621406435966, 0.03430010378360748, -0.009992877952754498, -0.0335577167570591, -0.002321567153558135, 0.055569570511579514, 0.02875833585858345, -0.044321928173303604, -0.06991275399923325, -0.03291190043091774, -0.020121432840824127, -0.0032069047447293997, -0.041691459715366364, -0.07127244770526886, 0.0931185781955719, 0.028155947104096413, 0.04445832222700119, -0.05978186056017876, 0.014133439399302006, -0.017797531560063362, -0.012666551396250725, 0.012865100055932999, -0.048069097101688385, 0.054403383284807205, -0.059095196425914764, -0.023594094440340996, -0.008196074515581131, -0.03855886310338974, 0.008902824483811855, -0.06275448948144913, 0.01687062717974186, 0.023586858063936234, -0.031250499188899994, 0.03971622884273529, -0.006704637315124273, -0.032636817544698715, -0.032867949455976486, -7.011621029879428e-33, -0.011003293097019196, 0.16186785697937012, 0.00036776199704036117, 0.07723790407180786, 0.0334133543074131, -0.024917317554354668, 0.11229752749204636, 0.08431011438369751, -0.010882113128900528, -0.03411829471588135, 0.051122914999723434, -0.07142408937215805, 0.051091268658638, 0.004819956608116627, -0.00007409613317577168, -0.029115797951817513, -0.0350104421377182, 0.10983906686306, 0.07650762051343918, 0.07173541933298111, 0.07876544445753098, 0.028658265247941017, -0.11634718626737595, 0.04633808135986328, -0.049719855189323425, 0.026315046474337578, -0.012149265967309475, 0.02060525305569172, 0.04255565255880356, 0.0343816913664341, -0.07872672379016876, 0.029209883883595467, -0.1116361916065216, 0.03386767581105232, -0.029179954901337624, -0.038990568369627, -0.004196156281977892, 0.014754918403923512, -0.016382642090320587, 0.0841730609536171, 0.04333977773785591, 0.04627449810504913, -0.12523111701011658, -0.02011021226644516, 0.03130097687244415, -0.03807096183300018, -0.022107213735580444, 0.009273315779864788, -0.04881465807557106, -0.03165090084075928, 0.041475169360637665, -0.028078176081180573, 0.0002357789344387129, 0.032744500786066055, -0.025581207126379013, -0.03254828229546547, 0.03620128333568573, -0.07878411561250687, -0.09245437383651733, -0.041142161935567856, 0.0017345768865197897, 0.02327408269047737, -0.0800032839179039, -0.03331725299358368, 0.06940308958292007, 0.034642551094293594, 0.045381296426057816, 0.0031600475776940584, 0.09466871619224548, -0.010344495065510273, -0.02776946872472763, 0.014910265803337097, 0.03736336901783943, -0.03465382009744644, -0.06183842569589615, 0.0008470003958791494, -0.09663348644971848, -0.023123551160097122, 0.03125477582216263, -0.039005815982818604, -0.024878591299057007, 0.004008753225207329, 0.1020391434431076, 0.05301303043961525, 0.004451615270227194, 0.1157783791422844, -0.0017988034524023533, 0.025512095540761948, 0.015946466475725174, -0.006948402151465416, -0.033768296241760254, 0.06791580468416214, 0.04048260301351547, 0.06528949737548828, -0.09393569827079773, -5.363852295658944e-8, -0.09979087859392166, -0.059492457658052444, -0.03893459960818291, -0.012405109591782093, -0.048374999314546585, -0.07257919758558273, -0.037685394287109375, -0.011758179403841496, 0.04168110713362694, 0.015077747404575348, 0.06609907746315002, 0.0026852309238165617, -0.08450242131948471, 0.03298340365290642, 0.02548588253557682, -0.04442863538861275, -0.02135016955435276, 0.1334145963191986, -0.04860329627990723, -0.02197158895432949, 0.0243205688893795, 0.010050804354250431, 0.03563477098941803, 0.024234866723418236, -0.003504305612295866, -0.034737516194581985, -0.08670911937952042, 0.11179939657449722, -0.06398548185825348, 0.00039540333091281354, -0.01942317560315132, 0.014805637300014496, 0.051143188029527664, -0.011052601039409637, 0.05905994027853012, 0.05880296602845192, -0.027223244309425354, -0.015119312331080437, 0.032263319939374924, 0.06591033190488815, 0.06129881739616394, 0.024238599464297295, -0.057772304862737656, -0.013056187890470028, 0.09420730918645859, -0.08815866708755493, -0.005011488683521748, -0.09118618816137314, 0.04427170008420944, 0.025354431942105293, -0.0019873231649398804, -0.020275991410017014, -0.002079776953905821, -0.030075443908572197, 0.0940266102552414, 0.07220258563756943, -0.046717699617147446, -0.030927740037441254, 0.03515182062983513, -0.020417071878910065, 0.05824051797389984, -0.024191949516534805, -0.028223982080817223, 0.014360823668539524 ]
pierreguillou/bert-base-cased-squad-v1.1-portuguese
fda61a9dc93104d7944a4abf5d48d51eba229a13
2022-01-04T09:57:53.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "pt", "dataset:brWaC", "dataset:squad", "dataset:squad_v1_pt", "transformers", "bert-base", "license:mit", "autotrain_compatible" ]
question-answering
false
pierreguillou
null
pierreguillou/bert-base-cased-squad-v1.1-portuguese
3,022
13
transformers
--- language: pt license: mit tags: - question-answering - bert - bert-base - pytorch datasets: - brWaC - squad - squad_v1_pt metrics: - squad widget: - text: "Quando começou a pandemia de Covid-19 no mundo?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." - text: "Onde foi descoberta a Covid-19?" context: "A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano." --- # Portuguese BERT base cased QA (Question Answering), finetuned on SQUAD v1.1 ![Exemple of what can do the Portuguese BERT base cased QA (Question Answering), finetuned on SQUAD v1.1](https://miro.medium.com/max/2000/1*te5MmdesAHCmg4KmK8zD3g.png) ## Introduction The model was trained on the dataset SQUAD v1.1 in portuguese from the [Deep Learning Brasil group](http://www.deeplearningbrasil.com.br/) on Google Colab. The language model used is the [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) (aka "bert-base-portuguese-cased") from [Neuralmind.ai](https://neuralmind.ai/): BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. ## Informations on the method used All the informations are in the blog post : [NLP | Modelo de Question Answering em qualquer idioma baseado no BERT base (estudo de caso em português)](https://medium.com/@pierre_guillou/nlp-modelo-de-question-answering-em-qualquer-idioma-baseado-no-bert-base-estudo-de-caso-em-12093d385e78) ## Notebooks in Google Colab & GitHub - Google Colab: [colab_question_answering_BERT_base_cased_squad_v11_pt.ipynb](https://colab.research.google.com/drive/18ueLdi_V321Gz37x4gHq8mb4XZSGWfZx?usp=sharing) - GitHub: [colab_question_answering_BERT_base_cased_squad_v11_pt.ipynb](https://github.com/piegu/language-models/blob/master/colab_question_answering_BERT_base_cased_squad_v11_pt.ipynb) ## Performance The results obtained are the following: ``` f1 = 82.50 exact match = 70.49 ``` ## How to use the model... with Pipeline ```python import transformers from transformers import pipeline # source: https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19 context = r""" A pandemia de COVID-19, também conhecida como pandemia de coronavírus, é uma pandemia em curso de COVID-19, uma doença respiratória aguda causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença foi identificada pela primeira vez em Wuhan, na província de Hubei, República Popular da China, em 1 de dezembro de 2019, mas o primeiro caso foi reportado em 31 de dezembro do mesmo ano. Acredita-se que o vírus tenha uma origem zoonótica, porque os primeiros casos confirmados tinham principalmente ligações ao Mercado Atacadista de Frutos do Mar de Huanan, que também vendia animais vivos. Em 11 de março de 2020, a Organização Mundial da Saúde declarou o surto uma pandemia. Até 8 de fevereiro de 2021, pelo menos 105 743 102 casos da doença foram confirmados em pelo menos 191 países e territórios, com cerca de 2 308 943 mortes e 58 851 440 pessoas curadas. """ model_name = 'pierreguillou/bert-base-cased-squad-v1.1-portuguese' nlp = pipeline("question-answering", model=model_name) question = "Quando começou a pandemia de Covid-19 no mundo?" result = nlp(question=question, context=context) print(f"Answer: '{result['answer']}', score: {round(result['score'], 4)}, start: {result['start']}, end: {result['end']}") # Answer: '1 de dezembro de 2019', score: 0.713, start: 328, end: 349 ``` ## How to use the model... with the Auto classes ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("pierreguillou/bert-base-cased-squad-v1.1-portuguese") model = AutoModelForQuestionAnswering.from_pretrained("pierreguillou/bert-base-cased-squad-v1.1-portuguese") ``` Or just clone the model repo: ```python git lfs install git clone https://huggingface.co/pierreguillou/bert-base-cased-squad-v1.1-portuguese # if you want to clone without large files – just their pointers # prepend your git clone with the following env var: GIT_LFS_SKIP_SMUDGE=1 ``` ## Limitations and bias The training data used for this model come from Portuguese SQUAD. It could contain a lot of unfiltered content, which is far from neutral, and biases. ## Author Portuguese BERT base cased QA (Question Answering), finetuned on SQUAD v1.1 was trained and evaluated by [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/) thanks to the Open Source code, platforms and advices of many organizations ([link to the list](https://medium.com/@pierre_guillou/nlp-modelo-de-question-answering-em-qualquer-idioma-baseado-no-bert-base-estudo-de-caso-em-12093d385e78#c572)). In particular: [Hugging Face](https://huggingface.co/), [Neuralmind.ai](https://neuralmind.ai/), [Deep Learning Brasil group](http://www.deeplearningbrasil.com.br/), [Google Colab](https://colab.research.google.com/) and [AI Lab](https://ailab.unb.br/). ## Citation If you use our work, please cite: ```bibtex @inproceedings{pierreguillou2021bertbasecasedsquadv11portuguese, title={Portuguese BERT base cased QA (Question Answering), finetuned on SQUAD v1.1}, author={Pierre Guillou}, year={2021} } ```
[ -0.05660419911146164, 0.10063573718070984, 0.00047643203288316727, -0.03491484746336937, 0.07747656106948853, 0.02959076315164566, 0.09457069635391235, 0.09629715234041214, 0.026812467724084854, -0.005734567996114492, 0.10742472112178802, -0.12167851626873016, -0.010153146460652351, 0.029611660167574883, 0.023138325661420822, -0.024407923221588135, -0.030408136546611786, -0.05669739842414856, -0.027162808924913406, 0.04452678933739662, 0.05829334259033203, 0.099542535841465, 0.053081877529621124, 0.0031316655222326517, -0.026088016107678413, 0.027289969846606255, -0.09231670200824738, 0.004045647103339434, -0.04303011670708656, 0.08717070519924164, 0.033507563173770905, 0.11525942385196686, 0.06960780918598175, 0.0546523854136467, 0.05986741930246353, -0.04083765670657158, 0.031328391283750534, 0.014541566371917725, -0.022277988493442535, 0.06479597091674805, -0.004653762094676495, -0.02220124378800392, 0.02920183166861534, -0.03803837671875954, 0.07534851133823395, -0.010760375298559666, -0.09925761073827744, 0.057422805577516556, 0.024729575961828232, 0.006349596194922924, -0.09446389973163605, -0.003189638489857316, -0.04764217510819435, -0.008479970507323742, -0.009172968566417694, 0.03790828213095665, -0.07312575727701187, -0.08728654682636261, 0.021706724539399147, -0.05017649754881859, -0.07966717332601547, -0.003878437215462327, -0.05430351197719574, 0.09292981773614883, -0.030419528484344482, -0.09280093759298325, 0.027918249368667603, 0.016421068459749222, -0.07323826104402542, 0.10359683632850647, -0.020073143765330315, -0.008712163195014, -0.03926842287182808, 0.08628102391958237, -0.09087719768285751, 0.07991776615381241, -0.0051336344331502914, -0.01892801932990551, 0.07673948258161545, -0.09068992733955383, 0.0592840202152729, 0.023896435275673866, 0.14120279252529144, -0.014128901064395905, 0.07051580399274826, 0.003251568414270878, 0.04978365823626518, 0.0011296691372990608, 0.015878859907388687, -0.014817914925515652, -0.053207412362098694, -0.021661868318915367, 0.07019823044538498, 0.1032334491610527, -0.024594001471996307, 0.007495002821087837, 0.024749070405960083, 0.01225523091852665, -0.019312230870127678, 0.037011753767728806, 0.04349878430366516, -0.030151866376399994, 0.041888125240802765, 0.04765523597598076, -0.10223008692264557, -0.01777845062315464, 0.020959705114364624, -0.01295944582670927, 0.042934950441122055, 0.025126202031970024, -0.004001924768090248, -0.0008379683713428676, -0.016833120957016945, -0.14763785898685455, -0.015071279369294643, 0.07260660827159882, -0.045263368636369705, -0.04103972762823105, -0.0001736747653922066, -0.004482971038669348, 0.021825753152370453, -0.1321895867586136, -0.08618632704019547, -0.04154946282505989, 0.02204972505569458, 0.01605907827615738, 0.06559224426746368, 1.1309405435322304e-32, 0.04946549981832504, -0.00045709317782893777, 0.07390020787715912, 0.05028802901506424, 0.0041126105934381485, 0.013722631148993969, -0.047506678849458694, -0.020860157907009125, -0.07319021970033646, -0.00613985164090991, -0.10384204983711243, -0.028489740565419197, -0.03242528811097145, 0.02949327602982521, 0.013723847456276417, 0.04444705322384834, 0.03548083454370499, -0.01028483733534813, 0.012782595120370388, 0.008459477685391903, 0.03728903457522392, 0.04230310022830963, 0.025358697399497032, -0.019832756370306015, 0.003999188542366028, 0.07270555943250656, -0.037947878241539, -0.06588294357061386, -0.018682019785046577, 0.04157685860991478, -0.028771789744496346, 0.008642060682177544, 0.04203518480062485, -0.0369013249874115, -0.04215311259031296, -0.012265610508620739, -0.009500782005488873, -0.06596425920724869, -0.016134656965732574, 0.04083739221096039, -0.002327209571376443, -0.005337581969797611, -0.05980563908815384, -0.02218150720000267, 0.02773144654929638, -0.08019812405109406, -0.0007683929288759828, -0.039669111371040344, -0.04571547359228134, 0.05100974440574646, -0.06937994062900543, 0.027459679171442986, -0.03459290415048599, -0.010026199743151665, 0.021097425371408463, -0.005238209385424852, -0.0664772316813469, 0.06410349160432816, -0.007387733552604914, -0.03350917622447014, 0.049198053777217865, -0.026803281158208847, -0.020154889672994614, 0.06878997385501862, -0.012812793254852295, -0.09092095494270325, 0.021417755633592606, 0.031616292893886566, 0.02867880091071129, 0.07964819669723511, -0.019225431606173515, -0.03642602264881134, -0.026479866355657578, -0.02323140762746334, 0.07333720475435257, -0.019407225772738457, 0.020319076254963875, -0.038190193474292755, -0.0724368467926979, -0.022119887173175812, -0.02242356725037098, 0.025620650500059128, -0.0012516725109890103, 0.010966658592224121, -0.01779918745160103, 0.029187846928834915, 0.021443139761686325, 0.01319079753011465, -0.08586172014474869, -0.007581603713333607, 0.0019043961074203253, 0.02850472927093506, 0.0037151265423744917, 0.0200271625071764, -0.06360498070716858, -1.1948534203491859e-32, -0.024078430607914925, -0.0033483384177088737, -0.08328231424093246, -0.028051869943737984, 0.01292575802654028, 0.031663928180933, 0.07716495543718338, 0.04619831591844559, 0.08958950638771057, -0.10830102860927582, -0.0018557016737759113, -0.057738177478313446, -0.0045601665042340755, -0.058737874031066895, 0.0015459356363862753, 0.06131986901164055, -0.06194015592336655, 0.020274728536605835, -0.10129213333129883, 0.059732332825660706, 0.006783058401197195, -0.030736824497580528, -0.021341251209378242, 0.026074986904859543, -0.04377981275320053, 0.05558835715055466, 0.12561050057411194, -0.07770506292581558, -0.03297986090183258, -0.04262382909655571, -0.04252834990620613, -0.016368385404348373, -0.04326925799250603, 0.12381283193826675, -0.04683361575007439, 0.000869272684212774, 0.017446324229240417, -0.08564843237400055, -0.07677825540304184, 0.04520844668149948, 0.0056381565518677235, 0.03681354224681854, 0.010262912139296532, -0.004992757458239794, 0.009269514121115208, -0.004327399656176567, -0.023210110142827034, -0.042724646627902985, 0.04498881474137306, -0.00022489263210445642, 0.0027611544355750084, -0.029577720910310745, -0.06973682343959808, 0.03735799342393875, -0.0815594345331192, -0.08219446241855621, -0.013729068450629711, -0.09354711323976517, -0.10643617063760757, -0.04506269097328186, 0.02033282443881035, -0.004859630949795246, -0.08861220628023148, 0.005497724749147892, 0.07584349066019058, -0.0195994321256876, -0.016231713816523552, 0.07128944993019104, 0.032884519547224045, 0.00013961389777250588, 0.0019049469847232103, -0.08541619032621384, -0.14974406361579895, -0.07113438844680786, -0.058010995388031006, -0.013505990616977215, -0.034686822444200516, -0.002006418304517865, -0.031950339674949646, 0.03873535990715027, -0.008557400666177273, -0.06726565957069397, 0.02805127203464508, 0.027077246457338333, 0.005432657897472382, -0.0104295052587986, -0.03314245864748955, -0.035235919058322906, -0.04067680612206459, 0.07238361984491348, -0.039809148758649826, -0.0029848243575543165, 0.00809545535594225, 0.026339851319789886, -0.07870090007781982, -6.428025756122224e-8, 0.0673142671585083, -0.0399533174932003, -0.05798117816448212, 0.022166645154356956, -0.01507109496742487, -0.012251515872776508, -0.052730295807123184, -0.009000647813081741, 0.05128566548228264, 0.05273238942027092, 0.09320645034313202, 0.038141246885061264, -0.025452926754951477, -0.01136099360883236, 0.011495798826217651, 0.07037415355443954, -0.09011109918355942, 0.08877522498369217, -0.043950822204351425, -0.10654125362634659, -0.0238510649651289, 0.017223114147782326, -0.01971282623708248, -0.050373855978250504, -0.0459897555410862, 0.02272934280335903, -0.015100079588592052, 0.028907403349876404, 0.012784010730683804, -0.05458573251962662, -0.06165655329823494, -0.027368532493710518, -0.026480233296751976, -0.028028277680277824, 0.02271389588713646, 0.04194968566298485, 0.09878478944301605, -0.09287133067846298, 0.060491207987070084, -0.040197260677814484, 0.11387024819850922, 0.0066058821976184845, -0.02250497415661812, 0.02606392279267311, 0.05660415068268776, -0.013149014674127102, 0.06765405833721161, -0.008728495799005032, 0.030420800670981407, -0.01574065536260605, -0.0520024448633194, -0.009882157668471336, 0.013159814290702343, 0.006802889984101057, -0.07687092572450638, 0.058192282915115356, 0.011839241720736027, -0.026819849386811256, 0.03392721712589264, -0.006093511823564768, 0.09689653664827347, 0.01064430084079504, -0.005459346808493137, 0.017133137211203575 ]
TurkuNLP/bert-base-finnish-uncased-v1
8dce1e623b1b072e4d95f82d11051678b068d37a
2021-05-18T22:46:38.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "fi", "arxiv:1912.07076", "arxiv:1908.04212", "transformers", "autotrain_compatible" ]
fill-mask
false
TurkuNLP
null
TurkuNLP/bert-base-finnish-uncased-v1
3,020
null
transformers
--- language: fi --- ## Quickstart **Release 1.0** (November 25, 2019) Download the models here: * Cased Finnish BERT Base: [bert-base-finnish-cased-v1.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-cased-v1.zip) * Uncased Finnish BERT Base: [bert-base-finnish-uncased-v1.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-uncased-v1.zip) We generally recommend the use of the cased model. Paper presenting Finnish BERT: [arXiv:1912.07076](https://arxiv.org/abs/1912.07076) ## What's this? A version of Google's [BERT](https://github.com/google-research/bert) deep transfer learning model for Finnish. The model can be fine-tuned to achieve state-of-the-art results for various Finnish natural language processing tasks. FinBERT features a custom 50,000 wordpiece vocabulary that has much better coverage of Finnish words than e.g. the previously released [multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) models from Google: | Vocabulary | Example | |------------|---------| | FinBERT | Suomessa vaihtuu kesän aikana sekä pääministeri että valtiovarain ##ministeri . | | Multilingual BERT | Suomessa vai ##htuu kes ##än aikana sekä p ##ää ##minister ##i että valt ##io ##vara ##in ##minister ##i . | FinBERT has been pre-trained for 1 million steps on over 3 billion tokens (24B characters) of Finnish text drawn from news, online discussion, and internet crawls. By contrast, Multilingual BERT was trained on Wikipedia texts, where the Finnish Wikipedia text is approximately 3% of the amount used to train FinBERT. These features allow FinBERT to outperform not only Multilingual BERT but also all previously proposed models when fine-tuned for Finnish natural language processing tasks. ## Results ### Document classification ![learning curves for Yle and Ylilauta document classification](https://raw.githubusercontent.com/TurkuNLP/FinBERT/master/img/yle-ylilauta-curves.png) FinBERT outperforms multilingual BERT (M-BERT) on document classification over a range of training set sizes on the Yle news (left) and Ylilauta online discussion (right) corpora. (Baseline classification performance with [FastText](https://fasttext.cc/) included for reference.) [[code](https://github.com/spyysalo/finbert-text-classification)][[Yle data](https://github.com/spyysalo/yle-corpus)] [[Ylilauta data](https://github.com/spyysalo/ylilauta-corpus)] ### Named Entity Recognition Evaluation on FiNER corpus ([Ruokolainen et al 2019](https://arxiv.org/abs/1908.04212)) | Model | Accuracy | |--------------------|----------| | **FinBERT** | **92.40%** | | Multilingual BERT | 90.29% | | [FiNER-tagger](https://github.com/Traubert/FiNer-rules) (rule-based) | 86.82% | (FiNER tagger results from [Ruokolainen et al. 2019](https://arxiv.org/pdf/1908.04212.pdf)) [[code](https://github.com/jouniluoma/keras-bert-ner)][[data](https://github.com/mpsilfve/finer-data)] ### Part of speech tagging Evaluation on three Finnish corpora annotated with [Universal Dependencies](https://universaldependencies.org/) part-of-speech tags: the Turku Dependency Treebank (TDT), FinnTreeBank (FTB), and Parallel UD treebank (PUD) | Model | TDT | FTB | PUD | |-------------------|-------------|-------------|-------------| | **FinBERT** | **98.23%** | **98.39%** | **98.08%** | | Multilingual BERT | 96.97% | 95.87% | 97.58% | [[code](https://github.com/spyysalo/bert-pos)][[data](http://hdl.handle.net/11234/1-2837)] ## Use with PyTorch If you want to use the model with the huggingface/transformers library, follow the steps in [huggingface_transformers.md](https://github.com/TurkuNLP/FinBERT/blob/master/huggingface_transformers.md) ## Previous releases ### Release 0.2 **October 24, 2019** Beta version of the BERT base uncased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-uncased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-uncased.zip) ### Release 0.1 **September 30, 2019** We release a beta version of the BERT base cased model trained from scratch on a corpus of Finnish news, online discussions, and crawled data. Download the model here: [bert-base-finnish-cased.zip](http://dl.turkunlp.org/finbert/bert-base-finnish-cased.zip)
[ -0.16832590103149414, -0.0689454898238182, 0.06604766100645065, -0.017779672518372536, 0.01866876147687435, 0.04125729203224182, -0.020137451589107513, 0.05643831193447113, 0.01880800724029541, -0.01820128783583641, 0.014650757424533367, 0.04931866005063057, -0.011718042194843292, 0.09333109110593796, -0.013041829690337181, 0.005817146506160498, 0.05682358518242836, -0.011451474390923977, -0.04755101352930069, 0.05295844003558159, 0.03762798011302948, 0.039542678743600845, 0.03220761939883232, -0.09331932663917542, 0.0792045071721077, -0.0027472865767776966, -0.0064142909832298756, -0.11644624918699265, 0.0590452216565609, 0.03798658773303032, -0.009782621636986732, 0.04098382219672203, 0.023739002645015717, 0.046902887523174286, 0.05334951728582382, 0.04048549383878708, -0.030823642387986183, -0.0037657914217561483, -0.004836801905184984, 0.030656134709715843, 0.015010601840913296, -0.06571071594953537, -0.004179308190941811, 0.028120046481490135, 0.07893235981464386, 0.021226083859801292, -0.05179494619369507, 0.0324537493288517, -0.040529411286115646, 0.015357084572315216, -0.050853315740823746, -0.06318361312150955, 0.030304841697216034, 0.1093766912817955, 0.0029605089221149683, 0.01277479249984026, 0.012539597228169441, -0.03602689877152443, -0.06761147081851959, -0.06604637950658798, -0.07870063930749893, -0.04869686812162399, -0.02318565733730793, -0.05589253827929497, -0.024272354319691658, 0.03991943597793579, -0.05249008163809776, 0.02558538317680359, -0.013918831944465637, 0.01347399689257145, 0.08632492274045944, 0.0665351003408432, -0.07413452863693237, 0.05149277672171593, -0.01731865480542183, -0.059165142476558685, 0.06362774223089218, 0.0078397486358881, 0.038476210087537766, -0.03819228708744049, 0.05556609109044075, -0.004500233568251133, 0.04566420242190361, -0.0076868473552167416, 0.05413345992565155, -0.008437146432697773, 0.05726317688822746, -0.05125740170478821, -0.031025810167193413, -0.024539558216929436, -0.003078011330217123, -0.060800693929195404, 0.054514072835445404, -0.06370440125465393, 0.01873585395514965, -0.007042538840323687, 0.0594291165471077, 0.04184011369943619, -0.00308129726909101, 0.04596604034304619, 0.010547947138547897, 0.028903815895318985, 0.05243714526295662, -0.09324076026678085, 0.040345001965761185, 0.04135417193174362, -0.00899846013635397, -0.014016935601830482, 0.05391883850097656, -0.1011422798037529, -0.03240356594324112, 0.0014691069955006242, -0.046034254133701324, -0.0578252337872982, -0.01232054177671671, -0.0530252605676651, -0.02054746262729168, 0.010875308886170387, 0.07067493349313736, 0.07625438272953033, 0.033693552017211914, -0.002057289006188512, 0.01061182375997305, 0.07812049984931946, -0.06376396864652634, 0.0385364331305027, -0.03551929444074631, 1.1844033123045742e-33, 0.046116527169942856, 0.017103811725974083, -0.0744488388299942, -0.028437014669179916, 0.03968004882335663, -0.061552468687295914, -0.010606056079268456, -0.0081177344545722, -0.05294928327202797, 0.0038044520188122988, -0.1262291669845581, 0.040534310042858124, -0.07397375255823135, 0.042334627360105515, -0.041555628180503845, 0.050831831991672516, -0.011966211721301079, 0.03780831769108772, 0.07857401669025421, -0.0015085962368175387, 0.1247340515255928, 0.07814398407936096, 0.008556274697184563, -0.05106620863080025, -0.05179943889379501, 0.03508375212550163, 0.052866674959659576, -0.09661241620779037, 0.030643217265605927, 0.03692648559808731, -0.10718328505754471, 0.02607465535402298, -0.05405851826071739, 0.04138139635324478, -0.025351112708449364, 0.01285143569111824, -0.05807268247008324, -0.0679917261004448, 0.029928794130682945, -0.06212475150823593, 0.002403205493465066, -0.0007153888000175357, -0.0052373833023011684, -0.024281129240989685, 0.03224460780620575, -0.03276074305176735, -0.00787276215851307, -0.07683880627155304, 0.03682113438844681, -0.038276009261608124, 0.04966512694954872, 0.017552850767970085, -0.08735542744398117, 0.0013984576798975468, -0.05456743389368057, -0.021512867882847786, 0.1083449274301529, 0.024654021486639977, 0.03977801278233528, 0.048605117946863174, 0.056248199194669724, 0.012607735581696033, 0.04903484880924225, 0.018288787454366684, -0.006787883583456278, -0.03261452540755272, -0.02502807229757309, 0.009722801856696606, 0.02023273892700672, -0.005967225879430771, -0.036139313131570816, -0.002015264704823494, 0.028225868940353394, 0.008300303481519222, 0.000583386979997158, -0.0707060769200325, 0.042324986308813095, -0.07563436776399612, -0.06607364118099213, -0.038837216794490814, -0.028811698779463768, 0.04558003693819046, -0.05310758203268051, -0.025818688794970512, -0.09311403334140778, 0.017712609842419624, 0.024003392085433006, -0.08596080541610718, -0.03565855324268341, -0.026766950264573097, 0.03942741081118584, -0.036949966102838516, -0.022440237924456596, 0.03727922961115837, 0.023566892370581627, -1.413189134956643e-33, 0.0425250306725502, -0.03120284155011177, -0.06786565482616425, 0.017282327637076378, -0.08982669562101364, -0.08516135066747665, 0.028678085654973984, 0.15145254135131836, 0.0005790084833279252, 0.00035772143746726215, -0.06320331245660782, -0.04434660077095032, 0.004968659020960331, 0.006872681900858879, 0.016460783779621124, 0.044784851372241974, -0.024896614253520966, -0.05562500283122063, -0.002551846671849489, -0.010216613300144672, 0.002976977964863181, -0.01615665853023529, -0.10513849556446075, 0.11382026970386505, -0.015058598481118679, 0.028772184625267982, -0.04662241414189339, -0.020298423245549202, 0.006253927014768124, 0.019528159871697426, -0.08809094876050949, -0.04973017796874046, -0.04378927871584892, 0.04491366446018219, -0.07290477305650711, 0.08265568315982819, 0.057749465107917786, -0.032845743000507355, -0.019746897742152214, 0.02680938132107258, -0.0011028335429728031, -0.0184455756098032, -0.005022071301937103, 0.0630035325884819, 0.024631870910525322, -0.0005471727927215397, -0.07493521273136139, -0.020499126985669136, 0.03405992314219475, -0.10103511810302734, 0.06461793929338455, 0.05575565621256828, -0.08242619782686234, -0.003651220817118883, -0.05181926488876343, -0.03750837221741676, 0.01880769245326519, -0.05864262580871582, -0.05771360918879509, 0.03419221192598343, -0.0067413728684186935, -0.046501293778419495, 0.01674908958375454, -0.020312601700425148, -0.03915776312351227, -0.030291464179754257, -0.03331121429800987, 0.04825925827026367, -0.04516962543129921, -0.013562670908868313, -0.05383250117301941, -0.0460733063519001, 0.06889442354440689, 0.06889642775058746, 0.05230417847633362, -0.016514284536242485, 0.0881609171628952, -0.010384775698184967, 0.0025701322592794895, -0.02375083789229393, -0.0699077695608139, -0.07143134623765945, -0.02789389342069626, 0.0940752848982811, 0.04399382323026657, 0.05127042159438133, 0.07145849615335464, 0.014695345424115658, -0.019241023808717728, -0.027980247512459755, 0.0011926344595849514, 0.06664161384105682, -0.011155681684613228, 0.10503429174423218, 0.02109633944928646, -5.0986518118634194e-8, -0.039198800921440125, 0.027316870167851448, -0.015786394476890564, 0.02310723438858986, 0.002691560657694936, -0.060532718896865845, -0.04460718855261803, 0.033627673983573914, -0.03548480570316315, -0.018720945343375206, -0.06955549120903015, 0.08834508061408997, -0.1135820522904396, 0.0021357766818255186, -0.020914247259497643, 0.10196313261985779, -0.01750326342880726, 0.04350122809410095, 0.019822517409920692, 0.05720309168100357, -0.008800622075796127, 0.07975928485393524, 0.03047710657119751, -0.09824725985527039, -0.033770523965358734, -0.058190979063510895, 0.006631056312471628, 0.07864527404308319, 0.005514843855053186, -0.0010194593342021108, -0.04235389083623886, 0.07751278579235077, -0.09066629409790039, 0.008210672996938229, 0.10421665757894516, 0.11239985376596451, -0.012460666708648205, -0.013225413858890533, -0.03870641067624092, 0.054552048444747925, 0.08927083015441895, 0.03205835819244385, -0.09841764718294144, 0.0007199624087661505, 0.07108572125434875, 0.006966763641685247, -0.005336441099643707, -0.05922568589448929, 0.04559919238090515, 0.09603320062160492, 0.07216943800449371, -0.05644990876317024, -0.028644710779190063, 0.1009560227394104, -0.013739552348852158, 0.039588212966918945, -0.04765984043478966, -0.046629648655653, 0.046830710023641586, 0.034526973962783813, 0.04384591430425644, 0.06203554943203926, 0.008627096191048622, 0.11331696808338165 ]
florentiino/DialoGPT-small-harrypotter
f45e5d9b12e85a4a2c7c1ad13cdc55c06996c923
2022-07-23T06:43:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
florentiino
null
florentiino/DialoGPT-small-harrypotter
3,017
null
transformers
--- tags: - conversational --- # Have a chat with Dumbledore
[ -0.024625185877084732, -0.0510760173201561, 0.03674760460853577, -0.024174345657229424, 0.01721636950969696, -0.07089806348085403, 0.13766254484653473, -0.004875658545643091, 0.01595097780227661, -0.07136965543031693, -0.04966743662953377, -0.05024844780564308, -0.029419852420687675, -0.006106208544224501, -0.008752011694014072, 0.010795005597174168, 0.00668153865262866, -0.05181850865483284, -0.012879542075097561, 0.07106131315231323, 0.020435791462659836, 0.05850423499941826, 0.06565169245004654, 0.0255343746393919, 0.028256651014089584, -0.06332959979772568, -0.015169287100434303, 0.008538947440683842, -0.03439217805862427, 0.015432129614055157, 0.08844929933547974, 0.049569856375455856, 0.03585183992981911, 0.04037903621792793, -0.07659102976322174, 0.02511831559240818, 0.04005773738026619, 0.07556924968957901, 0.026079311966896057, -0.052831247448921204, -0.034492261707782745, -0.06865394860506058, -0.09954027086496353, 0.06809287518262863, -0.030915675684809685, 0.010153534822165966, -0.09153773635625839, -0.016910463571548462, -0.08087105304002762, 0.07423141598701477, -0.0946434736251831, 0.020434578880667686, 0.029664210975170135, 0.08618006855249405, 0.012479506433010101, 0.051732830703258514, -0.05400887876749039, -0.024752072989940643, 0.10313476622104645, 0.04291628301143646, -0.0033344198018312454, -0.04942459985613823, 0.02399592287838459, 0.06418557465076447, -0.026575367897748947, 0.02339349500834942, -0.04086070880293846, 0.05794013664126396, -0.07005872577428818, 0.044002778828144073, 0.0373968631029129, -0.010809036903083324, 0.060502078384160995, -0.03771815821528435, 0.03346656262874603, -0.013788529671728611, -0.07123047858476639, -0.04413438215851784, -0.011181906796991825, -0.00818636454641819, -0.07318505644798279, -0.11948367208242416, 0.0013342383317649364, 0.004744373261928558, 0.005530691239982843, -0.007242071442306042, 0.04492449760437012, -0.06028817221522331, -0.07070612907409668, 0.03198087215423584, -0.028175538405776024, 0.0023256249260157347, 0.07651140540838242, 0.06363768130540848, 0.008720497600734234, 0.00638539856299758, 0.02677980810403824, 0.002190365456044674, -0.0968065857887268, 0.12923386693000793, -0.025173135101795197, 0.016092579811811447, 0.025635039433836937, -0.016455963253974915, -0.029643798246979713, 0.018353870138525963, -0.03390689939260483, -0.04735473543405533, -0.00610411586239934, -0.03747420012950897, -0.05604678764939308, -0.06477370858192444, 0.08361925929784775, -0.059334542602300644, 0.06876290589570999, -0.01783306524157524, 0.11682640761137009, 0.03367678076028824, 0.060419004410505295, -0.03290233016014099, 0.05676569789648056, 0.026157783344388008, -0.03991607576608658, -0.04516817256808281, -0.018608780577778816, -0.01977313868701458, -0.07849320024251938, -3.6272060206010395e-33, 0.11618183553218842, -0.03539658710360527, 0.014914200641214848, 0.05117662996053696, 0.004797737579792738, 0.0355900377035141, -0.09218946099281311, -0.04948112368583679, -0.004621579311788082, -0.06704875081777573, 0.09449372440576553, -0.11528614163398743, -0.025449009612202644, 0.03989936038851738, -0.005955499596893787, -0.00043970884871669114, 0.003701987210661173, 0.03696262091398239, 0.057616326957941055, -0.046280693262815475, -0.07413335144519806, -0.003173281904309988, 0.007785172667354345, 0.08683795481920242, 0.020466094836592674, 0.07762964069843292, 0.062109023332595825, -0.09040780365467072, 0.05055088549852371, 0.048626918345689774, -0.05622052401304245, -0.039151307195425034, -0.01259978674352169, -0.018845783546566963, -0.0199104156345129, -0.00797424465417862, -0.013276095502078533, -0.07284907251596451, -0.039279427379369736, -0.05881473422050476, -0.031162941828370094, -0.05061497166752815, -0.0491454117000103, -0.10761558264493942, -0.021380938589572906, 0.0509008914232254, 0.03746747970581055, 0.0337066575884819, 0.03333504870533943, 0.07304508984088898, -0.04416019096970558, -0.009000985883176327, -0.002455516019836068, -0.008550162427127361, -0.014550724066793919, -0.017133865505456924, -0.04965829849243164, 0.010905899107456207, 0.08602438867092133, -0.02534009888768196, -0.030631249770522118, 0.022386452183127403, 0.017973121255636215, -0.092824786901474, 0.04157564043998718, 0.021543607115745544, -0.04898369684815407, -0.013873131945729256, -0.0323585569858551, -0.09616398066282272, -0.06950162351131439, 0.07319679856300354, -0.05270669609308243, 0.07495884597301483, -0.08561448007822037, 0.05667969584465027, -0.07369394600391388, 0.001365323318168521, -0.007394281215965748, 0.021818041801452637, -0.03127925470471382, -0.048967260867357254, -0.061464086174964905, -0.00032681127777323127, -0.03123142011463642, -0.005452726501971483, -0.008956735953688622, -0.1414901167154312, 0.024595385417342186, 0.07532999664545059, 0.0013174191117286682, -0.018790585920214653, -0.049723070114851, -0.05335784703493118, -0.07956226170063019, 2.01890291500064e-33, 0.06339868158102036, -0.01920233853161335, -0.097213976085186, 0.08498293906450272, 0.034676551818847656, -0.003953848034143448, -0.004754004068672657, 0.0654304251074791, 0.046940285712480545, -0.041099466383457184, -0.054790984839200974, 0.022072257474064827, -0.07715795934200287, -0.01548374630510807, 0.13589376211166382, 0.07507301867008209, 0.11615891009569168, -0.035498667508363724, -0.022587904706597328, -0.0005653473199345171, 0.04713378846645355, -0.028984440490603447, -0.0789085403084755, 0.004395901691168547, 0.01804041489958763, 0.03057497926056385, -0.015019893646240234, 0.07137125730514526, 0.015673626214265823, -0.049161817878484726, 0.018933342769742012, 0.04803697019815445, -0.04979651793837547, -0.04083861783146858, 0.028024684637784958, 0.0024244626984000206, 0.0476214624941349, -0.027102667838335037, 0.020116206258535385, 0.01617329940199852, 0.038512952625751495, -0.019107835367321968, 0.017578354105353355, 0.024782819673419, 0.013748624362051487, 0.002788190497085452, -0.014744587242603302, -0.018875790759921074, -0.07080623507499695, 0.03559843450784683, 0.062019381672143936, -0.036921124905347824, -0.03492362052202225, -0.13937310874462128, -0.022995902225375175, -0.04612351581454277, 0.03231620788574219, 0.039307478815317154, -0.05849303677678108, -0.041974615305662155, -0.02654881216585636, -0.08996672183275223, 0.059541005641222, 0.004060712642967701, -0.009119213558733463, -0.005738405045121908, -0.089176706969738, 0.031496625393629074, -0.04176530987024307, 0.0041967579163610935, 0.07940532267093658, -0.016745487228035927, -0.04965726286172867, 0.028753913938999176, 0.0629245787858963, 0.07911351323127747, 0.05043807625770569, 0.03205503523349762, 0.03416992723941803, 0.03224237263202667, 0.0049498542211949825, 0.04819860681891441, 0.012155490927398205, 0.015346969477832317, 0.07829362154006958, 0.005251107271760702, 0.00949660874903202, -0.01007759477943182, -0.028693323954939842, -0.08811420202255249, 0.04430216923356056, 0.002890906762331724, 0.055464960634708405, 0.05272670462727547, 0.06116664782166481, -2.3277815230926535e-8, -0.0611872635781765, -0.07331554591655731, -0.004759558942168951, -0.020448820665478706, 0.03503040969371796, 0.03931130841374397, 0.04284561797976494, 0.02836737409234047, -0.004020356573164463, 0.004247364122420549, 0.017519276589155197, 0.04403679072856903, -0.03584391623735428, 0.04161128029227257, 0.06518099457025528, -0.007748038042336702, -0.033405400812625885, -0.022292792797088623, -0.03737823665142059, 0.00933124590665102, 0.030575348064303398, -0.02652718871831894, -0.0676565170288086, 0.055614810436964035, 0.014478246681392193, 0.007147961296141148, 0.04504135996103287, -0.014933372847735882, -0.02986464835703373, 0.08656080812215805, 0.05726241692900658, 0.059603940695524216, -0.07297045737504959, -0.06853717565536499, -0.02059454284608364, -0.016817227005958557, -0.10793878883123398, 0.0005346992402337492, 0.06717477738857269, 0.06113841012120247, 0.04155363142490387, 0.04689422994852066, -0.04086204245686531, -0.016726689413189888, 0.01712457835674286, 0.0244436152279377, -0.07297345250844955, -0.05877208337187767, -0.04830559343099594, -0.07536761462688446, -0.06412439048290253, -0.007092484273016453, 0.11150238662958145, 0.01723354682326317, 0.031768884509801865, 0.016443977132439613, 0.06832527369260788, 0.0720524787902832, 0.015455186367034912, 0.02002689242362976, 0.09016445279121399, 0.09732864797115326, -0.01222043763846159, 0.012380401603877544 ]
AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru
6cc14366f0cc95428a695d30594a93dd6935d800
2022-07-19T15:33:20.000Z
[ "pytorch", "xlm-roberta", "question-answering", "en", "ru", "multilingual", "arxiv:1912.09723", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
AlexKay
null
AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru
3,012
9
transformers
--- language: - en - ru - multilingual license: apache-2.0 --- # XLM-RoBERTa large model whole word masking finetuned on SQuAD Pretrained model using a masked language modeling (MLM) objective. Fine tuned on English and Russian QA datasets ## Used QA Datasets SQuAD + SberQuAD [SberQuAD original paper](https://arxiv.org/pdf/1912.09723.pdf) is here! Recommend to read! ## Evaluation results The results obtained are the following (SberQUaD): ``` f1 = 84.3 exact_match = 65.3
[ -0.06948976218700409, -0.0954682007431984, -0.03821945935487747, 0.004773532971739769, -0.014061320573091507, 0.07217200845479965, -0.020948501303792, -0.009653305634856224, 0.006475478410720825, -0.010058666579425335, 0.04818214848637581, -0.005931887309998274, 0.04493245482444763, -0.0021821106784045696, -0.006205377168953419, 0.04647597670555115, 0.021656576544046402, 0.0011606246698647738, -0.061152923852205276, -0.13597477972507477, 0.03507023677229881, 0.02008378878235817, 0.06815143674612045, 0.010371154174208641, 0.0716189295053482, -0.005792214535176754, -0.003074070904403925, 0.026668529957532883, 0.06326702982187271, -0.033226724714040756, 0.05404751002788544, 0.07593050599098206, 0.1260640025138855, 0.023312725126743317, 0.008484955877065659, 0.039501775056123734, -0.013400642201304436, -0.03944800794124603, 0.03360899165272713, 0.021438945084810257, -0.09239208698272705, -0.03909960389137268, -0.022116336971521378, -0.05569741129875183, 0.06841763854026794, -0.06897703558206558, -0.06490366160869598, 0.05132698640227318, 0.03036215901374817, -0.055392660200595856, -0.0989532619714737, -0.07798852026462555, 0.010681984946131706, 0.03751353174448013, -0.036800824105739594, -0.1020505353808403, 0.02884986437857151, -0.020678745582699776, -0.041238509118556976, -0.014111251570284367, -0.07893679291009903, -0.007853738032281399, -0.05268815904855728, 0.023422960191965103, -0.05847880244255066, -0.013850436545908451, -0.02263224683701992, 0.036715101450681686, -0.007436008658260107, 0.0924181118607521, -0.012966012582182884, 0.026951942592859268, -0.08986668288707733, 0.03261500224471092, 0.0026074154302477837, 0.018302911892533302, 0.004843299742788076, -0.019054792821407318, 0.08419818431138992, -0.08284765481948853, 0.048932772129774094, -0.06594530493021011, 0.03709863871335983, 0.01154317520558834, 0.03584849089384079, -0.020762421190738678, -0.019950006157159805, 0.01495527382940054, 0.007243726868182421, 0.021771825850009918, -0.0331059992313385, -0.05342014878988266, 0.07750272005796432, -0.007892266847193241, -0.06938154995441437, 0.013791092671453953, 0.04349688068032265, 0.06696371734142303, -0.020106563344597816, 0.05562738701701164, 0.005840637721121311, -0.029086032882332802, -0.014354240149259567, 0.006148679181933403, -0.09257593750953674, -0.014410886913537979, 0.03734695538878441, 0.059539247304201126, 0.06338782608509064, -0.13393238186836243, 0.07902111113071442, -0.030694875866174698, -0.04800824075937271, 0.05877726152539253, 0.017234710976481438, 0.031899794936180115, 0.0979820117354393, -0.013056382536888123, -0.05671665072441101, 0.031023791059851646, -0.047945763915777206, 0.01183480303734541, 0.025286342948675156, -0.013117176480591297, 0.03565319627523422, 0.03549712151288986, -0.06949101388454437, 6.529842466143006e-33, 0.11779652535915375, 0.060547806322574615, -0.05012192204594612, -0.027507547289133072, 0.03545251861214638, -0.03519269451498985, 0.010569081641733646, -0.009397290647029877, -0.061714839190244675, 0.06678342074155807, -0.021329505369067192, -0.0018831812776625156, -0.0527486577630043, 0.021063905209302902, -0.006146265659481287, 0.02597833052277565, -0.010032124817371368, 0.011648563668131828, -0.025078019127249718, 0.038043878972530365, 0.11209467053413391, -0.00917617604136467, -0.0365942046046257, -0.04778091982007027, 0.007298975717276335, 0.06397977471351624, 0.09261557459831238, -0.08186963200569153, -0.013388345018029213, 0.04657834768295288, -0.07119447737932205, 0.04414913430809975, -0.04019463434815407, 0.046945441514253616, 0.005615980830043554, -0.04394889622926712, 0.03417051210999489, -0.03739903122186661, -0.01788521744310856, -0.01757441833615303, 0.014466225169599056, 0.007137371692806482, 0.022923627868294716, -0.04797125235199928, 0.00975491851568222, -0.040482472628355026, -0.0013943093363195658, 0.03721670061349869, 0.08232336491346359, 0.06076410785317421, 0.03338923677802086, 0.01049614604562521, -0.02542903460562229, 0.013670756481587887, -0.005666155368089676, 0.04002007097005844, 0.05412900075316429, 0.06210092082619667, 0.03507057949900627, 0.011820395477116108, 0.06868810951709747, -0.02101275511085987, 0.030219770967960358, -0.005090126767754555, 0.05996938794851303, -0.048521582037210464, -0.034528691321611404, -0.07258575409650803, 0.0039815353229641914, 0.059909287840127945, -0.01196246687322855, -0.06512081623077393, 0.009195257909595966, 0.07408976554870605, 0.019777730107307434, -0.0907977893948555, 0.016434360295534134, 0.011458082124590874, -0.0015649867709726095, -0.06034646928310394, -0.00744808791205287, 0.08436231315135956, 0.012821285054087639, -0.08296526223421097, -0.11339063197374344, -0.027084287256002426, 0.12608879804611206, -0.03918873146176338, -0.017134854570031166, -0.058758825063705444, 0.0006741757388226688, 0.042122866958379745, 0.06376971304416656, 0.01509333960711956, -0.05578480288386345, -6.554029731779113e-33, -0.02774551883339882, 0.058015525341033936, -0.022494861856102943, 0.06898826360702515, -0.03341825678944588, -0.026542440056800842, 0.09252084791660309, 0.1381969004869461, 0.0416257344186306, 0.010759296827018261, 0.05133870989084244, -0.06890104711055756, -0.0032103070989251137, -0.029811661690473557, 0.09182826429605484, -0.07659243792295456, 0.0440780408680439, -0.017252592369914055, -0.03821089491248131, 0.026809532195329666, -0.08305191993713379, 0.03822648525238037, 0.031659986823797226, 0.027324266731739044, -0.021870126947760582, -0.031113456934690475, 0.0003500089223962277, 0.019057296216487885, -0.046582333743572235, 0.04783878102898598, 0.007580955978482962, -0.006526125129312277, -0.09624837338924408, 0.0016290368512272835, -0.136318176984787, 0.04045698419213295, -0.005100967828184366, 0.0063113858923316, -0.0072687300853431225, 0.056553393602371216, 0.012058703228831291, -0.00031604268588125706, -0.12749332189559937, 0.06302352249622345, -0.00867523904889822, -0.0858379527926445, -0.0722234770655632, -0.07015356421470642, -0.009357371367514133, -0.07531248033046722, 0.00047010250273160636, 0.01706063002347946, -0.020570354536175728, 0.03025190159678459, -0.0577855221927166, -0.07092072069644928, -0.035054437816143036, -0.045470405369997025, -0.04072060436010361, -0.011157505214214325, -0.014619508758187294, 0.04760940000414848, -0.03275799751281738, -0.018263883888721466, 0.06991121172904968, -0.06543862074613571, 0.002091375645250082, 0.06744451075792313, 0.01261969469487667, -0.02068175934255123, 0.0747375413775444, -0.05397424101829529, 0.030401676893234253, 0.14343592524528503, 0.03082050010561943, -0.0438721738755703, -0.11355897784233093, 0.02307184971868992, 0.020340485498309135, 0.03556086868047714, -0.005264613311737776, 0.019534599035978317, -0.045804087072610855, 0.06642685830593109, 0.03150225803256035, 0.03652330860495567, 0.02186432294547558, 0.09284969419240952, -0.004586859606206417, 0.007542969658970833, 0.029460160061717033, 0.019918780773878098, 0.03195996209979057, 0.046824414283037186, 0.038160037249326706, -4.90932947627698e-8, -0.005490773823112249, 0.007288034074008465, -0.09235270321369171, 0.015181870199739933, -0.04104539006948471, -0.09614653140306473, -0.0821804478764534, -0.023321736603975296, -0.021578092128038406, 0.03492935374379158, -0.0351756326854229, 0.012054618448019028, -0.10028146207332611, 0.024184323847293854, -0.08062905073165894, 0.034861475229263306, 0.014872784726321697, 0.12235341966152191, -0.03878355771303177, -0.023954126983880997, 0.013537950813770294, 0.027340879663825035, -0.025311769917607307, -0.059817660599946976, 0.01273043267428875, -0.003938071429729462, -0.11187873780727386, 0.024645337834954262, 0.009510420262813568, 0.07021874189376831, -0.045304637402296066, 0.037666626274585724, -0.06619682908058167, -0.03450917452573776, 0.021076420322060585, 0.053551048040390015, -0.00879594124853611, 0.01264737918972969, 0.01473865658044815, 0.07096122205257416, 0.0002495883672963828, -0.05015358701348305, -0.08502607047557831, -0.02104271575808525, 0.0408330038189888, 0.02703852392733097, -0.052214283496141434, -0.1598069965839386, -0.0178317129611969, 0.019609583541750908, 0.1601017415523529, -0.04809658229351044, 0.011876745149493217, 0.02384147047996521, 0.012009330093860626, 0.020545801147818565, -0.00259701581671834, -0.0055046239867806435, 0.06763061881065369, -0.016246790066361427, 0.03108331188559532, 0.008250844664871693, -0.03296349197626114, -0.017389824613928795 ]
neuraly/bert-base-italian-cased-sentiment
bea83f326b616d7fe641bc3ed92a5ce18c97dfed
2021-09-22T09:29:18.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "it", "transformers", "sentiment", "Italian", "license:mit" ]
text-classification
false
neuraly
null
neuraly/bert-base-italian-cased-sentiment
3,000
2
transformers
--- language: it thumbnail: https://neuraly.ai/static/assets/images/huggingface/thumbnail.png tags: - sentiment - Italian license: mit widget: - text: Huggingface è un team fantastico! --- # 🤗 + neuraly - Italian BERT Sentiment model ## Model description This model performs sentiment analysis on Italian sentences. It was trained starting from an instance of [bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased), and fine-tuned on an Italian dataset of tweets, reaching 82% of accuracy on the latter one. ## Intended uses & limitations #### How to use ```python import torch from torch import nn from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("neuraly/bert-base-italian-cased-sentiment") # Load the model, use .cuda() to load it on the GPU model = AutoModelForSequenceClassification.from_pretrained("neuraly/bert-base-italian-cased-sentiment") sentence = 'Huggingface è un team fantastico!' input_ids = tokenizer.encode(sentence, add_special_tokens=True) # Create tensor, use .cuda() to transfer the tensor to GPU tensor = torch.tensor(input_ids).long() # Fake batch dimension tensor = tensor.unsqueeze(0) # Call the model and get the logits logits, = model(tensor) # Remove the fake batch dimension logits = logits.squeeze(0) # The model was trained with a Log Likelyhood + Softmax combined loss, hence to extract probabilities we need a softmax on top of the logits tensor proba = nn.functional.softmax(logits, dim=0) # Unpack the tensor to obtain negative, neutral and positive probabilities negative, neutral, positive = proba ``` #### Limitations and bias A possible drawback (or bias) of this model is related to the fact that it was trained on a tweet dataset, with all the limitations that come with it. The domain is strongly related to football players and teams, but it works surprisingly well even on other topics. ## Training data We trained the model by combining the two tweet datasets taken from [Sentipolc EVALITA 2016](http://www.di.unito.it/~tutreeb/sentipolc-evalita16/data.html). Overall the dataset consists of 45K pre-processed tweets. The model weights come from a pre-trained instance of [bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased). A huge "thank you" goes to that team, brilliant work! ## Training procedure #### Preprocessing We tried to save as much information as possible, since BERT captures extremely well the semantic of complex text sequences. Overall we removed only **@mentions**, **urls** and **emails** from every tweet and kept pretty much everything else. #### Hardware - **GPU**: Nvidia GTX1080ti - **CPU**: AMD Ryzen7 3700x 8c/16t - **RAM**: 64GB DDR4 #### Hyperparameters - Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8** - Max epochs: **5** - Batch size: **32** - Early Stopping: **enabled** with patience = 1 Early stopping was triggered after 3 epochs. ## Eval results The model achieves an overall accuracy on the test set equal to 82% The test set is a 20% split of the whole dataset. ## About us [Neuraly](https://neuraly.ai) is a young and dynamic startup committed to designing AI-driven solutions and services through the most advanced Machine Learning and Data Science technologies. You can find out more about who we are and what we do on our [website](https://neuraly.ai). ## Acknowledgments Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download the model from their S3 storage and live test it from their inference API 🤗.
[ -0.10875582695007324, -0.04549013450741768, 0.02796611189842224, 0.06115186959505081, 0.029791146516799927, -0.009639611467719078, 0.010277057997882366, 0.051446594297885895, 0.024766940623521805, -0.09655532985925674, 0.012806755490601063, -0.04750920087099075, -0.01012419443577528, 0.04774587228894234, -0.01101715862751007, 0.020164087414741516, 0.04669049382209778, -0.03100239671766758, -0.11393947154283524, -0.08875764161348343, 0.0785803496837616, 0.028998786583542824, 0.08189257979393005, -0.001121783279813826, 0.05268464237451553, 0.004453438799828291, -0.039225898683071136, -0.015685146674513817, 0.03752097487449646, 0.06992378830909729, -0.01547912135720253, 0.05522861331701279, -0.03718235343694687, 0.09852829575538635, -0.016428610309958458, 0.06822467595338821, -0.06587206572294235, -0.03186693787574768, 0.034992896020412445, 0.037209268659353256, -0.006506324280053377, -0.048878833651542664, 0.008057274855673313, -0.013757451437413692, 0.10576679557561874, 0.03085763193666935, 0.006103023886680603, 0.04411808028817177, -0.04097779095172882, -0.027677929028868675, -0.10593252629041672, -0.01645137369632721, 0.0615200437605381, 0.06514088064432144, -0.06573708355426788, 0.06475920230150223, 0.06445266306400299, -0.023081336170434952, 0.027400730177760124, -0.08447585999965668, -0.029974181205034256, -0.02574474923312664, 0.02417108416557312, 0.004798238165676594, -0.03798475116491318, -0.00440082186833024, -0.055175501853227615, -0.001521222642622888, -0.026417668908834457, -0.014493748545646667, 0.05177142098546028, 0.025505581870675087, 0.03977454453706741, 0.08334735035896301, 0.0012459835270419717, -0.01711074821650982, 0.11859423667192459, -0.029948469251394272, 0.051029156893491745, -0.10919538885354996, 0.03483033925294876, -0.05246783420443535, 0.09383850544691086, 0.03422951698303223, 0.10297416895627975, -0.039005864411592484, 0.07044588774442673, 0.0017713544657453895, -0.031930118799209595, 0.051492538303136826, -0.017465395852923393, -0.07121884077787399, 0.040118683129549026, -0.012921029701828957, 0.03547196462750435, 0.035941172391176224, -0.030662281438708305, -0.038625318557024, -0.10930411517620087, 0.0903419479727745, 0.023547470569610596, -0.005728784017264843, 0.018608346581459045, -0.01817498356103897, -0.022692924365401268, 0.05603596568107605, 0.02844811975955963, 0.026482852175831795, 0.028246169909834862, -0.056594494730234146, -0.016873573884367943, 0.026342367753386497, -0.03471503406763077, -0.07821521908044815, 0.03927832096815109, -0.05196777731180191, -0.016825923696160316, 0.04296876862645149, 0.05690639093518257, 0.09737014025449753, 0.0039644003845751286, 0.019804932177066803, -0.031608399003744125, 0.024872470647096634, 0.009584419429302216, 0.033924493938684464, -0.05478537455201149, 5.040390104605394e-33, -0.004604259040206671, 0.03831924498081207, 0.005037982016801834, -0.053736183792352676, -0.055181071162223816, 0.0000934611598495394, -0.018386397510766983, -0.012979917228221893, -0.11530730128288269, -0.04603321850299835, -0.091303251683712, 0.045352641493082047, -0.07194667309522629, 0.0653553456068039, -0.03625177964568138, -0.022515421733260155, -0.012881447561085224, 0.0015771834878250957, 0.05877877399325371, -0.008709350600838661, 0.07397471368312836, 0.03204476833343506, 0.005158181767910719, -0.07227826118469238, -0.11423540115356445, 0.034876223653554916, 0.08940836042165756, -0.04839261993765831, -0.06780204176902771, 0.031108930706977844, -0.11076905578374863, 0.06941713392734528, 0.012492389418184757, -0.01660287193953991, 0.0600607767701149, -0.04091508314013481, -0.028821133077144623, -0.015258138999342918, 0.01609751209616661, -0.024432845413684845, -0.021523188799619675, 0.09460785239934921, -0.002259780652821064, -0.07238180935382843, -0.0346493273973465, 0.05126021057367325, -0.029620790854096413, -0.029212120920419693, 0.036125604063272476, -0.006049794144928455, 0.060276325792074203, 0.015834979712963104, -0.027001963928341866, 0.06713254749774933, 0.01923360303044319, 0.010330966673791409, 0.0685550794005394, 0.015232369303703308, 0.11984743922948837, -0.06360689550638199, 0.023842161521315575, 0.01115382555872202, 0.06737688183784485, -0.0487569235265255, 0.04852103441953659, 0.03291940689086914, -0.026713091880083084, 0.07861967384815216, -0.03688408061861992, -0.0077490853145718575, -0.02495543844997883, 0.004476257599890232, -0.012599773705005646, 0.014384484849870205, -0.005126059055328369, -0.057744912803173065, 0.021651893854141235, -0.09558136016130447, -0.025168275460600853, -0.012103092856705189, -0.022101176902651787, -0.043151598423719406, 0.052579108625650406, -0.0936867818236351, -0.06684289127588272, -0.0024186288937926292, 0.03816855326294899, -0.0649871900677681, -0.007839555852115154, 0.02847333997488022, -0.03800695389509201, -0.05028749257326126, 0.020232591778039932, 0.011447095312178135, -0.08138784766197205, -4.896288823531982e-33, -0.027256067842245102, 0.02067556604743004, -0.08001889288425446, 0.053913556039333344, -0.08724471926689148, -0.0742276981472969, -0.014008740894496441, 0.10050927102565765, 0.017337007448077202, 0.005003396887332201, 0.06980875134468079, -0.07888428121805191, -0.05793340504169464, -0.07196428626775742, 0.046382494270801544, 0.009180307388305664, 0.013658934272825718, 0.018479997292160988, -0.003921180963516235, 0.013520408421754837, -0.0269016120582819, -0.02483372949063778, -0.1341760903596878, 0.06442292034626007, -0.1234678328037262, 0.0665905624628067, 0.02345593087375164, 0.0323130302131176, 0.02759307622909546, -0.037182267755270004, -0.003633483313024044, 0.013851710595190525, -0.06667913496494293, 0.0752612054347992, -0.019590286538004875, 0.060255471616983414, -0.007817942649126053, -0.08577191829681396, 0.04626675695180893, 0.07734361290931702, 0.12382517755031586, -0.0024097454734146595, -0.03963131830096245, 0.049641337245702744, -0.05001438036561012, 0.024077940732240677, -0.09072043001651764, -0.04518216848373413, -0.04283794388175011, -0.02396438643336296, 0.054505471140146255, -0.022369522601366043, -0.07933474332094193, 0.009719949215650558, -0.05172562971711159, -0.09400004148483276, 0.052734799683094025, -0.05433474853634834, -0.08101394772529602, -0.0017759768525138497, -0.050796836614608765, -0.035408951342105865, -0.00940584298223257, -0.055992674082517624, -0.019651811569929123, -0.038847915828228, -0.06533636897802353, 0.059515196830034256, 0.0460871085524559, 0.01907147467136383, 0.04046114906668663, 0.05186884105205536, 0.03029596246778965, 0.008775517344474792, -0.0049223750829696655, 0.03244848921895027, 0.025546204298734665, 0.00817915704101324, 0.04215855523943901, -0.0654691532254219, -0.036785632371902466, -0.06549771875143051, 0.0010680531850084662, 0.003217046381905675, -0.03112044744193554, 0.02148030325770378, 0.029155515134334564, 0.06854955106973648, 0.00742447329685092, 0.024759773164987564, 0.012106288224458694, 0.026592761278152466, 0.06585802137851715, 0.03773682564496994, 0.06596720963716507, -5.3421199908143535e-8, -0.07133639603853226, -0.050733089447021484, 0.008675280958414078, 0.09862164407968521, -0.06937725841999054, -0.010885896161198616, 0.003899394068866968, 0.04325634241104126, -0.0023761065676808357, -0.06052650883793831, 0.008366920053958893, 0.041782476007938385, -0.09317836165428162, -0.033231817185878754, -0.03423868492245674, 0.08843320608139038, -0.04109974205493927, 0.043101660907268524, 0.04573922976851463, -0.015292070806026459, 0.023725321516394615, 0.021474076434969902, -0.004470204934477806, -0.0706934779882431, 0.016780506819486618, -0.03768867254257202, -0.03853476792573929, 0.0755123421549797, -0.07990654557943344, -0.014828355982899666, 0.0184711292386055, -0.032004814594984055, -0.05429479107260704, -0.038756970316171646, 0.05782764405012131, 0.13148944079875946, -0.047906119376420975, -0.09545096009969711, 0.008501973934471607, -0.022026102989912033, 0.06019972264766693, 0.054928310215473175, -0.08248993009328842, -0.03989066556096077, 0.041263483464717865, -0.004898495972156525, 0.018170511350035667, -0.07848460227251053, 0.0248368252068758, 0.03388893976807594, 0.010378807783126831, 0.005872388370335102, -0.10337264835834503, 0.10251963883638382, 0.016654008999466896, -0.006272118538618088, -0.016669638454914093, -0.013593444600701332, 0.03330734372138977, 0.06272847950458527, 0.008294151164591312, 0.025528941303491592, -0.012666000053286552, -0.0007034153677523136 ]
hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh
95326522994b34d3aa50dd46621701260d27d323
2022-03-28T18:21:03.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "es", "transformers", "license:cc-by-nc-4.0" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh
2,999
6
transformers
--- license: cc-by-nc-4.0 language: es widget: - text: "ADOPCIÓN. EL INTERÉS SUPERIOR DEL MENOR DE EDAD SE BASA EN LA IDONEIDAD DE LOS ADOPTANTES, DENTRO DE LA CUAL SON IRRELEVANTES EL TIPO DE FAMILIA AL QUE AQUÉL SERÁ INTEGRADO, ASÍ COMO LA ORIENTACIÓN SEXUAL O EL ESTADO CIVIL DE ÉSTOS." --- ## Descripción del modelo hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh, es un modelo de clasificación de texto entrenado en un corpus de datos en español de manera supervisada. Este modelo fue entrenado con [scjnugacj/jurisbert](https://huggingface.co/scjnugacj/jurisbert) un modelo de enmascaramiento preentrenado con un corpus jurídico en español. Por lo tanto, nuestro jurisbert-clas-art-convencion-interamericana-dh toma un texto ingresado y predice en que categoría de los 30 artículos de la Convención Americana de Derechos Humanos pertenece. ## Usos previstos y limitaciones Puede usar el modelo para obtener los artículos de la Convención Americana de Derechos Humanos que tengan más relación al texto que está introduciendo. Tenga en cuenta que este modelo está destinado principalmente a ajustarse en tareas de clasificación, cuando quiera obtener principalmente que artículos tienen mayor relación a su tema en cuestión. ## Cómo utilizar ```python #Para instalar SimpleTransformers: pip install simpletransformers from simpletransformers.classification import ClassificationModel # Creando un ClassificationModel model = ClassificationModel( "roberta", "hackathon-pln-es/jurisbert-clas-art-convencion-americana-dh", use_cuda=True) predecir = ["adoptar a un niño"] predictions, raw_outputs = model.predict(predecir) predictions ``` ## Datos de entrenamiento El modelo hackathon-pln-es/jurisbert-clas-art-convencion-interamericana-dh se entrenó previamente en un conjunto de datos que consta de 6,089 textos con su etiquetado a diferentes 30 tipos de artículos. ## Procedimiento de entrenamiento Los textos se transforman utilizando SimpleTransformers en el que se entrenó una época con modelo base Roberta y modelo especifico Jurisbert el cual es un modelo de enmascaramiento con corpus jurídico en español. ## Variables y métricas Para entrenar se usaron el 90% (5,480) de nuestros datos, al hacer la evaluación: Train: 5,480 Test: 609 ## Resultados de evaluación | | precision | recall | f1-score | support | |---|---|---|---|---| | accuracy | | |0.75 | 609 | | macro avg | 0.69 |0.64 |0.64 | 609 | | weighted avg | 0.76 | 0.75 |0.74 | 609 | Accuracy: 0.7504105 ## Equipo El equipo esta conformado por @gpalomeque @aureliopvs @cecilimacias @giomadariaga @cattsytabla
[ -0.027731822803616524, 0.049689725041389465, -0.06737323105335236, -0.12571120262145996, -0.047327470034360886, -0.003781575709581375, 0.009865270927548409, 0.01909583993256092, 0.02140594646334648, 0.05121125653386116, 0.0911291167140007, -0.013326028361916542, 0.022675441578030586, 0.01222508866339922, 0.07703716307878494, 0.00609491067007184, -0.047992460429668427, 0.024540569633245468, -0.0015699422219768167, 0.07397381961345673, 0.1350974440574646, 0.009717145934700966, 0.010222304612398148, 0.018820222467184067, -0.07493042200803757, -0.0028428551740944386, -0.025328723713755608, 0.013027070090174675, -0.0918845683336258, -0.009349938482046127, -0.06400178372859955, 0.13084451854228973, 0.11724510788917542, 0.038796182721853256, 0.02726263925433159, -0.027608739212155342, 0.01130226906388998, -0.02986428514122963, 0.006443427875638008, 0.047314029186964035, -0.09946337342262268, 0.027096491307020187, -0.027315417304635048, -0.02183431386947632, -0.0057119326665997505, -0.09544026851654053, -0.02535388246178627, 0.08863574266433716, -0.04131026566028595, -0.0219411738216877, -0.06771446019411087, -0.06737273186445236, 0.008890265598893166, 0.043531905859708786, -0.011357618495821953, -0.05507499724626541, -0.05124061182141304, 0.02005264163017273, 0.07321394234895706, 0.046499814838171005, -0.0329740084707737, 0.08019223809242249, -0.04537596553564072, 0.0811198353767395, 0.02296365052461624, -0.007198774255812168, 0.06141851097345352, 0.02529972977936268, -0.12954272329807281, 0.01674560084939003, 0.028425119817256927, -0.03561531379818916, -0.03084217570722103, 0.06292860954999924, -0.05407087504863739, 0.06320931762456894, 0.00042882165871560574, 0.04953515902161598, 0.06500028818845749, -0.19276346266269684, 0.0018342941766604781, 0.049525756388902664, 0.018610944971442223, -0.0637940987944603, 0.02942955121397972, 0.0559515506029129, -0.022282518446445465, -0.025256134569644928, 0.05747509375214577, 0.046745605766773224, 0.048052459955215454, -0.00689111789688468, 0.025563867762684822, -0.025362102314829826, 0.019567333161830902, -0.008613242767751217, 0.10071219503879547, -0.015710854902863503, 0.00038759244489483535, 0.04579125717282295, 0.09394022822380066, 0.014487739652395248, 0.009108137339353561, 0.003303786041215062, 0.009098981507122517, -0.008462459780275822, 0.0689932107925415, -0.013445155695080757, 0.0086295735090971, 0.01966042071580887, -0.02905057929456234, -0.021256722509860992, -0.05933845043182373, -0.0998176857829094, -0.04024308919906616, -0.05626934394240379, 0.03481287136673927, -0.027826307341456413, 0.07193360477685928, -0.029203081503510475, -0.07446128129959106, -0.044764090329408646, -0.06037493050098419, -0.08025185763835907, 0.016948066651821136, -0.01396110374480486, -0.010470597073435783, 8.977875573287653e-33, -0.0369686558842659, -0.0037251883186399937, -0.011108486913144588, 0.08191992342472076, 0.039252474904060364, -0.026196081191301346, -0.043613169342279434, -0.012971460819244385, -0.11972832679748535, 0.0008903665584512055, -0.057235486805438995, 0.023047879338264465, -0.02640162967145443, 0.03295668959617615, 0.06000930443406105, 0.029674243181943893, -0.0059080361388623714, -0.07516423612833023, 0.03854699805378914, 0.046522993594408035, -0.005276676267385483, 0.07684231549501419, 0.029794733971357346, 0.012418163008987904, -0.07262413948774338, 0.11745437979698181, 0.0010891801211982965, -0.11231498420238495, -0.012456211261451244, 0.08071569353342056, -0.01583375595510006, 0.0029870739672333, 0.03729754686355591, -0.01675744354724884, 0.011312330141663551, -0.04018937423825264, 0.04853661358356476, -0.03607332706451416, 0.015808656811714172, 0.0022596355993300676, -0.03447180241346359, -0.02374877780675888, -0.004804977681487799, 0.0025415371637791395, -0.008415142074227333, 0.017403602600097656, 0.03254435956478119, 0.0044844248332083225, 0.04369058087468147, 0.06644672155380249, -0.04645800590515137, 0.015714487060904503, -0.04420367628335953, -0.05426115170121193, 0.048178303986787796, 0.05409957468509674, -0.07215186953544617, 0.032555460929870605, -0.0398264080286026, -0.017707431688904762, 0.017289146780967712, 0.03988571837544441, 0.028451543301343918, -0.019401811063289642, -0.0007891116547398269, -0.03489461913704872, -0.0826711654663086, -0.05878368392586708, 0.1532110571861267, -0.014315178617835045, -0.05264086276292801, -0.008757497183978558, -0.02987680397927761, 0.11094636470079422, 0.0025453614071011543, 0.04581295698881149, 0.0013529349816963077, -0.040817949920892715, -0.0020972341299057007, 0.030513178557157516, -0.12285323441028595, 0.012351791374385357, -0.00026574646471999586, -0.007464401889592409, 0.05554419010877609, 0.014639590866863728, 0.04245702177286148, 0.008622854948043823, 0.053390853106975555, 0.037162214517593384, 0.049614496529102325, -0.003422643058001995, -0.03503348305821419, -0.060208339244127274, 0.019807118922472, -1.0536452512783385e-32, -0.02568984590470791, -0.006672441028058529, -0.05094991251826286, -0.0375497043132782, -0.08570867031812668, -0.06895262002944946, 0.006667109671980143, 0.0018922451417893171, -0.006096288561820984, -0.1440839022397995, 0.0077367364428937435, -0.08942262828350067, 0.07890105992555618, -0.024554543197155, 0.0757274255156517, 0.008500670082867146, -0.08950039744377136, -0.07914422452449799, -0.01634981669485569, 0.07458031922578812, 0.02807295322418213, -0.03325020894408226, -0.03444483131170273, 0.018758218735456467, 0.029376061633229256, -0.06764844059944153, -0.035726286470890045, 0.04165269434452057, 0.028985802084207535, 0.007514603901654482, 0.022115936502814293, -0.0038830647245049477, -0.030065638944506645, 0.08614183217287064, -0.022083677351474762, -0.04978850856423378, 0.03621114045381546, 0.0037316223606467247, 0.024266190826892853, 0.05574432387948036, -0.0006544359494000673, 0.06614095717668533, -0.04244477301836014, 0.0014914674684405327, -0.026325328275561333, 0.011289743706583977, -0.07380561530590057, -0.011424187570810318, -0.002803186886012554, -0.07722239941358566, 0.0685199499130249, -0.04245154932141304, 0.011110163293778896, -0.1038990318775177, 0.034228838980197906, -0.0690682902932167, -0.00820417795330286, -0.09551659226417542, -0.09114200621843338, 0.04187675192952156, 0.037037935107946396, 0.04002995043992996, -0.0832085907459259, -0.01764071173965931, 0.06436585634946823, 0.012227311730384827, -0.07553984969854355, 0.06620737910270691, -0.032022517174482346, -0.05322878062725067, 0.08559836447238922, -0.07216767966747284, -0.08700212091207504, -0.04556294530630112, -0.025864381343126297, -0.035002321004867554, 0.008074035868048668, 0.030372997745871544, -0.008100204169750214, 0.01264851726591587, -0.022142918780446053, 0.03163306787610054, -0.02280312404036522, 0.023028042167425156, -0.001256659161299467, 0.05528617277741432, -0.0697149857878685, 0.04731621965765953, -0.05388316139578819, 0.051580071449279785, -0.029158899560570717, 0.03868456557393074, -0.04854249209165573, 0.10731597989797592, -0.012608900666236877, -6.243939765226969e-8, -0.045353975147008896, -0.01933373138308525, -0.06719256937503815, -0.05690867081284523, -0.003225253662094474, 0.03298063948750496, -0.03633134067058563, -0.09761976450681686, 0.023445449769496918, 0.03496689721941948, 0.006137975491583347, 0.03790544718503952, -0.048764556646347046, 0.021343115717172623, -0.06020403280854225, 0.038076579570770264, 0.055770065635442734, 0.05987020954489708, -0.019558560103178024, -0.025518814101815224, 0.07479643821716309, -0.00553415110334754, -0.04884905740618706, -0.0018020763527601957, -0.027544571086764336, 0.009635849855840206, -0.05912076309323311, -0.038539234548807144, -0.04923044890165329, 0.03607592731714249, -0.03602948039770126, 0.022093961015343666, -0.03875528275966644, -0.03719806671142578, 0.019464785233139992, 0.0026808830443769693, -0.038859717547893524, -0.010204696096479893, 0.016683565452694893, 0.02815305069088936, 0.13826636970043182, -0.0597958080470562, -0.06864452362060547, -0.03550146520137787, 0.07330570369958878, -0.06239447370171547, 0.04420355707406998, 0.0842721238732338, 0.05512673407793045, -0.012954982928931713, -0.0728410929441452, 0.0019410888198763132, -0.04178798198699951, -0.0016327250050380826, 0.004567085765302181, -0.03834324702620506, 0.04610488936305046, 0.074775829911232, -0.009754568338394165, 0.02524186484515667, 0.07558757811784744, 0.050291236490011215, 0.03862646222114563, -0.05764361470937729 ]
wietsedv/xlm-roberta-base-ft-udpos28-en
8fb5e06a6295a01d03bbc4af8359458bfcf21b57
2022-02-25T09:58:19.000Z
[ "pytorch", "xlm-roberta", "token-classification", "en", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-en
2,994
null
transformers
--- language: - en license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-en results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 96.0 - type: accuracy name: Dutch Test accuracy value: 90.4 - type: accuracy name: German Test accuracy value: 88.6 - type: accuracy name: Italian Test accuracy value: 87.8 - type: accuracy name: French Test accuracy value: 87.4 - type: accuracy name: Spanish Test accuracy value: 90.3 - type: accuracy name: Russian Test accuracy value: 91.0 - type: accuracy name: Swedish Test accuracy value: 94.0 - type: accuracy name: Norwegian Test accuracy value: 89.6 - type: accuracy name: Danish Test accuracy value: 91.6 - type: accuracy name: Low Saxon Test accuracy value: 57.4 - type: accuracy name: Akkadian Test accuracy value: 26.4 - type: accuracy name: Armenian Test accuracy value: 88.5 - type: accuracy name: Welsh Test accuracy value: 70.6 - type: accuracy name: Old East Slavic Test accuracy value: 76.5 - type: accuracy name: Albanian Test accuracy value: 82.3 - type: accuracy name: Slovenian Test accuracy value: 79.0 - type: accuracy name: Guajajara Test accuracy value: 17.2 - type: accuracy name: Kurmanji Test accuracy value: 76.9 - type: accuracy name: Turkish Test accuracy value: 79.1 - type: accuracy name: Finnish Test accuracy value: 87.2 - type: accuracy name: Indonesian Test accuracy value: 86.9 - type: accuracy name: Ukrainian Test accuracy value: 87.6 - type: accuracy name: Polish Test accuracy value: 87.2 - type: accuracy name: Portuguese Test accuracy value: 90.0 - type: accuracy name: Kazakh Test accuracy value: 82.5 - type: accuracy name: Latin Test accuracy value: 79.6 - type: accuracy name: Old French Test accuracy value: 53.4 - type: accuracy name: Buryat Test accuracy value: 58.8 - type: accuracy name: Kaapor Test accuracy value: 9.2 - type: accuracy name: Korean Test accuracy value: 64.0 - type: accuracy name: Estonian Test accuracy value: 88.4 - type: accuracy name: Croatian Test accuracy value: 87.9 - type: accuracy name: Gothic Test accuracy value: 20.5 - type: accuracy name: Swiss German Test accuracy value: 47.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 32.0 - type: accuracy name: Naija Test accuracy value: 47.5 - type: accuracy name: Latvian Test accuracy value: 87.5 - type: accuracy name: Chinese Test accuracy value: 47.5 - type: accuracy name: Tagalog Test accuracy value: 73.5 - type: accuracy name: Bambara Test accuracy value: 27.7 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 87.1 - type: accuracy name: Vietnamese Test accuracy value: 66.4 - type: accuracy name: Greek Test accuracy value: 87.6 - type: accuracy name: Catalan Test accuracy value: 89.7 - type: accuracy name: Czech Test accuracy value: 88.1 - type: accuracy name: Erzya Test accuracy value: 47.6 - type: accuracy name: Bhojpuri Test accuracy value: 50.7 - type: accuracy name: Thai Test accuracy value: 59.5 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 76.0 - type: accuracy name: Slovak Test accuracy value: 88.5 - type: accuracy name: Kiche Test accuracy value: 25.4 - type: accuracy name: Yoruba Test accuracy value: 18.5 - type: accuracy name: Warlpiri Test accuracy value: 29.1 - type: accuracy name: Tamil Test accuracy value: 83.4 - type: accuracy name: Maltese Test accuracy value: 21.1 - type: accuracy name: Ancient Greek Test accuracy value: 66.8 - type: accuracy name: Icelandic Test accuracy value: 84.8 - type: accuracy name: Mbya Guarani Test accuracy value: 24.1 - type: accuracy name: Urdu Test accuracy value: 67.0 - type: accuracy name: Romanian Test accuracy value: 85.7 - type: accuracy name: Persian Test accuracy value: 76.7 - type: accuracy name: Apurina Test accuracy value: 28.6 - type: accuracy name: Japanese Test accuracy value: 34.1 - type: accuracy name: Hungarian Test accuracy value: 86.0 - type: accuracy name: Hindi Test accuracy value: 74.1 - type: accuracy name: Classical Chinese Test accuracy value: 29.4 - type: accuracy name: Komi Permyak Test accuracy value: 47.4 - type: accuracy name: Faroese Test accuracy value: 77.0 - type: accuracy name: Sanskrit Test accuracy value: 25.6 - type: accuracy name: Livvi Test accuracy value: 63.2 - type: accuracy name: Arabic Test accuracy value: 80.7 - type: accuracy name: Wolof Test accuracy value: 26.1 - type: accuracy name: Bulgarian Test accuracy value: 90.8 - type: accuracy name: Akuntsu Test accuracy value: 18.3 - type: accuracy name: Makurap Test accuracy value: 5.5 - type: accuracy name: Kangri Test accuracy value: 43.0 - type: accuracy name: Breton Test accuracy value: 64.1 - type: accuracy name: Telugu Test accuracy value: 84.7 - type: accuracy name: Cantonese Test accuracy value: 54.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 53.7 - type: accuracy name: Karelian Test accuracy value: 69.7 - type: accuracy name: Upper Sorbian Test accuracy value: 75.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.3 - type: accuracy name: Komi Zyrian Test accuracy value: 39.9 - type: accuracy name: Irish Test accuracy value: 67.0 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 12.3 - type: accuracy name: Manx Test accuracy value: 25.4 - type: accuracy name: Skolt Sami Test accuracy value: 29.9 - type: accuracy name: Afrikaans Test accuracy value: 89.3 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 23.1 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 88.4 - type: accuracy name: Moksha Test accuracy value: 44.1 - type: accuracy name: Western Armenian Test accuracy value: 80.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.0 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 90.6 - type: accuracy name: Uyghur Test accuracy value: 75.8 - type: accuracy name: Chukchi Test accuracy value: 32.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: English This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") ```
[ -0.009440306574106216, -0.08241916447877884, -0.049981001764535904, -0.03255234286189079, -0.005536343902349472, 0.005440914072096348, -0.02642454393208027, -0.01594807580113411, -0.0511232428252697, -0.04423541575670242, 0.0035184824373573065, -0.1470787227153778, -0.02857961319386959, -0.017095351591706276, 0.0022438671439886093, -0.06093977764248848, 0.01941053941845894, 0.005911483895033598, -0.04658824950456619, -0.026910504326224327, 0.014855345711112022, 0.10442907363176346, 0.09343723952770233, -0.048119284212589264, 0.06726185977458954, -0.028889760375022888, -0.08891497552394867, 0.01237676851451397, -0.01038086973130703, -0.002162123564630747, 0.006966943386942148, 0.08857733011245728, 0.05603577941656113, 0.06442353874444962, 0.015285293571650982, -0.012034628540277481, 0.0711924359202385, -0.028910107910633087, 0.013150905258953571, 0.03487541526556015, -0.048644546419382095, -0.038969554007053375, 0.024242764338850975, -0.014869166538119316, 0.03721602261066437, 0.0027550430968403816, -0.09784254431724548, -0.013225114904344082, -0.047896090894937515, 0.0717846229672432, -0.12899184226989746, -0.0021070505026727915, 0.06516070663928986, 0.062010377645492554, -0.03395555168390274, -0.007447325624525547, -0.04047059267759323, 0.050766944885253906, -0.009814830496907234, 0.029695939272642136, -0.037182193249464035, -0.07064934074878693, -0.09146127849817276, 0.013628588989377022, -0.08076711744070053, 0.0013748352648690343, -0.02470593899488449, -0.021154742687940598, 0.02583695761859417, -0.011666223406791687, -0.06984686851501465, 0.03682694956660271, -0.022317683324217796, 0.1230083703994751, 0.016477221623063087, 0.022682877257466316, -0.04141340032219887, 0.006582020781934261, 0.07800167798995972, -0.11868461221456528, -0.034938257187604904, -0.03148838132619858, -0.02888430468738079, 0.01564038172364235, 0.08864820003509521, -0.03724121302366257, 0.09145240485668182, 0.033886540681123734, -0.05189136415719986, 0.001971681835129857, -0.044141337275505066, -0.021693425253033638, 0.025419892743229866, 0.05970602110028267, -0.01973048225045204, 0.03432956710457802, 0.06001568213105202, 0.07747624814510345, -0.05419468879699707, 0.038172539323568344, -0.03921491652727127, -0.04982833191752434, -0.007168990559875965, -0.04547995701432228, -0.07362660020589828, -0.027974890545010567, -0.03751179575920105, 0.057359155267477036, 0.04406595602631569, -0.07603725790977478, -0.010270425118505955, -0.03797619789838791, -0.06067894026637077, -0.12122351676225662, 0.014803760685026646, 0.007864778861403465, -0.04754095897078514, -0.04433732107281685, 0.08009421080350876, 0.054003506898880005, -0.0699288472533226, 0.018621940165758133, -0.03293078392744064, -0.05095387622714043, 0.03185027837753296, 0.009121802635490894, -0.01865818351507187, 9.33862817739929e-33, 0.03968552127480507, 0.042699411511421204, 0.0007493314333260059, 0.02149386703968048, -0.0559798888862133, -0.05797368288040161, -0.08335389941930771, 0.010400412604212761, -0.05755391716957092, -0.0030254872981458902, 0.0025153965689241886, 0.04999307915568352, -0.09758679568767548, 0.021786930039525032, 0.0662076398730278, 0.08055838942527771, 0.012289976701140404, 0.04333438724279404, -0.06729690730571747, 0.07307548075914383, 0.13119786977767944, -0.011416090652346611, 0.06915395706892014, -0.014528324827551842, 0.02590397372841835, 0.04584915563464165, 0.051001593470573425, -0.04984094202518463, -0.030246613547205925, 0.02972635067999363, -0.04285486415028572, -0.06388664245605469, -0.01655888929963112, -0.05859396234154701, 0.03756340965628624, -0.020510755479335785, -0.019281139597296715, 0.0067796045914292336, -0.0490308441221714, -0.0465124137699604, -0.016684988513588905, 0.0025201914831995964, -0.016675475984811783, -0.016825828701257706, 0.03217921778559685, -0.035748470574617386, -0.02289905957877636, -0.04313620924949646, 0.08306395262479782, -0.008199789561331272, -0.02055303007364273, -0.027071624994277954, -0.027617163956165314, 0.06367726624011993, 0.029414169490337372, 0.04614363610744476, 0.028985491022467613, 0.11223859339952469, 0.007028356194496155, -0.035329319536685944, -0.06122627854347229, 0.0027225688099861145, -0.006193416193127632, -0.057185184210538864, 0.0910896584391594, -0.045938294380903244, -0.0219722893089056, -0.001954020233824849, 0.032768964767456055, -0.03904582932591438, 0.023336973041296005, -0.030152395367622375, 0.04413570091128349, 0.08294713497161865, 0.01910594291985035, 0.049980293959379196, 0.021664729341864586, -0.029181068763136864, 0.019527114927768707, 0.03442607820034027, -0.06437281519174576, 0.02774675004184246, -0.03409011662006378, -0.051306914538145065, -0.0429515577852726, -0.031812943518161774, 0.07919707894325256, -0.005000718869268894, -0.023504730314016342, -0.01816132850944996, -0.038541652262210846, 0.07133889198303223, -0.05281658470630646, -0.06422996520996094, -0.0814526379108429, -1.0969428224493513e-32, -0.08612369000911713, 0.07156627625226974, -0.049474310129880905, 0.11571942269802094, 0.00858466885983944, 0.006260734982788563, 0.08748283982276917, 0.09889893978834152, 0.0436832569539547, 0.034456055611371994, 0.04379430413246155, -0.09516556560993195, 0.043724190443754196, -0.0057453284971416, 0.016858983784914017, 0.011877748183906078, -0.08887466043233871, 0.005443636327981949, 0.0009272677125409245, 0.0845409631729126, 0.0004037889011669904, 0.11302760243415833, -0.057758599519729614, 0.12351042032241821, -0.041960518807172775, -0.013974555768072605, -0.06340839713811874, 0.014165492728352547, -0.020038973540067673, -0.09007016569375992, 0.010839229449629784, 0.01946164481341839, -0.09519007802009583, 0.032955341041088104, -0.02215760387480259, -0.05635635927319527, 0.028831375762820244, -0.001856883056461811, -0.01624663919210434, 0.127038836479187, 0.009259521029889584, 0.028073301538825035, -0.10356292873620987, -0.05941809341311455, -0.00386372790671885, -0.08771971613168716, 0.0032934658229351044, 0.002508090576156974, -0.04592530056834221, -0.06112850084900856, 0.0887802466750145, 0.03709143400192261, -0.07593881338834763, 0.029686544090509415, 0.03540944308042526, -0.05471651256084442, 0.009700859896838665, -0.04545191675424576, -0.07873775064945221, 0.0028557325713336468, -0.02511310949921608, 0.04323917254805565, -0.005719215143471956, 0.02038739062845707, 0.1055702343583107, -0.023310434073209763, -0.06580611318349838, 0.017777901142835617, 0.01097680814564228, -0.01205110177397728, -0.013404704630374908, -0.030553540214896202, 0.009184018708765507, -0.01651204191148281, 0.004082618281245232, -0.02154483273625374, -0.024997534230351448, -0.006153067573904991, -0.0021839714609086514, -0.022554980590939522, -0.05166700482368469, -0.02423262782394886, 0.0597655326128006, 0.10405190289020538, 0.04160236194729805, 0.10493592172861099, 0.02543136104941368, 0.0005373121239244938, 0.023977896198630333, 0.031256094574928284, -0.011272731237113476, 0.04200483486056328, -0.07476174831390381, 0.07336042076349258, 0.0028620976954698563, -7.070126883945704e-8, -0.04087204858660698, 0.006352301221340895, -0.07112137228250504, 0.050715528428554535, 0.015117664821445942, -0.05625374987721443, -0.060547228902578354, 0.06022300198674202, -0.024471841752529144, -0.02213876135647297, 0.01807837374508381, 0.005205856636166573, -0.12215674668550491, 0.013208527117967606, 0.026041459292173386, -0.07241465896368027, -0.02199443057179451, 0.19106996059417725, -0.03564852103590965, -0.018757518380880356, 0.028278909623622894, 0.035382747650146484, -0.009103626012802124, -0.012105719186365604, 0.024217186495661736, -0.015861835330724716, -0.03779818117618561, 0.04779842495918274, -0.01474266592413187, 0.015570227988064289, 0.0351732112467289, 0.0071165780536830425, -0.038604918867349625, -0.09699676930904388, 0.03357353061437607, 0.028582844883203506, -0.04061611369252205, 0.016505366191267967, 0.01261092722415924, 0.06121884286403656, 0.038234222680330276, 0.02608942799270153, -0.10740194469690323, 0.05527428910136223, 0.032125264406204224, -0.06390649825334549, -0.06932875514030457, -0.058028627187013626, 0.013378903269767761, -0.02291204035282135, -0.007216109428554773, 0.00703116599470377, -0.04702604562044144, -0.005748517345637083, 0.01404422428458929, 0.05318956449627876, -0.0018850162159651518, -0.018620185554027557, 0.01653231680393219, -0.03434514254331589, 0.11825191229581833, -0.013988949358463287, -0.012582993134856224, 0.019339565187692642 ]
microsoft/BiomedVLP-CXR-BERT-specialized
b59c09e51ab2410b24f4be214bbb49043fe63fc2
2022-07-11T14:52:06.000Z
[ "pytorch", "cxr-bert", "en", "arxiv:2204.09817", "arxiv:2103.00020", "arxiv:2002.05709", "transformers", "exbert", "license:mit", "fill-mask" ]
fill-mask
false
microsoft
null
microsoft/BiomedVLP-CXR-BERT-specialized
2,994
5
transformers
--- language: en tags: - exbert license: mit pipeline_tag: fill-mask widget: - text: "Left pleural effusion with adjacent [MASK]." example_title: "Radiology 1" - text: "Heart size normal and lungs are [MASK]." example_title: "Radiology 2" inference: false --- # CXR-BERT-specialized [CXR-BERT](https://arxiv.org/abs/2204.09817) is a chest X-ray (CXR) domain-specific language model that makes use of an improved vocabulary, novel pretraining procedure, weight regularization, and text augmentations. The resulting model demonstrates improved performance on radiology natural language inference, radiology masked language model token prediction, and downstream vision-language processing tasks such as zero-shot phrase grounding and image classification. First, we pretrain [**CXR-BERT-general**](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) from a randomly initialized BERT model via Masked Language Modeling (MLM) on abstracts [PubMed](https://pubmed.ncbi.nlm.nih.gov/) and clinical notes from the publicly-available [MIMIC-III](https://physionet.org/content/mimiciii/1.4/) and [MIMIC-CXR](https://physionet.org/content/mimic-cxr/). In that regard, the general model is expected be applicable for research in clinical domains other than the chest radiology through domain specific fine-tuning. **CXR-BERT-specialized** is continually pretrained from CXR-BERT-general to further specialize in the chest X-ray domain. At the final stage, CXR-BERT is trained in a multi-modal contrastive learning framework, similar to the [CLIP](https://arxiv.org/abs/2103.00020) framework. The latent representation of [CLS] token is utilized to align text/image embeddings. ## Model variations | Model | Model identifier on HuggingFace | Vocabulary | Note | | ------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | -------------- | --------------------------------------------------------- | | CXR-BERT-general | [microsoft/BiomedVLP-CXR-BERT-general](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general) | PubMed & MIMIC | Pretrained for biomedical literature and clinical domains | | CXR-BERT-specialized (after multi-modal training) | [microsoft/BiomedVLP-CXR-BERT-specialized](https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized) | PubMed & MIMIC | Pretrained for chest X-ray domain | ## Image model **CXR-BERT-specialized** is jointly trained with a ResNet-50 image model in a multi-modal contrastive learning framework. Prior to multi-modal learning, the image model is pre-trained on the same set of images in MIMIC-CXR using [SimCLR](https://arxiv.org/abs/2002.05709). The corresponding model definition and its loading functions can be accessed through our [HI-ML-Multimodal](https://github.com/microsoft/hi-ml/blob/main/hi-ml-multimodal/src/health_multimodal/image/model/model.py) GitHub repository. The joint image and text model, namely [BioViL](https://arxiv.org/abs/2204.09817), can be used in phrase grounding applications as shown in this python notebook [example](https://mybinder.org/v2/gh/microsoft/hi-ml/HEAD?labpath=hi-ml-multimodal%2Fnotebooks%2Fphrase_grounding.ipynb). Additionally, please check the [MS-CXR benchmark](https://physionet.org/content/ms-cxr/0.1/) for a more systematic evaluation of joint image and text models in phrase grounding tasks. ## Citation The corresponding manuscript is accepted to be presented at the [**European Conference on Computer Vision (ECCV) 2022**](https://eccv2022.ecva.net/) ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.09817, doi = {10.48550/ARXIV.2204.09817}, url = {https://arxiv.org/abs/2204.09817}, author = {Boecking, Benedikt and Usuyama, Naoto and Bannur, Shruthi and Castro, Daniel C. and Schwaighofer, Anton and Hyland, Stephanie and Wetscherek, Maria and Naumann, Tristan and Nori, Aditya and Alvarez-Valle, Javier and Poon, Hoifung and Oktay, Ozan}, title = {Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing}, publisher = {arXiv}, year = {2022}, } ``` ## Model Use ### Intended Use This model is intended to be used solely for (I) future research on visual-language processing and (II) reproducibility of the experimental results reported in the reference paper. #### Primary Intended Use The primary intended use is to support AI researchers building on top of this work. CXR-BERT and its associated models should be helpful for exploring various clinical NLP & VLP research questions, especially in the radiology domain. #### Out-of-Scope Use **Any** deployed use case of the model --- commercial or otherwise --- is currently out of scope. Although we evaluated the models using a broad set of publicly-available research benchmarks, the models and evaluations are not intended for deployed use cases. Please refer to [the associated paper](https://arxiv.org/abs/2204.09817) for more details. ### How to use Here is how to use this model to extract radiological sentence embeddings and obtain their cosine similarity in the joint space (image and text): ```python import torch from transformers import AutoModel, AutoTokenizer # Load the model and tokenizer url = "microsoft/BiomedVLP-CXR-BERT-specialized" tokenizer = AutoTokenizer.from_pretrained(url, trust_remote_code=True) model = AutoModel.from_pretrained(url, trust_remote_code=True) # Input text prompts (e.g., reference, synonym, contradiction) text_prompts = ["There is no pneumothorax or pleural effusion", "No pleural effusion or pneumothorax is seen", "The extent of the pleural effusion is constant."] # Tokenize and compute the sentence embeddings tokenizer_output = tokenizer.batch_encode_plus(batch_text_or_text_pairs=text_prompts, add_special_tokens=True, padding='longest', return_tensors='pt') embeddings = model.get_projected_text_embeddings(input_ids=tokenizer_output.input_ids, attention_mask=tokenizer_output.attention_mask) # Compute the cosine similarity of sentence embeddings obtained from input text prompts. sim = torch.mm(embeddings, embeddings.t()) ``` ## Data This model builds upon existing publicly-available datasets: - [PubMed](https://pubmed.ncbi.nlm.nih.gov/) - [MIMIC-III](https://physionet.org/content/mimiciii/) - [MIMIC-CXR](https://physionet.org/content/mimic-cxr/) These datasets reflect a broad variety of sources ranging from biomedical abstracts to intensive care unit notes to chest X-ray radiology notes. The radiology notes are accompanied with their associated chest x-ray DICOM images in MIMIC-CXR dataset. ## Performance We demonstrate that this language model achieves state-of-the-art results in radiology natural language inference through its improved vocabulary and novel language pretraining objective leveraging semantics and discourse characteristics in radiology reports. A highlight of comparison to other common models, including [ClinicalBERT](https://aka.ms/clinicalbert) and [PubMedBERT](https://aka.ms/pubmedbert): | | RadNLI accuracy (MedNLI transfer) | Mask prediction accuracy | Avg. # tokens after tokenization | Vocabulary size | | ----------------------------------------------- | :-------------------------------: | :----------------------: | :------------------------------: | :-------------: | | RadNLI baseline | 53.30 | - | - | - | | ClinicalBERT | 47.67 | 39.84 | 78.98 (+38.15%) | 28,996 | | PubMedBERT | 57.71 | 35.24 | 63.55 (+11.16%) | 28,895 | | CXR-BERT (after Phase-III) | 60.46 | 77.72 | 58.07 (+1.59%) | 30,522 | | **CXR-BERT (after Phase-III + Joint Training)** | **65.21** | **81.58** | **58.07 (+1.59%)** | 30,522 | CXR-BERT also contributes to better vision-language representation learning through its improved text encoding capability. Below is the zero-shot phrase grounding performance on the **MS-CXR** dataset, which evaluates the quality of image-text latent representations. | Vision–Language Pretraining Method | Text Encoder | MS-CXR Phrase Grounding (Avg. CNR Score) | | ---------------------------------- | ------------ | :--------------------------------------: | | Baseline | ClinicalBERT | 0.769 | | Baseline | PubMedBERT | 0.773 | | ConVIRT | ClinicalBERT | 0.818 | | GLoRIA | ClinicalBERT | 0.930 | | **BioViL** | **CXR-BERT** | **1.027** | | **BioViL-L** | **CXR-BERT** | **1.142** | Additional details about performance can be found in the corresponding paper, [Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing](https://arxiv.org/abs/2204.09817). ## Limitations This model was developed using English corpora, and thus can be considered English-only. ## Further information Please refer to the corresponding paper, ["Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", ECCV'22](https://arxiv.org/abs/2204.09817) for additional details on the model training and evaluation. For additional inference pipelines with CXR-BERT, please refer to the [HI-ML-Multimodal GitHub](https://aka.ms/biovil-code) repository.
[ -0.047580890357494354, -0.05406125262379646, 0.05029718205332756, 0.012643080204725266, 0.029990961775183678, 0.03519583120942116, 0.024371156468987465, 0.015552010387182236, -0.0035104602575302124, -0.059041980654001236, -0.02772294357419014, -0.0687270537018776, 0.05773886665701866, 0.11707661300897598, 0.00654644938185811, 0.01662430912256241, 0.008062239736318588, -0.01392091903835535, -0.07394550740718842, -0.026247521862387657, 0.04917038232088089, 0.10750283300876617, 0.06485995650291443, -0.04926038160920143, 0.034818459302186966, -0.053469546139240265, -0.06704803556203842, -0.11353158205747604, 0.07711318135261536, 0.05113735795021057, 0.055676281452178955, 0.018702369183301926, 0.07095582038164139, 0.06605285406112671, -0.007811278570443392, 0.03236830234527588, -0.030361752957105637, 0.07791236788034439, 0.005874333903193474, 0.05482471361756325, -0.0447196438908577, -0.030911481007933617, -0.056787919253110886, 0.006347388494759798, 0.06115950271487236, -0.029201431199908257, -0.017412574961781502, -0.04317047446966171, -0.06544313579797745, 0.03972453251481056, -0.07738807052373886, -0.05663986876606941, -0.028797078877687454, 0.06736880540847778, -0.008891325443983078, 0.01593860425055027, -0.03429054096341133, -0.06751193851232529, 0.0007851897971704602, -0.1037062406539917, -0.1028040274977684, -0.08647190779447556, 0.004950588569045067, 0.06087467074394226, -0.02702365815639496, -0.00016101563232950866, -0.01575641706585884, 0.01034587249159813, 0.001896222704090178, 0.0642860010266304, -0.019671037793159485, 0.06463340669870377, 0.06324681639671326, 0.05250662937760353, -0.010693972930312157, -0.003813644405454397, 0.10759638994932175, -0.005532192066311836, 0.042690277099609375, -0.07551049441099167, 0.007627390790730715, 0.02674628049135208, 0.07325547933578491, 0.006579838693141937, 0.09140246361494064, 0.051156528294086456, 0.006344390567392111, -0.02119855210185051, -0.07741466164588928, 0.004860725253820419, -0.010703382082283497, -0.10269027948379517, 0.04720916971564293, 0.020505301654338837, 0.039953067898750305, -0.025303874164819717, 0.03282865136861801, -0.06667425483465195, 0.0015604221262037754, 0.04648855701088905, 0.06268079578876495, -0.027752608060836792, 0.008364974521100521, -0.039636678993701935, 0.06631319224834442, -0.024121716618537903, 0.011403861455619335, -0.004326878115534782, 0.02438872680068016, -0.04690714180469513, 0.0588524267077446, 0.04357532411813736, 0.023764334619045258, -0.10590197145938873, 0.011523721739649773, 0.06423904001712799, 0.0245859045535326, -0.050702568143606186, 0.02742856927216053, 0.08329014480113983, -0.012293601408600807, -0.03347575664520264, -0.011392641812562943, -0.04535629227757454, 0.010220522992312908, -0.04899057373404503, -0.016058774664998055, 3.0369482463959286e-33, -0.006348712835460901, 0.047580938786268234, 0.027205126360058784, 0.014041214250028133, 0.02696012146770954, 0.00827399455010891, -0.027206655591726303, 0.005505695939064026, -0.014475960284471512, -0.04132673889398575, -0.02195344865322113, 0.07007832825183868, -0.07447191327810287, 0.0944698303937912, -0.03714553266763687, 0.037122976034879684, -0.06685954332351685, 0.11223849654197693, -0.02480917237699032, 0.012271836400032043, 0.09168615937232971, -0.005127761512994766, -0.021093159914016724, -0.03836758807301521, -0.005850327666848898, 0.05772402510046959, 0.05637955665588379, -0.10919957607984543, -0.042511485517024994, 0.02335413545370102, -0.18145930767059326, 0.055613480508327484, 0.033809926360845566, 0.023498907685279846, -0.016925999894738197, -0.03161243721842766, 0.024999868124723434, -0.05100831016898155, 0.02832709066569805, 0.0003977681917604059, -0.027660194784402847, 0.051348842680454254, -0.0353362075984478, -0.1006506085395813, -0.00806883629411459, -0.07279964536428452, -0.02714153192937374, -0.03024713695049286, -0.032286543399095535, -0.03178383782505989, 0.0862995833158493, 0.01162915863096714, -0.05579650402069092, -0.0258654598146677, 0.029417859390378, 0.013112584128975868, 0.009788927622139454, 0.021669438108801842, 0.02616058848798275, 0.003522305516526103, 0.03237719088792801, -0.005988637916743755, 0.029874876141548157, 0.0716717317700386, 0.03373570367693901, -0.035685304552316666, -0.04150910675525665, -0.012643138878047466, -0.005877866875380278, 0.0328061617910862, -0.05460627004504204, 0.01585494913160801, 0.007304877042770386, -0.026793470606207848, 0.06500822305679321, -0.022358743473887444, -0.002795711625367403, -0.042802825570106506, -0.07628700137138367, 0.044440604746341705, -0.030312534421682358, 0.01231450866907835, -0.07405083626508713, -0.027078231796622276, -0.06944484263658524, -0.05190208554267883, 0.0565488301217556, -0.054866742342710495, 0.02030211314558983, -0.010161707177758217, 0.04034166410565376, -0.040559351444244385, -0.035192716866731644, 0.016304755583405495, -0.08700621873140335, -2.5513276528422405e-33, -0.053754035383462906, 0.06282427906990051, -0.044099800288677216, 0.034483879804611206, -0.049510762095451355, -0.07538343966007233, 0.08151102066040039, 0.1454012095928192, 0.05804828926920891, -0.06981425732374191, 0.050824105739593506, -0.010554435662925243, -0.08753081411123276, 0.015004185028374195, 0.01484031043946743, 0.022828945890069008, 0.012691165320575237, 0.045189350843429565, -0.062138043344020844, 0.0530434213578701, 0.06780917942523956, 0.0020961288828402758, -0.1238105371594429, 0.05591680482029915, -0.051275234669446945, 0.10802274942398071, -0.004436491057276726, 0.04087165743112564, 0.047556452453136444, -0.04179380461573601, -0.06248321011662483, 0.05070476606488228, -0.03565944358706474, 0.04124279320240021, -0.033318620175123215, 0.03611934930086136, 0.02638825587928295, 0.024256983771920204, -0.032445278018713, -0.0062882425263524055, 0.10274068266153336, 0.00829943548887968, -0.06439045816659927, 0.017512375488877296, -0.03647562861442566, -0.0636826902627945, -0.03685712069272995, -0.072936050593853, 0.06516920775175095, -0.0420096293091774, -0.028432268649339676, -0.050554290413856506, -0.08690451830625534, 0.032249536365270615, -0.09505367279052734, -0.08500953018665314, -0.014579794369637966, -0.08354652673006058, -0.03038129210472107, 0.007113773841410875, -0.027654269710183144, 0.035919997841119766, 0.018073493614792824, -0.025520453229546547, -0.005674772895872593, -0.03064138814806938, -0.028805484995245934, 0.06064208596944809, -0.042381610721349716, 0.0028704942669719458, 0.040573377162218094, -0.013261719606816769, -0.005167463328689337, 0.034277454018592834, 0.0256925281137228, 0.07589889317750931, 0.06658867001533508, -0.09171724319458008, -0.07525088638067245, -0.030643485486507416, -0.04154103249311447, -0.08137597143650055, 0.0506400503218174, 0.07464331388473511, 0.03488202393054962, 0.13362449407577515, 0.010316064581274986, -0.0025366568006575108, 0.003257643897086382, -0.013332889415323734, -0.02577676996588707, 0.029399506747722626, 0.003970762249082327, 0.03065105341374874, -0.027951041236519814, -4.4550837685619626e-8, -0.10503938794136047, -0.01835993118584156, -0.03065478429198265, 0.023755978792905807, -0.06847673654556274, -0.0656040757894516, -0.030734339728951454, 0.032206159085035324, -0.018492572009563446, -0.0523919016122818, 0.04788671061396599, 0.08301300555467606, -0.05877387896180153, -0.04546450451016426, 0.03516960144042969, 0.05486457422375679, -0.048375289887189865, 0.06974340975284576, 0.037779055535793304, -0.09697848558425903, -0.026501180604100227, 0.01963108219206333, 0.05475484952330589, -0.022111233323812485, 0.017129437997937202, -0.0396430641412735, 0.021915575489401817, 0.11321830004453659, 0.04308318719267845, 0.022288689389824867, -0.026034224778413773, 0.06356076151132584, -0.05744623765349388, 0.051978763192892075, 0.06124763563275337, 0.026643257588148117, 0.01659419760107994, -0.05152137205004692, -0.04410107061266899, 0.07611837983131409, 0.1112656220793724, 0.014229180291295052, -0.0333232618868351, -0.02301260270178318, 0.042362991720438004, -0.006094327662140131, -0.0007516957120969892, -0.11966560781002045, 0.06306338310241699, -0.06812454015016556, 0.05835442617535591, -0.028880717232823372, 0.010084508918225765, 0.016995634883642197, -0.032971449196338654, 0.09435506910085678, -0.018187085166573524, -0.0044366647489368916, 0.02861875668168068, 0.03785160928964615, 0.016964660957455635, 0.03502045199275017, 0.030178526416420937, 0.02566545270383358 ]
yikuan8/Clinical-Longformer
dc05ee5437027609b953618bc8e2b725a30bd670
2022-04-10T17:44:49.000Z
[ "pytorch", "longformer", "fill-mask", "en", "arxiv:2201.11838", "transformers", "clinical", "autotrain_compatible" ]
fill-mask
false
yikuan8
null
yikuan8/Clinical-Longformer
2,992
5
transformers
--- language: "en" tags: - longformer - clinical --- <span style="font-size:larger;">**Clinical-Longformer**</span> is a clinical knowledge enriched version of Longformer that was further pre-trained using MIMIC-III clinical notes. It allows up to 4,096 tokens as the model input. Clinical-Longformer consistently out-performs ClinicalBERT across 10 baseline dataset for at least 2 percent. Those downstream experiments broadly cover named entity recognition (NER), question answering (QA), natural language inference (NLI) and text classification tasks. For more details, please refer to [our paper](https://arxiv.org/pdf/2201.11838.pdf). We also provide a sister model at [Clinical-BigBIrd](https://huggingface.co/yikuan8/Clinical-BigBird) ### Pre-training We initialized Clinical-Longformer from the pre-trained weights of the base version of Longformer. The pre-training process was distributed in parallel to 6 32GB Tesla V100 GPUs. FP16 precision was enabled to accelerate training. We pre-trained Clinical-Longformer for 200,000 steps with batch size of 6×3. The learning rates were 3e-5 for both models. The entire pre-training process took more than 2 weeks. ### Usage Load the model directly from Transformers: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("yikuan8/Clinical-Longformer") model = AutoModelForMaskedLM.from_pretrained("yikuan8/Clinical-Longformer") ``` ### Citing If you find our model helps, please consider citing this :) ``` @article{li2022clinical, title={Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences}, author={Li, Yikuan and Wehbe, Ramsey M and Ahmad, Faraz S and Wang, Hanyin and Luo, Yuan}, journal={arXiv preprint arXiv:2201.11838}, year={2022} } ``` ### Questions Please email [email protected]
[ -0.08255124092102051, -0.01990354433655739, 0.0360933318734169, -0.04221920669078827, -0.021467464044690132, 0.008913778699934483, -0.12178582698106766, 0.034483131021261215, 0.014481711201369762, -0.020366651937365532, -0.03809583559632301, -0.01566201075911522, -0.024854138493537903, 0.00071943667717278, 0.031718216836452484, 0.028472021222114563, 0.03408820554614067, -0.0361444465816021, -0.0734386146068573, 0.019873633980751038, 0.03368063271045685, 0.0682014748454094, 0.08185423910617828, 0.04118466004729271, -0.007572066504508257, -0.0219256691634655, -0.0623302236199379, -0.0602097362279892, 0.042758550494909286, -0.0240623876452446, 0.04737909138202667, 0.03437584266066551, 0.10641161352396011, 0.06863180547952652, -0.0063917385414242744, 0.038463346660137177, -0.07964148372411728, 0.028895162045955658, -0.036714572459459305, -0.018031908199191093, 0.005492441821843386, -0.0914565920829773, -0.02913464605808258, 0.08391952514648438, 0.0833992138504982, -0.039248574525117874, -0.05406623333692551, 0.032229602336883545, 0.020291442051529884, 0.030220257118344307, -0.1205289363861084, -0.030649399384856224, 0.00982592161744833, 0.12463667243719101, -0.061669427901506424, -0.016247011721134186, -0.002868297277018428, -0.03006838820874691, -0.09214887768030167, 0.03804255276918411, -0.08638884127140045, -0.014767836779356003, 0.02228401042521, 0.03953831270337105, -0.06319078803062439, 0.01451965607702732, 0.007849746383726597, -0.008887785486876965, -0.016280900686979294, -0.020906871184706688, 0.007061314769089222, 0.03557340428233147, -0.018843894824385643, 0.11123616248369217, 0.009374070912599564, 0.012301989831030369, 0.048361171036958694, 0.03184662386775017, 0.029391737654805183, -0.09856926649808884, 0.03534886613488197, 0.023072946816682816, 0.09281496703624725, 0.0071951402351260185, 0.08996908366680145, 0.023639485239982605, -0.009023774415254593, -0.019036170095205307, -0.10374917089939117, -0.017643030732870102, 0.016871090978384018, -0.14749079942703247, 0.08490423113107681, -0.0016207084991037846, -0.03076711855828762, -0.011231983080506325, 0.005876173265278339, 0.006681391969323158, -0.0237563606351614, 0.048816390335559845, 0.030988339334726334, 0.027222996577620506, 0.031761929392814636, 0.028328439220786095, -0.06991690397262573, -0.06540796905755997, 0.0429777167737484, -0.00023131641501095146, 0.046994470059871674, -0.07117030769586563, 0.06573709845542908, 0.023388832807540894, -0.0709594264626503, 0.01779458299279213, 0.013535151258111, -0.04177906736731529, -0.027789805084466934, -0.009091366082429886, 0.0376189649105072, 0.05821431055665016, -0.09430009871721268, -0.004324043169617653, -0.08308939635753632, -0.05643127113580704, 0.035033855587244034, 0.051904283463954926, -0.028143059462308884, 3.124890101187813e-33, 0.034408312290906906, 0.08151991665363312, 0.026692356914281845, 0.02099738083779812, -0.03192288428544998, 0.036423295736312866, -0.04354526102542877, 0.06781432777643204, -0.05201543867588043, 0.004772669170051813, 0.003997374791651964, 0.009979838505387306, 0.03781794384121895, 0.08082686364650726, 0.021675627678632736, 0.006542054936289787, -0.08713456243276596, 0.08188190311193466, -0.07599586248397827, -0.010453467257320881, 0.06694763153791428, -0.012935361824929714, 0.017614178359508514, 0.00436366256326437, -0.020234398543834686, 0.009522623382508755, -0.045342326164245605, -0.06897781044244766, -0.03450723737478256, -0.002200421178713441, -0.1422310769557953, -0.07718237489461899, 0.05610457435250282, 0.004583647008985281, 0.012693803757429123, -0.050952229648828506, 0.08668630570173264, -0.07396294921636581, 0.011346914805471897, 0.004431976471096277, -0.021698717027902603, 0.06382773816585541, 0.08727417141199112, -0.024704381823539734, -0.08185069262981415, -0.04443608224391937, -0.014334500767290592, -0.003049534512683749, -0.025719216093420982, -0.017385518178343773, 0.04061632603406906, -0.05707142502069473, -0.08576739579439163, -0.043007202446460724, 0.05032019689679146, 0.07229018956422806, 0.03488874435424805, 0.027884792536497116, 0.03987550735473633, 0.03366599231958389, 0.05646003782749176, 0.023104000836610794, 0.02581660822033882, 0.06084458529949188, 0.02050926350057125, -0.00833092164248228, -0.06114715710282326, -0.05529268458485603, 0.07359253615140915, 0.0008515167864970863, -0.033942289650440216, 0.03228258341550827, -0.03472758084535599, 0.03263713791966438, 0.05288869887590408, -0.042552802711725235, 0.005678935907781124, -0.09835895150899887, -0.015243038535118103, 0.048377152532339096, 0.001578471390530467, 0.01017017476260662, -0.029001004993915558, 0.034518443048000336, -0.016960036009550095, -0.11450572311878204, -0.01426638849079609, -0.13280583918094635, -0.0303882397711277, -0.02122591994702816, 0.023524228483438492, 0.012571550905704498, 0.0004356174322310835, -0.021779188886284828, -0.007832355797290802, -4.1171076176436285e-33, 0.023417215794324875, -0.013714557513594627, -0.050878774374723434, 0.02411445416510105, 0.0038393125869333744, -0.01929296925663948, -0.01760914921760559, 0.12353485822677612, -0.02349838800728321, -0.0565081425011158, 0.09829039871692657, 0.009094305336475372, 0.04155110940337181, -0.04457653686404228, -0.0017815479077398777, -0.016296010464429855, -0.020327161997556686, 0.06793675571680069, 0.04881059005856514, 0.014317827299237251, 0.07931402325630188, 0.023866942152380943, -0.1049635261297226, 0.030101465061306953, 0.039032142609357834, 0.040336672216653824, -0.020336385816335678, 0.04654012247920036, 0.005445805378258228, -0.029970502480864525, -0.08754971623420715, -0.0012271093437448144, -0.03670186549425125, -0.02639368362724781, -0.04692666977643967, 0.008136131800711155, -0.0039787376299500465, -0.03965829312801361, -0.00931341852992773, -0.01648736000061035, 0.10315703600645065, 0.0026632538065314293, -0.0774061530828476, -0.011555332690477371, -0.040114518254995346, -0.05923176929354668, -0.08631324768066406, -0.01710508204996586, 0.10061034560203552, 0.04093598201870918, 0.04035111889243126, -0.029691031202673912, -0.09123945236206055, 0.05199190974235535, -0.060225971043109894, -0.11000405997037888, -0.07189507782459259, -0.061674248427152634, -0.09942566603422165, -0.017640549689531326, -0.013998524285852909, 0.06502752751111984, 0.010164869017899036, -0.021956371143460274, 0.07416697591543198, -0.059035636484622955, 0.012580356560647488, 0.03876613453030586, 0.01400461234152317, -0.06605387479066849, 0.02166886068880558, 0.004311873111873865, -0.024716760963201523, 0.06209584325551987, -0.005047213286161423, -0.007917010225355625, -0.04138172045350075, -0.09425659477710724, -0.05943409353494644, -0.037044551223516464, -0.03439335152506828, -0.08003047108650208, 0.010036952793598175, 0.07853418588638306, 0.03618653863668442, 0.07612057775259018, 0.07239661365747452, 0.04497857019305229, 0.00752024631947279, 0.058096710592508316, 0.03828185051679611, 0.07853148877620697, 0.017705857753753662, 0.08159001171588898, -0.07407636195421219, -5.580578132935443e-8, -0.004345200955867767, 0.07120812684297562, -0.016745397821068764, 0.008831482380628586, -0.008655300363898277, -0.040234338492155075, -0.018751949071884155, 0.058836888521909714, -0.043697889894247055, 0.027483899146318436, 0.04542768374085426, 0.051022302359342575, -0.02349608764052391, -0.11798176169395447, 0.057209406048059464, 0.04685722663998604, 0.031745027750730515, 0.05282750725746155, -0.03833919018507004, -0.0330410860478878, 0.05371176451444626, 0.009462190791964531, -0.011540629900991917, -0.0429377555847168, 0.0201437845826149, -0.04725290462374687, -0.05410672351717949, 0.08833666145801544, -0.0117222024127841, -0.04731814190745354, -0.01168152317404747, 0.0650295615196228, -0.051248203963041306, 0.018772857263684273, 0.03793632239103317, -0.021064752712845802, 0.05640048161149025, -0.029433628544211388, 0.022447675466537476, 0.09413409233093262, 0.03761639446020126, 0.049023594707250595, -0.10905652493238449, -0.03974458575248718, 0.07704760879278183, -0.03584722802042961, -0.03832394629716873, -0.08723855018615723, 0.045148033648729324, -0.02960529550909996, 0.04223761335015297, -0.006652338430285454, -0.02308850921690464, 0.04807083308696747, 0.02385384775698185, 0.11708825081586838, 0.01285387109965086, 0.06028944253921509, -0.03682051971554756, 0.013943829573690891, 0.07489749044179916, -0.010401150211691856, 0.039973072707653046, 0.03352159261703491 ]
mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization
3ecce850ed191e6b576e0fb306b30d5da087c2eb
2020-12-11T21:53:12.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "en", "dataset:cnn_dailymail", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
mrm8488
null
mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization
2,983
2
transformers
--- language: en license: apache-2.0 datasets: - cnn_dailymail tags: - summarization --- # Bert-small2Bert-small Summarization with 🤗EncoderDecoder Framework This model is a warm-started *BERT2BERT* ([small](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8)) model fine-tuned on the *CNN/Dailymail* summarization dataset. The model achieves a **17.37** ROUGE-2 score on *CNN/Dailymail*'s test dataset. For more details on how the model was fine-tuned, please refer to [this](https://colab.research.google.com/drive/1Ekd5pUeCX7VOrMx94_czTkwNtLN32Uyu?usp=sharing) notebook. ## Results on test set 📝 | Metric | # Value | | ------ | --------- | | **ROUGE-2** | **17.37** | ## Model in Action 🚀 ```python from transformers import BertTokenizerFast, EncoderDecoderModel import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization') model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device) def generate_summary(text): # cut off at BERT max length 512 inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) text = "your text to be summarized here..." generate_summary(text) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
[ -0.06976079195737839, -0.05695519596338272, 0.05464837700128555, 0.06569110602140427, 0.02951974794268608, 0.0030353472102433443, -0.03739560768008232, 0.019935933873057365, 0.006794694811105728, -0.04702373966574669, 0.025251535698771477, -0.021623238921165466, -0.005284157581627369, -0.00284444447606802, -0.05601479113101959, -0.001958827255293727, 0.13241970539093018, -0.05589146912097931, -0.13651946187019348, -0.013327140361070633, 0.008686796762049198, 0.04417254403233528, 0.10841309279203415, -0.026184197515249252, 0.0943732038140297, -0.03180557116866112, -0.10102283954620361, 0.0077369920909404755, 0.05366750806570053, -0.004186083562672138, 0.015007665380835533, 0.06455427408218384, 0.01469375193119049, 0.09373056143522263, 0.04290720820426941, 0.048077378422021866, 0.008333638310432434, -0.015470625832676888, 0.0076270815916359425, 0.03635464236140251, 0.03580092266201973, -0.05118850991129875, 0.01976552978157997, -0.007907544262707233, 0.043923355638980865, -0.05419759824872017, -0.038971468806266785, -0.03858305513858795, 0.008095517754554749, -0.057578325271606445, -0.11649966984987259, 0.036629993468523026, -0.010918467305600643, 0.020765572786331177, -0.05384557694196701, 0.023113764822483063, -0.0422978438436985, -0.006312333047389984, 0.03008868172764778, -0.09475400298833847, -0.052148137241601944, -0.03632141277194023, -0.022476766258478165, 0.001741558313369751, 0.021142268553376198, -0.05179338902235031, -0.03222613409161568, -0.03811204060912132, 0.01952388323843479, 0.00006985133950365707, -0.01763962022960186, 0.08035214245319366, 0.05458927899599075, 0.027385670691728592, 0.046792153269052505, -0.04593604430556297, 0.06283531337976456, -0.04627533629536629, 0.11663433164358139, -0.11067774891853333, -0.022218381986021996, -0.03454246371984482, 0.04782326892018318, 0.02364891953766346, 0.062185876071453094, -0.03188827261328697, 0.09575895965099335, 0.00008407881978200749, -0.0034856151323765516, -0.03269937261939049, -0.0004022892389912158, -0.024688543751835823, -0.020319562405347824, 0.015018774196505547, -0.00784416776150465, 0.02992214635014534, 0.05179104581475258, 0.0031740539707243443, -0.03102007508277893, 0.10241016745567322, 0.06280844658613205, 0.07060020416975021, 0.046794697642326355, -0.06314576417207718, 0.03135644271969795, -0.018613198772072792, 0.04587997868657112, 0.06396489590406418, -0.00918602105230093, -0.09977972507476807, 0.06716950237751007, 0.0446731299161911, 0.029654093086719513, -0.051518749445676804, 0.03498168662190437, -0.04300833120942116, -0.030325883999466896, 0.007597373798489571, 0.009776737540960312, 0.07404541969299316, -0.02606840431690216, -0.01385033130645752, -0.025022970512509346, -0.030746327713131905, -0.07687066495418549, 0.03265251964330673, -0.004253906663507223, 3.334197155927291e-33, 0.016135191544890404, -0.04538388550281525, -0.025950385257601738, -0.0232902392745018, -0.013306200504302979, -0.023916108533740044, -0.053007449954748154, 0.07671306282281876, -0.03275071084499359, -0.011401347815990448, -0.057172488421201706, 0.012014130130410194, -0.07277124375104904, 0.0275021493434906, 0.006897720508277416, 0.018792321905493736, -0.015595410019159317, 0.03193990886211395, -0.000165461067808792, 0.053176045417785645, 0.09666215628385544, -0.0017589564668014646, 0.03638104721903801, -0.08515463769435883, -0.04923762008547783, 0.026148691773414612, 0.08515208214521408, -0.0012076252605766058, -0.10853791236877441, 0.05795158073306084, -0.1158280298113823, 0.04085982218384743, -0.030454153195023537, 0.036712516099214554, -0.00655934726819396, 0.0023461610544472933, -0.026922985911369324, -0.03107970394194126, 0.05580083280801773, -0.036493007093667984, -0.029782170429825783, 0.0664527490735054, -0.03028847463428974, -0.10895015299320221, -0.04049811139702797, 0.036946676671504974, 0.05154324322938919, 0.01959102414548397, 0.05402527004480362, -0.0076597342267632484, 0.005223583895713091, 0.005074164364486933, -0.05480983108282089, 0.008028793148696423, -0.04755781963467598, 0.03468022868037224, 0.11245492845773697, -0.004229443613439798, 0.027182213962078094, 0.059076737612485886, -0.07063888758420944, 0.0037743374705314636, -0.011110586114227772, -0.005536756012588739, 0.017386849969625473, 0.00475994823500514, -0.055256426334381104, 0.02492371015250683, -0.016989681869745255, 0.03884444385766983, 0.02016359008848667, -0.011119496077299118, 0.03318804129958153, 0.034716106951236725, 0.05910040810704231, -0.06779727339744568, 0.08876053243875504, -0.08085238933563232, -0.031282611191272736, 0.0035036345943808556, 0.07281002402305603, 0.04366467148065567, -0.0030900738202035427, -0.09186915308237076, -0.10618730634450912, 0.014511866495013237, 0.005197782535105944, -0.02286994829773903, -0.06232020631432533, -0.011993358843028545, -0.027550674974918365, -0.03722482547163963, -0.017182953655719757, -0.03101796656847, -0.05858695134520531, -4.5096459563434844e-33, -0.03971444442868233, 0.0931682363152504, -0.11597918719053268, 0.09302929788827896, -0.019478002563118935, -0.025178177282214165, 0.022033503279089928, 0.12936219573020935, -0.012576651759445667, 0.008263868279755116, 0.08156882971525192, -0.09101372212171555, -0.043746087700128555, -0.038657110184431076, 0.042444709688425064, 0.008595285005867481, -0.03155769035220146, -0.06261774897575378, 0.03127110004425049, 0.06720048189163208, -0.04202644154429436, 0.05522767826914787, -0.10511550307273865, 0.11019347608089447, -0.02040908671915531, 0.04548147693276405, -0.06453932821750641, 0.055174048990011215, -0.03946109116077423, -0.03858649730682373, 0.017383998259902, -0.020356500521302223, -0.06355248391628265, 0.0572102814912796, -0.009962577372789383, 0.03048350103199482, 0.04910430684685707, -0.09208637475967407, 0.0023398830089718103, 0.10647307336330414, 0.13938981294631958, 0.03973962366580963, -0.01840786449611187, 0.02786433883011341, 0.005986180622130632, 0.05949520692229271, -0.06730445474386215, -0.08902405202388763, -0.032115351408720016, -0.04657614231109619, 0.0137500474229455, -0.002795442007482052, -0.06160552799701691, 0.042902976274490356, -0.10724088549613953, -0.021765928715467453, 0.007164365146309137, -0.016690995544195175, -0.028932463377714157, 0.01385024469345808, -0.08654335886240005, -0.035278428345918655, -0.0599820502102375, -0.000977833173237741, 0.0057037025690078735, -0.044290941208601, -0.010739167220890522, -0.005250774789601564, 0.0018129844684153795, 0.021380199119448662, -0.021133026108145714, -0.08845876157283783, 0.048972465097904205, -0.010912601836025715, -0.033605143427848816, 0.04444555193185806, -0.027258794754743576, -0.03812464699149132, 0.009176675230264664, -0.006345786154270172, -0.0512026809155941, -0.0582023523747921, 0.049362070858478546, -0.013709464110434055, 0.016025273129343987, 0.06366105377674103, 0.007832514122128487, 0.05574696138501167, -0.045074060559272766, 0.08236982673406601, 0.005361183546483517, -0.028687497600913048, -0.028461890295147896, 0.07553478330373764, 0.030575543642044067, -6.19472331209181e-8, -0.05316963791847229, 0.0007948451093398035, -0.03740144520998001, 0.10020361095666885, -0.05753511190414429, -0.06464137881994247, -0.007205143570899963, 0.0695427879691124, 0.002961906371638179, 0.043278180062770844, 0.012716060504317284, 0.004892975557595491, -0.14660756289958954, 0.028734007850289345, -0.0454559288918972, 0.0321941152215004, -0.013017046265304089, 0.07272042334079742, -0.021353717893362045, -0.05993758141994476, 0.061852794140577316, 0.022126387804746628, -0.004978118930011988, -0.05335564166307449, 0.030026862397789955, 0.004622428212314844, -0.048024099320173264, 0.11387555301189423, -0.02004195749759674, -0.026499778032302856, -0.01957629807293415, 0.022155821323394775, -0.07259467244148254, -0.02918589673936367, 0.000771576538681984, 0.06969941407442093, -0.043753623962402344, -0.016776666045188904, 0.04073766618967056, 0.08578123152256012, 0.06778516620397568, 0.08715986460447311, -0.08411682397127151, -0.0028308317996561527, 0.07084017992019653, -0.0117263812571764, -0.02642636001110077, -0.07726698368787766, 0.05254652723670006, 0.028547124937176704, 0.10657393932342529, -0.036047566682100296, -0.05857304856181145, 0.03029099479317665, -0.06630554050207138, -0.020087717100977898, -0.04249643534421921, -0.01654747687280178, 0.012763161212205887, -0.019998036324977875, -0.004063612315803766, -0.015809644013643265, -0.08477834612131119, -0.010202106088399887 ]
inywer/shouko0-3
402311526d96c0f9cad11c6d35dfa4c48880ff9d
2022-07-11T04:34:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
inywer
null
inywer/shouko0-3
2,983
null
transformers
--- tags: - conversational --- # inywer/shouko0-3 Model
[ -0.110287606716156, -0.024537203833460808, -0.019390473142266273, -0.008692726492881775, 0.029131833463907242, -0.02480955421924591, 0.08496580272912979, 0.009292726404964924, 0.028812630102038383, -0.016147328540682793, 0.04430326819419861, -0.015353868715465069, 0.020961306989192963, 0.021524474024772644, -0.016851603984832764, 0.06840289384126663, -0.0035631998907774687, -0.06096087396144867, -0.08522455394268036, -0.011668507941067219, 0.028303362429142, 0.0663655549287796, 0.03987400606274605, 0.03562942519783974, -0.02402663230895996, 0.009114362299442291, -0.03124924749135971, 0.07305643707513809, 0.01317936833947897, -0.05026211217045784, 0.041070662438869476, 0.13479310274124146, 0.06871602684259415, 0.026511335745453835, 0.0016912642167881131, 0.03610176220536232, 0.03699076920747757, -0.024230079725384712, 0.0012289072619751096, -0.01322886347770691, -0.018093004822731018, -0.011261248961091042, -0.06390516459941864, -0.01102579664438963, 0.03657000511884689, -0.035962533205747604, -0.10481221228837967, -0.014494345523416996, 0.015437028370797634, -0.019543876871466637, -0.1461074948310852, -0.036519672721624374, 0.03594578802585602, 0.10107003897428513, 0.003783934749662876, 0.03057830035686493, -0.11707362532615662, -0.04527461156249046, 0.06593208760023117, -0.001395854982547462, 0.0019959358032792807, -0.027713429182767868, -0.04710644483566284, 0.062405776232481, 0.0011209914227947593, 0.017663007602095604, -0.09714724868535995, -0.009238061495125294, -0.053158313035964966, 0.08936727046966553, 0.02575427107512951, -0.00002269899778184481, 0.020737076178193092, 0.01356779970228672, 0.009571335278451443, 0.03236556425690651, 0.01983928680419922, -0.04788876324892044, 0.0012046810006722808, -0.016584079712629318, -0.019976453855633736, -0.13672298192977905, -0.019821705296635628, -0.005492884665727615, 0.029320919886231422, -0.0044670687057077885, -0.01898365281522274, -0.048888519406318665, -0.031834062188863754, -0.0003320835530757904, -0.0978318527340889, -0.05558287724852562, 0.05082203075289726, -0.009502017870545387, -0.04862983152270317, 0.05447598546743393, 0.029449354857206345, 0.005489342380315065, -0.07823498547077179, 0.13590949773788452, -0.006881024222820997, 0.011177627369761467, 0.0018280708463862538, -0.07057464122772217, -0.026698999106884003, -0.007284583058208227, -0.012249699793756008, 0.019168343394994736, 0.008014613762497902, -0.02266436628997326, -0.04379340633749962, -0.07974555343389511, -0.011584330350160599, -0.0464264452457428, 0.01729634962975979, -0.07007705420255661, 0.061241935938596725, 0.008471662178635597, 0.0306024681776762, 0.005630403757095337, -0.020266693085432053, -0.007858400233089924, -0.06253360211849213, -0.059302810579538345, -0.05133822560310364, 0.01818014681339264, -0.045415036380290985, -2.0826626469442024e-33, 0.07777474075555801, 0.054876625537872314, -0.005062775686383247, 0.03773396834731102, 0.014710801653563976, 0.011477014049887657, -0.050308551639318466, -0.018776264041662216, -0.03725181147456169, -0.009343183599412441, 0.03958340734243393, -0.04301786422729492, -0.026337452232837677, -0.010684440843760967, 0.0227645356208086, -0.08402873575687408, -0.04771393910050392, 0.005978963803499937, -0.06607991456985474, 0.016277184709906578, 0.023093117401003838, 0.02876611426472664, -0.036504875868558884, 0.050688039511442184, 0.08161618560552597, 0.10843956470489502, 0.07217811793088913, -0.13459934294223785, 0.014332501217722893, 0.05817856639623642, 0.06159999221563339, 0.026028672233223915, -0.09852050989866257, 0.01063524093478918, -0.07717280089855194, 0.002658360404893756, -0.015054802410304546, -0.05425138771533966, -0.020536009222269058, -0.07322259247303009, -0.027430471032857895, -0.014739933423697948, -0.0638682097196579, -0.049051910638809204, -0.035413749516010284, 0.05994098633527756, 0.04169880226254463, 0.015397959388792515, 0.06356561928987503, -0.003954329062253237, -0.05046725645661354, 0.024230696260929108, 0.021313771605491638, -0.026332829147577286, -0.01317834947258234, -0.08851049095392227, 0.014681319706141949, 0.027198057621717453, 0.0654229149222374, 0.019253119826316833, -0.053982481360435486, -0.0138461384922266, 0.009745467454195023, -0.10353207588195801, 0.07967281341552734, -0.05897296965122223, -0.023083548992872238, -0.018544957041740417, -0.00005524568405235186, 0.0021875936072319746, -0.056165553629398346, -0.004543427377939224, -0.02919449284672737, 0.1429615318775177, -0.02906809002161026, 0.02689190022647381, -0.0792921930551529, -0.08820988982915878, 0.037859685719013214, 0.06910453736782074, -0.07573221623897552, -0.028855765238404274, -0.034121401607990265, 0.07320963591337204, 0.006635730154812336, -0.055325698107481, 0.027381785213947296, -0.09516679495573044, 0.012355933897197247, 0.05720561742782593, 0.021153010427951813, 0.029759511351585388, -0.06947258114814758, -0.005969044286757708, -0.042102593928575516, -6.115754560927693e-34, 0.040637705475091934, 0.04718063771724701, -0.11049795150756836, 0.04879968985915184, -0.02050396054983139, 0.014726491644978523, 0.06389886885881424, 0.12332187592983246, -0.0044445800594985485, -0.015368778258562088, 0.08323969691991806, -0.0022816115524619818, -0.01706424169242382, 0.017000161111354828, 0.12532447278499603, -0.01050830353051424, 0.031618379056453705, -0.08004945516586304, 0.017448071390390396, 0.03172720596194267, 0.05840772017836571, 0.05021253600716591, -0.15434607863426208, 0.06272360682487488, -0.030068645253777504, 0.04312306270003319, 0.04872141033411026, 0.061959411948919296, 0.05312887206673622, 0.021914534270763397, -0.05037400498986244, 0.00257369177415967, -0.003921016585081816, 0.0318090096116066, 0.0013475740561261773, 0.059584762901067734, 0.0009199291234835982, -0.05512864142656326, 0.010757110081613064, 0.08717178553342819, 0.05521947145462036, 0.03793040290474892, 0.016971031203866005, 0.05810599401593208, -0.03991322219371796, -0.07393822073936462, -0.03922002762556076, 0.0032058244105428457, -0.053698815405368805, -0.026558464393019676, 0.040522269904613495, 0.022721393033862114, -0.03843299672007561, -0.05816708505153656, -0.018145591020584106, -0.01737596094608307, -0.022370927035808563, -0.04737395793199539, -0.059582509100437164, 0.010676516219973564, -0.04811988025903702, -0.05737531557679176, 0.06406492739915848, -0.02211390621960163, -0.039025481790304184, -0.039041340351104736, -0.014103004708886147, -0.045845575630664825, 0.0025716673117130995, -0.07511439174413681, 0.03388722985982895, -0.02459910325706005, 0.03324563801288605, 0.0077514913864433765, 0.05558823049068451, -0.07191810011863708, -0.029271576553583145, 0.03419451415538788, 0.07177269458770752, -0.0725482925772667, -0.032778143882751465, 0.027792710810899734, 0.007845406420528889, 0.08406486362218857, 0.08225855231285095, -0.01639753393828869, 0.022017521783709526, 0.06601613014936447, -0.009486748836934566, -0.050558675080537796, 0.04818936809897423, 0.04420638456940651, -0.002777618123218417, 0.11398225277662277, -0.06076139584183693, -2.9654218636210317e-8, -0.01148595567792654, -0.09267286956310272, 0.04646700248122215, 0.0422801598906517, 0.04528765007853508, -0.019791776314377785, 0.032296039164066315, -0.016628040000796318, -0.01683647558093071, 0.013171046040952206, 0.08279106765985489, 0.0758109986782074, -0.06745004653930664, 0.0492355152964592, 0.049106765538454056, 0.007894305512309074, -0.04098189249634743, 0.08983214199542999, -0.020101817324757576, -0.052109938114881516, 0.006724776234477758, 0.01757727563381195, -0.05803855508565903, -0.003515241900458932, 0.08430603891611099, 0.04869891330599785, -0.05436087027192116, 0.014468489214777946, -0.021436002105474472, 0.0555775947868824, 0.03298771381378174, 0.05333348363637924, -0.11289621144533157, 0.026789333671331406, -0.05128013715147972, 0.0095377117395401, -0.06335175037384033, 0.008674305863678455, 0.017726538702845573, -0.0689457505941391, 0.041748836636543274, 0.02922351285815239, -0.079471156001091, 0.022840891033411026, 0.06277450919151306, 0.042320676147937775, -0.021398408338427544, -0.11803857982158661, -0.03166457638144493, -0.06212788075208664, -0.10370726883411407, -0.04807635024189949, 0.08920935541391373, 0.013458414003252983, -0.0515717975795269, 0.046817053109407425, 0.036134663969278336, -0.025584563612937927, 0.012887411750853062, 0.007584435399621725, 0.10433211177587509, 0.03854818269610405, -0.0004887033137492836, 0.023751741275191307 ]
google/t5-small-lm-adapt
ceece9332ccd73f589b2c764fa0e334c597952d4
2021-11-01T13:58:46.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2002.05202", "arxiv:1910.10683", "transformers", "t5-lm-adapt", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-small-lm-adapt
2,979
3
transformers
--- language: en datasets: - c4 tags: - t5-lm-adapt license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted ## Version 1.1 - LM-Adapted [T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-small): - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202). - Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning. - Pre-trained on C4 only without mixing in the downstream tasks. - no parameter sharing between embedding and classifier layer - "xl" and "xxl" replace "3B" and "11B". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`. and is pretrained on both the denoising and language modeling objective. More specifically, this checkpoint is initialized from [T5 Version 1.1 - Small](https://huggingface.co/google/https://huggingface.co/google/t5-v1_1-small) and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). This adaptation improves the ability of the model to be used for prompt tuning. **Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is [BigScience's T0pp](https://huggingface.co/bigscience/T0pp). Pretraining Dataset: [C4](https://huggingface.co/datasets/c4) Other Community Checkpoints: [here](https://huggingface.co/models?other=t5-lm-adapt) Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Abstract Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)
[ -0.06136505305767059, -0.0460362546145916, 0.04922379553318024, -0.016140956431627274, 0.09096480906009674, 0.0019294912926852703, -0.03293485566973686, -0.0479041188955307, -0.04512881115078926, -0.07430384308099747, 0.07904095202684402, 0.032333116978406906, 0.006167000159621239, -0.06988512724637985, -0.04318031668663025, 0.04499562829732895, 0.11014764755964279, 0.0005602247547358274, -0.13209009170532227, -0.07070428133010864, -0.02083447389304638, -0.04552580043673515, 0.044642381370067596, 0.04884636774659157, 0.06303030997514725, 0.022902047261595726, -0.0778324231505394, -0.05279180034995079, -0.004595249891281128, -0.04870473966002464, -0.0654299333691597, 0.059843510389328, -0.163761168718338, -0.0238798800855875, -0.08270011097192764, 0.052796971052885056, -0.05103515088558197, 0.02512398734688759, -0.004102302715182304, -0.03047441877424717, 0.045021165162324905, -0.10767420381307602, -0.024207167327404022, -0.007442005444318056, 0.04389810562133789, -0.0029248055070638657, 0.0013804977061226964, -0.03854745253920555, -0.015161320567131042, -0.0010085286339744925, -0.0476609468460083, -0.044722504913806915, -0.025106359273195267, 0.09938069432973862, -0.11852416396141052, 0.036243028938770294, -0.003122585127130151, 0.0313812717795372, -0.010550491511821747, 0.03447740152478218, -0.056830763816833496, 0.01238534040749073, -0.006851069629192352, -0.0023780004121363163, -0.028349099680781364, -0.023554086685180664, 0.12196207046508789, -0.015043286606669426, -0.008183942176401615, 0.022417215630412102, -0.022286899387836456, 0.04718618839979172, -0.04553597420454025, 0.007538128644227982, 0.034715864807367325, 0.013567586429417133, 0.024630675092339516, 0.04899783805012703, 0.03180582821369171, -0.030242038890719414, 0.07022210210561752, 0.03184244781732559, 0.028192274272441864, 0.029159964993596077, -0.033382173627614975, -0.04483551159501076, -0.048562709242105484, 0.07650622725486755, 0.024966344237327576, -0.043454185128211975, 0.05248163267970085, -0.0014856954803690314, 0.005639694631099701, -0.010933839716017246, -0.06673455983400345, -0.0016783969476819038, -0.02565777488052845, 0.02737331949174404, 0.003845921717584133, 0.04243216663599014, -0.0056315576657652855, -0.006938617676496506, 0.06432297825813293, 0.019460529088974, -0.07485457509756088, -0.01821562647819519, 0.1235320121049881, 0.037736549973487854, -0.0025388100184500217, -0.08010152727365494, 0.098533496260643, 0.05357522517442703, 0.00569243635982275, -0.014802427962422371, 0.058177631348371506, -0.013668958097696304, -0.1040419191122055, -0.07494553178548813, -0.014061173424124718, 0.051867976784706116, -0.071591317653656, -0.004144074860960245, 0.023329967632889748, -0.002511540660634637, -0.015795035287737846, 0.006469693034887314, -0.04751921817660332, 2.084449765699437e-33, 0.08051036298274994, 0.06472073495388031, -0.0033595275599509478, 0.028313318267464638, 0.038512878119945526, -0.026353703811764717, -0.013458553701639175, -0.011286159045994282, -0.06078081578016281, -0.05233728885650635, -0.06528346985578537, -0.05806850641965866, -0.04275437816977501, 0.04468163102865219, -0.006440236698836088, -0.03396961838006973, -0.018609339371323586, 0.06552015990018845, 0.05375014618039131, 0.03853146731853485, 0.032996710389852524, 0.02981320023536682, -0.008604881353676319, -0.0946466401219368, -0.0011521111009642482, 0.1616973876953125, -0.026347873732447624, -0.03250941261649132, -0.009602900594472885, 0.021912027150392532, -0.1329939216375351, 0.014284375123679638, 0.02234479784965515, -0.04392864182591438, 0.036598823964595795, -0.0061939614824950695, -0.04769417643547058, -0.027133725583553314, -0.021699612960219383, -0.07072381675243378, 0.04983090981841087, 0.06540527194738388, 0.0018750643357634544, -0.05337720736861229, 0.00004299858119338751, -0.007719298824667931, 0.03597563877701759, -0.058616314083337784, -0.05113711953163147, 0.01968490146100521, 0.03270117565989494, -0.04172075539827347, -0.13324740529060364, -0.11393357068300247, -0.0071213701739907265, 0.010819967836141586, 0.040469810366630554, 0.0709693655371666, -0.005640596617013216, 0.09936254471540451, 0.03810029849410057, 0.04836571216583252, -0.0038216968532651663, 0.02339962311089039, 0.13521963357925415, 0.02868189476430416, -0.021135514602065086, -0.032010771334171295, 0.024113938212394714, -0.03725326806306839, -0.06674128770828247, -0.03137107193470001, 0.055336881428956985, 0.11276492476463318, 0.10712934285402298, -0.055752385407686234, -0.0014161454746499658, -0.07823050767183304, -0.014730012975633144, 0.03328738734126091, -0.03219950571656227, -0.047165583819150925, 0.010400070808827877, -0.063065305352211, -0.04508398100733757, -0.047380439937114716, 0.05705559253692627, -0.10822255909442902, -0.0067856344394385815, 0.044731974601745605, 0.022262316197156906, -0.005536564625799656, 0.01232634112238884, -0.01275955606251955, -0.026292765513062477, -1.7781930796919215e-33, 0.03104516677558422, -0.0079046580940485, -0.02610650286078453, 0.11789204925298691, -0.019738439470529556, -0.0012854503002017736, 0.07165655493736267, 0.11483294516801834, 0.023872438818216324, 0.002253459533676505, 0.015685470774769783, 0.013367381878197193, -0.018134647980332375, -0.0030364112462848425, 0.006167850457131863, -0.07814348489046097, 0.03122016228735447, -0.05316220596432686, -0.020812202244997025, -0.007405663374811411, 0.10613827407360077, 0.038374342024326324, -0.03512546047568321, 0.06692123413085938, 0.002903431188315153, 0.04792653024196625, -0.010013277642428875, 0.0993613451719284, 0.047566551715135574, -0.03812902048230171, -0.0285994540899992, -0.025930332019925117, 0.0027621728368103504, 0.010452830232679844, 0.008105318993330002, 0.05569252744317055, 0.026502307504415512, 0.06773124635219574, 0.012477320618927479, 0.05875828117132187, 0.07720156013965607, 0.018446622416377068, -0.021733561530709267, -0.014078169129788876, -0.04105314984917641, 0.04795299470424652, -0.09266222268342972, -0.013897189870476723, -0.003277061739936471, 0.04189097508788109, 0.0391189344227314, -0.006311231292784214, -0.10878362506628036, -0.07617976516485214, 0.022969158366322517, -0.054713379591703415, 0.08589642494916916, -0.03938818722963333, -0.04744461551308632, 0.014145628549158573, -0.03940266743302345, 0.003774929093196988, -0.01961156353354454, -0.08669114112854004, 0.055611502379179, 0.033068593591451645, 0.04919980466365814, 0.04058634489774704, 0.015264053829014301, 0.04650472104549408, 0.023330846801400185, -0.03646281361579895, 0.06854382157325745, -0.0367000550031662, 0.036034923046827316, -0.051506999880075455, -0.030094929039478302, -0.022269325330853462, -0.0033374654594808817, -0.08077923208475113, -0.027207791805267334, 0.0008060533436946571, 0.0009394170483574271, 0.07507717609405518, 0.11755739152431488, 0.08710432052612305, -0.03791048750281334, 0.051383886486291885, 0.07431841641664505, -0.025694873183965683, -0.02098517119884491, 0.026100480929017067, -0.021380094811320305, 0.07007236778736115, -0.011104493401944637, -6.032897914565183e-8, -0.0554514117538929, 0.04145423695445061, -0.08887447416782379, 0.06302003562450409, 0.024628030136227608, -0.01429627276957035, -0.062139011919498444, 0.04604867845773697, 0.01713915914297104, -0.007628635037690401, 0.008152849972248077, -0.0161584485322237, -0.04445776343345642, 0.019973602145910263, -0.008313033729791641, 0.011086197569966316, -0.00493447482585907, -0.03389189392328262, -0.02389439567923546, -0.04230339452624321, -0.005492796190083027, 0.009927826933562756, -0.027440806850790977, -0.04406058043241501, 0.06152572110295296, -0.08918836712837219, -0.0036308804992586374, 0.12918224930763245, 0.0188757311552763, -0.11150874942541122, -0.017506850883364677, 0.009763195179402828, -0.009824876673519611, 0.03997378051280975, 0.07355858385562897, 0.051834363490343094, 0.05838958919048309, -0.01794872246682644, 0.025589533150196075, 0.04894617944955826, 0.038166120648384094, 0.0648309737443924, -0.053500398993492126, -0.04025168716907501, -0.0021051536314189434, -0.02629951946437359, -0.005767631810158491, -0.1264112889766693, 0.005011335015296936, -0.014665905386209488, 0.041509903967380524, -0.0024418726097792387, -0.030292313545942307, 0.058692075312137604, 0.06793086975812912, -0.03410276025533676, 0.054247766733169556, -0.019918370991945267, 0.0778636708855629, 0.02472003921866417, 0.050244398415088654, 0.03554826229810715, -0.005780437495559454, -0.0028200303204357624 ]
cross-encoder/ms-marco-TinyBERT-L-6
36aded87184cc2e8d13ceb3ab10b186facb9f26a
2021-08-05T08:40:06.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
cross-encoder
null
cross-encoder/ms-marco-TinyBERT-L-6
2,974
1
transformers
--- license: apache-2.0 --- # Cross-Encoder for MS Marco This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('model_name') tokenizer = AutoTokenizer.from_pretrained('model_name') features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print(scores) ``` ## Usage with SentenceTransformers The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` ## Performance In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec | | ------------- |:-------------| -----| --- | | **Version 2 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000 | cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100 | cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500 | cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800 | cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960 | **Version 1 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 | **Other models** | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340 | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330 | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720 Note: Runtime was computed on a V100 GPU.
[ -0.06551434844732285, -0.07030782848596573, -0.004193244501948357, 0.05925549939274788, -0.008339117281138897, 0.08594850450754166, -0.029806630685925484, 0.0668809562921524, -0.0017081426922231913, -0.053372517228126526, -0.029908085241913795, 0.04448296129703522, 0.032882269471883774, 0.06726106256246567, -0.07537456601858139, 0.03633607178926468, 0.03515918552875519, 0.08207210898399353, -0.06935206800699234, -0.11517231911420822, 0.11709704250097275, 0.06386863440275192, 0.003294477006420493, 0.00046541052870452404, 0.00988371018320322, -0.033594779670238495, -0.05713876709342003, 0.031645432114601135, 0.047612983733415604, -0.03859201818704605, -0.015525504015386105, 0.016225893050432205, 0.02227805368602276, 0.12129361927509308, -0.05275660753250122, 0.010071183554828167, -0.037099964916706085, -0.08395608514547348, 0.030511634424328804, -0.02669318951666355, 0.004905817098915577, 0.014815384522080421, 0.004401351325213909, -0.018087998032569885, 0.0674496740102768, -0.040612149983644485, -0.04498275741934776, -0.0527794286608696, -0.0236703809350729, -0.006171537097543478, -0.12455546110868454, 0.006932578980922699, 0.003174912417307496, 0.12855632603168488, -0.03582831099629402, 0.015307014808058739, 0.01409848127514124, -0.06035797670483589, -0.018671290948987007, -0.12258797138929367, -0.014657578431069851, -0.0777750164270401, -0.04477490112185478, -0.05587880313396454, -0.039161209017038345, -0.04702410846948624, 0.05149704962968826, 0.020122647285461426, 0.05099637061357498, -0.041789356619119644, -0.03816214203834534, -0.00984547846019268, -0.022651219740509987, 0.03669372573494911, 0.027147850021719933, 0.011506416834890842, 0.043748848140239716, 0.006412298884242773, -0.008798730559647083, -0.019205724820494652, -0.022683115676045418, -0.047476671636104584, 0.03884504362940788, 0.06790019571781158, 0.04000888392329216, -0.09037728607654572, 0.055351581424474716, -0.004751316737383604, 0.07593019306659698, 0.054840777069330215, -0.04724317044019699, -0.10444486886262894, -0.005942695774137974, -0.009652319364249706, -0.0072124553844332695, 0.028655538335442543, -0.03616023063659668, 0.02581191621720791, -0.00745102996006608, 0.08205533027648926, 0.01220907736569643, 0.0455733947455883, -0.0072793434374034405, -0.0647939145565033, -0.008302494883537292, -0.03509024903178215, 0.020318489521741867, 0.08591734617948532, 0.08624237030744553, -0.10801370441913605, 0.028730152174830437, 0.05466226115822792, -0.03682667762041092, -0.04951547458767891, -0.04091038927435875, 0.03072032332420349, 0.01745777763426304, 0.01880781725049019, 0.027381444349884987, 0.10280455648899078, 0.021882327273488045, 0.0502614751458168, -0.04101765155792236, 0.006520481780171394, 0.039706774055957794, 0.03255926072597504, 0.00549142062664032, 3.1567309370737274e-33, 0.031631436198949814, 0.036184318363666534, 0.03873542696237564, -0.04287038743495941, -0.021931374445557594, 0.027553709223866463, 0.05047571659088135, 0.018734565004706383, -0.06535763293504715, -0.08337121456861496, -0.08402062952518463, 0.1000480204820633, 0.028039295226335526, 0.009971404448151588, -0.032771993428468704, -0.04157663881778717, -0.03132794797420502, 0.038269706070423126, -0.00038503165706060827, -0.004887309391051531, 0.09766056388616562, 0.0034397542476654053, -0.013487061485648155, -0.09485702961683273, -0.06410416960716248, 0.006261590868234634, 0.008240710943937302, -0.06056744605302811, -0.03581665828824043, 0.045792777091264725, -0.07411745935678482, 0.003818176919594407, -0.054917510598897934, -0.006411452312022448, 0.058813873678445816, -0.019023925065994263, 0.024945219978690147, 0.005995025392621756, 0.04124457761645317, -0.10193006694316864, -0.008553121238946915, 0.0041920035146176815, 0.009790899232029915, -0.0775105282664299, -0.0760985016822815, -0.091363325715065, -0.05959651246666908, 0.04439897835254669, 0.10261885821819305, 0.008619889616966248, 0.023499231785535812, -0.024539731442928314, 0.03663754090666771, -0.01302382443100214, 0.03610073775053024, 0.0037107926327735186, 0.07295622676610947, 0.08553986996412277, 0.0223538875579834, -0.008839238435029984, 0.07105819880962372, 0.007622885052114725, 0.04582293704152107, 0.0709545835852623, 0.09674448519945145, -0.06563300639390945, 0.010325885377824306, -0.009196704253554344, 0.04712365195155144, 0.013321048580110073, -0.042036935687065125, 0.009014284238219261, 0.011140146292746067, -0.021909143775701523, 0.027367807924747467, -0.024419914931058884, 0.043307721614837646, -0.05418829992413521, 0.005765495356172323, 0.01345110684633255, -0.05502275750041008, -0.01115321647375822, 0.06610704958438873, -0.06899737566709518, -0.049509044736623764, 0.0484616681933403, 0.04769909381866455, -0.058808255940675735, 0.028858816251158714, -0.0542738176882267, 0.022750481963157654, -0.00505086500197649, -0.014774950221180916, 0.051618531346321106, 0.027214525267481804, -2.5353275216886184e-33, 0.030450360849499702, 0.08046966046094894, -0.0003234162868466228, 0.03802232816815376, -0.007878380827605724, -0.0626048892736435, -0.00681334501132369, 0.07483622431755066, -0.07814476639032364, -0.0271192267537117, 0.021147098392248154, -0.07122867554426193, 0.04170256853103638, -0.047134559601545334, 0.09637890756130219, 0.015001175925135612, -0.01022394746541977, -0.041185420006513596, 0.0010272279614582658, 0.04428262636065483, -0.030395515263080597, 0.1045537143945694, -0.12778609991073608, 0.03097398392856121, -0.05021705850958824, 0.0066887689754366875, 0.05993207171559334, 0.06153075024485588, -0.051115669310092926, -0.05596161261200905, 0.008952835574746132, -0.010182967409491539, -0.046639539301395416, -0.011821693740785122, -0.11413343995809555, 0.04949469119310379, 0.045303359627723694, -0.06608684360980988, -0.012006121687591076, 0.17478495836257935, 0.053603656589984894, 0.07820038497447968, -0.05509981885552406, 0.024438543245196342, 0.015550065785646439, -0.010224990546703339, -0.11009189486503601, -0.011078685522079468, 0.055968232452869415, -0.011918764561414719, -0.008252017199993134, 0.06220865622162819, -0.1100105345249176, -0.028406303375959396, -0.04778004810214043, -0.055997442454099655, -0.04830880090594292, -0.006057199090719223, -0.07452691346406937, -0.016416721045970917, -0.03578950837254524, 0.04393342509865761, 0.043630897998809814, -0.044454921036958694, 0.04546605050563812, 0.017361102625727654, -0.03696083649992943, -0.025302814319729805, -0.09633490443229675, -0.014079640619456768, 0.010066202841699123, 0.0020460553932935, 0.07180138677358627, 0.0072657945565879345, 0.04648524150252342, 0.006923140957951546, -0.02679106965661049, 0.04144315794110298, -0.08075528591871262, -0.06305990368127823, -0.04246998950839043, -0.02271696738898754, 0.022438587620854378, 0.07831341028213501, -0.0025536546017974615, 0.02548728883266449, 0.038888514041900635, 0.0593283586204052, 0.019792692735791206, -0.011883817613124847, -0.00712433410808444, -0.0924590528011322, 0.007322521880269051, 0.013536423444747925, -0.0014058271190151572, -5.612257325537939e-8, -0.11178408563137054, 0.011767441406846046, -0.11292534321546555, 0.10666078329086304, -0.009596572257578373, 0.04854574799537659, -0.024592895060777664, 0.12138867378234863, -0.04178207740187645, 0.03947427123785019, 0.039532504975795746, -0.04245952144265175, -0.0572766549885273, -0.008789164945483208, 0.040739625692367554, 0.07998771965503693, 0.0104464590549469, 0.026972780004143715, -0.0429297499358654, -0.07985197752714157, 0.049071960151195526, 0.005595630034804344, 0.0912257507443428, 0.003002709010615945, 0.008022909052670002, 0.01386475283652544, -0.010822411626577377, 0.08995404094457626, 0.012259356677532196, -0.005086230114102364, -0.0032537998631596565, 0.037539560347795486, 0.003354709129780531, -0.010804785415530205, -0.014186419546604156, 0.09539934247732162, -0.01739228330552578, -0.026037249714136124, -0.031295355409383774, 0.08104768395423889, 0.0386648066341877, 0.031819332391023636, -0.10380776971578598, 0.05316181853413582, 0.07436396181583405, 0.039600979536771774, -0.04062947258353233, -0.044973086565732956, 0.04982079938054085, -0.0186444241553545, 0.035147421061992645, -0.08255954086780548, -0.01344340667128563, 0.036261748522520065, 0.02272883616387844, 0.04955245554447174, 0.03511548042297363, -0.03906796872615814, -0.00250044628046453, 0.0012063262984156609, 0.03570898249745369, 0.037359919399023056, -0.021832287311553955, -0.016074808314442635 ]
pinkducky/Rachel_Bot
f504fc38da9892219763959aff144a976a6d2487
2022-03-21T04:01:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
pinkducky
null
pinkducky/Rachel_Bot
2,968
null
transformers
--- tags: - conversational --- # My Awesome Model
[ -0.05090106651186943, -0.031366977840662, 0.03581665828824043, -0.0054056984372437, 0.08076965808868408, -0.04372682794928551, 0.1371273398399353, 0.04686865955591202, 0.07841186225414276, -0.04006827622652054, 0.029963944107294083, -0.012565406039357185, 0.036244455724954605, 0.009963933378458023, -0.039041824638843536, 0.041623249650001526, 0.014348188415169716, -0.05568447336554527, -0.07908384501934052, 0.04985930025577545, -0.024708891287446022, 0.06136726588010788, 0.02305777370929718, 0.03187232092022896, -0.025241436436772346, 0.052442390471696854, -0.04537186771631241, 0.042892225086688995, 0.035982418805360794, -0.05908246338367462, -0.03677479922771454, 0.0823124423623085, 0.07599936425685883, 0.06003808602690697, -0.007828108966350555, -0.022685443982481956, 0.062002647668123245, -0.01731053926050663, 0.04224047064781189, -0.042645879089832306, -0.042309775948524475, -0.06501581519842148, -0.05416039749979973, 0.008959675207734108, 0.025023961439728737, -0.047416966408491135, -0.045713312923908234, -0.03602231666445732, -0.05448457598686218, 0.028215525671839714, -0.11340142786502838, -0.09726736694574356, -0.005307946819812059, 0.07291919738054276, 0.0011562320869415998, 0.08138564229011536, -0.056777920573949814, -0.14755024015903473, 0.017829654738307, 0.042331673204898834, -0.007883528247475624, 0.015210023149847984, -0.0465548150241375, 0.06283816695213318, -0.02850412204861641, 0.011164055205881596, -0.0909573957324028, 0.05635131895542145, -0.0784955695271492, 0.11919571459293365, 0.039566099643707275, -0.010491259396076202, 0.06072143092751503, 0.010534262284636497, 0.03941850736737251, 0.020460378378629684, 0.01201328169554472, -0.036615174263715744, 0.047589585185050964, 0.041880011558532715, -0.0423911027610302, -0.12415754795074463, -0.0178165715187788, -0.07575485110282898, -0.011541062965989113, -0.06666063517332077, -0.014633537270128727, -0.03656398504972458, -0.022767268121242523, -0.0006290049059316516, -0.05804314836859703, -0.024403218179941177, 0.01748640462756157, 0.007189290598034859, -0.05688001960515976, 0.03201739490032196, 0.016381550580263138, -0.06272377073764801, -0.05233392491936684, 0.12503185868263245, -0.015755128115415573, 0.0417540967464447, 0.03470697999000549, -0.038441117852926254, -0.03530082851648331, -0.03092080168426037, -0.01916990615427494, 0.07731841504573822, 0.019840005785226822, -0.06203543394804001, -0.005670442245900631, -0.01793004386126995, -0.00026420739595778286, -0.025612128898501396, 0.08910390734672546, -0.08335672318935394, 0.04098793864250183, 0.00003558707612683065, 0.03989935293793678, -0.037843793630599976, -0.025859786197543144, 0.04540199786424637, -0.017805110663175583, -0.027855155989527702, -0.016179407015442848, 0.009584194049239159, -0.06639999896287918, -4.478864534741249e-33, 0.11222975701093674, 0.06859760731458664, 0.06865804642438889, 0.10353326797485352, 0.05126076564192772, 0.041043270379304886, -0.0769258663058281, 0.00011796884064096957, -0.018120763823390007, 0.022435268387198448, 0.024414265528321266, 0.029571479186415672, -0.031359825283288956, 0.022635547444224358, 0.005277079530060291, -0.03892066702246666, -0.06124343350529671, -0.074563167989254, -0.047082722187042236, -0.006601410452276468, 0.005809285677969456, -0.011806229129433632, 0.008817244321107864, 0.045550331473350525, 0.03609937056899071, 0.0628429427742958, 0.08441631495952606, -0.07260341942310333, -0.04593171551823616, 0.06081974878907204, -0.02747199311852455, -0.0063775693997740746, 0.004344668239355087, 0.037254698574543, -0.043208200484514236, 0.027637843042612076, -0.04124289005994797, -0.04982233792543411, 0.01631910167634487, -0.08025228977203369, 0.015886107459664345, -0.026147479191422462, -0.07082098722457886, -0.057068999856710434, -0.018375905230641365, 0.07975850254297256, 0.06380768865346909, 0.04807998985052109, 0.046053748577833176, -0.008151701651513577, -0.03738392889499664, -0.026806335896253586, -0.002303558634594083, 0.028527168557047844, -0.05566997826099396, -0.05916515365242958, -0.07913040369749069, 0.010040078312158585, 0.007212954107671976, -0.027216563001275063, 0.007182564586400986, -0.023558219894766808, 0.03829099237918854, -0.1337491273880005, 0.10252182185649872, -0.013212723657488823, -0.03376084566116333, -0.012195839546620846, 0.019834956154227257, -0.0031055838335305452, -0.04869721829891205, 0.039330776780843735, -0.01350850984454155, 0.0303358044475317, 0.008187275379896164, 0.008777179755270481, -0.066440649330616, -0.028343193233013153, 0.02277507446706295, 0.05544881150126457, -0.06433303654193878, -0.03979376703500748, -0.03870479762554169, 0.018391091376543045, -0.007904008962213993, -0.04048888757824898, 0.010747126303613186, -0.1100461557507515, 0.08085237443447113, 0.027630235999822617, 0.017611531540751457, -0.011773657985031605, -0.03050999902188778, -0.001084225601516664, -0.09993167221546173, 2.3631985982007646e-33, 0.07410631328821182, -0.021655485033988953, -0.03430446982383728, 0.08957358449697495, 0.0658988431096077, -0.09670625627040863, 0.03356300666928291, 0.12644141912460327, -0.007287300191819668, 0.009980403818190098, 0.019260842353105545, 0.017083946615457535, -0.04549262300133705, -0.0273654256016016, 0.12685054540634155, -0.0022603862453252077, 0.03329843282699585, -0.12125260382890701, 0.010285534895956516, 0.011052831076085567, 0.021403569728136063, 0.02825598232448101, -0.11815153062343597, 0.029007932171225548, 0.007862820290029049, 0.038198284804821014, 0.009895049035549164, 0.0787750631570816, 0.1255485862493515, -0.012331538833677769, -0.041844483464956284, 0.04419497027993202, 0.009287770837545395, -0.0348893441259861, 0.008455603383481503, 0.014187312684953213, -0.03560749441385269, -0.02111499384045601, 0.022057252004742622, 0.053258296102285385, -0.01398906484246254, 0.00464602978900075, -0.0208336990326643, 0.05951869487762451, 0.0027540153823792934, -0.05181148275732994, -0.002780700335279107, -0.08395428210496902, -0.05995841324329376, -0.008431575261056423, 0.015148011036217213, -0.018860861659049988, -0.05646621063351631, -0.09933912009000778, -0.049692075699567795, -0.03389864042401314, 0.08351656794548035, -0.0013963409001007676, -0.011192643083631992, 0.01275844406336546, -0.06585824489593506, -0.042186468839645386, 0.03605508804321289, -0.01279937382787466, 0.0062263826839625835, -0.08892334997653961, -0.00842227041721344, -0.044293295592069626, -0.05458396300673485, -0.02853185124695301, 0.06938458979129791, 0.0797097310423851, -0.09960118681192398, 0.069974884390831, 0.030420484021306038, -0.045343056321144104, 0.02778884395956993, -0.005752933211624622, 0.047690499573946, -0.055205538868904114, -0.059457264840602875, -0.026828406378626823, -0.00685330294072628, 0.04476504772901535, 0.04690265282988548, -0.028691265732049942, -0.00420738710090518, 0.05791653320193291, -0.0641462653875351, -0.04161105677485466, 0.011222575791180134, 0.029472360387444496, -0.006106182001531124, 0.09066887944936752, -0.02926107868552208, -2.4387945884996043e-8, -0.07912608981132507, -0.0193485077470541, 0.02513335645198822, 0.06632032245397568, -0.0006380337290465832, 0.042135242372751236, 0.06511452794075012, 0.004173976369202137, -0.012236827984452248, -0.042280975729227066, 0.01634378731250763, 0.07965334504842758, -0.023353738710284233, 0.0734296441078186, 0.02384823188185692, 0.011830461211502552, -0.051046840846538544, 0.07105594873428345, 0.00836571492254734, -0.06696010380983353, 0.025958934798836708, 0.03763088583946228, -0.07969045639038086, 0.02339162677526474, 0.09492308646440506, -0.0015179375186562538, -0.042156774550676346, 0.0774446502327919, -0.032096054404973984, 0.05440954491496086, 0.06271935254335403, 0.04717527702450752, -0.06409522145986557, 0.05443163216114044, -0.06054919585585594, -0.005295728333294392, -0.0462062731385231, -0.04333166405558586, 0.021518342196941376, -0.018056262284517288, 0.07318705320358276, 0.07725220173597336, -0.08732577413320541, 0.004433119669556618, 0.057371124625205994, 0.001022679847665131, 0.03494297340512276, -0.0875731110572815, -0.006969284266233444, -0.012489929795265198, -0.055213987827301025, -0.056746624410152435, 0.019027967005968094, 0.016803929582238197, -0.02308109775185585, 0.013455736450850964, 0.06283722817897797, 0.0011627678759396076, 0.028021547943353653, 0.04511001333594322, 0.14455872774124146, 0.04447929561138153, -0.0382804274559021, -0.03517691791057587 ]
Edresson/wav2vec2-large-xlsr-coraa-portuguese
823dceb42ebafb67cb046d10957e261e5489b026
2022-03-31T13:28:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:CORAA", "arxiv:2110.15731", "transformers", "audio", "speech", "portuguese-speech-corpus", "hf-asr-leaderboard", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-xlsr-coraa-portuguese
2,956
8
transformers
--- language: pt datasets: - CORAA metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - hf-asr-leaderboard - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: CORAA type: CORAA args: pt metrics: - name: Test CORAA WER type: wer value: 25.26 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER on Common Voice 7 type: wer value: 20.08 --- # Wav2vec 2.0 trained with CORAA Portuguese Dataset This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA) # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese") ``` # Results For the results check the [CORAA article](https://arxiv.org/abs/2110.15731) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
[ -0.08738625049591064, -0.06697259098291397, -0.026749230921268463, -0.037617720663547516, -0.03624272346496582, 0.04088184982538223, -0.0603460893034935, -0.05289452522993088, -0.010151372291147709, -0.036580152809619904, 0.0014873944455757737, -0.14682410657405853, -0.03581888601183891, 0.0008951806230470538, -0.01621515117585659, -0.05753955990076065, 0.021024229004979134, 0.024592019617557526, -0.05233663693070412, -0.005352068692445755, 0.03002362884581089, 0.051031097769737244, 0.04918315261602402, -0.03640298172831535, 0.03570587560534477, 0.052114732563495636, -0.03446122631430626, 0.013389838859438896, -0.029027337208390236, -0.03427330404520035, 0.05528627708554268, 0.008829391561448574, 0.08518663048744202, 0.0011297169839963317, -0.06813862174749374, -0.007506183814257383, -0.0005028731538914144, -0.023712100461125374, 0.015678877010941505, -0.017909079790115356, -0.03835494816303253, 0.030469633638858795, 0.0015432649524882436, -0.017063293606042862, -0.0024876149836927652, -0.039863381534814835, -0.06148582696914673, 0.02682131715118885, -0.020490087568759918, 0.05307534709572792, -0.0859641432762146, 0.02802698314189911, -0.01423406321555376, 0.06552840769290924, -0.08339112997055054, 0.005651019047945738, 0.014381575398147106, 0.05178362876176834, 0.04895368963479996, 0.022075822576880455, -0.02187511883676052, -0.05010892450809479, -0.01828223466873169, -0.01042636763304472, -0.010648384690284729, -0.06212849169969559, -0.0489005409181118, 0.0068810563534498215, -0.01964012160897255, -0.011580163612961769, -0.12635180354118347, 0.06539095938205719, 0.05721293389797211, 0.04419562593102455, 0.021010009571909904, 0.08189515769481659, 0.038650739938020706, 0.001130751334130764, 0.06305941939353943, -0.05456201359629631, 0.00018161478510592133, 0.0034012426622211933, -0.05629929527640343, -0.038752321153879166, 0.10278533399105072, -0.0046061379835009575, 0.026332635432481766, -0.02891398034989834, -0.006270166952162981, -0.03481604903936386, -0.025761038064956665, 0.024745075032114983, -0.013590458780527115, 0.04755070060491562, 0.011295326054096222, 0.02251303195953369, 0.056111887097358704, 0.10850535333156586, -0.04229819029569626, 0.05431769788265228, 0.014209403656423092, -0.06682658940553665, -0.0073660071939229965, -0.07868881523609161, -0.04754938930273056, -0.04663843289017677, -0.004821800626814365, 0.04659802466630936, 0.11626795679330826, -0.03835326060652733, -0.021439271047711372, -0.00747008016332984, -0.042799435555934906, -0.035038284957408905, 0.011109855957329273, 0.05237419158220291, -0.07636316865682602, -0.09367368370294571, 0.036269549280405045, 0.015478267334401608, -0.04295499995350838, -0.07441922277212143, 0.009158787317574024, -0.027823301032185555, 0.016708320006728172, -0.0003980004112236202, 0.015551102347671986, 8.791858000373842e-33, -0.010640568099915981, 0.052737824618816376, -0.009381651878356934, 0.009651632979512215, 0.0014747284585610032, -0.03267808258533478, -0.06532327085733414, 0.007356449030339718, -0.011585968546569347, -0.05844057723879814, -0.057660095393657684, 0.026765737682580948, -0.10532022267580032, 0.04720287024974823, 0.02599664218723774, 0.03563696891069412, -0.004830056801438332, 0.018028870224952698, -0.04291658103466034, 0.018623633310198784, 0.16594073176383972, -0.024903710931539536, 0.06227623298764229, -0.009179583750665188, 0.06942595541477203, 0.041190966963768005, 0.05253252759575844, -0.07714944332838058, -0.014586486853659153, 0.055866047739982605, -0.06665895879268646, -0.060217197984457016, -0.003418299602344632, -0.0392581932246685, -0.021921640262007713, -0.05653635784983635, 0.012143217027187347, 0.008403059095144272, -0.04203105717897415, -0.06799978762865067, 0.02564188279211521, 0.0328577496111393, 0.05213532596826553, 0.03828268125653267, -0.02680322527885437, -0.1039159893989563, 0.009637282229959965, 0.08347177505493164, -0.006094607058912516, 0.03960699215531349, -0.03399355709552765, -0.028073813766241074, -0.04116126149892807, 0.05397147312760353, 0.008523261174559593, -0.022945569828152657, 0.04806871712207794, 0.06964846700429916, 0.02896066941320896, 0.016460947692394257, -0.012751107104122639, -0.01375409122556448, 0.04718893766403198, -0.009456368163228035, 0.012081931345164776, -0.06220414489507675, -0.03894728422164917, 0.03695372864603996, 0.061681851744651794, -0.011635804548859596, 0.03942127153277397, -0.019527355208992958, 0.09693101793527603, 0.10353940725326538, -0.01853974722325802, 0.0018210409907624125, 0.0799759179353714, -0.04854918643832207, -0.02347845956683159, 0.013546623289585114, -0.034333016723394394, 0.11757268011569977, 0.00811684038490057, -0.07703237235546112, -0.022463921457529068, -0.0030161505565047264, 0.009936495684087276, -0.09717516601085663, -0.06448101997375488, 0.03275441378355026, -0.05258049815893173, 0.1217355728149414, -0.05085429921746254, -0.07290655374526978, 0.009477190673351288, -9.610034394640802e-33, -0.011258238926529884, 0.061329152435064316, -0.0012248535640537739, 0.07080648839473724, -0.00827344972640276, -0.018236586824059486, 0.06278907507658005, 0.04765951633453369, -0.018521694466471672, -0.09557618200778961, 0.049272529780864716, -0.11694668978452682, 0.07978486269712448, 0.018894586712121964, 0.06990484148263931, 0.004677733406424522, 0.032281942665576935, 0.015208998695015907, 0.08063312619924545, 0.07957164943218231, 0.021332450211048126, 0.0498821884393692, -0.063230499625206, 0.08792033046483994, -0.038432490080595016, -0.07722695916891098, -0.07953282445669174, 0.01291649043560028, 0.008372909389436245, -0.01442128699272871, -0.026421599090099335, 0.02915947511792183, -0.09553892910480499, 0.048497315496206284, -0.0790044292807579, -0.002584731439128518, 0.03894692659378052, -0.020103992894291878, -0.013350050896406174, 0.12122444808483124, 0.1187676265835762, 0.024710703641176224, -0.08258409053087234, -0.08933515846729279, -0.012353037483990192, -0.04706000164151192, -0.02056344598531723, -0.00701728044077754, -0.0337742380797863, -0.007758205756545067, 0.08732836693525314, -0.04093552380800247, -0.05414741486310959, 0.0443204864859581, 0.0014231967506930232, 0.009559987112879753, 0.0034687768202275038, -0.10182594507932663, -0.02104993909597397, -0.013880297541618347, -0.029696006327867508, -0.005589601583778858, -0.041125379502773285, -0.06380543112754822, 0.06783609837293625, 0.0903087705373764, 0.009882456623017788, 0.01836400106549263, 0.03444717824459076, 0.007307132706046104, -0.018151789903640747, -0.06773456931114197, -0.00045013328781351447, 0.012662132270634174, 0.003689025528728962, -0.018521182239055634, -0.0988290011882782, -0.023877890780568123, -0.023691311478614807, -0.08420958369970322, -0.06577180325984955, 0.012470203451812267, 0.07114246487617493, -0.05742621049284935, 0.06827674806118011, 0.1194649413228035, -0.03424431011080742, -0.03642508387565613, -0.04838236793875694, 0.0924045518040657, -0.034408193081617355, 0.05980728939175606, 0.03987501189112663, 0.013754427433013916, -0.0011679097078740597, -5.423117954705958e-8, -0.04658830165863037, -0.008841115050017834, 0.04724007844924927, -0.016858456656336784, -0.03540041670203209, -0.06255503743886948, -0.0528268963098526, 0.00885811448097229, 0.04758406803011894, -0.024372419342398643, 0.05440834164619446, -0.039540451020002365, -0.02119491994380951, 0.04357503354549408, 0.022704007104039192, 0.03811906650662422, 0.026787349954247475, 0.16469058394432068, -0.04203643277287483, -0.08880872279405594, 0.04409025236964226, 0.06779517978429794, 0.01548305619508028, 0.023183224722743034, 0.052299756556749344, -0.0016736236866563559, -0.04327850416302681, 0.08699905127286911, 0.006884192582219839, -0.05257396772503853, -0.008014603517949581, 0.001969023374840617, 0.011066553182899952, -0.06809878349304199, 0.03492414578795433, 0.0072354720905423164, -0.07286924868822098, -0.02504272572696209, -0.07024747133255005, 0.04973101243376732, 0.07186440378427505, 0.05896726995706558, -0.15188759565353394, -0.014054354280233383, 0.1184704378247261, -0.01287110149860382, -0.025100119411945343, -0.09177569299936295, 0.02378588542342186, 0.012030930258333683, -0.00634048692882061, 0.027825836092233658, 0.01827768050134182, 0.00014975463273003697, 0.06240347772836685, 0.04724019765853882, 0.014921520836651325, -0.007847858592867851, 0.043438926339149475, -0.000011544218068593182, 0.03008711338043213, 0.0025110291317105293, -0.09394685178995132, -0.006041417364031076 ]
castorini/ance-msmarco-passage
6a7062e287fda08e561df5b9b55a6aff98c852a2
2021-05-20T15:18:16.000Z
[ "pytorch", "roberta", "arxiv:2007.00808", "transformers" ]
null
false
castorini
null
castorini/ance-msmarco-passage
2,954
null
transformers
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
[ -0.04700297862291336, -0.10910361260175705, -0.03779790922999382, -0.020792385563254356, -0.07212294638156891, 0.017476214095950127, -0.0466337651014328, 0.006250105332583189, 0.018044278025627136, 0.022926371544599533, 0.00924587156623602, 0.0008673819829709828, 0.03145028278231621, 0.042823489755392075, -0.15649867057800293, 0.059293899685144424, 0.11830244958400726, -0.012333979830145836, -0.002407660009339452, -0.035008057951927185, -0.019549014046788216, 0.04476103186607361, 0.045214202255010605, -0.0862564966082573, 0.005181622691452503, -0.012993800453841686, -0.00018543837359175086, 0.009045811370015144, 0.026896005496382713, -0.0723876804113388, 0.047609664499759674, 0.032020725309848785, 0.06809964776039124, 0.042147714644670486, -0.03375668078660965, 0.046226851642131805, -0.010571177117526531, -0.00470969220623374, -0.022296078503131866, 0.04281727969646454, 0.02546420320868492, 0.03744509443640709, -0.038145434111356735, 0.0174984373152256, 0.09757614880800247, -0.0314333476126194, -0.03748629614710808, -0.006384852807968855, 0.031613051891326904, -0.06251911073923111, -0.06585251539945602, -0.00465156277641654, -0.06353804469108582, -0.018855255097150803, -0.11156093329191208, 0.01860184781253338, -0.012391998432576656, -0.04350418969988823, -0.03389894962310791, -0.035724326968193054, 0.015382247976958752, -0.03323902189731598, -0.08228810876607895, -0.028446970507502556, 0.07210508733987808, 0.004849671386182308, 0.0088537922129035, 0.024240907281637192, -0.0037742163985967636, -0.019955353811383247, -0.041374944150447845, -0.001644288538955152, 0.02328961342573166, -0.03382035344839096, 0.002391737187281251, 0.11125487089157104, 0.10452869534492493, -0.025440305471420288, 0.032864347100257874, -0.14166247844696045, 0.028801653534173965, -0.07473912835121155, 0.07236658036708832, 0.018253285437822342, 0.08292274922132492, -0.026500945910811424, -0.00011703513882821426, -0.0077514066360890865, 0.006893949117511511, -0.008353191427886486, 0.025049520656466484, -0.022684333845973015, -0.09479525685310364, -0.08301636576652527, -0.030026845633983612, -0.03305225446820259, 0.027398275211453438, -0.005751552060246468, -0.032188013195991516, 0.08676241338253021, 0.004607518203556538, 0.05159696191549301, 0.005105983465909958, -0.03780313581228256, -0.0035427091643214226, -0.03785019367933273, 0.04160245507955551, -0.031062079593539238, 0.12296482175588608, -0.09951023757457733, -0.03169747069478035, 0.01511577982455492, -0.05050643905997276, -0.030519623309373856, 0.015507482923567295, 0.0013765119947493076, 0.02356749400496483, 0.030045730993151665, 0.012025429867208004, -0.020419403910636902, -0.08769459277391434, -0.011181680485606194, -0.08165132254362106, 0.03757787495851517, 0.007609953172504902, 0.019166504964232445, -0.055708080530166626, 3.328867758414251e-33, 0.011822842061519623, 0.04057318717241287, 0.048927269876003265, -0.03880075365304947, 0.02930705063045025, 0.025840235874056816, -0.03947952389717102, -0.08025165647268295, -0.060185179114341736, -0.03302472457289696, -0.04891492798924446, 0.026025529950857162, -0.044633831828832626, 0.0906994417309761, -0.032969292253255844, -0.08487743139266968, -0.020394891500473022, -0.009755099192261696, -0.04940864071249962, 0.015404296107590199, 0.037999462336301804, -0.003839729819446802, -0.004589418414980173, -0.0905037671327591, -0.04545950889587402, 0.007273923140019178, 0.04107626900076866, -0.01516362652182579, 0.008058464154601097, 0.00732226250693202, -0.13347862660884857, 0.0786210373044014, -0.011533183045685291, 0.010492198169231415, -0.01465160958468914, -0.0514877550303936, -0.04204602912068367, 0.004841706249862909, 0.030139463022351265, -0.08116433024406433, -0.07984000444412231, 0.050476301461458206, 0.06926482170820236, -0.08927472680807114, -0.07314479351043701, -0.003081441158428788, 0.03615982457995415, -0.026855822652578354, 0.05288868770003319, -0.03485935926437378, 0.008858742192387581, -0.0234846081584692, -0.05689019709825516, -0.019752711057662964, -0.002988734981045127, -0.0075185252353549, 0.04079991579055786, 0.1270861178636551, 0.11209022253751755, 0.016666775569319725, 0.11826937645673752, 0.041820019483566284, 0.03510885313153267, 0.0013711529318243265, 0.08176698535680771, 0.03924071043729782, -0.02801859751343727, -0.014946638606488705, 0.039164040237665176, -0.0028264315333217382, -0.008279748260974884, 0.05616268143057823, 0.06595632433891296, -0.03667150437831879, 0.017041029408574104, -0.0073199342004954815, 0.05420096591114998, -0.018454065546393394, 0.015005601570010185, -0.09631514549255371, -0.08083528280258179, -0.056258004158735275, 0.060022611171007156, -0.0882268026471138, -0.152223601937294, 0.014349996112287045, 0.0763012245297432, -0.07870613783597946, -0.03884876146912575, -0.12141038477420807, 0.0326792374253273, -0.003987470641732216, -0.027650605887174606, -0.05515971779823303, 0.04922481253743172, -4.454535475099074e-33, 0.036034777760505676, -0.013669934123754501, -0.08666770905256271, 0.023283764719963074, -0.05074647068977356, 0.008954286575317383, 0.047138094902038574, 0.11518479138612747, -0.048550333827733994, -0.04749017953872681, 0.03195704519748688, 0.027465160936117172, 0.03947221860289574, -0.10054811835289001, 0.027953049167990685, 0.03333859145641327, 0.11014118790626526, 0.0201219841837883, 0.022451166063547134, 0.02085801586508751, 0.012155557051301003, 0.0566563755273819, -0.02914423868060112, 0.06582468003034592, 0.0016324304742738605, 0.0031039402820169926, 0.035610660910606384, 0.03065403550863266, -0.08254885673522949, -0.10264523327350616, -0.030410433188080788, 0.03787985071539879, -0.04728901758790016, -0.021010713651776314, -0.04101075604557991, 0.05926110967993736, 0.018306653946638107, -0.03951519355177879, -0.05395909398794174, 0.0838693380355835, 0.06600572913885117, 0.08599692583084106, -0.05924968421459198, 0.008732463233172894, 0.023083630949258804, 0.04458940029144287, -0.09254655987024307, 0.016248304396867752, 0.028088172897696495, -0.03744510933756828, 0.03302101790904999, 0.03734952583909035, 0.014472372829914093, -0.0026051767636090517, -0.03523736447095871, -0.0017369447741657495, 0.03433973714709282, -0.0532345250248909, 0.001350085949525237, 0.051251668483018875, -0.10427754372358322, -0.03813466057181358, -0.052608322352170944, -0.016111956909298897, 0.00508676003664732, 0.0008791292202658951, 0.008928696624934673, 0.03090388886630535, 0.01677742786705494, 0.017438435927033424, 0.01496164035052061, -0.0020486272405833006, -0.009334295056760311, 0.015624795109033585, 0.035267073661088943, -0.048938311636447906, 0.03478190302848816, 0.014618868939578533, -0.029760126024484634, -0.02646331861615181, 0.004100879188627005, -0.004238407593220472, 0.049224603921175, 0.08227332681417465, 0.10212302207946777, 0.01321470458060503, 0.007734852842986584, -0.07446572929620743, 0.03811445087194443, 0.028002457693219185, 0.0453132726252079, 0.010422668419778347, 0.013401292264461517, -0.04130399599671364, 0.03714359551668167, -5.003263581215833e-8, -0.0021541800815612078, -0.05746764317154884, 0.0010567456483840942, 0.002628200687468052, 0.04370380565524101, -0.06356672197580338, 0.0006514494307339191, 0.046809569001197815, -0.08409138768911362, -0.011527687311172485, 0.022493800148367882, -0.06750465929508209, -0.02286774106323719, -0.041441287845373154, -0.007549823261797428, 0.11853350698947906, 0.08706818521022797, 0.05518932268023491, -0.015434392727911472, 0.04167007654905319, 0.012741858139634132, 0.055992819368839264, 0.023538101464509964, -0.038683123886585236, 0.07665099203586578, 0.03292551264166832, -0.09087242186069489, -0.012019744142889977, 0.03273145109415054, -0.012398903258144855, 0.05431530252099037, 0.05037768930196762, -0.0044885971583426, -0.012960781343281269, 0.04979168623685837, 0.131880521774292, 0.005886875092983246, 0.0030589946545660496, -0.07286635786294937, 0.03814126178622246, -0.05566190555691719, -0.03430171683430672, 0.002737251343205571, 0.005686997901648283, 0.0340750552713871, 0.08155836910009384, -0.02171974442899227, -0.12954393029212952, 0.09238626062870026, 0.08052381128072739, 0.0806623324751854, 0.02344544045627117, 0.01184700708836317, 0.013026564382016659, -0.020405413582921028, -0.05415799096226692, -0.015677446499466896, 0.004480994306504726, 0.006276457570493221, -0.022831842303276062, 0.09976029396057129, 0.043436527252197266, -0.03518331050872803, 0.022526176646351814 ]
sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
0feb43c9885ff5e9b1116ea548525aadfc327d7e
2021-03-18T10:35:12.000Z
[ "pytorch", "ColBERT", "en", "dataset:ms_marco", "arxiv:2004.12832", "arxiv:2010.02666", "transformers", "dpr", "dense-passage-retrieval", "knowledge-distillation" ]
null
false
sebastian-hofstaetter
null
sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco
2,951
3
transformers
--- language: "en" tags: - dpr - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # Margin-MSE Trained ColBERT We provide a retrieval trained DistilBert-based ColBERT model (https://arxiv.org/pdf/2004.12832.pdf). Our model is trained with Margin-MSE using a 3 teacher BERT_Cat (concatenated BERT scoring) ensemble on MSMARCO-Passage. This instance can be used to **re-rank a candidate set** or **directly for a vector index based dense retrieval**. The architecure is a 6-layer DistilBERT, with an additional single linear layer at the end. If you want to know more about our simple, yet effective knowledge distillation method for efficient information retrieval models for a variety of student architectures that is used for this model instance check out our paper: https://arxiv.org/abs/2010.02666 🎉 For more information, training data, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/neural-ranking-kd ## Configuration - fp16 trained, so fp16 inference shouldn't be a problem - We use no compression: 768 dim output vectors (better suited for re-ranking, or storage for smaller collections, MSMARCO gets to ~1TB vector storage with fp16 ... ups) - Query [MASK] augmention = 8x regardless of batch-size (needs to be added before the model, see the usage example in GitHub repo for more) ## Model Code ````python from transformers import AutoTokenizer,AutoModel, PreTrainedModel,PretrainedConfig from typing import Dict import torch class ColBERTConfig(PretrainedConfig): model_type = "ColBERT" bert_model: str compression_dim: int = 768 dropout: float = 0.0 return_vecs: bool = False trainable: bool = True class ColBERT(PreTrainedModel): """ ColBERT model from: https://arxiv.org/pdf/2004.12832.pdf We use a dot-product instead of cosine per term (slightly better) """ config_class = ColBERTConfig base_model_prefix = "bert_model" def __init__(self, cfg) -> None: super().__init__(cfg) self.bert_model = AutoModel.from_pretrained(cfg.bert_model) for p in self.bert_model.parameters(): p.requires_grad = cfg.trainable self.compressor = torch.nn.Linear(self.bert_model.config.hidden_size, cfg.compression_dim) def forward(self, query: Dict[str, torch.LongTensor], document: Dict[str, torch.LongTensor]): query_vecs = self.forward_representation(query) document_vecs = self.forward_representation(document) score = self.forward_aggregation(query_vecs,document_vecs,query["attention_mask"],document["attention_mask"]) return score def forward_representation(self, tokens, sequence_type=None) -> torch.Tensor: vecs = self.bert_model(**tokens)[0] # assuming a distilbert model here vecs = self.compressor(vecs) # if encoding only, zero-out the mask values so we can compress storage if sequence_type == "doc_encode" or sequence_type == "query_encode": vecs = vecs * tokens["tokens"]["mask"].unsqueeze(-1) return vecs def forward_aggregation(self,query_vecs, document_vecs,query_mask,document_mask): # create initial term-x-term scores (dot-product) score = torch.bmm(query_vecs, document_vecs.transpose(2,1)) # mask out padding on the doc dimension (mask by -1000, because max should not select those, setting it to 0 might select them) exp_mask = document_mask.bool().unsqueeze(1).expand(-1,score.shape[1],-1) score[~exp_mask] = - 10000 # max pooling over document dimension score = score.max(-1).values # mask out paddding query values score[~(query_mask.bool())] = 0 # sum over query values score = score.sum(-1) return score tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # honestly not sure if that is the best way to go, but it works :) model = ColBERT.from_pretrained("sebastian-hofstaetter/colbert-distilbert-margin_mse-T2-msmarco") ```` ## Effectiveness on MSMARCO Passage & TREC Deep Learning '19 We trained our model on the MSMARCO standard ("small"-400K query) training triples with knowledge distillation with a batch size of 32 on a single consumer-grade GPU (11GB memory). For re-ranking we used the top-1000 BM25 results. ### MSMARCO-DEV Here, we use the larger 49K query DEV set (same range as the smaller 7K DEV set, minimal changes possible) | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .194 | .241 | | **Margin-MSE ColBERT** (Re-ranking) | .375 | .436 | ### TREC-DL'19 For MRR we use the recommended binarization point of the graded relevance of 2. This might skew the results when compared to other binarization point numbers. | | MRR@10 | NDCG@10 | |----------------------------------|--------|---------| | BM25 | .689 | .501 | | **Margin-MSE ColBERT** (Re-ranking) | .878 | .744 | For more metrics, baselines, info and analysis, please see the paper: https://arxiv.org/abs/2010.02666 ## Limitations & Bias - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @misc{hofstaetter2020_crossarchitecture_kd, title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation}, author={Sebastian Hofst{\"a}tter and Sophia Althammer and Michael Schr{\"o}der and Mete Sertkan and Allan Hanbury}, year={2020}, eprint={2010.02666}, archivePrefix={arXiv}, primaryClass={cs.IR} } ```
[ -0.05089406296610832, -0.05945128574967384, 0.02105080708861351, 0.016880514100193977, 0.015971899032592773, 0.02333458885550499, 0.012614397332072258, 0.05290772020816803, -0.04220648109912872, -0.04042566567659378, -0.09296119958162308, -0.00510636530816555, 0.04807014390826225, 0.05253411829471588, -0.06761057674884796, 0.06015132740139961, 0.09712554514408112, 0.06175629794597626, -0.036032017320394516, 0.03113808110356331, 0.030468538403511047, 0.005100867711007595, 0.0040799998678267, -0.026177624240517616, 0.0035668453201651573, -0.02586469240486622, -0.028944309800863266, -0.0751267820596695, 0.0644204244017601, -0.05415318161249161, 0.07238250970840454, 0.008566286414861679, 0.0450526662170887, 0.1321249008178711, -0.07527591288089752, 0.05685859173536301, -0.03863126412034035, 0.012499970383942127, 0.011098059825599194, 0.06688106060028076, -0.04097585380077362, 0.0814080759882927, -0.04105371981859207, 0.016661010682582855, 0.11752386391162872, -0.0006339860847219825, -0.07066430151462555, -0.0024703044909983873, 0.03345256671309471, 0.030403664335608482, -0.08910778164863586, -0.015084882266819477, -0.02872244454920292, 0.032327715307474136, -0.02375992201268673, 0.026856262236833572, -0.03268415480852127, -0.07977324724197388, -0.03973271697759628, -0.11841148883104324, 0.040723979473114014, -0.08306977897882462, -0.046067461371421814, -0.026780128479003906, -0.0002561155706644058, 0.010622109286487103, -0.049762967973947525, 0.06597740948200226, 0.04721373692154884, -0.057647258043289185, -0.015457922592759132, 0.061638664454221725, -0.03169068694114685, -0.0050071831792593, 0.05803042650222778, 0.06967385858297348, 0.05162125453352928, -0.026766164228320122, 0.00784718245267868, -0.052783768624067307, 0.00908180046826601, 0.014003678224980831, 0.04119566082954407, -0.035998862236738205, 0.12323832511901855, -0.04522109404206276, 0.04130087420344353, -0.028168590739369392, 0.05369700863957405, -0.021911313757300377, 0.024971531704068184, -0.03513597324490547, 0.006902624387294054, -0.03783673048019409, 0.08852081745862961, 0.049977857619524, 0.05540003627538681, -0.04849018529057503, -0.009312582202255726, 0.11912355571985245, -0.02902892790734768, 0.0862007662653923, -0.020163655281066895, -0.11789959669113159, -0.026157958433032036, -0.012920367531478405, 0.06708238273859024, 0.0528392493724823, 0.002425375860184431, -0.14563536643981934, 0.02491109073162079, 0.031895898282527924, -0.0058592832647264, -0.05258432403206825, -0.004057371057569981, -0.05393252149224281, 0.027285322546958923, -0.03619964420795441, 0.09046628326177597, 0.014947845600545406, -0.041833292692899704, 0.041661765426397324, 0.002516782144084573, -0.030912766233086586, -0.03567284718155861, -0.008770524524152279, -0.023889606818556786, 3.4380689795537334e-33, 0.031016284599900246, 0.0708543062210083, -0.01916772872209549, 0.014847652055323124, -0.0037388200871646404, 0.019686000421643257, 0.04688858240842819, 0.0020670825615525246, -0.0541028156876564, -0.023767564445734024, -0.030077559873461723, 0.08079471439123154, -0.011766867712140083, 0.039149172604084015, 0.042907342314720154, -0.02600766345858574, -0.03701042756438255, 0.06609424948692322, 0.013287079520523548, -0.01110187266021967, 0.0734364241361618, 0.020368553698062897, 0.02035047486424446, -0.10422935336828232, 0.026653140783309937, -0.028600230813026428, 0.002741408534348011, -0.05344169959425926, -0.04237159341573715, 0.004959656856954098, -0.07537850737571716, -0.0049700201489031315, -0.028381427749991417, 0.02967124804854393, -0.018401287496089935, -0.003097311593592167, -0.04175485670566559, -0.032246172428131104, 0.030275525525212288, -0.0676620751619339, 0.0034513429272919893, -0.008427809923887253, 0.05224084109067917, -0.05583508312702179, -0.109323650598526, 0.0076945447362959385, 0.030017640441656113, 0.006307791452854872, 0.07166578620672226, -0.05644379183650017, 0.025959812104701996, 0.009976480156183243, -0.06850886344909668, -0.08205397427082062, -0.0025962002109736204, -0.004753488581627607, 0.025342518463730812, 0.06807949393987656, 0.1028880700469017, 0.0019809172954410315, 0.02213207259774208, 0.05210576206445694, 0.07482192665338516, 0.02808212675154209, 0.039943329989910126, -0.037210073322057724, -0.05979446694254875, 0.06083781644701958, 0.1154034361243248, -0.007157956250011921, -0.04287833720445633, -0.03498140349984169, 0.04307650774717331, -0.069818876683712, 0.025255238637328148, -0.028659701347351074, 0.0009482194436714053, -0.1319596916437149, 0.02537701278924942, -0.013943370431661606, -0.03989877551794052, -0.05752963572740555, 0.017222262918949127, -0.05226892605423927, -0.06795687973499298, 0.07489676773548126, 0.0417194738984108, -0.10542140901088715, 0.020960675552487373, -0.04583604261279106, -0.025034260004758835, 0.0007465372909791768, -0.05279811844229698, -0.003686717711389065, 0.012943074107170105, -1.955895683112596e-33, 0.019857866689562798, -0.016841502860188484, -0.014791380614042282, 0.051125068217515945, 0.02510647289454937, -0.032433707267045975, -0.016231870278716087, 0.04486104100942612, -0.051797833293676376, -0.07591449469327927, 0.01147540844976902, -0.024507829919457436, 0.010136747732758522, -0.07060348242521286, 0.0036324469838291407, 0.06285921484231949, -0.04301335662603378, -0.05030902102589607, -0.014239232055842876, 0.042802318930625916, -0.02399268001317978, -0.01512585673481226, -0.09957288205623627, 0.08421563357114792, 0.03751923516392708, 0.036871835589408875, 0.02924005314707756, 0.02211645431816578, -0.01121297013014555, -0.025237319990992546, 0.011822324246168137, -0.003709044074639678, 0.036514122039079666, -0.045839183032512665, -0.10428716242313385, 0.04991206154227257, 0.03352654352784157, -0.0806865245103836, -0.0565970242023468, 0.08631744980812073, -0.005221340339630842, 0.018568944185972214, -0.024960193783044815, -0.013509313575923443, 0.03969720005989075, 0.05260413885116577, -0.10339580476284027, -0.0024191399570554495, 0.09672657400369644, 0.028735211119055748, 0.07712122052907944, -0.03514711558818817, -0.08312845975160599, 0.00790551770478487, -0.012197108007967472, -0.034801360219717026, -0.03572467342019081, -0.030170289799571037, 0.02024924010038376, 0.02546524442732334, -0.023081589490175247, 0.002546361181885004, 0.03418320044875145, 0.024841273203492165, 0.03944305330514908, -0.059894561767578125, -0.05332837998867035, 0.03156998008489609, -0.14206215739250183, 0.0526912622153759, 0.011158430948853493, -0.010539935901761055, 0.07819182425737381, -0.03328276053071022, 0.008912893943488598, 0.05936088413000107, 0.08897417783737183, -0.012192932888865471, -0.03980157896876335, -0.029360370710492134, -0.07289207726716995, -0.042847756296396255, 0.03888851776719093, 0.09749447554349899, 0.039641931653022766, 0.049765538424253464, 0.030811335891485214, -0.011666137725114822, 0.00011716954759322107, 0.03064442239701748, -0.024948839098215103, -0.08547861129045486, 0.06352242082357407, 0.008347554132342339, 0.03489743173122406, -5.441147976625871e-8, -0.057123128324747086, 0.0052922568283975124, -0.08550193160772324, 0.044166263192892075, -0.06241337209939957, -0.04127997159957886, -0.017660122364759445, 0.08515780419111252, -0.07969871163368225, -0.011329352855682373, 0.06588062644004822, -0.038719046860933304, -0.07754206657409668, -0.01665535941720009, 0.06538733094930649, 0.10052011162042618, 0.01703248918056488, 0.06158122047781944, -0.020597532391548157, -0.0461818091571331, 0.12138842791318893, 0.009215384721755981, 0.1171569675207138, 0.004403490107506514, 0.07527516037225723, 0.004576154053211212, -0.013770309276878834, 0.09107531607151031, 0.07163438946008682, 0.02313779480755329, 0.012828594073653221, 0.0064169797115027905, 0.012382556684315205, -0.026471499353647232, 0.1002027615904808, 0.11020901054143906, -0.07651295512914658, -0.052834637463092804, -0.047123804688453674, 0.06528478860855103, 0.030070984736084938, 0.022739486768841743, -0.027119452133774757, 0.00570931239053607, 0.035040516406297684, 0.006715818308293819, -0.06961631029844284, 0.02405472658574581, 0.08874094486236572, 0.04132192209362984, 0.009260863065719604, -0.05211387574672699, -0.027839433401823044, 0.046300001442432404, 0.03139283508062363, 0.02964387834072113, -0.042371708899736404, -0.04513813182711601, 0.01702270843088627, -0.07331600785255432, 0.04841851070523262, -0.017302218824625015, -0.03912384435534477, 0.05226464942097664 ]
bigscience/bloom-2b5
68331cd7e9637733d1e3e011515288afb1c23ad8
2022-07-18T15:58:49.000Z
[ "pytorch", "bloom", "feature-extraction", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu", "arxiv:1909.08053", "arxiv:2110.02861", "arxiv:2108.12409", "transformers", "license:bigscience-bloom-rail-1.0", "text-generation", "model-index" ]
text-generation
false
bigscience
null
bigscience/bloom-2b5
2,947
3
transformers
--- license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu pipeline_tag: text-generation model-index: - name: bloom results: - task: type: text-generation name: text generation dataset: name: arc_challenge type: arc_challenge metrics: - name: acc type: acc value: 0.27986348122866894 verified: false - task: type: text-generation name: text generation dataset: name: arc_easy type: arc_easy metrics: - name: acc type: acc value: 0.5946969696969697 verified: false - task: type: text-generation name: text generation dataset: name: axb type: axb metrics: - name: acc type: acc value: 0.4433876811594203 verified: false - task: type: text-generation name: text generation dataset: name: axg type: axg metrics: - name: acc type: acc value: 0.5 verified: false - task: type: text-generation name: text generation dataset: name: boolq type: boolq metrics: - name: acc type: acc value: 0.6165137614678899 verified: false - task: type: text-generation name: text generation dataset: name: cb type: cb metrics: - name: acc type: acc value: 0.30357142857142855 verified: false - task: type: text-generation name: text generation dataset: name: cola type: cola metrics: - name: acc type: acc value: 0.610738255033557 verified: false - task: type: text-generation name: text generation dataset: name: copa type: copa metrics: - name: acc type: acc value: 0.63 verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_english type: crows_pairs_english metrics: - name: acc type: acc value: 0.4973166368515206 verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_french type: crows_pairs_french metrics: - name: acc type: acc value: 0.5032796660703638 verified: false - task: type: text-generation name: text generation dataset: name: diabla type: diabla metrics: - name: acc type: acc value: 0.28888308977035493 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_afr type: gsarti/flores_101_afr metrics: - name: byte_perplexity type: byte_perplexity value: 6.500798737976343 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_amh type: gsarti/flores_101_amh metrics: - name: byte_perplexity type: byte_perplexity value: 3.9726863338897145 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ara type: gsarti/flores_101_ara metrics: - name: byte_perplexity type: byte_perplexity value: 1.8083841089875814 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_asm type: gsarti/flores_101_asm metrics: - name: byte_perplexity type: byte_perplexity value: 5.699102962086425 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ast type: gsarti/flores_101_ast metrics: - name: byte_perplexity type: byte_perplexity value: 3.9252047073429384 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_azj type: gsarti/flores_101_azj metrics: - name: byte_perplexity type: byte_perplexity value: 6.942805054270002 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bel type: gsarti/flores_101_bel metrics: - name: byte_perplexity type: byte_perplexity value: 3.614136245847082 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ben type: gsarti/flores_101_ben metrics: - name: byte_perplexity type: byte_perplexity value: 5.121491534300969 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bos type: gsarti/flores_101_bos metrics: - name: byte_perplexity type: byte_perplexity value: 5.653353469118798 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bul type: gsarti/flores_101_bul metrics: - name: byte_perplexity type: byte_perplexity value: 2.7014693938055068 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cat type: gsarti/flores_101_cat metrics: - name: byte_perplexity type: byte_perplexity value: 2.305190041967345 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ceb type: gsarti/flores_101_ceb metrics: - name: byte_perplexity type: byte_perplexity value: 6.291000321323428 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ces type: gsarti/flores_101_ces metrics: - name: byte_perplexity type: byte_perplexity value: 5.447322753586386 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ckb type: gsarti/flores_101_ckb metrics: - name: byte_perplexity type: byte_perplexity value: 3.7255124939234765 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cym type: gsarti/flores_101_cym metrics: - name: byte_perplexity type: byte_perplexity value: 12.539424151448149 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_dan type: gsarti/flores_101_dan metrics: - name: byte_perplexity type: byte_perplexity value: 5.183309001005672 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_deu type: gsarti/flores_101_deu metrics: - name: byte_perplexity type: byte_perplexity value: 3.1180422286591347 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ell type: gsarti/flores_101_ell metrics: - name: byte_perplexity type: byte_perplexity value: 2.467943456164706 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_eng type: gsarti/flores_101_eng metrics: - name: byte_perplexity type: byte_perplexity value: 2.018740628193298 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_est type: gsarti/flores_101_est metrics: - name: byte_perplexity type: byte_perplexity value: 9.11654425176368 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fas type: gsarti/flores_101_fas metrics: - name: byte_perplexity type: byte_perplexity value: 3.058009097116482 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fin type: gsarti/flores_101_fin metrics: - name: byte_perplexity type: byte_perplexity value: 6.847047959628553 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fra type: gsarti/flores_101_fra metrics: - name: byte_perplexity type: byte_perplexity value: 1.9975177011840075 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ful type: gsarti/flores_101_ful metrics: - name: byte_perplexity type: byte_perplexity value: 11.465912731488828 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_gle type: gsarti/flores_101_gle metrics: - name: byte_perplexity type: byte_perplexity value: 8.681491663539422 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_glg type: gsarti/flores_101_glg metrics: - name: byte_perplexity type: byte_perplexity value: 3.029991089015508 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_guj type: gsarti/flores_101_guj metrics: - name: byte_perplexity type: byte_perplexity value: 4.955224230286231 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hau type: gsarti/flores_101_hau metrics: - name: byte_perplexity type: byte_perplexity value: 10.758347356372159 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_heb type: gsarti/flores_101_heb metrics: - name: byte_perplexity type: byte_perplexity value: 3.6004478129801667 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hin type: gsarti/flores_101_hin metrics: - name: byte_perplexity type: byte_perplexity value: 4.712530650588064 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hrv type: gsarti/flores_101_hrv metrics: - name: byte_perplexity type: byte_perplexity value: 5.822418943372185 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hun type: gsarti/flores_101_hun metrics: - name: byte_perplexity type: byte_perplexity value: 6.440482646965992 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hye type: gsarti/flores_101_hye metrics: - name: byte_perplexity type: byte_perplexity value: 3.657718918347166 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ibo type: gsarti/flores_101_ibo metrics: - name: byte_perplexity type: byte_perplexity value: 5.564814003872672 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ind type: gsarti/flores_101_ind metrics: - name: byte_perplexity type: byte_perplexity value: 2.1597101468869373 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_isl type: gsarti/flores_101_isl metrics: - name: byte_perplexity type: byte_perplexity value: 8.082349269518136 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ita type: gsarti/flores_101_ita metrics: - name: byte_perplexity type: byte_perplexity value: 2.9687591414176207 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jav type: gsarti/flores_101_jav metrics: - name: byte_perplexity type: byte_perplexity value: 7.0573805415708994 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jpn type: gsarti/flores_101_jpn metrics: - name: byte_perplexity type: byte_perplexity value: 2.7758864197116933 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kam type: gsarti/flores_101_kam metrics: - name: byte_perplexity type: byte_perplexity value: 11.072949642861332 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kan type: gsarti/flores_101_kan metrics: - name: byte_perplexity type: byte_perplexity value: 5.551730651007082 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kat type: gsarti/flores_101_kat metrics: - name: byte_perplexity type: byte_perplexity value: 2.522630524283745 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kaz type: gsarti/flores_101_kaz metrics: - name: byte_perplexity type: byte_perplexity value: 3.3901748516975574 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kea type: gsarti/flores_101_kea metrics: - name: byte_perplexity type: byte_perplexity value: 8.918534182590863 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kir type: gsarti/flores_101_kir metrics: - name: byte_perplexity type: byte_perplexity value: 3.729278369847201 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kor type: gsarti/flores_101_kor metrics: - name: byte_perplexity type: byte_perplexity value: 3.932884847226212 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lao type: gsarti/flores_101_lao metrics: - name: byte_perplexity type: byte_perplexity value: 2.9077314760849924 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lav type: gsarti/flores_101_lav metrics: - name: byte_perplexity type: byte_perplexity value: 7.777221919194806 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lin type: gsarti/flores_101_lin metrics: - name: byte_perplexity type: byte_perplexity value: 7.524842908050988 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lit type: gsarti/flores_101_lit metrics: - name: byte_perplexity type: byte_perplexity value: 7.369179434621725 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ltz type: gsarti/flores_101_ltz metrics: - name: byte_perplexity type: byte_perplexity value: 8.801059747949214 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lug type: gsarti/flores_101_lug metrics: - name: byte_perplexity type: byte_perplexity value: 8.483203026364786 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_luo type: gsarti/flores_101_luo metrics: - name: byte_perplexity type: byte_perplexity value: 11.975963093623681 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mal type: gsarti/flores_101_mal metrics: - name: byte_perplexity type: byte_perplexity value: 4.615948455160037 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mar type: gsarti/flores_101_mar metrics: - name: byte_perplexity type: byte_perplexity value: 5.483253482821379 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mkd type: gsarti/flores_101_mkd metrics: - name: byte_perplexity type: byte_perplexity value: 2.9656732291754087 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mlt type: gsarti/flores_101_mlt metrics: - name: byte_perplexity type: byte_perplexity value: 15.004773437665275 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mon type: gsarti/flores_101_mon metrics: - name: byte_perplexity type: byte_perplexity value: 3.410598542315402 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mri type: gsarti/flores_101_mri metrics: - name: byte_perplexity type: byte_perplexity value: 7.474035895661322 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_msa type: gsarti/flores_101_msa metrics: - name: byte_perplexity type: byte_perplexity value: 2.5710001772665634 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mya type: gsarti/flores_101_mya metrics: - name: byte_perplexity type: byte_perplexity value: 2.413577969878331 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nld type: gsarti/flores_101_nld metrics: - name: byte_perplexity type: byte_perplexity value: 4.127831721885065 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nob type: gsarti/flores_101_nob metrics: - name: byte_perplexity type: byte_perplexity value: 5.402763169129877 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_npi type: gsarti/flores_101_npi metrics: - name: byte_perplexity type: byte_perplexity value: 5.199342701937889 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nso type: gsarti/flores_101_nso metrics: - name: byte_perplexity type: byte_perplexity value: 8.154626800955667 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nya type: gsarti/flores_101_nya metrics: - name: byte_perplexity type: byte_perplexity value: 8.179860208369393 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_oci type: gsarti/flores_101_oci metrics: - name: byte_perplexity type: byte_perplexity value: 4.8617357393685845 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_orm type: gsarti/flores_101_orm metrics: - name: byte_perplexity type: byte_perplexity value: 12.911595421079408 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ory type: gsarti/flores_101_ory metrics: - name: byte_perplexity type: byte_perplexity value: 5.189421861225964 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pan type: gsarti/flores_101_pan metrics: - name: byte_perplexity type: byte_perplexity value: 4.698477289331806 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pol type: gsarti/flores_101_pol metrics: - name: byte_perplexity type: byte_perplexity value: 4.625550458479643 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_por type: gsarti/flores_101_por metrics: - name: byte_perplexity type: byte_perplexity value: 1.9754515986213523 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pus type: gsarti/flores_101_pus metrics: - name: byte_perplexity type: byte_perplexity value: 4.4963371422771585 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ron type: gsarti/flores_101_ron metrics: - name: byte_perplexity type: byte_perplexity value: 4.965456830031304 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_rus type: gsarti/flores_101_rus metrics: - name: byte_perplexity type: byte_perplexity value: 2.0498020542445303 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slk type: gsarti/flores_101_slk metrics: - name: byte_perplexity type: byte_perplexity value: 6.450822127057479 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slv type: gsarti/flores_101_slv metrics: - name: byte_perplexity type: byte_perplexity value: 6.620252120186232 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_sna type: gsarti/flores_101_sna metrics: - name: byte_perplexity type: byte_perplexity value: 8.462166771382726 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_snd type: gsarti/flores_101_snd metrics: - name: byte_perplexity type: byte_perplexity value: 5.466066951221973 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_som type: gsarti/flores_101_som metrics: - name: byte_perplexity type: byte_perplexity value: 11.95918054093392 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_spa type: gsarti/flores_101_spa metrics: - name: byte_perplexity type: byte_perplexity value: 1.8965140104323535 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_srp type: gsarti/flores_101_srp metrics: - name: byte_perplexity type: byte_perplexity value: 2.871214785885079 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swe type: gsarti/flores_101_swe metrics: - name: byte_perplexity type: byte_perplexity value: 5.054972008155866 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swh type: gsarti/flores_101_swh metrics: - name: byte_perplexity type: byte_perplexity value: 3.6973091886730676 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tam type: gsarti/flores_101_tam metrics: - name: byte_perplexity type: byte_perplexity value: 4.539493400469833 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tel type: gsarti/flores_101_tel metrics: - name: byte_perplexity type: byte_perplexity value: 5.807499987508966 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgk type: gsarti/flores_101_tgk metrics: - name: byte_perplexity type: byte_perplexity value: 3.5994818827380426 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgl type: gsarti/flores_101_tgl metrics: - name: byte_perplexity type: byte_perplexity value: 5.667053833119858 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tha type: gsarti/flores_101_tha metrics: - name: byte_perplexity type: byte_perplexity value: 2.365940201944242 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tur type: gsarti/flores_101_tur metrics: - name: byte_perplexity type: byte_perplexity value: 4.885014749844601 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ukr type: gsarti/flores_101_ukr metrics: - name: byte_perplexity type: byte_perplexity value: 2.7240934990288483 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_umb type: gsarti/flores_101_umb metrics: - name: byte_perplexity type: byte_perplexity value: 12.766915508610673 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_urd type: gsarti/flores_101_urd metrics: - name: byte_perplexity type: byte_perplexity value: 1.9797467071381232 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_uzb type: gsarti/flores_101_uzb metrics: - name: byte_perplexity type: byte_perplexity value: 12.002337637722146 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_vie type: gsarti/flores_101_vie metrics: - name: byte_perplexity type: byte_perplexity value: 1.76578415476397 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_wol type: gsarti/flores_101_wol metrics: - name: byte_perplexity type: byte_perplexity value: 9.144285650306488 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_xho type: gsarti/flores_101_xho metrics: - name: byte_perplexity type: byte_perplexity value: 7.403240538286952 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_yor type: gsarti/flores_101_yor metrics: - name: byte_perplexity type: byte_perplexity value: 5.91272037551173 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_simpl type: gsarti/flores_101_zho_simpl metrics: - name: byte_perplexity type: byte_perplexity value: 2.2769070822768533 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_trad type: gsarti/flores_101_zho_trad metrics: - name: byte_perplexity type: byte_perplexity value: 2.5180582198242383 verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zul type: gsarti/flores_101_zul metrics: - name: byte_perplexity type: byte_perplexity value: 8.53353320693145 verified: false - task: type: text-generation name: text generation dataset: name: headqa type: headqa metrics: - name: acc type: acc value: 0.26440554339897887 verified: false - task: type: text-generation name: text generation dataset: name: hellaswag type: hellaswag metrics: - name: acc type: acc value: 0.41236805417247563 verified: false - task: type: text-generation name: text generation dataset: name: logiqa type: logiqa metrics: - name: acc type: acc value: 0.2073732718894009 verified: false - task: type: text-generation name: text generation dataset: name: mathqa type: mathqa metrics: - name: acc type: acc value: 0.24958123953098826 verified: false - task: type: text-generation name: text generation dataset: name: mc_taco type: mc_taco metrics: - name: em type: em value: 0.11936936936936937 verified: false - task: type: text-generation name: text generation dataset: name: mnli type: mnli metrics: - name: acc type: acc value: 0.35496688741721855 verified: false - task: type: text-generation name: text generation dataset: name: mnli_mismatched type: mnli_mismatched metrics: - name: acc type: acc value: 0.35211554109031734 verified: false - task: type: text-generation name: text generation dataset: name: mrpc type: mrpc metrics: - name: acc type: acc value: 0.5857843137254902 verified: false - task: type: text-generation name: text generation dataset: name: multirc type: multirc metrics: - name: acc type: acc value: 0.5375412541254125 verified: false - task: type: text-generation name: text generation dataset: name: openbookqa type: openbookqa metrics: - name: acc type: acc value: 0.216 verified: false - task: type: text-generation name: text generation dataset: name: piqa type: piqa metrics: - name: acc type: acc value: 0.7078346028291621 verified: false - task: type: text-generation name: text generation dataset: name: prost type: prost metrics: - name: acc type: acc value: 0.22683603757472245 verified: false - task: type: text-generation name: text generation dataset: name: pubmedqa type: pubmedqa metrics: - name: acc type: acc value: 0.616 verified: false - task: type: text-generation name: text generation dataset: name: qnli type: qnli metrics: - name: acc type: acc value: 0.5072304594545122 verified: false - task: type: text-generation name: text generation dataset: name: qqp type: qqp metrics: - name: acc type: acc value: 0.3842443729903537 verified: false - task: type: text-generation name: text generation dataset: name: race type: race metrics: - name: acc type: acc value: 0.3521531100478469 verified: false - task: type: text-generation name: text generation dataset: name: rte type: rte metrics: - name: acc type: acc value: 0.47653429602888087 verified: false - task: type: text-generation name: text generation dataset: name: sciq type: sciq metrics: - name: acc type: acc value: 0.892 verified: false - task: type: text-generation name: text generation dataset: name: sst type: sst metrics: - name: acc type: acc value: 0.5177752293577982 verified: false - task: type: text-generation name: text generation dataset: name: triviaqa type: triviaqa metrics: - name: acc type: acc value: 0.041633518960487934 verified: false - task: type: text-generation name: text generation dataset: name: tydiqa_primary type: tydiqa_primary metrics: - name: acc type: acc value: 0.3011337608795236 verified: false - task: type: text-generation name: text generation dataset: name: webqs type: webqs metrics: - name: acc type: acc value: 0.01673228346456693 verified: false - task: type: text-generation name: text generation dataset: name: wic type: wic metrics: - name: acc type: acc value: 0.5015673981191222 verified: false - task: type: text-generation name: text generation dataset: name: winogrande type: winogrande metrics: - name: acc type: acc value: 0.5864246250986582 verified: false - task: type: text-generation name: text generation dataset: name: wnli type: wnli metrics: - name: acc type: acc value: 0.471830985915493 verified: false - task: type: text-generation name: text generation dataset: name: wsc type: wsc metrics: - name: acc type: acc value: 0.4423076923076923 verified: false - task: type: text-generation name: text generation dataset: name: humaneval type: humaneval metrics: - name: pass@1 type: pass@1 value: 0.15524390243902436 verified: false - name: pass@10 type: pass@10 value: 0.3220367632383857 verified: false - name: pass@100 type: pass@100 value: 0.5545431515723145 verified: false --- <h1 style='text-align: center '>BLOOM LM</h1> <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2> <h3 style='text-align: center '>Model Card</h3> <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> Version 1.0 / 26.May.2022 ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors) ## Model Details ### Basics *This section provides information for anyone who wants to know about the model.* <details> <summary>Click to expand</summary> <br/> **Developed by:** BigScience ([website](https://bigscience.huggingface.co)) * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)* **Model Type:** Transformer-based Language Model **Version:** 1.0.0 **Languages:** Multiple; see [training data](#training-data) **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license)) **Release Date Estimate:** Monday, 11.July.2022 **Send Questions to:** [email protected] **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022 **Funded by:** * The French government. * Hugging Face ([website](https://huggingface.co)). * Organizations of contributors. *(Further breakdown of organizations forthcoming.)* </details> ### Technical Specifications *This section provides information for people who work on model development.* <details> <summary>Click to expand</summary><br/> Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training. **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)): * Decoder-only architecture * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf)) * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions * 2.5 billion parameters: * 30 layers, 32 attention heads * Hidden layers are 2560-dimensional * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization)) **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)). **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)). * Hardware: 384 A100 80GB GPUs (48 nodes): * Additional 32 A100 80GB GPUs (4 nodes) in reserve * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links * CPU: AMD * CPU memory: 512GB per node * GPU memory: 640GB per node * Inter-node connect: Omni-Path Architecture (OPA) * NCCL-communications network: a fully dedicated subnet * Disc IO network: shared network with other types of nodes * Software: * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed)) * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed)) * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch)) * apex ([Github link](https://github.com/NVIDIA/apex)) #### **Training** _In progress._ Current training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/) - Checkpoint size: - Bf16 weights: 329GB - Full checkpoint with optimizer states: 2.3TB - Training throughput: About 150 TFLOP per GPU per second - Number of epochs: 1 (*current target*) - Dates: - Started 11th March, 2022 11:42am PST - Estimated end: 5th July, 2022 - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments) - Server training location: Île-de-France, France #### **Tokenization** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using: - A byte-level Byte Pair Encoding (BPE) algorithm - A simple pre-tokenization rule, no normalization - A vocabulary size of 250,680 It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language. </details> ### Environmental Impact <details> <summary>Click to expand</summary><br/> The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing. **Estimated carbon emissions:** *(Forthcoming upon completion of training.)* **Estimated electricity usage:** *(Forthcoming upon completion of training.)* </details> <p>&nbsp;</p> ## Uses *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It provides information for anyone considering using the model or who is affected by the model.* <details> <summary>Click to expand</summary><br/> ### Intended Use This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive. #### **Direct Use** - Text generation - Exploring characteristics of language generated by a language model - Examples: Cloze tests, counterfactuals, generations with reframings #### **Downstream Use** - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization ### Misuse and Out-of-scope Use *This section addresses what users ought not do with the model.* See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases. #### **Out-of-scope Uses** Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct. ##### Out-of-scope Uses Include: - Usage in biomedical domains, political and legal domains, or finance domains - Usage for evaluating or scoring individuals, such as for employment, education, or credit - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct #### **Misuse** Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes: - Spam generation - Disinformation and influence operations - Disparagement and defamation - Harassment and abuse - [Deception](#deception) - Unconsented impersonation and imitation - Unconsented surveillance - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license) ### Intended Users #### **Direct Users** - General Public - Researchers - Students - Educators - Engineers/developers - Non-commercial entities - Community advocates, including human and civil rights groups #### Indirect Users - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use) - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license) #### Others Affected (Parties Prenantes) - People and groups referred to by the LLM - People and groups exposed to outputs of, or decisions based on, the LLM - People and groups whose original work is included in the LLM </details> <p>&nbsp;</p> ## Training Data *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.* <details> <summary>Click to expand</summary><br/> Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus). Training data includes: - 45 natural languages - 12 programming languages - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.) #### **Languages** The pie chart shows the distribution of languages in training data. ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true) The following table shows the further distribution of Niger-Congo and Indic languages in the training data. <details> <summary>Click to expand</summary><br/> | Niger Congo | Percentage | | Indic | Percentage | |----------------|------------ |------ |-----------|------------| | Chi Tumbuka | 0.00002 | | Assamese | 0.01 | | Kikuyu | 0.00004 | | Odia | 0.04 | | Bambara | 0.00004 | | Gujarati | 0.04 | | Akan | 0.00007 | | Marathi | 0.05 | | Xitsonga | 0.00007 | | Punjabi | 0.05 | | Sesotho | 0.00007 | | Kannada | 0.06 | | Chi Chewa | 0.0001 | | Nepali | 0.07 | | Setswana | 0.0002 | | Telugu | 0.09 | | Northern Sotho | 0.0002 | | Malayalam | 0.10 | | Fon | 0.0002 | | Urdu | 0.10 | | Kirundi | 0.0003 | | Tamil | 0.20 | | Wolof | 0.0004 | | Bengali | 0.50 | | Kuganda | 0.0004 | | Hindi | 0.70 | | Chi Shona | 0.001 | | Isi Zulu | 0.001 | | Igbo | 0.001 | | Xhosa | 0.001 | | Kinyarwanda | 0.003 | | Yoruba | 0.006 | | Swahili | 0.02 | </details> The following table shows the distribution of programming languages. <details> <summary>Click to expand</summary><br/> | Extension | Language | Number of files | |----------------|------------|-----------------| | java | Java | 5,407,724 | | php | PHP | 4,942,186 | | cpp | C++ | 2,503,930 | | py | Python | 2,435,072 | | js | JavaScript | 1,905,518 | | cs | C# | 1,577,347 | | rb | Ruby | 6,78,413 | | cc | C++ | 443,054 | | hpp | C++ | 391,048 | | lua | Lua | 352,317 | | go | GO | 227,763 | | ts | TypeScript | 195,254 | | C | C | 134,537 | | scala | Scala | 92,052 | | hh | C++ | 67,161 | | H | C++ | 55,899 | | tsx | TypeScript | 33,107 | | rs | Rust | 29,693 | | phpt | PHP | 9,702 | | c++ | C++ | 1,342 | | h++ | C++ | 791 | | php3 | PHP | 540 | | phps | PHP | 270 | | php5 | PHP | 166 | | php4 | PHP | 29 | </details> </details> <p>&nbsp;</p> ## Risks and Limitations *This section identifies foreseeable harms and misunderstandings.* <details> <summary>Click to expand</summary><br/> Model may: - Overrepresent some viewpoints and underrepresent others - Contain stereotypes - Contain [personal information](#personal-data-and-information) - Generate: - Hateful, abusive, or violent language - Discriminatory or prejudicial language - Content that may not be appropriate for all settings, including sexual content - Make errors, including producing incorrect information as if it were factual - Generate irrelevant or repetitive outputs </details> <p>&nbsp;</p> ## Evaluation *This section describes the evaluation protocols and provides the results.* <details> <summary>Click to expand</summary><br/> ### Metrics *This section describes the different ways performance is calculated and why.* Includes: | Metric | Why chosen | |--------------------|--------------------------------------------------------------------| | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training | | Cross Entropy [Loss](#loss) | Standard objective for language models. | And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_ ### Factors *This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.* - Language, such as English or Yoruba - Domain, such as newswire or stories - Demographic characteristics, such as gender or nationality ### Results *Results are based on the [Factors](#factors) and [Metrics](#metrics).* **Zero-shot evaluations:** See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results | Task | Language | Metric | BLOOM-2B5 | |:----|:----|:----|:----:| | arc_challenge | eng | acc ↑ | 0.28 | | arc_easy | eng | acc ↑ | 0.595 | | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 | | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 | | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 | | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 | | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 | | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 | | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 | | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 | | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 | | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 | | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 | | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 | | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 | | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 | | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 | | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 | | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 | | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 | | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 | | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 | | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 | | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 | | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 | | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 | | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 | | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 | | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 | | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 | | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 | | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 | | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 | | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 | | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 | | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 | | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 | | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 | | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 | | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 | | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 | | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 | | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 | | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 | | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 | | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 | | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 | | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 | | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 | | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 | | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 | | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 | | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 | | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 | | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 | | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 | | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 | | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 | | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 | | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 | | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 | | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 | | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 | | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 | | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 | | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 | | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 | | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 | | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 | | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 | | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 | | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 | | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 | | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 | | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 | | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 | | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 | | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 | | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 | | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 | | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 | | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 | | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 | | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 | | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 | | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 | | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 | | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 | | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 | | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 | | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 | | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 | | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 | | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 | | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 | | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 | | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 | | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 | | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 | | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 | | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 | | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 | | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 | | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 | | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 | | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 | | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 | | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 | | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 | | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 | | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 | | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 | | headqa | esp | acc ↑ | 0.264 | | hellaswag | eng | acc ↑ | 0.412 | | logiqa | eng | acc ↑ | 0.207 | | mathqa | eng | acc ↑ | 0.25 | | mc_taco | eng | em ↑ | 0.119 | | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 | | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 | | mrpc | eng | acc ↑ | 0.586 | | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 | | openbookqa | eng | acc ↑ | 0.216 | | piqa | eng | acc ↑ | 0.708 | | prost | eng | acc ↑ | 0.227 | | pubmedqa | eng | acc ↑ | 0.616 | | qnli | eng | acc ↑ | 0.507 | | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 | | race | eng | acc ↑ | 0.352 | | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 | | sciq | eng | acc ↑ | 0.892 | | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 | | triviaqa | eng | acc ↑ | 0.042 | | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 | | webqs | eng | acc ↑ | 0.017 | | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 | | winogrande | eng | acc ↑ | 0.586 | | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 | | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 | | humaneval | python | pass@1 ↑ | 0.155 | | humaneval | python | pass@10 ↑ | 0.322 | | humaneval | python | pass@100 ↑ | 0.555 | **Train-time Evaluation:** As of 25.May.2022, 15:00 PST: - Training Loss: 2.0 - Validation Loss: 2.2 - Perplexity: 8.9 </details> <p>&nbsp;</p> ## Recommendations *This section provides information on warnings and potential mitigations.* <details> <summary>Click to expand</summary><br/> - Indirect users should be made aware when the content they're working with is created by the LLM. - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary. - Models pretrained with the LLM should include an updated Model Card. - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments. </details> <p>&nbsp;</p> ## Glossary and Calculations *This section defines common terms and how metrics are calculated.* <details> <summary>Click to expand</summary><br/> - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/). - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf). - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf). - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm). - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf)) - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated. </details> <p>&nbsp;</p> ## More Information <details> <summary>Click to expand</summary><br/> ### Dataset Creation Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling ### Technical Specifications Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md ### Initial Results Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book </details> <p>&nbsp;</p> ## Model Card Authors *Ordered roughly chronologically and by amount of time spent.* Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff
[ -0.05632960796356201, -0.008967837318778038, -0.026815669611096382, 0.055174820125103, 0.0022040188778191805, -0.010965987108647823, 0.01777382753789425, -0.010099628008902073, -0.008404248394072056, -0.02164905145764351, 0.026128102093935013, -0.15927636623382568, 0.026281921193003654, -0.018234219402074814, -0.05545304715633392, 0.038899313658475876, -0.0232643224298954, -0.06479997932910919, -0.08799945563077927, -0.08581823855638504, 0.05567021295428276, 0.11478371918201447, 0.018195152282714844, 0.050061989575624466, 0.004577712155878544, -0.00026718745357356966, -0.05867866054177284, 0.02989952266216278, -0.021082613617181778, -0.04109157621860504, 0.03541628271341324, 0.07294056564569473, 0.057593055069446564, 0.009867547079920769, 0.12760943174362183, 0.08439239859580994, -0.036478523164987564, -0.03758953511714935, 0.003567417850717902, -0.06470757722854614, -0.014916395768523216, -0.043082837015390396, 0.06393101811408997, -0.03981181979179382, 0.06352733820676804, -0.06518653780221939, -0.0781058743596077, -0.1179666742682457, -0.03576884791254997, 0.1025053933262825, -0.08931780606508255, 0.012629503384232521, -0.0490906797349453, -0.00642170337960124, 0.016668183729052544, 0.046633221209049225, -0.037484560161828995, 0.0225943922996521, 0.03147504851222038, -0.08678004890680313, -0.019293775781989098, -0.07737492769956589, -0.055595770478248596, -0.02396581321954727, -0.05449043586850166, -0.026501130312681198, 0.007758266758173704, 0.01929437555372715, -0.007662227842956781, -0.007625534664839506, -0.006912949029356241, 0.03212283179163933, -0.08904003351926804, 0.06372596323490143, 0.03769655153155327, 0.11662725359201431, 0.009971327148377895, -0.019906505942344666, 0.04802989959716797, -0.07330700755119324, -0.07415008544921875, -0.011840665712952614, 0.0305020734667778, 0.04582095518708229, 0.03694113343954086, 0.05875231698155403, 0.050432104617357254, 0.006419574376195669, 0.055666740983724594, 0.01126717496663332, -0.03086020238697529, -0.02710716240108013, 0.0006552753620781004, 0.07014863193035126, -0.06147116422653198, 0.0286713819950819, -0.02891216240823269, 0.01688050664961338, -0.021715417504310608, 0.09997513145208359, -0.04515380412340164, 0.040348079055547714, 0.05375054106116295, 0.0035149904433637857, -0.05682112276554108, 0.007176736835390329, 0.034996937960386276, 0.03999781236052513, -0.0142458351328969, -0.05312139913439751, 0.06792081892490387, -0.05359095707535744, 0.025312604382634163, -0.054932672530412674, 0.03773825615644455, 0.02059473842382431, -0.08037898689508438, -0.02715616673231125, -0.0015055470867082477, 0.09651036560535431, 0.0006737748044542968, 0.009557036682963371, -0.05969084054231644, -0.025243574753403664, -0.07964838296175003, 0.027513880282640457, 0.050012245774269104, 6.502932461716807e-33, 0.059937600046396255, -0.027318695560097694, 0.02010643109679222, 0.0010483444202691317, 0.01617138832807541, -0.03418486565351486, -0.024449165910482407, -0.01323477178812027, -0.11259697377681732, -0.017659546807408333, -0.07096423208713531, 0.007416668348014355, -0.06760556250810623, 0.007730876095592976, 0.05162535980343819, -0.08944539725780487, 0.06185148283839226, 0.03381013870239258, -0.05890986695885658, 0.06445063650608063, 0.051373276859521866, 0.0058954693377017975, -0.023437563329935074, -0.10612654685974121, 0.020907243713736534, 0.06365785002708435, 0.05731157585978508, -0.052174195647239685, -0.10737979412078857, 0.04068272188305855, -0.020730039104819298, -0.001725969254039228, 0.03894882649183273, 0.016849013045430183, 0.02546209841966629, -0.03420679643750191, 0.009431743063032627, 0.0002855599159374833, -0.009222205728292465, 0.016596082597970963, -0.024311760440468788, 0.09239747375249863, -0.054404594004154205, -0.0209172572940588, 0.01142795942723751, -0.03578125312924385, 0.056296367198228836, -0.0070382384583354, -0.011149669997394085, 0.036316096782684326, -0.023676667362451553, 0.013972158543765545, 0.0015051313675940037, -0.020889097824692726, -0.00484362430870533, -0.024843871593475342, -0.010924517177045345, 0.02965719811618328, 0.07754103094339371, 0.002748680068179965, -0.02164473384618759, 0.03191463276743889, 0.008462956175208092, 0.0031648147851228714, 0.08535043895244598, -0.03136632964015007, 0.052633363753557205, 0.0258125439286232, 0.10263632982969284, 0.013016249053180218, -0.006567472591996193, -0.06522149592638016, 0.032321419566869736, 0.031082743778824806, 0.076163649559021, -0.07163851708173752, 0.09341200441122055, -0.027379823848605156, -0.042327966541051865, 0.03844800218939781, -0.10329420864582062, -0.011583029292523861, -0.05667698755860329, -0.10875381529331207, 0.00303700752556324, 0.007410881575196981, -0.011581065133213997, -0.03591405972838402, -0.04831531271338463, -0.058202166110277176, -0.03226061537861824, 0.013518949039280415, -0.04797592759132385, -0.045069824904203415, -0.06051167845726013, -6.279637024202543e-33, 0.029750769957900047, 0.01373596303164959, -0.06038683280348778, 0.04201895743608475, 0.08054786920547485, -0.03049885481595993, 0.09060782939195633, -0.01893957518041134, 0.008321459405124187, 0.011567353270947933, -0.011699299328029156, -0.015651030465960503, 0.013469120487570763, -0.05567258968949318, 0.08575678616762161, -0.0351354256272316, -0.0010030708508566022, 0.0008749823900870979, -0.007551450747996569, 0.07212293893098831, -0.0018252389272674918, 0.11953247338533401, -0.10133819282054901, 0.05394758656620979, 0.007268664427101612, 0.015330830588936806, -0.03046094998717308, -0.015125604346394539, 0.042937006801366806, -0.017025703564286232, 0.013875885866582394, 0.049359146505594254, -0.11836467683315277, 0.014849912375211716, -0.0552690327167511, -0.04882166162133217, 0.0547868050634861, 0.012165218591690063, -0.04020930081605911, 0.08559229224920273, 0.03373027965426445, 0.04820560663938522, -0.060980793088674545, 0.021644389256834984, -0.023974323645234108, 0.051423363387584686, 0.08978146314620972, -0.013439048081636429, -0.02374981716275215, -0.02017918974161148, 0.03229585662484169, 0.03187745064496994, -0.07101915776729584, 0.0005598203861154616, -0.020208317786455154, -0.08232693374156952, 0.019766412675380707, -0.06531603634357452, -0.14244970679283142, -0.03101027011871338, -0.007272970397025347, 0.002366107888519764, 0.03621860221028328, -0.0064448206685483456, 0.07292819768190384, 0.03338291123509407, -0.03690074756741524, 0.02725384011864662, -0.06413937360048294, 0.00044507006532512605, -0.003292406676337123, -0.02848687395453453, 0.05816163495182991, 0.023725321516394615, 0.020176170393824577, -0.01902419701218605, -0.08855865895748138, 0.013232146389782429, 0.03968346118927002, 0.0047589936293661594, -0.020206190645694733, 0.06261131167411804, 0.0637115091085434, 0.08783464133739471, 0.03978576138615608, -0.030964961275458336, -0.01961161009967327, 0.08411997556686401, -0.03488419950008392, 0.040012992918491364, -0.05799384415149689, -0.0435260646045208, -0.030419502407312393, 0.11290197819471359, -0.039703745394945145, -6.868932445058817e-8, -0.024668138474225998, -0.03681838512420654, -0.10626569390296936, 0.06149313226342201, 0.00796389952301979, 0.002314676297828555, -0.040249958634376526, 0.06419376283884048, -0.003027961589396, -0.07733336091041565, 0.08437098562717438, -0.005954407621175051, -0.12298867106437683, -0.01303589716553688, 0.028709767386317253, -0.04045191407203674, -0.014330092817544937, 0.10039710998535156, -0.0443069152534008, -0.0913914144039154, 0.03852837532758713, 0.03794079273939133, -0.02953292801976204, -0.062432680279016495, -0.015429526567459106, -0.008376449346542358, 0.003061482682824135, 0.06623250991106033, 0.008433750830590725, -0.023584244772791862, 0.08620740473270416, -0.07748134434223175, -0.0003462537133600563, -0.040176600217819214, 0.048555031418800354, 0.061850499361753464, 0.01017287839204073, 0.020998792722821236, 0.02049289084970951, 0.008764130063354969, -0.023699497804045677, 0.1487119197845459, 0.0011930299224331975, 0.023085903376340866, -0.027504488825798035, -0.01339001301676035, -0.022537963464856148, -0.00814603827893734, 0.03558732569217682, -0.046716898679733276, -0.05215346813201904, -0.057289984077215195, -0.06987559050321579, 0.006702100392431021, 0.018799161538481712, 0.08393895626068115, 0.09640536457300186, -0.04929767921566963, -0.009153289720416069, -0.013938544318079948, 0.12690255045890808, -0.029988950118422508, 0.006242657080292702, -0.04907651245594025 ]
KoboldAI/fairseq-dense-13B
e936211b7bb8f406cb78efca22a5f7c43ba090b3
2022-02-01T22:51:59.000Z
[ "pytorch", "xglm", "text-generation", "transformers" ]
text-generation
false
KoboldAI
null
KoboldAI/fairseq-dense-13B
2,941
3
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
mrm8488/bert-spanish-cased-finetuned-pos-16-tags
7245043c8ef25dc7ccf91e6afdd2e2dc94213155
2021-05-20T00:36:33.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/bert-spanish-cased-finetuned-pos-16-tags
2,921
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
voidful/albert_chinese_tiny
d40f566a40f057e5d8a6f7b2cd5171a4f104126f
2021-08-03T05:07:02.000Z
[ "pytorch", "albert", "fill-mask", "zh", "transformers", "autotrain_compatible" ]
fill-mask
false
voidful
null
voidful/albert_chinese_tiny
2,920
5
transformers
--- language: zh pipeline_tag: fill-mask widget: - text: "今天[MASK]情很好" --- # albert_chinese_tiny This a albert_chinese_tiny model from [brightmart/albert_zh project](https://github.com/brightmart/albert_zh), albert_tiny_google_zh model converted by huggingface's [script](https://github.com/huggingface/transformers/blob/master/src/transformers/convert_albert_original_tf_checkpoint_to_pytorch.py) ## Notice *Support AutoTokenizer* Since sentencepiece is not used in albert_chinese_base model you have to call BertTokenizer instead of AlbertTokenizer !!! we can eval it using an example on MaskedLM 由於 albert_chinese_base 模型沒有用 sentencepiece 用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer !!! 我們可以跑MaskedLM預測來驗證這個做法是否正確 ## Justify (驗證有效性) ```python from transformers import AutoTokenizer, AlbertForMaskedLM import torch from torch.nn.functional import softmax pretrained = 'voidful/albert_chinese_tiny' tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AlbertForMaskedLM.from_pretrained(pretrained) inputtext = "今天[MASK]情很好" maskpos = tokenizer.encode(inputtext, add_special_tokens=True).index(103) input_ids = torch.tensor(tokenizer.encode(inputtext, add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, prediction_scores = outputs[:2] logit_prob = softmax(prediction_scores[0, maskpos],dim=-1).data.tolist() predicted_index = torch.argmax(prediction_scores[0, maskpos]).item() predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0] print(predicted_token, logit_prob[predicted_index]) ``` Result: `感 0.40312355756759644`
[ -0.07843157649040222, 0.06079765036702156, 0.03495503589510918, 0.035312533378601074, 0.0045317960903048515, 0.05308623984456062, -0.015443592332303524, 0.049125995486974716, -0.008690019138157368, -0.04608974978327751, 0.04472729563713074, -0.1356252133846283, 0.01754060946404934, 0.010250438004732132, 0.08096777647733688, 0.07339584827423096, 0.004991148132830858, 0.052848197519779205, -0.08260557055473328, -0.058810945600271225, 0.06783068180084229, 0.003477740567177534, 0.03517076373100281, -0.04941381514072418, 0.034171901643276215, -0.010046561248600483, -0.04823243245482445, 0.008519523777067661, 0.11863423883914948, 0.058885421603918076, -0.041996754705905914, 0.0016871090047061443, 0.026583928614854813, 0.06947202980518341, 0.08425525575876236, 0.08475574105978012, 0.0023270368110388517, 0.04906805604696274, 0.010138705372810364, -0.0014807271072641015, 0.058744125068187714, 0.020863423123955727, -0.05298556387424469, -0.07405558228492737, 0.06713206321001053, -0.0034880125895142555, -0.030495189130306244, -0.039621464908123016, -0.14235709607601166, -0.025666862726211548, -0.0825885683298111, -0.0455312617123127, 0.054817985743284225, 0.03975706174969673, -0.03519975394010544, 0.04408830404281616, -0.0032404130324721336, -0.05349228158593178, 0.018226850777864456, -0.01856974884867668, -0.11818183958530426, -0.0003036397392861545, 0.002990929875522852, 0.010067406110465527, -0.053238123655319214, 0.03129597008228302, -0.054682306945323944, -0.009832203388214111, 0.004193705972284079, 0.06143176928162575, -0.04548328369855881, -0.06181519478559494, -0.021828588098287582, -0.013742903247475624, -0.0222767386585474, -0.038610223680734634, 0.06241117790341377, -0.07242225110530853, 0.003888108767569065, -0.010243777185678482, -0.012690938077867031, -0.0471627414226532, 0.06118045002222061, 0.07001342624425888, 0.027562228962779045, 0.04234544560313225, -0.034249935299158096, -0.04106924682855606, 0.0025739085394889116, 0.0048392340540885925, -0.04205916449427605, -0.04535834863781929, 0.0466599278151989, 0.042932599782943726, 0.020792018622159958, -0.03698163852095604, 0.014130132272839546, -0.01605905033648014, -0.06504322588443756, 0.0759468749165535, 0.012851796112954617, -0.005317748989909887, 0.021445488557219505, -0.06544643640518188, -0.022151075303554535, 0.04378974065184593, -0.01648317091166973, -0.029486240819096565, 0.043414827436208725, -0.01239117980003357, 0.05052035301923752, -0.07007919996976852, -0.005715592298656702, -0.1008896678686142, 0.02701643481850624, -0.017790773883461952, -0.005311168730258942, -0.02820938639342785, -0.0030285625252872705, 0.05096909776329994, 0.05124581605195999, 0.0267274621874094, -0.041200775653123856, 0.02260909602046013, -0.036567460745573044, -0.012024885974824429, 0.047731030732393265, -6.212414175698863e-34, 0.013959791511297226, 0.08059689402580261, 0.019032837823033333, 0.012461399659514427, 0.0015181396156549454, 0.004056309815496206, 0.03382955491542816, 0.030041079968214035, -0.08286192268133163, -0.009728518314659595, 0.014480337500572205, 0.00932200439274311, -0.11539576947689056, 0.014461030252277851, -0.10542222112417221, -0.016016164794564247, -0.009959930554032326, 0.04313021898269653, 0.021857621148228645, 0.053869642317295074, 0.07670380175113678, 0.024638211354613304, -0.03186445310711861, -0.055190715938806534, -0.058414168655872345, 0.05982564389705658, 0.0817166343331337, -0.09795131534337997, -0.04322221502661705, 0.03133708983659744, -0.07982444763183594, 0.029793336987495422, -0.017688967287540436, -0.004156794864684343, -0.06385703384876251, -0.039448827505111694, -0.005025342106819153, -0.06200359761714935, -0.02366788312792778, -0.07237916439771652, -0.03183196112513542, 0.020833713933825493, -0.054981835186481476, -0.05188915506005287, -0.04165208712220192, 0.028492584824562073, 0.006290350575000048, 0.015189480036497116, 0.08281209319829941, -0.04158540442585945, 0.021489273756742477, 0.02475110813975334, -0.06525591015815735, 0.034151870757341385, 0.027840152382850647, -0.05780615285038948, -0.013198877684772015, 0.016072051599621773, 0.058677591383457184, -0.026432808488607407, 0.007244265638291836, -0.021708941087126732, 0.042635053396224976, 0.10147082060575485, 0.0717039704322815, 0.030695408582687378, -0.022791685536503792, -0.06856095790863037, -0.03989098221063614, 0.005458578933030367, -0.05684638023376465, 0.014912201091647148, -0.011781107634305954, 0.020853789523243904, 0.030722426250576973, -0.07736827433109283, 0.004298649728298187, -0.03192880377173424, -0.01136708166450262, -0.00667835958302021, -0.054772526025772095, -0.006434822920709848, -0.006646067835390568, -0.024471420794725418, -0.04995517432689667, -0.07623375952243805, 0.051514286547899246, -0.004472518339753151, -0.009533208794891834, -0.04601046070456505, -0.025986382737755775, -0.09958567470312119, 0.008066745474934578, -0.03507579490542412, -0.08172915875911713, -1.6217680260470842e-33, 0.010053860023617744, 0.03469434753060341, -0.06593018025159836, 0.03689819201827049, 0.015245631337165833, -0.06045316159725189, 0.04205745831131935, 0.09724834561347961, 0.0007585717248730361, 0.010008362121880054, -0.024980587884783745, -0.004709078464657068, -0.016694724559783936, -0.04682445898652077, 0.04822869598865509, 0.023470932617783546, 0.0008156277472153306, 0.04314645007252693, 0.02413155883550644, 0.03140317648649216, 0.06297647207975388, 0.012769902125000954, -0.12801991403102875, 0.06372014433145523, -0.06053810566663742, 0.07743988931179047, 0.033579349517822266, 0.004043495282530785, 0.045082855969667435, 0.03310011699795723, -0.05869591236114502, 0.04758339747786522, -0.03650308772921562, 0.11120990663766861, -0.07730887085199356, 0.009163051843643188, -0.03233441337943077, -0.03859328851103783, -0.02919037826359272, -0.01589079014956951, 0.030105670914053917, -0.019492078572511673, -0.06601611524820328, 0.039256300777196884, -0.025201546028256416, -0.02329893410205841, -0.06320926547050476, -0.027069760486483574, 0.029613299295306206, -0.054194606840610504, 0.006826386786997318, -0.014279329217970371, -0.0923352763056755, -0.037567876279354095, -0.10066796839237213, 0.04495011642575264, 0.04035463556647301, -0.09045456349849701, -0.04739901050925255, -0.046221230179071426, -0.052360132336616516, -0.04175350069999695, 0.08530989289283752, -0.07080642133951187, 0.0000972511843428947, -0.024063650518655777, 0.061277393251657486, 0.0189269557595253, 0.038934461772441864, -0.07674520462751389, 0.09781219065189362, 0.08143561333417892, 0.09808339923620224, 0.08155135065317154, 0.011507702991366386, 0.056354597210884094, 0.05161948874592781, -0.03958958014845848, -0.015047158114612103, -0.017098402604460716, -0.055730123072862625, -0.007130318786948919, 0.10191047936677933, 0.09829249233007431, 0.01594655029475689, -0.015293720178306103, 0.016091233119368553, 0.09204144775867462, -0.0155547009781003, 0.0393616147339344, -0.055202435702085495, 0.06015405058860779, 0.03199542686343193, 0.0957224890589714, 0.02658451721072197, -4.9787804101697475e-8, -0.0560513436794281, -0.04939938709139824, -0.039221104234457016, 0.0010265330784022808, -0.1419750303030014, -0.03872125223278999, -0.028912916779518127, -0.051817793399095535, -0.013007209636271, -0.08773504197597504, 0.036165717989206314, 0.037909455597400665, -0.03665124252438545, 0.06537068635225296, -0.004788433201611042, 0.01904626004397869, -0.05804723501205444, 0.0361875481903553, -0.018519848585128784, -0.036937177181243896, -0.08494515717029572, 0.05609128251671791, 0.043554313480854034, -0.09152490645647049, -0.02895425260066986, -0.003078008769080043, -0.12368794530630112, 0.13708434998989105, -0.07817665487527847, -0.003859457792714238, 0.04356104135513306, 0.02822728268802166, 0.0027010745834559202, 0.06936144828796387, -0.014847170561552048, 0.022551018744707108, 0.009117437526583672, -0.10812031477689743, 0.00718750711530447, -0.005454276688396931, 0.08022870123386383, -0.010975359939038754, -0.07995548844337463, 0.01273538637906313, 0.09413290023803711, 0.008830998092889786, 0.027390269562602043, -0.11984867602586746, 0.06015775725245476, 0.12081970274448395, 0.016728363931179047, -0.028514374047517776, -0.056514088064432144, -0.004710868000984192, -0.000014978790204622783, -0.0005788952112197876, -0.018787294626235962, 0.016716578975319862, 0.04081832617521286, 0.03506303206086159, 0.023727916181087494, 0.07644981145858765, 0.07207715511322021, 0.0037137139588594437 ]
rinna/japanese-cloob-vit-b-16
80b15fb86ca981749e1073bd7896e9ff1c965790
2022-07-19T05:49:48.000Z
[ "pytorch", "cloob", "ja", "arxiv:2110.11316", "transformers", "feature-extraction", "japanese", "clip", "vision", "license:apache-2.0" ]
feature-extraction
false
rinna
null
rinna/japanese-cloob-vit-b-16
2,908
3
transformers
--- language: ja thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: apache-2.0 tags: - feature-extraction - ja - japanese - clip - cloob - vision --- # rinna/japanese-cloob-vit-b-16 ![rinna-icon](./rinna.png) This is a Japanese [CLOOB (Contrastive Leave One Out Boost)](https://arxiv.org/abs/2110.11316) model trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/). Please see [japanese-clip](https://github.com/rinnakk/japanese-clip) for the other available models. # How to use the model 1. Install package ```shell $ pip install git+https://github.com/rinnakk/japanese-clip.git ``` 2. Run ```python import io import requests from PIL import Image import torch import japanese_clip as ja_clip device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = ja_clip.load("rinna/japanese-cloob-vit-b-16", device=device) tokenizer = ja_clip.load_tokenizer() img = Image.open(io.BytesIO(requests.get('https://images.pexels.com/photos/2253275/pexels-photo-2253275.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=750&w=1260').content)) image = preprocess(img).unsqueeze(0).to(device) encodings = ja_clip.tokenize( texts=["犬", "猫", "象"], max_seq_len=77, device=device, tokenizer=tokenizer, # this is optional. if you don't pass, load tokenizer each time ) with torch.no_grad(): image_features = model.get_image_features(image) text_features = model.get_text_features(**encodings) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[1.0, 0.0, 0.0]] ``` # Model architecture The model was trained a ViT-B/16 Transformer architecture as an image encoder and uses a 12-layer BERT as a text encoder. The image encoder was initialized from the [AugReg `vit-base-patch16-224` model](https://github.com/google-research/vision_transformer). # Training The model was trained on [CC12M](https://github.com/google-research-datasets/conceptual-12m) translated the captions to Japanese. # License [The Apache 2.0 license](https://www.apache.org/licenses/LICENSE-2.0)
[ -0.0905565395951271, -0.04681198298931122, -0.019995247945189476, -0.028400283306837082, 0.04035455733537674, -0.0018163303611800075, 0.00021872237266507, 0.007070617284625769, -0.022292857989668846, -0.08932355046272278, 0.09569727629423141, -0.08403026312589645, 0.04323010519146919, 0.011232768185436726, 0.0551534928381443, 0.026666466146707535, 0.010471190325915813, 0.04277033731341362, -0.01926836185157299, -0.0322369821369648, 0.015581146813929081, -0.037883128970861435, 0.029446594417095184, -0.02364875189960003, 0.05069851875305176, 0.04538806900382042, 0.04891311004757881, 0.02571534737944603, 0.04112881049513817, -0.10182563215494156, 0.021934885531663895, 0.027767091989517212, 0.008390054106712341, -0.012768345884978771, 0.019318273290991783, 0.11720945686101913, -0.0066745528019964695, -0.06302101910114288, -0.01937173679471016, 0.028404168784618378, -0.0030326521955430508, 0.01256046537309885, -0.006203556898981333, -0.13242924213409424, 0.04902924224734306, -0.06916248053312302, -0.024584949016571045, -0.05588408187031746, 0.00821989681571722, -0.0760253295302391, -0.12112798541784286, -0.10205423086881638, -0.02041822485625744, 0.009035865776240826, 0.05039331316947937, -0.053294118493795395, -0.009921811521053314, -0.022672582417726517, -0.005336584988981485, -0.03429029881954193, -0.03192479535937309, 0.05646209046244621, -0.016125276684761047, 0.017351090908050537, -0.006175138056278229, -0.06578672677278519, -0.026259956881403923, -0.019181028008461, 0.062321923673152924, -0.08424992859363556, -0.04829907417297363, -0.02692708931863308, -0.04299607127904892, -0.030306821689009666, -0.038286689668893814, -0.012607911601662636, 0.07131680846214294, 0.1254560649394989, 0.030420780181884766, -0.09209904819726944, -0.03893917053937912, -0.03275652229785919, 0.08037993311882019, -0.015588977374136448, 0.07796228677034378, 0.09208572655916214, -0.004992935340851545, 0.00936831720173359, 0.026932431384921074, 0.003642099676653743, 0.021807052195072174, -0.002855214523151517, -0.02632533758878708, 0.07538636028766632, -0.014737743884325027, 0.047280266880989075, -0.027354640886187553, 0.023970460519194603, -0.0988784208893776, 0.13826879858970642, -0.019024208188056946, -0.031837355345487595, 0.0942520871758461, -0.03104633465409279, -0.013438321650028229, 0.019073685631155968, -0.02334383875131607, 0.02613246440887451, 0.031929969787597656, -0.057017311453819275, 0.039569608867168427, -0.010200625285506248, -0.06670328229665756, -0.042635541409254074, 0.02060660347342491, 0.0358600839972496, 0.031167257577180862, -0.021760521456599236, -0.004629394970834255, 0.0020635752007365227, 0.015018160454928875, -0.014920474961400032, -0.04153653234243393, -0.01310171838849783, -0.030724840238690376, 0.05223872512578964, -0.09012742340564728, 3.137894007443785e-33, 0.11548084020614624, -0.006498063914477825, -0.022685298696160316, -0.04820280894637108, 0.0492350198328495, -0.016945768147706985, -0.019618140533566475, -0.04000790789723396, -0.1076597347855568, -0.03103477507829666, 0.017712624743580818, 0.01938914693892002, -0.11148347705602646, 0.02491525001823902, 0.0011202944442629814, -0.07734278589487076, -0.02654084749519825, -0.002687811851501465, 0.0433395691215992, 0.014976602047681808, 0.06345387548208237, 0.009754822589457035, -0.031130662187933922, -0.0003527559747453779, -0.033572860062122345, 0.04184039682149887, 0.0862051323056221, -0.07951560616493225, -0.03676661476492882, 0.07897982746362686, 0.04468194395303726, -0.009891009889543056, -0.02734777145087719, -0.016407741233706474, -0.09560129046440125, -0.07788491994142532, -0.006440218538045883, -0.0356353297829628, -0.06642482429742813, -0.04316334053874016, 0.03768617659807205, -0.014382963068783283, -0.061143964529037476, -0.019088437780737877, 0.007811781018972397, -0.07316344976425171, 0.039423827081918716, 0.03248270973563194, -0.010884600691497326, 0.06825609505176544, -0.02079435996711254, 0.0023785289376974106, -0.01426939107477665, -0.0017683448968455195, -0.0709456130862236, 0.03126818314194679, 0.07286945730447769, 0.005848131142556667, 0.022476239129900932, -0.01826743222773075, 0.00559830479323864, 0.05167946591973305, 0.00034373183734714985, 0.048875052481889725, 0.05598634108901024, 0.0028896238654851913, -0.0092345355078578, -0.013071016408503056, 0.010201232507824898, 0.06517323851585388, -0.05459333956241608, -0.009652464650571346, -0.003563718870282173, -0.018951507285237312, 0.026973851025104523, -0.17853017151355743, -0.011319315060973167, -0.013687465339899063, 0.01280911359935999, 0.04122500494122505, -0.08925215154886246, 0.06062869355082512, 0.07296062260866165, -0.05390838906168938, -0.014266779646277428, 0.046998459845781326, 0.14093559980392456, 0.0035055631306022406, 0.014364395290613174, -0.055605459958314896, 0.030900154262781143, 0.09437362849712372, 0.023326195776462555, -0.05799436569213867, -0.012397884391248226, -2.91505682905535e-33, 0.1062779501080513, 0.02108132280409336, -0.026642754673957825, 0.05695381388068199, 0.019686324521899223, -0.06988944858312607, 0.040714796632528305, 0.03225995600223541, -0.05253647267818451, -0.03292795643210411, -0.0024741636589169502, -0.006385536398738623, -0.020002156496047974, -0.042092856019735336, 0.1022472083568573, -0.044173333793878555, 0.01825224980711937, -0.04960799962282181, 0.005741853732615709, 0.0453314483165741, -0.009794682264328003, 0.05072379484772682, -0.033713433891534805, 0.060515351593494415, -0.07911061495542526, 0.001428229850716889, 0.03623839467763901, 0.032075099647045135, -0.01701406203210354, -0.004091099835932255, -0.034154780209064484, 0.008571697399020195, -0.10526730865240097, 0.012082944624125957, -0.08043520897626877, 0.0061760046519339085, 0.013502493500709534, 0.05850692465901375, 0.02501695603132248, 0.09330782294273376, 0.04030398279428482, -0.010550805367529392, -0.10222427546977997, 0.03771268576383591, -0.08735460788011551, -0.002542973728850484, 0.03330093249678612, 0.03427169471979141, -0.04262299835681915, -0.06921645998954773, 0.024086209014058113, -0.04207160696387291, 0.00729987770318985, 0.029020631685853004, -0.12249989807605743, -0.0035018124617636204, 0.015702389180660248, 0.031661245971918106, -0.043254364281892776, 0.023406220600008965, -0.04899923503398895, -0.051279351115226746, -0.03713631629943848, -0.04520967975258827, 0.01868864893913269, -0.032113704830408096, -0.00333214714191854, -0.015970291569828987, 0.01493165735155344, -0.08784482628107071, -0.03469221293926239, 0.02686361037194729, 0.09103861451148987, 0.04338158667087555, 0.08136078715324402, -0.042408719658851624, -0.0714585930109024, 0.060103412717580795, 0.10971048474311829, -0.024955566972494125, -0.03951204568147659, 0.014029164798557758, -0.02347651682794094, -0.0008455705246888101, 0.0731501504778862, 0.026672258973121643, -0.03942026570439339, 0.07301672548055649, 0.05760549381375313, -0.09111858159303665, 0.020785082131624222, 0.07491490244865417, 0.049333106726408005, 0.09546130150556564, 0.09534038603305817, -5.458675644831601e-8, -0.05145186185836792, -0.08771373331546783, -0.054936882108449936, 0.025967039167881012, -0.016946665942668915, -0.013649463653564453, -0.02187272347509861, -0.017138827592134476, 0.020757703110575676, -0.01706586591899395, 0.02154899761080742, 0.074528269469738, -0.08125714957714081, 0.07895553112030029, -0.020462948828935623, 0.058993637561798096, 0.06842733919620514, 0.16871172189712524, -0.02233770489692688, 0.014776061289012432, -0.006263590417802334, -0.02295181341469288, 0.06295038014650345, -0.016342557966709137, -0.035334210842847824, 0.009469306096434593, -0.08137506246566772, 0.05474719777703285, -0.03499557077884674, -0.006143397651612759, 0.021881822496652603, 0.0188650693744421, 0.0010275579988956451, -0.01304363738745451, 0.04210812598466873, 0.046451784670352936, 0.0028545584063977003, -0.0436953641474247, 0.025432651862502098, 0.029478777199983597, 0.09505603462457657, -0.0212397538125515, -0.025560542941093445, -0.05638080835342407, -0.004743928089737892, 0.017008773982524872, 0.03571896627545357, -0.11576040089130402, -0.008012918755412102, 0.030795328319072723, 0.07033107429742813, -0.07552418112754822, 0.0238431915640831, 0.025452924892306328, 0.0004502975207287818, 0.04181722551584244, 0.05704108998179436, -0.08208762854337692, 0.03660789132118225, 0.06649461388587952, 0.06307972222566605, 0.0044739702716469765, 0.04114772379398346, 0.010017567314207554 ]
vinai/bartpho-word
748f5b5deee937629b2ac1b7e7453730c71a969e
2022-06-08T04:49:05.000Z
[ "pytorch", "tf", "mbart", "feature-extraction", "arxiv:2109.09701", "transformers" ]
feature-extraction
false
vinai
null
vinai/bartpho-word
2,893
null
transformers
# <a name="introduction"></a> BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese Two BARTpho versions `BARTpho-syllable` and `BARTpho-word` are the first public large-scale monolingual sequence-to-sequence models pre-trained for Vietnamese. BARTpho uses the "large" architecture and pre-training scheme of the sequence-to-sequence denoising model [BART](https://github.com/pytorch/fairseq/tree/main/examples/bart), thus especially suitable for generative NLP tasks. Experiments on a downstream task of Vietnamese text summarization show that in both automatic and human evaluations, BARTpho outperforms the strong baseline [mBART](https://github.com/pytorch/fairseq/tree/main/examples/mbart) and improves the state-of-the-art. The general architecture and experimental results of BARTpho can be found in our [paper](https://arxiv.org/abs/2109.09701): @article{bartpho, title = {{BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese}}, author = {Nguyen Luong Tran and Duong Minh Le and Dat Quoc Nguyen}, journal = {arXiv preprint}, volume = {arXiv:2109.09701}, year = {2021} } **Please CITE** our paper when BARTpho is used to help produce published results or incorporated into other software. For further information or requests, please go to [BARTpho's homepage](https://github.com/VinAIResearch/BARTpho)!
[ -0.07329877465963364, -0.07400128245353699, 0.0300898440182209, -0.021432004868984222, -0.05373455211520195, 0.08036810904741287, -0.06581486761569977, 0.04520939663052559, 0.07592716813087463, -0.01190557423979044, 0.008763941936194897, -0.012806877493858337, -0.0394909530878067, 0.01676284708082676, -0.022300567477941513, 0.027213623747229576, 0.04344024136662483, 0.02971642278134823, 0.0261241365224123, -0.09847164899110794, 0.04187940061092377, 0.10426332801580429, 0.004082508850842714, -0.017808569595217705, 0.05159226432442665, -0.08837376534938812, -0.03679320588707924, 0.028266677632927895, 0.07812914252281189, -0.00043589898268692195, 0.0254257433116436, 0.051365990191698074, 0.08454816043376923, 0.09602908045053482, -0.04177575185894966, 0.07938235253095627, -0.028050396591424942, -0.01606191135942936, 0.036996036767959595, 0.018339579924941063, -0.014734252355992794, 0.004126701969653368, -0.03329652547836304, -0.017538458108901978, 0.11663240939378738, -0.06809645891189575, -0.018025465309619904, 0.01712239719927311, -0.0033120966982096434, -0.014789861626923084, -0.09846606105566025, 0.06843392550945282, 0.03529397025704384, 0.1250879466533661, -0.042301639914512634, -0.0037798588164150715, 0.02865956723690033, 0.07019414752721786, 0.018937546759843826, -0.10110404342412949, -0.07248587161302567, -0.05860617756843567, -0.061274029314517975, -0.05450361222028732, 0.03407053276896477, -0.03253365308046341, 0.049103640019893646, 0.07102350145578384, -0.00558297848328948, 0.07774834334850311, -0.046110332012176514, 0.07171881198883057, 0.028422560542821884, 0.08983004838228226, -0.052037667483091354, 0.08210836350917816, 0.023027438670396805, -0.031394828110933304, 0.0408686138689518, -0.12343184649944305, 0.04011156037449837, 0.035109568387269974, 0.10747626423835754, -0.01589513011276722, -0.002053948352113366, 0.06694342941045761, 0.03701001778244972, 0.01281410176306963, 0.0285092294216156, 0.007325615733861923, -0.02212456986308098, -0.10749747604131699, 0.03879212588071823, -0.04077949747443199, 0.011837908066809177, 0.05936373770236969, 0.03212445229291916, -0.013407436199486256, -0.0002144526515621692, 0.06675005704164505, 0.10868903249502182, 0.10821463912725449, -0.021492671221494675, -0.11960750818252563, -0.023795483633875847, -0.017569614574313164, 0.050655897706747055, -0.018736466765403748, 0.018146347254514694, -0.07210056483745575, 0.02277340553700924, 0.001305482815951109, -0.02031056396663189, -0.024974627420306206, -0.004641675390303135, -0.02535056136548519, 0.03971150889992714, -0.07677596807479858, 0.01133759692311287, 0.03340037539601326, -0.01498262770473957, -0.023499390110373497, 0.008559446781873703, 0.04726424068212509, -0.008255761116743088, -0.03084113635122776, 0.036193665117025375, 1.0734034011373411e-33, 0.07349999994039536, 0.0270075686275959, 0.018659517168998718, -0.003979862667620182, -0.0031833997927606106, -0.06174890324473381, -0.04142800718545914, 0.008269847370684147, -0.06827874481678009, -0.03660421073436737, -0.009949726983904839, -0.016304612159729004, -0.08427536487579346, 0.06467898935079575, 0.030067237094044685, -0.009141229093074799, -0.03901195898652077, 0.04112406447529793, -0.044289641082286835, 0.009119244292378426, 0.023205727338790894, -0.00877109169960022, 0.01600232720375061, -0.06696948409080505, 0.02074897661805153, 0.04940182715654373, 0.07389738410711288, -0.11082051694393158, 0.00839130487293005, 0.030224740505218506, -0.13934451341629028, 0.01210037712007761, 0.006271419581025839, 0.05472865328192711, -0.06139204651117325, -0.0327872671186924, -0.0569855272769928, -0.03726304695010185, -0.0008473025518469512, -0.06220243498682976, 0.03292505070567131, 0.044838953763246536, 0.03191899508237839, 0.013787229545414448, -0.0529126338660717, -0.05651054531335831, -0.03915970027446747, -0.018145691603422165, 0.0507953055202961, -0.043531935662031174, 0.015059414319694042, -0.01345218624919653, -0.03516315668821335, -0.021953947842121124, 0.04776529595255852, 0.008232032880187035, 0.04842599853873253, -0.008526506833732128, 0.02456211857497692, 0.009377408772706985, 0.019372830167412758, -0.007287796586751938, 0.060263410210609436, 0.10862412303686142, 0.037108272314071655, 0.003519910853356123, -0.06778977066278458, 0.0636477842926979, 0.049009546637535095, -0.08301603049039841, -0.010306376032531261, -0.0466785803437233, -0.017838450148701668, 0.021101800724864006, 0.03822975233197212, 0.028007138520479202, 0.0511988140642643, -0.10091779381036758, -0.04870019853115082, 0.04258803278207779, -0.03513865917921066, -0.020018814131617546, 0.016531504690647125, -0.04612328112125397, -0.03971762955188751, 0.0033572425600141287, 0.06177680939435959, -0.0033898598048835993, 0.0070008784532547, -0.056751880794763565, -0.008251079358160496, 0.0567106194794178, -0.001702054520137608, 0.05909055843949318, -0.0014404349494725466, -1.8594772283543365e-33, -0.02198406495153904, 0.06500311195850372, -0.08838816732168198, 0.03144069015979767, -0.08042696863412857, -0.04604120925068855, -0.01168772578239441, 0.06305186450481415, -0.050626710057258606, -0.047726016491651535, -0.05398715287446976, -0.07402962446212769, 0.08248482644557953, -0.02189934439957142, 0.02066665142774582, -0.0519028976559639, 0.07506819814443588, 0.028201643377542496, 0.03773537278175354, 0.08663871884346008, 0.05350866913795471, 0.02846042439341545, -0.10642575472593307, 0.04151548072695732, 0.03638719394803047, 0.024446966126561165, 0.004639544989913702, 0.04668805003166199, -0.06399115920066833, -0.029434066265821457, 0.02945181168615818, 0.01128793228417635, -0.003107159398496151, 0.012699399143457413, -0.08999529480934143, 0.017355989664793015, 0.059312064200639725, -0.0020961978007107973, -0.0709776058793068, 0.07819705456495285, 0.10830480605363846, 0.008394354954361916, -0.028905771672725677, -0.057349156588315964, -0.05093708634376526, -0.06812825798988342, -0.12489323318004608, -0.07235950231552124, 0.04758923873305321, 0.010869983583688736, -0.021136509254574776, 0.016312560066580772, -0.09045097976922989, 0.034286826848983765, -0.050268929451704025, -0.042031873017549515, 0.015188062563538551, -0.043038010597229004, -0.0477781817317009, -0.04562293738126755, -0.11123015731573105, 0.04370797798037529, 0.01300693117082119, -0.061537791043519974, 0.04228468984365463, -0.058204419910907745, 0.02582651376724243, -0.019389161840081215, 0.010286089032888412, -0.09021171182394028, 0.06083579361438751, 0.026765769347548485, 0.026006296277046204, 0.08206263929605484, 0.013553778640925884, -0.040444210171699524, 0.005074677057564259, -0.023932842537760735, -0.03230136260390282, -0.13550619781017303, -0.05022788047790527, -0.0382663831114769, -0.009427722543478012, 0.02258804254233837, -0.03119899146258831, 0.07690108567476273, 0.001361128524877131, 0.03643694519996643, 0.004183460492640734, 0.048803988844156265, 0.016027869656682014, -0.012372522614896297, -0.026452694088220596, 0.009276770986616611, -0.05317064747214317, -4.805693265552691e-8, -0.025217972695827484, -0.008913395926356316, -0.023119689896702766, 0.051991622895002365, -0.037925779819488525, -0.13959188759326935, -0.018205363303422928, 0.036480627954006195, -0.018879661336541176, -0.09514322131872177, -0.007483548019081354, 0.022443020716309547, -0.028255386278033257, -0.013231292366981506, 0.005388807505369186, 0.06648017466068268, 0.07784788310527802, 0.03151637688279152, -0.03674353286623955, -0.037649042904376984, 0.036056991666555405, 0.042594607919454575, -0.008146352134644985, -0.008722868748009205, 0.012455303221940994, 0.0033089821226894855, -0.10745342075824738, 0.032233864068984985, 0.00541250454261899, -0.07583822309970856, 0.05362611636519432, 0.09301117062568665, -0.04352930188179016, -0.02012641169130802, 0.031273405998945236, 0.0843701958656311, 0.005090002901852131, 0.007670153398066759, -0.01564132235944271, 0.03998755291104317, 0.09041450917720795, -0.010525258257985115, -0.08775503933429718, -0.028499577194452286, 0.029290610924363136, -0.021067317575216293, -0.05202774330973625, -0.09821329265832901, 0.06013694778084755, -0.019302139058709145, 0.0693601742386818, -0.05023511126637459, 0.06773090362548828, -0.04125136137008667, 0.06491779536008835, 0.050256986171007156, 0.015377843752503395, -0.012006756849586964, 0.05756692960858345, 0.018569080159068108, 0.07765927910804749, 0.03765463829040527, 0.006275605410337448, 0.01836855709552765 ]
microsoft/dit-base
5f3a1d82def5866db1ac86d7701fe4f508050f42
2022-03-08T10:40:10.000Z
[ "pytorch", "beit", "arxiv:2203.02378", "transformers", "dit" ]
null
false
microsoft
null
microsoft/dit-base
2,885
3
transformers
--- tags: - dit inference: false --- # Document Image Transformer (base-sized model) Document Image Transformer (DiT) model pre-trained on IIT-CDIP (Lewis et al., 2006), a dataset that includes 42 million document images. It was introduced in the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/dit). Note that DiT is identical to the architecture of [BEiT](https://huggingface.co/docs/transformers/model_doc/beit). Disclaimer: The team releasing DiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Document Image Transformer (DiT) is a transformer encoder model (BERT-like) pre-trained on a large collection of images in a self-supervised fashion. The pre-training objective for the model is to predict visual tokens from the encoder of a discrete VAE (dVAE), based on masked patches. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled document images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. ## Intended uses & limitations You can use the raw model for encoding document images into a vector space, but it's mostly meant to be fine-tuned on tasks like document image classification, table detection or document layout analysis. See the [model hub](https://huggingface.co/models?search=microsoft/dit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling import torch from PIL import Image image = Image.open('path_to_your_document_image').convert('RGB') feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/dit-base") model = BeitForMaskedImageModeling.from_pretrained("microsoft/dit-base") num_patches = (model.config.image_size // model.config.patch_size) ** 2 pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values # create random boolean mask of shape (batch_size, num_patches) bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) loss, logits = outputs.loss, outputs.logits ``` ### BibTeX entry and citation info ```bibtex @article{Lewis2006BuildingAT, title={Building a test collection for complex document information processing}, author={David D. Lewis and Gady Agam and Shlomo Engelson Argamon and Ophir Frieder and David A. Grossman and Jefferson Heard}, journal={Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval}, year={2006} } ```
[ -0.1661364734172821, 0.0034617220517247915, 0.06458458304405212, 0.017864739522337914, 0.053771235048770905, -0.05755238234996796, -0.03257089853286743, 0.11355631053447723, 0.04839848726987839, 0.020928796380758286, 0.030855447053909302, 0.03050827980041504, 0.0454176589846611, 0.07569149881601334, -0.023819487541913986, 0.04075360670685768, -0.0028709224425256252, -0.012926467694342136, -0.07732632011175156, -0.008874109014868736, 0.01739116944372654, 0.0414823442697525, 0.010504314675927162, -0.05064919963479042, 0.028591768816113472, 0.013949899934232235, -0.019338836893439293, -0.0625636950135231, 0.044424645602703094, -0.06950941681861877, 0.03386704996228218, 0.026197705417871475, -0.015523089095950127, 0.11928925663232803, -0.02297051250934601, 0.08323469758033752, 0.04567363113164902, -0.011974669061601162, 0.03728193789720535, 0.0438399612903595, 0.02951250597834587, 0.057271141558885574, -0.01394802238792181, -0.029820265248417854, 0.12037145346403122, 0.04991301894187927, -0.037485577166080475, 0.007013526279479265, -0.09818360954523087, 0.020675305277109146, -0.048425670713186264, 0.009675164707005024, -0.006639642640948296, 0.1122647374868393, 0.02369224838912487, 0.04563301056623459, 0.06607354432344437, -0.03147295117378235, -0.06241554021835327, -0.014654613099992275, -0.06265150755643845, 0.006738361436873674, -0.09405749291181564, -0.006822565104812384, -0.04544747993350029, 0.07930061221122742, 0.010940785519778728, -0.0064218249171972275, 0.05222245305776596, -0.1509045958518982, -0.03002404049038887, 0.03682169318199158, -0.002426228951662779, 0.02956383116543293, 0.05356590077280998, -0.060746245086193085, 0.1287938952445984, 0.011942402459681034, 0.04568444937467575, -0.08271319419145584, 0.05525314435362816, 0.01880040019750595, 0.12009253352880478, -0.042033545672893524, 0.04075296223163605, -0.006240054499357939, -0.06568659096956253, 0.04580871760845184, -0.005303554702550173, 0.012404380366206169, -0.06173763796687126, -0.10369303077459335, -0.019420398399233818, 0.044226374477148056, -0.026873720809817314, -0.0007089583086781204, -0.0162916649132967, -0.034632716327905655, -0.002837705658748746, 0.08430508524179459, 0.022092120721936226, -0.006726746913045645, 0.030002927407622337, -0.03655480220913887, 0.004481298383325338, -0.08569272607564926, 0.08682607114315033, 0.0020261434838175774, -0.004992757458239794, -0.08406137675046921, 0.03850145265460014, -0.0411669984459877, -0.057543858885765076, -0.08448413759469986, -0.029366644099354744, -0.05231762304902077, -0.026601700112223625, 0.00803733803331852, -0.013250958174467087, -0.04876163229346275, 0.022079987451434135, 0.05004296079277992, 0.020189503207802773, -0.021117592230439186, -0.0561080239713192, -0.03278008848428726, -0.13314275443553925, 1.459229758929498e-33, 0.008887415751814842, 0.018856678158044815, 0.033255647867918015, 0.037286706268787384, -0.014189106412231922, -0.00144888402428478, 0.011765985749661922, 0.01268857717514038, -0.011424940079450607, -0.05782841145992279, -0.033684805035591125, 0.020424453541636467, -0.07520138472318649, 0.10036903619766235, -0.004313115030527115, -0.018033064901828766, -0.0460997149348259, 0.06892316788434982, 0.0014466738793998957, 0.0007516599725931883, 0.05401352047920227, 0.0380438007414341, -0.0173683762550354, -0.037228040397167206, 0.0007300387369468808, 0.0014991878997534513, 0.02455879934132099, -0.05577106773853302, 0.020800339058041573, -0.007477238308638334, -0.07971782237291336, 0.02344631962478161, 0.05430281534790993, -0.012782151810824871, 0.0003957405861001462, 0.002362977247685194, -0.056766923516988754, -0.10262376815080643, -0.003571744542568922, -0.04717382788658142, 0.019540634006261826, 0.020114602521061897, 0.043552216142416, -0.07182645052671432, -0.016952473670244217, -0.003992695361375809, 0.013336969539523125, -0.03150559216737747, -0.028785841539502144, -0.009993002749979496, 0.05617022514343262, 0.05293341726064682, -0.07534412294626236, -0.059322115033864975, 0.02002860978245735, 0.044256437569856644, 0.054166968911886215, 0.030466532334685326, 0.11857607960700989, 0.06504222005605698, 0.011818910948932171, -0.010484565049409866, -0.04797082021832466, 0.05646137520670891, 0.012369663454592228, -0.05426795408129692, 0.016919100657105446, -0.004023361951112747, 0.0070008947513997555, 0.04071260243654251, -0.056459344923496246, 0.0008147903135977685, -0.05834170803427696, -0.12231405079364777, 0.057734712958335876, -0.045257873833179474, 0.010697117075324059, 0.01310884952545166, -0.08790575712919235, 0.027502533048391342, -0.060080911964178085, 0.026101334020495415, -0.017723694443702698, -0.10288401693105698, -0.018999293446540833, 0.04237416759133339, 0.045830756425857544, -0.07107677310705185, 0.016454562544822693, -0.03834665194153786, 0.08094599097967148, 0.03233218193054199, -0.05537670478224754, 0.020257124677300453, 0.050407763570547104, -1.1840657250206975e-33, 0.017166756093502045, 0.04233062267303467, -0.07841107994318008, 0.06823565810918808, -0.055566705763339996, -0.051591694355010986, 0.05826248601078987, 0.15947909653186798, 0.022150883451104164, -0.06584423035383224, 0.05216190591454506, -0.019618431106209755, -0.037600453943014145, -0.0617617703974247, 0.013255703262984753, -0.018228648230433464, 0.0007490104180760682, -0.050184283405542374, -0.001414442784152925, 0.040331728756427765, 0.05238255113363266, 0.07926703244447708, -0.04703653231263161, 0.020389238372445107, -0.03231760486960411, 0.06542898714542389, -0.06683611124753952, 0.05738730728626251, 0.07084441184997559, 0.016580305993556976, -0.05724756792187691, -0.009527435526251793, 0.011699331924319267, 0.005298271309584379, -0.04036996141076088, 0.014088528230786324, 0.006794249173253775, 0.0032507956493645906, -0.06742320954799652, 0.06606513261795044, -0.010701816529035568, -0.012636792846024036, -0.0610031895339489, 0.05790693312883377, -0.09850580990314484, -0.01461276225745678, -0.012164672836661339, -0.024355977773666382, 0.1108812466263771, 0.03523357957601547, 0.005167438182979822, -0.00900822039693594, -0.04010026901960373, -0.001918235095217824, -0.03639940917491913, -0.08546019345521927, -0.011599940247833729, -0.03617999702692032, 0.02583906054496765, 0.020194146782159805, 0.007815666496753693, -0.049327775835990906, 0.0005884721758775413, -0.0341406911611557, -0.034912098199129105, -0.05973677709698677, -0.13223505020141602, -0.012928269803524017, -0.02822733111679554, 0.07818403840065002, -0.013179279863834381, 0.031316839158535004, 0.043768540024757385, -0.052213456481695175, -0.006147453095763922, -0.02678080089390278, 0.005936584901064634, -0.024385301396250725, 0.009224392473697662, -0.0582730732858181, -0.08356256037950516, -0.044556669890880585, 0.016843538731336594, 0.07474374026060104, 0.08158987015485764, 0.03863969072699547, 0.015269581228494644, -0.03390907868742943, -0.017314422875642776, 0.06847865879535675, -0.038481589406728745, 0.033596258610486984, 0.08717235922813416, 0.10385199636220932, -0.0227341428399086, -5.17510052588932e-8, -0.10553241521120071, -0.003167524700984359, -0.02526208944618702, -0.03153567761182785, -0.04375216364860535, -0.09289775788784027, 0.07594434171915054, 0.10702955722808838, -0.0673772320151329, 0.0003075494314543903, 0.09376852959394455, -0.006566268857568502, -0.0812792107462883, -0.015697235241532326, 0.05473347008228302, 0.09104000777006149, 0.04454605653882027, 0.015795091167092323, -0.0005872052861377597, 0.01581217534840107, 0.0483367033302784, -0.025983599945902824, 0.02142469212412834, -0.00017399557691533118, 0.03381507843732834, -0.017883965745568275, -0.040352873504161835, 0.036261558532714844, 0.005932142026722431, -0.0019700825214385986, -0.010768018662929535, 0.04436257854104042, -0.03743240609765053, -0.02338268607854843, 0.05907011777162552, 0.0628749281167984, 0.017809798941016197, -0.03668332099914551, -0.039762575179338455, -0.033454980701208115, 0.04869261756539345, 0.006671978626400232, -0.10533791035413742, 0.0393986813724041, 0.08873596042394638, 0.0034782083239406347, 0.04499836638569832, -0.03527738153934479, -0.03729088604450226, 0.0027040550485253334, 0.005050566978752613, -0.02605583332479, 0.001809710287488997, 0.07332710176706314, -0.034051332622766495, 0.05162264034152031, 0.062202516943216324, -0.03859269991517067, 0.059113360941410065, 0.07119355350732803, 0.03773937374353409, 0.003860377473756671, 0.08380807191133499, 0.039175186306238174 ]
allegro/herbert-large-cased
8d0fa3bc0566c3a332bec0d471c8d8c37b5cbb90
2022-06-26T14:18:54.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "pl", "transformers", "herbert", "license:cc-by-4.0" ]
feature-extraction
false
allegro
null
allegro/herbert-large-cased
2,872
3
transformers
--- language: pl tags: - herbert license: cc-by-4.0 --- # HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased") model = AutoModel.from_pretrained("allegro/herbert-large-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:[email protected]">[email protected]</a>
[ -0.14203456044197083, -0.036547914147377014, 0.03166899085044861, 0.03605486452579498, 0.0053770290687680244, 0.0514938049018383, -0.015600418671965599, 0.010225124657154083, -0.020932266488671303, -0.018017346039414406, 0.009806902147829533, -0.02594299241900444, 0.08464493602514267, 0.08525363355875015, 0.02668592892587185, 0.05394943431019783, 0.03640202060341835, 0.12059476971626282, -0.07961589097976685, -0.08583669364452362, 0.08085809648036957, 0.0811944380402565, 0.03707015514373779, -0.029132651165127754, 0.09726624935865402, 0.014248808845877647, -0.05379028618335724, -0.08014170080423355, 0.07722502201795578, 0.03660252317786217, 0.004425168968737125, 0.02320108376443386, 0.042304929345846176, 0.09754765033721924, 0.007718180771917105, 0.01996956393122673, -0.00755819957703352, 0.008382788859307766, -0.0229509100317955, -0.00809125043451786, -0.09208646416664124, 0.0036159842275083065, -0.03617653623223305, -0.030376112088561058, 0.10985274612903595, 0.005772473756223917, -0.012382257729768753, 0.0392984002828598, -0.10875915735960007, -0.0485265888273716, -0.08363323658704758, -0.06864093989133835, 0.06058450788259506, 0.10058090090751648, -0.07679489254951477, -0.018006915226578712, 0.01629061996936798, 0.012425081804394722, -0.016112234443426132, -0.05530187115073204, -0.1019028052687645, -0.06760163605213165, -0.07468128204345703, 0.0075363051146268845, -0.06355240941047668, 0.027999941259622574, -0.03720472753047943, 0.011484275572001934, 0.0043117874301970005, -0.0035423508379608393, -0.031013978645205498, -0.00594743387773633, -0.0295158289372921, 0.007312283385545015, -0.00665073748677969, -0.011913757771253586, 0.12550833821296692, -0.05458255484700203, 0.058229200541973114, -0.09056070446968079, 0.08316802978515625, 0.02200077474117279, 0.05881418287754059, 0.005362850148230791, 0.045156318694353104, -0.008686703629791737, 0.0017897223588079214, 0.009574489668011665, -0.05831844359636307, 0.04021356627345085, -0.033895596861839294, -0.09474871307611465, 0.04347068816423416, -0.01777520775794983, -0.030271513387560844, -0.023761173710227013, 0.015260780230164528, 0.004336830228567123, 0.03886694833636284, 0.09449996054172516, 0.005094527266919613, 0.0015638216864317656, 0.02216346003115177, -0.10515934973955154, -0.047176260501146317, -0.01668659970164299, 0.02159126102924347, 0.005611098371446133, 0.02297644130885601, -0.06884118169546127, 0.04150773584842682, 0.011146768927574158, -0.05202481150627136, -0.09031209349632263, 0.030334198847413063, -0.04086020588874817, 0.029481342062354088, -0.026109905913472176, 0.002278855536133051, 0.09181337803602219, -0.03258836641907692, 0.05192601680755615, 0.03801175206899643, 0.07883439213037491, -0.002590914722532034, 0.03901774063706398, 0.02785489708185196, 7.447959757458861e-34, 0.03254249319434166, 0.04978182166814804, -0.06999398022890091, 0.014270377345383167, 0.012188288383185863, 0.019837405532598495, 0.07274094223976135, 0.02219771407544613, -0.04287354275584221, -0.023816145956516266, -0.022778507322072983, 0.047603100538253784, -0.06081046536564827, 0.035202693194150925, -0.0459723025560379, -0.03243311494588852, 0.00796549767255783, 0.03152039274573326, 0.027192775160074234, 0.004220230970531702, 0.07710891962051392, 0.10533630847930908, 0.04092172533273697, -0.06511692702770233, -0.04581165686249733, 0.010997936129570007, 0.06674512475728989, -0.1536640226840973, -0.019128041341900826, 0.05019499734044075, -0.08861863613128662, 0.03821272403001785, -0.028429726138710976, 0.01055504847317934, 0.024019163101911545, -0.017566096037626266, -0.029377205297350883, -0.09167956560850143, 0.011381245218217373, -0.1002231016755104, -0.015975559130311012, 0.0049330806359648705, -0.006839131470769644, -0.01806808076798916, -0.03083387017250061, -0.013377673923969269, 0.00623163441196084, -0.00017211194790434092, 0.017343344166874886, -0.02328084222972393, 0.04451899230480194, 0.04911142960190773, -0.11719104647636414, 0.012591998092830181, 0.051574841141700745, 0.04326995462179184, 0.05232834815979004, 0.00749651063233614, 0.06599525362253189, 0.011463074944913387, 0.008050493896007538, 0.05632155388593674, 0.0099682891741395, 0.01173620019108057, 0.09974980354309082, -0.05406598001718521, -0.054848287254571915, -0.026425637304782867, 0.007820317521691322, -0.007358226925134659, -0.021508604288101196, -0.05756581947207451, -0.05254299193620682, 0.04065351560711861, 0.004557131789624691, -0.03117447718977928, 0.06804665923118591, -0.010014238767325878, -0.026308415457606316, 0.019656188786029816, -0.06133381649851799, 0.012876858934760094, 0.0555000863969326, -0.0729685053229332, -0.06497609615325928, 0.028274893760681152, 0.0749349370598793, -0.0657978281378746, 0.0017999425763264298, -0.04620194807648659, 0.05058958753943443, -0.05352730304002762, 0.04781545326113701, 0.0015785156283527613, 0.010469743050634861, -2.3527901467372102e-33, -0.020825808867812157, 0.07204509526491165, -0.10495175421237946, 0.04637075960636139, -0.05326742306351662, -0.10837194323539734, 0.00012081715249223635, 0.0745355486869812, -0.024062154814600945, -0.004196112044155598, -0.007390628568828106, -0.08999226987361908, 0.031192345544695854, -0.006715018767863512, 0.07200760394334793, -0.04334395006299019, 0.027097545564174652, 0.03314121440052986, 0.03812722861766815, 0.11116154491901398, -0.011948089115321636, 0.04718929901719093, -0.1392146646976471, 0.04141674190759659, -0.03964544087648392, 0.012111112475395203, -0.055561717599630356, 0.06481537967920303, 0.03190579637885094, 0.043610114604234695, -0.05644514784216881, 0.053392503410577774, -0.0204145647585392, -0.003477393416687846, -0.07230773568153381, 0.02040831744670868, -0.06156982108950615, 0.017107762396335602, 0.012879899702966213, 0.026085440069437027, 0.006001119036227465, -0.003229322377592325, -0.0953303799033165, 0.027416910976171494, -0.0031241036485880613, -0.020129511132836342, -0.13124418258666992, -0.04700645059347153, -0.0063667516224086285, -0.05853654816746712, 0.008689288049936295, 0.04713738337159157, -0.10839096456766129, -0.05469517037272453, -0.03037404641509056, -0.06423033028841019, -0.011970458552241325, -0.11968420445919037, -0.007120716385543346, -0.013376433402299881, -0.018891556188464165, 0.0005595398833975196, 0.04596465826034546, -0.0522301159799099, 0.05727267637848854, 0.013269765302538872, -0.018611250445246696, 0.03267884626984596, -0.007710522972047329, -0.05071243643760681, 0.06312885135412216, -0.024330036714673042, 0.052970293909311295, 0.0528891384601593, -0.012035435996949673, -0.0053755068220198154, -0.015194444917142391, -0.04652617126703262, -0.07068560272455215, -0.06676953285932541, -0.03501344472169876, -0.027700096368789673, 0.02242751233279705, 0.0422387570142746, 0.03276323527097702, 0.03888414427638054, 0.018114294856786728, 0.0008928534807637334, 0.009689210914075375, 0.05537816882133484, -0.017673423513770103, 0.0362422876060009, 0.026776038110256195, 0.08456326276063919, 0.019622692838311195, -5.4042057939795995e-8, -0.05892539769411087, 0.03455580025911331, -0.033008065074682236, 0.04426390305161476, -0.01955721341073513, -0.10295925289392471, 0.0016684773145243526, -0.016140395775437355, -0.075008824467659, -0.04347256198525429, 0.00020396223408170044, 0.017668871209025383, -0.041206441819667816, 0.005449704825878143, 0.0030232216231524944, 0.07520798593759537, -0.02465267851948738, 0.04249660670757294, 0.005509066395461559, 0.038381874561309814, 0.0570090152323246, 0.053272638469934464, -0.022317351773381233, -0.010681620799005032, 0.0006696538184769452, -0.010766403749585152, -0.015554382465779781, 0.08254379779100418, 0.04416407644748688, -0.011167650111019611, -0.015010611154139042, 0.06102575361728668, -0.04105492681264877, 0.04250357672572136, 0.05181721970438957, 0.11626722663640976, 0.004962723236531019, -0.08994409441947937, -0.08284915238618851, 0.07329069077968597, 0.06473152339458466, 0.036153409630060196, -0.04227485507726669, 0.014329197816550732, 0.06973741948604584, 0.0028427764773368835, -0.023326147347688675, -0.16979847848415375, 0.038177281618118286, 0.002649078844115138, 0.04157084971666336, -0.002000844804570079, -0.06817672401666641, 0.051731642335653305, 0.06377775967121124, 0.03610086813569069, 0.007628957740962505, -0.03881698101758957, -0.007749792654067278, 0.0450982041656971, -0.021753117442131042, 0.030257679522037506, 0.05142441391944885, -0.00507256668061018 ]
trev/DialoGPT-small-MLP
e36e9fb34f98e0006f4ebcc755fe0b486708052a
2022-04-05T17:10:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trev
null
trev/DialoGPT-small-MLP
2,872
null
transformers
--- tags: - conversational --- # My Little Pony DialoGPT Model
[ -0.030925245955586433, -0.0667312815785408, 0.0515555664896965, -0.0004672825161833316, 0.009497291408479214, -0.03412119671702385, 0.14262604713439941, 0.009501416236162186, 0.09468415379524231, -0.0341334268450737, 0.001762373372912407, -0.0036891691852360964, 0.018389960750937462, -0.018122805282473564, -0.013056484051048756, 0.039726193994283676, 0.007670101244002581, -0.06313437968492508, -0.05390040576457977, 0.05102759227156639, -0.046507544815540314, 0.09235697984695435, 0.03416973352432251, 0.04042116925120354, -0.038523055613040924, 0.015842661261558533, -0.08083151280879974, 0.01906435191631317, 0.029642779380083084, -0.004535181913524866, -0.0030444811563938856, 0.07471637427806854, 0.07811551541090012, 0.02371581830084324, -0.0365368016064167, 0.014628861099481583, 0.07749076932668686, 0.02642679773271084, 0.015315860509872437, -0.018337471410632133, -0.05292299762368202, -0.059298112988471985, -0.0722532793879509, 0.0030398692470043898, 0.04350806772708893, -0.04798077046871185, -0.07841894030570984, -0.09195487201213837, -0.059556107968091965, 0.05605113133788109, -0.08632728457450867, -0.015901600942015648, -0.0011636741692200303, 0.08849317580461502, -0.02956574037671089, 0.04290112480521202, -0.03137486055493355, -0.037969108670949936, 0.04978710040450096, 0.03617309778928757, -0.057204198092222214, -0.025391528382897377, -0.07952264696359634, 0.07517911493778229, -0.028084341436624527, 0.03713306039571762, -0.07503236830234528, 0.031954675912857056, -0.015318748541176319, 0.06116543710231781, -0.03046884387731552, 0.014343345537781715, 0.018935179337859154, -0.0022321282885968685, -0.0207742340862751, 0.01542277354747057, -0.02042503096163273, -0.05608460307121277, 0.07327596098184586, 0.023309415206313133, -0.03168119862675667, -0.08561468869447708, -0.0066165924072265625, -0.009954828768968582, 0.008159180171787739, -0.05730457231402397, -0.0019259805558249354, -0.07065334916114807, -0.016197659075260162, -0.02776564098894596, -0.05264158546924591, -0.07052497565746307, 0.07031667232513428, 0.026983484625816345, -0.011096101254224777, -0.002728452207520604, -0.012805740348994732, -0.10353650897741318, -0.07676861435174942, 0.10457973182201385, -0.013147368095815182, 0.05074827000498772, 0.05420645698904991, -0.09753793478012085, 0.042348671704530716, 0.03143967315554619, -0.024681100621819496, -0.00115429877769202, 0.032300859689712524, -0.02754727192223072, -0.014644100330770016, -0.05458437278866768, 0.028842130675911903, -0.05783725157380104, 0.11609211564064026, -0.06485113501548767, 0.028886687010526657, -0.028935402631759644, 0.0518714003264904, -0.0015292082680389285, -0.03351307287812233, 0.03841778263449669, -0.07078905403614044, -0.042884938418865204, -0.031160999089479446, -0.018914474174380302, -0.0651300773024559, -2.9121698883981274e-33, 0.09233066439628601, 0.023714430630207062, 0.038434192538261414, 0.12082210183143616, 0.05503836274147034, 0.08062127232551575, -0.0665009468793869, -0.024715077131986618, -0.018706589937210083, -0.009103065356612206, 0.08167794346809387, -0.07488326728343964, -0.08590053021907806, 0.04503504931926727, 0.0165875107049942, -0.016642596572637558, -0.07116436213254929, 0.0003367823373991996, 0.01181489136070013, -0.034530866891145706, -0.02877962216734886, 0.0698576346039772, -0.005953890737146139, 0.03583903983235359, 0.06330496072769165, 0.03663724660873413, 0.05387977883219719, -0.12241809815168381, -0.05521300435066223, 0.08380255103111267, -0.04944439232349396, 0.005489031784236431, -0.011301175691187382, -0.015975773334503174, -0.04813368245959282, -0.01863977313041687, 0.005147566553205252, -0.0629267543554306, 0.014676491729915142, -0.048907242715358734, -0.06712102144956589, -0.06374994665384293, -0.02691861428320408, -0.038057439029216766, -0.030522994697093964, 0.05650193616747856, 0.024847103282809258, 0.062121618539094925, 0.013203424401581287, 0.028465410694479942, -0.01798820123076439, 0.020669391378760338, 0.000555266800802201, -0.03151829168200493, -0.019994433969259262, -0.05778811126947403, -0.06303932517766953, 0.0028158840723335743, 0.005706196650862694, -0.041086506098508835, 0.026361528784036636, 0.036812249571084976, 0.05432382598519325, -0.11087572574615479, 0.11578542739152908, 0.006664416287094355, -0.044721249490976334, 0.004147283732891083, 0.031217727810144424, 0.01737348549067974, -0.04784117266535759, 0.018124084919691086, -0.056917257606983185, 0.010700545273721218, 0.01598125323653221, 0.03467543423175812, -0.03828056529164314, -0.0535908117890358, 0.07876607030630112, 0.052319012582302094, -0.023915855213999748, -0.07726052403450012, -0.06478641927242279, -0.008179118856787682, -0.013485956937074661, -0.050301436334848404, 0.05795169621706009, -0.08825385570526123, 0.035401634871959686, -0.005837409757077694, 0.021544819697737694, 0.02652718313038349, -0.06360004097223282, 0.00963806826621294, -0.07520757615566254, 3.0535819047197967e-34, 0.03105427324771881, -0.01736205816268921, -0.10030990093946457, 0.09882361441850662, 0.011242508888244629, -0.03249845653772354, 0.05677570402622223, 0.09302391856908798, 0.012583566829562187, 0.009758755564689636, -0.03851699084043503, 0.03591317683458328, -0.025249378755688667, -0.019311299547553062, 0.14311915636062622, 0.04345237836241722, 0.025493133813142776, -0.06993958353996277, 0.05890553817152977, -0.007474839687347412, 0.056647468358278275, -0.019255148246884346, -0.1483968198299408, 0.05349098518490791, 0.01539295632392168, -0.0005484545836225152, -0.0267828106880188, 0.034678682684898376, 0.12455705553293228, -0.04945798218250275, -0.06391593813896179, 0.02409639209508896, 0.01861616224050522, -0.021958624944090843, 0.0002578639250714332, 0.019882526248693466, 0.0054319375194609165, -0.029513521119952202, 0.0028606937266886234, 0.022517425939440727, 0.04051142930984497, -0.06052229553461075, 0.03773723915219307, 0.004490766208618879, -0.046031732112169266, -0.0785866528749466, -0.03314809128642082, -0.03469223156571388, -0.03973260894417763, 0.018424736335873604, 0.005669959355145693, -0.01670069247484207, -0.058578480035066605, -0.04260982573032379, -0.06812400370836258, 0.019397422671318054, 0.029628265649080276, -0.04889471456408501, -0.022527877241373062, 0.01404652837663889, -0.07015426456928253, -0.04230883717536926, 0.04361887648701668, 0.005003228317946196, 0.004275694955140352, -0.049343474209308624, -0.016691742464900017, -0.0025428279768675566, -0.0382700115442276, -0.07170066982507706, 0.11139824986457825, 0.06204882636666298, 0.032232947647571564, -0.011475015431642532, 0.051047034561634064, -0.0036802445538342, 0.05293374881148338, -0.014604154974222183, 0.04581018537282944, -0.06992044299840927, 0.008508623577654362, -0.01784614846110344, 0.05582904443144798, 0.0487581230700016, 0.030568107962608337, -0.03169967234134674, -0.0004891676944680512, 0.08300075680017471, -0.020233958959579468, 0.029726775363087654, 0.029753578826785088, 0.03630366548895836, 0.006874775979667902, 0.05526427552103996, -0.016868725419044495, -2.6356648419323392e-8, -0.047687385231256485, -0.055045951157808304, 0.02042006514966488, 0.07795897126197815, 0.04987761005759239, 0.03141539916396141, 0.018928878009319305, 0.0003054385306313634, -0.05609472468495369, 0.027992745861411095, 0.06510057300329208, 0.08017462491989136, -0.021279755979776382, 0.06556400656700134, -0.015212527476251125, 0.054913606494665146, -0.03914589062333107, -0.006323998793959618, -0.011887908913195133, -0.029335254803299904, 0.05345582589507103, -0.0036612253170460463, -0.06092361360788345, 0.01874227449297905, 0.027089299634099007, -0.011778186075389385, -0.07078958302736282, 0.10051001608371735, -0.0631006583571434, 0.045930907130241394, 0.06017385795712471, 0.06456775963306427, -0.17505872249603271, -0.020190563052892685, -0.0652620866894722, -0.0007144108531065285, -0.05998566746711731, -0.03983907774090767, -0.0057787480764091015, -0.06925013661384583, 0.009451725520193577, 0.0254322811961174, -0.03562042489647865, -0.012631289660930634, 0.09396415948867798, 0.027966195717453957, 0.020700491964817047, -0.13163240253925323, -0.02488819882273674, -0.0035052832681685686, -0.06441791355609894, -0.018454821780323982, 0.11591392755508423, 0.0401378832757473, 0.01281844824552536, 0.0304755587130785, 0.05284806340932846, 0.05750640481710434, 0.040994998067617416, 0.03603677079081535, 0.05482205003499985, 0.12468396127223969, 0.024386407807469368, -0.0539860799908638 ]
voidful/bart-eqg-question-generator
e85b63236f244e0735bca7407ddb0cc76650061b
2021-08-24T11:00:51.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:eqg-race", "transformers", "question", "generation", "seq2seq", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/bart-eqg-question-generator
2,861
7
transformers
--- language: en tags: - bart - question - generation - seq2seq datasets: - eqg-race metrics: - bleu - rouge pipeline_tag: text2text-generation widget: - text: "When you ' re having a holiday , one of the main questions to ask is which hotel or apartment to choose . However , when it comes to France , you have another special choice : treehouses . In France , treehouses are offered to travelers as a new choice in many places . The price may be a little higher , but you do have a chance to _ your childhood memories . Alain Laurens , one of France ' s top treehouse designers , said , ' Most of the people might have the experience of building a den when they were young . And they like that feeling of freedom when they are children . ' Its fairy - tale style gives travelers a special feeling . It seems as if they are living as a forest king and enjoying the fresh air in the morning . Another kind of treehouse is the ' star cube ' . It gives travelers the chance of looking at the stars shining in the sky when they are going to sleep . Each ' star cube ' not only offers all the comfortable things that a hotel provides for travelers , but also gives them a chance to look for stars by using a telescope . The glass roof allows you to look at the stars from your bed . " --- # voidful/bart-eqg-question-generator ## Model description This model is a sequence-to-sequence question generator with only the context as an input, and generates a question as an output. It is based on a pretrained `bart-base` model, and trained on [EQG-RACE](https://github.com/jemmryx/EQG-RACE) corpus. ## Intended uses & limitations The model is trained to generate examinations-style multiple choice question. #### How to use The model takes context as an input sequence, and will generate a question as an output sequence. The max sequence length is 1024 tokens. Inputs should be organised into the following format: ``` context ``` The input sequence can then be encoded and passed as the `input_ids` argument in the model's `generate()` method.
[ 0.07963453978300095, 0.026097094640135765, 0.05187145248055458, 0.11433644592761993, 0.027881858870387077, -0.021305743604898453, 0.04337453097105026, -0.04059379920363426, 0.09576089680194855, 0.0064481995068490505, -0.013216019608080387, -0.03918364271521568, 0.03723224624991417, -0.021884195506572723, 0.06583074480295181, -0.019014902412891388, 0.018994592130184174, -0.03624841570854187, 0.028391312807798386, 0.05030849203467369, 0.0035748425871133804, -0.07489096373319626, -0.0031010883394628763, 0.06364648044109344, 0.0614258274435997, -0.05383441597223282, -0.06811121106147766, 0.03812252730131149, -0.0007743779569864273, -0.04771738499403, 0.024845972657203674, 0.10675419867038727, -0.03621348738670349, 0.03754504397511482, -0.020473822951316833, 0.016406621783971786, 0.03917717561125755, -0.08219201117753983, -0.007889139465987682, 0.04773685708642006, 0.013453158549964428, 0.004869508091360331, 0.0073414272628724575, -0.04257552698254585, -0.040604788810014725, 0.029266932979226112, -0.08742620050907135, -0.017023950815200806, -0.03957878425717354, -0.017902128398418427, -0.0337924025952816, 0.009381810203194618, -0.04912066459655762, -0.02771708369255066, 0.029927348718047142, 0.09268376976251602, -0.0021680344361811876, -0.05040592700242996, 0.09152098000049591, 0.01644163578748703, 0.0628010556101799, -0.0130785396322608, -0.0004730031650979072, 0.03759513795375824, 0.024434126913547516, -0.05268002673983574, -0.10923106968402863, 0.03778295964002609, -0.07808970659971237, -0.039791155606508255, -0.11362089216709137, -0.011161264963448048, -0.037664007395505905, -0.0030616228468716145, 0.048282425850629807, -0.0273490771651268, 0.028081953525543213, -0.03511861339211464, 0.01828332431614399, -0.029178883880376816, -0.021163782104849815, 0.018739186227321625, -0.08334438502788544, 0.028437038883566856, -0.06181685999035835, -0.025656748563051224, 0.053459975868463516, 0.0554373525083065, -0.05848313122987747, -0.015565023757517338, -0.03994913771748543, -0.008037874475121498, -0.05264374241232872, 0.042150020599365234, -0.024024702608585358, 0.04464031755924225, -0.06418630480766296, -0.02386533096432686, 0.014931145124137402, 0.008106128312647343, 0.02825145609676838, 0.02178979106247425, 0.1265469789505005, 0.01065809652209282, -0.10823502391576767, -0.06587979197502136, -0.04854575917124748, -0.0050005619414150715, 0.015808362513780594, -0.037064164876937866, -0.0703476294875145, -0.042944084852933884, -0.010689960792660713, 0.003875225316733122, -0.07550840079784393, 0.03099786676466465, 0.03445088490843773, -0.07866843044757843, 0.07716043293476105, 0.020790541544556618, 0.04561067745089531, 0.00868218857795, 0.012026796117424965, -0.037143126130104065, -0.019398048520088196, -0.04162846878170967, 0.005671282764524221, 4.1325950312222006e-34, 0.01186326052993536, 0.07956697046756744, 0.04367141053080559, 0.045092951506376266, 0.11798898130655289, 0.012784266844391823, -0.1188158169388771, 0.07942754030227661, -0.028601521626114845, 0.04287625104188919, -0.02413056790828705, -0.02020810730755329, -0.034250833094120026, 0.034942738711833954, 0.10981524735689163, 0.014978432096540928, -0.07636792212724686, -0.030197342857718468, -0.04939195513725281, 0.015832867473363876, 0.0005072695785202086, 0.0620303675532341, 0.018607208505272865, 0.08993849903345108, 0.06538452208042145, -0.043398093432188034, 0.06938614696264267, -0.011945204809308052, -0.037121426314115524, -0.0022907478269189596, 0.0009781650733202696, -0.02017655223608017, -0.01690271869301796, -0.03180290013551712, -0.03101607970893383, 0.029588332399725914, -0.011102222837507725, -0.04837815463542938, -0.07835675776004791, -0.07198679447174072, -0.04086475446820259, -0.007132573518902063, 0.012035442516207695, 0.08458776026964188, 0.010054442100226879, 0.09620583057403564, 0.06525079160928726, -0.03812771290540695, -0.05116581171751022, 0.02659025229513645, -0.029911693185567856, 0.02426040917634964, -0.06859613209962845, -0.014330564066767693, -0.013364228419959545, 0.022759290412068367, 0.020906690508127213, 0.01386855449527502, -0.006073580589145422, -0.04367177188396454, 0.0415085144340992, -0.07763965427875519, 0.006803716067224741, -0.02335391566157341, -0.012337122112512589, 0.07792460173368454, 0.0731852725148201, 0.04915042594075203, 0.04640044644474983, -0.07596369832754135, -0.023156465962529182, 0.027838775888085365, 0.031364548951387405, -0.011895856820046902, 0.0006082476465962827, 0.06518290191888809, -0.016316207125782967, 0.010212455876171589, 0.04333255812525749, -0.03464516997337341, -0.049340326339006424, 0.010407854802906513, 0.022809019312262535, -0.004717092029750347, -0.0037076049484312534, -0.11845587939023972, 0.07351677864789963, 0.01805739291012287, 0.01072778645902872, 0.018096432089805603, -0.020284729078412056, -0.04831667244434357, 0.06967078149318695, -0.03550993278622627, -0.05911732092499733, -3.22217511568782e-33, -0.004784072749316692, -0.09210105240345001, -0.023939277976751328, 0.004579135682433844, 0.0988641157746315, -0.0009557502344250679, -0.07041320949792862, -0.11163821071386337, 0.06774376332759857, -0.04140537604689598, -0.07203546166419983, 0.03371446207165718, 0.09515688568353653, -0.025302501395344734, 0.06790119409561157, -0.020410601049661636, 0.018041417002677917, -0.010831311345100403, -0.09044159948825836, 0.06945297867059708, 0.04919707030057907, 0.13891534507274628, -0.11599767953157425, 0.023700393736362457, -0.05768793821334839, 0.043565645813941956, -0.041723527014255524, -0.03398817405104637, -0.06141641363501549, 0.008220468647778034, -0.06679651141166687, -0.06882886588573456, -0.010799078270792961, 0.01197685394436121, 0.01324159000068903, 0.013026773929595947, -0.027408840134739876, -0.0239957794547081, -0.07252515852451324, 0.13329556584358215, -0.039843522012233734, -0.0395287461578846, -0.010309718549251556, 0.015271028503775597, 0.050328128039836884, 0.007965144701302052, -0.05266229063272476, -0.08420485258102417, -0.019471175968647003, 0.0303089190274477, 0.04964059963822365, 0.08190395683050156, -0.08035466074943542, -0.007988710887730122, -0.06431280076503754, -0.004292995668947697, -0.02668541669845581, 0.027500806376338005, 0.02771436795592308, 0.058616653084754944, -0.011607656255364418, 0.06505206972360611, 0.0016400667373090982, 0.01385012548416853, -0.07499989122152328, -0.09729625284671783, -0.1048145517706871, -0.0532357394695282, -0.021769961342215538, -0.02692943625152111, 0.04213710129261017, -0.026401177048683167, -0.06658102571964264, 0.05422021076083183, -0.05558390915393829, 0.010513083077967167, 0.019745469093322754, -0.008019810542464256, -0.03109045699238777, -0.0028228654991835356, -0.07317172735929489, 0.012724468484520912, 0.038525983691215515, 0.05780801177024841, 0.03844614326953888, -0.07896705716848373, -0.045173853635787964, 0.030928242951631546, 0.0050248620100319386, -0.036145906895399094, -0.014684895053505898, 0.05697646737098694, -0.06864950060844421, 0.036148034036159515, 0.016598528251051903, -6.42239399439859e-8, -0.023790201172232628, 0.04778086766600609, -0.02148892730474472, 0.004683322738856077, -0.016662567853927612, -0.15533263981342316, 0.07487404346466064, 0.09374725073575974, -0.042926497757434845, 0.016831016167998314, -0.01535575557500124, 0.04203195497393608, -0.0196840837597847, -0.006907925475388765, 0.04384717345237732, 0.03837316855788231, -0.007599036209285259, -0.0037083274219185114, -0.0013199049280956388, 0.11476866900920868, 0.051579080522060394, 0.022832855582237244, 0.001317445421591401, 0.006975783035159111, -0.060328658670186996, -0.03190526366233826, -0.03520846366882324, 0.013356771320104599, 0.02001248113811016, 0.020096734166145325, 0.08825965970754623, 0.06898893415927887, -0.011828320100903511, -0.018938615918159485, -0.021114101633429527, 0.07154885679483414, -0.005861981306225061, -0.00863652490079403, 0.03551116958260536, 0.03302662819623947, 0.0720289796590805, -0.1472688466310501, -0.040484607219696045, -0.007326113060116768, -0.06468625366687775, 0.043751560151576996, -0.020993871614336967, -0.015434286557137966, 0.028546543791890144, 0.07672927528619766, -0.08124804496765137, 0.01049888040870428, -0.10137759149074554, -0.03324400633573532, 0.03197941556572914, -0.02315618470311165, -0.048332687467336655, -0.013624221086502075, 0.11685557663440704, -0.03184284642338753, 0.12230198085308075, -0.026371179148554802, -0.02391216531395912, 0.03770749643445015 ]
mrm8488/bert-tiny-5-finetuned-squadv2
f586274a9919ef3ca801d3c7f3f30ee6ad7515d8
2022-01-18T20:19:49.000Z
[ "pytorch", "jax", "bert", "question-answering", "en", "arxiv:1908.08962", "transformers", "QA", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-tiny-5-finetuned-squadv2
2,860
3
transformers
--- language: en thumbnail: tags: - QA --- # BERT-Tiny ([5](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2)) fine-tuned on SQuAD v2 [BERT-Tiny](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2) created by [Google Research](https://github.com/google-research) and fine-tuned on [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) for **Q&A** downstream task. **Mode size** (after training): **24.33 MB** ## Details of BERT-Tiny and its 'family' (from their documentation) Released on March 11th, 2020 This is model is a part of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. ## Details of the downstream task (Q&A) - Dataset [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD2.0 | train | 130k | | SQuAD2.0 | eval | 12.3k | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py) ## Results: | Metric | # Value | | ------ | --------- | | **EM** | **57.12** | | **F1** | **60.86** | | Model | EM | F1 score | SIZE (MB) | | ----------------------------------------------------------------------------------------- | --------- | --------- | --------- | | [bert-tiny-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-finetuned-squadv2) | 48.60 | 49.73 | **16.74** | | [bert-tiny-5-finetuned-squadv2](https://huggingface.co/mrm8488/bert-tiny-5-finetuned-squadv2) | **57.12** | **60.86** | 24.34 ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/bert-tiny-5-finetuned-squadv2", tokenizer="mrm8488/bert-tiny-5-finetuned-squadv2" ) qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
[ -0.10361368209123611, -0.023386165499687195, 0.027026863768696785, 0.05271655693650246, 0.016755573451519012, 0.0527045838534832, 0.0006054543773643672, 0.037210144102573395, -0.0443299300968647, -0.006996506359428167, 0.05723724141716957, -0.003860742086544633, 0.00727422209456563, 0.08365564793348312, 0.004148213192820549, 0.028984004631638527, 0.0871497094631195, -0.09113726019859314, -0.10832787305116653, -0.034603800624608994, 0.02702314779162407, 0.004048147238790989, 0.07973527163267136, -0.05097922682762146, 0.014721177518367767, -0.03419579938054085, -0.11240939050912857, -0.041765738278627396, 0.060760725289583206, -0.033856309950351715, -0.017046591266989708, 0.05007389932870865, 0.07538694888353348, 0.06391202658414841, 0.02318652719259262, 0.09574401378631592, 0.03792526200413704, -0.017271803691983223, 0.0021641033235937357, 0.0177066158503294, -0.035217780619859695, -0.04618930071592331, -0.03518258035182953, -0.01081620343029499, 0.08233737200498581, -0.0013735294342041016, -0.034043509513139725, -0.03112172707915306, -0.06455176323652267, -0.07703886926174164, -0.09585931897163391, -0.08546516299247742, 0.032499849796295166, 0.051969338208436966, 0.019656984135508537, 0.043263036757707596, -0.00933053344488144, -0.05782777816057205, -0.0754559263586998, -0.03400423377752304, -0.08352666348218918, -0.02382647804915905, -0.01931769773364067, -0.010394169017672539, -0.05940756946802139, 0.028077291324734688, 0.004332218784838915, -0.019602835178375244, 0.031863901764154434, 0.009439712390303612, 0.010208312422037125, 0.022469092160463333, -0.004782374016940594, 0.013443107716739178, 0.03442998602986336, -0.04733136296272278, 0.03774983435869217, 0.01929267682135105, 0.02926967479288578, -0.10107401758432388, 0.003980887588113546, -0.04079257696866989, 0.030791401863098145, -0.00027084574685432017, 0.053480587899684906, -0.01282584574073553, 0.04602312669157982, -0.05310054123401642, -0.026454981416463852, 0.0044036321341991425, -0.03721778094768524, -0.03623487427830696, 0.03974444419145584, 0.013905897736549377, 0.021996445953845978, -0.021232832223176956, 0.05288391560316086, -0.0009158963221125305, -0.05059944838285446, 0.04484950006008148, 0.09693487733602524, 0.004943474195897579, 0.05931514874100685, 0.00768694281578064, -0.0013699709670618176, 0.05174155905842781, 0.03910621628165245, 0.04114951938390732, 0.0788523480296135, -0.0636223554611206, -0.017358271405100822, 0.013648457825183868, -0.02600458823144436, -0.035090234130620956, -0.027164820581674576, -0.016344917938113213, -0.004070646595209837, 0.0456412099301815, 0.03674136474728584, 0.12289897352457047, 0.04631194472312927, -0.011449883691966534, -0.02406458556652069, -0.05642182379961014, -0.004836489446461201, 0.06244993582367897, -0.035822972655296326, -1.1372005101278399e-33, 0.0819731205701828, 0.03880978003144264, -0.03125752881169319, -0.008790829218924046, 0.055615488439798355, -0.01261445228010416, 0.04306017607450485, 0.022999968379735947, -0.05965728685259819, 0.023519037291407585, -0.038882311433553696, 0.030224774032831192, -0.07559791952371597, 0.06414143741130829, 0.015624845400452614, -0.019879134371876717, -0.06040029600262642, 0.05372266098856926, 0.027754375711083412, 0.00715651735663414, 0.05730970948934555, 0.028371382504701614, -0.044273924082517624, -0.09336572885513306, 0.02810894139111042, -0.001693960395641625, 0.07233327627182007, -0.04603847488760948, -0.036640968173742294, 0.07442749291658401, -0.17738518118858337, 0.049891721457242966, -0.04847574234008789, -0.007102618925273418, -0.05867921561002731, -0.014322170056402683, -0.061905063688755035, -0.05482735112309456, 0.04615388810634613, -0.05148285999894142, 0.017202848568558693, 0.050676289945840836, -0.003672731574624777, -0.08807553350925446, -0.03199080377817154, -0.06221340224146843, 0.07130944728851318, -0.0060519082471728325, 0.000850887387059629, -0.04270029813051224, 0.04901236295700073, -0.04848598688840866, -0.04111422225832939, -0.06431270390748978, 0.007031388580799103, 0.04278462007641792, 0.1324124038219452, 0.058268509805202484, -0.024540448561310768, 0.019865812733769417, 0.03952895104885101, -0.004480831325054169, 0.03235825523734093, 0.06592980027198792, 0.0311739444732666, -0.020107291638851166, -0.031045787036418915, 0.011473950929939747, -0.032351650297641754, -0.002419265452772379, -0.04092618077993393, -0.03678074851632118, 0.06394010782241821, 0.01392842922359705, 0.06327597796916962, -0.11090891808271408, 0.0554828941822052, -0.06927360594272614, -0.055081259459257126, -0.012784059159457684, 0.034296512603759766, 0.03951401263475418, -0.048918716609478, -0.004332350566983223, -0.09447057545185089, -0.1019832044839859, 0.0816737711429596, -0.08917220681905746, -0.0044684577733278275, 0.01819615066051483, -0.018411878496408463, -0.04920607805252075, -0.01956486888229847, -0.02220671996474266, -0.07150596380233765, -1.7190051712947183e-34, 0.07368499785661697, 0.011700193397700787, -0.05563654005527496, 0.04566206783056259, -0.026504026725888252, -0.055277202278375626, 0.09903333336114883, 0.18737360835075378, 0.023298239335417747, -0.030139802023768425, -0.017121821641921997, -0.006545371375977993, -0.0705764889717102, -0.09622511267662048, 0.03035912476480007, 0.014836201444268227, -0.047851528972387314, -0.028186481446027756, 0.06813996285200119, 0.025530710816383362, 0.08827632665634155, -0.0797082856297493, -0.00023395063180942088, 0.08464265614748001, -0.0026132189668715, 0.022335920482873917, -0.023892497643828392, 0.011779394932091236, 0.005324839614331722, -0.005611921660602093, -0.02238144539296627, -0.09433925151824951, -0.034243226051330566, 0.00223725032992661, -0.030856503173708916, 0.026711098849773407, 0.003771713934838772, -0.014881906099617481, -0.027273504063487053, 0.03331803157925606, 0.0795053243637085, -0.010978509671986103, -0.0005103974835947156, 0.03590962663292885, 0.01131537463515997, -0.005915618035942316, -0.0670713558793068, -0.08480843901634216, -0.058715179562568665, -0.02031346783041954, 0.05152800679206848, -0.01166082825511694, -0.09207690507173538, 0.04144668206572533, -0.09874194115400314, -0.0446150004863739, 0.030795585364103317, -0.02349238283932209, -0.03493962809443474, 0.01123996265232563, 0.037317853420972824, -0.03431176766753197, -0.06698665767908096, -0.015514672733843327, -0.01660451665520668, -0.017338642850518227, -0.047494348138570786, 0.04947661980986595, 0.004561688285320997, -0.004879059735685587, -0.011110990308225155, -0.06826132535934448, 0.10590521991252899, 0.01480445172637701, -0.061602916568517685, -0.009455995634198189, -0.055480897426605225, -0.07723024487495422, 0.02687394805252552, -0.0011750506237149239, -0.030920790508389473, -0.01152040995657444, 0.00993435364216566, 0.08471005409955978, 0.011334356851875782, 0.09448603540658951, 0.04108313098549843, 0.11789001524448395, 0.0009808525210246444, 0.011806734837591648, 0.025344910100102425, 0.029723336920142174, 0.05156158655881882, 0.09444581717252731, -0.006324262823909521, -5.3900873098200464e-8, 0.016872679814696312, 0.013800151646137238, -0.046078603714704514, 0.019485898315906525, -0.052223894745111465, -0.08386745303869247, -0.09221689403057098, 0.010742111131548882, 0.01697542890906334, 0.07615916430950165, 0.031925179064273834, 0.06905103474855423, -0.09166675060987473, 0.02159283682703972, 0.009777446277439594, 0.06675531715154648, -0.04115322604775429, 0.03983316197991371, -0.027036678045988083, -0.04931933805346489, -0.0059745945036411285, 0.05246230587363243, -0.012854291126132011, -0.009399655275046825, 0.03370567038655281, -0.05037747696042061, -0.06612450629472733, 0.09337889403104782, -0.0189273152500391, -0.002516662934795022, -0.029004830867052078, 0.042607177048921585, -0.07608137279748917, -0.0005828728899359703, 0.07624094188213348, 0.07016026228666306, -0.06299018859863281, -0.04463844373822212, 0.010822510346770287, 0.04609714448451996, 0.11258994042873383, -0.0058126444928348064, -0.06559601426124573, 0.002115255454555154, 0.08932876586914062, -0.011963390745222569, -0.0494266040623188, -0.05398811027407646, 0.014864316210150719, 0.015507291071116924, 0.07678425312042236, -0.008169354870915413, -0.08155675232410431, 0.08877528458833694, -0.03328603506088257, 0.08609059453010559, -0.03441811725497246, -0.04920429736375809, 0.056707724928855896, 0.023035956546664238, 0.017896901816129684, 0.059192050248384476, 0.003139288630336523, 0.07552000135183334 ]
uer/roberta-base-finetuned-jd-full-chinese
001c14a6ad8498465b0d7a2be435c30e856507a8
2022-02-20T07:57:14.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "zh", "arxiv:1909.05658", "arxiv:1708.02657", "transformers" ]
text-classification
false
uer
null
uer/roberta-base-finetuned-jd-full-chinese
2,860
3
transformers
--- language: zh widget: - text: "这本书真的很不错" --- # Chinese RoBERTa-Base Models for Text Classification ## Model description This is the set of 5 Chinese RoBERTa-Base classification models fine-tuned by [UER-py](https://arxiv.org/abs/1909.05658). You can download the 5 Chinese RoBERTa-Base classification models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the links below: | Dataset | Link | | :-----------: | :-------------------------------------------------------: | | **JD full** | [**roberta-base-finetuned-jd-full-chinese**][jd_full] | | **JD binary** | [**roberta-base-finetuned-jd-binary-chinese**][jd_binary] | | **Dianping** | [**roberta-base-finetuned-dianping-chinese**][dianping] | | **Ifeng** | [**roberta-base-finetuned-ifeng-chinese**][ifeng] | | **Chinanews** | [**roberta-base-finetuned-chinanews-chinese**][chinanews] | ## How to use You can use this model directly with a pipeline for text classification (take the case of roberta-base-finetuned-chinanews-chinese): ```python >>> from transformers import AutoModelForSequenceClassification,AutoTokenizer,pipeline >>> model = AutoModelForSequenceClassification.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-chinanews-chinese') >>> text_classification = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) >>> text_classification("北京上个月召开了两会") [{'label': 'mainland China politics', 'score': 0.7211663722991943}] ``` ## Training data 5 Chinese text classification datasets are used. JD full, JD binary, and Dianping datasets consist of user reviews of different sentiment polarities. Ifeng and Chinanews consist of first paragraphs of news articles of different topic classes. They are collected by [Glyph](https://github.com/zhangxiangxiao/glyph) project and more details are discussed in corresponding [paper](https://arxiv.org/abs/1708.02657). ## Training procedure Models are fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune three epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. We use the same hyper-parameters on different models. Taking the case of roberta-base-finetuned-chinanews-chinese ``` python3 run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --train_path datasets/glyph/chinanews/train.tsv \ --dev_path datasets/glyph/chinanews/dev.tsv \ --output_model_path models/chinanews_classifier_model.bin \ --learning_rate 3e-5 --epochs_num 3 --batch_size 32 --seq_length 512 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_text_classification_from_uer_to_huggingface.py --input_model_path models/chinanews_classifier_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{zhang2017encoding, title={Which encoding is the best for text classification in chinese, english, japanese and korean?}, author={Zhang, Xiang and LeCun, Yann}, journal={arXiv preprint arXiv:1708.02657}, year={2017} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [jd_full]:https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese [jd_binary]:https://huggingface.co/uer/roberta-base-finetuned-jd-binary-chinese [dianping]:https://huggingface.co/uer/roberta-base-finetuned-dianping-chinese [ifeng]:https://huggingface.co/uer/roberta-base-finetuned-ifeng-chinese [chinanews]:https://huggingface.co/uer/roberta-base-finetuned-chinanews-chinese
[ -0.11267668753862381, -0.05451902374625206, -0.013514150865375996, 0.024772487580776215, 0.006562556605786085, 0.07622016221284866, -0.019244613125920296, 0.0030214476864784956, -0.01183942798525095, 0.003798313671723008, 0.06591767817735672, -0.03214235603809357, 0.03400377556681633, 0.0024252028670161963, 0.013518578372895718, 0.08484303206205368, 0.0076593635603785515, 0.05207817628979683, -0.05743332579731941, -0.060930609703063965, 0.05327389016747475, 0.052238110452890396, 0.10306881368160248, -0.007471744902431965, 0.03261341527104378, -0.06854590028524399, 0.004425404127687216, 0.07249173521995544, 0.06552302837371826, -0.005016335751861334, -0.07114741951227188, 0.09016775339841843, 0.08166582882404327, 0.09111616015434265, 0.011996599845588207, 0.08524274080991745, -0.004849315620958805, -0.03457251563668251, -0.05079621821641922, 0.02587554231286049, -0.0026154830120503902, 0.033640649169683456, -0.01690024510025978, -0.03462816774845123, 0.05673924833536148, -0.0533757358789444, -0.03846568986773491, -0.022247755900025368, -0.030607866123318672, -0.018161911517381668, -0.06986966729164124, -0.025492334738373756, -0.04871140420436859, 0.06130533665418625, -0.06204519420862198, -0.006187023129314184, -0.010990170761942863, -0.02070142887532711, -0.03085172176361084, 0.005636816378682852, -0.06682944297790527, -0.001541322679258883, -0.04775027930736542, -0.02503209561109543, -0.008912559598684311, 0.04459599032998085, -0.04595470055937767, 0.053989388048648834, 0.0435834601521492, -0.03760659322142601, -0.02820885367691517, -0.05582208186388016, -0.050024211406707764, 0.03885941952466965, -0.05226020887494087, -0.09952924400568008, 0.08764422684907913, 0.02843726985156536, -0.051982033997774124, -0.05391703173518181, -0.07796823233366013, -0.04184836521744728, 0.10431915521621704, -0.0008873159531503916, 0.045498982071876526, 0.00699579669162631, -0.08943558484315872, 0.10122831910848618, -0.02638629451394081, -0.010305444709956646, -0.01968904584646225, -0.01897396892309189, 0.010314539074897766, 0.016340626403689384, -0.11968709528446198, 0.03826478123664856, 0.06646443158388138, 0.00015038739365991205, -0.05301006883382797, 0.04593276605010033, -0.013700452633202076, -0.012433445081114769, 0.046986181288957596, -0.040922630578279495, -0.014002588577568531, -0.025922471657395363, 0.04084984213113785, 0.00981593132019043, 0.018404556438326836, -0.10458496958017349, 0.011378555558621883, -0.0029591184575110674, -0.11495816707611084, -0.06181688234210014, 0.023092705756425858, -0.04246444255113602, 0.03337489813566208, -0.059408675879240036, -0.0069238352589309216, -0.02864662930369377, 0.011919044889509678, 0.0354742631316185, -0.02292967215180397, -0.026526907458901405, 0.005189734976738691, 0.02370326593518257, -0.07119540870189667, -3.114084736709864e-33, 0.10185669362545013, 0.07371869683265686, 0.05282493308186531, 0.01571468636393547, -0.00016550706641282886, -0.00632135383784771, 0.0038509650621563196, 0.007670848164707422, -0.07108175754547119, 0.01060874667018652, -0.049811460077762604, 0.05075749382376671, -0.05321047082543373, -0.0020394192542880774, 0.008652486838400364, -0.05569260194897652, -0.062136854976415634, 0.012254586443305016, 0.03379911184310913, 0.03480913117527962, 0.07374189049005508, 0.05763733759522438, -0.03560923784971237, -0.05584990605711937, -0.03219963610172272, 0.056252315640449524, 0.0830269530415535, -0.0841221883893013, -0.08364920318126678, 0.016951490193605423, -0.07106748223304749, 0.05247146636247635, -0.0009310290915891528, -0.024214105680584908, -0.03138997033238411, -0.05153302848339081, -0.06562835723161697, 0.03129474073648453, 0.02006174810230732, -0.0404411256313324, 0.04078352078795433, -0.004834008868783712, 0.018101129680871964, -0.014890527352690697, -0.026185380294919014, 0.016390878707170486, -0.03022639825940132, -0.01253711711615324, 0.0706135556101799, 0.009184236638247967, 0.04511599242687225, -0.02937263436615467, -0.00028541183564811945, 0.12166450917720795, -0.025468161329627037, 0.014516456052660942, 0.06441189348697662, 0.017617881298065186, -0.026351604610681534, 0.02583255246281624, 0.055547624826431274, -0.07889257371425629, -0.030585426837205887, 0.03716041147708893, 0.06070619076490402, 0.006861082278192043, -0.04421789571642876, -0.055210527032613754, 0.03686847165226936, 0.05379054322838783, -0.04414091631770134, -0.0276965219527483, 0.07703746855258942, 0.07660718262195587, -0.013455264270305634, -0.04449433088302612, -0.017105454578995705, -0.05424899607896805, -0.024898555129766464, 0.04518711939454079, -0.0024355375207960606, 0.005749029573053122, 0.022771552205085754, 0.011188676580786705, -0.08040082454681396, -0.02826017513871193, 0.08721776306629181, -0.05261322483420372, -0.024275099858641624, -0.059309449046850204, -0.08512041717767715, 0.04462144151329994, 0.0468963123857975, -0.06323060393333435, -0.01379456091672182, 7.161621846184903e-35, 0.0752604678273201, 0.020052693784236908, -0.0412571020424366, 0.014281478710472584, 0.03592071309685707, -0.035380661487579346, 0.03408793359994888, 0.09987751394510269, -0.021714238449931145, -0.042419929057359695, 0.04946544021368027, -0.026325315237045288, 0.09857507795095444, -0.03730110079050064, 0.013401361182332039, 0.04980834200978279, -0.019062386825680733, 0.024151921272277832, 0.018386762589216232, 0.017253132537007332, -0.03793655335903168, 0.01797983981668949, -0.0784924179315567, -0.01810716837644577, -0.011906794272363186, -0.026779185980558395, 0.04491065815091133, 0.002693283138796687, 0.020455310121178627, -0.012374007143080235, -0.03757361322641373, -0.04361170902848244, -0.03169553354382515, 0.034521136432886124, -0.09654323756694794, -0.0056682792492210865, -0.039892930537462234, -0.058183904737234116, -0.011573465541005135, 0.06310776621103287, 0.07505574822425842, -0.011780333705246449, -0.09588538110256195, 0.042122580111026764, 0.013193970546126366, -0.027564866468310356, -0.10303991287946701, 0.009318411350250244, -0.08183839917182922, -0.04646432027220726, 0.015504492446780205, -0.001742761000059545, -0.0488099679350853, 0.05853265896439552, -0.012479559518396854, -0.050585925579071045, 0.05756354331970215, -0.10163645446300507, -0.021828709170222282, -0.017102694138884544, -0.03698800131678581, 0.02000260539352894, -0.023465760052204132, 0.005552704446017742, 0.01683090627193451, -0.07784421741962433, 0.06619557738304138, 0.03876929357647896, -0.026600966230034828, -0.02827778272330761, 0.05499015003442764, -0.02721184864640236, 0.05692870169878006, 0.07210500538349152, 0.007718336768448353, 0.027705492451786995, -0.06353534013032913, 0.005999280139803886, -0.023159530013799667, -0.06534314900636673, -0.02529045194387436, -0.07407627254724503, 0.03209657594561577, 0.07101334631443024, -0.006591531448066235, 0.017294058576226234, 0.01987101137638092, 0.11224722862243652, 0.0723024308681488, 0.005358592141419649, -0.032636601477861404, -0.011565223336219788, 0.034875959157943726, 0.12955281138420105, -0.000057793738960754126, -4.8652680106897606e-8, -0.05094168707728386, -0.007045069243758917, -0.0600556917488575, -0.023799676448106766, -0.09121255576610565, 0.03045467659831047, -0.020960692316293716, 0.04768245294690132, 0.017739253118634224, 0.05655715987086296, -0.006719164550304413, 0.0022274330258369446, -0.09226106852293015, 0.037653714418411255, -0.044330134987831116, 0.06652221828699112, 0.053588636219501495, 0.12492670118808746, 0.018998105078935623, 0.024916546419262886, 0.021830515936017036, 0.04102720692753792, 0.04245368391275406, -0.06574442237615585, -0.03208042308688164, 0.009312513284385204, -0.19159293174743652, 0.07885754853487015, -0.03808237984776497, -0.025275681167840958, 0.026335477828979492, 0.022382719442248344, -0.0038093137554824352, -0.0435488224029541, -0.004212039988487959, 0.09574061632156372, -0.0293708685785532, -0.0924210399389267, 0.013022968545556068, 0.05897246673703194, 0.08957624435424805, -0.056073810905218124, -0.07772845029830933, 0.007137957960367203, 0.10060802847146988, -0.03252189978957176, 0.020785482600331306, -0.1466556340456009, 0.09349127113819122, 0.060855988413095474, 0.018083343282341957, -0.05135168880224228, -0.07446011900901794, -0.07559764385223389, -0.054579317569732666, 0.09014631062746048, -0.015012895688414574, -0.006889994256198406, 0.08257906138896942, -0.030686600133776665, 0.006726853549480438, 0.04786228761076927, -0.03422718867659569, 0.015474584884941578 ]
sberbank-ai/rugpt3medium_based_on_gpt2
63494984e6afd13972d863197ea1ce1be484d339
2021-09-21T19:29:06.000Z
[ "pytorch", "ru", "transformers", "PyTorch", "Transformers" ]
null
false
sberbank-ai
null
sberbank-ai/rugpt3medium_based_on_gpt2
2,859
3
transformers
--- language: - ru tags: - PyTorch - Transformers thumbnail: "https://github.com/sberbank-ai/ru-gpts" --- # rugpt3medium\_based\_on\_gpt2 Model was trained with sequence length 1024 using transformers lib by [SberDevices](https://sberdevices.ru/) team on 80B tokens for 3 epoch. After that model was finetuned on 2048 context. Total training time was around 16 days on 64 GPUs. Final perplexity on test set is `17.4`.
[ -0.09409599751234055, -0.10451769083738327, -0.07091599702835083, 0.014355873689055443, 0.03137999400496483, -0.06508138030767441, -0.04821731522679329, 0.09479155391454697, -0.026850629597902298, -0.12697288393974304, -0.0038475394248962402, 0.060697492212057114, -0.07036471366882324, 0.030501961708068848, 0.006314340513199568, -0.0030581350438296795, -0.006784005090594292, -0.018991390243172646, -0.03917844220995903, -0.043201543390750885, 0.018583735451102257, -0.02033230848610401, 0.05857454240322113, 0.049255695194005966, 0.036833204329013824, 0.01815531589090824, 0.03455650806427002, -0.09167109429836273, 0.08768516033887863, -0.017987174913287163, 0.08867795020341873, -0.003446775022894144, 0.004988815635442734, 0.007862037979066372, 0.01231334824115038, 0.03565962240099907, -0.08003084361553192, -0.060341525822877884, -0.018594032153487206, 0.0031186589039862156, 0.09410462528467178, -0.005638256203383207, -0.008758032694458961, 0.03838862478733063, 0.06459231674671173, 0.012801502831280231, 0.015085007064044476, -0.055255673825740814, -0.01907622255384922, -0.08756363391876221, -0.020232953131198883, -0.010318358428776264, -0.006865815259516239, 0.0007953960448503494, -0.045365165919065475, -0.030284283682703972, 0.033107224851846695, -0.01767793670296669, 0.02055494487285614, -0.010183523409068584, -0.02206702157855034, -0.013538495637476444, -0.06453756242990494, -0.04998017102479935, -0.02188965678215027, 0.05551926791667938, 0.02460072748363018, -0.040168117731809616, 0.09503402560949326, -0.01790492609143257, 0.016409076750278473, 0.0647697001695633, -0.12241524457931519, 0.07068654894828796, 0.06442099064588547, 0.015596000477671623, 0.034329161047935486, 0.051879532635211945, 0.004230468068271875, -0.1361701637506485, 0.022171838209033012, -0.1029476523399353, 0.062136292457580566, -0.0071928054094314575, 0.005837645847350359, -0.013742828741669655, 0.022282330319285393, 0.06271232664585114, -0.038018882274627686, 0.005530060268938541, 0.04650479927659035, -0.03593439236283302, -0.01035905722528696, 0.05688662454485893, -0.009096157737076283, 0.04584898054599762, -0.0010142213432118297, -0.013972152955830097, -0.058996569365262985, 0.028562668710947037, -0.05401863902807236, -0.003215671284124255, -0.023709408938884735, 0.10249277949333191, -0.0782977044582367, 0.04240407794713974, -0.030798690393567085, 0.028023282065987587, -0.016305312514305115, -0.008352230302989483, 0.11708387732505798, -0.00682396674528718, 0.025100557133555412, -0.016654493287205696, 0.019587082788348198, 0.04479920491576195, -0.08723866939544678, 0.035954736173152924, 0.009725566953420639, 0.12594090402126312, -0.020591488108038902, 0.05011473968625069, -0.035112861543893814, -0.020460065454244614, -0.04634420573711395, 0.02192562445998192, -0.03223668411374092, 6.382488371795678e-33, -0.004981239326298237, 0.016362452879548073, -0.013574035838246346, -0.010908062569797039, -0.03943662717938423, 0.03583003580570221, -0.012503287754952908, -0.023913389071822166, 0.0391131229698658, -0.012570529244840145, -0.03908764570951462, -0.03981796279549599, -0.052701011300086975, -0.02804240956902504, -0.017710771411657333, -0.007941262796521187, -0.007740335073322058, 0.04714527353644371, -0.032222338020801544, 0.08231355994939804, 0.10706853866577148, 0.022322524338960648, -0.060948170721530914, -0.0566074401140213, -0.061705708503723145, 0.07508522272109985, 0.047543756663799286, -0.02324768528342247, 0.03681953251361847, 0.023985449224710464, -0.025868674740195274, 0.09478090703487396, -0.03507102280855179, 0.06600988656282425, 0.0020716949366033077, -0.018432319164276123, 0.040789466351270676, -0.07484520971775055, -0.015562271699309349, -0.02157718688249588, -0.0363037995994091, 0.005852143280208111, 0.008213751949369907, -0.08131758868694305, 0.040772441774606705, -0.0682893618941307, 0.033337026834487915, 0.05217226594686508, 0.024243835359811783, 0.07816539704799652, -0.03933754563331604, 0.07905556261539459, -0.0753788948059082, 0.0028135397005826235, 0.044307176023721695, -0.0006704145926050842, 0.0777277797460556, 0.029042894020676613, 0.08962670713663101, 0.0971594825387001, 0.12620434165000916, 0.04283164441585541, 0.04850247874855995, 0.0348946787416935, 0.019185513257980347, 0.012281403876841068, -0.059245314449071884, 0.031351134181022644, 0.01978110708296299, 0.08006896823644638, -0.05446982756257057, -0.028986599296331406, 0.011811697855591774, -0.030234402045607567, 0.06785879284143448, -0.11665112525224686, 0.03239613026380539, 0.038639966398477554, -0.030054846778512, 0.01636550948023796, -0.09574364125728607, 0.035282429307699203, 0.03002883866429329, -0.04784068837761879, -0.0754840224981308, -0.04002590849995613, -0.015230190940201283, -0.0384831465780735, -0.07299140840768814, -0.03450438007712364, 0.003182305721566081, 0.0012757278745993972, -0.03455335274338722, 0.06195280700922012, -0.03190136328339577, -5.362636819861954e-33, 0.035632915794849396, 0.036751072853803635, -0.03880459815263748, 0.14034920930862427, 0.016323300078511238, -0.0780721977353096, -0.004435902927070856, 0.16004514694213867, 0.0013418934540823102, 0.05691133812069893, 0.07912091165781021, -0.05109517648816109, -0.017474845051765442, -0.06690249592065811, 0.09797652065753937, 0.0007052998407743871, 0.005758193321526051, -0.04742195084691048, -0.0014153392985463142, 0.011991131119430065, 0.02808321826159954, 0.08771128952503204, -0.08268719911575317, 0.04352039098739624, -0.04711132124066353, 0.005167768336832523, -0.0025216422509402037, -0.015791233628988266, 0.03217853605747223, -0.02612488530576229, 0.03967258334159851, 0.03737667202949524, -0.07542110234498978, 0.0038848782423883677, -0.0742855817079544, -0.01008116640150547, 0.035434022545814514, 0.08450108766555786, -0.006250046193599701, 0.017484774813055992, 0.09640268236398697, 0.03618542477488518, -0.03710620477795601, 0.08345548063516617, 0.011650997214019299, -0.008274728432297707, -0.03044089488685131, -0.0661076083779335, 0.09517790377140045, -0.0135100819170475, -0.008352186530828476, -0.03211931139230728, -0.005127294454723597, -0.0156937874853611, -0.020724797621369362, -0.0908685177564621, 0.005904820282012224, 0.012227840721607208, 0.005415929947048426, -0.008350555785000324, -0.004762702155858278, -0.01669234037399292, 0.040450017899274826, -0.05145455151796341, -0.0266990028321743, -0.003913066349923611, -0.025632048025727272, 0.019940273836255074, 0.09710805118083954, 0.0736837312579155, 0.010883922688663006, 0.019490495324134827, 0.0018212159629911184, 0.043192535638809204, -0.0733385905623436, 0.044126056134700775, -0.026330823078751564, -0.029855068773031235, 0.04689464345574379, -0.08871571719646454, -0.057279687374830246, 0.017624810338020325, 0.0004782923497259617, 0.007197684142738581, 0.02576461061835289, 0.013894766569137573, 0.009727722965180874, 0.059671491384506226, 0.08125529438257217, -0.017062418162822723, 0.03211621567606926, 0.03205103799700737, 0.028002049773931503, 0.054841503500938416, 0.006773581728339195, -4.794683405862088e-8, -0.009946174919605255, 0.03988592326641083, -0.08514830470085144, 0.060654204338788986, 0.0012697267811745405, -0.0654214397072792, -0.0019302619621157646, 0.08125556260347366, -0.08241342753171921, 0.07804232090711594, -0.0011487012961879373, -0.05725311487913132, -0.07897114753723145, -0.03658009693026543, 0.05695529282093048, 0.07364970445632935, -0.0012777462834492326, 0.060849785804748535, -0.04401889070868492, -0.053099073469638824, -0.010708929039537907, -0.011885934509336948, 0.03044533170759678, -0.08411259204149246, -0.11263782531023026, -0.03193742781877518, 0.024914581328630447, 0.05432596057653427, 0.021219883114099503, -0.03991645947098732, 0.017184335738420486, -0.03060971200466156, -0.0321258120238781, -0.049455396831035614, 0.015176272951066494, 0.04724488779902458, 0.002078566001728177, -0.0022832765243947506, 0.07215318083763123, 0.048992857336997986, -0.05213252827525139, -0.01782585307955742, 0.00337751186452806, -0.006735182832926512, -0.0030148017685860395, -0.015508991666138172, -0.1502399891614914, -0.0898243710398674, -0.034141626209020615, 0.013218873180449009, 0.0873032733798027, -0.011211644858121872, -0.09032396972179413, 0.0037301769480109215, 0.0347842313349247, 0.056965943425893784, -0.07237635552883148, -0.12536323070526123, -0.06082199513912201, 0.007062267046421766, -0.015560111962258816, -0.05820176377892494, -0.03720894455909729, 0.007469166535884142 ]
etalab-ia/dpr-question_encoder-fr_qa-camembert
20f81e3505a3184dbf3729701d7c6152125287ef
2021-06-16T10:10:09.000Z
[ "pytorch", "camembert", "feature-extraction", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "arxiv:2004.04906", "arxiv:1911.03894", "transformers" ]
feature-extraction
false
etalab-ia
null
etalab-ia/dpr-question_encoder-fr_qa-camembert
2,858
3
transformers
--- language: fr datasets: - piaf - FQuAD - SQuAD-FR --- # dpr-question_encoder-fr_qa-camembert ## Description French [DPR model](https://arxiv.org/abs/2004.04906) using [CamemBERT](https://arxiv.org/abs/1911.03894) as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ### Training We are using 90 562 random questions for `train` and 22 391 for `dev`. No question in `train` exists in `dev`. For each question, we have a single `positive_context` (the paragraph where the answer to this question is found) and around 30 `hard_negtive_contexts`. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates **that do not contain the answer**. The files are over [here](https://drive.google.com/file/d/1W5Jm3sqqWlsWsx2sFpA39Ewn33PaLQ7U/view?usp=sharing). ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official [Facebook DPR implentation](https://github.com/facebookresearch/DPR) with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found [over here](https://github.com/psorianom/DPR). ### Hyperparameters ```shell python -m torch.distributed.launch --nproc_per_node=8 train_dense_encoder.py \ --max_grad_norm 2.0 --encoder_model_type hf_bert --pretrained_file data/bert-base-multilingual-uncased \ --seed 12345 --sequence_length 256 --warmup_steps 1237 --batch_size 16 --do_lower_case \ --train_file DPR_FR_train.json \ --dev_file ./data/100_hard_neg_ctxs/DPR_FR_dev.json \ --output_dir ./output/bert --learning_rate 2e-05 --num_train_epochs 35 \ --dev_batch_size 16 --val_av_rank_start_epoch 25 \ --pretrained_model_cfg ./data/bert-base-multilingual-uncased ``` ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use [haystack's evaluation script](https://github.com/deepset-ai/haystack/blob/db4151bbc026f27c6d709fefef1088cd3f1e18b9/tutorials/Tutorial5_Evaluation.py) (**we report Retrieval results only**). ### DPR #### FQuAD v1.0 Evaluation ```shell For 2764 out of 3184 questions (86.81%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.87 Retriever Mean Avg Precision: 0.57 ``` #### SQuAD-FR Evaluation ```shell For 8945 out of 10018 questions (89.29%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.89 Retriever Mean Avg Precision: 0.63 ``` ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation ```shell For 2966 out of 3184 questions (93.15%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.74 ``` #### SQuAD-FR Evaluation ```shell For 9353 out of 10018 questions (93.36%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.77 ``` ## Usage The results reported here are obtained with the `haystack` library. To get to similar embeddings using exclusively HF `transformers` library, you can do the following: ```python from transformers import AutoTokenizer, AutoModel query = "Salut, mon chien est-il mignon ?" tokenizer = AutoTokenizer.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", do_lower_case=True) input_ids = tokenizer(query, return_tensors='pt')["input_ids"] model = AutoModel.from_pretrained("etalab-ia/dpr-question_encoder-fr_qa-camembert", return_dict=True) embeddings = model.forward(input_ids).pooler_output print(embeddings) ``` And with `haystack`, we use it as a retriever: ``` retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="etalab-ia/dpr-question_encoder-fr_qa-camembert", passage_embedding_model="etalab-ia/dpr-ctx_encoder-fr_qa-camembert", model_version=dpr_model_tag, infer_tokenizer_classes=True, ) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### Datasets #### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` #### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` #### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### Models #### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ``` #### DPR ``` @misc{karpukhin2020dense, title={Dense Passage Retrieval for Open-Domain Question Answering}, author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih}, year={2020}, eprint={2004.04906}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.0942089855670929, -0.05257468670606613, -0.025222748517990112, -0.0729345753788948, 0.026863208040595055, 0.05626293644309044, 0.022317739203572273, 0.03471989184617996, 0.058699727058410645, -0.03096683882176876, 0.018518825992941856, -0.08590204268693924, 0.02660187892615795, 0.0038714951369911432, 0.008490221574902534, -0.032269105315208435, -0.047864023596048355, 0.0130560752004385, -0.05531870201230049, -0.06143989413976669, 0.012545359320938587, -0.022613348439335823, 0.10188940167427063, -0.01707097515463829, 0.04783071205019951, -0.05114756152033806, -0.022619785740971565, 0.07631462067365646, 0.021944627165794373, -0.054904162883758545, 0.015079912729561329, 0.14810526371002197, 0.0041679865680634975, 0.04833715781569481, -0.024458523839712143, 0.05971425399184227, 0.002223541494458914, -0.0518232099711895, -0.053033068776130676, 0.09342633187770844, -0.05043559893965721, 0.012111698277294636, 0.040718741714954376, -0.021768668666481972, 0.06615809351205826, 0.04067262262105942, -0.07115846127271652, 0.06260906904935837, -0.002643533516675234, -0.04866933822631836, -0.06842498481273651, 0.017351610586047173, 0.015647487714886665, 0.050085876137018204, -0.00028043947531841695, 0.0032246734481304884, 0.05079381912946701, -0.02096058428287506, 0.01573965512216091, 0.025611193850636482, -0.03632032871246338, -0.04374383017420769, -0.03448783978819847, -0.001062246155925095, -0.04132005572319031, -0.03225036710500717, -0.011399000883102417, 0.035200335085392, -0.032913412898778915, 0.030647648498415947, -0.10220586508512497, 0.013536590151488781, -0.032137807458639145, 0.040946003049612045, 0.05618494376540184, 0.10044123977422714, -0.00933873001486063, -0.029962969943881035, 0.06038488447666168, -0.1503283977508545, 0.010304816998541355, -0.030507156625390053, 0.06641083210706711, 0.0012757775839418173, 0.11901283264160156, -0.026747561991214752, 0.05763530358672142, 0.040301911532878876, 0.022111939266324043, 0.01893494464457035, -0.06798643618822098, 0.00796168390661478, 0.054544657468795776, 0.07252048701047897, -0.001813787268474698, 0.07382720708847046, 0.05684172734618187, 0.03057231567800045, -0.024141626432538033, 0.04326998442411423, 0.015732109546661377, -0.005660525523126125, 0.05845383554697037, 0.011065528728067875, -0.12640900909900665, -0.013353087939321995, 0.04812806472182274, 0.05356301739811897, 0.023449206724762917, -0.13790574669837952, -0.040139876306056976, -0.006310896947979927, -0.04634570702910423, -0.059219274669885635, -0.05651864409446716, 0.03735504299402237, 0.03811849281191826, -0.05318417400121689, -0.024641701951622963, -0.02064589038491249, -0.006226849742233753, -0.030256249010562897, -0.035712677985429764, 0.008989724330604076, 0.012346082367002964, -0.01925492286682129, -0.03943083807826042, 2.8280654716487005e-33, 0.11565277725458145, 0.11331057548522949, 0.026575645431876183, -0.007860726676881313, -0.012631422840058804, -0.020794695243239403, -0.046892713755369186, 0.033978234976530075, -0.0801025778055191, 0.029931725934147835, -0.06638322025537491, 0.011223345063626766, -0.05715607479214668, 0.03521643951535225, 0.021058516576886177, -0.0690530464053154, 0.01910012774169445, -0.008769827894866467, -0.014034423977136612, 0.001982582500204444, 0.14285756647586823, 0.04730397090315819, -0.00017191447841469198, -0.03450682759284973, 0.09188321977853775, 0.05034369230270386, 0.004318722058087587, -0.022380013018846512, -0.06894617527723312, 0.024178506806492805, -0.09271908551454544, -0.05532868951559067, -0.04291402921080589, 0.042250119149684906, -0.03681371361017227, -0.06794214248657227, 0.010103332810103893, -0.020595796406269073, -0.006587668787688017, -0.007733164820820093, 0.08462584763765335, -0.013163389638066292, 0.049284644424915314, -0.01574571058154106, -0.045230086892843246, -0.04420791193842888, 0.015669357031583786, -0.012982510961592197, 0.06620866060256958, 0.01056465320289135, -0.01749936118721962, -0.0369403138756752, -0.04819673299789429, -0.06504428386688232, -0.0037890495732426643, 0.07266432791948318, -0.010331272147595882, 0.014606948010623455, -0.020717019215226173, 0.004647258203476667, 0.019078919664025307, 0.008584014140069485, 0.00030741968657821417, 0.03819674998521805, 0.013253419660031796, -0.026997098699212074, -0.0004151530738454312, -0.030401643365621567, 0.09412771463394165, -0.019529536366462708, -0.05281684920191765, 0.005720899440348148, 0.0810956060886383, -0.01799965463578701, 0.09634201973676682, 0.04034671187400818, -0.0111083984375, -0.023312460631132126, -0.015993045642971992, -0.08224557340145111, -0.037592899054288864, 0.026592571288347244, -0.07316451519727707, 0.016040775924921036, -0.027823807671666145, 0.03268726170063019, 0.08560706675052643, -0.07261354476213455, -0.03414381667971611, -0.008107303641736507, -0.0772085040807724, -0.041985489428043365, 0.01195930503308773, -0.05991685017943382, 0.000869360810611397, -3.6346079615913736e-33, 0.029607092961668968, 0.08836336433887482, -0.01929738186299801, 0.028690310195088387, 0.06975162774324417, -0.035217199474573135, 0.06360958516597748, 0.0661422535777092, 0.05998070910573006, -0.037622176110744476, -0.015816135331988335, -0.11032802611589432, 0.017183441668748856, -0.07751777768135071, 0.012631010264158249, -0.018557170405983925, -0.050868332386016846, -0.03658869117498398, 0.06268050521612167, 0.09556695818901062, -0.035179734230041504, -0.007598366122692823, -0.08819470554590225, 0.016100192442536354, -0.03670920431613922, 0.03879101201891899, 0.020254338160157204, 0.020629731938242912, -0.023919569328427315, 0.008298171684145927, -0.03634675219655037, -0.10317205637693405, -0.026315541937947273, 0.01970585249364376, -0.07520928233861923, 0.030447613447904587, 0.07131246477365494, 0.019821373745799065, -0.05529981106519699, 0.11759116500616074, 0.02794087491929531, 0.016597071662545204, -0.060145601630210876, -0.01674988679587841, -0.00047852992429398, -0.013353322632610798, -0.03384934738278389, -0.05274999886751175, -0.05843893811106682, -0.03484411910176277, 0.03843450918793678, 0.04957212507724762, -0.09553764015436172, 0.013789776712656021, -0.036021631211042404, -0.02869483083486557, 0.04464510828256607, -0.033343587070703506, -0.05141618475317955, -0.0324433296918869, -0.04348515719175339, -0.005352611653506756, 0.0037480206228792667, -0.02705903723835945, 0.061880242079496384, -0.05120809003710747, -0.08031151443719864, 0.04542945325374603, 0.019726183265447617, -0.01978929340839386, 0.03670773282647133, -0.061787333339452744, 0.055072344839572906, 0.05690443515777588, -0.026166163384914398, -0.0852976143360138, -0.10932715982198715, -0.0408664271235466, 0.07867036759853363, 0.04285474121570587, -0.06448715180158615, -0.07279733568429947, 0.008476251736283302, 0.08912315964698792, 0.0029687078204005957, 0.062044717371463776, 0.04297306388616562, 0.054657042026519775, 0.07680358737707138, -0.04610690101981163, 0.04108184948563576, 0.05240539088845253, 0.0692746639251709, 0.09633627533912659, 0.036230314522981644, -4.944983444943318e-8, 0.016682717949151993, 0.013751894235610962, -0.07397790253162384, 0.04477446526288986, -0.016903994604945183, -0.12563709914684296, -0.07876665890216827, -0.0037670095916837454, 0.004702397156506777, -0.0077864243648946285, -0.0058543626219034195, 0.048413246870040894, -0.02130110375583172, -0.04886454716324806, -0.018976204097270966, 0.053191233426332474, -0.012409339658915997, 0.0763971209526062, -0.028947116807103157, 0.029032502323389053, 0.0022634067572653294, 0.08109164237976074, -0.038297031074762344, -0.05110977962613106, 0.0382891520857811, 0.0013809638330712914, -0.07739406824111938, -0.03307296335697174, 0.024437585845589638, 0.031814996153116226, -0.026247402653098106, 0.015550731681287289, 0.0027479256968945265, -0.0656515583395958, 0.004456285387277603, 0.02307238057255745, -0.0562213696539402, -0.05713455751538277, 0.03229467570781708, 0.038291748613119125, 0.12974660098552704, 0.01903657056391239, -0.13604137301445007, 0.035135138779878616, 0.09085401892662048, -0.020165687426924706, -0.026531193405389786, -0.12671199440956116, 0.05988478288054466, -0.029461806640028954, 0.026238780468702316, 0.01613493449985981, -0.04016893357038498, 0.052528899163007736, 0.04002613201737404, 0.04162144660949707, -0.07917152345180511, -0.014199827797710896, 0.06344594061374664, 0.00023278048320207745, -0.049733489751815796, 0.051662132143974304, -0.010634520091116428, 0.0020704506896436214 ]
facebook/wav2vec2-base-100k-voxpopuli
7a43eaf4d68a147cfc6b754e338bd9aa72a1fbad
2021-11-05T12:46:12.000Z
[ "pytorch", "wav2vec2", "pretraining", "multilingual", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-100k-voxpopuli
2,857
1
transformers
--- language: multilingual tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 100k unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
[ -0.04859955981373787, -0.10342255979776382, -0.02895834669470787, -0.038777027279138565, 0.02060541883111, 0.044247932732105255, -0.028420738875865936, -0.03783608227968216, -0.025595732033252716, -0.06587252765893936, -0.019537953659892082, -0.11213632673025131, -0.00233003543689847, 0.020679837092757225, -0.00351150194182992, -0.02136952057480812, 0.029971599578857422, 0.052139874547719955, -0.03917765989899635, 0.0052988543175160885, 0.06866680830717087, 0.061868663877248764, 0.07712356001138687, 0.034870900213718414, 0.04100599139928818, 0.10604498535394669, -0.06052699685096741, 0.006270936690270901, 0.05281757935881615, -0.04271961376070976, 0.07259766757488251, 0.017923817038536072, 0.10377314686775208, 0.04022301360964775, 0.003583432175219059, -0.022819943726062775, -0.0332769975066185, -0.0281309075653553, 0.0012010684004053473, -0.03438863530755043, -0.01665494404733181, 0.005309604108333588, -0.03023785911500454, -0.0003564080107025802, 0.03814445808529854, 0.046147458255290985, -0.043252404779195786, 0.010320596396923065, -0.04745011031627655, 0.014304964803159237, -0.07266674190759659, -0.07466302067041397, 0.030248578637838364, 0.07428411394357681, -0.10904576629400253, 0.01719174161553383, 0.009223636239767075, 0.028181862086057663, 0.08269157260656357, -0.00646784994751215, -0.03775953873991966, -0.0538509301841259, 0.007743487600237131, 0.0032613263465464115, -0.025212345644831657, 0.018098946660757065, -0.05383528396487236, 0.0019922980573028326, 0.01384658645838499, 0.03468737378716469, 0.017527755349874496, 0.06953563541173935, 0.06465894728899002, 0.034826330840587616, 0.03814246878027916, 0.03429744765162468, 0.05762288719415665, -0.008878808468580246, 0.06844724714756012, -0.09140767902135849, 0.0288406815379858, 0.005175240337848663, 0.060925427824258804, -0.07236599177122116, 0.05919088423252106, -0.02644292823970318, 0.019613156095147133, -0.04968183487653732, -0.035768650472164154, -0.011655101552605629, -0.039130132645368576, -0.004854219034314156, 0.023766379803419113, 0.009678658097982407, -0.05620856583118439, 0.024968348443508148, 0.007341708987951279, 0.04425062611699104, 0.02360224910080433, 0.051007479429244995, 0.01391523890197277, -0.04481115937232971, -0.003423666348680854, -0.03665945306420326, -0.03762200474739075, -0.10286945104598999, 0.05631367117166519, 0.052056703716516495, 0.07090429961681366, -0.04485997185111046, 0.02681567892432213, 0.06259407848119736, -0.07820327579975128, -0.030964713543653488, 0.03857426717877388, 0.04204815998673439, -0.01885957457125187, -0.08269045501947403, 0.060875240713357925, 0.06548571586608887, -0.15344636142253876, -0.0651714950799942, -0.05385496839880943, -0.030939755961298943, -0.02708452194929123, -0.057586535811424255, -0.04099521040916443, 1.3100953416536513e-33, -0.020129268988966942, 0.047729142010211945, -0.033280353993177414, -0.005380588583648205, 0.028984181582927704, -0.05939212441444397, -0.042317893356084824, -0.026525398716330528, -0.03332436457276344, -0.025622474029660225, -0.009903112426400185, 0.015179130248725414, -0.06707371771335602, 0.1065889298915863, -0.06202302128076553, -0.051878463476896286, -0.07387644797563553, -0.0009012044174596667, -0.015645157545804977, 0.008728663437068462, 0.09445909410715103, 0.029884614050388336, 0.04635469242930412, 0.04000912979245186, 0.06122048944234848, 0.03778287023305893, 0.03558419644832611, -0.11515000462532043, 0.05353517457842827, 0.0573803186416626, -0.07812648266553879, -0.07335248589515686, 0.04325982555747032, -0.009743008762598038, 0.008618976920843124, 0.04750387743115425, -0.0009219988714903593, 0.02978994883596897, -0.07746203243732452, -0.11646769940853119, 0.012110527604818344, 0.01609315350651741, 0.014498039148747921, -0.09555795788764954, -0.061952054500579834, 0.006499683018773794, -0.032636601477861404, 0.03417389094829559, 0.015363592654466629, -0.015885232016444206, 0.04415125399827957, -0.007070635911077261, -0.08164798468351364, 0.01329770963639021, -0.008435916155576706, -0.018715739250183105, 0.025787388905882835, 0.047703925520181656, 0.03804905340075493, -0.03247334063053131, 0.0324886329472065, 0.01641138829290867, 0.08153251558542252, -0.018285682424902916, 0.05349200218915939, -0.007846292108297348, -0.01938195526599884, 0.009509415365755558, 0.06759382784366608, -0.056179728358983994, -0.02883138880133629, -0.019805269315838814, 0.0049586221575737, 0.06052997708320618, -0.027721133083105087, 0.028098227456212044, 0.044691599905490875, -0.13386906683444977, -0.014116154052317142, 0.07715418934822083, -0.03111642599105835, 0.008298247121274471, 0.01252913847565651, -0.06290235370397568, -0.000987434177659452, -0.04531685635447502, -0.004484555684030056, -0.12939892709255219, -0.01853051967918873, 0.0344664603471756, 0.0017663403414189816, 0.04394974187016487, -0.050457682460546494, -0.00024525969638489187, -0.06133328750729561, -3.449368051659028e-33, 0.0557386577129364, 0.06889495998620987, -0.0058447555638849735, 0.0439138188958168, -0.05345539376139641, 0.037204671651124954, 0.06374293565750122, 0.09977985173463821, 0.030316784977912903, -0.08003686368465424, 0.0744640901684761, -0.0651727020740509, 0.0697639212012291, 0.04345427826046944, 0.03703939914703369, -0.030449278652668, -0.05419628322124481, 0.04709717258810997, 0.09183988720178604, 0.12966255843639374, -0.018987908959388733, 0.019055074080824852, -0.1378576159477234, 0.1030336543917656, -0.0679565891623497, 0.028470272198319435, -0.08536498248577118, 0.06205219775438309, 0.08047772198915482, -0.007552166935056448, -0.06765700876712799, 0.016476497054100037, -0.034166041761636734, 0.00591465225443244, -0.02696799859404564, 0.011985626071691513, 0.037958092987537384, -0.038159605115652084, 0.0019595674239099026, 0.030380837619304657, 0.05945523455739021, 0.06711995601654053, -0.09879128634929657, -0.05912930518388748, 0.00857512466609478, -0.057393740862607956, -0.023915186524391174, 0.03528377786278725, -0.06724081933498383, 0.0012249448336660862, 0.04745661839842796, -0.053355008363723755, -0.015305731445550919, 0.01389380730688572, -0.049873098731040955, -0.0377444252371788, -0.007986491546034813, -0.07569408416748047, -0.0164814256131649, -0.010942653752863407, -0.08402969688177109, 0.004473256878554821, -0.028061671182513237, -0.07788359373807907, 0.026118909940123558, -0.0004843807255383581, -0.02714422345161438, -0.005106991156935692, 0.021238410845398903, -0.012063861824572086, 0.010246180929243565, 0.041558243334293365, -0.04410175234079361, 0.03770003095269203, -0.05307745188474655, -0.01750068925321102, -0.061150964349508286, -0.04809761047363281, -0.042195189744234085, -0.11664760112762451, -0.044773075729608536, 0.04519634321331978, 0.04327775537967682, 0.07321958243846893, 0.09468331187963486, 0.12003690004348755, 0.03069409541785717, -0.015033455565571785, -0.02503335103392601, 0.05118623003363609, -0.00727918092161417, 0.053434643894433975, 0.04320736229419708, 0.12176009267568588, -0.02168840728700161, -5.7738720471434135e-8, -0.06331680715084076, 0.029403764754533768, -0.0064409407787024975, -0.01724516786634922, -0.01424513477832079, -0.07877317816019058, 0.011988755315542221, 0.0011169802164658904, -0.01938643306493759, -0.0036813037004321814, -0.000862759305164218, -0.03160607069730759, -0.06986555457115173, -0.016820473596453667, -0.033960822969675064, 0.06418414413928986, 0.013360702432692051, 0.1224057674407959, -0.00002728624349401798, -0.05680195987224579, 0.008214222267270088, 0.01741105131804943, 0.03684065118432045, 0.013510806486010551, 0.0520772747695446, -0.01077132299542427, 0.023097775876522064, 0.05409138277173042, -0.022466791793704033, -0.08118142187595367, -0.03482406958937645, 0.07891099154949188, -0.0596206970512867, -0.04591803252696991, 0.038853440433740616, 0.05539708212018013, -0.028584858402609825, -0.06667693704366684, -0.046479132026433945, 0.05659273639321327, 0.0761946588754654, 0.10190360993146896, -0.12122273445129395, -0.05232357606291771, 0.05993811786174774, 0.0014483246486634016, -0.04447183012962341, -0.08477714657783508, 0.03022841550409794, 0.012860890477895737, 0.0007302971207536757, 0.05508623644709587, -0.06679720431566238, 0.029362643137574196, 0.0352286770939827, 0.06451798975467682, -0.029848426580429077, 0.036490775644779205, 0.023759832605719566, 0.025982633233070374, 0.018299875780940056, 0.02113037183880806, -0.0007748560747131705, -0.03790425509214401 ]
Helsinki-NLP/opus-mt-eo-en
894c5ff7f7871951289933e74f9b5de7b996903d
2021-09-09T21:40:53.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-en
2,851
null
transformers
--- tags: - translation license: apache-2.0 --- ### opus-mt-eo-en * source languages: eo * target languages: en * OPUS readme: [eo-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/eo-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/eo-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/eo-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.eo.en | 54.8 | 0.694 |
[ -0.05767179653048515, -0.0071457489393651485, 0.018938593566417694, -0.013200829736888409, 0.011194386519491673, 0.09165653586387634, -0.05428273230791092, 0.024424854665994644, 0.008699494414031506, -0.004371361341327429, 0.015099119395017624, -0.04824238270521164, -0.08136693388223648, -0.03731327876448631, -0.028094196692109108, 0.002265069866552949, -0.02233617752790451, 0.08636891841888428, -0.07268790900707245, -0.010206702165305614, 0.05603700876235962, 0.020013459026813507, 0.03036072663962841, -0.007072670850902796, 0.10006875544786453, 0.07109376788139343, -0.09373178333044052, 0.006767794024199247, 0.09266659617424011, -0.04180125519633293, -0.004485289100557566, 0.008283627219498158, 0.0684177502989769, 0.07952578365802765, 0.05570131540298462, 0.07237359881401062, 0.0010368145303800702, -0.0737360492348671, -0.03696860373020172, 0.040862880647182465, 0.04369013011455536, 0.04660974070429802, -0.03770938888192177, -0.008589879609644413, 0.051442135125398636, 0.0005187886999920011, -0.07431337237358093, 0.031794339418411255, 0.007668348960578442, -0.008908621966838837, -0.1181703731417656, -0.017109276726841927, 0.011413834989070892, 0.06579278409481049, -0.06754229217767715, 0.03498801589012146, 0.044720347970724106, -0.009587154723703861, 0.07119344919919968, -0.022244997322559357, -0.12366244941949844, -0.031154204159975052, -0.10031259804964066, 0.017594998702406883, -0.008752149529755116, 0.0021604287903755903, 0.027183540165424347, 0.05522015690803528, -0.06325504183769226, 0.036846600472927094, -0.026066729798913002, -0.013912388123571873, 0.00747943390160799, 0.05626495182514191, -0.011566716246306896, 0.05130944028496742, 0.0005685774958692491, -0.04836395010352135, -0.0037801258731633425, -0.08137866109609604, 0.002334882039576769, -0.06135772168636322, 0.06622490286827087, -0.014696522615849972, 0.06819946318864822, 0.02277703955769539, 0.016935167834162712, -0.00037121796049177647, -0.007722480222582817, 0.048026490956544876, -0.06176222488284111, -0.043015170842409134, 0.00912370067089796, 0.023116357624530792, 0.009418291039764881, 0.0543019138276577, 0.010460927151143551, 0.053869813680648804, 0.014587176963686943, 0.05780896916985512, 0.023829260841012, 0.02917509153485298, 0.06396322697401047, -0.04236556962132454, -0.11751748621463776, -0.03200250491499901, 0.08054021000862122, 0.04894950985908508, 0.008203098550438881, -0.08291862159967422, 0.012579081580042839, -0.026828529313206673, -0.02399960532784462, -0.10199250280857086, 0.02467084676027298, -0.05480306223034859, -0.004911457188427448, -0.01509547047317028, -0.007674541790038347, 0.044149722903966904, -0.028839459642767906, -0.021287664771080017, -0.03475296497344971, -0.005332179833203554, -0.04406477138400078, -0.06998543441295624, 0.024240009486675262, 1.816319504276873e-33, 0.061937302350997925, -0.01738007552921772, -0.01710939034819603, -0.0015908617060631514, -0.05999807268381119, -0.004182473756372929, -0.026487672701478004, 0.030884305015206337, -0.12381847947835922, 0.0002163289609597996, -0.01548661570996046, -0.0024577428121119738, -0.08923213183879852, 0.02813088707625866, -0.022627325728535652, 0.021213505417108536, 0.06919866800308228, 0.02556212991476059, 0.04745102673768997, 0.040739595890045166, 0.07472798228263855, 0.04009611904621124, -0.006961751729249954, -0.04226773977279663, -0.057210832834243774, 0.07288753986358643, 0.0202096626162529, -0.11782795935869217, -0.10879677534103394, 0.02321774885058403, -0.10232517123222351, 0.03196914121508598, -0.014972064644098282, 0.012131690979003906, -0.009255404584109783, -0.024970196187496185, -0.018798617646098137, -0.007310913875699043, -0.03193733096122742, -0.08774787187576294, 0.011378404684364796, 0.012477366253733635, -0.01961641199886799, -0.05294507369399071, 0.03915436938405037, 0.0048563238233327866, 0.007752919569611549, 0.002256261184811592, 0.1265290528535843, 0.002180266659706831, 0.004768184386193752, 0.06197940185666084, -0.06981025636196136, 0.0002996626717504114, 0.04142835736274719, 0.1058315634727478, 0.06567996740341187, 0.032186854630708694, 0.041490551084280014, 0.036548715084791183, 0.055502332746982574, 0.04356596991419792, 0.01964765414595604, 0.008971866220235825, 0.10787717998027802, -0.016004785895347595, -0.04935538396239281, -0.07967336475849152, 0.07222407311201096, 0.03752495348453522, -0.13985690474510193, -0.05720791593194008, 0.06798238307237625, 0.09156344830989838, 0.0610407255589962, -0.027208782732486725, -0.028368011116981506, -0.022914130240678787, -0.010471668094396591, -0.029761850833892822, -0.059852201491594315, 0.013735353946685791, -0.007803737185895443, -0.011642763391137123, -0.026714138686656952, 0.006122112274169922, 0.04751162976026535, -0.053471099585294724, -0.030040353536605835, 0.008333083242177963, 0.05431240424513817, 0.03988035395741463, -0.10919960588216782, -0.008237065747380257, 0.0048153456300497055, -2.2949137640195133e-33, 0.10391543060541153, 0.01171936932951212, -0.05109579116106033, 0.06291157752275467, -0.029982084408402443, -0.06773839145898819, 0.0029036500491201878, 0.11485881358385086, 0.07009376585483551, 0.040321797132492065, 0.08077870309352875, -0.15000255405902863, 0.03722497820854187, -0.07693313807249069, 0.06135425716638565, -0.043969329446554184, -0.013255186378955841, 0.022420980036258698, 0.03409513086080551, 0.030895691365003586, 0.007948791608214378, 0.07393347471952438, -0.03404951095581055, 0.08346406370401382, -0.005305813159793615, -0.018125707283616066, -0.023317841812968254, 0.06661447882652283, -0.003539843950420618, 0.001240859623067081, 0.00210511009208858, 0.0014791861176490784, -0.12283868342638016, -0.014376994222402573, -0.07881741225719452, 0.043652597814798355, 0.035911619663238525, 0.039268381893634796, 0.044400863349437714, 0.06294631958007812, 0.06534775346517563, 0.05980576574802399, -0.0365414135158062, -0.048733457922935486, 0.0233781598508358, -0.02188463695347309, -0.007498373743146658, 0.01595568098127842, 0.0014971022028476, -0.07128744572401047, 0.024912679567933083, 0.005524162668734789, -0.08864494413137436, -0.029880110174417496, -0.001887469319626689, -0.0780656635761261, -0.005292593501508236, -0.14393934607505798, -0.05574765056371689, -0.024148084223270416, -0.014191091060638428, 0.0340195931494236, -0.044524747878313065, -0.07448600232601166, 0.021425003185868263, -0.005227793473750353, 0.03867219761013985, 0.01467357762157917, 0.010436266660690308, 0.06114739179611206, -0.023235952481627464, -0.0761096253991127, 0.06817686557769775, 0.07964994758367538, 0.005441675428301096, -0.040278110653162, -0.035889822989702225, 0.04091697558760643, 0.058997467160224915, -0.0812409296631813, -0.022479020059108734, 0.03215494379401207, 0.0027513697277754545, 0.04598190262913704, 0.10121966898441315, 0.10272002965211868, 0.0276227705180645, -0.014242269098758698, -0.009434571489691734, 0.06354966759681702, 0.02160077542066574, 0.025235923007130623, 0.01280185766518116, 0.11862780898809433, -0.002511977916583419, -4.948559961803767e-8, -0.09844212234020233, -0.00014933747297618538, -0.09315917640924454, 0.03846409171819687, -0.03550993651151657, -0.06754634529352188, -0.05848601087927818, -0.021165210753679276, -0.03876621276140213, -0.030708184465765953, 0.004439048934727907, 0.005861198529601097, -0.07183166593313217, -0.008681168779730797, -0.04761195555329323, 0.02168695628643036, -0.019775914028286934, 0.08323240280151367, -0.024526890367269516, -0.03077246993780136, 0.05320584774017334, 0.04226221889257431, 0.05024310201406479, -0.08545607328414917, 0.0003713309997692704, 0.0036942693404853344, -0.031524352729320526, 0.03086915798485279, -0.00415272731333971, 0.015188649296760559, 0.04429762810468674, 0.031708214432001114, -0.01576126366853714, -0.09113965928554535, 0.04234347119927406, 0.06494564563035965, 0.0023023923859000206, -0.032563094049692154, -0.007856788113713264, 0.046336643397808075, 0.09553901851177216, 0.03221851587295532, -0.11324060708284378, 0.009971745312213898, 0.03695787861943245, -0.028215885162353516, -0.053242750465869904, -0.033182911574840546, 0.025737283751368523, -0.06831590831279755, 0.06525669991970062, -0.07416318356990814, -0.059393879026174545, 0.014227915555238724, 0.02153501659631729, 0.00990675762295723, 0.06359028816223145, -0.022335480898618698, 0.019484156742691994, -0.014739453792572021, 0.04389707371592522, -0.02930384874343872, -0.021130159497261047, -0.006997320335358381 ]
audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
6aeb7661bcf364e2dfe8ac0d00f919ba44e4c973
2022-05-06T13:48:50.000Z
[ "pytorch", "wav2vec2", "en", "dataset:msp-podcast", "arxiv:2203.07378", "transformers", "speech", "audio", "audio-classification", "emotion-recognition", "license:cc-by-nc-sa-4.0" ]
audio-classification
false
audeering
null
audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
2,851
4
transformers
--- language: en datasets: - msp-podcast inference: true tags: - speech - audio - wav2vec2 - audio-classification - emotion-recognition license: cc-by-nc-sa-4.0 --- # Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0 The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning [ Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/") export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378). # Usage ```python import numpy as np import torch import torch.nn as nn from transformers import Wav2Vec2Processor from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) class RegressionHead(nn.Module): r"""Classification head.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.final_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class EmotionModel(Wav2Vec2PreTrainedModel): r"""Speech emotion classifier.""" def __init__(self, config): super().__init__(config) self.config = config self.wav2vec2 = Wav2Vec2Model(config) self.classifier = RegressionHead(config) self.init_weights() def forward( self, input_values, ): outputs = self.wav2vec2(input_values) hidden_states = outputs[0] hidden_states = torch.mean(hidden_states, dim=1) logits = self.classifier(hidden_states) return hidden_states, logits # load model from hub device = 'cpu' model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' processor = Wav2Vec2Processor.from_pretrained(model_name) model = EmotionModel.from_pretrained(model_name) # dummy signal sampling_rate = 16000 signal = np.zeros((1, sampling_rate), dtype=np.float32) def process_func( x: np.ndarray, sampling_rate: int, embeddings: bool = False, ) -> np.ndarray: r"""Predict emotions or extract embeddings from raw audio signal.""" # run through processor to normalize signal # always returns a batch, so we just get the first entry # then we put it on the device y = processor(x, sampling_rate=sampling_rate) y = y['input_values'][0] y = torch.from_numpy(y).to(device) # run through model with torch.no_grad(): y = model(y)[0 if embeddings else 1] # convert to numpy y = y.detach().cpu().numpy() return y process_func(signal, sampling_rate) # Arousal dominance valence # [[0.5460759 0.6062269 0.4043165]] process_func(signal, sampling_rate, embeddings=True) # Pooled hidden states of last transformer layer # [[-0.00752167 0.0065819 -0.00746339 ... 0.00663631 0.00848747 # 0.00599209]] ```
[ -0.11698535084724426, -0.06643679738044739, 0.009443036280572414, 0.009740937501192093, 0.059320222586393356, 0.041056666523218155, -0.08631528913974762, 0.02060861699283123, 0.01416265219449997, -0.046779170632362366, -0.06685478240251541, -0.05463087558746338, -0.000582388136535883, 0.01865394040942192, -0.06217591464519501, 0.011287040077149868, 0.021318567916750908, 0.010660326108336449, -0.06177494302392006, 0.022702664136886597, 0.0796891450881958, 0.08878137171268463, 0.03278123214840889, -0.03698262944817543, 0.06601298600435257, 0.009738887660205364, 0.01680215448141098, 0.003885079873725772, 0.04209815710783005, -0.033167943358421326, 0.039231907576322556, 0.02395949698984623, 0.06893046945333481, 0.007058154325932264, -0.040714360773563385, -0.022714940831065178, -0.023094406351447105, -0.030561745166778564, -0.053143445402383804, -0.03165307641029358, 0.002587769879028201, 0.02564588375389576, -0.0072580925188958645, -0.07043951749801636, 0.006610359530895948, -0.01656658761203289, -0.009907115250825882, -0.05502945929765701, -0.03228136524558067, 0.029715994372963905, -0.008103771135210991, -0.009497509337961674, -0.05202533304691315, 0.13184472918510437, -0.06349585950374603, 0.03219059854745865, -0.026640867814421654, -0.01102543342858553, 0.04562417417764664, -0.025955529883503914, -0.036535754799842834, -0.0208425372838974, 0.00003084724448854104, -0.04498323053121567, -0.028876494616270065, -0.016710640862584114, -0.05579904839396477, 0.02047281339764595, 0.02538476325571537, -0.053433049470186234, -0.10537746548652649, 0.010680011473596096, -0.005433029495179653, -0.05435534939169884, 0.08426371961832047, -0.0026968992315232754, 0.12942926585674286, 0.0012621806235983968, 0.07109201699495316, -0.01903570257127285, 0.0160563625395298, -0.037574250251054764, 0.02158535085618496, -0.08191082626581192, 0.029062315821647644, -0.026480134576559067, -0.0070680477656424046, -0.07309184968471527, -0.019884608685970306, 0.052271533757448196, -0.062277283519506454, -0.03020971454679966, 0.021023228764533997, 0.014897680841386318, 0.05201883986592293, 0.030934305861592293, -0.02986413985490799, 0.10065493732690811, -0.015415691770613194, 0.03950070962309837, 0.011932941153645515, -0.02501177042722702, -0.02375856041908264, -0.057872965931892395, -0.023481274023652077, -0.09374666959047318, -0.026952408254146576, 0.026528287678956985, 0.05526319518685341, -0.058737628161907196, -0.04099620506167412, 0.045525189489126205, -0.023720914497971535, -0.05620019510388374, 0.13011713325977325, 0.035472482442855835, -0.03942069783806801, -0.017042987048625946, -0.0007282051374204457, 0.01758403703570366, -0.014495396986603737, -0.007076799403876066, -0.019400794059038162, -0.0001054832391673699, 0.03869950771331787, 0.057081177830696106, -0.06708858162164688, 1.1394637959306536e-33, -0.02273363247513771, 0.018350113183259964, 0.0018988787196576595, 0.0621618926525116, 0.01872510090470314, -0.01903076097369194, 0.019512975588440895, -0.004187619313597679, -0.009371712803840637, 0.027525639161467552, -0.12989716231822968, 0.07447567582130432, -0.045716091990470886, 0.07649332284927368, -0.04564071074128151, -0.04558629170060158, -0.03248896822333336, 0.00861384253948927, -0.033685822039842606, -0.013580606319010258, 0.0838807225227356, 0.0200297050178051, 0.042266376316547394, 0.022693129256367683, -0.013511654920876026, 0.0007672474021092057, 0.06991075724363327, -0.06612320244312286, 0.03818101808428764, 0.02567026950418949, -0.11150772124528885, -0.05059795826673508, 0.01369828823953867, -0.09534727036952972, 0.06378568708896637, 0.031165648251771927, -0.04423928260803223, 0.03265157341957092, -0.021320505067706108, -0.07936999201774597, -0.0013715419918298721, 0.01829787716269493, 0.03134633228182793, -0.020895367488265038, -0.05763593316078186, -0.030198631808161736, -0.007251830771565437, 0.03731733188033104, -0.0030164492782205343, 0.021086435765028, 0.03329239785671234, 0.007884101010859013, -0.032976184040308, 0.05093856155872345, -0.010043369606137276, -0.03849712759256363, 0.11317688971757889, 0.030758125707507133, 0.017001645639538765, 0.0011686868965625763, 0.01845860294997692, 0.02733789198100567, 0.04574321210384369, -0.060179390013217926, 0.0813344419002533, 0.011461741290986538, -0.03921956568956375, -0.023364078253507614, -0.025303933769464493, -0.0028731191996484995, -0.017024099826812744, 0.06099579855799675, 0.08247987926006317, -0.06125197559595108, 0.019168579950928688, -0.036193061619997025, 0.01642676070332527, -0.02904491126537323, 0.00854511559009552, 0.014133420772850513, -0.07604172825813293, 0.051255520433187485, -0.059396352618932724, -0.04751114919781685, -0.04908791556954384, -0.048586830496788025, -0.03681579977273941, -0.125482976436615, -0.018401233479380608, 0.04465954750776291, -0.024747474119067192, 0.04909142851829529, -0.0174407958984375, -0.01738869957625866, -0.016254952177405357, -1.692904168713049e-33, 0.044923700392246246, 0.056461889296770096, -0.08651269227266312, 0.04877680167555809, -0.048719801008701324, -0.006317539606243372, 0.08009140193462372, 0.13161437213420868, -0.027198422700166702, -0.08479878306388855, 0.14305421710014343, -0.05369843170046806, 0.10575433820486069, 0.0419427715241909, 0.08406805992126465, -0.041381798684597015, -0.050699565559625626, -0.0024387920275330544, 0.06744346022605896, 0.054174281656742096, 0.09421777725219727, 0.06954008340835571, -0.04533018544316292, 0.09185929596424103, -0.07165143638849258, -0.005755114369094372, -0.03425964340567589, 0.0597088448703289, 0.06802055239677429, -0.006794521119445562, -0.06786367297172546, -0.006161349825561047, -0.10711976140737534, 0.02652949094772339, -0.004256507847458124, 0.021644292399287224, 0.009583829902112484, -0.08243273198604584, 0.01537137757986784, -0.006596570368856192, 0.058007482439279556, 0.06322907656431198, -0.11434297263622284, 0.009113555774092674, 0.004202747717499733, -0.06669105589389801, -0.0065862564370036125, 0.016246726736426353, 0.038751568645238876, -0.035745348781347275, 0.07068710029125214, -0.021642988547682762, 0.017387108877301216, 0.04644786939024925, 0.021701646968722343, -0.04581868276000023, -0.04063663259148598, -0.08254151046276093, 0.04997136443853378, -0.020176047459244728, -0.009249156340956688, 0.0015287060523405671, -0.04486299678683281, -0.12657500803470612, -0.01146196573972702, 0.09799597412347794, 0.018703797832131386, 0.041866786777973175, 0.023458318784832954, 0.05124712362885475, 0.02133762277662754, 0.025717925280332565, 0.0791650041937828, -0.01964394748210907, -0.025981051847338676, -0.0707775205373764, -0.06853926926851273, -0.040148716419935226, -0.007913089357316494, -0.09940499812364578, -0.10344298183917999, 0.0329875573515892, 0.07174313813447952, 0.007914871908724308, 0.07492093741893768, 0.08084317296743393, 0.08922678232192993, 0.050509922206401825, -0.01746228151023388, 0.03151913359761238, -0.047856129705905914, 0.06841032952070236, 0.015780624002218246, 0.08847364038228989, 0.03438596427440643, -5.532018931830862e-8, -0.11200668662786484, 0.05606131628155708, 0.0033885049633681774, -0.04732712730765343, -0.012893136590719223, -0.0666651576757431, 0.026441801339387894, 0.010556140914559364, -0.02283240295946598, 0.052133046090602875, 0.044720496982336044, -0.03440463915467262, -0.022983621805906296, 0.012804508209228516, 0.04110930487513542, 0.05707342177629471, 0.01960778422653675, 0.09856726974248886, -0.004829715937376022, -0.1653577983379364, 0.04615947976708412, 0.042036671191453934, 0.03354651853442192, -0.0018260474316775799, 0.0891651064157486, -0.019926859065890312, -0.03582198917865753, 0.038630399852991104, -0.039847444742918015, -0.01695547066628933, -0.018805120140314102, 0.02215285412967205, -0.044570621103048325, -0.07805624604225159, 0.03134899213910103, 0.07587284594774246, -0.0014859134098514915, -0.034533996134996414, -0.0071268328465521336, 0.03729467839002609, -0.022032808512449265, 0.08445414900779724, -0.07838187366724014, 0.0056630526669323444, 0.02070586569607258, -0.0005631585954688489, 0.041377827525138855, -0.10501925647258759, 0.007730105426162481, 0.08535503596067429, 0.01630077138543129, 0.05846702307462692, -0.030409207567572594, 0.043347157537937164, 0.039968933910131454, 0.028962641954421997, -0.04894980043172836, -0.013097399845719337, 0.004006651230156422, 0.00225856713950634, 0.01579795964062214, 0.0689905434846878, -0.0904073566198349, 0.02556672878563404 ]
kykim/albert-kor-base
04e79bcdfe860f251165a93dc685f9544bc597c0
2021-01-22T00:27:49.000Z
[ "pytorch", "tf", "albert", "fill-mask", "ko", "transformers", "autotrain_compatible" ]
fill-mask
false
kykim
null
kykim/albert-kor-base
2,844
2
transformers
--- language: ko --- # Albert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import BertTokenizerFast, AlbertModel tokenizer_albert = BertTokenizerFast.from_pretrained("kykim/albert-kor-base") model_albert = AlbertModel.from_pretrained("kykim/albert-kor-base") ```
[ -0.07077708840370178, -0.03815434128046036, 0.050078678876161575, 0.013022119179368019, -0.0024886769242584705, 0.005204387940466404, -0.04083340987563133, 0.053405750542879105, -0.005839066114276648, -0.034792460501194, 0.06456772238016129, -0.03808315843343735, 0.04346691444516182, -0.012926934286952019, 0.05784299597144127, 0.05594700574874878, -0.006647530477494001, 0.04867016524076462, -0.11780564486980438, -0.10644717514514923, 0.07696656137704849, -0.010216360911726952, 0.021642763167619705, -0.03608407825231552, 0.09241572767496109, 0.007437606807798147, 0.03646443039178848, 0.010638398118317127, 0.07690946757793427, 0.047961894422769547, 0.02597205899655819, 0.0562693327665329, 0.052060551941394806, 0.08129473775625229, 0.056061048060655594, 0.025684842839837074, -0.11054778844118118, -0.02669050544500351, 0.0565267838537693, 0.020976649597287178, -0.0008143410086631775, -0.04202277213335037, 0.01182111818343401, -0.031550634652376175, 0.09182038903236389, 0.01506748329848051, -0.06869754940271378, -0.014833176508545876, -0.04022834450006485, -0.005305112339556217, -0.03418784216046333, -0.012165398336946964, 0.05473990738391876, 0.08976687490940094, -0.022502798587083817, -0.01548384502530098, -0.04662718623876572, 0.027505097910761833, 0.05522653087973595, -0.04697069898247719, -0.0920337662100792, -0.043248776346445084, -0.00887846015393734, 0.017561523243784904, -0.10987450182437897, 0.027435889467597008, 0.010651183314621449, 0.026131022721529007, 0.03762637451291084, 0.013155365362763405, -0.000001791425916053413, 0.06313209235668182, 0.008843698538839817, 0.11469243466854095, -0.022748177871108055, -0.0753944143652916, 0.12148160487413406, -0.026299595832824707, 0.051414526998996735, -0.08512755483388901, 0.013641845434904099, -0.029190145432949066, 0.007441209629178047, -0.012742435559630394, 0.006496530491858721, -0.05725909769535065, 0.030797354876995087, -0.0246614757925272, -0.04341591149568558, -0.002535952255129814, -0.006904254667460918, -0.10698002576828003, 0.07457254827022552, -0.052416156977415085, -0.09694817662239075, 0.043018653988838196, -0.020863661542534828, 0.057280730456113815, -0.012886826880276203, 0.040893156081438065, 0.0011823574313893914, 0.0693657323718071, 0.08847035467624664, -0.015139386057853699, -0.07739660143852234, -0.061908602714538574, 0.03898796811699867, 0.0059186234138906, 0.013095173984766006, 0.030530180782079697, 0.04775748401880264, -0.050126999616622925, -0.024328045547008514, -0.06127826124429703, 0.053746547549963, -0.0611332543194294, 0.0008343428489752114, -0.022330712527036667, 0.008712619543075562, 0.0948750451207161, 0.025309942662715912, -0.03659464418888092, -0.0035877872724086046, 0.021411921828985214, -0.0641210675239563, 0.027301426976919174, 0.03010094352066517, 3.726508844622629e-33, -0.0014945078874006867, 0.02165396884083748, 0.034218914806842804, -0.012568640522658825, -0.07295889407396317, -0.08937032520771027, 0.007445788476616144, 0.024642910808324814, -0.09591073542833328, -0.00872642919421196, -0.09133417904376984, 0.0668797492980957, -0.11405114829540253, 0.015427148900926113, -0.03255792707204819, 0.008164568804204464, -0.031175963580608368, 0.03793859854340553, 0.011927429586648941, 0.08039659261703491, 0.10710915178060532, 0.03265559673309326, 0.02442886307835579, -0.02898118644952774, -0.05493272468447685, -0.01010496448725462, 0.090256467461586, -0.15160104632377625, -0.019012443721294403, 0.031514234840869904, -0.06341629475355148, 0.0014609877252951264, -0.018060576170682907, 0.04724687337875366, -0.04466778784990311, -0.03781457990407944, -0.02654055505990982, -0.05054612457752228, -0.048943281173706055, -0.11786289513111115, -0.014787736348807812, 0.01938115619122982, -0.021105896681547165, 0.005911329295486212, -0.01145047415047884, 0.03270236402750015, -0.014311350882053375, -0.04340016469359398, 0.06077941134572029, 0.03693731874227524, 0.058858517557382584, 0.014759693294763565, -0.08183597028255463, 0.05284455791115761, 0.0756622776389122, 0.014833400957286358, 0.0749034583568573, -0.009555095806717873, 0.08764879405498505, -0.0046870470978319645, -0.061762817203998566, 0.025904351845383644, 0.07088375836610794, 0.09254303574562073, 0.0982808768749237, -0.06405903398990631, -0.0034195641055703163, -0.025259817019104958, -0.0725354254245758, -0.017924217507243156, -0.02142454870045185, -0.04634694755077362, 0.041675567626953125, 0.033832840621471405, -0.021184401586651802, -0.04517059400677681, 0.0029779067263007164, -0.060089368373155594, -0.08076587319374084, 0.010712096467614174, -0.0299974475055933, -0.03223829343914986, -0.02327217161655426, -0.013398163951933384, -0.02499980479478836, -0.0160572100430727, -0.0005397899658419192, -0.06766284257173538, -0.009442486800253391, -0.027660930529236794, -0.013351510278880596, 0.004901982378214598, -0.032286956906318665, -0.015149092301726341, -0.05416266992688179, -4.2385563878927255e-33, 0.020930280908942223, 0.016223523765802383, -0.017666969448328018, 0.04975588992238045, -0.0471796877682209, -0.03378540650010109, 0.04841852933168411, 0.18623659014701843, 0.005298767238855362, 0.011578586883842945, 0.025786438956856728, -0.05775913968682289, 0.04633148014545441, -0.06736548990011215, 0.1207854151725769, -0.009586567059159279, 0.03361721709370613, 0.08678058534860611, 0.04287507012486458, 0.0773031935095787, -0.01781701296567917, 0.03655567765235901, -0.09439165145158768, 0.05392458289861679, -0.054616447538137436, 0.08018691837787628, -0.05177317187190056, 0.07884353399276733, 0.013182571157813072, 0.02133583277463913, -0.01323232427239418, 0.0413433238863945, -0.021541250869631767, 0.0346824936568737, -0.07637781649827957, -0.04349275678396225, -0.02055886946618557, 0.01411995105445385, 0.010920166969299316, -0.003261462552472949, -0.004255212843418121, 0.0439971461892128, -0.08378700911998749, 0.05002249777317047, 0.005404505878686905, -0.058493129909038544, -0.05746084079146385, -0.05623328313231468, 0.08015558123588562, -0.12354321032762527, 0.019618043676018715, 0.022914623841643333, -0.09919633716344833, -0.028338255360722542, -0.02962341532111168, -0.028934111818671227, -0.010237117297947407, -0.0926608294248581, -0.024788029491901398, -0.07088800519704819, -0.06987461447715759, -0.09611191600561142, 0.11320226639509201, -0.024565059691667557, -0.04235350713133812, -0.044407401233911514, 0.06425772607326508, 0.022562745958566666, -0.0018396865343675017, -0.025644471868872643, -0.010538347996771336, 0.0025584055110812187, 0.06488139182329178, 0.04480227082967758, -0.011214845813810825, 0.03889596834778786, -0.022241393104195595, 0.003973688930273056, 0.046428609639406204, -0.022180885076522827, -0.07864614576101303, 0.05577114224433899, 0.011611171998083591, 0.06734222173690796, -0.011265000328421593, 0.01646171137690544, -0.011015449650585651, 0.03783624619245529, 0.06136560067534447, -0.03471401706337929, -0.0008982110884971917, 0.028711877763271332, 0.023010771721601486, 0.05676165223121643, -0.020433476194739342, -4.4847560332073044e-8, -0.008669205009937286, -0.020882077515125275, -0.02485606260597706, 0.027610518038272858, -0.015414511784911156, -0.03028932958841324, -0.06575669348239899, 0.03180212527513504, -0.0032994819339364767, -0.05086437612771988, 0.06267677247524261, 0.03813853859901428, -0.1256955862045288, 0.025032227858901024, 0.010851261205971241, 0.03780965879559517, -0.012284180149435997, 0.0966813713312149, -0.015085708349943161, 0.026378463953733444, 0.017403483390808105, 0.032777220010757446, 0.032999083399772644, -0.07270225137472153, 0.008374945260584354, 0.02720770798623562, -0.031604018062353134, 0.08887609839439392, -0.02412310242652893, -0.08087332546710968, -0.02500142715871334, 0.021214265376329422, -0.10052062571048737, 0.04487462714314461, 0.043955616652965546, 0.05302448943257332, -0.006170520093291998, -0.03899184986948967, -0.03333442285656929, 0.04552023112773895, 0.01990019902586937, -0.03679650276899338, -0.10412775725126266, 0.01323466282337904, 0.0263969823718071, -0.007754201535135508, -0.0027635993901640177, -0.05993708595633507, 0.0321943499147892, 0.024421824142336845, -0.018497701734304428, -0.03349008411169052, -0.13543066382408142, -0.009813250042498112, -0.010824449360370636, 0.05080508813261986, -0.020276153460144997, -0.019999584183096886, -0.0028064914513379335, -0.03432567045092583, -0.017142808064818382, 0.024019755423069, 0.0022949897684156895, 0.055942218750715256 ]
nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large
37519953d888723fe745ea10a1438d8c20a3800f
2021-06-20T19:02:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nreimers
null
nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large
2,841
null
transformers
# MiniLMv2 This is a MiniLMv2 model from: [https://github.com/microsoft/unilm](https://github.com/microsoft/unilm/tree/master/minilm)
[ -0.04895520955324173, 0.02276579663157463, -0.07000173628330231, 0.036097876727581024, 0.042695432901382446, 0.02520260028541088, -0.0600503534078598, -0.0007676688255742192, 0.0047691743820905685, 0.015759311616420746, 0.06056235358119011, 0.00046843758900649846, 0.00011801968503277749, 0.01050148531794548, -0.08721819519996643, 0.08599226176738739, 0.01498068030923605, -0.033648423850536346, 0.018567850813269615, -0.00535806268453598, 0.018649930134415627, 0.06277196109294891, -0.09240960329771042, -0.007299271412193775, 0.040097471326589584, -0.004971580114215612, 0.0006423594313673675, 0.1038576066493988, 0.04481102153658867, -0.06379807740449905, 0.0007346547790803015, 0.03916702792048454, 0.054420169442892075, 0.06359685957431793, 0.06703665852546692, 0.017612049356102943, 0.018825411796569824, -0.02627837099134922, -0.06136196479201317, -0.06859486550092697, -0.03151470422744751, 0.012728261761367321, -0.00036808030563406646, -0.0049248202703893185, -0.003028493607416749, 0.03204696625471115, -0.06138736382126808, -0.06638938933610916, -0.02506941929459572, -0.03726499527692795, 0.02621067315340042, -0.016988463699817657, -0.04025539383292198, 0.022876180708408356, 0.0062387920916080475, -0.05012645944952965, -0.04382697120308876, -0.07776421308517456, 0.0261690653860569, -0.004900501109659672, 0.0404387004673481, 0.01664581522345543, -0.033247388899326324, 0.022963257506489754, 0.0005878026131540537, 0.04971107095479965, -0.002978444565087557, -0.0770753026008606, 0.00504093524068594, -0.1170683279633522, -0.06406883895397186, -0.042548276484012604, -0.013686327263712883, 0.01435297355055809, 0.05689704790711403, -0.0041104028932750225, 0.057125676423311234, -0.0020104823634028435, 0.06368602812290192, -0.022806983441114426, -0.05479602515697479, -0.014698090963065624, -0.05923996493220329, 0.055565617978572845, 0.005362731870263815, 0.009084606543183327, -0.053686242550611496, 0.006340047810226679, 0.13758905231952667, -0.03288983926177025, -0.13095535337924957, 0.03352827578783035, 0.06479422748088837, 0.0464354082942009, -0.04781796410679817, -0.03083430416882038, 0.06145505607128143, -0.039485786110162735, -0.04700921103358269, 0.06165080890059471, -0.028451289981603622, 0.008284357376396656, 0.09092967957258224, -0.0435781255364418, 0.02283267304301262, -0.09361627697944641, 0.0875069722533226, 0.0037490196991711855, 0.04307965189218521, -0.034554027020931244, 0.022966425865888596, 0.04025290161371231, -0.060006674379110336, -0.03719509020447731, 0.020583711564540863, -0.08092869818210602, -0.004847933538258076, -0.03384304791688919, -0.0035581530537456274, -0.004073707852512598, -0.012737107463181019, -0.08114377409219742, -0.06092020124197006, -0.04482210427522659, -0.019749078899621964, 0.015877695754170418, -0.03853707015514374, -2.6795005722022776e-34, 0.023562079295516014, 0.002345276065170765, 0.041187796741724014, 0.04818432778120041, 0.12321080267429352, 0.03126312419772148, 0.037290722131729126, -0.028969576582312584, -0.03538160398602486, -0.009504184126853943, -0.06577702611684799, -0.04173797369003296, -0.04687798023223877, 0.05348403751850128, 0.042434483766555786, -0.1564864069223404, 0.005376838613301516, 0.056475166231393814, 0.00615740055218339, 0.01097516156733036, -0.002388580935075879, 0.062372997403144836, 0.01149376668035984, -0.12392240017652512, 0.09175445139408112, 0.09208182245492935, 0.06229568272829056, -0.05160153657197952, 0.12363734096288681, 0.030484914779663086, 0.018321994692087173, 0.025407403707504272, -0.041776224970817566, 0.004930829629302025, 0.010072944685816765, -0.003038248745724559, -0.07549645006656647, -0.04250333458185196, 0.012249883264303207, 0.043215200304985046, 0.04041370376944542, -0.03334071859717369, 0.02563297562301159, -0.09244126826524734, -0.04262537136673927, -0.03287732973694801, 0.08154769241809845, 0.030890565365552902, 0.033896904438734055, -0.10368799418210983, -0.00709743145853281, 0.10551934689283371, -0.0580039918422699, -0.03281163424253464, -0.05456491559743881, -0.0006596371531486511, 0.03529633954167366, 0.07184820622205734, -0.018682057037949562, 0.025925563648343086, -0.02375112846493721, 0.04552971199154854, -0.015816742554306984, -0.019376982003450394, 0.05819624289870262, -0.06790648400783539, 0.02873656339943409, -0.10556823015213013, 0.026395810768008232, 0.033373210579156876, -0.03833993524312973, 0.061588555574417114, 0.1160840168595314, -0.014380334876477718, 0.0328463539481163, -0.02532363310456276, -0.00008932945638662204, -0.05958889052271843, -0.03185178339481354, -0.01603260450065136, -0.08207481354475021, 0.02502184361219406, -0.014883361756801605, -0.06546608358621597, -0.021300610154867172, -0.049747999757528305, 0.011992932297289371, -0.05155694857239723, -0.059855710715055466, -0.040341176092624664, -0.04414317384362221, 0.004887729417532682, -0.03620303422212601, 0.052660148590803146, 0.05261489376425743, -7.799672258999697e-34, 0.01805131323635578, -0.07870244234800339, 0.035833582282066345, 0.013918714597821236, 0.017147144302725792, -0.017809318378567696, 0.0013737345580011606, 0.09485296905040741, -0.06044799089431763, 0.06761103123426437, 0.1251000165939331, 0.029214991256594658, 0.021908491849899292, 0.03323373198509216, 0.07918522506952286, 0.0647868663072586, 0.04299990087747574, -0.08083342760801315, 0.0648777186870575, -0.0031687230803072453, 0.06792683899402618, 0.11291144043207169, -0.06576183438301086, 0.0022100606001913548, -0.0003265137493144721, -0.0211471039801836, 0.02950330637395382, 0.027035577222704887, 0.017098354175686836, 0.007303563877940178, -0.013109011575579643, 0.013264812529087067, -0.0040221912786364555, -0.06251870840787888, -0.05056912451982498, 0.03122297301888466, 0.010912477970123291, -0.07608149200677872, 0.0013252729550004005, 0.03418628126382828, 0.012108595110476017, -0.004260566551238298, -0.037589266896247864, -0.0010901553323492408, 0.00019804549810942262, 0.0039751529693603516, 0.051719773560762405, 0.01840861514210701, 0.036358222365379333, -0.047623198479413986, -0.001962418667972088, -0.04082280769944191, -0.06246257573366165, 0.01947067119181156, -0.018930351361632347, 0.004109586589038372, -0.029708394780755043, 0.022892946377396584, 0.10597699135541916, -0.05200570076704025, 0.0059000710025429726, -0.062312737107276917, -0.06801187247037888, -0.029168201610445976, 0.0023561923298984766, 0.08286891877651215, -0.02780498005449772, -0.04260875657200813, -0.10295811295509338, -0.023439185693860054, 0.08337375521659851, 0.015961965546011925, -0.005081993993371725, -0.04153130203485489, 0.01835375279188156, -0.12168727815151215, -0.007396259345114231, 0.004637852776795626, 0.007763034198433161, -0.052417416125535965, 0.018932530656456947, -0.06141224876046181, 0.056934766471385956, 0.0359552837908268, 0.06223267316818237, -0.07546088099479675, 0.0016263349680230021, 0.07306613773107529, -0.0722530335187912, 0.07526092976331711, -0.08512663096189499, 0.04277236387133598, 0.06524386256933212, 0.047329675406217575, -0.0568804070353508, -3.3755057415874035e-8, -0.05509170889854431, -0.04316028580069542, -0.006609188858419657, -0.07148507237434387, -0.01681501232087612, -0.017823873087763786, -0.010312178172171116, 0.005743416957557201, 0.006658314261585474, 0.01432848908007145, 0.02297535538673401, -0.06807417422533035, -0.019999925047159195, 0.040754903107881546, -0.003140736371278763, 0.09019815921783447, -0.01887335069477558, 0.10077892988920212, 0.014269710518419743, -0.010625546798110008, 0.007593395188450813, 0.04507836326956749, 0.04207226634025574, -0.016287516802549362, 0.018933238461613655, -0.01261296309530735, 0.015273381024599075, 0.05510784685611725, 0.017163868993520737, -0.05784009024500847, -0.07543112337589264, 0.13375404477119446, 0.003285897197201848, 0.01842893287539482, -0.08964250236749649, 0.14244233071804047, 0.004471041262149811, 0.0770513042807579, 0.01102218497544527, -0.03233208879828453, 0.06936565786600113, -0.0030374638736248016, -0.09949064999818802, 0.023456064984202385, 0.014719266444444656, 0.08689513057470322, -0.03110765665769577, -0.11027206480503082, -0.0014900248497724533, -0.053888194262981415, -0.013822948560118675, 0.01076432317495346, 0.04855505749583244, 0.06610007584095001, -0.07260602712631226, -0.005500246770679951, -0.0011934731155633926, -0.06526650488376617, 0.07483870536088943, 0.04716981574892998, 0.04062175750732422, 0.06567289680242538, 0.018383987247943878, 0.061560697853565216 ]
microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL
373f710a611281c9ba2fa935586be1dbe98fc3fe
2022-05-25T02:45:36.000Z
[ "pytorch", "bert", "en", "arxiv:2112.07887", "transformers", "exbert", "license:mit", "feature-extraction" ]
feature-extraction
false
microsoft
null
microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL
2,832
4
transformers
--- language: en tags: - exbert license: mit pipeline_tag: feature-extraction widget: - text: "<ENT> ER </ENT> crowding has become a wide-spread problem." --- ## KRISSBERT [https://arxiv.org/pdf/2112.07887.pdf](https://arxiv.org/pdf/2112.07887.pdf) Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia ([Logeswaran et al., 2019](https://aclanthology.org/P19-1335.pdf); [Wu et al., 2020](https://aclanthology.org/2020.emnlp-main.519.pdf)). We explore Knowledge-RIch Self-Supervision (KRISS) and train a contextual encoder (KRISSBERT) for entity linking, by leveraging readily available unlabeled text and domain knowledge. Specifically, the KRISSBERT model is initialized with [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) parameters, and then continuously pretrained using biomedical entity names from the [UMLS](https://www.nlm.nih.gov/research/umls/index.html) ontology to self-supervise entity linking examples from [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts. Experiments on seven standard biomedical entity linking datasets show that KRISSBERT attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy. See [Zhang et al., 2021](https://arxiv.org/abs/2112.07887) for the details. Note that some prior systems like [BioSyn](https://aclanthology.org/2020.acl-main.335.pdf), [SapBERT](https://aclanthology.org/2021.naacl-main.334.pdf), and their follow-up work (e.g., [Lai et al., 2021](https://aclanthology.org/2021.findings-emnlp.140.pdf)) claimed to do entity linking, but their systems completely ignore the context of an entity mention, and can only predict a surface form in the entity dictionary (See Figure 1 in [BioSyn](https://aclanthology.org/2020.acl-main.335.pdf)), _**not the canonical entity ID (e.g., CUI in UMLS)**_. Therefore, they can't disambiguate ambiguous mentions. For instance, given the entity mention "_ER_" in the sentence "*ER crowding has become a wide-spread problem*", their systems ignore the sentence context, and simply predict the closest surface form, which is just "ER". Multiple entities share this surface form as a potential name or alias, such as *Emergency Room (C0562508)*, *Estrogen Receptor Gene (C1414461)*, and *Endoplasmic Reticulum(C0014239)*. Without using the context information, their systems can't resolve such ambiguity and pinpoint the correct entity *Emergency Room (C0562508)*. More problematically, their evaluation would deem such an ambiguous prediction as correct. Consequently, the reported results in their papers do not reflect true performance on entity linking. ## Usage for Entity Linking Here, we use the [MedMentions](https://github.com/chanzuckerberg/MedMentions) data to show you how to 1) **generate prototype embeddings**, and 2) **run entity linking**. (We are currently unable to release the self-supervised mention examples, because they require the UMLS and PubMed licenses.) #### 1. Create conda environment and install requirements ```bash conda create -n kriss -y python=3.8 && conda activate kriss pip install -r requirements.txt ``` #### 2. Switch the root dir to [usage](https://huggingface.co/microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL/tree/main/usage) ```bash cd usage ``` #### 3. Download the MedMentions dataset ```bash git clone https://github.com/chanzuckerberg/MedMentions.git ``` #### 4. Generate prototype embeddings ```bash python generate_prototypes.py ``` #### 5. Run entity linking ```bash python run_entity_linking.py ``` This will give you about `58.3%` top-1 accuracy. ## Citation If you find KRISSBERT useful in your research, please cite the following paper: ```latex @article{krissbert, author = {Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, Hoifung Poon}, title = {Knowledge-Rich Self-Supervision for Biomedical Entity Linking}, year = {2021}, url = {https://arxiv.org/abs/2112.07887}, eprinttype = {arXiv}, eprint = {2112.07887}, } ```
[ -0.01852470636367798, -0.03548455610871315, 0.02405976690351963, -0.0063829864375293255, 0.11411093920469284, -0.02773641236126423, 0.0011980370618402958, 0.0375283882021904, 0.019411960616707802, 0.0007559393416158855, 0.00003127224772470072, -0.04485693946480751, 0.022188575938344002, 0.01609768718481064, 0.01119306217879057, 0.07711457461118698, 0.04400716349482536, 0.07093463093042374, -0.035992495715618134, -0.04586072638630867, 0.022850386798381805, 0.021774688735604286, 0.07757289707660675, 0.016333770006895065, -0.0007644032593816519, -0.0784454196691513, -0.058478113263845444, -0.05053585767745972, 0.01614963822066784, -0.03541138395667076, -0.008012541569769382, 0.06619974225759506, -0.08102412521839142, 0.06331532448530197, -0.0007304877508431673, 0.08186213672161102, 0.020266560837626457, 0.0528525747358799, -0.03352677822113037, 0.012731524184346199, 0.040166836231946945, -0.030189596116542816, -0.04926906153559685, 0.025014890357851982, 0.03063170053064823, 0.07196912169456482, -0.04781876504421234, -0.04591931030154228, -0.09967324137687683, 0.01643274910748005, -0.07466035336256027, -0.019910570234060287, -0.015236211940646172, 0.034093402326107025, 0.034099966287612915, -0.02506430074572563, -0.04006964713335037, -0.06655606627464294, -0.008107749745249748, 0.0025979650672525167, -0.005866187624633312, -0.04073621332645416, 0.006520051043480635, -0.012496326118707657, 0.008065329864621162, -0.02382262609899044, 0.037687748670578, 0.0807863175868988, 0.033382073044776917, 0.005738608539104462, 0.061420854181051254, 0.03327089548110962, -0.04648846387863159, 0.09128653258085251, -0.00405611377209425, 0.06055895984172821, -0.02234191633760929, 0.09728416800498962, -0.010968855582177639, -0.03963218256831169, 0.014188571833074093, 0.03119099698960781, 0.06538418680429459, -0.0660296380519867, 0.06003504991531372, 0.08539029210805893, 0.04331060126423836, -0.0007122100796550512, -0.05423297733068466, 0.05026160553097725, -0.08520953357219696, -0.07930482923984528, 0.17079198360443115, -0.022127579897642136, 0.09249170124530792, 0.020828908309340477, 0.06298884749412537, -0.10700511187314987, -0.02563413232564926, 0.09376106411218643, -0.03349296748638153, 0.09172652661800385, 0.04182620346546173, -0.006899304687976837, -0.007894245907664299, -0.03312959522008896, 0.004451869986951351, 0.06985269486904144, -0.0372820720076561, -0.07394653558731079, 0.023082470521330833, -0.008174056187272072, -0.01033850759267807, -0.14502820372581482, 0.008776580914855003, -0.04191603884100914, -0.0021291051525622606, -0.052582431584596634, 0.06317398697137833, 0.003524667350575328, -0.04725904017686844, 0.019482092931866646, -0.09413640946149826, -0.019750036299228668, 0.006671602837741375, 0.08290960639715195, -0.08620043843984604, 5.1006297819812204e-33, 0.15253977477550507, 0.0708947405219078, 0.05043058842420578, -0.00010625668073771521, -0.10229039937257767, 0.004047941882163286, -0.0485716313123703, 0.00003983315036748536, -0.045154180377721786, 0.003053811611607671, 0.010719490237534046, 0.038848813623189926, -0.027928700670599937, 0.011263162828981876, -0.006923239678144455, -0.058000218123197556, 0.013303996995091438, 0.08298424631357193, 0.021690718829631805, -0.006642487365752459, -0.018018530681729317, 0.006310411728918552, -0.037219032645225525, -0.013620381243526936, -0.0024547679349780083, 0.014618666842579842, -0.01932763308286667, -0.1342734694480896, -0.01909554935991764, 0.03717498853802681, -0.05606735870242119, 0.006607114337384701, 0.0539163313806057, 0.05625826492905617, 0.03963784500956535, -0.07221093028783798, -0.041336916387081146, -0.0752137154340744, 0.020156437531113625, -0.04514845460653305, -0.02681485377252102, 0.014557038433849812, -0.024440843611955643, -0.06753446161746979, -0.02062845788896084, 0.013565761968493462, -0.005731851793825626, -0.026013782247900963, -0.02928248792886734, -0.02306842990219593, 0.05253253132104874, 0.04732641577720642, 0.0161741990596056, -0.0000025495694444543915, -0.042160071432590485, 0.01440335065126419, -0.010069238021969795, -0.028608854860067368, -0.03231960907578468, -0.03269921988248825, 0.012769867666065693, 0.02423025667667389, -0.029048172757029533, 0.014570243656635284, 0.027779465541243553, 0.024682551622390747, 0.0008835839689709246, 0.028028439730405807, 0.0420299731194973, -0.043771374970674515, -0.014858320355415344, 0.03421923145651817, -0.02352018840610981, -0.026925962418317795, 0.09715607762336731, 0.01994258351624012, 0.01733383722603321, -0.11915577948093414, 0.00677376426756382, 0.06230933591723442, -0.05055784061551094, -0.044473808258771896, -0.022545164451003075, -0.002852396806702018, 0.006215396337211132, -0.04540027678012848, 0.03372151032090187, -0.06626460701227188, 0.0012768860906362534, -0.020734937861561775, 0.0309867225587368, 0.013029580935835838, -0.09236589074134827, 0.05078310891985893, -0.009727121330797672, -4.5693063354095464e-33, 0.014461895450949669, -0.015724731609225273, -0.02121940813958645, 0.01736920326948166, 0.0031126285903155804, -0.016028601676225662, 0.042313456535339355, 0.045542195439338684, -0.002719287062063813, -0.02530871331691742, 0.0004241036658640951, -0.0589812770485878, -0.03858707845211029, -0.055292025208473206, 0.022027455270290375, -0.0410684235394001, 0.0023248489014804363, 0.004303575959056616, 0.019995002076029778, 0.16636665165424347, 0.0525779090821743, 0.010112764313817024, -0.08030107617378235, 0.05695074424147606, 0.038918387144804, 0.09303530305624008, 0.019868135452270508, 0.005071042571216822, -0.04221703112125397, -0.0956820547580719, -0.032211825251579285, 0.01609037257730961, -0.05338888615369797, -0.09561162441968918, -0.08704166114330292, -0.02219289354979992, 0.05207353085279465, 0.020624959841370583, 0.015984605997800827, 0.00935266725718975, 0.037631142884492874, 0.026109054684638977, -0.05172589048743248, -0.013353250920772552, -0.008669236674904823, -0.0438559427857399, -0.08299992233514786, 0.0528278574347496, 0.034736648201942444, -0.0037161512300372124, -0.04191165789961815, 0.025209935382008553, -0.0823545753955841, -0.05160318687558174, -0.0030616475269198418, -0.08640123903751373, 0.026105400174856186, -0.023060163483023643, -0.08060876280069351, 0.05283162370324135, -0.05870739370584488, 0.08658602833747864, 0.02029087394475937, 0.09678670018911362, 0.011412200517952442, -0.06671695411205292, -0.019219206646084785, 0.05610644072294235, -0.08374709635972977, -0.10818848758935928, 0.09101400524377823, -0.028942380100488663, -0.03730668127536774, -0.03931942954659462, 0.01666608452796936, -0.01763211004436016, 0.04195529967546463, -0.05945947393774986, 0.012557330541312695, -0.0480414517223835, 0.03066229075193405, -0.023875389248132706, 0.03604774922132492, 0.07849530130624771, 0.11360018700361252, 0.06761106103658676, 0.0492730550467968, 0.0076805478893220425, -0.013569246046245098, -0.024546179920434952, -0.03140893206000328, -0.032141752541065216, -0.055112048983573914, 0.14164797961711884, -0.04482818394899368, -5.971023853135193e-8, -0.06103905662894249, 0.08322350680828094, -0.05212382599711418, 0.03364568203687668, 0.009148556739091873, -0.055003948509693146, -0.019949346780776978, 0.12998931109905243, -0.02859206683933735, 0.019945498555898666, 0.013411377556622028, 0.04642403498291969, -0.12873893976211548, 0.0035475539043545723, 0.0725080743432045, 0.04817844182252884, -0.016349557787179947, 0.02389097586274147, -0.04415277764201164, 0.008581681177020073, -0.04646372050046921, -0.010097960941493511, 0.00617841724306345, -0.0743572860956192, 0.03107968159019947, -0.08815430104732513, 0.00927675236016512, 0.03774314373731613, 0.12522058188915253, -0.05078829824924469, -0.04887944832444191, 0.0386175811290741, -0.06177627295255661, 0.02386740781366825, 0.0714772418141365, 0.08991611003875732, -0.03826138377189636, -0.018087487667798996, -0.04865546151995659, 0.020100463181734085, 0.0454162172973156, 0.04798858240246773, -0.03942318260669708, 0.008694886229932308, 0.058872610330581665, 0.0022590328007936478, -0.013140948489308357, -0.05036721006035805, 0.01587163843214512, -0.04198779538273811, -0.02342166006565094, -0.023647962138056755, -0.006288771517574787, 0.03641556575894356, 0.01111681293696165, 0.0882018506526947, 0.04119464382529259, -0.0161297544836998, 0.054770976305007935, 0.07993901520967484, 0.0671486109495163, -0.06716389954090118, 0.02077322266995907, 0.08154554665088654 ]
nateraw/bert-base-uncased-emotion
064d252021b51d95cd0547c89c6489100da0dc4c
2021-05-20T01:18:38.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:emotion", "transformers", "emotion", "license:apache-2.0" ]
text-classification
false
nateraw
null
nateraw/bert-base-uncased-emotion
2,827
3
transformers
--- language: - en thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch license: apache-2.0 datasets: - emotion metrics: - accuracy --- # bert-base-uncased-emotion ## Model description `bert-base-uncased` finetuned on the emotion dataset using PyTorch Lightning. Sequence length 128, learning rate 2e-5, batch size 32, 2 GPUs, 4 epochs. For more details, please see, [the emotion dataset on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion). #### Limitations and bias - Not the best model, but it works in a pinch I guess... - Code not available as I just hacked this together. - [Follow me on github](https://github.com/nateraw) to get notified when code is made available. ## Training data Data came from HuggingFace's `datasets` package. The data can be viewed [on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Training procedure ... ## Eval results val_acc - 0.931 (useless, as this should be precision/recall/f1) The score was calculated using PyTorch Lightning metrics.
[ -0.11765565723180771, -0.06850294023752213, 0.03678814694285393, 0.05519430711865425, 0.05081610381603241, 0.021184660494327545, -0.013830951415002346, 0.025326469913125038, 0.020117860287427902, -0.07320396602153778, 0.04520837962627411, -0.03388660401105881, -0.07622814923524857, -0.0037789540365338326, 0.05113749951124191, 0.10787850618362427, 0.020535316318273544, -0.007385019212961197, -0.061524514108896255, -0.01344519667327404, 0.03130757808685303, 0.07893149554729462, 0.0037889813538640738, -0.07118544727563858, 0.06348655372858047, 0.026572223752737045, -0.015415915288031101, -0.01109993178397417, 0.05881669372320175, 0.04560127481818199, 0.05002456158399582, -0.005598612129688263, 0.05731990188360214, 0.11649802327156067, 0.0015561532927677035, 0.08049953728914261, -0.02839599922299385, -0.008641740307211876, -0.0016119404463097453, 0.018777986988425255, -0.010955982841551304, 0.010728312656283379, -0.04737841710448265, 0.003154792357236147, 0.0815381407737732, -0.023320281878113747, -0.04593448340892792, -0.027309484779834747, -0.058684442192316055, -0.08248256146907806, -0.08060923963785172, -0.03997045382857323, 0.02030407078564167, 0.07245247066020966, -0.0189578328281641, -0.006912721320986748, 0.003773063886910677, -0.030669016763567924, 0.02528819441795349, -0.0404818020761013, -0.02868044376373291, -0.04800983518362045, 0.0019359079888090491, -0.032822299748659134, -0.08765872567892075, 0.00007975461630849168, 0.0029007585253566504, -0.01094850990921259, 0.03932657465338707, -0.014327505603432655, 0.024009456858038902, -0.009773105382919312, -0.028881264850497246, 0.019685905426740646, 0.013444628566503525, -0.005850755609571934, 0.09014233946800232, -0.01638646423816681, 0.05008121207356453, -0.08616017550230026, -0.016844525933265686, -0.05903679504990578, 0.08074211329221725, 0.038594119250774384, 0.03887958452105522, -0.0595366433262825, 0.015270271338522434, 0.04367952421307564, -0.07791244983673096, 0.06853675097227097, -0.004038519226014614, -0.10755278915166855, 0.059117089956998825, -0.014500835910439491, 0.018214425072073936, 0.038253303617239, 0.001881964853964746, -0.0107183326035738, -0.11236529052257538, 0.04436318948864937, 0.0053961388766765594, -0.004474207758903503, -0.06859400123357773, -0.057837776839733124, -0.03290567547082901, 0.02355301007628441, -0.0351615846157074, -0.030656753107905388, 0.032229945063591, -0.08869294822216034, -0.06666780263185501, -0.02155560813844204, -0.037134841084480286, -0.09157335758209229, 0.06619205325841904, -0.054781220853328705, -0.028790703043341637, 0.018371624872088432, 0.10371097922325134, 0.09548872709274292, -0.0027217972092330456, 0.033771369606256485, -0.002923060907050967, 0.050356149673461914, -0.013334576971828938, 0.020745933055877686, -0.05141238123178482, 6.703002334910729e-33, 0.04599592462182045, 0.0059958635829389095, -0.01580614596605301, -0.054596349596977234, -0.011127143166959286, -0.052386775612831116, 0.026477720588445663, -0.03273507207632065, -0.09032188355922699, 0.0007011967827565968, -0.0533328540623188, 0.01375107653439045, -0.036903731524944305, 0.07457039505243301, -0.05071869492530823, -0.022737888619303703, -0.029348099604249, -0.022933339700102806, 0.05369033291935921, 0.024842780083417892, -0.006079263053834438, 0.014994091354310513, -0.017183290794491768, -0.04065541923046112, -0.15851379930973053, 0.054753754287958145, 0.07995045930147171, -0.06143999844789505, 0.01273219846189022, 0.021166687831282616, -0.12568193674087524, 0.06105610355734825, -0.0011343307560309768, -0.005806710571050644, 0.030434325337409973, 0.014011377468705177, 0.0026682436000555754, -0.024504996836185455, 0.01415987778455019, -0.04541842266917229, -0.040255628526210785, 0.08256752043962479, 0.013940693810582161, -0.04964904114603996, -0.03727421909570694, 0.06956563144922256, 0.010154904797673225, 0.008614161983132362, 0.03432203084230423, 0.03532910719513893, 0.03187369182705879, 0.020368440076708794, 0.007644102908670902, 0.07069975137710571, -0.008569097146391869, -0.0007633554632775486, 0.07547243684530258, 0.07164008170366287, 0.07682936638593674, 0.028317060321569443, -0.027983905747532845, 0.011376086622476578, 0.07516877353191376, -0.07768751680850983, 0.042561911046504974, 0.012510095722973347, -0.0659412145614624, -0.02224738709628582, -0.040490131825208664, 0.019312923774123192, -0.030229300260543823, 0.051529135555028915, 0.028915954753756523, -0.04115744307637215, 0.006918380968272686, -0.05656814202666283, 0.03545233607292175, -0.04271242767572403, -0.0359182208776474, -0.017699673771858215, -0.012716909870505333, -0.033996060490608215, 0.0032517611980438232, -0.03930026292800903, -0.04836791753768921, -0.08633442968130112, 0.007335517089813948, -0.08957157284021378, -0.04312516376376152, 0.08455862104892731, -0.01436171866953373, -0.03971216827630997, 0.002886291593313217, -0.009762277826666832, -0.01758582331240177, -6.721857264297919e-33, 0.028267309069633484, 0.03670654073357582, -0.11088836193084717, 0.057695403695106506, -0.013467304408550262, -0.0015237063635140657, 0.02739037573337555, 0.15380598604679108, 0.025833819061517715, -0.021479029208421707, 0.05714450404047966, -0.05440356954932213, 0.012470624409615993, -0.018402373418211937, 0.06937903165817261, 0.026172714307904243, -0.06201457604765892, 0.04388101026415825, 0.022809334099292755, 0.027998939156532288, 0.0005990657373331487, 0.07130192220211029, -0.10220272094011307, 0.06927825510501862, -0.022267723456025124, 0.01966850459575653, -0.02770720236003399, 0.009800662286579609, 0.02383250743150711, -0.08000452071428299, -0.02017371542751789, 0.03533296287059784, -0.11915871500968933, 0.020041564479470253, -0.043866898864507675, 0.00847266148775816, 0.036747027188539505, -0.05171847715973854, -0.053583648055791855, 0.01246629934757948, 0.14757956564426422, 0.037351857870817184, -0.0749354138970375, 0.05219264328479767, 0.017894374206662178, 0.021812664344906807, -0.06011229753494263, 0.01016776729375124, 0.024323606863617897, 0.031699590384960175, 0.021847667172551155, -0.027763627469539642, -0.056137293577194214, 0.028020478785037994, -0.020278604701161385, -0.1365595906972885, 0.05414566770195961, -0.0535331591963768, -0.06103385612368584, 0.020687062293291092, -0.0718429684638977, -0.033889107406139374, 0.007858228869736195, -0.033382512629032135, 0.023959659039974213, -0.040242407470941544, -0.013645990751683712, 0.03538614884018898, -0.04865428805351257, 0.004179754760116339, 0.041186150163412094, 0.028587477281689644, 0.10442691296339035, 0.01610865816473961, 0.02193785458803177, 0.03133665770292282, 0.006478262133896351, -0.05135723575949669, -0.060628313571214676, -0.05643090978264809, -0.00561773544177413, 0.011999489739537239, 0.03864919766783714, 0.06784132868051529, 0.0344015471637249, 0.0988665372133255, 0.054251592606306076, 0.1372619867324829, -0.01480750273913145, -0.012855647131800652, -0.05226671323180199, 0.08116762340068817, 0.06200788915157318, 0.11102460324764252, 0.09011845290660858, -5.997183905037673e-8, -0.09235723316669464, 0.011789540760219097, -0.042614564299583435, 0.022260254248976707, -0.03833676874637604, -0.02428070642054081, 0.03745732083916664, 0.022357869893312454, -0.07110752165317535, -0.03316553682088852, 0.05891745537519455, 0.06634005159139633, -0.09152784198522568, 0.03308490663766861, -0.03967713192105293, 0.044123921543359756, 0.022994086146354675, 0.01117642130702734, 0.03445134684443474, -0.03164483979344368, -0.013900215737521648, 0.029897484928369522, 0.02184979058802128, -0.05343727394938469, 0.02523544616997242, -0.04879910871386528, -0.030312679708003998, 0.06343545019626617, -0.08183641731739044, -0.030796462669968605, 0.014048644341528416, 0.013474265113472939, -0.017246253788471222, -0.060453590005636215, 0.07237041741609573, 0.04219113662838936, -0.08380931615829468, -0.09560076892375946, 0.005827103741466999, 0.0557139553129673, 0.03969508036971092, 0.05849688872694969, -0.05760258436203003, -0.03345618396997452, 0.05486603453755379, -0.014092020690441132, 0.03968780115246773, -0.13625800609588623, 0.05741743743419647, 0.08131637424230576, 0.03649165853857994, -0.035804398357868195, -0.10003210604190826, 0.042168330401182175, 0.04737916216254234, 0.025112031027674675, -0.08461286872625351, 0.016708428040146828, 0.032445620745420456, 0.014055397361516953, 0.04894595593214035, 0.004790824837982655, -0.03524738922715187, 0.052424486726522446 ]
m3hrdadfi/wav2vec2-large-xlsr-persian-v3
f3ceecb54fc81bb796f1565429bcf5599cd0e24d
2021-11-04T15:22:11.000Z
[ "pytorch", "tf", "wav2vec2", "automatic-speech-recognition", "fa", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "model-index" ]
automatic-speech-recognition
false
m3hrdadfi
null
m3hrdadfi/wav2vec2-large-xlsr-persian-v3
2,826
8
transformers
--- language: fa datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week widget: - example_title: Common Voice sample 1 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample1.flac - example_title: Common Voice sample 2978 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample2978.flac - example_title: Common Voice sample 5168 src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample5168.flac model-index: - name: XLSR Wav2Vec2 Persian (Farsi) V3 by Mehrdad Farahani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fa type: common_voice args: fa metrics: - name: Test WER type: wer value: 10.36 --- # Wav2Vec2-Large-XLSR-53-Persian V3 ## Usage Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. **Requirements** ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !pip install jiwer !pip install parsivar !pip install num2fawords ``` **Normalizer** ```bash # Normalizer !wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/dictionary.py !wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/normalizer.py ``` **Downloading data** ```bash wget https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/fa.tar.gz tar -xzf fa.tar.gz rm -rf fa.tar.gz ``` **Cleaning** ```python from normalizer import normalizer def cleaning(text): if not isinstance(text, str): return None return normalizer({"sentence": text}, return_dict=False) data_dir = "/content/cv-corpus-6.1-2020-12-11/fa" test = pd.read_csv(f"{data_dir}/test.tsv", sep=" ") test["path"] = data_dir + "/clips/" + test["path"] print(f"Step 0: {len(test)}") test["status"] = test["path"].apply(lambda path: True if os.path.exists(path) else None) test = test.dropna(subset=["path"]) test = test.drop("status", 1) print(f"Step 1: {len(test)}") test["sentence"] = test["sentence"].apply(lambda t: cleaning(t)) test = test.dropna(subset=["sentence"]) print(f"Step 2: {len(test)}") test = test.reset_index(drop=True) print(test.head()) test = test[["path", "sentence"]] test.to_csv("/content/test.csv", sep=" ", encoding="utf-8", index=False) ``` **Prediction** ```python import numpy as np import pandas as pd import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset, load_metric import IPython.display as ipd model_name_or_path = "m3hrdadfi/wav2vec2-large-xlsr-persian-v3" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(model_name_or_path, device) processor = Wav2Vec2Processor.from_pretrained(model_name_or_path) model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path).to(device) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, processor.feature_extractor.sampling_rate) batch["speech"] = speech_array return batch def predict(batch): features = processor( batch["speech"], sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True ) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) return batch dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter=" ")["test"] dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict, batched=True, batch_size=4) ``` **WER Score** ```python wer = load_metric("wer") print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) ``` **Output** ```python max_items = np.random.randint(0, len(result), 20).tolist() for i in max_items: reference, predicted = result["sentence"][i], result["predicted"][i] print("reference:", reference) print("predicted:", predicted) print('---') ``` ```text reference: ماجرا رو براش تعریف کردم اون گفت مریم اگه میدونی پسر خوبیه خب چه اشکالی داره با‌هاش بیش‌تر اشنا بشو predicted: ماجرا رو براش تعریف کردم اون گفت مریم اگه میدونی پسر خوبیه خب چه اشکالی داره با‌هاش بیش‌تر اشنا بشو --- reference: بیا پایین تو اجازه نداری بری اون بالا predicted: بیا پایین تو اجازه نداری بری اون بالا --- reference: هر روز یک دو مداد کش می رفتتم تااین که تا پایان ترم از تمامی دوستانم مداد برداشته بودم predicted: هر روز یک دو مداد کش می رفتم تااین که تا پایین ترم از تمامی دوستان و مداد برداشته بودم --- reference: فکر میکنی آروم میشینه predicted: فکر میکنی آروم میشینه --- reference: هرکسی با گوشی هوشمند خود میتواند با کایلا متصل گردد در یک محدوده مکانی predicted: هرکسی با گوشی هوشمند خود میتواند با کایلا متصل گردد در یک محدوده مکانی --- reference: برو از مهرداد بپرس predicted: برو از مهرداد بپرس --- reference: می خواهم شما را با این قدم‌ها آشنا کنم predicted: می خواهم شما را با این قدم‌ها آشنا کنم --- reference: میدونم یه روز دوباره می تونم تو رو ببینم predicted: میدونم یه روز دوباره می تونم تو رو ببینم --- reference: بسیار خوب خواهد بود دعوت او را بپذیری predicted: بسیار خوب خواهد بود دعوت او را بپذیری --- reference: بهت بگن آشغالی خوبه predicted: بهت بگن آشغالی خوبه --- reference: چرا معاشرت با هم ایمانان ما را محفوظ نگه میدارد predicted: چرا معاشرت با هم ایمانان آ را م حفوظ نگه میدارد --- reference: بولیوی پس از گویان فقیر‌ترین کشور آمریکای جنوبی است predicted: بولیوی پس از گویان فقیر‌ترین کشور آمریکای جنوبی است --- reference: بعد از مدتی اینکار برایم عادی شد predicted: بعد از مدتی اینکار برایم عادو شد --- reference: به نظر اون هم همینطوره predicted: به نظر اون هم همینطوره --- reference: هیچ مایونز ی دارید predicted: هیچ مایونز ی دارید --- reference: هیچ یک از انان کاری به سنگ نداشتند predicted: هیچ شک از انان کاری به سنگ نداشتند --- reference: می خواهم کمی کتاب شعر ببینم predicted: می خواهم کتاب شعر ببینم --- reference: همین شوهر فهیمه مگه نمی گفتی فرمانده بوده کو predicted: همین شوهر فهیمه بینامی گفتی فهمانده بود کو --- reference: اون جا‌ها کسی رو نمیبینی که تو دستش کتاب نباشه predicted: اون جا‌ها کسی رو نمیبینی که تو دستش کتاب نباشه --- reference: زندان رفتن من در این سال‌های اخیر برام شانس بزرگی بود که معما و مشکل چندین سال‌هام را حل کرد predicted: زندان رفتن من در این سال‌ها اخی براب شانس بزرگی بود که معما و مشکل چندین سال‌هام را حل کرد --- ``` ## Evaluation **Test Result:** - WER: 10.36%
[ -0.10966219753026962, -0.08014152199029922, -0.051723893731832504, -0.0305162500590086, 0.08168373256921768, 0.012033766135573387, -0.03713138774037361, -0.03820332884788513, -0.028373461216688156, -0.09040869027376175, 0.0064581818878650665, -0.12347524613142014, -0.05854380875825882, 0.036788199096918106, -0.00953640230000019, -0.08241072297096252, -0.0784742459654808, -0.005471441429108381, -0.07104761898517609, -0.006680821068584919, 0.07113246619701385, 0.05103718116879463, 0.1423010379076004, -0.0018496767152100801, 0.01435422245413065, -0.011505643837153912, -0.06042206659913063, 0.05263611674308777, 0.03058272786438465, -0.08342702686786652, 0.06974282115697861, 0.10998699814081192, 0.10627566277980804, 0.02430243417620659, -0.01573670655488968, 0.016178570687770844, -0.03715919330716133, -0.04759923368692398, -0.015427090227603912, -0.011048223823308945, -0.04952159523963928, 0.00474840123206377, 0.05696777626872063, -0.04489720240235329, 0.02612677775323391, -0.05657694488763809, -0.09924114495515823, -0.025726284831762314, 0.01933123916387558, 0.11528977751731873, -0.10004106163978577, 0.014136940240859985, -0.055134501308202744, 0.07340279221534729, -0.039097514003515244, 0.00135996553581208, -0.010359473526477814, 0.0049767023883759975, 0.020194558426737785, 0.017097225412726402, -0.032992031425237656, -0.02238360047340393, -0.03681590035557747, -0.007271092850714922, -0.04921257123351097, -0.007938679307699203, -0.03067292831838131, -0.03562502562999725, 0.014211989939212799, -0.03342160955071449, -0.10269593447446823, 0.06662306934595108, 0.032382749021053314, 0.05586962029337883, 0.042940933257341385, -0.01600828766822815, -0.01075489167124033, -0.02398248016834259, 0.0084665073081851, -0.05293705314397812, 0.007009953260421753, -0.06510774791240692, -0.05515434220433235, 0.00540069118142128, 0.09532777965068817, -0.006444613449275494, -0.06783465296030045, -0.04480145871639252, -0.008150740526616573, 0.01298926305025816, -0.026924986392259598, 0.009100950323045254, 0.011381261050701141, 0.07209454476833344, -0.004726174287497997, 0.0732523649930954, 0.051723673939704895, 0.07395023107528687, -0.033260591328144073, 0.09418344497680664, 0.023168252781033516, -0.10541720688343048, 0.047418829053640366, 0.047502659261226654, -0.06511305272579193, -0.06578002870082855, -0.016626382246613503, 0.03510057553648949, -0.06392908841371536, -0.09427764266729355, -0.02359198033809662, -0.03060820885002613, -0.04169827327132225, -0.0951765775680542, -0.023340115323662758, 0.029576236382126808, -0.030692894011735916, -0.06760106235742569, -0.00789792649447918, -0.008730597794055939, -0.03667456656694412, 0.009020796045660973, 0.023066507652401924, -0.03610432893037796, -0.00482966611161828, -0.026629818603396416, -0.023185119032859802, 6.744335655021518e-33, 0.0359422005712986, 0.04096694663167, 0.0000016845898471729015, 0.011375188827514648, 0.005566527601331472, -0.08734464645385742, -0.028456391766667366, 0.02783963270485401, -0.055245090276002884, 0.018187377601861954, -0.03349422290921211, 0.04641889035701752, -0.06479936093091965, -0.06702026724815369, -0.012034166604280472, 0.0027070618234574795, 0.018604077398777008, 0.006578685715794563, -0.05973381549119949, 0.014121382497251034, 0.1731923371553421, 0.1170533299446106, 0.05203170329332352, -0.038843948394060135, 0.10343065112829208, 0.05696212127804756, 0.037572361528873444, -0.05264651030302048, -0.016603393480181694, 0.04725246503949165, -0.022207001224160194, -0.0627238005399704, -0.008817989379167557, -0.009897468611598015, 0.05085277557373047, 0.03318742290139198, -0.04305241256952286, -0.04880770295858383, -0.05798868462443352, -0.08666883409023285, 0.02537347562611103, 0.020017357543110847, -0.011758030392229557, 0.002660951344296336, -0.027943016961216927, -0.11266466230154037, -0.0014708776725456119, 0.11546358466148376, 0.04741598665714264, 0.07145139575004578, -0.019951706752181053, 0.007313096895813942, -0.0681670606136322, 0.02429952658712864, -0.044815097004175186, 0.031131263822317123, 0.038517072796821594, 0.06851932406425476, 0.0074139987118542194, 0.03171258792281151, 0.00860758125782013, -0.03367534652352333, 0.015348440036177635, -0.00911046378314495, 0.02041545882821083, -0.013270383700728416, -0.034300677478313446, 0.004925786517560482, 0.09295280277729034, 0.042844489216804504, 0.013693747110664845, -0.06352236866950989, 0.10093758255243301, 0.057318538427352905, 0.0892011821269989, -0.0027127531357109547, -0.019560500979423523, -0.02458704635500908, -0.05555550754070282, 0.038970861583948135, -0.018545502796769142, 0.08789569139480591, 0.008778583258390427, 0.05138051137328148, -0.06349167972803116, 0.005666755139827728, 0.04674562066793442, -0.09882238507270813, 0.030995303764939308, 0.012592093087732792, -0.008910109288990498, 0.019222648814320564, 0.002423505298793316, -0.07986148446798325, -0.03146810829639435, -6.721431882279715e-33, 0.03015170246362686, 0.06140681356191635, -0.0016937977634370327, 0.022081123664975166, 0.046537846326828, -0.03194527328014374, 0.119967982172966, 0.05438705161213875, 0.033325571566820145, 0.002408575266599655, 0.06615862250328064, -0.06770717352628708, 0.04285122826695442, -0.10403502732515335, 0.04100075364112854, 0.04508058726787567, 0.03538500517606735, -0.018755991011857986, 0.04276582598686218, 0.09134113788604736, -0.03222823888063431, 0.05795789510011673, -0.0036805763375014067, 0.043213579803705215, -0.03923134505748749, -0.03220897540450096, 0.015077056363224983, 0.013040519319474697, 0.01628296636044979, -0.019639287143945694, -0.035338517278432846, 0.008424969390034676, -0.16564399003982544, 0.015030195005238056, -0.03708501160144806, -0.03631279990077019, 0.030475793406367302, 0.031861938536167145, -0.06427430361509323, 0.04781736806035042, 0.08367365598678589, 0.028674716129899025, -0.09128814935684204, -0.0393262654542923, 0.011457588523626328, -0.026387494057416916, -0.033155638724565506, 0.010108452290296555, 0.022918347269296646, -0.04235086590051651, 0.049526020884513855, 0.008630616590380669, -0.03932717815041542, 0.022241367027163506, 0.03815142437815666, -0.02411905862390995, 0.05869868025183678, -0.026242032647132874, -0.06693349033594131, 0.002211147453635931, 0.012703025713562965, -0.03203447535634041, -0.089824378490448, -0.026408983394503593, 0.14142726361751556, -0.0182902030646801, -0.03169278800487518, -0.013356742449104786, 0.04173712432384491, -0.03193550556898117, -0.031554628163576126, -0.05461650714278221, 0.028425658121705055, -0.021487770602107048, 0.02824477106332779, 0.0035128777381032705, -0.09583962708711624, 0.00033918576082214713, 0.0033636409789323807, -0.018227962777018547, 0.0015026411274448037, 0.006433567497879267, 0.07234823703765869, 0.07499012351036072, 0.02096708118915558, 0.0938984751701355, -0.020762668922543526, 0.045708101242780685, 0.009413577616214752, 0.03979786857962608, -0.02041238732635975, 0.04561362415552139, 0.005718765780329704, 0.03430123254656792, -0.0011908254818990827, -5.1695252523131785e-8, -0.08665219694375992, 0.0020074688363820314, -0.014491315931081772, -0.018402405083179474, -0.04869232699275017, -0.024728914722800255, -0.04328538104891777, -0.012420293875038624, -0.007430617231875658, -0.013580129481852055, 0.05874790996313095, 0.008774013258516788, -0.008166537620127201, -0.01962958462536335, -0.03560016304254532, -0.026058461517095566, -0.03547327592968941, 0.1487060934305191, -0.04826204478740692, -0.09509448707103729, 0.024957502260804176, 0.038801517337560654, 0.00399924349039793, -0.017547985538840294, 0.006766976788640022, 0.03216522932052612, -0.07700642943382263, 0.0912720113992691, 0.017427513375878334, -0.0036959934514015913, -0.014532097615301609, -0.004902807995676994, 0.022598227486014366, -0.07544703781604767, 0.01932738721370697, -0.025380782783031464, -0.030160794034600258, 0.0076026772148907185, -0.0654769241809845, 0.05233018845319748, 0.10055802762508392, 0.07703743875026703, -0.09453874826431274, 0.04702158272266388, 0.09025195986032486, 0.0068694818764925, -0.003805243643000722, -0.06791957467794418, 0.08713030070066452, 0.00875912792980671, 0.02393447235226631, -0.024527814239263535, -0.014884513802826405, 0.014972317032516003, 0.055108826607465744, 0.02856968529522419, 0.008276739157736301, -0.007853316143155098, 0.05132770165801048, -0.011635796166956425, 0.07802300900220871, 0.019077008590102196, -0.03601514548063278, 0.04541649669408798 ]
alvaroalon2/biobert_chemical_ner
a5c41a966542076b2cea6a0ffca62d5610277e6f
2022-07-11T11:12:51.000Z
[ "pytorch", "tf", "bert", "token-classification", "English", "dataset:BC5CDR-chemicals", "dataset:BC4CHEMD", "transformers", "NER", "Biomedical", "Chemicals", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
alvaroalon2
null
alvaroalon2/biobert_chemical_ner
2,823
4
transformers
--- language: "English" tags: - token-classification - NER - Biomedical - Chemicals datasets: - BC5CDR-chemicals - BC4CHEMD license: apache-2.0 --- BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus. This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner
[ -0.01089440193027258, -0.05420708656311035, -0.02601551078259945, -0.1296326220035553, -0.0016834705602377653, -0.019191769883036613, -0.004305872600525618, 0.0440291091799736, -0.03690078482031822, -0.03560783714056015, 0.0027799715753644705, -0.11266462504863739, -0.011536268517374992, 0.020269297063350677, -0.02473636530339718, 0.044897984713315964, 0.01905643939971924, 0.03431929275393486, -0.06756219267845154, -0.05381767824292183, -0.02070208266377449, 0.08906499296426773, 0.05023092404007912, 0.023578234016895294, -0.039608508348464966, -0.006497385445982218, -0.001975985709577799, 0.00261795986443758, 0.050534095615148544, -0.030390799045562744, 0.10957314819097519, 0.06612136214971542, 0.022562960162758827, -0.012804675847291946, 0.010376197285950184, 0.027252860367298126, -0.059483643621206284, -0.05553656071424484, -0.002034342847764492, 0.01409110426902771, -0.003712557489052415, -0.01267476286739111, -0.01864294335246086, 0.05449572950601578, 0.07112037390470505, 0.026218151673674583, -0.04347683861851692, -0.06650830805301666, 0.06421572715044022, -0.025336770340800285, -0.11237914860248566, -0.02085699886083603, 0.015393806621432304, 0.06537923216819763, 0.04382103309035301, -0.04540787264704704, -0.04420776665210724, -0.08274321258068085, -0.019900143146514893, -0.03688468784093857, 0.02621007151901722, -0.03371690213680267, -0.00952242873609066, 0.007229697424918413, -0.03313635662198067, 0.0550253763794899, 0.0064350455068051815, -0.010358039289712906, 0.07008958607912064, -0.040223922580480576, -0.05838629975914955, -0.041835810989141464, 0.061241358518600464, 0.05760986730456352, -0.07926736027002335, 0.05804881080985069, 0.0326005294919014, 0.048569463193416595, 0.06932634115219116, -0.11684943735599518, -0.03209701552987099, -0.027447758242487907, 0.03579229488968849, 0.012716174125671387, 0.11926186084747314, -0.03459945321083069, 0.02964155748486519, -0.0001337446883553639, -0.00325762084685266, 0.049314748495817184, 0.024850713089108467, -0.04967137798666954, 0.11199092864990234, -0.06593845784664154, -0.14999234676361084, -0.026673698797822, 0.03806948661804199, 0.04388118162751198, 0.03134557232260704, 0.04287844896316528, -0.04206516221165657, 0.03892283886671066, -0.06362777948379517, -0.02241181582212448, -0.07126487791538239, -0.05448615550994873, 0.03553464636206627, 0.1291375607252121, 0.12811598181724548, -0.018800832331180573, 0.04242895916104317, 0.04142839461565018, -0.036035846918821335, -0.024890126660466194, 0.024571256712079048, -0.014778566546738148, 0.010772326029837132, -0.05578397214412689, 0.07061035186052322, 0.017473438754677773, -0.11333000659942627, -0.04836397245526314, -0.061263956129550934, -0.14793378114700317, 0.04249844327569008, 0.02281181886792183, -0.10000539571046829, 1.5038299431451149e-33, 0.05742707476019859, 0.029332272708415985, 0.02811703272163868, 0.024595722556114197, -0.058625366538763046, -0.037709128111600876, -0.08133291453123093, -0.035955753177404404, -0.01813320815563202, -0.07384652644395828, 0.0325436070561409, -0.010947095230221748, -0.08322039991617203, 0.06931356340646744, 0.01246583927422762, -0.01830199360847473, -0.06910166889429092, -0.0407017357647419, 0.05800609663128853, -0.0005007541622035205, 0.03638077899813652, 0.018872233107686043, -0.01167839951813221, -0.035392146557569504, 0.0016957075567916036, 0.027626221999526024, -0.018469510599970818, -0.06285122036933899, 0.0025915552396327257, 0.011146562173962593, -0.055029962211847305, -0.049527864903211594, -0.0319790244102478, 0.031145500019192696, 0.050338760018348694, -0.02035548724234104, 0.0012730283197015524, 0.04100461304187775, 0.033314745873212814, -0.0169022586196661, -0.01153579168021679, 0.05236227065324783, 0.08713772147893906, -0.04836420714855194, 0.056509990245103836, 0.02321658283472061, -0.020156722515821457, 0.02691083960235119, 0.1022464707493782, 0.0020636171102523804, 0.018663153052330017, -0.054150935262441635, 0.057099804282188416, -0.032964687794446945, 0.023343617096543312, 0.05849204584956169, -0.03630223497748375, -0.013061853125691414, -0.00010610697063384578, 0.05449630320072174, -0.0008100245613604784, 0.028391694650053978, -0.0020269863307476044, -0.04409593716263771, 0.11980050057172775, -0.010315630584955215, -0.023817136883735657, -0.03586799278855324, -0.000035341206967132166, 0.0059940870851278305, -0.048547498881816864, 0.027909858152270317, 0.10543835908174515, 0.06323277950286865, 0.011547557078301907, 0.03137991949915886, -0.02141539566218853, -0.1473410725593567, -0.06553182750940323, 0.05882181227207184, -0.022937264293432236, -0.0022151025477796793, -0.05921720713376999, 0.041573915630578995, -0.049227163195610046, -0.040963657200336456, 0.04550071060657501, -0.04623251408338547, 0.008456401526927948, -0.03828709200024605, 0.05790838971734047, -0.012435657903552055, -0.046597789973020554, -0.0037447111681103706, -0.08578397333621979, -2.7628000049101316e-33, -0.008325590752065182, -0.05473928153514862, 0.005471148528158665, 0.07314305007457733, -0.004088434856384993, -0.0023386336397379637, 0.08504236489534378, 0.038229890167713165, 0.029150689020752907, -0.04057767614722252, 0.08108120411634445, 0.004461855161935091, 0.03472474217414856, 0.023363005369901657, 0.01284431666135788, 0.015588418580591679, -0.11796371638774872, 0.03073042817413807, 0.04177587106823921, 0.08176958560943604, -0.006946300156414509, 0.07957136631011963, -0.10833875089883804, 0.0682547315955162, 0.050411373376846313, 0.06200917065143585, -0.026115428656339645, 0.05880671739578247, 0.0186607725918293, -0.04976733401417732, -0.0070739020593464375, 0.02180682122707367, -0.04606778547167778, -0.07668661326169968, -0.03558517247438431, -0.045602891594171524, 0.015107695944607258, -0.022575639188289642, 0.03302508220076561, 0.01802457496523857, 0.03916829451918602, 0.09359525144100189, -0.07107022404670715, 0.02531747706234455, 0.05150506645441055, -0.03768784552812576, -0.10122263431549072, 0.026306701824069023, -0.009011143818497658, 0.03200624883174896, 0.05288837105035782, -0.030601078644394875, -0.10652265697717667, -0.05594826862215996, 0.0010801405878737569, -0.0666794553399086, 0.02745957300066948, -0.10961399972438812, -0.026955602690577507, 0.015989676117897034, -0.0806170403957367, -0.01250651478767395, 0.05991161987185478, 0.013086412101984024, -0.047290269285440445, 0.030978338792920113, 0.009998814202845097, 0.04938654601573944, -0.030845049768686295, -0.004830254707485437, 0.057624202221632004, 0.015517959371209145, 0.06002102792263031, 0.01566840335726738, 0.007220805156975985, -0.06436651945114136, -0.04225262254476547, -0.02577625960111618, -0.034712936729192734, -0.039585843682289124, -0.01762992888689041, 0.03167356178164482, 0.026116210967302322, 0.005259743891656399, 0.03520446643233299, 0.060518573969602585, -0.003994193859398365, -0.021467890590429306, 0.002226506359875202, -0.06255115568637848, 0.022705864161252975, 0.043023400008678436, 0.00690868403762579, 0.13466699421405792, -0.04888806864619255, -4.453590207731395e-8, 0.02032584883272648, -0.053078360855579376, -0.007272444199770689, -0.013546799309551716, 0.013145724311470985, 0.00565862562507391, -0.06979938596487045, -0.01827775314450264, 0.013003157451748848, 0.05023901164531708, 0.059609267860651016, 0.03361879289150238, -0.1375451534986496, -0.0022158639039844275, 0.040902115404605865, 0.046043090522289276, 0.017035644501447678, 0.0621829479932785, -0.0367266908288002, -0.0614197812974453, -0.013264809735119343, 0.04362569376826286, -0.011585786007344723, -0.034061629325151443, 0.09031777828931808, -0.044845666736364365, -0.007630383130162954, -0.03381789103150368, 0.05035826936364174, -0.07238331437110901, 0.01639777049422264, 0.0802696943283081, 0.02586882747709751, 0.014565353281795979, 0.09732649475336075, 0.0035011046566069126, -0.041504599153995514, -0.04559538885951042, -0.0476582907140255, 0.056795164942741394, 0.047798965126276016, 0.021505359560251236, -0.16901545226573944, -0.0030220099724829197, 0.09356090426445007, -0.034480709582567215, -0.03353244811296463, -0.008980685845017433, 0.027866609394550323, -0.01593784987926483, 0.043834488838911057, -0.035875461995601654, -0.01528371125459671, 0.017287611961364746, -0.010535885579884052, 0.09352529048919678, -0.029727227985858917, -0.021576592698693275, 0.05107041075825691, -0.028355484828352928, 0.044350966811180115, 0.007279612123966217, -0.010728050023317337, -0.02266295626759529 ]
castorini/t5-base-canard
f0f21fc4cae5dc130d97e4fa4dc07d7710875b7b
2021-06-23T11:56:05.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/t5-base-canard
2,816
null
transformers
This model is trained for conversational question rewriting. Usage: Source text format: ${HISTORY} ||| ${CURRENT_QUESTION} example from [CANARD](https://sites.google.com/view/qanta/projects/canard): Frank Zappa ||| Disbandment ||| What group disbanded ||| Zappa and the Mothers of Invention ||| When did they disband? Target text: When did Zappa and the Mothers of Invention disband? You can find our guide to reproduce the training in this [repo](https://github.com/castorini/chatty-goose/blob/c7d0cd8c45354b09b5fb930ab0b5af8be2e5772b/docs/t5_finetuning.md).
[ -0.03612363710999489, 0.05223914980888367, -0.01490783877670765, 0.04411592334508896, -0.004205859731882811, 0.06172008439898491, -0.0067744688130915165, -0.04232780262827873, 0.054592885076999664, -0.01891736313700676, 0.0427757129073143, 0.029016930609941483, 0.03576711192727089, -0.0051223840564489365, -0.04077782854437828, 0.04022785648703575, -0.010638467036187649, -0.036683544516563416, -0.045859672129154205, -0.048115793615579605, 0.09399434924125671, 0.09637989103794098, 0.06408761441707611, 0.03282947093248367, 0.03873322531580925, 0.043705061078071594, -0.0408623181283474, -0.00276582152582705, 0.051143791526556015, -0.028188198804855347, -0.03779320418834686, 0.053983625024557114, -0.03235406428575516, 0.08916092664003372, -0.009956026449799538, 0.05673860013484955, -0.0021086789201945066, 0.056698840111494064, 0.023316701874136925, -0.0089822206646204, -0.02580319344997406, -0.04726497083902359, -0.08550364524126053, -0.07619556039571762, 0.09292984008789062, -0.06511324644088745, -0.04061571881175041, 0.038580019026994705, -0.03256255015730858, 0.07529110461473465, -0.05648336559534073, -0.09233007580041885, 0.0488833412528038, 0.05597754567861557, 0.06854063272476196, -0.003123937640339136, -0.05995135009288788, 0.06424281001091003, -0.04278931766748428, -0.02267126366496086, -0.03512083366513252, -0.041867759078741074, -0.08783391863107681, 0.004239900037646294, 0.0018777422374114394, -0.03684705123305321, -0.04551497474312782, 0.03523595258593559, -0.07723987847566605, -0.026439789682626724, -0.04979360103607178, 0.00041584434802643955, -0.04126785695552826, -0.020665429532527924, -0.02490573190152645, 0.03504868224263191, 0.011968106962740421, 0.003882134798914194, -0.03658004477620125, -0.07510378211736679, 0.03487920016050339, -0.10744448751211166, 0.057671792805194855, 0.019136331975460052, 0.07985971868038177, -0.0044757104478776455, 0.06067861244082451, -0.0056798094883561134, 0.03880735859274864, -0.028139490634202957, -0.08892273902893066, -0.041479870676994324, 0.11459919810295105, 0.00693465443328023, 0.03819525986909866, 0.02099059894680977, -0.04417061805725098, 0.04005490988492966, -0.026036575436592102, 0.1069626733660698, 0.04703674837946892, 0.054240189492702484, -0.047507088631391525, -0.06567493081092834, -0.0629926472902298, -0.04280243441462517, -0.010110144503414631, 0.024111341685056686, 0.014350983314216137, -0.04161551594734192, -0.07361925393342972, 0.029618287459015846, -0.026017602533102036, -0.036657217890024185, 0.054406724870204926, -0.06410329043865204, 0.049662090837955475, 0.0283193476498127, -0.047154899686574936, -0.02573188580572605, 0.04152080789208412, -0.03552226349711418, -0.05216122046113014, 0.028423424810171127, -0.04964448884129524, -0.013241764158010483, -0.07751231640577316, 7.303391952064967e-33, 0.1133103296160698, 0.09179455041885376, -0.04131494462490082, 0.08641336113214493, 0.06407396495342255, 0.04553426057100296, -0.040170926600694656, 0.07041306793689728, 0.04181975498795509, -0.02918066270649433, 0.04573327302932739, -0.04417422413825989, -0.03342539072036743, -0.05312652513384819, -0.012564151547849178, -0.04981417581439018, -0.1283833384513855, 0.019848762080073357, 0.020673707127571106, 0.014328325167298317, 0.04881563410162926, 0.14724457263946533, -0.02789955772459507, -0.018640244379639626, 0.05653546005487442, 0.05017898604273796, 0.006774380337446928, -0.02755679190158844, -0.044104017317295074, 0.0039147124625742435, -0.017082830891013145, -0.042088285088539124, -0.07495826482772827, -0.03327740356326103, 0.061777837574481964, 0.013946378603577614, 0.07545993477106094, -0.09579522907733917, -0.022610707208514214, -0.07352463901042938, 0.01859784498810768, -0.011445390991866589, 0.031692031770944595, -0.09026230126619339, -0.037086691707372665, -0.0065522342920303345, -0.006961571052670479, -0.06017469987273216, 0.04055161029100418, -0.03191891312599182, 0.01799117960035801, 0.05506342649459839, -0.04468628019094467, -0.05508894473314285, 0.0028895391151309013, -0.01829204149544239, -0.07406900823116302, -0.0077176387421786785, 0.020104192197322845, 0.06835384666919708, 0.06605733931064606, 0.07239261269569397, 0.03967789560556412, 0.07420778274536133, -0.007548131048679352, 0.06811095774173737, -0.07755953818559647, -0.0007151197060011327, 0.08307483792304993, 0.02129698358476162, -0.010794980451464653, 0.020002955570816994, -0.07385648041963577, -0.0438094399869442, -0.03664681315422058, -0.06182228773832321, -0.031091494485735893, 0.013604855164885521, 0.04727499559521675, -0.025447649881243706, 0.02207580953836441, -0.024072343483567238, 0.04469306766986847, -0.05129071697592735, -0.018078692257404327, -0.08845025300979614, 0.0595078282058239, -0.09551984816789627, 0.0027221804484725, -0.046333834528923035, -0.0032368600368499756, 0.021255452185869217, -0.02292490005493164, -0.03834177553653717, 0.04576887935400009, -7.969060443940212e-33, 0.038884278386831284, 0.009038328193128109, -0.04482985660433769, 0.04515300691127777, 0.05757277086377144, -0.10791277885437012, -0.030916661024093628, 0.10395707190036774, 0.031964801251888275, -0.04763749986886978, -0.018840570002794266, -0.07540260255336761, 0.02760227769613266, 0.015353338792920113, -0.036145687103271484, -0.058481279760599136, -0.0016298367409035563, -0.0865519791841507, -0.01568678952753544, -0.03311159461736679, -0.022820523008704185, 0.05628414824604988, -0.08365055173635483, 0.009580091573297977, -0.013290248811244965, 0.04095156490802765, 0.0614604577422142, 0.02401958778500557, 0.021077660843729973, -0.0341014564037323, -0.057417456060647964, -0.10108095407485962, -0.04227015748620033, 0.0042741065844893456, -0.06668348610401154, 0.06347592920064926, -0.03278611972928047, 0.006133559625595808, 0.00026377852191217244, -0.014009554870426655, 0.043630048632621765, 0.033512163907289505, -0.11274772882461548, 0.03399904817342758, -0.03777617961168289, -0.024594122543931007, -0.05746692791581154, 0.0030486180912703276, 0.08895238488912582, -0.02061854861676693, 0.05168765410780907, -0.007951741106808186, -0.061451785266399384, -0.02983279339969158, -0.03647398203611374, -0.006365278735756874, 0.021991102024912834, -0.04125334322452545, -0.021830664947628975, -0.009587939828634262, -0.07940392941236496, 0.06328202039003372, 0.001835281727835536, -0.02434871718287468, 0.10215768218040466, -0.099507175385952, 0.029509786516427994, 0.07166825234889984, 0.010976368561387062, -0.036714330315589905, 0.026621125638484955, -0.045322395861148834, 0.008542574010789394, 0.04491240531206131, 0.0471033975481987, 0.02820393443107605, -0.052211664617061615, -0.022127851843833923, -0.022040309384465218, -0.044391125440597534, -0.02824167162179947, -0.067674420773983, -0.015701182186603546, 0.1634945571422577, 0.03059234470129013, 0.050561413168907166, 0.022948995232582092, 0.1188361719250679, 0.020384829491376877, 0.027756119146943092, 0.0407026931643486, -0.11293287575244904, 0.05054478347301483, 0.09644049406051636, -0.09471487998962402, -6.451234213500356e-8, -0.0705321654677391, 0.04279111698269844, -0.032510511577129364, 0.06048499792814255, 0.027629289776086807, -0.03766978904604912, 0.05518954619765282, -0.028572211042046547, -0.022002648562192917, -0.06499596685171127, -0.04424290731549263, 0.08455540239810944, -0.07554733753204346, -0.03332484886050224, 0.018535586073994637, 0.027095720171928406, 0.017576154321432114, 0.03329116106033325, -0.017054768279194832, -0.06076301261782646, 0.04375293850898743, 0.0009803901193663478, -0.036711808294057846, 0.05750982463359833, -0.021258056163787842, 0.0753205418586731, -0.09152857959270477, 0.10520483553409576, -0.03397524729371071, 0.006981242448091507, -0.0030504423193633556, 0.043827421963214874, -0.014639942906796932, 0.010157963261008263, -0.004752499982714653, 0.003450757125392556, -0.02322191558778286, 0.012049279175698757, 0.0047673992812633514, -0.0054709650576114655, 0.046065136790275574, 0.03611592575907707, -0.017177164554595947, 0.04819019138813019, 0.021159764379262924, -0.016612958163022995, -0.06786222010850906, -0.12225436419248581, -0.013826102949678898, -0.06472530961036682, -0.022954441606998444, 0.017409665510058403, 0.017867881804704666, -0.009478827938437462, -0.0070669627748429775, 0.007414591033011675, 0.06862431764602661, 0.03896886110305786, -0.044495388865470886, -0.02835325337946415, 0.1158338189125061, 0.04278377443552017, 0.0690426230430603, 0.022713666781783104 ]
julien-c/hotdog-not-hotdog
e268d30900a9e75185eb7543bd2ffceb80686cde
2021-07-02T12:13:28.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
julien-c
null
julien-c/hotdog-not-hotdog
2,816
1
transformers
--- tags: - image-classification - huggingpics metrics: - accuracy model-index: - name: hotdog-not-hotdog results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.824999988079071 --- # hotdog-not-hotdog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hot dog ![hot dog](images/hot_dog.jpg) #### not hot dog ![miscellaneous](images/miscellaneous.jpg)
[ -0.09999463707208633, -0.048530738800764084, 0.04527292773127556, 0.06872501224279404, 0.05842870846390724, -0.0507686547935009, -0.013281834311783314, -0.1009514108300209, -0.04607687145471573, -0.05774803087115288, 0.03640129044651985, -0.09652531147003174, 0.061382830142974854, 0.07255293428897858, -0.04656083881855011, 0.014228046871721745, 0.01436483021825552, -0.002632583724334836, -0.04568378999829292, -0.010947898030281067, -0.0986570492386818, -0.005352015607059002, 0.09983015060424805, -0.016664013266563416, -0.05381530895829201, -0.01452126819640398, -0.03412625938653946, -0.028070691972970963, 0.007082086056470871, -0.079135000705719, -0.011837393045425415, -0.012400684878230095, -0.030485408380627632, 0.0028000439051538706, 0.019135668873786926, 0.10615525394678116, -0.008446971885859966, 0.02729666605591774, -0.03440485894680023, -0.007651719730347395, 0.06061721593141556, -0.06580569595098495, 0.03719620406627655, -0.026663485914468765, 0.06116862967610359, 0.076539047062397, -0.09673460572957993, -0.062250882387161255, -0.02484738826751709, -0.03684886544942856, -0.09458048641681671, -0.06900312006473541, 0.014956888742744923, 0.009145718067884445, -0.02006944641470909, 0.003981668036431074, -0.0032367028761655092, -0.05305676907300949, 0.008507009595632553, -0.0010681847343221307, 0.07032863050699234, 0.02679975889623165, -0.06459479033946991, -0.03347121924161911, 0.04087546840310097, 0.03413401544094086, 0.010376309975981712, 0.010753471404314041, 0.055267319083213806, -0.004398635122925043, 0.08178505301475525, 0.04360643029212952, 0.04014980420470238, 0.014938022941350937, 0.026090877130627632, -0.02018195018172264, -0.05875891447067261, 0.027416963130235672, 0.1094188317656517, -0.07953553646802902, -0.05582059547305107, -0.04320552572607994, 0.02704191952943802, 0.018845655024051666, 0.09847618639469147, 0.019781598821282387, -0.044077396392822266, 0.0005430780001915991, -0.07408437132835388, -0.012420100159943104, -0.006697395816445351, -0.03714878112077713, -0.0349874347448349, -0.015736274421215057, -0.015172750689089298, -0.000637623539660126, -0.05273761972784996, 0.0015353575581684709, -0.08584904670715332, 0.05878501757979393, -0.1059270054101944, -0.04004378616809845, -0.03381695598363876, 0.06989597529172897, 0.14491938054561615, -0.008650466799736023, -0.035699959844350815, -0.004283849615603685, 0.10020734369754791, 0.0036042623687535524, -0.0288079846650362, -0.01304903905838728, -0.03204739838838577, -0.008815103210508823, -0.018221097066998482, -0.011627033352851868, -0.03445408120751381, -0.05269470065832138, 0.06542927771806717, -0.011427633464336395, 0.018214339390397072, 0.042323797941207886, -0.012792513705790043, -0.056266870349645615, 0.010281099937856197, -0.0679503083229065, -0.1057063564658165, 5.426330613919275e-33, 0.02912077121436596, 0.005276985466480255, 0.062104567885398865, -0.03443654254078865, 0.02558118849992752, -0.058913446962833405, -0.06505263596773148, -0.04894133657217026, -0.01206789817661047, 0.02991667576134205, -0.055899638682603836, 0.04043092578649521, -0.013628573156893253, 0.07877123355865479, 0.0697002187371254, -0.032935094088315964, -0.0582461841404438, 0.045971907675266266, -0.01830190233886242, 0.047622714191675186, -0.029783405363559723, 0.02369256317615509, 0.015056256204843521, -0.017895903438329697, -0.06814352422952652, 0.09282469749450684, 0.03879113495349884, -0.01960463635623455, -0.010556712746620178, 0.039226505905389786, -0.02331603318452835, -0.04993617162108421, 0.09687944501638412, 0.020576849579811096, -0.0351564846932888, -0.0326327383518219, -0.03903915733098984, 0.03215278312563896, -0.058999378234148026, 0.011909144930541515, 0.04858333617448807, 0.018066992983222008, 0.016201097518205643, 0.002530527301132679, -0.0137971555814147, 0.08413922041654587, 0.05942355841398239, -0.016344180330634117, -0.033847082406282425, 0.009523343294858932, 0.05763707682490349, -0.030722105875611305, 0.0006119420286267996, -0.030400268733501434, -0.10905390232801437, -0.0038400657940655947, 0.07475464046001434, 0.051864322274923325, -0.00981083232909441, -0.029083730652928352, 0.04041231423616409, 0.046065930277109146, 0.027639402076601982, -0.0407065823674202, 0.03383001685142517, -0.014815271832048893, 0.004515043925493956, 0.027868010103702545, -0.017297429963946342, 0.03169278800487518, 0.0003585749363992363, 0.08011647313833237, -0.02881000004708767, -0.038691163063049316, 0.08546919375658035, -0.07161486148834229, 0.07999222725629807, -0.004420078359544277, -0.03425069898366928, 0.00022451252152677625, -0.016922781243920326, 0.02071473002433777, 0.03674604371190071, -0.060088615864515305, -0.109312042593956, -0.058980923146009445, 0.04596490412950516, 0.0171799473464489, -0.04261664301156998, 0.07231800258159637, -0.008543274365365505, 0.06453775614500046, -0.007646644022315741, 0.04279324412345886, -0.059118177741765976, -5.176606022636696e-33, 0.024690285325050354, 0.007325130049139261, -0.009832832962274551, 0.05850822851061821, 0.000041500945371808484, 0.04703734070062637, 0.012418746948242188, 0.10340901464223862, 0.018558116629719734, -0.018619559705257416, 0.07684077322483063, 0.008948566392064095, -0.05783720314502716, -0.05002401024103165, 0.0066278791055083275, 0.021508246660232544, -0.07726366817951202, -0.011247263289988041, -0.06050968915224075, 0.023173097521066666, 0.02641785331070423, 0.072768434882164, -0.04831743985414505, 0.0682884082198143, -0.060700997710227966, 0.108576200902462, 0.041562579572200775, 0.019244462251663208, 0.06578219681978226, -0.06554325670003891, 0.0006844597519375384, -0.08028952777385712, -0.07971180975437164, 0.01884978450834751, 0.01888039894402027, 0.0037566612008959055, -0.010051465593278408, -0.009652771055698395, -0.0027542533352971077, 0.006819147150963545, 0.10203677415847778, -0.007872718386352062, -0.15007923543453217, 0.04006727784872055, 0.02458573691546917, 0.0158340223133564, -0.017013264819979668, -0.028914548456668854, -0.010143772698938847, -0.0022581827361136675, 0.01877221278846264, -0.04434538632631302, -0.11337244510650635, 0.03538456931710243, -0.025543274357914925, 0.0063989595510065556, -0.006034729070961475, -0.031074954196810722, 0.006091950926929712, 0.06305736303329468, -0.04912751540541649, -0.03497280180454254, -0.01613137125968933, 0.032087329775094986, -0.008090587332844734, -0.03336653858423233, -0.06307173520326614, 0.015520129352807999, 0.016781320795416832, 0.00850134901702404, 0.020812394097447395, 0.10967297852039337, 0.01922902651131153, -0.022825881838798523, -0.04095534235239029, 0.018081236630678177, 0.04121806100010872, -0.022553004324436188, 0.06631936877965927, -0.07672237604856491, -0.09460730850696564, -0.013592137955129147, 0.03416525200009346, 0.1396525800228119, 0.05478021502494812, 0.10211719572544098, 0.04506983608007431, 0.043652426451444626, 0.035392049700021744, -0.015198937617242336, 0.015199627727270126, 0.0659634917974472, 0.06474313139915466, 0.10604248940944672, -0.0013285605236887932, -5.290565141535808e-8, -0.007601309102028608, 0.006886358838528395, -0.010004599578678608, 0.0063178762793540955, -0.01941712386906147, -0.018337951973080635, -0.041163451969623566, -0.024059321731328964, -0.016462532803416252, 0.027355117723345757, 0.039552804082632065, 0.031160367652773857, -0.0759962871670723, 0.03313332796096802, -0.043721091002225876, -0.06476347148418427, 0.01928205043077469, 0.1592196524143219, -0.02291395142674446, 0.017174137756228447, -0.06378995627164841, -0.01031012088060379, 0.034912195056676865, -0.10988931357860565, 0.0025453693233430386, -0.07853008061647415, -0.08623046427965164, 0.018136629834771156, -0.007165323942899704, -0.0348554365336895, 0.007134090643376112, 0.03821864724159241, -0.02513819932937622, -0.01563960686326027, 0.06937462091445923, 0.05487872660160065, -0.03699036315083504, -0.08419813215732574, -0.028240351006388664, -0.02017231099307537, 0.01100347749888897, 0.03213838115334511, -0.0670061856508255, -0.01715940423309803, 0.050951890647411346, -0.017404397949576378, 0.07718174904584885, -0.08839546889066696, 0.006716595496982336, 0.11717259883880615, -0.029958870261907578, -0.020418792963027954, -0.06626825779676437, 0.03850112110376358, 0.03485763072967529, -0.060700930655002594, 0.022843124344944954, -0.10513614118099213, 0.10814882069826126, 0.06874145567417145, 0.09853152185678482, -0.06895699352025986, -0.04182364046573639, 0.08118350803852081 ]
csebuetnlp/banglabert
7bed1e381af5564564faadc9718f25c6116491e0
2022-05-10T05:17:06.000Z
[ "pytorch", "electra", "pretraining", "bn", "arxiv:2101.00204", "transformers" ]
null
false
csebuetnlp
null
csebuetnlp/banglabert
2,812
2
transformers
--- language: - bn licenses: - cc-by-nc-sa-4.0 --- # BanglaBERT This repository contains the pretrained discriminator checkpoint of the model **BanglaBERT**. This is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) discriminator model pretrained with the Replaced Token Detection (RTD) objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLP tasks in bengali. For finetuning on different downstream tasks such as `Sentiment classification`, `Named Entity Recognition`, `Natural Language Inference` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/banglabert). **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository uses this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below: ## Using this model as a discriminator in `transformers` (tested on 4.11.0.dev0) ```python from transformers import AutoModelForPreTraining, AutoTokenizer from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer import torch model = AutoModelForPreTraining.from_pretrained("csebuetnlp/banglabert") tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglabert") original_sentence = "আমি কৃতজ্ঞ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।" fake_sentence = "আমি হতাশ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।" fake_sentence = normalize(fake_sentence) # this normalization step is required before tokenizing the text fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = model(fake_inputs).logits predictions = torch.round((torch.sign(discriminator_outputs) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] print("\n" + "-" * 50) [print("%7s" % int(prediction), end="") for prediction in predictions.squeeze().tolist()[1:-1]] print("\n" + "-" * 50) ``` ## Benchmarks * Zero-shot cross-lingual transfer-learning | Model | Params | SC (macro-F1) | NLI (accuracy) | NER (micro-F1) | QA (EM/F1) | BangLUE score | |----------------|-----------|-----------|-----------|-----------|-----------|-----------| |[mBERT](https://huggingface.co/bert-base-multilingual-cased) | 180M | 27.05 | 62.22 | 39.27 | 59.01/64.18 | 50.35 | |[XLM-R (base)](https://huggingface.co/xlm-roberta-base) | 270M | 42.03 | 72.18 | 45.37 | 55.03/61.83 | 55.29 | |[XLM-R (large)](https://huggingface.co/xlm-roberta-large) | 550M | 49.49 | 78.13 | 56.48 | 71.13/77.70 | 66.59 | |[BanglishBERT](https://huggingface.co/csebuetnlp/banglishbert) | 110M | 48.39 | 75.26 | 55.56 | 72.87/78.63 | 66.14 | * Supervised fine-tuning | Model | Params | SC (macro-F1) | NLI (accuracy) | NER (micro-F1) | QA (EM/F1) | BangLUE score | |----------------|-----------|-----------|-----------|-----------|-----------|-----------| |[mBERT](https://huggingface.co/bert-base-multilingual-cased) | 180M | 67.59 | 75.13 | 68.97 | 67.12/72.64 | 70.29 | |[XLM-R (base)](https://huggingface.co/xlm-roberta-base) | 270M | 69.54 | 78.46 | 73.32 | 68.09/74.27 | 72.82 | |[XLM-R (large)](https://huggingface.co/xlm-roberta-large) | 550M | 70.97 | 82.40 | 78.39 | 73.15/79.06 | 76.79 | |[sahajBERT](https://huggingface.co/neuropark/sahajBERT) | 18M | 71.12 | 76.92 | 70.94 | 65.48/70.69 | 71.03 | |[BanglishBERT](https://huggingface.co/csebuetnlp/banglishbert) | 110M | 70.61 | 80.95 | 76.28 | 72.43/78.40 | 75.73 | |[BanglaBERT](https://huggingface.co/csebuetnlp/banglabert) | 110M | 72.89 | 82.80 | 77.78 | 72.63/79.34 | **77.09** | The benchmarking datasets are as follows: * **SC:** **[Sentiment Classification](https://aclanthology.org/2021.findings-emnlp.278)** * **NER:** **[Named Entity Recognition](https://multiconer.github.io/competition)** * **NLI:** **[Natural Language Inference](https://github.com/csebuetnlp/banglabert/#datasets)** * **QA:** **[Question Answering](https://github.com/csebuetnlp/banglabert/#datasets)** ## Citation If you use this model, please cite the following paper: ``` @inproceedings{bhattacharjee-etal-2022-banglabert, title = {BanglaBERT: Lagnuage Model Pretraining and Benchmarks for Low-Resource Language Understanding Evaluation in Bangla}, author = "Bhattacharjee, Abhik and Hasan, Tahmid and Mubasshir, Kazi and Islam, Md. Saiful and Uddin, Wasi Ahmad and Iqbal, Anindya and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Findings of the North American Chapter of the Association for Computational Linguistics: NAACL 2022", month = july, year = {2022}, url = {https://arxiv.org/abs/2101.00204}, eprinttype = {arXiv}, eprint = {2101.00204} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
[ -0.057380154728889465, -0.060250818729400635, -0.023454023525118828, 0.013787070289254189, -0.03129493072628975, 0.08502672612667084, 0.012080545537173748, -0.01737048104405403, -0.029612688347697258, 0.011899353936314583, -0.017538808286190033, -0.0446692518889904, -0.016265861690044403, 0.02511834353208542, 0.039793625473976135, 0.014798668213188648, 0.06581450253725052, 0.019735313951969147, -0.10574249178171158, -0.15355344116687775, -0.050820812582969666, 0.08640553802251816, -0.009735130704939365, 0.012961686588823795, 0.033846959471702576, -0.044958874583244324, -0.026203736662864685, -0.026734229177236557, 0.09223300218582153, -0.04281150549650192, 0.01354539580643177, 0.07397238910198212, 0.015007237903773785, 0.07499661296606064, 0.011225047521293163, 0.009881197474896908, 0.006314326077699661, 0.0077726771123707294, 0.06167984753847122, -0.06091216579079628, 0.008525785990059376, 0.018620088696479797, -0.06668101251125336, 0.00015499834262300283, 0.09709928929805756, -0.04432341456413269, -0.07759062200784683, 0.05359863117337227, -0.059754181653261185, -0.07367296516895294, -0.07702816277742386, -0.027008287608623505, 0.059481892734766006, 0.08520495891571045, -0.035624582320451736, -0.07440822571516037, 0.07753269374370575, -0.004349736031144857, 0.04092710465192795, -0.03505028411746025, -0.09789080172777176, -0.01830293796956539, -0.05969640985131264, -0.002514689229428768, 0.048560529947280884, -0.019273746758699417, -0.004207500256597996, 0.021121514961123466, 0.10375747084617615, 0.05045737698674202, -0.058638203889131546, 0.0033913443330675364, 0.010530207306146622, 0.04349091276526451, -0.06092539057135582, -0.004618879873305559, 0.05608014017343521, 0.03580227494239807, -0.01571277342736721, -0.11785996705293655, -0.020904541015625, 0.00439459877088666, 0.1357356160879135, 0.012851396575570107, 0.08332127332687378, -0.013342812657356262, -0.04576287046074867, 0.016400203108787537, 0.04991796240210533, -0.0009870283538475633, -0.012431249022483826, -0.04924978315830231, 0.07208134979009628, -0.0644574910402298, -0.05504986643791199, 0.002818361623212695, -0.003988738637417555, -0.05705653876066208, 0.05342091992497444, 0.06755544990301132, 0.009271016344428062, 0.0006981660844758153, -0.005411675665527582, -0.0969611257314682, -0.04968286678195, 0.021577488631010056, 0.03363574296236038, -0.031421661376953125, 0.0431387722492218, -0.08447711914777756, -0.008320393040776253, 0.06670288741588593, -0.019989516586065292, -0.02182442508637905, 0.0019554616883397102, -0.018529271706938744, -0.019886810332536697, -0.02731029875576496, 0.022345690056681633, 0.04263998195528984, -0.12157507985830307, -0.007482328452169895, 0.03902371972799301, 0.005402704700827599, 0.007754255551844835, -0.032925575971603394, 0.013830704614520073, 3.292555268549412e-33, 0.050902485847473145, 0.015402920544147491, -0.025668397545814514, -0.05759856849908829, 0.021863918751478195, -0.06582610309123993, -0.02496800385415554, -0.0165296271443367, -0.10462899506092072, -0.011974595487117767, 0.04157622531056404, 0.018657919019460678, -0.041805535554885864, 0.009216316044330597, -0.00928476918488741, -0.0323612205684185, -0.09008266776800156, -0.005373408552259207, -0.007241991814225912, 0.018025226891040802, 0.04397840052843094, 0.03169437497854233, 0.028004944324493408, 0.004491393454372883, 0.01628231629729271, 0.034045543521642685, 0.04929398000240326, -0.03251531347632408, -0.000046203742385841906, 0.07388249039649963, -0.04316852614283562, 0.030040772631764412, -0.0505976639688015, 0.039603546261787415, 0.00041689217323437333, -0.008329889737069607, -0.04351846128702164, 0.018544277176260948, -0.02986839786171913, -0.06768044829368591, 0.04773417115211487, 0.013040735386312008, -0.018683452159166336, -0.018283559009432793, -0.020437020808458328, 0.011123646050691605, -0.029960310086607933, -0.010089101269841194, 0.0344167985022068, 0.05278535187244415, 0.027565347030758858, 0.00567296938970685, -0.02168858051300049, -0.016851644963026047, 0.001352483406662941, 0.027355417609214783, 0.06480100005865097, -0.027363095432519913, 0.08467914909124374, 0.02581109292805195, 0.041548606008291245, -0.04304984584450722, -0.04943159222602844, -0.006894876714795828, 0.06276161223649979, -0.022121179848909378, -0.016366319730877876, 0.003585645230486989, 0.05480215325951576, -0.024123337119817734, -0.06239252910017967, -0.034338608384132385, 0.003755218582227826, 0.08890431374311447, 0.008724018931388855, 0.004764506593346596, 0.017155488952994347, -0.040802113711833954, 0.00433548865839839, 0.017675120383501053, -0.023581665009260178, -0.03258252143859863, -0.011211216449737549, -0.11690974980592728, 0.03320970758795738, -0.08679812401533127, -0.0009731511818245053, -0.06873877346515656, -0.010302637703716755, 0.0031397072598338127, 0.06846120953559875, 0.06350544840097427, 0.036103446036577225, 0.08597398549318314, -0.011780942790210247, -4.3468399887545976e-33, 0.01926097273826599, 0.03676006942987442, -0.09967588633298874, 0.08164665848016739, -0.09266386926174164, -0.06695394963026047, 0.01704658567905426, 0.03344154357910156, -0.014654934406280518, -0.04809502884745598, 0.004032219760119915, -0.039737917482852936, 0.019131837412714958, 0.052970435470342636, 0.04891670122742653, -0.014458825811743736, 0.029880866408348083, 0.08022985607385635, 0.057180531322956085, 0.10810983180999756, 0.018830077722668648, 0.03081316314637661, -0.14353898167610168, 0.039244383573532104, 0.007042207755148411, 0.058975812047719955, -0.05865572392940521, 0.06610695272684097, 0.01425341609865427, 0.005797399673610926, -0.04580867290496826, 0.018554100766777992, -0.10049240291118622, -0.05412065237760544, -0.08976519852876663, -0.07672690600156784, 0.014358876273036003, -0.03197610378265381, 0.028101719915866852, 0.12253022938966751, 0.053907740861177444, 0.10587328672409058, -0.11775153130292892, 0.012036829255521297, -0.004320994485169649, 0.032474130392074585, -0.08638878911733627, -0.027936222031712532, -0.021373670548200607, -0.06808273494243622, 0.06262427568435669, -0.01261355821043253, 0.0190113615244627, 0.004485504701733589, 0.017237460240721703, -0.07518818229436874, 0.0713374987244606, -0.07894939184188843, -0.04799111932516098, 0.012754217721521854, -0.11770901083946228, 0.036651208996772766, 0.0745525062084198, -0.05439840629696846, 0.03588062524795532, -0.035491254180669785, 0.04099057614803314, 0.0413537360727787, 0.010816402733325958, -0.05766010656952858, 0.02811525948345661, 0.023984991014003754, -0.009027574211359024, 0.027391040697693825, -0.11061061173677444, -0.033880140632390976, -0.0186906885355711, -0.04310716316103935, -0.04959771782159805, -0.023410528898239136, -0.0019151878077536821, -0.002787293866276741, 0.01197835337370634, 0.03677253797650337, 0.00386831839568913, 0.08305837213993073, 0.002750835847109556, 0.02209337428212166, 0.10157027095556259, 0.06298486888408661, -0.005693931132555008, 0.00929147657006979, 0.024920733645558357, 0.11591809242963791, 0.031270187348127365, -5.7613696924363467e-8, -0.10272090882062912, -0.06352347135543823, -0.11012300103902817, 0.07675289362668991, 0.02546638250350952, -0.038107212632894516, -0.06389833986759186, 0.008046897128224373, -0.03957103192806244, -0.06186043471097946, 0.020688772201538086, 0.05708041414618492, -0.0838979110121727, 0.0019991931039839983, 0.002999431686475873, 0.048367783427238464, 0.049878865480422974, -0.005543319042772055, -0.013210306875407696, -0.015267415903508663, 0.06974425911903381, 0.04304811358451843, 0.04308022931218147, 0.01811297982931137, -0.003006987739354372, -0.019822224974632263, -0.037044938653707504, 0.027274658903479576, -0.013707444071769714, -0.06981860846281052, -0.01219682302325964, 0.08105944097042084, -0.03273889049887657, -0.029809975996613503, 0.03909529745578766, 0.06843791157007217, 0.019310280680656433, -0.0834214836359024, 0.02092921733856201, 0.08587019145488739, 0.08322305232286453, 0.08666379004716873, -0.11727346479892731, -0.023375751450657845, 0.03189849853515625, -0.0035306981299072504, -0.0553552471101284, -0.08269494026899338, -0.03305850550532341, -0.09269920736551285, 0.029843296855688095, -0.031250037252902985, -0.043287139385938644, 0.09426933526992798, 0.015964828431606293, 0.07025613635778427, -0.049076542258262634, -0.02015869878232479, 0.016443684697151184, 0.04712015762925148, 0.07339880615472794, 0.025321543216705322, 0.06285899132490158, -0.02866826206445694 ]
hf-internal-testing/tiny-random-beit-pipeline
2c1f7ac7d33f3ad4f7b9f06aa045175423689ee2
2022-02-14T17:42:35.000Z
[ "pytorch", "beit", "transformers", "image-segmentation" ]
image-segmentation
false
hf-internal-testing
null
hf-internal-testing/tiny-random-beit-pipeline
2,811
null
transformers
--- pipeline_tag: image-segmentation --- Make the feature_extractor and model config agree.
[ -0.0018517638090997934, 0.004275538958609104, 0.011652423068881035, 0.014703059569001198, 0.11108927428722382, -0.0706043466925621, -0.02356758899986744, 0.013573753647506237, -0.08979233354330063, -0.060086339712142944, -0.006312366109341383, -0.05642683431506157, -0.029284726828336716, 0.086056187748909, 0.005883653648197651, 0.033163975924253464, -0.06206584349274635, 0.04598291590809822, -0.0218104999512434, -0.03157403692603111, 0.0235209409147501, 0.032470304518938065, -0.01343856193125248, -0.017296331003308296, 0.005714111961424351, 0.01878250762820244, -0.03682180121541023, 0.013994463719427586, 0.03044792078435421, -0.011803695932030678, 0.05189131572842598, 0.04411150515079498, 0.01568252220749855, 0.0248991958796978, 0.08490673452615738, 0.04993055388331413, 0.08088052272796631, -0.06724328547716141, 0.028041109442710876, -0.004986682441085577, 0.06815434992313385, -0.0669870674610138, -0.032262422144412994, -0.10106980800628662, 0.030534809455275536, -0.0032433676533401012, -0.042358167469501495, -0.07760054618120193, 0.01223944965749979, -0.002467063255608082, -0.099066361784935, -0.03849029541015625, -0.09187805652618408, 0.0857529491186142, 0.002325332025066018, 0.04871109127998352, 0.0014611766673624516, -0.08230392634868622, 0.033541761338710785, 0.028571270406246185, -0.03645049035549164, -0.019319705665111542, -0.03046516515314579, 0.10990232229232788, -0.01748872548341751, 0.013242166489362717, -0.06336596608161926, -0.06747237592935562, 0.09352648258209229, -0.05044057220220566, -0.0022444771602749825, 0.007322086952626705, -0.010046305134892464, -0.09765035659074783, -0.026187429204583168, -0.01682915911078453, 0.039487071335315704, 0.10937457531690598, 0.019169514998793602, -0.09601262211799622, -0.019138623028993607, -0.015813546255230904, 0.05382101237773895, -0.0057302978821098804, 0.027423443272709846, 0.015337220393121243, -0.0697152316570282, -0.04782377555966377, -0.013796991668641567, 0.02440510131418705, -0.05334306135773659, -0.07452716678380966, -0.0500832200050354, 0.030699705705046654, -0.02504599466919899, -0.03437420353293419, -0.012384600937366486, -0.05701543390750885, -0.008066643960773945, 0.031384099274873734, -0.11585229635238647, -0.029374541714787483, 0.09780699759721756, 0.0031785129103809595, 0.03296540305018425, 0.0375588983297348, 0.015184124000370502, 0.06893313676118851, -0.01734413579106331, -0.008192015811800957, 0.06118623539805412, 0.018098730593919754, 0.05753576382994652, -0.047540709376335144, 0.08179832994937897, 0.023841742426156998, -0.02464209869503975, -0.0094226635992527, 0.03442230820655823, 0.048114631325006485, -0.03504509851336479, 0.0010744382161647081, -0.04286941513419151, -0.0023496865760535, 0.04591021314263344, -0.027859307825565338, -0.09148912876844406, -2.842506787090537e-33, 0.024020126089453697, -0.07751047611236572, 0.03818962723016739, -0.04020324721932411, 0.020120127126574516, 0.05381928011775017, -0.007834331132471561, -0.07360304892063141, -0.027188431471586227, 0.0010823692427948117, -0.01831054501235485, -0.05544044077396393, -0.07064110785722733, 0.11790534853935242, 0.007394321728497744, -0.030444283038377762, 0.0011864975094795227, 0.0711025595664978, -0.00039294498856179416, 0.027232732623815536, 0.03478183224797249, -0.01631332002580166, -0.09809291362762451, -0.0022583373356610537, 0.007940810173749924, 0.02601500041782856, -0.03044532798230648, -0.04619389772415161, -0.04604018107056618, 0.026993731036782265, -0.013225364498794079, 0.026694253087043762, 0.10458970814943314, 0.06027848273515701, -0.0676824077963829, -0.011100885458290577, 0.019217416644096375, 0.03538667410612106, -0.03536486625671387, 0.01722744293510914, 0.06839203089475632, 0.027080951258540154, -0.03250128775835037, -0.0850197896361351, -0.017837919294834137, 0.03550044074654579, 0.028541777282953262, 0.003720065811648965, -0.03240131214261055, -0.020838715136051178, 0.05592762306332588, 0.0037877897266298532, 0.07269767671823502, -0.025210117921233177, -0.06393454968929291, -0.06488156318664551, 0.00756209809333086, 0.029952291399240494, 0.05641414597630501, -0.03919919207692146, -0.02403554879128933, 0.063511922955513, 0.005312575027346611, -0.02222614921629429, 0.013301219791173935, -0.039541471749544144, 0.05102602392435074, 0.06256218999624252, -0.026495948433876038, 0.06402808427810669, -0.09689000993967056, 0.08931190520524979, -0.06199146434664726, 0.005543455481529236, 0.10519994050264359, -0.06319082528352737, -0.028501765802502632, 0.024244796484708786, -0.005639947950839996, 0.06805042177438736, -0.1142527312040329, 0.05683431401848793, 0.00856046937406063, -0.023501893505454063, 0.007980143651366234, 0.08135741204023361, 0.05840342491865158, -0.05000491440296173, -0.01645619422197342, -0.033583883196115494, -0.014977009035646915, -0.013571099378168583, -0.04875693470239639, 0.023539820685982704, 0.0029281163588166237, 3.971044914043274e-34, 0.0939447209239006, 0.02982083521783352, 0.00023200432769954205, 0.014715887606143951, -0.02027842402458191, -0.03542773798108101, 0.06183125823736191, 0.07279577851295471, -0.002735759597271681, -0.07351408153772354, 0.05708938091993332, 0.012789200991392136, -0.10581915080547333, -0.061809271574020386, 0.014058337546885014, -0.08195043355226517, -0.07911348342895508, -0.11478818207979202, 0.02552019990980625, 0.0566011443734169, -0.04229667782783508, 0.03371446579694748, -0.009610920213162899, 0.06967797875404358, -0.05720024183392525, 0.01748625375330448, -0.008531911298632622, -0.014693202450871468, 0.025961173698306084, 0.007227616384625435, -0.08282910287380219, 0.04468511417508125, -0.07127285748720169, -0.030320698395371437, -0.06138095259666443, -0.010121745057404041, -0.061376992613077164, 0.029936980456113815, 0.09310367703437805, 0.058859288692474365, 0.014397356659173965, 0.04831767827272415, -0.08568830043077469, 0.03190011531114578, -0.043118175119161606, -0.003422258421778679, 0.18513180315494537, -0.005265498999506235, -0.10110567510128021, 0.0006290986202657223, -0.041819360107183456, 0.03886577859520912, -0.10007157176733017, 0.010596020147204399, -0.04172844812273979, 0.04379654303193092, 0.021131202578544617, -0.03653497248888016, -0.05107726529240608, -0.024165090173482895, -0.015613354742527008, 0.014778388664126396, -0.02892249822616577, -0.06438461691141129, 0.049778081476688385, -0.008686025626957417, -0.052613724023103714, 0.036456506699323654, -0.04938780516386032, -0.0023416222538799047, 0.007573142647743225, -0.01853124611079693, 0.05484699830412865, 0.13515354692935944, 0.02178531512618065, -0.07384497672319412, -0.033416785299777985, 0.009347491897642612, 0.07851411402225494, 0.025132447481155396, -0.0633184090256691, -0.024706291034817696, -0.0019323453307151794, 0.07577233016490936, 0.0827791765332222, 0.019428124651312828, 0.0005204564076848328, -0.03531303629279137, 0.025467678904533386, -0.07426106184720993, -0.010507924482226372, -0.02674323134124279, 0.012829530984163284, 0.10778150707483292, 0.00890432670712471, -2.637566431928917e-8, -0.0346621572971344, 0.005403639283031225, 0.013579360209405422, 0.0010516702895984054, -0.009090659208595753, 0.017252594232559204, 0.08234500885009766, 0.0820244699716568, 0.023153966292738914, -0.027141686528921127, 0.03641714155673981, 0.020432259887456894, -0.12096677720546722, 0.0490887351334095, -0.010014764964580536, 0.014064143411815166, 0.02194245532155037, 0.11388952285051346, -0.000014776355783396866, -0.0733785554766655, -0.03801038861274719, -0.0704435184597969, 0.00435370858758688, -0.021247349679470062, 0.06876936554908752, -0.03515497222542763, -0.04741036146879196, 0.059282973408699036, -0.015322904102504253, -0.02324739657342434, 0.022275811061263084, -0.0018003175500780344, -0.018287474289536476, 0.05654777213931084, 0.12611393630504608, 0.03829822316765785, -0.029642952606081963, -0.037993356585502625, -0.016433484852313995, -0.06952450424432755, 0.040721915662288666, 0.036218930035829544, 0.0379762202501297, -0.08544416725635529, -0.03520866855978966, 0.06609630584716797, 0.10023301839828491, 0.008694635704159737, -0.0009561622282490134, 0.08664517104625702, 0.05531409755349159, -0.031434495002031326, -0.003855656133964658, 0.08108893781900406, 0.025639859959483147, -0.06832663714885712, 0.07522108405828476, -0.04793339595198631, 0.03464892879128456, 0.033686425536870956, -0.00488666445016861, -0.018814781680703163, 0.014619506895542145, -0.06661773473024368 ]
kyriinx/DialoGPT-small-glyph
7ad4861bfe3bc8469bb6b89d18648d73dccb22a2
2022-04-27T16:35:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kyriinx
null
kyriinx/DialoGPT-small-glyph
2,803
null
transformers
--- tags: - conversational --- # Glyph DialoGPT model
[ -0.021028872579336166, -0.048823002725839615, 0.05880364030599594, -0.02266448177397251, -0.03793533518910408, -0.06103490665555, 0.1132744625210762, -0.0027484979946166277, 0.06442465633153915, -0.04379365220665932, 0.0015470505459234118, 0.006422173231840134, -0.005384101998060942, 0.015861274674534798, -0.0010629805037751794, -0.012872361578047276, 0.0024231451097875834, -0.058299340307712555, -0.07884690165519714, 0.060563795268535614, 0.03282953053712845, 0.1062905564904213, 0.047178637236356735, 0.010000495240092278, 0.018492504954338074, 0.022708486765623093, -0.09142853319644928, -0.011525575071573257, 0.08951593190431595, -0.007922638207674026, -0.01585223153233528, 0.028987959027290344, 0.044111452996730804, 0.06401737779378891, -0.07325976341962814, 0.0745796263217926, 0.05477142333984375, 0.027932634577155113, -0.02623249590396881, -0.0010773150715976954, -0.08680734038352966, -0.002532519865781069, -0.050377849489450455, 0.006687060464173555, 0.035082340240478516, -0.011486418545246124, -0.1069401353597641, -0.03424688056111336, -0.06170099601149559, 0.062355756759643555, -0.07569875568151474, -0.06838656961917877, 0.001428448362275958, 0.09442120790481567, 0.003461429849267006, 0.06186990439891815, -0.061177946627140045, -0.022867459803819656, 0.03571506589651108, 0.007697077002376318, -0.06941772252321243, -0.03826165571808815, -0.05384257808327675, 0.03295229747891426, -0.011904479935765266, 0.062280476093292236, 0.007079031318426132, -0.010250492952764034, -0.050580039620399475, 0.08552142232656479, 0.001490068738348782, -0.006082616746425629, -0.026822078973054886, -0.06705790758132935, -0.04459771513938904, 0.07030397653579712, -0.019304843619465828, -0.044426966458559036, 0.06352733820676804, -0.008056983351707458, 0.04979265481233597, -0.04767505079507828, 0.05751718580722809, 0.01984136924147606, -0.002672659931704402, -0.041813869029283524, -0.02070099487900734, -0.028804687783122063, -0.04721846058964729, 0.00266505335457623, -0.03574617579579353, -0.090229332447052, 0.10427236557006836, 0.018660930916666985, -0.021434804424643517, 0.03325662389397621, 0.011784601025283337, -0.1217048317193985, -0.0698280930519104, 0.09497637301683426, -0.02521228790283203, 0.028354009613394737, 0.07166986167430878, -0.10766737163066864, -0.035147834569215775, 0.04668364301323891, -0.013687457889318466, -0.01742774248123169, 0.011120655573904514, -0.022934984415769577, -0.04513927549123764, -0.0015611996641382575, 0.020245922729372978, -0.036456868052482605, 0.05349487066268921, -0.05690712109208107, 0.03059384413063526, -0.05632510781288147, 0.0810663104057312, -0.02225310169160366, -0.03946049511432648, 0.008353080600500107, -0.08561037480831146, -0.0014409126015380025, -0.003660057671368122, 0.01186713669449091, -0.05176765099167824, -1.7386702045523914e-33, 0.1255492866039276, 0.05294455215334892, 0.06093449890613556, 0.07243741303682327, 0.027984704822301865, 0.08054361492395401, -0.08751685917377472, -0.04903923720121384, -0.012613801285624504, -0.03865210711956024, 0.02223317325115204, -0.062113407999277115, -0.09765326231718063, 0.08399556577205658, 0.02496674284338951, -0.0013290763599798083, -0.06734377890825272, 0.031321004033088684, -0.02057719975709915, -0.06966947764158249, 0.015581842511892319, 0.021783549338579178, 0.015075867995619774, 0.024803917855024338, 0.08135411888360977, 0.045543964952230453, 0.04434769228100777, -0.08951921761035919, -0.01807512529194355, 0.05392559617757797, -0.04990845173597336, -0.005472405347973108, -0.048439621925354004, -0.001515531912446022, -0.003262227401137352, -0.022152205929160118, -0.011265059933066368, -0.06779736280441284, 0.015005549415946007, -0.059110067784786224, -0.03872539475560188, -0.04291491582989693, -0.011103353463113308, -0.05700482428073883, -0.00662102410569787, 0.08242370933294296, -0.05398271977901459, 0.004081272054463625, -0.03361939266324043, -0.010941347107291222, 0.00561251025646925, 0.03204772248864174, -0.03162631019949913, -0.02681432105600834, -0.017510419711470604, -0.04684620723128319, -0.032584287226200104, -0.023750105872750282, -0.01280513871461153, 0.0108485771343112, 0.01207764819264412, 0.06101397052407265, 0.10302285104990005, -0.08118536323308945, 0.10048379004001617, 0.006731967907398939, -0.12176422774791718, -0.015005185268819332, 0.017129993066191673, -0.005940638482570648, -0.017795270308852196, -0.018744392320513725, 0.02232622355222702, 0.07581721991300583, -0.06139057129621506, 0.010369589552283287, 0.0026464492548257113, -0.07568424195051193, 0.07888438552618027, 0.07795784622430801, -0.04580351337790489, -0.06998651474714279, -0.06633787602186203, -0.033070970326662064, -0.009224713779985905, -0.06399983912706375, 0.051110561937093735, -0.14119166135787964, -0.00307562667876482, 0.015615561045706272, 0.008996124379336834, 0.04347163066267967, -0.029359493404626846, -0.03184410557150841, -0.13358333706855774, -9.781147984883133e-34, 0.02214055322110653, -0.00389998871833086, -0.07920199632644653, 0.1140458732843399, 0.013835209421813488, -0.01971271075308323, 0.0444856621325016, 0.09032192081212997, 0.05066291242837906, -0.0053505501709878445, -0.0057052625343203545, 0.08129168301820755, 0.014218179509043694, -0.028430206701159477, 0.15105362236499786, 0.00922546349465847, 0.056054405868053436, -0.037556685507297516, 0.03678440302610397, 0.02152489311993122, 0.07938403636217117, -0.057428453117609024, -0.13816897571086884, 0.04036317765712738, 0.019324837252497673, -0.015398235060274601, -0.012923155911266804, 0.030893782153725624, 0.07465054094791412, -0.03613819554448128, -0.061005085706710815, 0.0725618377327919, -0.04488319158554077, -0.04823292791843414, 0.0232771597802639, 0.013981564901769161, -0.0021003223955631256, -0.022043947130441666, 0.023680154234170914, 0.004771154839545488, 0.06373763829469681, -0.04884978011250496, 0.03574654832482338, 0.0056287930347025394, 0.012360680848360062, -0.057577140629291534, -0.05187135562300682, -0.04485670477151871, -0.029580194503068924, -0.003045481164008379, 0.004114366136491299, -0.015478950925171375, -0.04703628644347191, -0.012315994128584862, -0.07127361744642258, -0.027437401935458183, 0.007405370473861694, -0.03825564682483673, -0.022539455443620682, 0.025587325915694237, -0.06467657536268234, -0.03444432467222214, 0.06266824156045914, -0.03575523942708969, 0.02913232147693634, -0.043292153626680374, -0.0038225268945097923, -0.042299531400203705, 0.03700309991836548, -0.04563785344362259, 0.10856995731592178, -0.013919719494879246, 0.03214757889509201, 0.05907094106078148, 0.04353925213217735, -0.013897128403186798, 0.014631143771111965, -0.018244963139295578, 0.01942250318825245, -0.10679518431425095, 0.04263616353273392, 0.03014303371310234, 0.045255232602357864, 0.08748763799667358, 0.05213717743754387, -0.025515297427773476, 0.003936914261430502, 0.12722735106945038, -0.005344539415091276, 0.04881930723786354, -0.020684441551566124, 0.03157314658164978, 0.02045956254005432, 0.0784277692437172, 0.015834039077162743, -2.470591020653501e-8, -0.07141368836164474, -0.03494824469089508, 0.01608218625187874, 0.007465212605893612, 0.013363635167479515, -0.002256508683785796, 0.06089930236339569, -0.0021961124148219824, -0.07629086822271347, -0.04453394189476967, 0.058605507016181946, 0.055364057421684265, 0.00015057540440466255, -0.019669516012072563, -0.04236476868391037, 0.08147349208593369, -0.08547982573509216, 0.05546879023313522, -0.02488507516682148, -0.03468439355492592, 0.05590398609638214, 0.01648925058543682, -0.07705257087945938, 0.11267641186714172, -0.014051659032702446, -0.0016477752942591906, -0.06977031379938126, 0.0805385634303093, -0.05581850931048393, 0.06446555256843567, 0.06506910175085068, 0.07327782362699509, -0.10511846095323563, -0.0013785563642159104, -0.04618542268872261, -0.01282845064997673, -0.015307819470763206, -0.039060354232788086, 0.01355750672519207, -0.061438608914613724, 0.02922956645488739, 0.00438606645911932, -0.0449923537671566, -0.013209749013185501, 0.06726720929145813, 0.021397368982434273, 0.02053324319422245, -0.0993841290473938, -0.02578783966600895, 0.040390968322753906, -0.005995620973408222, 0.01823352836072445, 0.015181348659098148, 0.041971076279878616, 0.0024072828236967325, -0.02999911457300186, 0.02719571441411972, 0.05143685266375542, 0.042193274945020676, 0.01627500168979168, 0.04896881431341171, 0.08503600209951401, -0.005710279103368521, -0.025001289322972298 ]
stas/tiny-wmt19-en-ru
cad41949841fed75b823799992d79dd7a35698c5
2021-05-03T01:47:47.000Z
[ "pytorch", "fsmt", "text2text-generation", "en", "ru", "dataset:wmt19", "transformers", "wmt19", "testing", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/tiny-wmt19-en-ru
2,797
null
transformers
--- language: - en - ru thumbnail: tags: - wmt19 - testing license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # Tiny FSMT en-ru This is a tiny model that is used in the `transformers` test suite. It doesn't do anything useful, other than testing that `modeling_fsmt.py` is functional. Do not try to use it for anything that requires quality. The model is indeed 30KB in size. You can see how it was created [here](https://huggingface.co/stas/tiny-wmt19-en-ru/blob/main/fsmt-make-super-tiny-model.py). If you're looking for the real model, please go to [https://huggingface.co/facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru).
[ -0.06982538849115372, 0.025074055418372154, -0.054299429059028625, 0.07121098786592484, 0.028842143714427948, -0.08647470921278, -0.05029912665486336, 0.1439344435930252, -0.08323586732149124, -0.001435029786080122, 0.09161300212144852, -0.033217187970876694, 0.008099931292235851, 0.01230110228061676, -0.033453866839408875, -0.006443431135267019, 0.03465753421187401, -0.040314093232154846, -0.0718214213848114, 0.014845429919660091, 0.011284620501101017, 0.0007961532101035118, 0.02913837879896164, -0.020234284922480583, -0.0005310800042934716, -0.026415782049298286, -0.014988123439252377, 0.030688976868987083, 0.04350294917821884, -0.11624579131603241, 0.05516023933887482, 0.07964474707841873, 0.0061933742836117744, 0.020626390352845192, 0.09038429707288742, 0.06189572066068649, 0.03966272994875908, -0.09371926635503769, -0.036706481128931046, -0.05072306841611862, 0.04637144133448601, 0.0006930699455551803, 0.027449557557702065, -0.03626205772161484, -0.008552806451916695, -0.034822847694158554, 0.05334660783410072, -0.01684374362230301, -0.04080786928534508, -0.05020624399185181, -0.026526235044002533, -0.0424702949821949, 0.003057624213397503, 0.08733462542295456, 0.025102976709604263, -0.06977257877588272, -0.02004186436533928, -0.05177086591720581, -0.0596659854054451, 0.03943229466676712, -0.03915098309516907, 0.0094514861702919, -0.10337012261152267, -0.03662509098649025, -0.02302512340247631, 0.03187814727425575, 0.021443702280521393, -0.1034214198589325, 0.036654554307460785, -0.05549351125955582, -0.006458754651248455, 0.0071124969981610775, -0.05083245411515236, 0.0680113211274147, 0.02230108343064785, -0.04715092107653618, 0.09538384526968002, 0.022907547652721405, 0.018626417964696884, -0.03745849058032036, -0.01530531607568264, -0.05392470955848694, 0.024581648409366608, -0.06215919926762581, 0.027738027274608612, 0.009381597861647606, 0.030506914481520653, 0.056985609233379364, 0.0007726231124252081, -0.02328992635011673, -0.030610568821430206, 0.03910062462091446, -0.09805954992771149, 0.07248040288686752, -0.025726724416017532, 0.04284023120999336, 0.037808384746313095, 0.0022438829764723778, -0.07837294042110443, 0.12541168928146362, 0.056835051625967026, 0.022739224135875702, 0.0998978391289711, 0.05075389891862869, -0.04486352577805519, -0.018497051671147346, 0.018000531941652298, 0.1272599995136261, -0.006519715767353773, -0.030789056792855263, 0.03279176354408264, 0.038712576031684875, -0.05303307622671127, -0.03316637501120567, 0.05234775319695473, -0.06152794137597084, -0.01457263994961977, -0.012582503259181976, -0.06404197961091995, -0.008010657504200935, 0.04002393037080765, 0.05493852496147156, -0.04573052003979683, -0.035290058702230453, -0.02203420363366604, 0.03563802316784859, -0.09670257568359375, 2.7167132795182053e-33, 0.06816717237234116, 0.09672900289297104, -0.012308108620345592, 0.02355867438018322, -0.016738224774599075, 0.06130426749587059, 0.03909086808562279, 0.024823928251862526, -0.07264826446771622, 0.009627709165215492, -0.03965580463409424, 0.024707170203328133, -0.03914778679609299, -0.015000655315816402, 0.06030648946762085, -0.04855504631996155, -0.035966090857982635, 0.026835313066840172, 0.013128780759871006, 0.037537556141614914, 0.08226878941059113, -0.000028125747121521272, -0.010712150484323502, -0.07089108973741531, -0.03671969845890999, 0.00025457169977016747, 0.036704301834106445, 0.020265739411115646, -0.05447130277752876, 0.04468873143196106, -0.05796165391802788, 0.04031152278184891, 0.014565368182957172, -0.04489289969205856, 0.010868389159440994, -0.02556932158768177, -0.07195962220430374, -0.11621371656656265, -0.06551238894462585, -0.12294050306081772, 0.056989796459674835, 0.03937728330492973, -0.07425357401371002, -0.017292624339461327, -0.033232904970645905, -0.03118837997317314, 0.05173901841044426, 0.008285487070679665, 0.034764364361763, 0.031210416927933693, 0.050557684153318405, 0.05589171499013901, -0.0519634485244751, 0.005894262809306383, -0.019866565242409706, 0.0702054426074028, 0.11759805679321289, -0.03341855853796005, 0.05621076747775078, 0.034202441573143005, 0.012729528360068798, -0.03363766521215439, 0.04953661561012268, 0.05521964654326439, 0.04586431384086609, 0.00027186761144548655, 0.028281424194574356, 0.04141302406787872, -0.019623393192887306, 0.09281767904758453, -0.022732993587851524, -0.024140695109963417, 0.0344519317150116, 0.004156153183430433, 0.048079848289489746, -0.09845899045467377, 0.09804604202508926, -0.05520116537809372, -0.04717006906867027, 0.05685710906982422, 0.013278774917125702, 0.025650914758443832, 0.05201799422502518, -0.08361133188009262, -0.03669523075222969, -0.050322845578193665, 0.03335769101977348, -0.007012969348579645, -0.043170955032110214, -0.07605575770139694, 0.018919669091701508, 0.012646334245800972, -0.02565639652311802, -0.045420996844768524, -0.051585614681243896, -2.0455596371284354e-33, 0.008959518745541573, 0.053059667348861694, -0.005187536124140024, 0.10200827568769455, 0.0031529210973531008, -0.07621438801288605, 0.03819965198636055, 0.15935634076595306, -0.011634571477770805, 0.013666315004229546, 0.13299161195755005, -0.05655288323760033, 0.020832331851124763, -0.11219149827957153, 0.10006796568632126, 0.007143883965909481, 0.009340882301330566, -0.1562010496854782, 0.06250390410423279, 0.03511824831366539, -0.00441882386803627, 0.1018250361084938, -0.038859762251377106, 0.05054425448179245, -0.11633459478616714, 0.036897506564855576, -0.03388616815209389, -0.004305690992623568, -0.008706213906407356, -0.02427075058221817, -0.025923846289515495, -0.05089129880070686, -0.05949362367391586, -0.0035217839758843184, -0.002203294076025486, -0.05031783878803253, 0.004941513761878014, 0.007278060540556908, 0.004460762720555067, 0.0072730123065412045, 0.027892660349607468, 0.08155401796102524, -0.0413203164935112, 0.0322330966591835, -0.05092032626271248, -0.02943568490445614, 0.020800350233912468, -0.06760121136903763, 0.07583283632993698, -0.03122316300868988, 0.04262328892946243, 0.013514804653823376, -0.050047218799591064, 0.020773712545633316, -0.041961900889873505, -0.0807463675737381, -0.042998723685741425, 0.05925525724887848, -0.021941564977169037, 0.010558762587606907, -0.03689345717430115, -0.04916919767856598, -0.04410966858267784, -0.028911462053656578, -0.03349009528756142, -0.053155090659856796, -0.028156615793704987, -0.006038502790033817, 0.03177643567323685, 0.0983150452375412, 0.04364491626620293, 0.01596667617559433, 0.07760528475046158, 0.03166535124182701, -0.014930048026144505, -0.034101054072380066, -0.005059143528342247, 0.06334628164768219, 0.12032491713762283, -0.01073654368519783, 0.009997944347560406, 0.05954798683524132, 0.016642102971673012, -0.01056417915970087, 0.09499511122703552, -0.0337212048470974, -0.03550117090344429, 0.06952877342700958, -0.0035708057694137096, 0.03818526118993759, -0.06340984255075455, 0.05669134855270386, 0.038926638662815094, 0.0621236152946949, 0.05205667018890381, -5.42975904238574e-8, 0.0010416648583486676, 0.033280931413173676, -0.06887932866811752, 0.046959735453128815, -0.0823562815785408, -0.05551014840602875, 0.005002652294933796, 0.023843618109822273, -0.012587185017764568, 0.07959453016519547, 0.01829960010945797, 0.0013015150325372815, -0.0993887186050415, 0.03586035594344139, -0.04374300315976143, -0.026323938742280006, -0.03397953882813454, 0.048069316893815994, -0.0434587188065052, -0.05607585608959198, -0.0380060039460659, 0.0428091362118721, 0.07458078116178513, -0.026305966079235077, 0.02977791056036949, 0.036152344197034836, -0.02401925064623356, 0.07251241058111191, -0.033764470368623734, -0.06025460734963417, -0.0021841914858669043, -0.007541824597865343, -0.04725399240851402, -0.02091670036315918, 0.007577619981020689, 0.08703014999628067, -0.07016078382730484, 0.045983485877513885, -0.015580225735902786, 0.007615839596837759, 0.06724472343921661, -0.022052569314837456, -0.03311699628829956, 0.005675154738128185, -0.02054816484451294, 0.01564447022974491, -0.04894689843058586, -0.06218034029006958, -0.025433171540498734, 0.026550639420747757, 0.049170542508363724, -0.011129477992653847, -0.055902354419231415, -0.01818900741636753, -0.06874129921197891, 0.034555479884147644, 0.009463711641728878, -0.02051004022359848, -0.0405702069401741, 0.009317640215158463, 0.053782809525728226, -0.04147905111312866, -0.04981677606701851, 0.03171149268746376 ]
Helsinki-NLP/opus-mt-fr-es
4bd0d3d212940704145e6a2699f4b93e6cfe8b61
2021-09-09T21:53:46.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-es
2,792
null
transformers
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-es * source languages: fr * target languages: es * OPUS readme: [fr-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-es/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-es/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-es/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.fr.es | 34.3 | 0.601 | | news-test2008.fr.es | 32.5 | 0.583 | | newstest2009.fr.es | 31.6 | 0.586 | | newstest2010.fr.es | 36.5 | 0.616 | | newstest2011.fr.es | 38.3 | 0.622 | | newstest2012.fr.es | 38.1 | 0.619 | | newstest2013.fr.es | 34.0 | 0.587 | | Tatoeba.fr.es | 53.2 | 0.709 |
[ -0.062440793961286545, -0.025204412639141083, 0.023285361006855965, -0.006202352233231068, 0.018268492072820663, 0.09799963235855103, -0.05648607388138771, 0.03955678269267082, 0.03456101194024086, -0.008148597553372383, 0.0040783025324344635, -0.044940412044525146, -0.07507983595132828, -0.023671496659517288, -0.026364237070083618, -0.01062558963894844, -0.03782614320516586, 0.0887444019317627, -0.0783781036734581, -0.026562796905636787, 0.04948318749666214, 0.026745866984128952, 0.030047377571463585, -0.022150473669171333, 0.09890078753232956, 0.08129063993692398, -0.10444149374961853, 0.003608357859775424, 0.09855837374925613, -0.04556342214345932, -0.012716862373054028, 0.014154129661619663, 0.05072227492928505, 0.08197340369224548, 0.03446195274591446, 0.07199827581644058, -0.009248977527022362, -0.07922978699207306, -0.03243988752365112, 0.04370032995939255, 0.030794722959399223, 0.05876680091023445, -0.034673601388931274, -0.010947441682219505, 0.047370802611112595, 0.002898323815315962, -0.08201964944601059, 0.03226526081562042, 0.014019397087395191, -0.001407154486514628, -0.11691103130578995, -0.01581074297428131, 0.007924634031951427, 0.0773700401186943, -0.07071759551763535, 0.04815462976694107, 0.05128873512148857, -0.022871021181344986, 0.07339378446340561, -0.026041219010949135, -0.12062962353229523, -0.03240673243999481, -0.09753405302762985, -0.0009914390975609422, -0.01174580492079258, -0.011676214635372162, 0.008759310469031334, 0.0618099682033062, -0.058241479098796844, 0.0635782927274704, -0.023898202925920486, 0.001746824593283236, 0.011662397533655167, 0.06040586158633232, -0.006330158561468124, 0.04799888655543327, -0.006192556582391262, -0.06040084734559059, -0.00391464913263917, -0.06796955317258835, 0.0014015933265909553, -0.0602039210498333, 0.06587312370538712, -0.011778540909290314, 0.08479129523038864, -0.002810211619362235, 0.03170298412442207, 0.002700382610782981, -0.016551531851291656, 0.045817237347364426, -0.06487292796373367, -0.032979775220155716, 0.004840996116399765, 0.02319989912211895, -0.00037782458821311593, 0.06002194806933403, 0.013428930193185806, 0.05399733781814575, 0.01646731048822403, 0.06871574372053146, 0.021096741780638695, 0.019853292033076286, 0.07915324717760086, -0.04048139601945877, -0.10865870118141174, -0.023018693551421165, 0.05734771862626076, 0.049107279628515244, -0.005279453005641699, -0.09236126393079758, 0.02564391680061817, -0.027478763833642006, -0.022596178576350212, -0.08783110976219177, 0.02578405849635601, -0.05407257750630379, -0.0019597443751990795, -0.024121999740600586, -0.01359351072460413, 0.0481477789580822, -0.02940150536596775, -0.007666796911507845, -0.03530559316277504, 0.003747181035578251, -0.04958002269268036, -0.05642097443342209, 0.0329107828438282, 1.5545350756388265e-33, 0.06284525990486145, -0.011491678655147552, -0.014451192691922188, -0.013804549351334572, -0.05446682870388031, -0.007290413603186607, -0.032082267105579376, 0.03904681280255318, -0.10712109506130219, 0.00009246203262591735, -0.01371247973293066, -0.007100497838109732, -0.08636824041604996, 0.012172795832157135, -0.02509162202477455, 0.006538794841617346, 0.07720859348773956, 0.0127768749371171, 0.04093524441123009, 0.030956175178289413, 0.0811699703335762, 0.044024545699357986, -0.0005302242934703827, -0.04003816470503807, -0.050757866352796555, 0.05625567212700844, 0.016689231619238853, -0.11475684493780136, -0.11539240926504135, 0.024461250752210617, -0.10089228302240372, 0.02346123196184635, -0.01692039892077446, 0.0076126111671328545, -0.013012386858463287, -0.02512962929904461, -0.007940027862787247, -0.012965594418346882, -0.036929450929164886, -0.08286382257938385, 0.004913437180221081, 0.013814201578497887, -0.013394873589277267, -0.05516565963625908, 0.026063844561576843, 0.012256097048521042, 0.002259145025163889, 0.010492641478776932, 0.11310131102800369, 0.019239667803049088, 0.011000148952007294, 0.0494995154440403, -0.06862648576498032, 0.00773521838709712, 0.029928000643849373, 0.10843028128147125, 0.06218511611223221, 0.010102478787302971, 0.022071894258260727, 0.03343122452497482, 0.07102545350790024, 0.023694174364209175, 0.019439131021499634, 0.021984169259667397, 0.09938494861125946, -0.0058518582955002785, -0.040309030562639236, -0.07312839478254318, 0.07949252426624298, 0.042949289083480835, -0.1433757096529007, -0.04646427929401398, 0.06270781904459, 0.07709494978189468, 0.06373089551925659, -0.02088758535683155, -0.024843472987413406, -0.02699453756213188, -0.027166152372956276, -0.026310238987207413, -0.06634537130594254, 0.02609359100461006, -0.0058358823880553246, -0.02385123260319233, -0.03626859560608864, 0.006607256829738617, 0.04673825576901436, -0.06064330041408539, -0.034214701503515244, 0.0026859864592552185, 0.036206137388944626, 0.05015555024147034, -0.08977221697568893, -0.019252069294452667, -0.0018113615224137902, -1.7708835252107223e-33, 0.09621290862560272, 0.016510361805558205, -0.040310222655534744, 0.07165651768445969, -0.025971658527851105, -0.07141856849193573, 0.0029191637877374887, 0.10755569487810135, 0.06211079657077789, 0.038630906492471695, 0.06427469849586487, -0.14796848595142365, 0.03542746976017952, -0.08545167744159698, 0.06984752416610718, -0.04592764750123024, -0.007104065734893084, 0.038068074733018875, 0.02861585095524788, 0.03355005010962486, 0.004725235048681498, 0.07584958523511887, -0.021269584074616432, 0.09180306643247604, -0.0026428750716149807, -0.016742467880249023, -0.019989117980003357, 0.06530670076608658, 0.0016610522288829088, -0.003621291136369109, 0.00852146279066801, -0.0015681823715567589, -0.1090657114982605, -0.01909664459526539, -0.08384179323911667, 0.04164307564496994, 0.031042583286762238, 0.044939473271369934, 0.04045751318335533, 0.0707915648818016, 0.0658414289355278, 0.07264712452888489, -0.042227040976285934, -0.04210449010133743, 0.01598876155912876, -0.027815846726298332, 0.012436735443770885, -0.0017134188674390316, 0.007726674433797598, -0.08540792018175125, 0.017788100987672806, 0.006463412661105394, -0.09295625239610672, -0.03259579464793205, -0.01602904684841633, -0.07966459542512894, -0.01360951829701662, -0.1449328511953354, -0.06377768516540527, -0.022098829969763756, -0.008200903423130512, 0.02787470445036888, -0.044341448694467545, -0.07806243747472763, 0.04344535619020462, -0.004906368441879749, 0.04298160597681999, 0.013939711265265942, 0.01929621212184429, 0.06327586621046066, -0.013963723555207253, -0.061049118638038635, 0.06816928833723068, 0.09611623734235764, 0.006573855876922607, -0.042579781264066696, -0.04530956223607063, 0.03531757742166519, 0.05283629521727562, -0.06573357433080673, -0.02290002629160881, 0.017715681344270706, 0.007144581992179155, 0.027718517929315567, 0.09853998571634293, 0.1045852079987526, 0.023818977177143097, -0.002578370738774538, -0.001671972800977528, 0.06078619509935379, 0.012715878896415234, 0.0180338304489851, 0.02303706854581833, 0.10425420105457306, 0.007760742213577032, -4.914072704309547e-8, -0.10056822746992111, 0.0050312126986682415, -0.10328544676303864, 0.04953533038496971, -0.04542197287082672, -0.07007813453674316, -0.059293344616889954, -0.029389847069978714, -0.0373966209590435, -0.0379832461476326, 0.0018607595702633262, 0.01746355928480625, -0.07703667879104614, -0.007494312711060047, -0.04666990786790848, 0.02201765961945057, -0.018293514847755432, 0.08945491164922714, -0.025556648150086403, -0.03539000451564789, 0.052427589893341064, 0.05070209130644798, 0.04559832438826561, -0.07533769309520721, -0.002642574952915311, 0.006716975476592779, -0.03981316462159157, 0.030150743201375008, 0.010487953200936317, 0.017427444458007812, 0.03742023557424545, 0.031453292816877365, -0.005500443279743195, -0.09271061420440674, 0.045157112181186676, 0.059553876519203186, 0.01087950263172388, -0.030847107991576195, -0.021595286205410957, 0.06798975169658661, 0.10376568138599396, 0.04817008972167969, -0.11579129099845886, 0.02099461667239666, 0.030559051781892776, -0.029710326343774796, -0.04048923775553703, -0.028966808691620827, 0.03881533071398735, -0.06508946418762207, 0.0782240703701973, -0.06674547493457794, -0.06821799278259277, 0.022090816870331764, 0.029858149588108063, 0.00662760017439723, 0.0593193843960762, -0.007158446125686169, 0.00001616620647837408, -0.026753172278404236, 0.04312968626618385, -0.02559608593583107, -0.013797528110444546, -0.01158073078840971 ]
sgugger/tiny-distilbert-classification
a30e0f7dc9dc24b0dacce98fd144e0a7ffb70a1a
2021-07-29T17:12:02.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
sgugger
null
sgugger/tiny-distilbert-classification
2,783
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
DeepESP/gpt2-spanish
1b935e39cf9893108bd2f4fb5317f48ae1c3ab5e
2021-10-19T08:52:48.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:ebooks", "transformers", "GPT-2", "Spanish", "ebooks", "nlg", "license:mit" ]
text-generation
false
DeepESP
null
DeepESP/gpt2-spanish
2,774
9
transformers
--- language: es tags: - GPT-2 - Spanish - ebooks - nlg datasets: - ebooks widget: - text: "Quisiera saber que va a suceder" license: mit --- # GPT2-Spanish GPT2-Spanish is a language generation model trained from scratch with 11.5GB of Spanish texts and with a Byte Pair Encoding (BPE) tokenizer that was trained for this purpose. The parameters used are the same as the small version of the original OpenAI GPT2 model. ## Corpus This model was trained with a corpus of 11.5GB of texts corresponding to 3.5GB of Wikipedia articles and 8GB of books (narrative, short stories, theater, poetry, essays, and popularization). ## Tokenizer The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for Unicode characters) and a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens. This tokenizer was trained from scratch with the Spanish corpus, since it was evidenced that the tokenizer of the English models presented limitations to capture the semantic relations of Spanish, due to the morphosyntactic differences between both languages. Apart from the special token "<|endoftext|>" for text ending in the OpenAI GPT-2 models, the tokens "<|talk|>", "<|ax1|>", "<|ax2|>" (..)"<|ax9|>" were included so that they can serve as prompts in future training. ## Training The model and tokenizer were trained using the Hugging Face libraries with an Nvidia Tesla V100 GPU with 16GB memory on Google Colab servers. ## Authors The model was trained by Alejandro Oñate Latorre (Spain) and Jorge Ortiz Fuentes (Chile), members of -Deep ESP-, an open-source community on Natural Language Processing in Spanish (https://t.me/joinchat/VoEp1bPrDYEexc6h). Thanks to the members of the community who collaborated with funding for the initial tests. ## Cautions The model generates texts according to the patterns learned in the training corpus. These data were not filtered, therefore, the model could generate offensive or discriminatory content.
[ -0.026082636788487434, -0.10646127909421921, 0.014615953899919987, 0.02526036649942398, 0.04547739773988724, -0.000042489493353059515, 0.012740319594740868, 0.042632270604372025, 0.09319906681776047, -0.018599100410938263, 0.04684177786111832, 0.007829070091247559, 0.014014819636940956, 0.003192880656570196, 0.05427471548318863, 0.0022987443953752518, -0.01666463166475296, 0.01578441821038723, -0.1035141870379448, -0.04052111878991127, 0.11944513022899628, 0.06579238921403885, 0.015450908802449703, 0.014627208933234215, 0.02358238771557808, 0.012391941621899605, 0.01580672897398472, -0.05761672928929329, 0.034097034484148026, -0.0015843327855691314, 0.02548632211983204, 0.023113276809453964, 0.002105784835293889, 0.035408638417720795, -0.035268623381853104, 0.03967266157269478, 0.04420137405395508, -0.055712901055812836, 0.01576627418398857, -0.02210926078259945, -0.027362758293747902, 0.009876633062958717, 0.005198008380830288, 0.0854201540350914, 0.10712479799985886, 0.0294407457113266, -0.022680802270770073, 0.03343089669942856, -0.055728524923324585, 0.00932501070201397, -0.10112199187278748, 0.007999420166015625, -0.014184446074068546, 0.03771475329995155, 0.013581868261098862, 0.010129452683031559, -0.028811616823077202, 0.04260851815342903, 0.033336833119392395, -0.007130684331059456, -0.08462637662887573, -0.05973878130316734, -0.06022557243704796, 0.0017880778759717941, -0.07103470712900162, -0.07784311473369598, 0.053951360285282135, 0.024547843262553215, -0.005432952661067247, -0.018094008788466454, -0.06333480030298233, 0.08708608895540237, 0.0016001228941604495, 0.09533938765525818, -0.002102666301652789, 0.0629534125328064, 0.006436711642891169, 0.009008705615997314, -0.01948339119553566, -0.10709241032600403, 0.06003013998270035, -0.010246740654110909, 0.10509287565946579, -0.010250277817249298, -0.018434492871165276, -0.036645177751779556, 0.03783074766397476, 0.07114522159099579, 0.012270170263946056, 0.11030525714159012, -0.03225528448820114, -0.014084032736718655, 0.12688076496124268, 0.018406519666314125, -0.0424543097615242, 0.005184623412787914, -0.0027546717319637537, -0.03969277814030647, 0.009308451786637306, 0.10300706326961517, 0.05258210375905037, 0.06158385053277016, 0.0166629645973444, -0.017888864502310753, -0.07480832189321518, -0.05212099477648735, -0.010334602557122707, 0.010694330558180809, 0.05428881570696831, -0.02362910844385624, 0.07988610118627548, 0.046418286859989166, -0.03494713827967644, -0.005800458136945963, -0.0022914400324225426, 0.0351945236325264, -0.031220829114317894, -0.023851875215768814, 0.08436527103185654, 0.06825771182775497, -0.06885965168476105, 0.030873281881213188, -0.024790339171886444, -0.0706019327044487, -0.06413429230451584, -0.02590770274400711, -0.03049449808895588, 2.7014441589140008e-33, 0.04804453253746033, 0.060444097965955734, -0.02914697863161564, 0.03921781852841377, -0.0400388166308403, 0.024382228031754494, -0.025596052408218384, -0.006778344977647066, -0.042858611792325974, -0.09763173013925552, -0.05246787145733833, 0.011414455249905586, -0.09396164119243622, 0.10618633031845093, 0.05060604587197304, 0.020071357488632202, -0.0544101782143116, 0.03876989334821701, 0.010713337920606136, -0.0012688596034422517, 0.04380926862359047, 0.05034356936812401, 0.06226590648293495, -0.021249961107969284, -0.06685949862003326, 0.042840681970119476, 0.004192693624645472, -0.1365301012992859, 0.004069341812282801, 0.047687824815511703, -0.10185978561639786, -0.047393690794706345, 0.04057624191045761, 0.04665578901767731, 0.02521476149559021, -0.06332185864448547, 0.09086958318948746, -0.11490420997142792, 0.025201210752129555, -0.06961239874362946, -0.015608205460011959, 0.06677138060331345, 0.09069664031267166, -0.03661659359931946, -0.05484504625201225, -0.05349460989236832, 0.05224712938070297, -0.00942278653383255, -0.008327445946633816, 0.051673807203769684, -0.018034419044852257, -0.0008894525817595422, -0.04378034546971321, 0.001077154534868896, 0.012389355339109898, 0.060460858047008514, -0.006931266747415066, 0.013295517303049564, 0.051952071487903595, 0.037119876593351364, 0.04817991331219673, 0.05785844847559929, 0.13763713836669922, 0.04370575770735741, 0.05007404834032059, 0.0756249949336052, -0.06477620452642441, -0.0065363612957298756, 0.08865532279014587, 0.018942346796393394, -0.05910586565732956, -0.039156969636678696, 0.022036762908101082, -0.020219145342707634, -0.009334259666502476, -0.018053550273180008, 0.05346530303359032, -0.09377791732549667, -0.06465089321136475, 0.07788529247045517, -0.06288040429353714, -0.0072088297456502914, -0.002106619765982032, -0.07458257675170898, -0.07877760380506516, 0.017397047951817513, 0.036532074213027954, -0.043542977422475815, 0.015381133183836937, -0.00461967708542943, -0.012703120708465576, -0.013936235569417477, -0.08079426735639572, -0.043044865131378174, 0.008866663090884686, -2.6965588778603803e-33, -0.041615989059209824, -0.0028345317114144564, -0.019760524854063988, 0.06509126722812653, -0.0728575587272644, -0.11435678601264954, -0.008717479184269905, 0.06620444357395172, -0.05306398868560791, -0.10027577728033066, -0.012434282340109348, -0.052106887102127075, 0.10541334748268127, -0.02399156615138054, 0.014872612431645393, -0.08552204072475433, 0.015388567000627518, -0.008511019870638847, 0.023340122774243355, 0.10218403488397598, 0.0020451608579605818, 0.00584468012675643, -0.08372224867343903, 0.052542250603437424, 0.0691479742527008, 0.007013786118477583, -0.030186301097273827, 0.04456702619791031, 0.028425373136997223, -0.0001609803002793342, 0.020236525684595108, 0.019357332959771156, -0.03957321122288704, -0.022129885852336884, -0.09407877177000046, -0.026444358751177788, 0.07896313816308975, 0.04922166466712952, -0.016031483188271523, 0.09063109755516052, 0.06469692289829254, 0.006080301944166422, -0.043694064021110535, -0.020424818620085716, -0.08736507594585419, 0.0541272796690464, -0.05467753857374191, -0.005575002636760473, 0.03664877265691757, -0.06079597771167755, 0.06483843922615051, 0.010159577243030071, -0.062467750161886215, -0.038624875247478485, -0.0023561299312859774, -0.13442014157772064, 0.0039189658127725124, -0.03024563379585743, -0.07736948132514954, -0.03732181340456009, -0.01894194260239601, -0.008712765760719776, 0.031907692551612854, -0.043697018176317215, 0.009920613840222359, -0.027581162750720978, -0.031188225373625755, 0.06502455472946167, -0.02205204963684082, 0.0054099420085549355, 0.010061237029731274, -0.04915205016732216, 0.03629318252205849, 0.030875686556100845, -0.07103648036718369, -0.004846465308219194, -0.05680015683174133, -0.08560900390148163, 0.005804131738841534, -0.04248795285820961, -0.02596914954483509, 0.036272212862968445, 0.046199776232242584, -0.017840590327978134, 0.08026659488677979, 0.004191526211798191, 0.008582019247114658, 0.06860306113958359, -0.023203309625387192, 0.06397923827171326, -0.01750396378338337, 0.046996358782052994, 0.016088644042611122, 0.1092238575220108, -0.023268673568964005, -4.928585539687447e-8, -0.10036026686429977, -0.08543693274259567, -0.05667533352971077, 0.043692369014024734, -0.0632617175579071, -0.05135186389088631, -0.044563859701156616, 0.05795900896191597, -0.004856989253312349, -0.04537979140877724, 0.026169562712311745, -0.0192934051156044, -0.10812611132860184, -0.03243906795978546, -0.023265480995178223, 0.0900031328201294, 0.0730813518166542, 0.033177152276039124, -0.006827827077358961, -0.007914028130471706, 0.035199277102947235, 0.02132420241832733, -0.03570567071437836, -0.05455496907234192, -0.0036273349542170763, 0.0026706706266850233, -0.06009562313556671, 0.042920585721731186, 0.026588737964630127, -0.0936935544013977, -0.023826679214835167, -0.00777853699401021, -0.05805236101150513, -0.08848080039024353, 0.0193537138402462, 0.05582818016409874, -0.04051310941576958, -0.03991267457604408, -0.015325214713811874, 0.0030240679625421762, 0.1387616991996765, 0.007900134660303593, -0.07168209552764893, 0.001889705192297697, 0.05936175957322121, -0.016901392489671707, -0.06355007737874985, -0.034098852425813675, 0.03696804866194725, -0.029944967478513718, 0.04081444814801216, 0.0010607787407934666, -0.013259132392704487, 0.026782726868987083, 0.028269195929169655, 0.012518307194113731, -0.04283798113465309, 0.001366466167382896, -0.005438411142677069, 0.053662557154893875, -0.0039635226130485535, 0.03480786830186844, 0.05947698652744293, -0.041941940784454346 ]
Ilyes/wav2vec2-large-xlsr-53-french
a3233bc9949d6da07e5e18660b004a6c120dc135
2022-02-09T08:28:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Ilyes
null
Ilyes/wav2vec2-large-xlsr-53-french
2,774
1
transformers
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French by Ilyes Rebai results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 12.82 --- ## Evaluation on Common Voice FR Test The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import re model_name = "Ilyes/wav2vec2-large-xlsr-53-french" model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda') processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“\%\‘\”\�\‘\’\’\’\‘\…\·\!\ǃ\?\«\‹\»\›“\”\\ʿ\ʾ\„\∞\\|\.\,\;\:\*\—\–\─\―\_\/\:\ː\;\,\=\«\»\→]' def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) resampler = torchaudio.transforms.Resample(48_000, 16_000) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Results WER=12.82% CER=4.40%
[ -0.10427672415971756, -0.07789427787065506, -0.06257486343383789, -0.05701051652431488, 0.007487901486456394, 0.031637392938137054, -0.01099720411002636, 0.013164527714252472, -0.022206496447324753, -0.07619675993919373, -0.013932320289313793, -0.11351020634174347, -0.041835494339466095, -0.014770581386983395, -0.02912643365561962, -0.08062663674354553, -0.017324671149253845, -0.011199799366295338, -0.05888839066028595, -0.11542852222919464, 0.10717026144266129, 0.07443837821483612, 0.09617389738559723, -0.06799381226301193, 0.037443291395902634, -0.00533986184746027, -0.08480978012084961, 0.05116195231676102, 0.06455423682928085, -0.01594349928200245, 0.10835319012403488, 0.07109024375677109, 0.06667893379926682, 0.04679929092526436, -0.022731000557541847, 0.023406801745295525, -0.001143097528256476, -0.06402834504842758, -0.022968897596001625, -0.020279739052057266, -0.03173762187361717, -0.010438581928610802, -0.005826783366501331, -0.07614254206418991, -0.01142231933772564, -0.05727344751358032, -0.1040753647685051, 0.0033929143100976944, -0.029052987694740295, 0.01617666706442833, -0.053620900958776474, -0.03665148466825485, 0.03802601620554924, 0.06499174982309341, -0.05586947128176689, 0.02338593080639839, 0.020697733387351036, 0.014822731725871563, 0.05327823385596275, -0.028492819517850876, -0.0571962334215641, -0.05592112988233566, -0.02076748013496399, -0.0022698615211993456, -0.06024487316608429, -0.01371361780911684, -0.04619020223617554, -0.025008387863636017, 0.0076524242758750916, -0.004731339868158102, -0.15337112545967102, 0.05905837193131447, 0.04334352910518646, 0.03173811733722687, 0.06249654293060303, 0.0007348828366957605, 0.041927993297576904, -0.029151564463973045, 0.04361428692936897, -0.09587433189153671, -0.018124472349882126, -0.06707581877708435, 0.034142132848501205, 0.008940394967794418, 0.12161523848772049, -0.001722589135169983, 0.06203225627541542, -0.0021565991919487715, 0.005808803718537092, -0.014414002187550068, -0.06741056591272354, -0.03558631241321564, -0.011253220029175282, 0.06239151582121849, -0.020676255226135254, 0.07915493845939636, 0.0161789208650589, 0.0664324015378952, -0.04934446141123772, 0.08850044757127762, -0.02356976829469204, -0.06552039086818695, 0.03894485533237457, -0.02277805097401142, -0.05027257651090622, -0.027824632823467255, -0.012505356222391129, 0.03988918662071228, 0.03840342536568642, -0.08169925957918167, -0.015147347003221512, 0.004497657995671034, -0.01782212220132351, -0.03575485572218895, 0.07440345734357834, 0.024943852797150612, -0.040897224098443985, -0.0647566094994545, -0.01047610118985176, 0.04524385556578636, -0.03970028832554817, -0.020794911310076714, -0.05192764475941658, 0.0038103158585727215, 0.02561328001320362, -0.019441066309809685, -0.019578387960791588, 7.349735082162166e-33, 0.00041856756433844566, 0.05483470484614372, 0.017502037808299065, -0.0359540730714798, -0.021692533046007156, -0.05402090772986412, 0.0024879348929971457, 0.047044627368450165, -0.01696513406932354, -0.010769815184175968, -0.04095037654042244, 0.04118970409035683, -0.07027759402990341, 0.049618929624557495, -0.046332865953445435, 0.022303901612758636, 0.018645422533154488, 0.009113926440477371, 0.015009059570729733, -0.013863048516213894, 0.1891242116689682, 0.035978011786937714, 0.04968404024839401, -0.0218791700899601, 0.0775059163570404, 0.02422206662595272, 0.06040683388710022, -0.06188971921801567, 0.0007594830822199583, 0.03993166610598564, -0.057679228484630585, -0.041844166815280914, 0.025010615587234497, 0.014059578999876976, 0.016017472371459007, -0.005748085677623749, 0.007965309545397758, 0.07229791581630707, -0.025491639971733093, -0.0345756858587265, 0.06019442155957222, 0.006844639778137207, -0.012019529938697815, -0.04675090312957764, -0.03547609969973564, -0.06514657288789749, -0.03977822884917259, 0.05558360740542412, 0.06241552159190178, 0.04847114905714989, -0.02424202859401703, -0.0001413780264556408, -0.026145251467823982, 0.04835693910717964, -0.00946824997663498, -0.01047044713050127, 0.0421409010887146, 0.0495884083211422, 0.03475750610232353, -0.054560884833335876, 0.017932284623384476, -0.013893038034439087, 0.0266868993639946, 0.016803737729787827, 0.009890733286738396, -0.06062954664230347, -0.02895171381533146, -0.027311250567436218, 0.0212746262550354, 0.011225209571421146, -0.038670867681503296, -0.020091470330953598, 0.05058157071471214, 0.03699229657649994, 0.0578923299908638, 0.005668159574270248, 0.009006248787045479, -0.0688425824046135, -0.03233702853322029, 0.04348445683717728, -0.02037474326789379, 0.07807647436857224, -0.022110654041171074, -0.0708402544260025, -0.02745130844414234, -0.055808667093515396, 0.025215743109583855, -0.11949019134044647, -0.03583724424242973, -0.04299090802669525, -0.07889307290315628, 0.020552432164549828, -0.03529876098036766, -0.03830220550298691, -0.021478749811649323, -9.00407954641939e-33, 0.03357204422354698, 0.15748271346092224, -0.015578295104205608, 0.10245849192142487, 0.010855800472199917, -0.004708050284534693, 0.12228426337242126, 0.09281373769044876, -0.011842029169201851, -0.05834878236055374, 0.0814988762140274, -0.10147354006767273, 0.05449005216360092, -0.03986291587352753, 0.08672290295362473, -0.018427478149533272, -0.06200790777802467, 0.028926685452461243, 0.06366918981075287, 0.07029663771390915, -0.020311851054430008, 0.07956528663635254, -0.038799624890089035, 0.05020105838775635, -0.09461921453475952, -0.032651230692863464, -0.013465024530887604, 0.02539583295583725, -0.019960874691605568, -0.017979957163333893, -0.04797576367855072, 0.05055071786046028, -0.1261005401611328, 0.09685034304857254, -0.032032113522291183, -0.0058523607440292835, 0.06681448966264725, -0.039767082780599594, -0.01935100555419922, 0.09158067405223846, 0.1018764078617096, 0.0503242090344429, -0.1061166301369667, -0.04139687120914459, -0.02603483758866787, -0.01003417931497097, -0.020494509488344193, -0.003904067212715745, -0.022404540330171585, -0.08226435631513596, 0.04569626599550247, -0.010224183090031147, -0.04864403232932091, 0.01624596305191517, -0.03138778731226921, -0.016126487404108047, 0.0400797575712204, -0.06185312569141388, -0.09089300781488419, 0.005628557875752449, -0.034983713179826736, -0.016376785933971405, -0.040883585810661316, -0.052022840827703476, 0.029154624789953232, 0.01804223656654358, -0.044739075005054474, 0.013505887240171432, 0.07067857682704926, -0.008540482260286808, 0.003914121072739363, 0.021800467744469643, 0.01644311286509037, -0.008811812847852707, -0.05190904811024666, 0.011771482415497303, -0.0958516076207161, -0.0944756418466568, -0.03851054608821869, -0.056589141488075256, -0.030112754553556442, 0.004456731025129557, 0.02889912761747837, 0.01298094168305397, 0.01794852502644062, 0.12132523953914642, 0.02304716780781746, 0.048145368695259094, -0.0002100559213431552, 0.01149112731218338, -0.03162534907460213, 0.07070320099592209, 0.011777915060520172, 0.06397653371095657, 0.05066172406077385, -5.5450882996410655e-8, -0.05735481530427933, 0.009464832954108715, 0.024350248277187347, 0.0013918994227424264, -0.07846792787313461, -0.0896957740187645, -0.010135950520634651, 0.007710770238190889, -0.015428115613758564, -0.011548482812941074, 0.027017148211598396, -0.007997940294444561, 0.00391922565177083, 0.03981829434633255, -0.0033858749084174633, 0.038181986659765244, -0.012274042703211308, 0.1475866734981537, -0.020514804869890213, -0.10344072431325912, 0.031984034925699234, 0.013154124841094017, 0.06507323682308197, 0.008243399672210217, 0.027064422145485878, -0.040086306631565094, -0.03698156028985977, 0.042053814977407455, -0.03388724848628044, 0.006847916636615992, -0.015752248466014862, 0.035968467593193054, 0.037321776151657104, -0.05588338151574135, 0.03789716586470604, 0.05641643702983856, -0.04568525031208992, -0.010535847395658493, -0.021298237144947052, 0.06690894067287445, 0.05223732069134712, 0.11279744654893875, -0.12583695352077484, -0.016627904027700424, 0.06980708241462708, -0.0013031598646193743, -0.019019395112991333, -0.06983274966478348, 0.04033910483121872, -0.013823219574987888, 0.028655430302023888, 0.07226637750864029, -0.04563586041331291, -0.0008473100606352091, 0.053067490458488464, 0.03574046865105629, -0.05198618769645691, -0.0003030335938092321, 0.022228144109249115, 0.0047628069296479225, 0.009856952354311943, 0.04681108891963959, -0.031505655497312546, -0.07211870700120926 ]
juliensimon/reviews-sentiment-analysis
7086631c39dcbb051d17ad01d07d747073383882
2022-05-03T09:25:01.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:generated_reviews_enth", "transformers", "sentiment-analysis" ]
text-classification
false
juliensimon
null
juliensimon/reviews-sentiment-analysis
2,773
1
transformers
--- language: - en tags: - distilbert - sentiment-analysis datasets: - generated_reviews_enth --- Distilbert model fine-tuned on English language product reviews A notebook for Amazon SageMaker is available in the 'code' subfolder.
[ -0.10655969381332397, -0.08960875868797302, -0.07410435378551483, 0.023430628702044487, 0.07335308194160461, -0.008552580140531063, 0.018859682604670525, 0.033899858593940735, -0.02217845432460308, -0.010008522309362888, 0.05062231793999672, 0.026879969984292984, 0.018879512324929237, -0.03864666074514389, 0.05776691064238548, 0.10051534324884415, -0.029338104650378227, -0.020942779257893562, -0.08330544829368591, -0.0877644419670105, 0.008181571029126644, 0.03917056322097778, 0.005866515450179577, 0.11057277023792267, 0.012087909504771233, -0.011014893651008606, -0.032238785177469254, 0.05399954319000244, 0.018610868602991104, -0.06114698573946953, 0.06669269502162933, -0.00034693864290602505, 0.052850112318992615, 0.07745356112718582, 0.009399657137691975, 0.031852006912231445, -0.0009836818790063262, -0.06723558902740479, 0.029180267825722694, 0.002103232778608799, -0.07257430255413055, 0.03719683736562729, -0.07722325623035431, 0.014238500036299229, 0.07483803480863571, -0.016016867011785507, -0.04816348850727081, 0.0062353904359042645, -0.03517564758658409, -0.007398281712085009, -0.0894927978515625, -0.00003618189657572657, 0.006816535256803036, -0.011083169840276241, 0.021790826693177223, -0.01741975173354149, -0.01170680858194828, -0.03749755397439003, 0.05154522508382797, -0.05114646628499031, 0.060200098901987076, -0.06600338965654373, 0.007581774145364761, 0.05048416927456856, -0.06931625306606293, 0.0396554060280323, -0.05054696276783943, 0.056037597358226776, -0.02229505218565464, -0.04603878781199455, -0.01596754789352417, -0.043989747762680054, 0.01884605549275875, 0.10358654707670212, 0.007507129106670618, 0.015114150941371918, 0.047365203499794006, -0.02800580859184265, 0.0016938531771302223, -0.07056812196969986, -0.05041424185037613, -0.005926674231886864, -0.03309224173426628, 0.059466343373060226, 0.015493601560592651, -0.1021292433142662, 0.10743244737386703, 0.03330007568001747, 0.053161755204200745, 0.009020867757499218, -0.0019250219920650125, -0.08476033806800842, 0.053016506135463715, 0.01156823243945837, -0.08144158124923706, 0.040781136602163315, 0.029410438612103462, -0.06179165840148926, -0.007099297363311052, 0.10018026828765869, 0.0035797273740172386, 0.035257723182439804, 0.024240346625447273, -0.06845329701900482, -0.08446504920721054, -0.006939406506717205, 0.02034466154873371, 0.07571146637201309, 0.05071862414479256, -0.05836211144924164, -0.00371980806812644, 0.00831913948059082, -0.0012295391643419862, -0.057965219020843506, 0.03743860125541687, -0.05216292291879654, 0.010950278490781784, -0.007699201814830303, 0.08298973739147186, 0.10542111098766327, 0.014353590086102486, 0.06016800180077553, 0.06582451611757278, -0.06377368420362473, -0.07461007684469223, 0.017598723992705345, -0.05303365737199783, -5.510009464979506e-34, -0.00047486653784289956, -0.036202989518642426, -0.039468709379434586, -0.009234166704118252, -0.021715376526117325, -0.004736391827464104, -0.02079654484987259, 0.007550003007054329, -0.09746795147657394, -0.05732960253953934, 0.03193599730730057, 0.06346394866704941, -0.05477098748087883, 0.12442389875650406, -0.03667347878217697, 0.0036811213940382004, 0.031082630157470703, 0.022921357303857803, 0.019152626395225525, -0.010919995605945587, 0.034559037536382675, 0.006039596162736416, 0.016179855912923813, 0.021111726760864258, -0.011488320305943489, -0.02958633564412594, 0.061869196593761444, -0.021954476833343506, 0.07028725743293762, 0.04691256582736969, -0.005513689015060663, 0.012867811135947704, 0.006385236047208309, -0.0282759852707386, -0.0214859452098608, -0.005918622948229313, -0.10877607017755508, 0.011583122424781322, 0.08809308707714081, -0.045051209628582, 0.016122328117489815, 0.058334287256002426, -0.0483953095972538, 0.024106021970510483, 0.008146327920258045, 0.06189633160829544, 0.03905734419822693, 0.044336266815662384, 0.08709922432899475, -0.045749738812446594, -0.07417842000722885, -0.03434706851840019, 0.08572101593017578, -0.04390290379524231, -0.014168559573590755, -0.016048895195126534, 0.03041796013712883, -0.02435428276658058, 0.05411364138126373, -0.04481692612171173, -0.040928635746240616, 0.09903973340988159, 0.03168325498700142, -0.1409095972776413, -0.03125058859586716, -0.005073781590908766, 0.028551725670695305, 0.06399817019701004, 0.010867628268897533, 0.03429502621293068, -0.11183036863803864, 0.06331723928451538, -0.006173432804644108, 0.055382922291755676, -0.03654538467526436, -0.02747572399675846, -0.052394431084394455, -0.029085684567689896, -0.010505836457014084, -0.024869035929441452, -0.12044207006692886, -0.052880559116601944, -0.014863355085253716, 0.055812690407037735, -0.06143423914909363, -0.04801718518137932, -0.028111005201935768, 0.003312736516818404, 0.018600497394800186, -0.030188733711838722, -0.05455274507403374, 0.06492564082145691, 0.014264354482293129, -0.0730505958199501, 0.0045834253542125225, -1.2388930774304529e-33, -0.06824839115142822, -0.08064820617437363, -0.09227566421031952, 0.10057460516691208, -0.03006768599152565, -0.0025838189758360386, -0.039315707981586456, 0.07101111114025116, 0.07229022681713104, 0.030100002884864807, 0.03065507672727108, -0.1003991886973381, -0.03806697204709053, -0.007234659511595964, 0.08682646602392197, 0.023012148216366768, -0.04555043578147888, -0.006917452439665794, 0.0020573448855429888, 0.01834038458764553, -0.062120579183101654, 0.029288550838828087, -0.026032762601971626, 0.018343061208724976, 0.05229726433753967, 0.05097781866788864, -0.005368335638195276, 0.024089928716421127, 0.024124784395098686, -0.02648822031915188, 0.025738826021552086, -0.012708812020719051, -0.06635307520627975, 0.07411732524633408, -0.08524487912654877, -0.04519939050078392, 0.03292158618569374, -0.08467604219913483, 0.009258273988962173, 0.046750571578741074, 0.07326997816562653, 0.07247746735811234, 0.04257978871464729, 0.014148459769785404, -0.03312547504901886, 0.0019926256500184536, -0.05726886913180351, -0.01898612640798092, -0.044575102627277374, -0.05602771416306496, 0.020861079916357994, 0.01559226680546999, -0.07605408877134323, -0.05365622416138649, -0.056439924985170364, -0.04256276786327362, -0.0007881829515099525, 0.008471010252833366, -0.010547517798841, 0.012933247722685337, -0.0860857367515564, -0.0008899294189177454, 0.07075803726911545, -0.013919596560299397, -0.06385935097932816, -0.06517089903354645, -0.022927070036530495, 0.029647311195731163, -0.02622784674167633, -0.030676566064357758, 0.11056873202323914, 0.021868040785193443, -0.03253497555851936, -0.01669211871922016, -0.023882122710347176, 0.08528844267129898, 0.013929495587944984, -0.024837035685777664, 0.0016937582986429334, -0.09147283434867859, 0.060461319983005524, -0.010033277794718742, 0.05365598201751709, 0.02965925633907318, 0.019687602296471596, -0.028273819014430046, -0.06559870392084122, 0.035568445920944214, -0.03399716317653656, -0.026796186342835426, -0.01749034970998764, -0.03899829089641571, 0.018615098670125008, 0.09942552447319031, 0.03954208269715309, -3.1253790666596615e-8, -0.04635726287961006, -0.08532444387674332, 0.0005029167514294386, 0.128260537981987, 0.009648939594626427, -0.021669737994670868, 0.051343392580747604, 0.09615380316972733, -0.009509646333754063, 0.0734410285949707, 0.07331017404794693, 0.015772143378853798, -0.1411408931016922, -0.0007440587505698204, -0.0403461828827858, 0.05507310479879379, 0.010000975802540779, 0.12343193590641022, 0.037310320883989334, 0.005116741172969341, 0.08069097995758057, 0.03599948436021805, 0.021201293915510178, -0.017268028110265732, 0.05712644010782242, -0.030809784308075905, -0.040697529911994934, -0.005206031259149313, -0.014859311282634735, -0.05666784197092056, 0.09119506180286407, 0.009100613184273243, -0.029969699680805206, -0.07318483293056488, 0.05511702597141266, 0.04566957429051399, -0.06463918834924698, -0.017247097566723824, -0.05083387345075607, 0.031477198004722595, 0.033244308084249496, 0.04035031050443649, -0.09792948514223099, -0.0675964206457138, 0.02123342454433441, -0.036665432155132294, -0.004876782186329365, 0.008005371317267418, -0.011418038979172707, 0.0014371799770742655, 0.008179105818271637, -0.07554926723241806, 0.04124156013131142, -0.0021770752500742674, -0.038525696843862534, 0.06285545229911804, -0.05637957900762558, -0.1267043799161911, 0.02543879672884941, 0.002213369822129607, 0.038481321185827255, 0.025465210899710655, 0.09392551332712173, 0.02250414341688156 ]
microsoft/layoutlm-large-uncased
1e7d50dced3cdfea3a3d63c610e2aab36933dbef
2021-08-11T05:28:26.000Z
[ "pytorch", "tf", "layoutlm", "arxiv:1912.13318", "transformers" ]
null
false
microsoft
null
microsoft/layoutlm-large-uncased
2,773
4
transformers
# LayoutLM Multimodal (text + layout/format + image) pre-training for document AI [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://aka.ms/layoutlm) ## Model description LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers) ## Training data We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings. * LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters * LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters **(This Model)** ## Citation If you find LayoutLM useful in your research, please cite the following paper: ``` latex @misc{xu2019layoutlm, title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding}, author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou}, year={2019}, eprint={1912.13318}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.03517979383468628, 0.04170338064432144, 0.011754426173865795, 0.01659846119582653, 0.02433745376765728, 0.0198415108025074, -0.05277504771947861, 0.011934496462345123, -0.003785250708460808, -0.025287169963121414, 0.05691036954522133, 0.03305622562766075, 0.04870953783392906, 0.029094738885760307, -0.02296903170645237, -0.027341173961758614, 0.04557483643293381, 0.021809183061122894, -0.10870909690856934, 0.0382225476205349, 0.04910099506378174, 0.013605069369077682, 0.09633424133062363, -0.06020805984735489, 0.025403093546628952, 0.1010117307305336, -0.03130302578210831, -0.04074963554739952, 0.04773438349366188, -0.05781271681189537, 0.051281172782182693, 0.0703294649720192, 0.08265305310487747, 0.12215334177017212, 0.024390650913119316, 0.057156797498464584, -0.02199549414217472, 0.04349563643336296, 0.05324561893939972, -0.009701097384095192, -0.0633632242679596, 0.017815856263041496, -0.010886458680033684, -0.025284506380558014, 0.13310065865516663, 0.03805244341492653, -0.08044510334730148, -0.04653402790427208, -0.02752823755145073, 0.02014285698533058, -0.09401978552341461, 0.05594273656606674, -0.000523704627994448, 0.06249966099858284, -0.0026654351968318224, 0.02478121966123581, 0.07066584378480911, 0.03748219460248947, -0.04521038755774498, 0.02611670270562172, -0.030625194311141968, -0.08446338027715683, -0.048590321093797684, 0.00605727219954133, 0.03454206883907318, 0.06325071305036545, -0.025773627683520317, -0.039214327931404114, 0.003923378884792328, -0.08439148217439651, -0.06936018913984299, 0.05330698937177658, 0.006501161493360996, 0.0011803882662206888, 0.0166208166629076, 0.023201165720820427, 0.021353911608457565, 0.034802597016096115, 0.02562812902033329, -0.19641448557376862, 0.053999993950128555, 0.05181111767888069, 0.10292534530162811, -0.011019358411431313, 0.0327008031308651, -0.03898049145936966, -0.04224126785993576, 0.058007847517728806, -0.03312039375305176, 0.03988855332136154, 0.05454019829630852, -0.06583425402641296, -0.05311799794435501, 0.05773498862981796, -0.06191382184624672, 0.01805051416158676, 0.035070087760686874, -0.06529207527637482, -0.024383237585425377, 0.01294990535825491, 0.05767298489809036, -0.003824744140729308, -0.01218443363904953, 0.01670820638537407, 0.008791202679276466, -0.06718366593122482, 0.09669411927461624, -0.06675413995981216, 0.03357016295194626, -0.06947973370552063, 0.047416869550943375, -0.04923621937632561, -0.14192621409893036, -0.026555698364973068, -0.02633742243051529, -0.022124022245407104, 0.024576425552368164, 0.024028541520237923, 0.02055039256811142, -0.0064522637985646725, -0.06338028609752655, -0.028830457478761673, 0.013273132033646107, 0.0036365329287946224, -0.02767452411353588, -0.0963444635272026, -0.04484408348798752, 4.532641197239461e-33, 0.030292708426713943, -0.012095794081687927, -0.06537355482578278, 0.026907846331596375, 0.033536024391651154, -0.023925840854644775, -0.007109840866178274, -0.027750670909881592, -0.009655661880970001, -0.0481855571269989, -0.03386989235877991, -0.024887217208743095, -0.04282281547784805, 0.07825987040996552, -0.02334168367087841, 0.002228829078376293, -0.10325738787651062, 0.07084471732378006, 0.011483118869364262, 0.041196271777153015, 0.07717501372098923, -0.030587436631321907, 0.052164677530527115, -0.031245678663253784, 0.04746087267994881, 0.0174504816532135, 0.030246131122112274, -0.07694222778081894, -0.06120957061648369, 0.00857812725007534, -0.08448459208011627, -0.031899306923151016, 0.020028801634907722, 0.0038696429692208767, 0.03159451484680176, -0.0012120382161810994, 0.012655870988965034, -0.038836732506752014, -0.006506503559648991, -0.01407180167734623, -0.022770902141928673, 0.030844470486044884, 0.08644084632396698, -0.1291586309671402, -0.060410719364881516, 0.003910872153937817, -0.02382919378578663, 0.0616774782538414, 0.013466293923556805, -0.0275358185172081, -0.015222628600895405, 0.05944697931408882, -0.038941364735364914, -0.08249640464782715, 0.004925816785544157, -0.00782768428325653, 0.029475919902324677, 0.015043778344988823, 0.09455213695764542, 0.04793039709329605, 0.02036806382238865, 0.0548614002764225, -0.037811946123838425, 0.08217668533325195, -0.025509700179100037, -0.01327546127140522, -0.048323553055524826, -0.04240715876221657, 0.05442153662443161, -0.06619704514741898, -0.027073673903942108, -0.0010862174676731229, -0.025176791474223137, -0.07613898813724518, 0.04230111464858055, 0.0001229985209647566, -0.0014711320400238037, -0.031043581664562225, -0.021294046193361282, 0.033285945653915405, -0.03412679582834244, 0.0699756070971489, 0.0274818055331707, -0.1120811402797699, -0.07646481692790985, 0.04574394226074219, 0.080960214138031, -0.13425599038600922, -0.01869809255003929, -0.01548229530453682, 0.03419317677617073, 0.0009437809349037707, -0.060014694929122925, -0.008637881837785244, 0.059451084583997726, -4.1701216781817444e-33, 0.07323626428842545, 0.05124581977725029, -0.03941469267010689, -0.017731325700879097, 0.005638111848384142, 0.010028420947492123, 0.05640716850757599, 0.10476382076740265, 0.01100020669400692, -0.05267736315727234, 0.02684294804930687, -0.006482643075287342, -0.07829287648200989, -0.037891022861003876, -0.03915846720337868, 0.0052187819965183735, 0.024998437613248825, 0.02023327723145485, 0.07962876558303833, 0.04239770397543907, 0.011758249253034592, 0.05773632973432541, -0.11071044951677322, 0.07467016577720642, -0.023655058816075325, 0.05212916433811188, -0.020754970610141754, 0.044058386236429214, -0.01013868860900402, 0.03983351215720177, 0.0018406390445306897, -0.04025479778647423, -0.026903318241238594, 0.025051439180970192, -0.022174721583724022, 0.013338402844965458, -0.0075983707793056965, 0.012018480338156223, -0.062215838581323624, 0.09891221672296524, 0.06786885112524033, 0.03036271594464779, -0.11553850769996643, -0.004389723762869835, -0.037311773747205734, -0.03196154907345772, -0.05455492436885834, 0.04598772153258324, 0.04807839170098305, 0.0591341108083725, 0.015799835324287415, 0.017933713272213936, -0.014827395789325237, -0.04027971252799034, -0.032672811299562454, -0.0362418107688427, -0.008235129527747631, -0.07296302914619446, -0.05827149376273155, -0.039874784648418427, -0.001529479632154107, 0.019379297271370888, -0.055438827723264694, 0.013389740139245987, 0.05534469336271286, -0.05823676288127899, -0.03487321734428406, -0.10576832294464111, -0.06068693846464157, 0.020889900624752045, -0.057242363691329956, -0.07555390149354935, 0.025566529482603073, 0.003276980947703123, 0.08978051692247391, 0.031792473047971725, -0.006599455140531063, 0.006907060742378235, -0.013700331561267376, -0.030279776081442833, -0.08661229908466339, 0.02849769964814186, -0.00988907739520073, 0.09479973465204239, 0.08129347860813141, 0.12387535721063614, -0.01296412292867899, -0.006017983425408602, 0.0408107154071331, 0.03225356340408325, -0.04665059968829155, 0.03280184045433998, 0.054196104407310486, 0.071769580245018, 0.0012329051969572902, -5.12540658803573e-8, -0.07575272768735886, -0.060958411544561386, -0.008728938177227974, -0.03864531219005585, -0.02820807695388794, -0.0157448910176754, 0.033885274082422256, 0.09785833209753036, -0.047780591994524, -0.09023236483335495, 0.07514144480228424, 0.011248395778238773, -0.12335343658924103, -0.04140466824173927, -0.00980229303240776, 0.03345536068081856, 0.0449257455766201, 0.0012594959698617458, -0.030591150745749474, -0.047621142119169235, 0.08503574877977371, -0.07429668307304382, 0.040661316365003586, -0.03847438842058182, 0.018934287130832672, 0.03087630495429039, -0.03218533471226692, 0.0535423643887043, -0.007674666587263346, -0.05987754091620445, 0.030044805258512497, -0.02913631685078144, 0.057272378355264664, 0.008146969601511955, 0.05728033930063248, 0.03419939801096916, 0.08324321359395981, -0.010144737549126148, 0.003552877577021718, 0.01921749860048294, -0.008116164244711399, -0.02790595218539238, -0.04261881113052368, 0.009642419405281544, 0.12879572808742523, -0.014840913005173206, 0.005376122891902924, 0.007272558286786079, 0.0028604217804968357, -0.06654676795005798, -0.03769967332482338, -0.02045562118291855, -0.03843165189027786, 0.08371768146753311, 0.057443730533123016, -0.007943497970700264, 0.07853515446186066, 0.053236063569784164, 0.09555607289075851, 0.06602537631988525, 0.010955754667520523, 0.025056609883904457, -0.04055795446038246, -0.009780936874449253 ]
KoboldAI/fairseq-dense-13B-Janeway
da54db082f7cab156e6c7f69aaab6c048a834286
2022-04-07T10:51:39.000Z
[ "pytorch", "xglm", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
KoboldAI
null
KoboldAI/fairseq-dense-13B-Janeway
2,766
1
transformers
--- language: en license: mit --- # Fairseq-dense 13B - Janeway ## Model Description Fairseq-dense 13B-Janeway is a finetune created using Fairseq's MoE dense model. ## Training data The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is identical as dataset used by GPT-Neo-2.7B-Janeway. Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/fairseq-dense-13B-Janeway') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### BibTeX entry and citation info ``` Artetxe et al. (2021): Efficient Large Scale Language Modeling with Mixtures of Experts ```
[ -0.08571798354387283, -0.01852951943874359, -0.02684442140161991, 0.050123684108257294, -0.005334177054464817, 0.02366558462381363, -0.015058512799441814, -0.01396127138286829, -0.002692029345780611, -0.0771937221288681, -0.006644063629209995, -0.07611359655857086, 0.0029199812561273575, -0.06881463527679443, 0.023839054629206657, 0.026944000273942947, 0.009231042116880417, -0.004400294739753008, -0.06542472541332245, -0.08820898085832596, 0.09712228178977966, 0.13850852847099304, 0.09197846800088882, 0.0682351291179657, -0.012973441742360592, -0.050233934074640274, 0.01830073446035385, 0.04978835955262184, 0.02637695148587227, -0.019143864512443542, 0.08858145773410797, 0.07156944274902344, -0.027774637565016747, 0.053247660398483276, 0.03777458891272545, 0.07205451279878616, -0.03501816466450691, -0.0411841981112957, 0.01916075125336647, 0.00958565715700388, 0.0750666931271553, -0.03746459260582924, -0.027347277849912643, -0.00048599790898151696, 0.06674855202436447, -0.09270545840263367, -0.09795413911342621, -0.06077411398291588, -0.009755500592291355, 0.04938548058271408, -0.06011427193880081, -0.04949931800365448, -0.02595060132443905, 0.05502413585782051, 0.019702114164829254, 0.03147106617689133, 0.036372847855091095, -0.007684259209781885, 0.03594203665852547, -0.11109365522861481, -0.06475697457790375, -0.11637186259031296, -0.026741689071059227, -0.03361612185835838, -0.05870584025979042, -0.036591969430446625, -0.023599855601787567, 0.09838873147964478, 0.016193600371479988, -0.022028081119060516, -0.07512687891721725, 0.06175043061375618, -0.06917588412761688, 0.08310060203075409, -0.023236604407429695, 0.07548335939645767, 0.0382893867790699, -0.04328225553035736, 0.011668364517390728, -0.039961572736501694, -0.026535792276263237, -0.057870056480169296, 0.06798814237117767, 0.02044621855020523, -0.05948714166879654, 0.0065938918851315975, 0.04050527140498161, 0.06894209235906601, -0.02896631695330143, 0.017807316035032272, -0.05021928995847702, -0.02143472246825695, 0.058207932859659195, 0.02776210941374302, -0.08451273292303085, 0.07610121369361877, 0.027459727600216866, -0.025775592774152756, 0.08840189129114151, 0.06786248087882996, 0.023636844009160995, 0.06056596711277962, 0.041246332228183746, 0.025651291012763977, -0.09243673086166382, -0.11914913356304169, 0.04582725092768669, 0.014246165752410889, -0.0519346222281456, -0.04568767547607422, 0.06763305515050888, -0.07062412053346634, 0.04876198619604111, -0.06114276498556137, 0.047484368085861206, 0.07306195050477982, -0.06412184238433838, 0.005611616652458906, -0.03615483641624451, 0.08164102584123611, -0.027163686230778694, 0.021385978907346725, -0.06559618562459946, 0.051918815821409225, -0.036129653453826904, -0.02068750560283661, 0.008972319774329662, 5.2919146716126696e-33, 0.01348987314850092, 0.001971956342458725, 0.038167163729667664, 0.029569726437330246, 0.0893481895327568, 0.030300704762339592, 0.02472744509577751, -0.028685113415122032, -0.07958661764860153, -0.012220991775393486, -0.05687245354056358, 0.012591921724379063, -0.09669514000415802, -0.008684059605002403, -0.06274576485157013, -0.06582663208246231, -0.048849526792764664, 0.026275865733623505, -0.03644262254238129, 0.044456493109464645, 0.04305153340101242, 0.009352611377835274, -0.018701177090406418, -0.06838347762823105, -0.05313323810696602, -0.004897196777164936, 0.022320225834846497, -0.045846350491046906, -0.05155996233224869, 0.010168024338781834, -0.10824426263570786, 0.031146008521318436, 0.071971096098423, 0.03520122542977333, -0.027717038989067078, -0.014874928630888462, 0.005896618124097586, -0.04169005528092384, -0.020577864721417427, -0.0007368258666247129, 0.016193697229027748, 0.025449011474847794, 0.06511379033327103, -0.034837037324905396, -0.09208875894546509, 0.01449815183877945, 0.03567078337073326, 0.025681277737021446, 0.037592340260744095, 0.029826130717992783, 0.015392442233860493, 0.03659098222851753, -0.034078989177942276, 0.007257625460624695, 0.035580214112997055, 0.01600757986307144, 0.025857942178845406, 0.020136239007115364, 0.11014522612094879, 0.0013776748673990369, 0.05127016827464104, 0.0796913281083107, 0.07383354008197784, 0.06423436850309372, 0.09430789202451706, 0.051743436604738235, 0.023819858208298683, 0.025385210290551186, 0.08932922780513763, 0.015765583142638206, 0.012706934474408627, -0.032694123685359955, -0.07386364042758942, -0.032213080674409866, 0.055897168815135956, -0.0650048479437828, 0.007504752837121487, -0.025445550680160522, -0.05952270328998566, 0.026610735803842545, -0.02256447821855545, 0.006408246699720621, -0.0327850766479969, -0.04740294814109802, -0.033812373876571655, -0.014922237023711205, -0.005168997682631016, -0.052966147661209106, 0.004883065354079008, -0.0633426308631897, -0.06480041146278381, -0.036576174199581146, -0.04822416231036186, -0.056350987404584885, -0.005931253544986248, -5.7079757542984334e-33, 0.05313925817608833, 0.04501251131296158, -0.019816337153315544, 0.0845191478729248, 0.054030247032642365, -0.022159691900014877, 0.029652362689375877, 0.05476969853043556, 0.030262595042586327, -0.06852485984563828, 0.00273461383767426, -0.036248546093702316, 0.0362699031829834, -0.10951127856969833, 0.09249681979417801, -0.051253415644168854, 0.002774403430521488, -0.05226635932922363, 0.022671988233923912, 0.06693431735038757, -0.058315638452768326, -0.0071996464394032955, -0.15779328346252441, 0.0643395185470581, 0.017999159172177315, -0.0036115453112870455, -0.02180526778101921, 0.04546922445297241, 0.02576330676674843, -0.009329183958470821, -0.0058482796885073185, 0.00864742323756218, -0.04555933550000191, -0.0030163016635924578, -0.11384066939353943, 0.0027906049508601427, 0.12152790278196335, 0.03574322164058685, -0.014608154073357582, 0.08527091890573502, 0.03159484639763832, 0.03975602611899376, -0.09032626450061798, 0.05180762708187103, -0.030395178124308586, 0.053056538105010986, -0.02002391219139099, -0.03780154511332512, 0.05223321169614792, -0.006298241205513477, 0.018863501027226448, 0.055459629744291306, -0.0602150559425354, 0.020399056375026703, -0.037349633872509, -0.08365088701248169, -0.016139907762408257, -0.029472339898347855, -0.07299110293388367, -0.045954685658216476, -0.0752132311463356, -0.016452424228191376, 0.03240356966853142, -0.08544135838747025, 0.011724856682121754, -0.10605102777481079, -0.04585416615009308, -0.08101492375135422, 0.03526980057358742, 0.009938539005815983, 0.018413307145237923, -0.04367605969309807, 0.03052433766424656, 0.00640875706449151, -0.012396037578582764, 0.021108152344822884, -0.07811444997787476, 0.0037667262367904186, -0.022447986528277397, 0.036968689411878586, -0.016043009236454964, 0.08748140186071396, 0.05659855902194977, 0.0905768871307373, 0.057338640093803406, -0.012751158326864243, 0.013617448508739471, 0.04903914034366608, -0.033626340329647064, 0.043653495609760284, -0.008941855281591415, 0.020978176966309547, -0.010682293213903904, 0.10079187899827957, -0.06188104674220085, -5.44192069185101e-8, -0.025228258222341537, -0.049137044697999954, -0.10127148777246475, 0.10225623846054077, -0.03234969452023506, 0.0006384229636751115, -0.004826119635254145, 0.020209264010190964, 0.007587498985230923, -0.04191132262349129, 0.019350318238139153, -0.028783243149518967, -0.03351260721683502, 0.00392788415774703, 0.017506921663880348, 0.056881919503211975, 0.07404694706201553, 0.04961203783750534, -0.019659409299492836, 0.011742099188268185, 0.03995241969823837, 0.03733345866203308, 0.004164876416325569, -0.05018269270658493, 0.002082457998767495, 0.03637506440281868, -0.0350223146378994, 0.016361569985747337, -0.00386846368201077, -0.038914188742637634, 0.024247784167528152, -0.06664988398551941, -0.08859502524137497, 0.028001070022583008, 0.037954192608594894, 0.028230642899870872, 0.0007310420623980463, -0.03892567753791809, 0.041422098875045776, 0.04446825757622719, 0.051298778504133224, 0.035727035254240036, -0.08598753809928894, -0.0337129682302475, -0.006744035519659519, -0.03031902387738228, -0.04106603562831879, -0.08028591424226761, 0.07344066351652145, 0.0664275661110878, -0.010714820586144924, -0.06402751058340073, -0.02770170383155346, -0.03861934691667557, 0.08018235117197037, 0.03187168389558792, 0.04440981522202492, 0.034710418432950974, -0.05208761617541313, 0.028824135661125183, 0.03754448518157005, 0.01120270136743784, 0.10248303413391113, -0.07746676355600357 ]
philschmid/tiny-bert-sst2-distilled
874eb28543ea7a7df80b6158bbf772d203efcab6
2022-01-31T18:50:41.000Z
[ "pytorch", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
philschmid
null
philschmid/tiny-bert-sst2-distilled
2,763
null
transformers
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8325688073394495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.7305 - Accuracy: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007199555649276667 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.77 | 1.0 | 66 | 1.6939 | 0.8165 | | 0.729 | 2.0 | 132 | 1.5090 | 0.8326 | | 0.5242 | 3.0 | 198 | 1.5369 | 0.8257 | | 0.4017 | 4.0 | 264 | 1.7025 | 0.8326 | | 0.327 | 5.0 | 330 | 1.6743 | 0.8245 | | 0.2749 | 6.0 | 396 | 1.7305 | 0.8337 | | 0.2521 | 7.0 | 462 | 1.7305 | 0.8326 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
[ -0.12650729715824127, -0.039381399750709534, 0.05404707416892052, 0.05799023061990738, 0.0231813732534647, 0.03403216600418091, 0.009173563681542873, 0.0455574207007885, -0.049630504101514816, -0.09282848984003067, 0.061060503125190735, -0.06735484302043915, 0.01141077745705843, -0.001093745231628418, -0.08711663633584976, 0.04206616431474686, 0.081838458776474, -0.0755336657166481, -0.10971855372190475, 0.023019131273031235, 0.02615479566156864, 0.09190146625041962, 0.03908534348011017, 0.014423901215195656, 0.01621859148144722, 0.010068581439554691, -0.09563490748405457, -0.0030040948186069727, 0.07518313080072403, 0.02654392644762993, 0.011100288480520248, 0.02199135161936283, -0.015105389058589935, 0.05429542437195778, 0.02883997932076454, 0.07549096643924713, -0.016331704333424568, -0.03827898949384689, 0.009787309914827347, 0.00031738707912154496, 0.03667192533612251, -0.057777710258960724, -0.05757199227809906, 0.020378820598125458, 0.03366066515445709, 0.0034436944406479597, -0.03574969619512558, -0.08348095417022705, -0.07714413106441498, -0.03296015039086342, -0.11721286922693253, -0.02302689664065838, 0.07951405644416809, -0.05866074189543724, -0.059186529368162155, 0.06259521842002869, -0.009002142585814, 0.003092060564085841, -0.04404476657509804, -0.034765273332595825, 0.011575342155992985, -0.0026145013980567455, -0.04988043010234833, -0.008955867029726505, -0.06831201910972595, -0.005061766132712364, 0.002965543419122696, -0.012471156194806099, 0.05153999105095863, -0.0022482960484921932, 0.03483875095844269, 0.08124317228794098, -0.0007030353299342096, 0.05681296065449715, 0.06249351054430008, -0.03385394811630249, -0.004589123651385307, -0.007969841361045837, 0.06221151351928711, -0.061021123081445694, -0.06260347366333008, -0.08062482625246048, 0.022272957488894463, 0.024347685277462006, 0.06494168192148209, 0.011072954162955284, 0.05530422180891037, 0.0017941354308277369, 0.0019157828064635396, -0.007437502965331078, 0.011716455221176147, -0.06042170897126198, 0.024263817816972733, 0.029964029788970947, 0.014806278981268406, 0.03845897689461708, 0.0044044130481779575, 0.022168274968862534, -0.08621381968259811, 0.1111525371670723, -0.0329425148665905, 0.09411478787660599, -0.015787504613399506, -0.041314102709293365, 0.058174025267362595, 0.036388855427503586, -0.025957323610782623, 0.020896153524518013, 0.09130770713090897, -0.07796355336904526, 0.06903987377882004, -0.027839573100209236, -0.020292993634939194, -0.01445093099027872, -0.03925551474094391, 0.08731059730052948, -0.06502331793308258, -0.006032055709511042, -0.02200913429260254, 0.0633665919303894, -0.01485843863338232, -0.009793531149625778, -0.01643401011824608, 0.0016986350528895855, -0.07626009732484818, -0.0413508266210556, -0.07009518891572952, 7.146188776261183e-34, 0.021860918030142784, 0.03415960446000099, 0.003977171611040831, -0.01105761993676424, 0.007111104670912027, -0.034137021750211716, -0.02633151412010193, -0.0048154545947909355, -0.0007938015623949468, -0.023516075685620308, -0.023223670199513435, -0.018568357452750206, -0.07716202735900879, 0.050953708589076996, 0.005756005644798279, 0.020341625437140465, 0.004705765750259161, 0.08615238964557648, 0.07844876497983932, 0.005240757018327713, 0.12844476103782654, 0.056835971772670746, -0.00031493723508901894, -0.13032448291778564, -0.050646208226680756, 0.06769992411136627, 0.043266888707876205, -0.0147069301456213, 0.0017937173834070563, 0.05809032917022705, -0.08175696432590485, -0.04847455024719238, 0.006992894224822521, -0.0012965166242793202, 0.025472834706306458, -0.040014930069446564, 0.030329912900924683, -0.02811245433986187, -0.025796636939048767, -0.047568146139383316, 0.033003926277160645, 0.06101781502366066, 0.02130935899913311, -0.07608328759670258, 0.017573336139321327, -0.019775886088609695, 0.09281838685274124, 0.0400206483900547, 0.028889968991279602, 0.028440361842513084, -0.008572696708142757, -0.0003136426967103034, 0.02192305400967598, 0.006589300464838743, -0.07323164492845535, -0.02472595125436783, 0.0625026673078537, 0.06887248158454895, 0.024167761206626892, -0.014044252224266529, -0.022341154515743256, 0.021443801000714302, 0.012158947065472603, 0.024844655767083168, 0.015700209885835648, -0.03968251496553421, -0.018429448828101158, -0.01940489560365677, -0.015623475424945354, 0.017127465456724167, -0.025328177958726883, -0.003552882233634591, 0.018864048644900322, -0.00027765563572756946, 0.04910682141780853, -0.11234335601329803, 0.027093688026070595, -0.06006675213575363, -0.045723747462034225, -0.013503413647413254, 0.01600910909473896, 0.04167437180876732, -0.027914181351661682, -0.09917628020048141, -0.12464959174394608, -0.07151248306035995, 0.031125212088227272, -0.05648164823651314, -0.015346313826739788, 0.065938800573349, -0.002690979279577732, 0.004824443254619837, -0.05293285846710205, -0.010614637285470963, -0.06326918303966522, -2.10686185119481e-33, -0.0588499940931797, 0.012166468426585197, -0.039068784564733505, 0.06598184257745743, -0.028462601825594902, -0.04317127540707588, 0.0029874679166823626, 0.17754490673542023, 0.0125814750790596, -0.028112266212701797, 0.09532815963029861, 0.021179309114813805, -0.046412404626607895, -0.07311008125543594, 0.028883954510092735, 0.07270969450473785, -0.04551169276237488, 0.026764053851366043, 0.015486471354961395, 0.031160106882452965, 0.08473759144544601, 0.06746715307235718, -0.04658224806189537, 0.11563326418399811, 0.024201104417443275, 0.05706508457660675, 0.03730085492134094, 0.07076920568943024, 0.02356039732694626, -0.022501448169350624, 0.038487114012241364, -0.017138918861746788, -0.07896682620048523, 0.040525034070014954, -0.05143394693732262, -0.003692029044032097, 0.03772157058119774, -0.02679041586816311, -0.011772570200264454, 0.016019552946090698, 0.056919146329164505, 0.009135633707046509, -0.0756014883518219, 0.06266028434038162, 0.0019680585246533155, -0.021398546174168587, -0.00591242266818881, -0.059583842754364014, 0.06776920706033707, -0.05818728357553482, 0.04459088295698166, -0.07317164540290833, -0.05847890302538872, -0.017519811168313026, -0.046019766479730606, -0.020495083183050156, 0.026882944628596306, -0.015520951710641384, -0.12609276175498962, 0.01527788583189249, -0.018982458859682083, 0.010027080774307251, -0.04757121950387955, 0.0012208889238536358, 0.04591875523328781, -0.02991069294512272, -0.06745351105928421, 0.049580980092287064, 0.004376251716166735, -0.008734818547964096, -0.048373959958553314, 0.0508885458111763, 0.048273082822561264, -0.037334032356739044, -0.004709551110863686, 0.016656117513775826, -0.028184643015265465, -0.022971851751208305, -0.0006778316455893219, -0.050838544964790344, -0.05527596175670624, -0.03289808705449104, 0.07484849542379379, 0.03239274024963379, 0.06863158941268921, 0.007247679401189089, 0.04737243056297302, 0.10205669701099396, -0.04483427479863167, 0.032536737620830536, -0.018667571246623993, 0.050127990543842316, 0.0030800404492765665, 0.14813153445720673, -0.020914822816848755, -5.6015082350313605e-8, 0.000795772997662425, -0.011572766117751598, -0.09506651759147644, 0.06357859820127487, -0.06757581233978271, -0.07183434069156647, -0.08024342358112335, 0.008172603324055672, -0.060764629393815994, -0.007339318748563528, 0.023083528503775597, 0.031587786972522736, -0.1446400135755539, 0.0289352685213089, 0.028817495331168175, -0.04803813621401787, -0.056334175169467926, 0.08639483153820038, -0.05354210361838341, -0.10410968959331512, 0.05367265269160271, -0.025678178295493126, 0.05804594233632088, -0.042315706610679626, 0.009245079010725021, -0.07696419209241867, -0.03648542985320091, 0.11584540456533432, -0.02456388622522354, 0.02518659085035324, -0.0042800577357411385, 0.009814536198973656, -0.06972285360097885, 0.012420771643519402, 0.0571536049246788, 0.059025783091783524, -0.04299779236316681, -0.018845785409212112, 0.033948563039302826, 0.07994654774665833, 0.023856285959482193, 0.09860967844724655, -0.09587610512971878, 0.024740522727370262, 0.08166194707155228, -0.02974768728017807, 0.028209328651428223, -0.06794822961091995, 0.07122048735618591, 0.05046007037162781, 0.026360705494880676, -0.024091409519314766, -0.07281480729579926, 0.020738190039992332, -0.037473831325769424, 0.01779532991349697, -0.049233317375183105, -0.013660769909620285, -0.015800872817635536, -0.04655538126826286, 0.012400423176586628, -0.012434784322977066, 0.03889910504221916, 0.07611716538667679 ]
google/tapas-large-finetuned-sqa
f214f24bdb51550ced615bac82668a1bc0e26806
2021-11-29T13:03:46.000Z
[ "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:msr_sqa", "arxiv:2004.02349", "arxiv:2010.00571", "transformers", "license:apache-2.0" ]
table-question-answering
false
google
null
google/tapas-large-finetuned-sqa
2,757
1
transformers
--- language: en tags: - tapas license: apache-2.0 datasets: - msr_sqa --- # TAPAS large model fine-tuned on Sequential Question Answering (SQA) This model has 2 versions which can be used. The default version corresponds to the `tapas_sqa_inter_masklm_large_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_sqa_inter_masklm_large` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results on SQA - Dev Accuracy Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- **LARGE** | **noreset** | **0.7223** | [tapas-large-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/no_reset) **LARGE** | **reset** | **0.7289** | [tapas-large-finetuned-sqa](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/main) BASE | noreset | 0.6737 | [tapas-base-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/no_reset) BASE | reset | 0.874 | [tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/main) MEDIUM | noreset | 0.6464 | [tapas-medium-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/no_reset) MEDIUM | reset | 0.6561 | [tapas-medium-finetuned-sqa](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/main) SMALL | noreset | 0.5876 | [tapas-small-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/no_reset) SMALL | reset | 0.6155 | [tapas-small-finetuned-sqa](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/main) MINI | noreset | 0.4574 | [tapas-mini-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/no_reset) MINI | reset | 0.5148 | [tapas-mini-finetuned-sqa](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/main)) TINY | noreset | 0.2004 | [tapas-tiny-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/no_reset) TINY | reset | 0.2375 | [tapas-tiny-finetuned-sqa](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/main) ## Model description ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on SQA. ## Intended uses & limitations You can use this model for answering questions related to a table in a conversational set-up. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 200,000 steps with maximum sequence length 512 and batch size of 128. In this setup, fine-tuning takes around 20 hours. The optimizer used is Adam with a learning rate of 1.25e-5, and a warmup ratio of 0.2. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See also table 12 of the [original paper](https://arxiv.org/abs/2004.02349). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @InProceedings{iyyer2017search-based, author = {Iyyer, Mohit and Yih, Scott Wen-tau and Chang, Ming-Wei}, title = {Search-based Neural Structured Learning for Sequential Question Answering}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, year = {2017}, month = {July}, abstract = {Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions.}, publisher = {Association for Computational Linguistics}, url = {https://www.microsoft.com/en-us/research/publication/search-based-neural-structured-learning-sequential-question-answering/}, } ```
[ -0.05262656882405281, -0.15270277857780457, 0.004848074167966843, -0.005159073509275913, -0.09047112613916397, 0.03620181232690811, -0.05659937486052513, -0.0352727472782135, 0.0075284154154360294, 0.0007312156958505511, 0.05080278962850571, 0.056864045560359955, -0.009098918177187443, 0.006142688449472189, -0.11987791210412979, 0.06515559554100037, 0.0913730189204216, -0.005239757243543863, -0.09968693554401398, -0.014484794810414314, 0.04484064504504204, 0.020215317606925964, 0.06673790514469147, -0.0049316794611513615, 0.04908362030982971, -0.05006025731563568, -0.01751820184290409, 0.05006769299507141, 0.1145382970571518, -0.061903052031993866, 0.034288324415683746, 0.07924976944923401, 0.016176564618945122, 0.07223019748926163, -0.06587813794612885, 0.05618847906589508, -0.06207061558961868, -0.06221212446689606, 0.044336315244436264, 0.017089329659938812, -0.008409452624619007, -0.019561873748898506, -0.005457940511405468, -0.027284255251288414, 0.09678981453180313, 0.011845319531857967, -0.04192481189966202, 0.012369017116725445, 0.010686407797038555, -0.0015396742383018136, -0.07115667313337326, -0.014806780032813549, 0.007796512451022863, 0.07443869113922119, 0.03078600950539112, -0.012073147110641003, -0.013658473268151283, -0.027003705501556396, 0.04755821079015732, 0.05794794484972954, -0.014599356800317764, -0.026735441759228706, -0.01989278756082058, -0.008577198721468449, -0.002113267546519637, 0.02766282670199871, -0.024224644526839256, -0.014472274109721184, 0.027086462825536728, 0.02039777673780918, -0.015921620652079582, 0.01653514802455902, -0.015523332171142101, 0.03369676694273949, 0.0011480096727609634, 0.020909268409013748, 0.02924908511340618, 0.05013391375541687, 0.02788468450307846, -0.01941358484327793, 0.052788734436035156, -0.06452599167823792, 0.03177127614617348, -0.025437194854021072, 0.05831150710582733, -0.017817100510001183, 0.04744262993335724, 0.03142206370830536, 0.07688390463590622, -0.011318746022880077, -0.012573782354593277, 0.034168537706136703, 0.00548965809866786, 0.008859334513545036, 0.01776236854493618, 0.030027935281395912, 0.0657413974404335, -0.0026559883262962103, -0.053787533193826675, 0.06099553778767586, 0.062009721994400024, -0.002544874558225274, 0.018026387318968773, -0.0025245677679777145, -0.038520559668540955, -0.07645468413829803, 0.01175693143159151, 0.09784882515668869, 0.007689756341278553, -0.04905177280306816, 0.03203964605927467, 0.041969191282987595, -0.01017572171986103, -0.015572176314890385, -0.07797075062990189, -0.00021477582049556077, -0.013360061682760715, -0.052425578236579895, 0.03909585624933243, -0.030986106023192406, -0.052641090005636215, -0.006994147319346666, -0.0635170042514801, -0.01893746852874756, 0.03931647539138794, 0.046160291880369186, -0.10629641264677048, 9.023061576133262e-34, 0.06616056710481644, -0.012225421145558357, 0.00857649464160204, -0.08907193690538406, 0.034616295248270035, -0.004916079808026552, 0.03091505542397499, 0.007108999881893396, 0.02715376950800419, 0.071632020175457, -0.013370639644563198, -0.008334383368492126, -0.07121522724628448, -0.013825317844748497, -0.0023183703888207674, -0.006266267504543066, -0.018303269520401955, 0.021300792694091797, -0.061447277665138245, -0.01818421110510826, 0.12308334559202194, -0.035591304302215576, -0.004510355647653341, -0.051704179495573044, 0.03387310728430748, 0.03802161291241646, 0.06459787487983704, -0.09006360918283463, -0.010236602276563644, 0.023126035928726196, -0.11088690161705017, -0.00948333740234375, -0.05061263591051102, -0.0821729376912117, 0.03119547665119171, -0.04244939237833023, 0.005199565086513758, -0.0886702910065651, 0.02873842418193817, -0.047978416085243225, 0.06268025189638138, 0.08664434403181076, 0.07034993171691895, -0.051035307347774506, -0.04136771336197853, -0.10694339126348495, -0.05678531527519226, 0.008647902868688107, -0.019045645371079445, 0.026656728237867355, 0.0192380603402853, -0.0006612287252210081, -0.06953515112400055, -0.05642588436603546, 0.008878923021256924, -0.05641254410147667, 0.02378673292696476, 0.02865133062005043, 0.0034922081977128983, 0.08253416419029236, -0.03729545325040817, -0.09656766802072525, -0.04432205110788345, 0.046548500657081604, 0.05191696807742119, -0.0148019315674901, -0.08811728656291962, -0.034578002989292145, 0.07464731484651566, 0.008078353479504585, -0.05609233304858208, -0.0639505684375763, -0.021523380652070045, 0.0282778050750494, -0.016575315967202187, -0.09445797652006149, 0.015123995020985603, -0.04260959476232529, -0.004683864302933216, -0.00028117457986809313, 0.03995347023010254, 0.09699840098619461, -0.03803643956780434, -0.05003939941525459, -0.07053187489509583, -0.13495737314224243, 0.06363517791032791, -0.09573156386613846, -0.006972445175051689, -0.0640091672539711, -0.0017142678843811154, 0.031209200620651245, 0.047072429209947586, -0.0024307130370289087, -0.04963646084070206, -9.079466019518539e-34, 0.02101152390241623, 0.0185770895332098, -0.015420951880514622, 0.10840896517038345, 0.025227518752217293, -0.04047592356801033, 0.06348443776369095, 0.09686976671218872, -0.021565785631537437, -0.07133528590202332, 0.002976688090711832, -0.02231917902827263, 0.04077025502920151, -0.024147454649209976, 0.050689052790403366, 0.06574703007936478, 0.014902176335453987, -0.02399517223238945, -0.03845397010445595, 0.0785391628742218, -0.023121776059269905, 0.018567463383078575, 0.0341440811753273, 0.06544207781553268, 0.030029043555259705, -0.005768836010247469, 0.027167707681655884, 0.08676812052726746, 0.0015010908246040344, -0.0017110771732404828, -0.013242670334875584, -0.011286815628409386, -0.02542116492986679, -0.013048965483903885, -0.07248198240995407, 0.017134010791778564, 0.04826819896697998, -0.09488267451524734, 0.07050103694200516, 0.10540961474180222, 0.1517239809036255, 0.013303915038704872, -0.07046658545732498, 0.0912189781665802, -0.028074918314814568, 0.0276448093354702, -0.05712156742811203, -0.0014683420304208994, -0.07789657264947891, -0.03560633957386017, -0.030171087011694908, -0.006238511297851801, 0.004891066811978817, 0.01962871290743351, 0.04317246749997139, -0.0017320850165560842, 0.007372256834059954, -0.0902799442410469, -0.026788931339979172, -0.045088332146406174, 0.05506807938218117, 0.02784716710448265, 0.028073851019144058, -0.09889591485261917, 0.028331806883215904, 0.07694950699806213, 0.02793678268790245, 0.0015171068953350186, -0.07838965952396393, -0.014534367248415947, -0.038561757653951645, -0.02666996791958809, 0.010698072612285614, 0.01178787462413311, 0.011953184381127357, -0.03505076840519905, -0.07094375044107437, -0.002636062214151025, 0.0064321113750338554, -0.10473082214593887, -0.08290823549032211, 0.05639687925577164, 0.02785838209092617, 0.030496029183268547, 0.10123317688703537, 0.1498032957315445, 0.04809083417057991, 0.03367334231734276, -0.017100706696510315, 0.007515265140682459, -0.03259605914354324, -0.037922270596027374, -0.006140032317489386, 0.1136002317070961, 0.02451847866177559, -5.641415512513959e-8, -0.12830689549446106, 0.04641580209136009, -0.06974023580551147, 0.009253321215510368, 0.0475243404507637, -0.09161558002233505, -0.011823891662061214, 0.1043681800365448, -0.002390343463048339, -0.03333123028278351, 0.046330925077199936, 0.04864216595888138, -0.07667192816734314, -0.04373783990740776, 0.040967851877212524, 0.08489370346069336, 0.0007899667834863067, -0.016064058989286423, -0.05395003780722618, 0.020417168736457825, 0.022804483771324158, 0.062272172421216965, 0.034671518951654434, 0.020130975171923637, 0.02747250907123089, -0.007888222113251686, -0.054475750774145126, 0.1749313473701477, 0.037232473492622375, -0.01625625602900982, 0.033029790967702866, 0.01793111115694046, 0.04534558951854706, -0.04055900126695633, -0.032559413462877274, 0.03916897997260094, -0.01333814486861229, 0.02671741135418415, 0.008369380608201027, 0.020199237391352654, 0.021390823647379875, 0.013966411352157593, -0.06360625475645065, -0.012589891441166401, 0.020938042551279068, 0.0006551053957082331, -0.0688977763056755, -0.09585387259721756, 0.03322768583893776, -0.014937478117644787, -0.009653884917497635, -0.014826425351202488, -0.017476731911301613, 0.07634621858596802, 0.05074068158864975, 0.03063533641397953, -0.017932888120412827, -0.0450119748711586, 0.052948493510484695, 0.037686120718717575, 0.05873553827404976, -0.01173796784132719, -0.07075239717960358, 0.0329735241830349 ]
tunib/electra-ko-en-small
ac899d8d102ccec10ad2a0ee6a1ab12b5f7eac41
2021-09-17T08:59:47.000Z
[ "pytorch", "electra", "pretraining", "arxiv:2003.10555", "transformers" ]
null
false
tunib
null
tunib/electra-ko-en-small
2,752
4
transformers
# TUNiB-Electra We release several new versions of the [ELECTRA](https://arxiv.org/abs/2003.10555) model, which we name TUNiB-Electra. There are two motivations. First, all the existing pre-trained Korean encoder models are monolingual, that is, they have knowledge about Korean only. Our bilingual models are based on the balanced corpora of Korean and English. Second, we want new off-the-shelf models trained on much more texts. To this end, we collected a large amount of Korean text from various sources such as blog posts, comments, news, web novels, etc., which sum up to 100 GB in total. ## How to use You can use this model directly with [transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoModel, AutoTokenizer # Small Model (Korean-English bilingual model) tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-small') model = AutoModel.from_pretrained('tunib/electra-ko-en-small') ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-small') >>> tokenizer.tokenize("tunib is a natural language processing tech startup.") ['tun', '##ib', 'is', 'a', 'natural', 'language', 'processing', 'tech', 'startup', '.'] >>> tokenizer.tokenize("튜닙은 자연어처리 테크 스타트업입니다.") ['튜', '##닙', '##은', '자연', '##어', '##처리', '테크', '스타트업', '##입니다', '.'] ``` ## Results on Korean downstream tasks | |**# Params** |**Avg.**| **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) |**Korean-Hate-Speech (Dev)**<br/>(F1)| | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :----------------: | |***TUNiB-Electra-ko-small*** | 14M | 81.29| **89.56** | 84.98 | 72.85 | 77.08 | 78.76 | **94.98** | 61.17 / 87.64 | **64.50** | |***TUNiB-Electra-ko-en-small*** | 18M | 81.44 | 89.28 | 85.15 | 75.75 | 77.06 | 77.61 | 93.79 | 80.55 / 89.77 |63.13 | | [KoELECTRA-small-v3](https://github.com/monologg/KoELECTRA) | 14M | **82.58** | 89.36 | **85.40** | **77.45** | **78.60** | **80.79** | 94.85 | **82.11 / 91.13** | 63.07 | ## Results on English downstream tasks | |**# Params** | **Avg.** |**CoLA**<br/>(MCC) | **SST**<br/>(Acc) |MRPC<br/>(Acc)| **STS**<br/>(Spearman) | **QQP**<br/>(Acc) | **MNLI**<br/>(Acc) | **QNLI**<br/>(Acc) | **RTE**<br/>(Acc) | | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | |***TUNiB-Electra-ko-en-small*** | 18M | **80.44** | **56.76** | 88.76 | **88.73** | **86.12** | **88.66** | 79.03 | 87.26 |**68.23** | |[ELECTRA-small](https://github.com/google-research/electra) | 13M | 79.71 | 55.6 | **91.1** | 84.9| 84.6 | 88.0 | **81.6** | **88.3** | 63.6 | |[BERT-small](https://github.com/google-research/bert) | 13M | 74.06| 27.8 | 89.7 | 83.4| 78.8 | 87.0 | 77.6 | 86.4 | 61.8 |
[ -0.0890570729970932, -0.03428719937801361, -0.02316685952246189, 0.022549355402588844, 0.0004963329993188381, 0.01371857151389122, -0.026692721992731094, -0.0067553143016994, 0.0027414385695010424, -0.024283697828650475, 0.031424395740032196, -0.035893943160772324, 0.025975177064538002, 0.005563844460994005, 0.040454450994729996, -0.0028659054078161716, 0.012581114657223225, 0.028776468709111214, -0.06755988299846649, -0.1251477301120758, 0.06391908973455429, -0.015547927469015121, 0.037447839975357056, -0.013174835592508316, 0.047337453812360764, -0.06119486317038536, -0.0030048456974327564, -0.003798306919634342, 0.005767665337771177, -0.049289435148239136, 0.014480061829090118, 0.06634019315242767, 0.003882133634760976, 0.06547632813453674, -0.005159800406545401, 0.04201536625623703, -0.06754611432552338, 0.0058312127366662025, -0.06173445284366608, -0.021361196413636208, -0.023920275270938873, -0.046455372124910355, 0.0174589604139328, -0.004956468939781189, 0.11857883632183075, -0.022846398875117302, -0.02528698556125164, -0.026908280327916145, 0.011829917319118977, -0.023663852363824844, -0.008150513283908367, -0.0006331691984087229, 0.03675810620188713, 0.07160454243421555, -0.03878898173570633, -0.05553105100989342, -0.0030780562665313482, 0.011709686368703842, 0.03594246134161949, -0.005821419879794121, -0.07721851766109467, -0.01331231277436018, -0.06542117148637772, 0.009562315419316292, -0.09713047742843628, -0.01819094456732273, 0.08619198948144913, 0.04616302624344826, -0.03616388514637947, 0.012968934141099453, -0.005586640909314156, 0.04183657094836235, 0.021259183064103127, 0.08328238129615784, -0.033976808190345764, -0.03674071282148361, 0.11979489773511887, -0.004211978521198034, 0.028318550437688828, -0.03994655981659889, -0.00020833959570154548, 0.014207967557013035, 0.03516281023621559, -0.016586219891905785, -0.005523383617401123, -0.04858793690800667, 0.005746598355472088, -0.005909985862672329, 0.006093024741858244, 0.029153630137443542, 0.03688972815871239, -0.009202967397868633, 0.0980021059513092, -0.0030315604526549578, -0.05092679709196091, 0.0551033653318882, -0.05361687391996384, 0.01645720936357975, -0.012030530720949173, 0.04621544107794762, 0.01228682603687048, 0.04703814908862114, 0.040717385709285736, -0.020765390247106552, -0.11848867684602737, -0.10818472504615784, 0.0862208679318428, 0.05453082174062729, 0.013703207485377789, -0.0009448400815017521, 0.013416358269751072, 0.022148372605443, -0.054239191114902496, 0.009255938231945038, 0.03929372504353523, -0.0025203891564160585, 0.039712902158498764, -0.02810746058821678, 0.03794737905263901, 0.0987715795636177, -0.031221924349665642, 0.010087931528687477, -0.04786284640431404, -0.026908518746495247, -0.019081898033618927, 0.010868102312088013, 0.03871428593993187, 4.362315371883173e-33, 0.04296351224184036, 0.10474886745214462, 0.0021117806900292635, 0.039103396236896515, -0.05276838317513466, 0.03477592021226883, 0.011746624484658241, 0.05040080100297928, -0.08914957195520401, -0.03305746242403984, -0.11181218177080154, 0.15518462657928467, -0.05929161235690117, 0.07434011995792389, -0.028615016490221024, -0.018460841849446297, -0.0600733608007431, 0.03261709585785866, 0.027796121314167976, 0.03870386630296707, 0.12158933281898499, 0.022411687299609184, 0.049840718507766724, -0.04626272991299629, -0.03071345016360283, -0.02450324222445488, 0.06790371239185333, -0.09491948038339615, -0.04245065152645111, 0.029841236770153046, -0.07913987338542938, -0.02089831605553627, 0.03127271309494972, 0.019315671175718307, -0.0167325958609581, -0.03504582494497299, -0.019444921985268593, -0.02032601274549961, -0.02560018189251423, -0.092436783015728, 0.053731124848127365, 0.048507288098335266, -0.06151451915502548, -0.00818893127143383, -0.050479017198085785, 0.0301554873585701, 0.05884212628006935, -0.03388078138232231, 0.036950889974832535, 0.021877257153391838, 0.04862504079937935, -0.026043731719255447, -0.09913871437311172, -0.005341034382581711, 0.07255107164382935, 0.09101561456918716, 0.06850986182689667, -0.006862976588308811, 0.10471641272306442, -0.044595737010240555, -0.04636222496628761, 0.02410333976149559, 0.06940484046936035, 0.028145257383584976, 0.1369769424200058, 0.02211301214993, 0.00160064862575382, -0.03552725538611412, -0.009406360797584057, -0.0725526213645935, -0.03564159944653511, -0.08722151070833206, 0.016485802829265594, -0.021266980096697807, -0.0034097209572792053, -0.03741522505879402, -0.030361728742718697, -0.05559955909848213, -0.01901550032198429, 0.033915530890226364, -0.04330325499176979, -0.05150733143091202, 0.04553195461630821, -0.02142081968486309, 0.039863213896751404, 0.002779636299237609, 0.05098127946257591, -0.038742419332265854, -0.00844690389931202, 0.014127952978014946, -0.014174303971230984, 0.04693951457738876, -0.03354749083518982, -0.07143968343734741, 0.02659199759364128, -4.1661580581675655e-33, 0.024001609534025192, 0.0021714293397963047, -0.039304427802562714, 0.06915352493524551, -0.0457034558057785, -0.049987029284238815, 0.029552409425377846, 0.1610998958349228, -0.0045725442469120026, -0.031839389353990555, 0.005676780361682177, -0.07699146866798401, 0.1595715880393982, -0.041022706776857376, 0.051878467202186584, -0.07562136650085449, 0.02745825983583927, 0.08150597661733627, 0.06219170242547989, 0.09080614149570465, -0.09267473965883255, 0.03662921488285065, -0.11958446353673935, 0.010091084986925125, 0.003544541308656335, 0.015052278526127338, -0.03710811212658882, 0.07426179200410843, -0.028255710378289223, -0.006049918010830879, -0.026798190549016, -0.03658140078186989, -0.03393830731511116, -0.006699312012642622, -0.06214779242873192, -0.006115504074841738, 0.016916867345571518, -0.0001678336557233706, -0.01156411413103342, 0.049855343997478485, 0.04070413485169411, -0.000409054133342579, -0.08310891687870026, -0.02559819631278515, -0.019976353272795677, -0.07945138216018677, -0.11179685592651367, -0.025123247876763344, 0.005299444776028395, -0.08427190035581589, 0.06678854674100876, -0.022523170337080956, -0.10165704041719437, -0.025144806131720543, 0.0016435344005003572, -0.06993190944194794, 0.031830377876758575, -0.08997603505849838, 0.005369293037801981, -0.052245818078517914, -0.058193765580654144, -0.046686604619026184, 0.0744151696562767, -0.04752446711063385, -0.005208740476518869, -0.08230762928724289, 0.13190366327762604, -0.026644259691238403, 0.06793612241744995, 0.015044697560369968, 0.04410219192504883, -0.006619416642934084, 0.02106606401503086, -0.002386414911597967, -0.04491669312119484, 0.045221805572509766, -0.04362010583281517, 0.024624116718769073, 0.05784828960895538, -0.084865041077137, -0.048397667706012726, 0.06492950022220612, 0.04296491667628288, 0.001730345655232668, 0.04467666149139404, 0.024159802123904228, -0.020622428506612778, 0.05132964625954628, 0.06299737095832825, 0.005703502334654331, -0.029638083651661873, 0.050257254391908646, -0.010503995232284069, 0.0946260318160057, -0.021904228255152702, -4.8630525384396606e-8, -0.010338976979255676, 0.0028357463888823986, -0.015278659760951996, 0.07353460788726807, -0.06064000725746155, -0.04038909822702408, -0.029514404013752937, 0.007579046301543713, 0.0007510334835387766, 0.0002583985624369234, 0.07617735117673874, 0.0035055982880294323, -0.03005596436560154, 0.004840126261115074, -0.004472764674574137, 0.05896629020571709, 0.11182570457458496, 0.07870771735906601, -0.016967806965112686, 0.0659056007862091, 0.06045705825090408, 0.03853580728173256, 0.020991291850805283, -0.06531587243080139, 0.05311012268066406, 0.01547317299991846, -0.08298908919095993, 0.03228071331977844, 0.0078058685176074505, -0.12783731520175934, -0.020137660205364227, -0.03331401199102402, -0.05420601740479469, 0.01349077932536602, 0.01289050281047821, 0.03754488751292229, -0.02234639786183834, -0.04557699337601662, 0.012976175174117088, 0.035788316279649734, 0.09132382273674011, -0.013264695182442665, -0.06498249620199203, -0.026673266664147377, 0.0007856183801777661, -0.04143768921494484, -0.05297926440834999, -0.11400129646062851, -0.014989347197115421, 0.06421922892332077, 0.01479482464492321, -0.08606777340173721, -0.10814084112644196, 0.038351450115442276, 0.04950516298413277, 0.020053721964359283, -0.0028080318588763475, -0.022107381373643875, 0.01299657579511404, 0.06416479498147964, -0.024175062775611877, 0.012025435455143452, -0.05842336639761925, 0.003104863688349724 ]
etalab-ia/dpr-ctx_encoder-fr_qa-camembert
a0bc241d0c8011d1d72c02487b3ff3e326a2e59c
2021-06-16T11:22:59.000Z
[ "pytorch", "camembert", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "arxiv:2004.04906", "arxiv:1911.03894", "transformers" ]
null
false
etalab-ia
null
etalab-ia/dpr-ctx_encoder-fr_qa-camembert
2,751
3
transformers
--- language: fr datasets: - piaf - FQuAD - SQuAD-FR --- # dpr-ctx_encoder-fr_qa-camembert ## Description French [DPR model](https://arxiv.org/abs/2004.04906) using [CamemBERT](https://arxiv.org/abs/1911.03894) as base and then fine-tuned on a combo of three French Q&A ## Data ### French Q&A We use a combination of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ### Training We are using 90 562 random questions for `train` and 22 391 for `dev`. No question in `train` exists in `dev`. For each question, we have a single `positive_context` (the paragraph where the answer to this question is found) and around 30 `hard_negtive_contexts`. Hard negative contexts are found by querying an ES instance (via bm25 retrieval) and getting the top-k candidates **that do not contain the answer**. The files are over [here](https://drive.google.com/file/d/1W5Jm3sqqWlsWsx2sFpA39Ewn33PaLQ7U/view?usp=sharing). ### Evaluation We use FQuADv1.0 and French-SQuAD evaluation sets. ## Training Script We use the official [Facebook DPR implentation](https://github.com/facebookresearch/DPR) with a slight modification: by default, the code can work with Roberta models, still we changed a single line to make it easier to work with Camembert. This modification can be found [over here](https://github.com/psorianom/DPR). ### Hyperparameters ```shell python -m torch.distributed.launch --nproc_per_node=8 train_dense_encoder.py \ --max_grad_norm 2.0 \ --encoder_model_type fairseq_roberta \ --pretrained_file data/camembert-base \ --seed 12345 \ --sequence_length 256 \ --warmup_steps 1237 \ --batch_size 16 \ --do_lower_case \ --train_file ./data/DPR_FR_train.json \ --dev_file ./data/DPR_FR_dev.json \ --output_dir ./output/ \ --learning_rate 2e-05 \ --num_train_epochs 35 \ --dev_batch_size 16 \ --val_av_rank_start_epoch 30 \ --pretrained_model_cfg ./data/camembert-base/ ``` ### ## Evaluation results We obtain the following evaluation by using FQuAD and SQuAD-FR evaluation (or validation) sets. To obtain these results, we use [haystack's evaluation script](https://github.com/deepset-ai/haystack/blob/db4151bbc026f27c6d709fefef1088cd3f1e18b9/tutorials/Tutorial5_Evaluation.py) (**we report Retrieval results only**). ### DPR #### FQuAD v1.0 Evaluation ```shell For 2764 out of 3184 questions (86.81%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.87 Retriever Mean Avg Precision: 0.57 ``` #### SQuAD-FR Evaluation ```shell For 8945 out of 10018 questions (89.29%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.89 Retriever Mean Avg Precision: 0.63 ``` ### BM25 For reference, BM25 gets the results shown below. As in the original paper, regarding SQuAD-like datasets, the results of DPR are consistently superseeded by BM25. #### FQuAD v1.0 Evaluation ```shell For 2966 out of 3184 questions (93.15%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.74 ``` #### SQuAD-FR Evaluation ```shell For 9353 out of 10018 questions (93.36%), the answer was in the top-20 candidate passages selected by the retriever. Retriever Recall: 0.93 Retriever Mean Avg Precision: 0.77 ``` ## Usage The results reported here are obtained with the `haystack` library. To get to similar embeddings using exclusively HF `transformers` library, you can do the following: ```python from transformers import AutoTokenizer, AutoModel query = "Salut, mon chien est-il mignon ?" tokenizer = AutoTokenizer.from_pretrained("etalab-ia/dpr-ctx_encoder-fr_qa-camembert", do_lower_case=True) input_ids = tokenizer(query, return_tensors='pt')["input_ids"] model = AutoModel.from_pretrained("etalab-ia/dpr-ctx_encoder-fr_qa-camembert", return_dict=True) embeddings = model.forward(input_ids).pooler_output print(embeddings) ``` And with `haystack`, we use it as a retriever: ``` retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="etalab-ia/dpr-question_encoder-fr_qa-camembert", passage_embedding_model="etalab-ia/dpr-ctx_encoder-fr_qa-camembert", model_version=dpr_model_tag, infer_tokenizer_classes=True, ) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### Datasets #### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` #### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` #### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### Models #### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ``` #### DPR ``` @misc{karpukhin2020dense, title={Dense Passage Retrieval for Open-Domain Question Answering}, author={Vladimir Karpukhin and Barlas Oğuz and Sewon Min and Patrick Lewis and Ledell Wu and Sergey Edunov and Danqi Chen and Wen-tau Yih}, year={2020}, eprint={2004.04906}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.09758041054010391, -0.05847803130745888, -0.02466079220175743, -0.07649730890989304, 0.02477359026670456, 0.05156439542770386, 0.012393553741276264, 0.03220145404338837, 0.06553865969181061, -0.03282203525304794, 0.02006671018898487, -0.0777493417263031, 0.02413932792842388, 0.009842921979725361, 0.0067879511043429375, -0.04747995361685753, -0.04629410803318024, 0.023173131048679352, -0.04910656064748764, -0.0580819733440876, 0.014670905657112598, -0.028236230835318565, 0.09966952353715897, -0.028750527650117874, 0.05350302904844284, -0.04639561474323273, -0.02307351492345333, 0.07280892878770828, 0.028192907571792603, -0.05876418948173523, 0.018492499366402626, 0.15593861043453217, 0.007834674790501595, 0.038062576204538345, -0.023704474791884422, 0.055955030024051666, -0.00019037610036320984, -0.050319135189056396, -0.05100481957197189, 0.08820740878582001, -0.05038634315133095, 0.020833240821957588, 0.04150785505771637, -0.019992781803011894, 0.07013994455337524, 0.042439136654138565, -0.0676279291510582, 0.06625983864068985, -0.0025067240931093693, -0.04909287393093109, -0.06247184798121452, 0.022031519562005997, 0.012985587120056152, 0.04935874044895172, -0.004812643397599459, 0.001385313575156033, 0.059977658092975616, -0.025662293657660484, 0.013210881501436234, 0.02573106251657009, -0.04101216420531273, -0.03956000506877899, -0.033232901245355606, -0.0022375243715941906, -0.03783964738249779, -0.021578926593065262, -0.008281093090772629, 0.030615366995334625, -0.03251998871564865, 0.02855103090405464, -0.10754922777414322, 0.01751471310853958, -0.03508557006716728, 0.04497937858104706, 0.05008688569068909, 0.09664955735206604, -0.002804342657327652, -0.02727792225778103, 0.05286005511879921, -0.1531074047088623, 0.014235909096896648, -0.018755808472633362, 0.06675524264574051, -0.0013773067621514201, 0.12428967654705048, -0.02212403155863285, 0.05652298778295517, 0.03583255782723427, 0.02318299002945423, 0.016457151621580124, -0.060949571430683136, 0.011515721678733826, 0.05760173499584198, 0.07041915506124496, -0.004476006142795086, 0.067043237388134, 0.06114327535033226, 0.038280241191387177, -0.017510918900370598, 0.03805379942059517, 0.009250979870557785, -0.008637688122689724, 0.056832119822502136, 0.005617931485176086, -0.12406449019908905, -0.020530100911855698, 0.05004077032208443, 0.048161257058382034, 0.019904695451259613, -0.13729430735111237, -0.03728203475475311, -0.006201122421771288, -0.04400060698390007, -0.06677816063165665, -0.047494396567344666, 0.03829626739025116, 0.030243776738643646, -0.0525376982986927, -0.012005177326500416, -0.02395252324640751, -0.01180250197649002, -0.0351870097219944, -0.03322521224617958, 0.01638900302350521, 0.013522283174097538, -0.011533915996551514, -0.038923949003219604, 3.1080346142229756e-33, 0.11126263439655304, 0.11923485994338989, 0.018626021221280098, -0.0008652512915432453, -0.012402190826833248, -0.027740349993109703, -0.0389622300863266, 0.02194357104599476, -0.08208879083395004, 0.026810772716999054, -0.07169985771179199, 0.014146566390991211, -0.06192075088620186, 0.040270816534757614, 0.018062112852931023, -0.06571035832166672, 0.023025132715702057, -0.001013113302178681, -0.014762550592422485, 0.007835187949240208, 0.1506834626197815, 0.04655693098902702, 0.005566758569329977, -0.03356310725212097, 0.0935259610414505, 0.0526561364531517, 0.004059122409671545, -0.016077550128102303, -0.07483040541410446, 0.022986749187111855, -0.09272792190313339, -0.0509798638522625, -0.030302872881293297, 0.04699623957276344, -0.037596169859170914, -0.06664447486400604, 0.0016186059219762683, -0.02319878339767456, -0.005041039083153009, -0.0018345197895541787, 0.08401142060756683, -0.007947755046188831, 0.04530719667673111, -0.022066134959459305, -0.04859267175197601, -0.050720810890197754, 0.009517413564026356, -0.011265956796705723, 0.05858554691076279, 0.004265297669917345, -0.007684154901653528, -0.03211077302694321, -0.049306679517030716, -0.05848844721913338, -0.014692545868456364, 0.06965561956167221, -0.005802207160741091, 0.005622573662549257, -0.013516793958842754, 0.00776085676625371, 0.01669491082429886, 0.008839467540383339, -0.006700079422444105, 0.036155764013528824, 0.011534246616065502, -0.02656884491443634, 0.0015800439286977053, -0.029712194576859474, 0.09048085659742355, -0.017545320093631744, -0.05739707872271538, 0.009242822416126728, 0.07688935101032257, -0.021598421037197113, 0.10540089756250381, 0.03909740969538689, -0.009375869296491146, -0.030632179230451584, -0.021377811208367348, -0.07442767918109894, -0.04071551188826561, 0.03771745413541794, -0.07198229432106018, 0.02018660120666027, -0.024534350261092186, 0.03284447267651558, 0.08214136958122253, -0.06887859851121902, -0.04125816747546196, -0.013723145239055157, -0.07177787274122238, -0.04966866970062256, 0.011175629682838917, -0.05592630058526993, 0.004681430757045746, -3.725953423541866e-33, 0.0334547683596611, 0.08750581741333008, -0.013992234133183956, 0.031075315549969673, 0.06085701659321785, -0.03677688166499138, 0.06368017941713333, 0.06315134465694427, 0.06046285107731819, -0.04698750004172325, -0.010894495993852615, -0.11006486415863037, 0.016291139647364616, -0.07747524976730347, 0.01428084634244442, -0.02027585171163082, -0.04419706016778946, -0.03373685106635094, 0.06325287371873856, 0.09724155068397522, -0.03133751079440117, -0.013865413144230843, -0.08428257703781128, 0.0165665615350008, -0.036259911954402924, 0.03830407187342644, 0.020791135728359222, 0.01788569800555706, -0.024107789620757103, 0.0007903213263489306, -0.035096071660518646, -0.09635622799396515, -0.029739344492554665, 0.021626057103276253, -0.07707050442695618, 0.030109828338027, 0.06400547921657562, 0.03191326558589935, -0.05498061701655388, 0.11751367151737213, 0.03181798756122589, 0.017902707681059837, -0.05748485401272774, -0.01483133528381586, 0.001859751995652914, -0.01498361211270094, -0.03907762095332146, -0.05109165608882904, -0.05350908264517784, -0.034211065620183945, 0.03871080279350281, 0.05721592530608177, -0.0932774469256401, 0.017745042219758034, -0.03478509932756424, -0.034547097980976105, 0.04301832988858223, -0.036254897713661194, -0.05131356045603752, -0.034846555441617966, -0.04580632969737053, -0.01007916685193777, 0.0008639017469249666, -0.020801061764359474, 0.0569717139005661, -0.04328013211488724, -0.07696564495563507, 0.04733520746231079, 0.018487518653273582, -0.020576493814587593, 0.049149543046951294, -0.05909405276179314, 0.047113314270973206, 0.05803411826491356, -0.030164970085024834, -0.0900188460946083, -0.1142469272017479, -0.0379946194589138, 0.07883692532777786, 0.045411285012960434, -0.06498999148607254, -0.0657905712723732, 0.009120594710111618, 0.08704298734664917, 0.0011468013981357217, 0.06946123391389847, 0.03941013291478157, 0.047644197940826416, 0.08022578805685043, -0.0498572513461113, 0.028482459485530853, 0.051338132470846176, 0.07343091070652008, 0.09581177681684494, 0.03663739562034607, -4.921354701536984e-8, 0.013056560419499874, 0.005273299291729927, -0.07286429405212402, 0.03792676702141762, -0.022908154875040054, -0.1235138401389122, -0.08369261771440506, 0.002239751862362027, 0.007303968537598848, -0.011271357536315918, -0.0038570479955524206, 0.04901912063360214, -0.01938471570611, -0.05463269725441933, -0.023808034136891365, 0.05408867448568344, 0.000513885635882616, 0.07399995625019073, -0.025592627003788948, 0.033483605831861496, 0.003087308257818222, 0.08283114433288574, -0.03329676762223244, -0.053348809480667114, 0.03832681104540825, -0.0065119401551783085, -0.07432568818330765, -0.03620879352092743, 0.034664127975702286, 0.02666122280061245, -0.027226705104112625, 0.010165824554860592, 0.0062479074113070965, -0.06316959112882614, 0.005646892357617617, 0.023108970373868942, -0.05111849308013916, -0.05873982980847359, 0.034652229398489, 0.036848053336143494, 0.13270780444145203, 0.013376169838011265, -0.13947591185569763, 0.032579220831394196, 0.08792538940906525, -0.017978183925151825, -0.03187170997262001, -0.13516107201576233, 0.06338690966367722, -0.026246564462780952, 0.03100053034722805, 0.018709475174546242, -0.045831505209207535, 0.052227895706892014, 0.037415761500597, 0.041656218469142914, -0.07800343632698059, -0.01786605641245842, 0.07638510316610336, 0.0009475210681557655, -0.055766232311725616, 0.04767969250679016, -0.004023435991257429, 0.003956903237849474 ]
hetpandya/t5-base-tapaco
374f3753409f0a3aca1d69f8af2cee358b02daea
2021-06-29T11:19:06.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:tapaco", "transformers", "autotrain_compatible" ]
text2text-generation
false
hetpandya
null
hetpandya/t5-base-tapaco
2,737
null
transformers
--- language: en datasets: - tapaco --- # T5-base for paraphrase generation Google's T5-base fine-tuned on [TaPaCo](https://huggingface.co/datasets/tapaco) dataset for paraphrasing. <!-- ## Model fine-tuning --> <!-- The training script is a slightly modified version of [this Colab Notebook](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) created by [Suraj Patil](https://github.com/patil-suraj), so all credits to him! --> ## Model in Action 🚀 ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("hetpandya/t5-base-tapaco") model = T5ForConditionalGeneration.from_pretrained("hetpandya/t5-base-tapaco") def get_paraphrases(sentence, prefix="paraphrase: ", n_predictions=5, top_k=120, max_length=256,device="cpu"): text = prefix + sentence + " </s>" encoding = tokenizer.encode_plus( text, pad_to_max_length=True, return_tensors="pt" ) input_ids, attention_masks = encoding["input_ids"].to(device), encoding[ "attention_mask" ].to(device) model_output = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=max_length, top_k=top_k, top_p=0.98, early_stopping=True, num_return_sequences=n_predictions, ) outputs = [] for output in model_output: generated_sent = tokenizer.decode( output, skip_special_tokens=True, clean_up_tokenization_spaces=True ) if ( generated_sent.lower() != sentence.lower() and generated_sent not in outputs ): outputs.append(generated_sent) return outputs paraphrases = get_paraphrases("The house will be cleaned by me every Saturday.") for sent in paraphrases: print(sent) ``` ## Output ``` The house will get cleaned for a whole week. The house is cleaning by me every weekend. What was going to do not get do with the house from me every Thursday. The house should be cleaned on Sunday--durse. It's time that I would be cleaning her house in tomorrow. ``` Created by [Het Pandya/@hetpandya](https://github.com/hetpandya) | [LinkedIn](https://www.linkedin.com/in/het-pandya) Made with <span style="color: red;">&hearts;</span> in India
[ -0.12788687646389008, -0.05737802013754845, 0.05320509523153305, 0.0017571470234543085, -0.027493270114064217, -0.020548487082123756, 0.004073997028172016, 0.01961081102490425, -0.03867259621620178, -0.0525115467607975, 0.015077066607773304, -0.02969738282263279, -0.008014379069209099, -0.01976362057030201, 0.008460788056254387, 0.043449319899082184, 0.009993384592235088, 0.013228349387645721, -0.13117626309394836, -0.15670831501483917, 0.11282533407211304, 0.07271113991737366, 0.059916168451309204, -0.03191521391272545, 0.030515242367982864, 0.005245908163487911, -0.04714124649763107, -0.015139947645366192, 0.05439997836947441, -0.009446173906326294, -0.02350369095802307, 0.0889061987400055, -0.06843739748001099, 0.04138197377324104, -0.008839732967317104, 0.09322824329137802, -0.08105836063623428, 0.037191517651081085, 0.020453324541449547, 0.002436523325741291, 0.04203816503286362, -0.036471642553806305, -0.04456429183483124, 0.0290316604077816, 0.11410520225763321, 0.004282613284885883, -0.04357088357210159, 0.003780327271670103, -0.034837014973163605, -0.01058744452893734, -0.06957466155290604, -0.04694650322198868, 0.01976947672665119, 0.05450064316391945, -0.006732108537107706, 0.008831582963466644, 0.01547032967209816, 0.0010961164953187108, 0.052557263523340225, -0.08009406924247742, -0.06125130504369736, -0.04744446277618408, -0.048420824110507965, -0.041035041213035583, -0.010232370346784592, 0.007558641955256462, 0.06374020129442215, 0.03262355923652649, 0.021132096648216248, 0.048011794686317444, -0.08650533109903336, 0.0005252339178696275, 0.07183751463890076, 0.01665639504790306, -0.02434195950627327, 0.03449277952313423, 0.10536957532167435, -0.051847800612449646, 0.035787101835012436, -0.0804314911365509, -0.006268939469009638, -0.05577702820301056, 0.10210210084915161, 0.0721435621380806, 0.0017850120784714818, -0.04150599241256714, 0.016957642510533333, -0.004139314871281385, 0.04930620267987251, -0.0085507957264781, 0.026504142209887505, -0.04561883583664894, 0.003805607557296753, -0.03799085691571236, -0.078755684196949, 0.08127183467149734, -0.0788395032286644, -0.0765451043844223, -0.07432857155799866, 0.07577460259199142, 0.016053790226578712, -0.00862320140004158, 0.03586481884121895, -0.024649158120155334, -0.03417429327964783, -0.029797380790114403, 0.06262128055095673, -0.0024517581332474947, 0.027478495612740517, -0.014724915847182274, -0.027479786425828934, 0.042738039046525955, -0.02605562098324299, -0.0249954741448164, 0.02269018068909645, -0.0074450355023145676, -0.056307289749383926, -0.04837528616189957, 0.044862233102321625, 0.00742217805236578, -0.006928207818418741, 0.04102542996406555, -0.05434883013367653, 0.0459708571434021, -0.06240188702940941, -0.046605512499809265, -0.056573349982500076, 5.927004147319212e-33, 0.06412291526794434, 0.04286731034517288, 0.05472288280725479, -0.007966610603034496, -0.046906325966119766, 0.0005673763807862997, 0.03494658321142197, 0.01744202710688114, -0.08373115956783295, 0.06003006175160408, -0.10579100996255875, -0.035583559423685074, -0.09574178606271744, -0.011240676045417786, 0.007251570001244545, -0.0622333325445652, -0.13034631311893463, 0.06481026858091354, 0.005745291244238615, 0.0360807403922081, 0.08067221194505692, 0.09104558825492859, -0.04011048749089241, -0.05989896133542061, -0.059526022523641586, 0.029203638434410095, 0.053244318813085556, -0.09242603927850723, -0.04020626097917557, 0.031215891242027283, -0.07934106886386871, 0.029239550232887268, -0.004324492998421192, -0.016709771007299423, 0.004668206907808781, -0.06825947761535645, -0.004247589968144894, -0.0278007835149765, 0.01488081831485033, -0.062413912266492844, 0.011046767234802246, 0.036258723586797714, 0.05479663982987404, 0.005181021522730589, -0.050369054079055786, -0.03459721803665161, -0.03425468131899834, 0.0043427832424640656, 0.015125537291169167, 0.044065702706575394, -0.0266563780605793, 0.00033837827504612505, 0.023757925257086754, -0.06333708018064499, 0.027750365436077118, 0.04088606685400009, 0.023541763424873352, 0.04004630818963051, 0.08503472805023193, 0.022013748064637184, 0.01975163072347641, -0.013382872566580772, -0.021339552477002144, 0.04573657736182213, 0.06650125235319138, 0.061943452805280685, -0.060099489986896515, -0.01528739370405674, 0.06812544912099838, 0.021172454580664635, -0.06199701502919197, -0.018135499209165573, -0.046570952981710434, 0.010376694612205029, 0.032924506813287735, -0.07302369922399521, 0.03384363278746605, -0.0020718835294246674, -0.08679711073637009, -0.013383091427385807, -0.001562767312861979, -0.035408977419137955, 0.011282717809081078, -0.000845931121148169, 0.00592229375615716, -0.024036308750510216, 0.07182223349809647, -0.12729023396968842, -0.01706964336335659, -0.0025974763557314873, 0.020801588892936707, 0.017719648778438568, -0.03339371085166931, -0.03055604360997677, -0.043977633118629456, -5.46732818345611e-33, 0.09087983518838882, 0.021778369322419167, -0.044875361025333405, 0.10163760930299759, 0.016686156392097473, -0.034822314977645874, 0.029721617698669434, 0.023198330774903297, 0.007462476380169392, -0.005129351746290922, 0.036837607622146606, -0.014574676752090454, 0.017978308722376823, -0.06353772431612015, 0.026723330840468407, -0.020307905972003937, -0.04045502096414566, 0.04332996904850006, 0.002868430223315954, 0.03469335287809372, -0.03641020879149437, 0.052377767860889435, -0.09862134605646133, 0.05431215837597847, -0.038985565304756165, 0.04405588284134865, -0.011337053030729294, 0.061993904411792755, 0.029231853783130646, 0.014329571276903152, -0.08897320926189423, 0.02806183509528637, -0.03940454125404358, 0.10644426196813583, -0.04526568576693535, 0.04862518608570099, 0.046365391463041306, -0.03748641535639763, -0.013000608421862125, 0.06286022067070007, 0.049527592957019806, 0.06489001214504242, -0.03643769398331642, 0.03809293732047081, -0.07401526719331741, -0.007254945579916239, -0.1064777597784996, -0.007764865178614855, -0.036809246987104416, -0.06929334253072739, 0.07074172049760818, 0.008804026059806347, -0.07577627897262573, 0.0035495914053171873, -0.02229907549917698, -0.05945366993546486, 0.11195482313632965, -0.1590535193681717, -0.04047829285264015, -0.01079975813627243, -0.06558134406805038, -0.016392113640904427, 0.03714001178741455, -0.09642180055379868, 0.03147058188915253, -0.03442150726914406, -0.01305965892970562, 0.004640776198357344, 0.06154906377196312, 0.011678009293973446, -0.01122627779841423, -0.015360924415290356, 0.07575316727161407, -0.02761712297797203, -0.010191185399889946, -0.016809822991490364, 0.004551074001938105, -0.038491617888212204, 0.004493859130889177, -0.10265473276376724, -0.018763946369290352, 0.026048870757222176, 0.03135089948773384, 0.07234730571508408, -0.011795083992183208, 0.04332496598362923, 0.06858864426612854, 0.15245644748210907, 0.06948516517877579, 0.08256097137928009, -0.03539760410785675, 0.008837741799652576, 0.0010029816767200828, 0.16594211757183075, 0.03662349283695221, -6.091868698376857e-8, -0.02754024602472782, 0.078748419880867, -0.047183141112327576, 0.10005603730678558, -0.02776719070971012, -0.013919438235461712, -0.01589258201420307, 0.030217070132493973, 0.041536517441272736, 0.017469534650444984, 0.04060961678624153, 0.0326913483440876, -0.024650171399116516, 0.0286090224981308, -0.018330013379454613, 0.06595198810100555, -0.03180879354476929, 0.08454149216413498, -0.02766694314777851, 0.020764173939824104, -0.01275726780295372, 0.025478584691882133, -0.021588057279586792, -0.031633321195840836, 0.06197212636470795, -0.015494931489229202, -0.053067613393068314, 0.052247464656829834, 0.009666476398706436, -0.023810992017388344, -0.011568928137421608, 0.02619386836886406, -0.020380858331918716, -0.07392112165689468, -0.00211178045719862, 0.14170247316360474, 0.001884161145426333, -0.04451817274093628, 0.013070753775537014, 0.07185429334640503, -0.024258896708488464, 0.05744413658976555, -0.12160712480545044, 0.006365948356688023, 0.03126287832856178, -0.06788139790296555, -0.01691897213459015, -0.059862397611141205, 0.027044719085097313, 0.02995762787759304, 0.03279495611786842, 0.06270486861467361, -0.05018245428800583, 0.014240573160350323, 0.012374065816402435, 0.041303589940071106, -0.008384152315557003, -0.053738053888082504, 0.012079921551048756, 0.02150094509124756, 0.034486789256334305, 0.05620330572128296, 0.019985057413578033, -0.05893753841519356 ]
monologg/koelectra-base-v3-finetuned-korquad
ea97b35e21bfd7f2524b5697931ae3db0394af9f
2020-10-14T01:43:31.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
monologg
null
monologg/koelectra-base-v3-finetuned-korquad
2,735
3
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
rinna/japanese-gpt2-small
d35a68cf1fea74b71708ce898b351471b5c698ce
2021-08-23T03:19:56.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "ja", "dataset:cc100", "dataset:wikipedia", "transformers", "japanese", "lm", "nlp", "license:mit" ]
text-generation
false
rinna
null
rinna/japanese-gpt2-small
2,731
4
transformers
--- language: ja thumbnail: https://github.com/rinnakk/japanese-gpt2/blob/master/rinna.png tags: - ja - japanese - gpt2 - text-generation - lm - nlp license: mit datasets: - cc100 - wikipedia widget: - text: "生命、宇宙、そして万物についての究極の疑問の答えは" --- # japanese-gpt2-small ![rinna-icon](./rinna.png) This repository provides a small-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/) # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. ~~~~ from transformers import T5Tokenizer, GPT2LMHeadModel tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt2-small") tokenizer.do_lower_case = True # due to some bug of tokenizer config loading model = GPT2LMHeadModel.from_pretrained("rinna/japanese-gpt2-small") ~~~~ # Model architecture A 12-layer, 768-hidden-size transformer-based language model. # Training The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 15 days. It reaches around 21 perplexity on a chosen validation set from CC-100. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script. # Licenese [The MIT license](https://opensource.org/licenses/MIT)
[ -0.13551969826221466, -0.02166745997965336, -0.015506036579608917, 0.024269575253129005, 0.03047218732535839, -0.03153308108448982, 0.01752023957669735, 0.06925510615110397, -0.012377876788377762, -0.051026832312345505, 0.10484521090984344, -0.03001861646771431, 0.028687944635748863, 0.03156008943915367, 0.0636579617857933, -0.0010517046321183443, -0.010749991051852703, 0.029736200347542763, -0.08882163465023041, -0.09770943969488144, 0.034470636397600174, -0.022221606224775314, 0.06662993133068085, 0.009697673842310905, 0.07317682355642319, 0.031719453632831573, 0.09016986936330795, 0.023011144250631332, 0.04083351418375969, 0.030634868890047073, -0.04543213173747063, 0.02486286498606205, -0.030474020168185234, 0.04994847998023033, -0.05115792155265808, 0.08711358904838562, -0.037583883851766586, -0.025025049224495888, -0.012017629109323025, -0.0020389121491461992, -0.0010166147258132696, -0.0007591975736431777, 0.019209006801247597, -0.012307317927479744, 0.12382637709379196, -0.028295498341321945, -0.041719384491443634, -0.06267298012971878, -0.0874461829662323, -0.04298684746026993, -0.025259051471948624, -0.028433550149202347, 0.019768178462982178, 0.008020455949008465, 0.027151793241500854, -0.03325411677360535, -0.018445080146193504, -0.02549337036907673, 0.0342816561460495, -0.027060791850090027, 0.0014738712925463915, 0.0031837201677262783, -0.0401131734251976, -0.039195023477077484, -0.06402721256017685, -0.016416633501648903, -0.005283383186906576, 0.0068409317173063755, 0.061152756214141846, -0.07939991354942322, -0.02572764828801155, 0.030377618968486786, -0.030591780319809914, 0.02954351156949997, -0.013971862383186817, -0.04208218306303024, 0.04984092712402344, 0.07769326865673065, 0.010836472734808922, -0.06349252909421921, 0.03204626590013504, -0.0016519080381840467, 0.14535997807979584, 0.01241098903119564, 0.04281231388449669, 0.026533303782343864, 0.023205900564789772, 0.03626713529229164, 0.03197362646460533, 0.04444511979818344, -0.0030702517833560705, 0.01671714335680008, 0.0383615605533123, 0.06734740734100342, -0.0541548915207386, -0.01432520616799593, -0.0648830384016037, 0.0050146798603236675, -0.11468548327684402, 0.08645397424697876, -0.017700057476758957, 0.022001685574650764, 0.042485788464546204, 0.05054968222975731, -0.05712945759296417, -0.025055568665266037, -0.016044700518250465, 0.010318317450582981, 0.022893384099006653, -0.010896672494709492, 0.0617268905043602, -0.02500416897237301, -0.0707106664776802, -0.03044120781123638, -0.03333807736635208, 0.04156392067670822, -0.04316054284572601, -0.010355295613408089, -0.026713818311691284, 0.0760277658700943, -0.02981683984398842, 0.011497306637465954, -0.09172295033931732, -0.05267781391739845, -0.05696137994527817, 0.07729421555995941, -0.07416106760501862, 7.026069324818973e-33, 0.06885246932506561, 0.06155059114098549, -0.0034636047203093767, 0.03650662675499916, -0.040111932903528214, 0.0013875714503228664, -0.03360319510102272, -0.0665775015950203, -0.03316248953342438, -0.054580241441726685, -0.0419955812394619, 0.032003432512283325, -0.15994957089424133, -0.005983909126371145, -0.004028319846838713, -0.08908265084028244, -0.031114382669329643, 0.0268691498786211, 0.04882059991359711, 0.019067781046032906, 0.09879764914512634, 0.08006845414638519, -0.0050222198478877544, -0.07650250941514969, -0.05711282417178154, 0.09344547986984253, 0.07793667167425156, -0.08670958131551743, 0.02261144109070301, 0.08255891501903534, -0.0596124604344368, -0.041552431881427765, 0.0024807804729789495, 0.03276457265019417, -0.03736972436308861, -0.06805117428302765, 0.01504150964319706, -0.06945016980171204, 0.028284214437007904, -0.08574522286653519, 0.03554566204547882, -0.010020416229963303, 0.021833643317222595, -0.039319854229688644, -0.023297568783164024, -0.019016703590750694, 0.06336674839258194, 0.008703834377229214, 0.04165451228618622, 0.053364962339401245, -0.06802265346050262, 0.046633608639240265, -0.08008606731891632, 0.025127911940217018, -0.010780397802591324, 0.03605741634964943, 0.08980678766965866, 0.007662918418645859, 0.030264481902122498, 0.029608234763145447, -0.03981301560997963, 0.01292258407920599, 0.02025970257818699, 0.06832072138786316, 0.05431446060538292, 0.07689289003610611, -0.07493088394403458, -0.09595954418182373, 0.027215100824832916, 0.04469071328639984, -0.03013053722679615, -0.04369739070534706, 0.046669505536556244, -0.012056984007358551, 0.058390066027641296, -0.10499011725187302, 0.05005030333995819, -0.024046631529927254, -0.07041989266872406, 0.02206316590309143, -0.08236786723136902, -0.012960030697286129, -0.006906213238835335, -0.008327298797667027, -0.006280913483351469, -0.0406201109290123, 0.07694576680660248, -0.05176596716046333, -0.029872165992856026, -0.04186149314045906, 0.020416393876075745, -0.0010264109587296844, -0.02106105349957943, -0.01414298266172409, -0.02222619391977787, -6.432487289323935e-33, 0.07276760786771774, 0.0418185219168663, -0.015468427911400795, 0.05897846445441246, -0.034181445837020874, -0.10621411353349686, 0.031168436631560326, 0.07044285535812378, -0.025550726801156998, 0.0146158616989851, 0.05661334469914436, -0.01755177602171898, -0.037194449454545975, -0.019260011613368988, 0.08201368898153305, -0.04196736961603165, 0.0556425005197525, -0.003435632912442088, 0.023372692987322807, 0.02238219976425171, 0.05496683344244957, 0.018028734251856804, -0.12651364505290985, 0.07710564136505127, -0.0395263247191906, 0.03594670072197914, 0.061916280537843704, 0.03873211890459061, 0.03432747721672058, 0.029928546398878098, -0.0615132711827755, -0.006604956462979317, -0.041565410792827606, 0.0075929719023406506, -0.08862469345331192, -0.05134084075689316, 0.0504220612347126, 0.05367507413029671, -0.07180534303188324, 0.06822306662797928, 0.026405394077301025, -0.04466882348060608, -0.08667653799057007, 0.06852876394987106, -0.08256970345973969, 0.02740776352584362, -0.009032092057168484, 0.04628770798444748, -0.0014554314548149705, -0.07219430804252625, 0.04959786310791969, -0.039128974080085754, -0.006009657867252827, -0.019143911078572273, -0.11525415629148483, -0.0652150884270668, 0.060419633984565735, -0.017561955377459526, -0.06042473763227463, -0.006987651344388723, -0.003923236392438412, -0.11607277393341064, 0.07452675700187683, -0.044936902821063995, -0.03414689004421234, -0.06052788347005844, 0.04853246733546257, 0.01801452971994877, 0.06200385466217995, 0.02197657898068428, 0.01000429131090641, 0.01603073813021183, 0.10710200667381287, -0.02631504461169243, 0.003749751253053546, -0.022318044677376747, -0.07465146481990814, -0.007339904084801674, 0.10547159612178802, -0.04734944552183151, -0.04557075724005699, 0.049363259226083755, 0.03829361870884895, 0.010457263328135014, 0.07931042462587357, -0.058810219168663025, -0.0010692519135773182, 0.09395740926265717, 0.04400167986750603, 0.013466627337038517, -0.04583749547600746, 0.10028231143951416, 0.04755299538373947, 0.09369523078203201, 0.01159058790653944, -5.897775423591156e-8, -0.07761344313621521, -0.09009314328432083, -0.04755081236362457, 0.005053464323282242, -0.06053759902715683, -0.05783342942595482, -0.045316994190216064, 0.03150707855820656, 0.020962268114089966, -0.030428307130932808, -0.0043369499035179615, 0.060903582721948624, -0.1115521565079689, -0.0031574657186865807, 0.004881788045167923, 0.039645612239837646, 0.07253727316856384, 0.12485770881175995, -0.0331445150077343, -0.0271852258592844, -0.026323983445763588, 0.004479273688048124, 0.03706490248441696, -0.07668863236904144, -0.04736046493053436, 0.013513751327991486, -0.09240119159221649, 0.07380226999521255, -0.0031470407266169786, -0.01678371988236904, 0.019732778891921043, -0.0077142901718616486, 0.0020866382401436567, 0.027097178623080254, -0.02721342444419861, 0.041896138340234756, 0.014578156173229218, -0.053641896694898605, 0.014596722088754177, -0.019497938454151154, 0.07451887428760529, -0.005850295070558786, -0.07787343114614487, 0.02362421154975891, 0.02973046898841858, 0.03363247215747833, -0.005508135538548231, -0.07307545095682144, 0.020480047911405563, 0.02341560646891594, 0.04597581923007965, -0.0009540001046843827, -0.09361551702022552, -0.006758911535143852, -0.03972136974334717, 0.04062314331531525, -0.021583450958132744, -0.05845721811056137, 0.013942130841314793, 0.05447010695934296, -0.003241931553930044, 0.009821875020861626, 0.010768614709377289, 0.0009422330185770988 ]
Jonesy/HomersNightOut
3b14400af228e5e589bdff6d4333a9645869e220
2022-04-28T21:08:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jonesy
null
Jonesy/HomersNightOut
2,729
null
transformers
--- tags: - conversational --- # DialoGPT-medium Model of Simpsons Episode s1e10 "Homer's Night Out"
[ -0.03787623718380928, -0.026492537930607796, 0.0001718651328701526, -0.04339809715747833, 0.027409322559833527, -0.0010801675962284207, 0.08986509591341019, 0.07419411838054657, 0.015904191881418228, -0.09661661088466644, -0.02897590398788452, 0.019834183156490326, -0.024674048647284508, -0.014990576542913914, -0.04193992540240288, -0.05010071024298668, 0.028874319046735764, -0.08552734553813934, 0.03359094262123108, 0.07174739986658096, 0.03621944412589073, 0.04583873972296715, 0.03056010976433754, 0.0048506311140954494, 0.07195905596017838, 0.07656517624855042, -0.07880228012800217, -0.08112242817878723, -0.007058837451040745, -0.013445953838527203, -0.00638468936085701, 0.07786372303962708, 0.06738027930259705, 0.03672143071889877, -0.004665588494390249, -0.03591100126504898, 0.09353144466876984, 0.0679234191775322, -0.04693310707807541, 0.09453027695417404, -0.001178471720777452, -0.008839566260576248, -0.0772346705198288, -0.02398693934082985, -0.06454803794622421, 0.029763301834464073, -0.0700145736336708, -0.09661790728569031, -0.016774145886301994, 0.08347290009260178, -0.08080701529979706, 0.04632095620036125, -0.02538335509598255, 0.07132275402545929, -0.007593884132802486, 0.014416448771953583, 0.03605294227600098, 0.006335783284157515, 0.04924479126930237, 0.03767776861786842, -0.03915812075138092, -0.040139198303222656, -0.05271918699145317, 0.0750756785273552, 0.01738373190164566, 0.0037031732499599457, -0.08626043796539307, 0.05500335991382599, -0.0579366497695446, 0.04465430602431297, -0.029254227876663208, 0.04570719972252846, 0.0038517501670867205, -0.048604998737573624, -0.06632168591022491, 0.023509323596954346, 0.06179017201066017, -0.0821775570511818, 0.06374800950288773, 0.00657086493447423, 0.01719515770673752, -0.09235147386789322, -0.057922277599573135, -0.015028436668217182, 0.0009785388829186559, -0.06031552329659462, 0.029845181852579117, -0.06914699822664261, -0.02220560610294342, 0.014334267005324364, -0.08787114173173904, -0.08955119550228119, 0.017478305846452713, -0.009711208753287792, -0.04335283115506172, 0.0089398929849267, -0.05781577527523041, -0.1260070949792862, -0.032964419573545456, 0.11138270795345306, -0.02226051315665245, 0.028080767020583153, 0.06763649731874466, -0.10223006457090378, 0.015606031753122807, 0.05187245085835457, -0.07674605399370193, -0.013565908186137676, 0.06633058190345764, -0.0012575979344546795, 0.013410932384431362, -0.03853113204240799, 0.04723481461405754, -0.024113288149237633, 0.13919000327587128, -0.03298026695847511, 0.06329908967018127, -0.023820627480745316, 0.05796158313751221, -0.05136421322822571, 0.004368431866168976, -0.019317183643579483, -0.01339693833142519, -0.0276910699903965, -0.028850318863987923, -0.021490683779120445, -0.026144247502088547, -1.9470170273440415e-33, 0.017102880403399467, 0.012846131809055805, -0.0401114895939827, 0.06339843571186066, 0.0344998724758625, 0.0625418871641159, -0.0868036225438118, -0.004072663839906454, 0.03776174783706665, 0.009420676156878471, 0.03291095048189163, -0.06737295538187027, -0.06071875989437103, 0.04165148735046387, 0.027445267885923386, 0.011248698458075523, -0.029052676633000374, 0.06519194692373276, -0.02084415778517723, -0.051677457988262177, 0.02222820371389389, 0.06690236181020737, 0.017445744946599007, 0.007896743714809418, 0.03263545781373978, -0.047070253640413284, 0.007572708185762167, -0.09992243349552155, 0.0033386158756911755, 0.031956806778907776, -0.019809184595942497, 0.016962066292762756, 0.018249178305268288, 0.03600568696856499, -0.0022145970724523067, 0.0044487593695521355, -0.01058285217732191, -0.048748474568128586, -0.010256871581077576, -0.1221928745508194, -0.07963857054710388, -0.030062193050980568, -0.03308577835559845, 0.0013944287784397602, 0.0034473459236323833, 0.00930559542030096, 0.014544930309057236, 0.04133910313248634, -0.014700223691761494, 0.008550243452191353, -0.032922446727752686, -0.001314825494773686, 0.06528401374816895, -0.09151112288236618, 0.004686441272497177, -0.030409935861825943, -0.011259409599006176, -0.04503941163420677, 0.02680942602455616, 0.004564571660012007, 0.029623717069625854, 0.026294201612472534, 0.07403073459863663, -0.09611406922340393, 0.08483316749334335, 0.0291108638048172, 0.011722201481461525, 0.0011649879161268473, 0.005951562896370888, -0.0122337955981493, -0.08290717005729675, -0.01530130859464407, 0.012000144459307194, 0.028243109583854675, -0.03082665242254734, 0.034089215099811554, -0.0016243006102740765, -0.03183240070939064, 0.00910154078155756, 0.09597355872392654, -0.00039115906110964715, -0.08877799659967422, -0.0385836660861969, -0.05103360489010811, 0.03306884691119194, -0.02912140265107155, 0.07321268320083618, -0.07680685073137283, -0.030329281464219093, 0.01690460555255413, 0.02620142698287964, -0.021672798320651054, -0.02814512886106968, 0.016758864745497704, -0.025656001642346382, -8.389299307017195e-34, -0.028948452323675156, -0.01429680548608303, -0.11341579258441925, 0.02820398099720478, 0.027488185092806816, 0.021161099895834923, 0.011654067784547806, 0.12924964725971222, -0.014231625944375992, -0.01702696457505226, -0.03298104926943779, -0.008993741124868393, -0.042041126638650894, -0.061627015471458435, 0.12435304373502731, -0.06697376072406769, 0.018728194758296013, 0.012796199880540371, -0.05641589313745499, 0.035828929394483566, 0.07121086120605469, -0.031743668019771576, -0.12579017877578735, 0.11043812334537506, 0.06816036254167557, -0.03338110074400902, -0.002571261487901211, 0.044963207095861435, -0.005919449497014284, -0.05536213144659996, -0.11275359988212585, 0.0162814874202013, -0.011799327097833157, 0.015336734242737293, 0.01916392520070076, 0.07038048654794693, 0.05574681609869003, -0.019303174689412117, -0.04228714480996132, 0.014469983987510204, 0.05176214873790741, 0.004967504646629095, 0.023174742236733437, 0.05942877382040024, -0.03888991102576256, -0.03161057084798813, -0.0974467471241951, -0.011021086946129799, -0.05167975276708603, 0.05924860015511513, -0.012316497042775154, -0.012265371158719063, -0.08848217129707336, -0.01567191258072853, -0.10407997667789459, -0.035949915647506714, 0.004143841564655304, 0.018732160329818726, -0.08830684423446655, 0.030671099200844765, -0.020333735272288322, -0.08986496925354004, 0.02713608182966709, -0.0191337987780571, 0.037692319601774216, -0.06424489617347717, -0.00959701742976904, -0.04046763479709625, -0.03350170701742172, 0.003930720966309309, 0.08652214705944061, -0.016620682552456856, 0.02317623980343342, 0.034956201910972595, 0.12474554032087326, -0.022444814443588257, 0.003917104098945856, -0.000418117648223415, -0.028227465227246284, -0.09805460274219513, 0.0013687609462067485, -0.006304634269326925, 0.03267193213105202, 0.09648274630308151, 0.10781430453062057, 0.011660689488053322, 0.011466138064861298, 0.07967069745063782, 0.012490217573940754, 0.01548521127551794, 0.04520034417510033, 0.02683129347860813, 0.014498298987746239, 0.04337950423359871, 0.014020146802067757, -3.1732039218468344e-8, -0.022761652246117592, -0.05680851265788078, 0.03477473929524422, -0.03136245161294937, 0.08293437212705612, -0.008572530001401901, 0.024915508925914764, -0.011724748648703098, -0.07728084921836853, 0.0049008033238351345, 0.04727477952837944, 0.09562400728464127, 0.0013858653837814927, 0.02418862283229828, -0.007507484406232834, 0.01996053196489811, -0.039859671145677567, 0.020964495837688446, -0.026720188558101654, -0.006113956682384014, 0.052586786448955536, -0.062236037105321884, -0.02126123197376728, 0.036760587245225906, 0.05348134785890579, 0.03511520102620125, -0.05763300508260727, 0.06977114826440811, -0.014522961340844631, 0.03218016400933266, 0.07495222240686417, 0.048656921833753586, -0.18213236331939697, -0.054347142577171326, -0.047812145203351974, 0.06749502569437027, 0.04853297397494316, -0.018160151317715645, 0.00989667046815157, -0.04699811339378357, 0.007363787852227688, -0.00918623898178339, -0.008560189045965672, -0.008800727315247059, 0.057777270674705505, 0.08068155497312546, 0.010414453223347664, -0.04426741227507591, -0.017787735909223557, 0.016494618728756905, -0.07061595469713211, -0.01413710881024599, 0.055764611810445786, -0.05135707929730415, -0.008508438244462013, -0.06293078511953354, 0.00044720876030623913, 0.03480875492095947, 0.07842361927032471, 0.01877160184085369, 0.0827895849943161, 0.15074066817760468, 0.0013154603075236082, -0.020507002249360085 ]
sberbank-ai/sbert_large_mt_nlu_ru
4b9767cce506403f64e69309eab741263479b099
2021-09-21T19:47:13.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "ru", "transformers", "PyTorch", "Transformers" ]
feature-extraction
false
sberbank-ai
null
sberbank-ai/sbert_large_mt_nlu_ru
2,720
2
transformers
--- language: - ru tags: - PyTorch - Transformers --- # BERT large model multitask (cased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/560748/) Russian SuperGLUE [metrics](https://russiansuperglue.com/login/submit_info/944) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("sberbank-ai/sbert_large_mt_nlu_ru") model = AutoModel.from_pretrained("sberbank-ai/sbert_large_mt_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ```
[ -0.05673832446336746, -0.0912284404039383, 0.001779627869836986, 0.03071325644850731, -0.008437956683337688, 0.0817280188202858, 0.01519913598895073, 0.08348936587572098, 0.07117880880832672, -0.07368389517068863, -0.06392824649810791, -0.03327194228768349, 0.019874820485711098, 0.12573179602622986, -0.010759403929114342, 0.037867434322834015, 0.062648706138134, 0.057874538004398346, -0.11296507716178894, -0.1257457286119461, 0.12904244661331177, 0.015097618103027344, 0.11522267758846283, -0.024915851652622223, 0.06718805432319641, -0.0017357683973386884, -0.06255345791578293, -0.05892704799771309, 0.09562015533447266, 0.08012504875659943, 0.01411200501024723, -0.050026632845401764, 0.016753526404500008, 0.09681250154972076, 0.028754601255059242, 0.056352514773607254, -0.06759823858737946, -0.05200020596385002, 0.000983947771601379, 0.004821400158107281, -0.011407515965402126, -0.01959744654595852, -0.04069766774773598, -0.003607574850320816, 0.08372070640325546, 0.0005672925035469234, -0.04301231727004051, -0.0038446709513664246, -0.028374582529067993, -0.023404108360409737, -0.029045525938272476, -0.012566793709993362, -0.0008129634661599994, 0.07545031607151031, 0.022561797872185707, -0.013972815126180649, 0.0008786764810793102, -0.0756806805729866, -0.007777527906000614, -0.10327962785959244, -0.07767664641141891, -0.08629832416772842, 0.06304673850536346, -0.01247837208211422, -0.05940505489706993, 0.011751766316592693, -0.03215321525931358, 0.08605124056339264, -0.0671781450510025, 0.10431011021137238, -0.043201349675655365, 0.05599786341190338, -0.05334297567605972, -0.022164909169077873, -0.006139383185654879, -0.025322772562503815, 0.08681944757699966, -0.061709024012088776, 0.03484358265995979, -0.055756792426109314, 0.09352495521306992, -0.029100481420755386, 0.06978891044855118, 0.011319062672555447, 0.0577886700630188, -0.05401826649904251, 0.08052382618188858, 0.006887997500598431, 0.001761946128681302, 0.006632930599153042, -0.038351915776729584, -0.10253815352916718, 0.029843704774975777, -0.022195888683199883, 0.02204354666173458, -0.002378798322752118, -0.000814159691799432, -0.01701965183019638, -0.030755313113331795, 0.02013532631099224, 0.013102082535624504, 0.013464776799082756, 0.06997035443782806, -0.06897515803575516, -0.017671968787908554, 0.020526299253106117, -0.021171528846025467, 0.05985018238425255, -0.019685979932546616, -0.11776711791753769, -0.014464030042290688, -0.00027575032436288893, 0.006044995039701462, 0.020767005160450935, 0.03972754627466202, -0.003757441183552146, 0.02421504631638527, 0.004893605597317219, 0.03110443241894245, 0.08708803355693817, 0.014758321456611156, 0.06399472802877426, -0.003510212292894721, 0.05765779688954353, 0.0005344059900380671, 0.0012965953210368752, 0.01621260866522789, 4.3110425123522126e-33, -0.0004641303385142237, 0.04020030051469803, -0.01621805876493454, -0.026375941932201385, -0.06449074298143387, 0.04899271950125694, -0.0001551663299323991, 0.009229304268956184, -0.03984908387064934, 0.013782463036477566, -0.03995424136519432, 0.03801944479346275, -0.0454016737639904, 0.022610167041420937, -0.016251185908913612, 0.02365194447338581, -0.004078808706253767, -0.005359706003218889, 0.027586281299591064, 0.07149626314640045, 0.07969485223293304, 0.044784098863601685, -0.014037134125828743, -0.041504405438899994, -0.09169366955757141, -0.0028892161790281534, 0.07568089663982391, -0.10142448544502258, -0.08421649783849716, -0.003311297157779336, -0.09712373465299606, 0.00295422226190567, -0.050894077867269516, 0.05600262060761452, -0.020677238702774048, -0.03711255267262459, 0.0055900332517921925, 0.022046754136681557, 0.01815768890082836, -0.04178792983293533, 0.007450147531926632, 0.017254101112484932, -0.05266940966248512, -0.052583977580070496, -0.033508703112602234, 0.00772485276684165, 0.04013880714774132, 0.022166699171066284, 0.02767271362245083, 0.02406446449458599, 0.04848341643810272, -0.0007503408123739064, -0.041944850236177444, 0.048171382397413254, 0.020244982093572617, 0.01106848381459713, 0.058953870087862015, 0.012036650441586971, 0.09155111014842987, -0.037438321858644485, -0.018602682277560234, -0.04892304912209511, 0.0637536272406578, 0.0031506677623838186, 0.0858030766248703, -0.02594490349292755, -0.030895167961716652, 0.06292609870433807, -0.00695063779130578, 0.07409199327230453, -0.036162640899419785, 0.02875276654958725, -0.07649409770965576, 0.05119021236896515, -0.036144863814115524, -0.047895658761262894, 0.024805191904306412, -0.07049793004989624, -0.041134435683488846, 0.09947685152292252, -0.02079780399799347, -0.004745298530906439, 0.035279206931591034, -0.05967902019619942, -0.0779636949300766, -0.01821948029100895, 0.03614911809563637, -0.08352863043546677, -0.022087212651968002, -0.04461241140961647, -0.06493009626865387, -0.07666247338056564, 0.05241277068853378, 0.00702013960108161, -0.05254841968417168, -4.7620495727199845e-33, 0.04193999990820885, 0.03183843567967415, -0.03917580097913742, 0.09197328239679337, -0.03852266073226929, -0.04541614651679993, 0.04172862321138382, 0.11560046672821045, -0.024116873741149902, 0.003636060981079936, -0.04249703139066696, -0.05598566681146622, 0.020789844915270805, -0.01735265552997589, 0.10540767014026642, -0.010410218499600887, 0.02510114014148712, 0.06388645619153976, -0.014540077187120914, 0.04072226956486702, -0.0007209490868262947, 0.020293258130550385, -0.05656032636761665, 0.05401216447353363, -0.03438461199402809, 0.0640416070818901, 0.021286549046635628, -0.04022587835788727, -0.03865228593349457, -0.022192461416125298, 0.008135990239679813, -0.01722642220556736, -0.05157850682735443, 0.06694076210260391, -0.10049854218959808, 0.005160350818186998, 0.06985892355442047, -0.040727484971284866, -0.07727383077144623, 0.021742451936006546, 0.08026549965143204, 0.018896158784627914, -0.07237343490123749, 0.07793432474136353, -0.024187779054045677, 0.03673899918794632, -0.14109350740909576, -0.06388556957244873, 0.0007473118603229523, -0.05642630159854889, -0.06455275416374207, -0.025657275691628456, -0.13145118951797485, 0.012992982752621174, -0.08481723815202713, -0.0834278091788292, 0.019809916615486145, -0.07719489932060242, -0.03446098417043686, -0.05115312710404396, -0.02885536476969719, -0.046910759061574936, 0.030538322404026985, -0.10440399497747421, 0.01124955527484417, -0.06885728985071182, 0.030521266162395477, 0.0022503265645354986, 0.02920050546526909, -0.02426689676940441, 0.041353777050971985, -0.015509523451328278, 0.008379409089684486, 0.06882815062999725, 0.01145500410348177, 0.08075004070997238, 0.01852971315383911, -0.03740531578660011, 0.03219825401902199, -0.053822316229343414, -0.038989026099443436, -0.05747290328145027, 0.0301983542740345, 0.017565060406923294, 0.0049330140464007854, 0.03462918847799301, 0.08183304965496063, 0.08322647958993912, 0.016507744789123535, -0.010626641102135181, -0.046850379556417465, 0.04854103550314903, -0.012114464305341244, 0.1192285344004631, 0.04074195772409439, -5.080760701048348e-8, -0.039995692670345306, -0.015256224200129509, -0.016163887456059456, 0.04302435740828514, -0.08969976752996445, -0.07225269824266434, -0.024232491850852966, 0.02137329801917076, -0.059768449515104294, -0.0486781969666481, -0.02588299661874771, -0.03250659257173538, -0.06993153691291809, -0.0188148096203804, -0.015383879654109478, 0.06447042524814606, -0.02480398491024971, 0.04674834758043289, 0.024148114025592804, -0.003373226383700967, -0.014237457886338234, 0.025670628994703293, 0.035460010170936584, -0.05062005668878555, -0.044587068259716034, -0.0008930828771553934, 0.004581237677484751, 0.028618546202778816, 0.004534335806965828, -0.018428543582558632, 0.06310147792100906, 0.004381268750876188, -0.035267312079668045, -0.010590339079499245, 0.04446592554450035, 0.06933723390102386, 0.02118605747818947, -0.05417107045650482, 0.047572001814842224, 0.07386882603168488, 0.051688577979803085, 0.04243519529700279, -0.03888663649559021, -0.002231970429420471, 0.07485964894294739, 0.02684619091451168, -0.04197898134589195, -0.12546148896217346, 0.031725551933050156, 0.03947697952389717, 0.09240264445543289, -0.045821137726306915, -0.10359787195920944, 0.08198445290327072, -0.021203847602009773, 0.02756332792341709, 0.014687229879200459, -0.021398484706878662, 0.028839709237217903, -0.012440179474651814, 0.003136757528409362, 0.03174148127436638, -0.03551945090293884, -0.010265743359923363 ]
deep-learning-analytics/GrammarCorrector
6ca90bd771c373a0542d4257a5c34d26cd0d3c59
2021-12-23T02:51:34.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
deep-learning-analytics
null
deep-learning-analytics/GrammarCorrector
2,719
3
transformers
## Model description T5 model trained for Grammar Correction. This model corrects grammatical mistakes in input sentences ### Dataset Description The T5-base model has been trained on C4_200M dataset. ### Model in Action 🚀 ``` import torch from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'deep-learning-analytics/GrammarCorrector' torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(torch_device) def correct_grammar(input_text,num_return_sequences): batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device) translated = model.generate(**batch,max_length=64,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) return tgt_text ``` ### Example Usage ``` text = 'He are moving here.' print(correct_grammar(text, num_return_sequences=2)) ['He is moving here.', 'He is moving here now.'] ``` Another example ``` text = 'Cat drinked milk' print(correct_grammar(text, num_return_sequences=2)) ['Cat drank milk.', 'Cat drink milk.'] ``` Model Developed by [Priya-Dwivedi](https://www.linkedin.com/in/priyanka-dwivedi-6864362)
[ -0.04643706977367401, -0.05102677643299103, 0.07697544246912003, 0.02398204430937767, -0.033256106078624725, -0.011778013780713081, -0.005936147645115852, 0.028353901579976082, -0.051870837807655334, -0.050397079437971115, 0.009023472666740417, -0.057301104068756104, -0.024853765964508057, -0.038100264966487885, -0.022001653909683228, 0.021749675273895264, -0.0031797478441148996, 0.04774913564324379, -0.12200218439102173, -0.16496706008911133, 0.06947799772024155, 0.0957205593585968, 0.02218322455883026, 0.03625712916254997, 0.03005114570260048, 0.02182384394109249, -0.04396824166178703, -0.022950904443860054, 0.03613133728504181, 0.014682549051940441, -0.04834512621164322, 0.0340178906917572, -0.06921100616455078, 0.0918792337179184, 0.03428005799651146, 0.0562848225235939, -0.11349377781152725, -0.03476131334900856, 0.0026282593607902527, -0.03500648960471153, 0.017116941511631012, -0.07975498586893082, -0.016297638416290283, 0.009323661215603352, 0.06364943832159042, 0.012548469007015228, 0.023395271971821785, -0.006292637437582016, -0.027397748082876205, -0.040798839181661606, -0.04784134030342102, 0.012843732722103596, 0.03541073203086853, 0.05808921530842781, -0.04672658443450928, -0.022762304171919823, 0.06372509151697159, 0.0018424888839945197, 0.05766666308045387, -0.10597359389066696, -0.015587075613439083, -0.051306258887052536, -0.032549843192100525, -0.049737751483917236, -0.0186912938952446, -0.0013312383089214563, 0.01582559198141098, -0.002291952958330512, 0.0036345887929201126, 0.03753431513905525, -0.025844188407063484, 0.052968163043260574, 0.03923298791050911, 0.1179267093539238, -0.06730271130800247, 0.021589679643511772, 0.13566836714744568, 0.0018840287812054157, 0.10518334805965424, -0.0680047795176506, 0.03232373297214508, -0.018118416890501976, 0.06269823014736176, 0.02573259174823761, 0.07713396102190018, -0.07853864133358002, 0.022089002653956413, 0.05644703283905983, 0.06067109480500221, -0.013454808853566647, -0.024620110169053078, -0.0888199508190155, 0.054534658789634705, 0.011749066412448883, -0.05758606269955635, 0.02255987375974655, -0.050716497004032135, -0.0014737577876076102, -0.0582149438560009, 0.03337043151259422, 0.0037430792581290007, 0.023110026493668556, -0.0221558790653944, 0.005348174832761288, -0.0943884626030922, 0.01756500080227852, 0.026568422093987465, 0.07347280532121658, 0.03891218453645706, -0.08116303384304047, 0.0341789536178112, 0.02121909335255623, -0.03390783816576004, -0.0005750591517426074, 0.08707022666931152, -0.03162234276533127, -0.07468842715024948, 0.008468054234981537, -0.014390590600669384, 0.10342040657997131, -0.04527166113257408, 0.0466553196310997, -0.04718971624970436, 0.07079937309026718, -0.0444549061357975, -0.09398889541625977, 0.005200190469622612, 6.627318865817005e-33, -0.022464994341135025, 0.08589746803045273, -0.023623250424861908, 0.002701597288250923, -0.003822804195806384, 0.036313168704509735, -0.011358118616044521, 0.03230892866849899, -0.03917887061834335, -0.0006127061787992716, -0.011932366527616978, -0.04159440100193024, -0.049477629363536835, 0.03295448049902916, -0.050857510417699814, -0.014538652263581753, 0.01795014925301075, 0.02091035433113575, 0.02651948481798172, 0.03102896735072136, 0.06980597972869873, 0.09783771634101868, -0.044320784509181976, -0.07330770045518875, -0.08063209801912308, 0.043741315603256226, 0.02425859123468399, -0.060155462473630905, 0.009624859318137169, 0.013338142074644566, -0.13474105298519135, -0.035261526703834534, 0.07909714430570602, 0.00446478184312582, 0.03745370730757713, -0.04717252776026726, 0.0963374599814415, -0.01123913936316967, -0.0004891516291536391, -0.08634483069181442, 0.007893023081123829, 0.0702359601855278, -0.01839539222419262, 0.006583721376955509, -0.029510095715522766, 0.0136411739513278, -0.05013703554868698, 0.01303618960082531, 0.01698271743953228, 0.0019559210631996393, -0.01181070227175951, 0.041774682700634, -0.019908791407942772, -0.02444731630384922, 0.05747018754482269, 0.01981038972735405, 0.04728984832763672, 0.04019290953874588, 0.11843588203191757, -0.03988520801067352, 0.07230008393526077, 0.018634868785738945, -0.0014301835326477885, 0.0348852202296257, 0.038200270384550095, 0.03684466704726219, 0.004579092375934124, 0.027201658114790916, 0.05457361787557602, -0.017309486865997314, -0.13562847673892975, -0.004580471199005842, -0.061898842453956604, 0.06317229568958282, 0.03395536541938782, -0.06968587636947632, 0.04298980534076691, -0.08088210225105286, -0.10387098789215088, 0.022085681557655334, -0.07925613969564438, -0.005646614823490381, 0.000769500678870827, 0.008164997212588787, -0.0399465449154377, -0.05747586861252785, 0.00528366444632411, -0.015640461817383766, -0.004350149538367987, -0.034697506576776505, 0.028950491920113564, -0.0833301842212677, 0.006753015797585249, 0.03316068649291992, -0.04916731268167496, -7.472613180073466e-33, -0.003099138615652919, 0.06672916561365128, -0.07671629637479782, 0.07825170457363129, -0.0663537010550499, -0.06324077397584915, -0.004290123004466295, 0.013432689942419529, -0.017170405015349388, -0.06045350432395935, 0.04623633623123169, -0.0689430758357048, -0.04834755137562752, -0.026569973677396774, 0.04925958812236786, -0.0015208690892904997, -0.0277375690639019, 0.040511198341846466, 0.019332993775606155, 0.054775480180978775, 0.005380768328905106, 0.07119245827198029, -0.1616174429655075, 0.06823752820491791, -0.09323295950889587, 0.0621219128370285, -0.039344239979982376, 0.03483168035745621, 0.01973727159202099, 0.0033259489573538303, -0.01621219329535961, 0.00999455712735653, -0.01741996966302395, 0.0697464570403099, -0.05989113822579384, 0.004725911188870668, 0.053153619170188904, -0.05299931764602661, -0.030636390671133995, 0.06162932142615318, 0.11920510232448578, 0.04546723887324333, -0.05408322811126709, 0.0833081305027008, -0.09805203229188919, 0.017837734892964363, -0.02165648527443409, -0.018569087609648705, 0.031842559576034546, 0.009071112610399723, 0.06082095205783844, -0.05020113289356232, -0.11365815252065659, -0.052393827587366104, -0.04676297679543495, -0.03991081565618515, 0.0843573734164238, -0.11773190647363663, -0.04351932555437088, -0.017622360959649086, -0.0592668317258358, -0.01007179543375969, 0.0891665518283844, -0.0956764966249466, 0.031142927706241608, -0.004838069900870323, -0.018949463963508606, 0.09645842760801315, 0.07688009738922119, -0.05603128671646118, 0.005494433920830488, 0.022221269086003304, 0.04067150130867958, -0.0019171020248904824, 0.005755539517849684, 0.018618077039718628, -0.021919086575508118, -0.03306391090154648, 0.03607086092233658, -0.02463349886238575, -0.06132752448320389, 0.028818046674132347, 0.026899250224232674, 0.07033456116914749, 0.005613191984593868, 0.02075899764895439, 0.08051811903715134, 0.0992845967411995, 0.017733687534928322, 0.026733314618468285, 0.006164755206555128, 0.014021608047187328, 0.08444087952375412, 0.06984367966651917, -0.01761109009385109, -5.276585213209728e-8, -0.05400693789124489, 0.029772629961371422, -0.024009864777326584, 0.07514958083629608, -0.020462514832615852, -0.05514601618051529, -0.016552435234189034, 0.047309596091508865, 0.037351351231336594, -0.04844781756401062, -0.016135303303599358, 0.006271883379667997, -0.04852301999926567, -0.03566274791955948, -0.049753595143556595, 0.07929553091526031, -0.04009658843278885, 0.016319144517183304, 0.004909822717308998, -0.02494589425623417, 0.006996470503509045, -0.011499892920255661, -0.005350829567760229, -0.038678184151649475, -0.008275979198515415, -0.022893117740750313, -0.04877293109893799, 0.0822291299700737, -0.03397258371114731, -0.03317653387784958, -0.003221397753804922, -0.015934884548187256, 0.012287952937185764, 0.019813844934105873, 0.0033609529491513968, 0.07876858860254288, 0.04873563349246979, -0.05743040889501572, 0.03995381295681, 0.027997564524412155, 0.01693040318787098, 0.02803237922489643, -0.09620351344347, -0.005652629304677248, 0.011661680415272713, -0.016126103699207306, -0.02419699914753437, -0.10409602522850037, 0.008468548767268658, -0.04175369441509247, -0.021794995293021202, 0.056794341653585434, -0.06359422206878662, 0.0636838972568512, 0.04597153887152672, -0.030007027089595795, -0.02541760727763176, -0.028698714450001717, -0.013853841461241245, -0.004231792874634266, -0.022379130125045776, 0.06735654920339584, -0.017107075080275536, -0.10173963755369186 ]
uclanlp/visualbert-vqa-coco-pre
884aaef1fb6bed1429cae8c3abc314011a3a429f
2021-05-31T11:34:13.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-vqa-coco-pre
2,718
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
aware-ai/roberta-large-squadv2
59a93e1104aa42295190ecec42bf829fbc83b0bb
2021-05-20T12:37:36.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aware-ai
null
aware-ai/roberta-large-squadv2
2,709
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
sentence-transformers/nli-distilroberta-base-v2
ee9754ad61d9164d693c8e4c458238433037023f
2022-06-15T21:56:58.000Z
[ "pytorch", "tf", "jax", "roberta", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/nli-distilroberta-base-v2
2,695
null
sentence-transformers
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/nli-distilroberta-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/nli-distilroberta-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-distilroberta-base-v2') model = AutoModel.from_pretrained('sentence-transformers/nli-distilroberta-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/nli-distilroberta-base-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
[ -0.03952135518193245, -0.06605999171733856, 0.01391987781971693, 0.03528258576989174, 0.017574207857251167, 0.048294275999069214, -0.05239424481987953, 0.02167707122862339, 0.010287443175911903, -0.07410968095064163, 0.055216964334249496, -0.019395560026168823, 0.04224833846092224, 0.04476742073893547, 0.07108130306005478, 0.043563712388277054, 0.011842058971524239, 0.0866447389125824, -0.077902652323246, -0.09630604088306427, 0.13731855154037476, 0.1307350993156433, 0.013170056976377964, 0.020401330664753914, -0.033742647618055344, 0.08935828506946564, -0.04006404057145119, -0.0072182295843958855, 0.019646087661385536, -0.01865938864648342, 0.0464591309428215, -0.00654616067185998, -0.03933195397257805, 0.08383375406265259, 0.03628844767808914, 0.07313127815723419, 0.0016974483150988817, 0.018135538324713707, -0.0021079625003039837, -0.08399615436792374, 0.000821727211587131, -0.02578563801944256, -0.05572818964719772, -0.0010177892399951816, 0.04034554213285446, -0.08445016294717789, -0.11582483351230621, -0.015263681299984455, -0.005469662137329578, -0.01862211525440216, -0.11125478148460388, 0.031058859080076218, 0.042040519416332245, 0.07651104778051376, 0.009843960404396057, 0.04224708676338196, 0.044990766793489456, 0.01901295594871044, 0.011578352190554142, -0.1401662528514862, -0.05974679812788963, -0.005891023203730583, -0.00447550555691123, -0.011633845046162605, -0.04716765135526657, -0.025982314720749855, 0.054430652409791946, 0.0009853950468823314, 0.03750348836183548, -0.0023300109896808863, -0.08908875286579132, 0.05612954869866371, -0.05057495832443237, -0.02909570373594761, -0.06283006072044373, 0.03199555724859238, 0.09370829164981842, 0.003491716692224145, 0.05142725259065628, 0.026169676333665848, -0.004670038819313049, -0.06902678310871124, 0.0614049956202507, 0.09458640217781067, 0.032565150409936905, -0.06967639923095703, 0.00017211816157214344, -0.04678454250097275, -0.01150167640298605, -0.015773804858326912, -0.0649656280875206, -0.11942128092050552, 0.017094815149903297, -0.05030151829123497, 0.029714791104197502, 0.026420941576361656, -0.0319029875099659, -0.011186471208930016, 0.04203988239169121, 0.052967097610235214, 0.03147794306278229, 0.020223893225193024, 0.03353818506002426, -0.09791003167629242, -0.060411933809518814, 0.026677925139665604, -0.03631724789738655, -0.024222085252404213, 0.05981644615530968, -0.11848647147417068, 0.014034325256943703, 0.0019872453995049, -0.016496213153004646, -0.010407842695713043, 0.06387537717819214, -0.039313312619924545, 0.03256329149007797, -0.01944820024073124, 0.008612803183495998, 0.08800140023231506, -0.025169534608721733, 0.056786756962537766, -0.016307752579450607, 0.03472025319933891, -0.01543030422180891, -0.0369269885122776, 0.017015384510159492, 5.345538979022755e-34, -0.021867504343390465, 0.0033156343270093203, -0.017647862434387207, -0.008553553372621536, 0.02988285757601261, 0.009742781519889832, 0.01593896560370922, 0.06788326054811478, -0.1081150621175766, -0.04812933877110481, -0.05690383166074753, 0.02906685136258602, -0.025591909885406494, 0.07044854015111923, 0.02316824346780777, -0.0047302101738750935, -0.03029473125934601, -0.041132088750600815, 0.06497599184513092, 0.0030181475449353456, 0.028605693951249123, 0.0369679257273674, 0.014584950171411037, -0.029241617769002914, -0.10686367750167847, -0.023780381307005882, 0.05856483429670334, -0.08118384331464767, -0.04879570007324219, 0.005738993175327778, -0.0590188167989254, 0.022018129006028175, -0.003555122995749116, 0.00767935998737812, -0.016190260648727417, -0.014912557788193226, 0.027080928906798363, -0.02565646916627884, -0.04186349734663963, -0.08173228800296783, -0.036328643560409546, 0.03243991732597351, -0.015604446642100811, -0.0730493813753128, 0.009587862528860569, 0.005287138745188713, 0.02599308267235756, -0.003619920928031206, 0.09878590703010559, 0.0014234173577278852, 0.08538854867219925, 0.007182209752500057, -0.0035010077990591526, -0.04840666800737381, 0.03439551591873169, 0.0023891720920801163, 0.062402255833148956, 0.03217346966266632, 0.12110091745853424, -0.008450298570096493, 0.024621134623885155, -0.023859187960624695, 0.04939338192343712, 0.03547064587473869, 0.09213544428348541, -0.015028001740574837, 0.05304764583706856, 0.029448585584759712, 0.009595328941941261, 0.08013717085123062, -0.047124966979026794, 0.014599074609577656, -0.0557619072496891, 0.03501969203352928, 0.029315829277038574, -0.02251758612692356, -0.009166844189167023, -0.08469603955745697, -0.026411080732941628, 0.08162272721529007, -0.04754307121038437, -0.03817069157958031, 0.07210372388362885, -0.05709932744503021, -0.002380234422162175, -0.05142781883478165, 0.0015212454600259662, -0.030766166746616364, 0.06269652396440506, -0.04736054316163063, 0.047130219638347626, -0.00027294663595966995, 0.006560962647199631, 0.033264875411987305, 0.07672043144702911, -2.4802453257770245e-33, 0.006184906233102083, 0.033245280385017395, -0.07684178650379181, 0.029584651812911034, -0.02069205977022648, -0.05221676453948021, 0.01126489695161581, 0.06105353683233261, 0.005329571198672056, -0.023748980835080147, -0.04744822531938553, -0.025246722623705864, 0.09473369270563126, -0.06533622741699219, 0.08319451659917831, 0.07918020337820053, -0.022459521889686584, 0.05896876007318497, 0.015924090519547462, 0.06873665750026703, 0.021671341732144356, 0.07010304927825928, -0.115235336124897, 0.05829327180981636, -0.015242449007928371, -0.026534374803304672, -0.021375218406319618, -0.010818731971085072, -0.025294268503785133, -0.062282856553792953, -0.015497838146984577, -0.0031557476613670588, -0.05214396119117737, -0.04111745208501816, -0.11852377653121948, 0.008152306079864502, -0.039585769176483154, -0.042908329516649246, 0.026504570618271828, 0.04604872316122055, 0.022395119071006775, 0.0842503011226654, -0.0256896261125803, -0.00013065598614048213, -0.02329368144273758, -0.007350931875407696, -0.07585997879505157, -0.0831093043088913, 0.03172781690955162, 0.0016452888958156109, -0.020319795235991478, 0.04107674956321716, -0.12652292847633362, 0.025467926636338234, -0.03533687815070152, -0.06883490830659866, -0.03901851177215576, -0.012149017304182053, -0.10880067199468613, -0.05910202115774155, -0.06224154680967331, -0.018696408718824387, 0.010503659024834633, -0.0738213062286377, 0.07167435437440872, -0.0478387251496315, -0.010665716603398323, 0.04676662012934685, -0.04229942709207535, -0.03929821401834488, -0.013937363401055336, -0.03147619590163231, 0.02352520264685154, 0.07354854792356491, 0.034241072833538055, -0.05209009721875191, -0.007257942575961351, 0.003224965650588274, -0.03387768194079399, -0.05673564597964287, 0.04093535244464874, -0.02867843583226204, 0.016665911301970482, -0.04444345831871033, 0.03963260352611542, -0.01720551960170269, 0.026697920635342598, 0.07931564003229141, -0.01743205077946186, 0.0485745407640934, 0.009346994571387768, -0.02793685905635357, -0.01240041945129633, 0.0674782246351242, 0.06053083762526512, -4.989390589571485e-8, -0.07877795398235321, -0.04122622683644295, -0.0819745659828186, 0.058347828686237335, -0.09393226355314255, -0.04670962691307068, 0.07152697443962097, 0.07218937575817108, -0.0700523853302002, -0.02642449550330639, 0.023515673354268074, 0.021994179114699364, -0.09079214930534363, 0.012203073129057884, -0.02863001450896263, 0.12419690191745758, -0.01812315359711647, 0.04409477114677429, 0.029508616775274277, -0.017708860337734222, 0.02539222687482834, -0.011378944851458073, -0.022779470309615135, 0.04809587076306343, -0.010723400861024857, 0.016362862661480904, -0.03916962072253227, 0.015506284311413765, -0.0018176068551838398, -0.00956010352820158, 0.0023829296696931124, 0.02431412972509861, -0.032158758491277695, -0.055985189974308014, 0.001170819508843124, 0.0430624783039093, 0.05106455460190773, -0.05897269770503044, 0.022079631686210632, 0.06550652533769608, 0.05971873179078102, 0.04924032464623451, -0.12873558700084686, -0.012373273260891438, 0.11559519171714783, 0.028754115104675293, -0.0015891720540821552, -0.05535402521491051, 0.044945575296878815, 0.012420052662491798, 0.0854586511850357, -0.06847944855690002, -0.013719924725592136, -0.013879185542464256, 0.029636293649673462, 0.04189843684434891, 0.010971632786095142, -0.011550143361091614, 0.06827112287282944, -0.08296281844377518, 0.07250415533781052, 0.076749287545681, 0.1199251040816307, -0.10040467977523804 ]
google/multiberts-seed_0
1d4bb03ab3a40f4c935a4efbd57917eb9e8d74d5
2021-11-05T22:01:32.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0
2,682
null
transformers
--- language: en tags: - multiberts - multiberts-seed_0 license: apache-2.0 --- # MultiBERTs - Seed 0 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0') model = TFBertModel.from_pretrained("google/multiberts-seed_0") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0') model = BertModel.from_pretrained("google/multiberts-seed_0") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
[ -0.139724999666214, -0.06939509510993958, 0.0446694940328598, 0.004350858274847269, 0.05141816288232803, 0.022631969302892685, 0.021370628848671913, 0.019349686801433563, -0.0030406846199184656, -0.03055230900645256, -0.01476133894175291, 0.0068193962797522545, 0.0680687353014946, -0.02071780152618885, -0.035873714834451675, -0.00045752216828987, 0.06423687189817429, 0.02332114428281784, -0.07087516039609909, -0.014065024442970753, 0.024756573140621185, 0.008890228345990181, 0.03355111554265022, -0.01977105438709259, 0.004014437552541494, -0.06691576540470123, -0.08772137016057968, -0.03855792433023453, 0.0951196476817131, -0.011874619871377945, 0.0497361496090889, 0.00016193624469451606, -0.07917854189872742, 0.06028635427355766, 0.09486928582191467, 0.06418517976999283, -0.06514450162649155, -0.016975462436676025, 0.08058971166610718, 0.03303616866469383, -0.017540792003273964, 0.014233339577913284, -0.039548780769109726, -0.036697085946798325, 0.04183308035135269, -0.05940241739153862, -0.03879941254854202, -0.03979363292455673, -0.023831738159060478, -0.050824325531721115, -0.05194436013698578, -0.03250034898519516, 0.06467961519956589, 0.041088398545980453, 0.030986860394477844, -0.015497579239308834, 0.018856268376111984, -0.07349824905395508, -0.0038971598260104656, -0.06635642796754837, -0.07316827028989792, -0.0463448129594326, -0.05133029818534851, -0.0365210697054863, -0.031376779079437256, 0.10047493129968643, 0.004170384258031845, 0.040735676884651184, 0.05606687068939209, 0.07317686825990677, -0.030905133113265038, 0.08319609612226486, -0.07555664330720901, 0.03855957090854645, 0.004243122413754463, 0.02897929586470127, 0.01759745180606842, -0.01593230850994587, -0.03628076612949371, -0.10608470439910889, 0.00038377009332180023, -0.04073859751224518, 0.0542619451880455, -0.012542796321213245, 0.0745331346988678, -0.03183550015091896, 0.03376166149973869, 0.043615277856588364, 0.10685677081346512, 0.04036381095647812, -0.05176861584186554, -0.01922592893242836, 0.09414283186197281, 0.030683478340506554, 0.03738431632518768, 0.04385954514145851, 0.09864357858896255, -0.06812472641468048, 0.05392800271511078, 0.10112176090478897, 0.026514729484915733, 0.040831658989191055, 0.12212667614221573, -0.04347091540694237, 0.0836111456155777, 0.022317664697766304, 0.037139274179935455, -0.0432608388364315, 0.03023890219628811, -0.08138436079025269, 0.0305978674441576, 0.0032610928174108267, 0.04497808963060379, -0.012831420637667179, 0.016281690448522568, -0.011809526942670345, -0.009932738728821278, -0.017131196334958076, -0.017633721232414246, 0.059605374932289124, 0.03362917900085449, -0.023008806630969048, 0.12385658919811249, 0.018887599930167198, -0.03559093177318573, 0.022801849991083145, -0.001287891180254519, -3.8236746566486226e-34, 0.06765822321176529, 0.025642497465014458, 0.01811622455716133, 0.00022530651767738163, 0.03431843966245651, 0.004541168455034494, -0.03644575923681259, -0.03962983936071396, -0.018109822645783424, -0.08495447039604187, -0.033407941460609436, -0.00211068126372993, -0.0813618153333664, 0.041459985077381134, -0.011984606273472309, 0.047263164073228836, -0.024863827973604202, 0.10494989156723022, 0.018949417397379875, 0.05537491291761398, 0.04455222934484482, -0.03222509101033211, -0.045541808009147644, -0.08684167265892029, -0.017729735001921654, 0.05389023944735527, 0.07899253815412521, -0.030416786670684814, -0.056631844490766525, 0.06618909537792206, -0.15698477625846863, 0.054759882390499115, -0.007330979220569134, 0.04976804926991463, 0.0038117067888379097, 0.030321570113301277, -0.03163031488656998, -0.01972457952797413, 0.014269113540649414, -0.02807530201971531, -0.020107343792915344, -0.0016786608612164855, 0.03134334832429886, -0.08701497316360474, -0.012147365137934685, -0.06338377296924591, -0.00869990885257721, 0.009329761378467083, -0.0005513177020475268, -0.09809667617082596, -0.02768637239933014, 0.04154098778963089, -0.02215149626135826, -0.06257271766662598, -0.043304692953825, -0.02259579859673977, 0.02803737297654152, 0.018330536782741547, 0.03160685673356056, 0.07206191122531891, 0.05649860203266144, -0.011547732166945934, -0.05719730257987976, 0.025381555780768394, 0.03399287536740303, -0.023127200081944466, -0.05935664102435112, 0.004266512114554644, 0.06683319061994553, 0.03168174624443054, -0.061237938702106476, -0.06591444462537766, 0.023448005318641663, -0.001352011924609542, 0.06569922715425491, -0.023133883252739906, 0.05933097377419472, -0.019430354237556458, -0.06358374655246735, 0.00004431907655089162, -0.01177315041422844, -0.018413519486784935, -0.06270468980073929, -0.03649928420782089, -0.11105222254991531, -0.030613742768764496, 0.03631289303302765, -0.07903692126274109, -0.06468355655670166, -0.04103850573301315, 0.027479322627186775, -0.05951466038823128, 0.006046222522854805, -0.008457653224468231, -0.09193585813045502, -6.129231879166359e-34, -0.03828252851963043, 0.0371200330555439, -0.03674601390957832, 0.0698828175663948, -0.028363117948174477, -0.07777800410985947, 0.02285955846309662, 0.10564377158880234, -0.07300224155187607, -0.06603823602199554, -0.06003469601273537, -0.049459513276815414, -0.00039733690209686756, -0.05569752678275108, 0.03527390584349632, -0.007549795787781477, 0.010264666751027107, 0.012952943332493305, 0.03233085945248604, 0.03825516253709793, 0.1120295375585556, -0.06106385588645935, -0.06442804634571075, 0.0775560513138771, -0.010131546296179295, 0.10085255652666092, -0.06030958518385887, 0.05186094343662262, -0.034417685121297836, -0.012802617624402046, -0.009169721975922585, 0.03801591694355011, -0.0033351562451571226, 0.026295136660337448, -0.005564140155911446, 0.048946548253297806, 0.03262731060385704, 0.009631616063416004, 0.0062014334835112095, 0.04056670889258385, 0.08103121072053909, 0.00043705260031856596, -0.001615761430002749, 0.01976137049496174, 0.010284646414220333, 0.029992777854204178, -0.08123389631509781, -0.036272451281547546, 0.0060634673573076725, -0.07454215735197067, -0.03253151848912239, 0.006158201023936272, -0.08564386516809464, 0.02294168621301651, -0.049757711589336395, -0.11001601070165634, 0.0225763451308012, -0.05073567107319832, -0.03318404406309128, 0.05405008792877197, -0.09884333610534668, 0.006055798847228289, -0.020789919421076775, 0.03601323440670967, 0.009931826964020729, -0.019542524591088295, -0.013568934053182602, -0.005196158774197102, -0.07512230426073074, 0.011680562980473042, -0.001195673132315278, -0.03740844875574112, 0.011057427152991295, 0.013908470049500465, 0.02793479524552822, 0.00010536747868172824, -0.009126029908657074, -0.09298434853553772, -0.010289006866514683, -0.06527465581893921, -0.0899207815527916, -0.058698683977127075, 0.04303745552897453, 0.08985044807195663, -0.04745751991868019, 0.07545004785060883, 0.06005197390913963, 0.0412466898560524, 0.04557442292571068, -0.00632956949993968, -0.029169293120503426, 0.02380593866109848, -0.07775963097810745, 0.05661843344569206, 0.006245265249162912, -5.2080434187473656e-8, -0.03577441722154617, 0.04989481344819069, -0.025153612717986107, 0.05724523961544037, 0.03639686480164528, -0.025927532464265823, -0.07857081294059753, 0.0849781408905983, -0.01665230095386505, -0.031038010492920876, 0.06997432559728622, 0.001757152727805078, -0.047288499772548676, -0.002327438211068511, -0.020469307899475098, 0.07658910006284714, -0.07667038589715958, 0.05725201591849327, -0.05467695742845535, -0.01985412836074829, -0.0006511171231977642, 0.07576986402273178, 0.057053010910749435, -0.05617401748895645, 0.02897610329091549, -0.013639167882502079, 0.01718517579138279, 0.09590809047222137, 0.023981058970093727, 0.0190285537391901, -0.015444576740264893, 0.01615653559565544, -0.06043890118598938, -0.008291967213153839, 0.004817035980522633, 0.14428925514221191, -0.0408344566822052, -0.0425565242767334, 0.032403212040662766, 0.02159074880182743, 0.049202702939510345, 0.07020870596170425, -0.08607400208711624, 0.004547369200736284, 0.10750426352024078, -0.01285285223275423, -0.08447682857513428, -0.05523383617401123, 0.017126688733696938, -0.026036754250526428, 0.010172976180911064, -0.06339667737483978, 0.011171368882060051, 0.11671920120716095, -0.04201008379459381, 0.004662587773054838, -0.0893954187631607, -0.0584757998585701, 0.07183205336332321, 0.004618267994374037, 0.07429897040128708, 0.018140804022550583, 0.009410819970071316, 0.06652619689702988 ]
taeminlee/kogpt2
629b33aaaa679f16abd284f703c650c6f71bc802
2021-05-23T13:04:34.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
taeminlee
null
taeminlee/kogpt2
2,679
1
transformers
# KoGPT2-Transformers KoGPT2 on Huggingface Transformers ### KoGPT2-Transformers - [SKT-AI 에서 공개한 KoGPT2 (ver 1.0)](https://github.com/SKT-AI/KoGPT2)를 [Transformers](https://github.com/huggingface/transformers)에서 사용하도록 하였습니다. - **SKT-AI 에서 KoGPT2 2.0을 공개하였습니다. https://huggingface.co/skt/kogpt2-base-v2/** ### Demo - 일상 대화 챗봇 : http://demo.tmkor.com:36200/dialo - 화장품 리뷰 생성 : http://demo.tmkor.com:36200/ctrl ### Example ```python from transformers import GPT2LMHeadModel, PreTrainedTokenizerFast model = GPT2LMHeadModel.from_pretrained("taeminlee/kogpt2") tokenizer = PreTrainedTokenizerFast.from_pretrained("taeminlee/kogpt2") input_ids = tokenizer.encode("안녕", add_special_tokens=False, return_tensors="pt") output_sequences = model.generate(input_ids=input_ids, do_sample=True, max_length=100, num_return_sequences=3) for generated_sequence in output_sequences: generated_sequence = generated_sequence.tolist() print("GENERATED SEQUENCE : {0}".format(tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True))) ```
[ -0.21660123765468597, -0.0007740537985228002, 0.03466164320707321, -0.06705863773822784, 0.028753604739904404, -0.08673252165317535, -0.05757914111018181, 0.12908117473125458, -0.06231696158647537, -0.04151160269975662, 0.06764063984155655, -0.0005556419491767883, 0.02781246043741703, -0.013902392238378525, 0.044032882899045944, 0.007479495368897915, -0.017990369349718094, 0.039159756153821945, -0.02924155816435814, -0.018575163558125496, 0.09071951359510422, -0.0021114072296768427, 0.02069510892033577, 0.010610922239720821, 0.028337284922599792, -0.0005248918896540999, 0.0007504544919356704, 0.03193104267120361, -0.010892566293478012, -0.07078630477190018, -0.05327609181404114, 0.09623225033283234, -0.06565605103969574, -0.0656905397772789, -0.07467459887266159, 0.0664210394024849, -0.035891834646463394, 0.016247086226940155, -0.06392860412597656, -0.008289992809295654, -0.010995753109455109, -0.049771662801504135, 0.01180003210902214, -0.09281041473150253, 0.04745086655020714, 0.08044110238552094, -0.10219938308000565, -0.0849602222442627, -0.08891088515520096, -0.07374519854784012, -0.02202460914850235, -0.046936459839344025, 0.021734386682510376, 0.02609066851437092, -0.008632627315819263, 0.016872065141797066, -0.023792674764990807, 0.011283895000815392, 0.039661820977926254, -0.0323805958032608, -0.02468070387840271, 0.038697950541973114, -0.07722249627113342, 0.028674084693193436, -0.07411520183086395, 0.012661063112318516, 0.0850914716720581, 0.0039778100326657295, 0.08332207798957825, -0.021411065012216568, -0.04807862266898155, -0.012107420712709427, -0.0426713302731514, 0.014354594983160496, 0.004671795293688774, -0.03660197556018829, 0.06706415861845016, -0.02551007643342018, -0.06913731247186661, -0.01976485550403595, 0.05570577457547188, -0.0050107152201235294, -0.03831968829035759, -0.023686131462454796, -0.055118758231401443, 0.004329955205321312, -0.030848560854792595, 0.035144250839948654, -0.03274141997098923, 0.08425168693065643, 0.06701106578111649, 0.07197155058383942, -0.0001405428774887696, 0.033191826194524765, -0.04483639448881149, 0.0450308658182621, -0.05355999618768692, 0.018035639077425003, -0.04155351594090462, 0.010400594212114811, -0.02476513758301735, -0.06306087970733643, 0.005321397911757231, 0.012192126363515854, -0.01567036844789982, -0.0605560764670372, -0.01950998604297638, -0.07570982724428177, 0.03739310801029205, 0.04295746982097626, -0.006186546757817268, -0.06137096509337425, 0.011482839472591877, -0.08918888121843338, 0.025074169039726257, -0.003928697668015957, 0.0005131458165124059, -0.011897648684680462, -0.024824252352118492, 0.04336169362068176, 0.08591607958078384, -0.06501761823892593, -0.03672458231449127, -0.01216175127774477, 0.01776834949851036, -0.0085661131888628, -0.008954946883022785, 7.003845134748739e-33, 0.06522362679243088, 0.010400624014437199, 0.01735251024365425, 0.043116357177495956, -0.05085663124918938, 0.01315074972808361, -0.019153688102960587, 0.009194131009280682, -0.007447684183716774, 0.024606764316558838, -0.1418832689523697, 0.04952996224164963, -0.09172815084457397, 0.029049206525087357, -0.07312469929456711, -0.0801810473203659, -0.0017365344101563096, 0.035066328942775726, -0.054285865277051926, 0.056843869388103485, 0.045562099665403366, 0.049875885248184204, -0.02059033513069153, 0.019325273111462593, 0.04980187490582466, 0.01303025335073471, -0.013647973537445068, -0.11022104322910309, -0.0038631854113191366, 0.036937810480594635, -0.021352030336856842, -0.019293246790766716, -0.06846053153276443, 0.038957156240940094, -0.08159779012203217, -0.023404378443956375, -0.039349209517240524, -0.08228381723165512, -0.06346073001623154, -0.03686154633760452, -0.0013412891421467066, 0.027268992736935616, -0.032528989017009735, 0.01684439741075039, 0.03987123817205429, -0.0446091927587986, -0.012655433267354965, 0.038662515580654144, 0.08029724657535553, 0.0355861522257328, -0.0015274889301508665, 0.03255562484264374, -0.012289307080209255, 0.05024794861674309, 0.03989916294813156, 0.09317599982023239, 0.09084952622652054, -0.02467426471412182, 0.026617610827088356, 0.008132697083055973, -0.0545504130423069, 0.032257769256830215, 0.02947569452226162, 0.020375097170472145, 0.07140173763036728, -0.0038381803315132856, -0.06279570609331131, -0.03340163826942444, -0.010316182859241962, 0.0005084060248918831, -0.08776555210351944, -0.05625765398144722, -0.013946528546512127, 0.021609382703900337, 0.031566377729177475, -0.059245530515909195, 0.042742080986499786, 0.043307747691869736, 0.004221596289426088, -0.012015355750918388, -0.00888263713568449, 0.0658280998468399, 0.04371399059891701, -0.0534307099878788, 0.12629464268684387, -0.0758962407708168, 0.05260920897126198, -0.03265455737709999, -0.046260423958301544, 0.04707992821931839, -0.06645485013723373, -0.046088747680187225, -0.06927279382944107, 0.029802855104207993, 0.03917434439063072, -8.937722155631502e-33, 0.06396423280239105, 0.09513425081968307, -0.00786434207111597, 0.07729028165340424, 0.013842419721186161, 0.04324411600828171, 0.04958978667855263, 0.08814680576324463, 0.024690907448530197, 0.012309085577726364, 0.06977859884500504, 0.00040271636680699885, 0.017939722165465355, -0.05315367132425308, 0.12375734746456146, -0.05820510536432266, -0.014917059801518917, -0.03691727668046951, -0.04322325065732002, 0.05619245395064354, 0.025124985724687576, 0.07401270419359207, -0.1090233325958252, -0.005185737274587154, -0.05484464019536972, 0.008771338500082493, -0.06095307320356369, 0.06427091360092163, 0.048464756458997726, 0.05156200751662254, 0.03131524473428726, 0.013280654326081276, -0.0426611490547657, 0.11908333748579025, 0.009404436685144901, 0.005068277940154076, 0.05778088420629501, 0.07577379792928696, -0.0377936027944088, -0.02311127260327339, 0.059896405786275864, 0.016484372317790985, 0.042049676179885864, 0.011847470887005329, -0.02643466554582119, -0.05446968600153923, 0.010618429630994797, -0.07695266604423523, -0.026481036096811295, -0.043147534132003784, 0.04669537767767906, 0.025470683351159096, -0.044077467173337936, -0.00006019787542754784, 0.039823103696107864, -0.06350483745336533, -0.003612808184698224, -0.0355352982878685, -0.05358748137950897, -0.03603307530283928, 0.06601127237081528, -0.09401905536651611, 0.018896130844950676, -0.10355792194604874, -0.06773054599761963, 0.003067794255912304, 0.053510405123233795, -0.009461363777518272, 0.059211429208517075, -0.004327199887484312, -0.06990563869476318, 0.01531107909977436, 0.08757752925157547, -0.08790893852710724, 0.050349075347185135, -0.016164224594831467, -0.10120336711406708, 0.024713482707738876, 0.05683482438325882, -0.02598673291504383, -0.06313925981521606, -0.0004368386580608785, 0.06516740471124649, 0.0015849045012146235, 0.000780027883592993, -0.007599673233926296, -0.032338958233594894, 0.08715812861919403, 0.07003261893987656, -0.045829880982637405, -0.06162489205598831, 0.10293785482645035, 0.05809301137924194, 0.11157836765050888, 0.04701371118426323, -5.614976572587693e-8, 0.04445565491914749, 0.011579726822674274, 0.03754095733165741, 0.015821706503629684, -0.07885181903839111, -0.016178173944354057, 0.021404800936579704, -0.0024770614691078663, -0.07749227434396744, -0.013355366885662079, 0.019212406128644943, 0.05193915218114853, 0.010441080667078495, 0.013453898020088673, 0.027470696717500687, 0.008656823076307774, -0.05105375871062279, 0.06489371508359909, -0.09451518207788467, -0.017153827473521233, 0.011212565004825592, -0.05325455963611603, 0.00935311894863844, -0.037667520344257355, -0.0025554210878908634, 0.020580263808369637, -0.06879667192697525, 0.02290244773030281, -0.02324678748846054, -0.007083327509462833, -0.03177391365170479, -0.037425484508275986, -0.013613426126539707, 0.01697133481502533, 0.006609198171645403, -0.00235894788056612, 0.03735663741827011, -0.0075990185141563416, 0.011460638605058193, 0.0571923702955246, 0.06108363717794418, -0.09445372968912125, -0.10454102605581284, 0.0801071897149086, 0.06637047231197357, -0.02099461294710636, 0.0939193144440651, -0.08957643061876297, -0.03691234439611435, 0.032297633588314056, -0.007840624079108238, 0.02384772151708603, -0.07324407994747162, -0.022373484447598457, 0.012159807607531548, 0.08496401458978653, -0.019251439720392227, -0.03012930601835251, 0.021253811195492744, -0.01718882843852043, -0.06120771914720535, 0.026390260085463524, 0.010990474373102188, 0.04174517095088959 ]
ThomasSimonini/t5-end2end-question-generation
1dda3f93db6cfa1e7fc84e1208d0a49febb5fb5c
2021-10-10T08:30:38.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ThomasSimonini
null
ThomasSimonini/t5-end2end-question-generation
2,676
2
transformers
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-end2end-question-generation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: squad type: squad args: plain_text --- # t5-end2end-question-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad dataset to generate questions based on a context. 👉 If you want to learn how to fine-tune the t5 model to do the same, you can follow this [tutorial](https://colab.research.google.com/drive/1z-Zl2hftMrFXabYfmz8o9YZpgYx6sGeW?usp=sharing) For instance: ``` Context: "Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace." ``` ``` Questions: Who created Python?, When was Python first released? What is Python's design philosophy? ``` It achieves the following results on the evaluation set: - Loss: 1.5691 ## Use the Model ``` from transformers import T5ForConditionalGeneration, T5TokenizerFast hfmodel = T5ForConditionalGeneration.from_pretrained("ThomasSimonini/t5-end2end-question-generation") text= "The abolition of feudal privileges by the National Constituent Assembly on 4 August 1789 and the Declaration \\nof the Rights of Man and of the Citizen (La Déclaration des Droits de l'Homme et du Citoyen), drafted by Lafayette \\nwith the help of Thomas Jefferson and adopted on 26 August, paved the way to a Constitutional Monarchy \\n(4 September 1791 – 21 September 1792). Despite these dramatic changes, life at the court continued, while the situation \\nin Paris was becoming critical because of bread shortages in September. On 5 October 1789, a crowd from Paris descended upon Versailles \\nand forced the royal family to move to the Tuileries Palace in Paris, where they lived under a form of house arrest under \\nthe watch of Lafayette's Garde Nationale, while the Comte de Provence and his wife were allowed to reside in the \\nPetit Luxembourg, where they remained until they went into exile on 20 June 1791." def run_model(input_string, **generator_args): generator_args = { "max_length": 256, "num_beams": 4, "length_penalty": 1.5, "no_repeat_ngram_size": 3, "early_stopping": True, } input_string = "generate questions: " + input_string + " </s>" input_ids = tokenizer.encode(input_string, return_tensors="pt") res = hfmodel.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) output = [item.split("<sep>") for item in output] return output run_model(text) => [['When did the National Constituent Assembly abolish feudal privileges?', ' Who drafted the Declaration of the Rights of Man and of the Citizen?', ' When was the Constitutional Monarchy established?', ' What was the name of the Declaration that paved the way to a constitutional monarchy?', '']] ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5834 | 0.34 | 100 | 1.9107 | | 1.9642 | 0.68 | 200 | 1.7227 | | 1.8526 | 1.02 | 300 | 1.6627 | | 1.7383 | 1.36 | 400 | 1.6354 | | 1.7223 | 1.69 | 500 | 1.6154 | | 1.6871 | 2.03 | 600 | 1.6096 | | 1.6309 | 2.37 | 700 | 1.6048 | | 1.6242 | 2.71 | 800 | 1.5923 | | 1.6226 | 3.05 | 900 | 1.5855 | | 1.5645 | 3.39 | 1000 | 1.5874 | | 1.5705 | 3.73 | 1100 | 1.5822 | | 1.5543 | 4.07 | 1200 | 1.5817 | | 1.5284 | 4.41 | 1300 | 1.5841 | | 1.5275 | 4.75 | 1400 | 1.5741 | | 1.5269 | 5.08 | 1500 | 1.5715 | | 1.5079 | 5.42 | 1600 | 1.5701 | | 1.4876 | 5.76 | 1700 | 1.5754 | | 1.498 | 6.1 | 1800 | 1.5699 | | 1.4852 | 6.44 | 1900 | 1.5693 | | 1.4776 | 6.78 | 2000 | 1.5691 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ -0.10845770686864853, -0.01846165768802166, -0.006255442276597023, -0.01143213827162981, 0.0044549270533025265, -0.05255178362131119, 0.0037577457260340452, 0.0010077179176732898, -0.023738177493214607, -0.034376129508018494, 0.026906106621026993, -0.05918915569782257, 0.05425082892179489, 0.006074103992432356, 0.05754746496677399, 0.006476071197539568, 0.09499816596508026, -0.05930172652006149, -0.045091163367033005, -0.08432981371879578, 0.032831694930791855, 0.08602862805128098, 0.06458346545696259, 0.0398104228079319, -0.06214011088013649, -0.02634025178849697, -0.04619714245200157, 0.08338125795125961, 0.047105614095926285, 0.030267978087067604, -0.017806053161621094, 0.12036309391260147, -0.026857636868953705, 0.0064145480282604694, -0.04184906929731369, 0.10466274619102478, -0.005982490722090006, 0.005441430490463972, -0.0308122169226408, 0.02833418734371662, 0.006692508701235056, -0.04839639365673065, -0.016690390184521675, 0.032555583864450455, 0.038673654198646545, -0.054027047008275986, -0.0022911790292710066, -0.013950907625257969, 0.0034377719275653362, -0.04849531501531601, -0.14219586551189423, -0.07626672089099884, -0.0028158242348581553, -0.05192653462290764, -0.04416288435459137, -0.008895386941730976, 0.025202898308634758, -0.003279098542407155, -0.05199173092842102, -0.01977389119565487, -0.055041275918483734, -0.03258369863033295, -0.0678853839635849, 0.015174495987594128, -0.03141402080655098, -0.014956731349229813, 0.031151169911026955, 0.04542115703225136, 0.06301413476467133, 0.022730406373739243, -0.1147129014134407, -0.02813400886952877, 0.012950779870152473, 0.031983163207769394, -0.03049110434949398, 0.03950057178735733, 0.08749561011791229, -0.02133401669561863, 0.08008252084255219, -0.08885347843170166, -0.0636749416589737, -0.036937881261110306, 0.029171781614422798, 0.0324346087872982, 0.010187559761106968, -0.016926689073443413, 0.04780583828687668, 0.0843334048986435, -0.0012878559064120054, 0.07295937091112137, -0.019378820434212685, -0.017871158197522163, 0.047525323927402496, 0.033723149448633194, -0.04873999208211899, 0.1257402002811432, 0.021551398560404778, 0.008205113001167774, -0.032767318189144135, 0.04400790110230446, 0.025980781763792038, -0.033380430191755295, 0.03954235464334488, 0.0019675251096487045, -0.02976047247648239, -0.015216678380966187, 0.002223921474069357, -0.0063744718208909035, 0.04993763566017151, -0.13117171823978424, -0.00868704542517662, 0.04378604516386986, -0.07845371216535568, -0.05671217292547226, 0.018277235329151154, -0.02142026275396347, -0.0345357283949852, 0.03719925135374069, 0.04083987697958946, 0.0932081788778305, -0.00027002705610357225, -0.02505117654800415, -0.03609292581677437, -0.03914180397987366, 0.006864023860543966, -0.09031505137681961, -0.06898621469736099, 2.2049849564327543e-33, 0.0983111783862114, 0.002070738235488534, 0.05660908669233322, 0.08984015882015228, 0.04683653265237808, 0.02628079615533352, 0.004652099218219519, 0.03239614516496658, -0.061491210013628006, 0.04196245223283768, 0.006297689396888018, 0.006975687574595213, -0.05124477669596672, 0.01526698935776949, 0.08114643394947052, -0.02069742977619171, -0.08723178505897522, 0.04837579280138016, 0.011808170937001705, 0.05900225415825844, 0.02419542521238327, 0.08886134624481201, -0.03132529556751251, -0.06851265579462051, 0.05380924418568611, 0.10598070919513702, -0.01671067625284195, -0.07125325500965118, -0.017903033643960953, 0.046941179782152176, -0.144049733877182, -0.034404054284095764, -0.018049420788884163, 0.016072334721684456, 0.028666144236922264, -0.0032224957831203938, 0.008684893138706684, 0.0027470621280372143, -0.0014878419460728765, -0.0695859044790268, 0.048809971660375595, 0.05079056695103645, 0.04573358967900276, 0.020526913926005363, -0.054129328578710556, -0.028677860274910927, 0.008617029525339603, -0.004451016895473003, -0.0307534858584404, 0.020413151010870934, 0.023299193009734154, -0.0354396216571331, 0.08202797919511795, -0.07455377280712128, -0.0031881858594715595, 0.0263581071048975, 0.019718226045370102, 0.09060052782297134, 0.01059720478951931, 0.02582504227757454, -0.006899278610944748, 0.006914135534316301, 0.07388784736394882, 0.04358207806944847, 0.09873697906732559, 0.041330114006996155, -0.0370427742600441, -0.026198968291282654, 0.1014510840177536, -0.025958245620131493, -0.026018373668193817, 0.05346675217151642, -0.06572599709033966, 0.07833240926265717, 0.0260295607149601, -0.034601058810949326, 0.029122548177838326, -0.08360700309276581, -0.035765111446380615, 0.03468317911028862, -0.01107574813067913, 0.010611719451844692, 0.022144678980112076, -0.038713932037353516, -0.05861081928014755, 0.04536828026175499, 0.06157157942652702, -0.03331826627254486, 0.0351974293589592, -0.08119034022092819, -0.03296414390206337, -0.06772161275148392, 0.008792830631136894, -0.03060157224535942, -0.007307492662221193, -4.7122005307214576e-33, 0.06827675551176071, -0.05300582945346832, -0.08673761039972305, 0.02655666694045067, 0.0010551242157816887, -0.07495000958442688, 0.040885407477617264, 0.034883394837379456, -0.026812629774212837, -0.011937846429646015, 0.059676799923181534, -0.04440972954034805, 0.013729282654821873, -0.024815697222948074, 0.042926572263240814, -0.050157178193330765, -0.08928540349006653, -0.10372824221849442, 0.04910911247134209, 0.008881998248398304, -0.012374857440590858, 0.0024335188791155815, -0.10373927652835846, 0.007598748430609703, 0.02137383632361889, -0.0038984010461717844, -0.11436164379119873, 0.011552771553397179, 0.04487842693924904, 0.010441550984978676, -0.044544994831085205, -0.04947775602340698, 0.02234269306063652, 0.010315059684216976, -0.04011795297265053, 0.056182242929935455, -0.00016107472765725106, -0.008154409006237984, 0.0004472954315133393, 0.11485616117715836, 0.08617190271615982, 0.07418768107891083, 0.010310575366020203, 0.04302111640572548, -0.08196809887886047, 0.02029425837099552, -0.06981732696294785, -0.029864951968193054, -0.001105081057175994, -0.025133041664958, 0.025215445086359978, -0.022965598851442337, -0.10912942886352539, -0.07823533564805984, -0.0984305813908577, -0.06050784885883331, 0.054638639092445374, -0.009561466984450817, -0.06439025700092316, -0.016839969903230667, -0.04106806963682175, 0.00783727876842022, -0.017704740166664124, -0.017888566479086876, -0.01185007207095623, -0.0035001107025891542, -0.11231888085603714, -0.020189277827739716, -0.01743662916123867, -0.07826364785432816, -0.05368337407708168, -0.05272963270545006, 0.022813741117715836, 0.03818541392683983, 0.001249266555532813, -0.021020477637648582, -0.004981272388249636, -0.018364397808909416, 0.043953172862529755, 0.013773204758763313, -0.009183821268379688, 0.0009118104935623705, 0.0035972807090729475, 0.11260132491588593, -0.03426435589790344, 0.010778052732348442, 0.03410453349351883, 0.16538622975349426, 0.04028148949146271, 0.00002160765325243119, 0.05332256481051445, 0.03138148784637451, -0.03532986715435982, 0.16568449139595032, -0.012981795705854893, -6.058146340137682e-8, -0.038064371794462204, 0.05443203076720238, -0.012869740836322308, 0.09633138030767441, -0.034246936440467834, 0.04894668236374855, -0.037865251302719116, -0.013223228044807911, 0.0714130625128746, 0.043538887053728104, -0.0010849647223949432, -0.007878860458731651, -0.061111029237508774, -0.0006033796817064285, -0.06342753767967224, 0.08170295506715775, -0.026128800585865974, 0.01073384378105402, -0.001832223148085177, -0.039366237819194794, 0.013281675055623055, -0.020236246287822723, -0.0797160416841507, -0.006566412281244993, 0.04914721101522446, -0.010180577635765076, -0.09580483287572861, 0.037718407809734344, -0.0038424150552600622, -0.03401537239551544, -0.01551130972802639, -0.01266141515225172, -0.08955421298742294, 0.028305012732744217, 0.04528447240591049, 0.08488266915082932, -0.08622659742832184, -0.09558749943971634, 0.02441614866256714, 0.03439202159643173, 0.03954561427235603, 0.012580117210745811, -0.09253739565610886, -0.016046511009335518, 0.06281513720750809, 0.010372989811003208, 0.021555209532380104, -0.0736638605594635, -0.014759589917957783, -0.024311568588018417, -0.03416648507118225, 0.009714381769299507, -0.060139887034893036, -0.003640517359599471, 0.07076063752174377, 0.08244775980710983, 0.019201789051294327, -0.009486441500484943, 0.00038482819218188524, -0.014603596180677414, -0.007121359463781118, 0.07033535093069077, 0.03088478557765484, -0.04458852857351303 ]
dkleczek/bert-base-polish-uncased-v1
62be9821055981deafb23f217b68cc41f38cdb76
2021-05-19T15:55:32.000Z
[ "pytorch", "jax", "bert", "fill-mask", "pl", "transformers", "autotrain_compatible" ]
fill-mask
false
dkleczek
null
dkleczek/bert-base-polish-uncased-v1
2,671
2
transformers
--- language: pl thumbnail: https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png --- # Polbert - Polish BERT Polish version of BERT language model is here! It is now available in two variants: cased and uncased, both can be downloaded and used via HuggingFace transformers library. I recommend using the cased model, more info on the differences and benchmark results below. ![PolBERT image](https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png) ## Cased and uncased variants * I initially trained the uncased model, the corpus and training details are referenced below. Here are some issues I found after I published the uncased model: * Some Polish characters and accents are not tokenized correctly through the BERT tokenizer when applying lowercase. This doesn't impact sequence classification much, but may influence token classfication tasks significantly. * I noticed a lot of duplicates in the Open Subtitles dataset, which dominates the training corpus. * I didn't use Whole Word Masking. * The cased model improves on the uncased model in the following ways: * All Polish characters and accents should now be tokenized correctly. * I removed duplicates from Open Subtitles dataset. The corpus is smaller, but more balanced now. * The model is trained with Whole Word Masking. ## Pre-training corpora Below is the list of corpora used along with the output of `wc` command (counting lines, words and characters). These corpora were divided into sentences with srxsegmenter (see references), concatenated and tokenized with HuggingFace BERT Tokenizer. ### Uncased | Tables | Lines | Words | Characters | | ------------- |--------------:| -----:| -----:| | [Polish subset of Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 236635408| 1431199601 | 7628097730 | | [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 | | [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 | | [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 | | Total | 262920423 | 1861093257 | 10746349159 | ### Cased | Tables | Lines | Words | Characters | | ------------- |--------------:| -----:| -----:| | [Polish subset of Open Subtitles (Deduplicated) ](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 41998942| 213590656 | 1424873235 | | [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 | | [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 | | [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 | | Total | 68283960 | 646479197 | 4543124667 | ## Pre-training details ### Uncased * Polbert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert) * Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters) * Training set-up: in total 1 million training steps: * 100.000 steps - 128 sequence length, batch size 512, learning rate 1e-4 (10.000 steps warmup) * 800.000 steps - 128 sequence length, batch size 512, learning rate 5e-5 * 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5 * The model was trained on a single Google Cloud TPU v3-8 ### Cased * Same approach as uncased model, with the following differences: * Whole Word Masking * Training set-up: * 100.000 steps - 128 sequence length, batch size 2048, learning rate 1e-4 (10.000 steps warmup) * 100.000 steps - 128 sequence length, batch size 2048, learning rate 5e-5 * 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5 ## Usage Polbert is released via [HuggingFace Transformers library](https://huggingface.co/transformers/). For an example use as language model, see [this notebook](/LM_testing.ipynb) file. ### Uncased ```python from transformers import * model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-uncased-v1") tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-uncased-v1") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."): print(pred) # Output: # {'sequence': '[CLS] adam mickiewicz wielkim polskim poeta był. [SEP]', 'score': 0.47196975350379944, 'token': 26596} # {'sequence': '[CLS] adam mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.09127858281135559, 'token': 10953} # {'sequence': '[CLS] adam mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.0647173821926117, 'token': 5182} # {'sequence': '[CLS] adam mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.05232388526201248, 'token': 24293} # {'sequence': '[CLS] adam mickiewicz wielkim polskim politykiem był. [SEP]', 'score': 0.04554257541894913, 'token': 44095} ``` ### Cased ```python model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-cased-v1") tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-cased-v1") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."): print(pred) # Output: # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.5391148328781128, 'token': 37120} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.11683262139558792, 'token': 6810} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.06021466106176376, 'token': 17709} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim mistrzem był. [SEP]', 'score': 0.051870670169591904, 'token': 14652} # {'sequence': '[CLS] Adam Mickiewicz wielkim polskim artystą był. [SEP]', 'score': 0.031787533313035965, 'token': 35680} ``` See the next section for an example usage of Polbert in downstream tasks. ## Evaluation Thanks to Allegro, we now have the [KLEJ benchmark](https://klejbenchmark.com/leaderboard/), a set of nine evaluation tasks for the Polish language understanding. The following results are achieved by running standard set of evaluation scripts (no tricks!) utilizing both cased and uncased variants of Polbert. | Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN | PolEmo2.0-OUT | DYK | PSC | AR | | ------------- |--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:| | Polbert cased | 81.7 | 93.6 | 93.4 | 93.8 | 52.7 | 87.4 | 71.1 | 59.1 | 98.6 | 85.2 | | Polbert uncased | 81.4 | 90.1 | 93.9 | 93.5 | 55.0 | 88.1 | 68.8 | 59.4 | 98.8 | 85.4 | Note how the uncased model performs better than cased on some tasks? My guess this is because of the oversampling of Open Subtitles dataset and its similarity to data in some of these tasks. All these benchmark tasks are sequence classification, so the relative strength of the cased model is not so visible here. ## Bias The data used to train the model is biased. It may reflect stereotypes related to gender, ethnicity etc. Please be careful when using the model for downstream task to consider these biases and mitigate them. ## Acknowledgements * I'd like to express my gratitude to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you! * Also appreciate the help from Timo Möller from [deepset](https://deepset.ai) for sharing tips and scripts based on their experience training German BERT model. * Big thanks to Allegro for releasing KLEJ Benchmark and specifically to Piotr Rybak for help with the evaluation and pointing out some issues with the tokenization. * Finally, thanks to Rachel Thomas, Jeremy Howard and Sylvain Gugger from [fastai](https://www.fast.ai) for their NLP and Deep Learning courses! ## Author Darek Kłeczek - contact me on Twitter [@dk21](https://twitter.com/dk21) ## References * https://github.com/google-research/bert * https://github.com/narusemotoki/srx_segmenter * SRX rules file for sentence splitting in Polish, written by Marcin Miłkowski: https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx * [KLEJ benchmark](https://klejbenchmark.com/leaderboard/)
[ -0.161208376288414, -0.05478787049651146, 0.06631886214017868, -0.04026399180293083, 0.01315255742520094, 0.04397734999656677, 0.015606059692800045, 0.029957957565784454, -0.011135702952742577, -0.026144275441765785, 0.01582634262740612, 0.009150180034339428, 0.029164224863052368, 0.05484208092093468, 0.03167887404561043, 0.02562440000474453, 0.05507156625390053, 0.0073635936714708805, -0.06720786541700363, -0.00977412611246109, 0.0243659857660532, 0.03909344598650932, 0.0732809528708458, -0.04241395369172096, 0.04670143499970436, 0.007770105730742216, 0.014183915220201015, -0.03940412402153015, 0.0751856118440628, 0.03801838308572769, -0.039266858249902725, -0.009006764739751816, 0.007765964604914188, 0.03223419561982155, 0.06013648957014084, 0.05857815966010094, -0.002305729081854224, -0.006944142747670412, 0.034112587571144104, 0.05040867626667023, -0.017573483288288116, -0.02607056498527527, -0.020581476390361786, 0.03689293563365936, 0.060748666524887085, 0.00788837019354105, -0.052327267825603485, 0.01647719368338585, -0.04486074298620224, -0.04020833969116211, -0.08724801242351532, -0.04160910099744797, 0.07392818480730057, 0.022618884220719337, 0.008196271024644375, -0.013918336480855942, 0.023287028074264526, -0.012806743383407593, -0.0024988139048218727, -0.11149826645851135, -0.11880658566951752, -0.06779272109270096, -0.03129347786307335, -0.03572309762239456, -0.02421477809548378, 0.05280967429280281, 0.03151491656899452, 0.0052372757345438, 0.02197670005261898, 0.019644780084490776, 0.0475316196680069, 0.05112294480204582, -0.03787042945623398, 0.04601462557911873, -0.07020757347345352, -0.03597087040543556, 0.076656274497509, -0.03965252265334129, 0.03552211448550224, -0.08755577355623245, 0.04040520265698433, -0.04401027038693428, 0.029206659644842148, -0.013320312835276127, 0.05667416751384735, -0.03167035058140755, 0.07506732642650604, -0.039857201278209686, -0.03908447176218033, 0.06286350637674332, 0.031596507877111435, -0.015101758763194084, 0.05962219089269638, -0.033583469688892365, -0.04134970158338547, -0.01368663925677538, 0.05268881097435951, 0.08835650235414505, -0.009143352508544922, 0.08676359057426453, -0.015178270637989044, -0.03098730742931366, 0.04567832872271538, -0.07369278371334076, 0.0151359923183918, -0.008580440655350685, -0.00550851272419095, -0.042263127863407135, 0.030192911624908447, -0.08301808685064316, -0.016223249956965446, -0.029500076547265053, -0.07022691518068314, -0.0016311851795762777, 0.012990768067538738, -0.055452555418014526, 0.06656332314014435, -0.014751999638974667, -0.006445246282964945, 0.0659310594201088, -0.0025854106061160564, -0.005310002714395523, 0.011829471215605736, 0.05268903821706772, -0.04432934895157814, -0.001671677571721375, -0.05442158132791519, 4.472708250420802e-33, 0.004743744153529406, 0.030330399051308632, -0.04748137295246124, -0.025205139070749283, -0.020677270367741585, -0.009810887277126312, -0.009325406514108181, 0.03131703659892082, -0.08230756968259811, -0.03768536075949669, -0.042793381959199905, 0.035334523767232895, -0.0630762055516243, 0.03542965278029442, -0.09029757976531982, 0.007297034841030836, 0.0057015493512153625, 0.02339518629014492, -0.01786060445010662, 0.032466690987348557, 0.1024022176861763, 0.09840955585241318, 0.0465896874666214, -0.009040738455951214, -0.09212075918912888, 0.020319703966379166, 0.11521666496992111, -0.09939713776111603, 0.035756949335336685, 0.03717390447854996, -0.09052087366580963, 0.015566002577543259, -0.007145894691348076, 0.08063239604234695, 0.02636413276195526, 0.025380996987223625, 0.020484071224927902, -0.05235493928194046, 0.021659404039382935, -0.04536987841129303, -0.02875290811061859, 0.014773881062865257, -0.0022489032708108425, -0.04192923754453659, -0.004402365535497665, 0.007078788708895445, 0.013942885212600231, -0.03943890705704689, 0.007745719514787197, -0.030935615301132202, 0.07710495591163635, 0.048861533403396606, -0.06183398887515068, 0.03180154412984848, -0.04022755101323128, -0.020081456750631332, 0.07202312350273132, 0.0009526984649710357, 0.027290422469377518, -0.013407581485807896, 0.02292233146727085, 0.013646178878843784, 0.11014102399349213, 0.01068547461181879, 0.0637519359588623, -0.04247266799211502, -0.09719575196504593, 0.03788501024246216, 0.008355990052223206, -0.04771758243441582, 0.0291197057813406, -0.030928557738661766, -0.014220643788576126, 0.10616471618413925, 0.007771109696477652, -0.048700056970119476, 0.0734558030962944, -0.04071830213069916, -0.054835833609104156, -0.02821553871035576, -0.0675797164440155, 0.04909505322575569, -0.02043818309903145, -0.06217779591679573, -0.10502663999795914, -0.04151015728712082, 0.0680084079504013, -0.06218233332037926, 0.011034827679395676, -0.000831186305731535, 0.02231215126812458, -0.08438967913389206, -0.013987247832119465, 0.025536395609378815, -0.0449022576212883, -4.944591723117193e-33, 0.00020307594968471676, -0.01835745945572853, -0.0804704874753952, -0.01825454644858837, -0.0889275074005127, -0.06617908924818039, 0.03865091875195503, 0.20751436054706573, 0.007784973829984665, -0.01723441854119301, 0.038879506289958954, -0.067324697971344, -0.013454343192279339, -0.026513852179050446, 0.02200099267065525, 0.009021810255944729, -0.017998026683926582, 0.07413040101528168, 0.014772938564419746, 0.02630619704723358, 0.03235188126564026, 0.007249788846820593, -0.09766889363527298, 0.10728228837251663, -0.05813691392540932, 0.0697675570845604, -0.041815657168626785, 0.006439042743295431, 0.05013427138328552, 0.04018400236964226, -0.0019053969299420714, 0.03122984617948532, -0.06534449011087418, 0.03481912240386009, -0.06107759848237038, 0.046037834137678146, 0.03921019658446312, -0.02434745989739895, -0.001063661533407867, 0.06530313938856125, 0.006362696178257465, -0.033441465348005295, -0.052847933024168015, 0.0737692192196846, 0.05410642921924591, -0.06557860225439072, -0.045584678649902344, -0.03251136094331741, -0.012843787670135498, -0.049584731459617615, 0.015052598901093006, 0.004428518004715443, -0.05267585441470146, -0.01842951588332653, -0.062357328832149506, -0.09850236028432846, 0.028899231925606728, -0.07459437102079391, -0.042546339333057404, 0.01593438908457756, 0.02497565932571888, 0.0018585172947496176, -0.02719481848180294, -0.058328282088041306, -0.026276152580976486, -0.0847691148519516, 0.02472568117082119, 0.030024686828255653, 0.03843049332499504, -0.056902673095464706, -0.028505835682153702, -0.03839410841464996, 0.03270314261317253, 0.026811828836798668, 0.03194880485534668, 0.023043353110551834, 0.03533526510000229, -0.015117577277123928, -0.017912624403834343, -0.02601127326488495, -0.06551649421453476, -0.06104937568306923, 0.023656688630580902, 0.09131453186273575, -0.019488414749503136, 0.11499852687120438, 0.07701002806425095, 0.03352275863289833, 0.0069388290867209435, 0.013828977011144161, -0.018848685547709465, 0.07422477751970291, 0.017234401777386665, 0.14145232737064362, 0.07428596913814545, -5.969307892428333e-8, -0.0068131061270833015, 0.013295616954565048, -0.010110524483025074, 0.008695971220731735, -0.07477376610040665, -0.07683315873146057, -0.13864752650260925, -0.03695681318640709, -0.035735711455345154, -0.0463755764067173, -0.03831152990460396, 0.04888720437884331, -0.14229711890220642, -0.05717720463871956, -0.0566520020365715, 0.10971549898386002, -0.03663583844900131, 0.08525435626506805, -0.013795061968266964, 0.026500774547457695, -0.02427602745592594, 0.046253349632024765, 0.023140691220760345, -0.04853134974837303, -0.05150627717375755, -0.02077532932162285, -0.03614094853401184, 0.032820507884025574, -0.057132329791784286, -0.04026065021753311, -0.015092547982931137, 0.04311777651309967, -0.04903167113661766, -0.042862724512815475, 0.06064838543534279, 0.08988889306783676, 0.020129980519413948, -0.059218358248472214, -0.023388361558318138, 0.0864352360367775, 0.08170567452907562, -0.04133250191807747, -0.04490767791867256, -0.00770601537078619, 0.06371001899242401, 0.019386880099773407, 0.01876404508948326, -0.07795371860265732, 0.05046786367893219, 0.05996367335319519, 0.043609701097011566, -0.05665937438607216, -0.12265179306268692, 0.05457497760653496, -0.011973432265222073, 0.05207597464323044, -0.06914042681455612, 0.045515093952417374, 0.066350057721138, 0.045407604426145554, 0.008384830318391323, 0.03058009408414364, 0.023494284600019455, 0.04243197292089462 ]
tuner007/t5_abs_qa
c896608015dba727b3fe0ae8a397fa1a4286c72e
2020-12-11T22:02:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tuner007
null
tuner007/t5_abs_qa
2,664
1
transformers
# T5 for abstractive question-answering This is T5-base model fine-tuned for abstractive QA using text-to-text approach ## Model training This model was trained on colab TPU with 35GB RAM for 2 epochs ## Model in Action 🚀 ``` from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("tuner007/t5_abs_qa") model = AutoModelWithLMHead.from_pretrained("tuner007/t5_abs_qa") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) def get_answer(question, context): input_text = "context: %s <question for context: %s </s>" % (context,question) features = tokenizer([input_text], return_tensors='pt') out = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device)) return tokenizer.decode(out[0]) ``` #### Example 1: Answer available ``` context = "In Norse mythology, Valhalla is a majestic, enormous hall located in Asgard, ruled over by the god Odin." question = "What is Valhalla?" get_answer(question, context) # output: 'It is a hall of worship ruled by Odin.' ``` #### Example 2: Answer not available ``` context = "In Norse mythology, Valhalla is a majestic, enormous hall located in Asgard, ruled over by the god Odin." question = "What is Asgard?" get_answer(question, context) # output: 'No answer available in context.' ``` > Created by Arpit Rajauria [![Twitter icon](https://cdn0.iconfinder.com/data/icons/shift-logotypes/32/Twitter-32.png)](https://twitter.com/arpit_rajauria)
[ -0.041961297392845154, 0.006734407506883144, -0.02675347588956356, 0.06953374296426773, -0.021325424313545227, -0.007930264808237553, 0.040392570197582245, 0.08854028582572937, 0.00019136437913402915, -0.08316104859113693, 0.0015916485572233796, -0.10041571408510208, -0.04735827073454857, 0.025709738954901695, 0.014772188849747181, 0.05674653872847557, 0.052075035870075226, -0.07345450669527054, -0.13043484091758728, -0.1504364162683487, 0.08310317993164062, 0.055136993527412415, 0.08192183077335358, 0.06570471078157425, -0.02567438594996929, -0.002602300839498639, -0.017324170097708702, -0.009832990355789661, 0.04145749285817146, 0.03623358905315399, -0.016715435311198235, 0.03816010057926178, -0.03611062094569206, 0.08438180387020111, 0.060453902930021286, 0.032929759472608566, -0.12106341123580933, -0.026357386261224747, -0.05057643726468086, -0.042740605771541595, 0.012311380356550217, -0.09001970291137695, -0.05468720942735672, 0.012008379213511944, 0.09899462759494781, -0.03263533487915993, 0.006325494963675737, 0.03149859607219696, 0.02557074837386608, -0.09840045124292374, -0.04732290282845497, -0.0045031653717160225, -0.015486925840377808, 0.03710529953241348, -0.00871011707931757, 0.006112528033554554, 0.027433115988969803, -0.08011674135923386, 0.02251100353896618, -0.0780116468667984, -0.03708159551024437, -0.04639322683215141, -0.025597253814339638, -0.0017011633608490229, -0.011150436475872993, -0.02868194691836834, -0.005956222768872976, 0.008448771201074123, -0.006865928880870342, -0.0028841954190284014, -0.03237801417708397, 0.03666922077536583, 0.02379772625863552, 0.07068782299757004, 0.004773357417434454, -0.010019821114838123, 0.05949883535504341, -0.019641151651740074, 0.03523413464426994, -0.03450017422437668, 0.027989191934466362, -0.08475734293460846, 0.07563993334770203, 0.07020855695009232, 0.09677872806787491, -0.03438004478812218, 0.03473925217986107, 0.07941482961177826, 0.011477778665721416, -0.04010031372308731, -0.06354346871376038, -0.06308728456497192, 0.036568429321050644, -0.024650247767567635, 0.027483247220516205, 0.047757163643836975, 0.022351739928126335, -0.06639140099287033, -0.08224691450595856, 0.05746980756521225, 0.0554690808057785, 0.022117218002676964, -0.04864879325032234, 0.018353793770074844, -0.03809332102537155, 0.04060589149594307, 0.007584983482956886, 0.0708058699965477, 0.013454644940793514, -0.053408440202474594, 0.03840787708759308, 0.023788312450051308, 0.014210252091288567, -0.012415280565619469, 0.05269486829638481, -0.051180996000766754, -0.011725385673344135, 0.08349836617708206, -0.011987625621259212, 0.09047481417655945, 0.00026548156165517867, 0.03403670713305473, -0.07358615845441818, 0.04872516170144081, 0.002329619135707617, -0.040472693741321564, -0.024960026144981384, 9.62826116923427e-33, 0.0023229222279042006, 0.06693586707115173, -0.00016631559992674738, 0.02853057160973549, -0.03364938870072365, 0.05437619611620903, 0.014516518451273441, 0.06771703064441681, 0.014012595638632774, 0.03003217838704586, -0.01723315939307213, 0.018064063042402267, -0.04785885289311409, -0.020067712292075157, -0.023740718141198158, -0.03344688564538956, -0.04514216259121895, 0.007371462881565094, 0.013565081171691418, -0.0237076785415411, 0.07808566838502884, 0.03754789009690285, -0.07317399978637695, 0.010564973577857018, -0.05033761262893677, 0.020925134420394897, -0.0020567059982568026, -0.0692734643816948, -0.06756937503814697, -0.005849510431289673, -0.16267184913158417, -0.040999945253133774, -0.02715335600078106, -0.046159952878952026, 0.018376588821411133, -0.014239521697163582, 0.06410441547632217, -0.0086907260119915, -0.03632504492998123, -0.0892585963010788, 0.030343616381287575, 0.07096781581640244, 0.037077646702528, -0.07603045552968979, -0.0738871842622757, 0.018019553273916245, -0.07265225797891617, 0.0036921517457813025, -0.03184375539422035, -0.00022394639381673187, -0.014685324393212795, -0.021097393706440926, -0.037005193531513214, -0.03483663499355316, 0.07759507745504379, -0.012242734432220459, 0.05271408334374428, 0.05434953421354294, 0.11808755248785019, 0.01771697774529457, 0.023620784282684326, -0.0064704641699790955, -0.024736016988754272, 0.05553675442934036, 0.00721337553113699, 0.01296776719391346, -0.008875075727701187, 0.04585891216993332, 0.02901054173707962, 0.036528125405311584, -0.07872127741575241, 0.004479263909161091, -0.0434018112719059, 0.000950802699662745, 0.025721194222569466, -0.06107930466532707, -0.006892715115100145, -0.10986149311065674, -0.07567018270492554, 0.021409738808870316, -0.005632203537970781, -0.005269620101898909, 0.029703006148338318, -0.05367334932088852, -0.013784457929432392, -0.04362819343805313, 0.037068791687488556, -0.05060499906539917, -0.029189033433794975, -0.06538453698158264, -0.07738251984119415, -0.024645181372761726, 0.054374080151319504, 0.00514816353097558, -0.010198499076068401, -9.331499538845522e-33, 0.02147955633699894, -0.0013807447394356132, -0.051982905715703964, 0.044211000204086304, 0.04290517792105675, -0.04081743210554123, 0.012666490860283375, 0.01928899623453617, 0.004836370702832937, -0.044384025037288666, 0.01396376732736826, -0.02761872299015522, -0.0019278789404779673, -0.0036449148319661617, 0.051409415900707245, 0.010839898139238358, -0.0633895993232727, -0.0016826859209686518, 0.015061750076711178, 0.10206961631774902, -0.12812650203704834, 0.08934555947780609, -0.13617897033691406, -0.024345966055989265, -0.08461997658014297, 0.05636889860033989, -0.013208471238613129, 0.06640602648258209, 0.014853060245513916, -0.01252695731818676, -0.016108769923448563, -0.05474025011062622, -0.028345517814159393, 0.04882343113422394, -0.09164490550756454, 0.07965047657489777, 0.0763457641005516, -0.07444416731595993, -0.021973375231027603, 0.10703030228614807, 0.15766441822052002, 0.01951676234602928, -0.06923806667327881, 0.060199759900569916, -0.11064605414867401, 0.027886729687452316, -0.042763348668813705, -0.05845949426293373, -0.008604001253843307, 0.03088238835334778, 0.06495324522256851, -0.06689183413982391, -0.07823637127876282, -0.01316576823592186, -0.07853787392377853, -0.011575454846024513, 0.05610065534710884, -0.0296737402677536, -0.029911059886217117, -0.018234489485621452, 0.027985135093331337, -0.03602626919746399, 0.07032155990600586, -0.04012368246912956, 0.0401216521859169, -0.03932172432541847, -0.02386685274541378, 0.08195800334215164, 0.05545920878648758, -0.012935703620314598, -0.03029741160571575, 0.049249134957790375, 0.07377537339925766, 0.02369830384850502, 0.038584593683481216, 0.07545318454504013, -0.03951452672481537, -0.04821697995066643, 0.046515293419361115, -0.05496969446539879, -0.06401377171278, 0.00243474286980927, 0.005287951789796352, 0.08943919837474823, -0.028635017573833466, -0.017105476930737495, 0.07799387723207474, 0.11564189940690994, 0.017879178747534752, 0.0006533995037898421, 0.0373358279466629, -0.021631289273500443, 0.057891596108675, 0.1298300176858902, -0.021283715963363647, -5.714494832886885e-8, -0.028673656284809113, 0.04246547818183899, -0.03825046494603157, 0.11481077969074249, -0.014149020425975323, -0.030467012897133827, 0.0015445968601852655, -0.01822831481695175, 0.016176678240299225, -0.012953215278685093, -0.014057462103664875, -0.019394978880882263, -0.0024120754096657038, -0.00222231587395072, 0.006009561941027641, 0.10079266130924225, -0.002506100106984377, 0.01453709788620472, 0.007720933761447668, -0.11568412184715271, 0.0698162093758583, 0.01656518504023552, -0.02520308457314968, 0.00903500709682703, -0.03643501549959183, 0.020744482055306435, -0.06181520223617554, 0.09538454562425613, -0.014520464465022087, -0.0228037778288126, 0.03395901620388031, -0.03206411004066467, -0.04080716893076897, 0.0224399883300066, 0.03589167818427086, 0.032333891838788986, 0.03404918685555458, -0.05074609816074371, 0.04179654270410538, 0.0470941886305809, 0.003610480111092329, 0.03124496340751648, -0.129177525639534, -0.014634491875767708, 0.014174890704452991, 0.007227088790386915, -0.06078460067510605, -0.1061621829867363, -0.001743694068863988, 0.04731407389044762, -0.02643376775085926, 0.005416153930127621, -0.043591804802417755, 0.05462373048067093, 0.03317658603191376, -0.04158863052725792, 0.024764416739344597, 0.017938906326889992, -0.07293228805065155, -0.0246609877794981, 0.028913158923387527, 0.03641355410218239, -0.021747248247265816, -0.0400991253554821 ]
monologg/koelectra-base-v3-generator
502d48ff8cac576e1324c8c2ce51ab2c866417c5
2021-10-20T16:53:23.000Z
[ "pytorch", "electra", "fill-mask", "ko", "transformers", "korean", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/koelectra-base-v3-generator
2,649
1
transformers
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v3 (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-generator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-v3-generator", tokenizer="monologg/koelectra-base-v3-generator" ) print(fill_mask("나는 {} 밥을 먹었다.".format(fill_mask.tokenizer.mask_token))) ```
[ -0.1014108881354332, 0.025687290355563164, -0.037777144461870193, -0.018212297931313515, 0.002907725516706705, 0.02412722446024418, 0.009197589010000229, -0.018571972846984863, -0.02801261469721794, -0.037904709577560425, 0.03836403787136078, -0.1168820783495903, 0.034940700978040695, -0.034250058233737946, 0.058777809143066406, 0.026615116745233536, -0.04847380891442299, 0.05374655872583389, -0.05492371320724487, -0.022254984825849533, 0.1801615059375763, -0.031955819576978683, 0.031511735171079636, -0.027851564809679985, 0.06097400560975075, 0.017656611278653145, 0.012512912042438984, 0.04000179469585419, 0.047972455620765686, -0.05089614540338516, 0.0674673542380333, 0.06173926591873169, 0.035732101649045944, -0.027893269434571266, -0.0005526847089640796, 0.07327619194984436, -0.07198011875152588, -0.03788548335433006, -0.0277697890996933, 0.012031934224069118, 0.0431523360311985, 0.01120915450155735, -0.008123633451759815, -0.05239975452423096, 0.011904898099601269, -0.06807270646095276, -0.04409319907426834, -0.05963612720370293, -0.03957608714699745, -0.07038778066635132, 0.02416229248046875, -0.0837307795882225, 0.127254456281662, 0.025746803730726242, -0.08943880349397659, -0.015873847529292107, -0.029617153108119965, 0.037900667637586594, 0.08739293366670609, -0.040284935384988785, -0.05654733255505562, 0.029684016481041908, -0.015129185281693935, 0.01862339675426483, -0.09191786497831345, -0.05335463955998421, 0.07036982476711273, -0.027729572728276253, 0.014321370050311089, -0.025059713050723076, -0.04339904710650444, -0.055287040770053864, 0.075533926486969, 0.04431626573204994, 0.002304289722815156, 0.0019012659322470427, 0.1523141711950302, 0.044255323708057404, 0.006871217396110296, -0.09575224667787552, 0.01304828841239214, -0.057833705097436905, -0.07801658660173416, 0.019242841750383377, 0.05572796240448952, 0.016747750341892242, -0.04509659484028816, -0.051139019429683685, 0.015734579414129257, 0.07963407039642334, -0.01576833985745907, 0.007872291840612888, 0.04780165106058121, -0.020250685513019562, -0.030652303248643875, 0.052045032382011414, -0.01841105706989765, 0.07253774255514145, -0.0009242039523087442, 0.0985473170876503, 0.01677151396870613, 0.03610360249876976, -0.006199294701218605, -0.001356456894427538, -0.11821848899126053, -0.12067405879497528, -0.027521103620529175, 0.05132625997066498, -0.03314764425158501, -0.0012343386188149452, 0.028101012110710144, -0.012225921265780926, 0.03143094852566719, -0.014257251285016537, 0.036537256091833115, 0.03260938450694084, 0.03507842496037483, -0.04535144940018654, 0.06437306106090546, 0.0376356802880764, 0.0324600413441658, -0.09107474982738495, -0.024004289880394936, -0.004404251929372549, -0.03465220332145691, 0.024339301511645317, -0.02227972075343132, 4.914800655505525e-33, 0.07260359078645706, 0.01128997839987278, 0.023127757012844086, -0.022272322326898575, -0.04755458980798721, 0.00395976472645998, 0.008516840636730194, 0.038167353719472885, -0.08876054733991623, -0.06136072054505348, -0.07119883596897125, 0.10549557954072952, -0.0361989364027977, 0.029677102342247963, -0.058557234704494476, -0.035428620874881744, -0.0813293531537056, 0.002402989659458399, 0.02644195593893528, -0.0031433922704309225, 0.0831747055053711, -0.008059663698077202, -0.008526640012860298, 0.06936793774366379, -0.0192799661308527, 0.009059340693056583, 0.03030095063149929, -0.10568464547395706, -0.06432611495256424, 0.04759513586759567, 0.03476179018616676, -0.006808385718613863, 0.012648941949009895, 0.05150911957025528, -0.10732721537351608, 0.011936891824007034, -0.02418646216392517, 0.0057168323546648026, -0.0581032857298851, -0.08545804768800735, 0.02249082364141941, 0.0107737947255373, -0.02512427419424057, 0.046400412917137146, -0.0036944583989679813, 0.017665229737758636, -0.02211196906864643, 0.03401489928364754, 0.13986599445343018, -0.004494100343436003, 0.009921886026859283, -0.024068912491202354, 0.023724962025880814, 0.0417620949447155, 0.027719097211956978, 0.16507306694984436, 0.01823551207780838, -0.0021553528495132923, 0.05920204147696495, -0.09589599817991257, -0.10336750000715256, 0.12700863182544708, 0.022116513922810555, 0.0018230744171887636, 0.05593153089284897, -0.0009874235838651657, 0.01223225612193346, -0.08711604028940201, -0.013890105299651623, -0.0662510097026825, -0.04979194700717926, -0.05605379119515419, -0.0336415097117424, 0.04417845606803894, 0.01971443183720112, -0.035935308784246445, -0.016447491943836212, -0.03947625681757927, -0.07104609906673431, -0.007668123580515385, -0.0024468256160616875, -0.034313563257455826, 0.02664763666689396, -0.020526118576526642, 0.08411288261413574, -0.06454169750213623, 0.006850950885564089, -0.012434386648237705, -0.025362670421600342, -0.0022596053313463926, 0.04319586604833603, -0.030421387404203415, -0.039241641759872437, -0.035026952624320984, -0.038646288216114044, -5.285787774650993e-33, 0.05037433281540871, 0.05031156539916992, -0.004913759883493185, 0.057402417063713074, -0.016607433557510376, -0.01309739239513874, 0.03693012520670891, 0.08772148936986923, -0.038264643400907516, -0.0350072979927063, 0.0552208386361599, -0.05326555296778679, 0.05082699656486511, -0.023851899430155754, 0.09114640951156616, -0.016500145196914673, -0.019233549013733864, 0.06526508182287216, 0.05959123373031616, 0.05967709794640541, -0.009276327677071095, 0.07319941371679306, -0.11379362642765045, 0.025361377745866776, -0.01533849909901619, -0.012253810651600361, -0.02701772190630436, 0.0779447853565216, 0.05156085267663002, 0.0024983766488730907, -0.027413073927164078, 0.02771580033004284, -0.04825973883271217, 0.048248372972011566, -0.026508769020438194, -0.06268887221813202, -0.024744268506765366, -0.003819586941972375, -0.004619025159627199, 0.04668484628200531, -0.03390265628695488, 0.03378430753946304, -0.03292850777506828, 0.027555949985980988, 0.011583114974200726, -0.03340369835495949, -0.012639728374779224, -0.04121573269367218, 0.023251276463270187, -0.04414171352982521, 0.028738301247358322, -0.021817687898874283, -0.08966661244630814, 0.020718278363347054, -0.002563211601227522, -0.0385773740708828, 0.041907552629709244, -0.00756471324712038, -0.0419364795088768, -0.034715376794338226, -0.014036190696060658, -0.11617552489042282, 0.1084313616156578, -0.06059173867106438, -0.00875265896320343, -0.05154133588075638, 0.08607742935419083, 0.032897308468818665, 0.05027465894818306, -0.016775665804743767, -0.03105493076145649, -0.021564556285738945, 0.021947918459773064, -0.027075758203864098, 0.016601555049419403, -0.006325462367385626, -0.1421704739332199, 0.04312390834093094, 0.057108208537101746, -0.0902920737862587, -0.037672776728868484, 0.06062023341655731, 0.0664994940161705, -0.01722770370543003, 0.04386523365974426, -0.007846815511584282, -0.0003700472298078239, 0.11771618574857712, 0.07518985867500305, -0.022348204627633095, -0.03640284389257431, 0.05064082145690918, 0.029790213331580162, 0.08846381306648254, 0.010569022037088871, -4.5741025189727225e-8, 0.02025042288005352, -0.03182867169380188, -0.0008885732968337834, 0.016806308180093765, 0.028316142037510872, -0.008822808042168617, -0.02383423037827015, -0.09687653183937073, -0.024338549003005028, -0.12973053753376007, 0.030698716640472412, 0.026532670482993126, -0.00667770579457283, -0.003892756998538971, 0.004471263848245144, 0.001154155470430851, 0.01485749427229166, 0.17068524658679962, -0.03468595817685127, 0.017097333446145058, -0.013078619726002216, 0.008054862730205059, -0.01524400245398283, -0.0262133851647377, 0.057092659175395966, 0.04821455478668213, -0.05456400290131569, 0.041480518877506256, 0.0354723185300827, -0.05035821348428726, -0.05745377764105797, 0.01863626390695572, 0.02616274170577526, -0.015023180283606052, -0.047538015991449356, 0.07486099749803543, -0.03518490493297577, -0.07710271328687668, -0.004378039389848709, 0.014894969761371613, 0.0487482026219368, -0.06935686618089676, -0.07898467779159546, -0.003661506110802293, 0.013643045909702778, 0.011792460456490517, -0.002482661744579673, -0.02367098443210125, -0.006980906706303358, 0.02714536339044571, -0.026017582044005394, -0.06154194101691246, -0.11453108489513397, -0.015213732607662678, -0.027809806168079376, -0.016599107533693314, -0.052680402994155884, -0.02827618457376957, 0.0266277976334095, -0.019817817956209183, 0.014128054492175579, 0.03684353455901146, 0.027217788621783257, 0.023879477754235268 ]
AI-Growth-Lab/PatentSBERTa
7550939f981e2236a4cabfe3bd6cb6996d317a63
2022-05-04T11:45:01.000Z
[ "pytorch", "mpnet", "feature-extraction", "arxiv:2103.11933", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
AI-Growth-Lab
null
AI-Growth-Lab/PatentSBERTa
2,643
7
sentence-transformers
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # PatentSBERTa ## PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT ### Aalborg University Business School, AI: Growth-Lab https://arxiv.org/abs/2103.11933 https://github.com/AI-Growth-Lab/PatentSBERTa This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('AI-Growth-Lab/PatentSBERTa') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('AI-Growth-Lab/PatentSBERTa') model = AutoModel.from_pretrained('AI-Growth-Lab/PatentSBERTa') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors @article{bekamiri2021patentsberta, title={PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT}, author={Bekamiri, Hamid and Hain, Daniel S and Jurowetzki, Roman}, journal={arXiv preprint arXiv:2103.11933}, year={2021} }
[ -0.06242523342370987, -0.03177584707736969, -0.024601802229881287, -0.0008892971673049033, 0.013952627778053284, 0.05880836397409439, -0.02642732858657837, 0.05801553279161453, 0.0033708831761032343, -0.04608780890703201, 0.058790162205696106, 0.026409480720758438, 0.01265102531760931, 0.03856831043958664, 0.03542480245232582, 0.09184521436691284, 0.04197936877608299, 0.049532148987054825, -0.11127360165119171, -0.110699862241745, 0.14626404643058777, 0.11944562196731567, 0.0011269249953329563, 0.0203904677182436, -0.05602908506989479, 0.11786920577287674, 0.006296161562204361, -0.03362610191106796, 0.007292864378541708, 0.013858761638402939, 0.002853234764188528, 0.007644956931471825, -0.02328900247812271, 0.09592919796705246, 0.038561999797821045, 0.0641966387629509, -0.05490122362971306, 0.04627663269639015, 0.0050334567204117775, -0.07496458292007446, 0.01758231595158577, -0.061909161508083344, -0.05820215865969658, -0.008610452525317669, 0.07777965813875198, -0.036101702600717545, -0.11485005170106888, 0.0020473310723900795, 0.02342268079519272, 0.002648727735504508, -0.13298630714416504, 0.013680118136107922, 0.02556493878364563, 0.09967588633298874, -0.03372492268681526, 0.034014634788036346, 0.033765994012355804, -0.05112459510564804, 0.02687130682170391, -0.11949573457241058, -0.02034124545753002, -0.028910627588629723, 0.02294645644724369, -0.019936757162213326, -0.027810128405690193, -0.020124126225709915, -0.015664415434002876, 0.014335528016090393, 0.013752679340541363, 0.0013911647256463766, -0.016250399872660637, 0.0936291292309761, -0.06444934755563736, -0.015827221795916557, -0.0823107585310936, 0.0004900440108031034, 0.050978485494852066, -0.012002186849713326, 0.07003430277109146, -0.01925019547343254, -0.03405587002635002, -0.04500772804021835, 0.027441909536719322, 0.09630125015974045, 0.0009169761324301362, -0.05437878891825676, 0.014452044852077961, -0.03954824432730675, 0.032473355531692505, -0.03312714397907257, -0.03659781441092491, -0.12084954231977463, 0.024158135056495667, -0.07013104110956192, -0.004035893362015486, 0.009649215266108513, -0.03750426694750786, -0.10021790117025375, 0.032818034291267395, 0.03695059195160866, 0.02094973996281624, 0.046740077435970306, 0.02034812979400158, -0.12675084173679352, -0.093414306640625, 0.05216512829065323, -0.024794679135084152, -0.04827699437737465, 0.08775722980499268, -0.07110154628753662, -0.0022905708756297827, -0.0064367675222456455, -0.050920519977808, -0.018907319754362106, 0.06964313238859177, -0.041682418435811996, 0.007107748184353113, -0.019259009510278702, -0.00784810446202755, 0.09812156111001968, -0.034805551171302795, 0.07794900983572006, -0.04160706326365471, 0.0042033507488667965, -0.02012297883629799, -0.020010756328701973, -0.009433388710021973, 2.2352541655551686e-34, -0.04216553643345833, 0.03710602596402168, -0.012937196530401707, 0.04536701738834381, 0.017471767961978912, -0.016947243362665176, 0.04419441148638725, 0.07911214977502823, -0.1197730228304863, -0.01765541173517704, -0.07617444545030594, 0.044630251824855804, -0.03775358200073242, 0.057650305330753326, 0.023583153262734413, -0.021406732499599457, -0.022661039605736732, -0.007061876356601715, 0.0764995589852333, 0.013252855278551579, 0.024324147030711174, 0.007456427440047264, 0.04371879622340202, 0.0005280814366415143, -0.04195694997906685, -0.056942522525787354, 0.030420392751693726, -0.08321059495210648, -0.03548557683825493, 0.014688525348901749, -0.059525467455387115, 0.0696047991514206, -0.00948375090956688, -0.021063264459371567, 0.006296338047832251, -0.00197936431504786, -0.0051803793758153915, -0.03815882280468941, 0.00920027494430542, -0.06202630698680878, -0.04794081673026085, 0.004002678673714399, 0.024757103994488716, -0.06889334321022034, -0.0029069872107356787, 0.025562724098563194, -0.020745115354657173, -0.002999904565513134, 0.1313374787569046, 0.018150079995393753, 0.082036592066288, -0.0134660042822361, -0.025870217010378838, -0.0684303343296051, 0.048978038132190704, 0.006658468395471573, -0.0047953762114048, 0.06329663842916489, 0.12796244025230408, 0.013705359771847725, 0.049379862844944, 0.009563764557242393, 0.024784373119473457, 0.062249332666397095, 0.04512252286076546, 0.010582358576357365, 0.06562025845050812, 0.06435886025428772, 0.05745190382003784, 0.05972056835889816, -0.00521476287394762, 0.006136956159025431, -0.051600050181150436, 0.01447619590908289, 0.020646659657359123, 0.005437587853521109, -0.0012370861368253827, -0.08534528315067291, -0.054024942219257355, 0.08675001561641693, -0.06620337069034576, -0.05968400090932846, 0.0752430185675621, -0.01628016121685505, -0.043099287897348404, -0.04304273799061775, 0.030712483450770378, -0.039380669593811035, 0.05054997652769089, -0.07088841497898102, 0.024386653676629066, 0.02856450341641903, -0.03709927573800087, 0.06596241146326065, 0.0528605617582798, -2.756709107462949e-33, 0.025488046929240227, 0.004115236923098564, -0.03180447593331337, 0.011878058314323425, 0.012679637409746647, -0.06465107947587967, -0.03291945904493332, 0.08191690593957901, -0.004920241888612509, 0.002033547731116414, -0.042595088481903076, -0.01954740658402443, 0.053141795098781586, -0.0499422624707222, 0.05799800530076027, 0.08115270733833313, 0.001037892885506153, 0.027897588908672333, 0.03802450746297836, 0.10370507836341858, 0.04333186894655228, 0.05477210506796837, -0.15494586527347565, 0.05111343786120415, -0.03558145835995674, -0.029859168455004692, -0.03702414408326149, -0.004044493660330772, 0.0072571593336761, -0.03729008138179779, -0.03192863613367081, 0.014102080836892128, -0.04674656316637993, -0.015690231695771217, -0.099217988550663, 0.028720475733280182, -0.006428058259189129, -0.0724564865231514, 0.018760057166218758, -0.019359752535820007, 0.0038531296886503696, 0.07909277826547623, -0.03751716390252113, -0.018747787922620773, -0.0346573069691658, -0.042866699397563934, -0.06776630878448486, -0.0675787553191185, 0.03154394403100014, -0.02088302932679653, -0.015240783803164959, 0.03316080942749977, -0.10055215656757355, 0.010437418706715107, -0.09167852252721786, -0.0575086772441864, -0.001812764792703092, -0.05818318948149681, -0.07855880260467529, -0.05122163146734238, -0.06278523802757263, -0.007923955097794533, 0.04383638873696327, -0.03219153732061386, 0.03390706330537796, -0.08930766582489014, 0.00987387727946043, 0.026036499068140984, -0.06458711624145508, -0.06335146725177765, 0.026187164708971977, -0.00346502591855824, 0.038173455744981766, 0.05672726780176163, -0.027416838333010674, -0.03896598517894745, 0.04247365891933441, -0.034383948892354965, -0.05180459842085838, -0.038835495710372925, 0.03208516910672188, 0.013573802076280117, 0.0240784864872694, 0.018228748813271523, -0.0043426575139164925, 0.04034814611077309, 0.02748551033437252, 0.0506170354783535, 0.004333520773798227, 0.04087298363447189, -0.026114942505955696, -0.03999869152903557, -0.015081017278134823, 0.058743514120578766, -0.0036694793961942196, -4.984693546816743e-8, -0.07220926880836487, -0.00856650248169899, -0.040104858577251434, 0.04393375292420387, -0.06846725195646286, -0.05861307308077812, 0.047017619013786316, 0.07724086940288544, -0.05849746614694595, -0.06675458699464798, 0.007537210360169411, 0.020463839173316956, -0.07027518004179001, 0.014479830861091614, -0.030068084597587585, 0.12379853427410126, -0.011147192679345608, 0.01616211235523224, 0.05026254430413246, -0.021521301940083504, 0.05177515000104904, 0.015535763464868069, -0.006449766457080841, 0.044822368770837784, 0.031068943440914154, -0.026299161836504936, -0.021023673936724663, 0.0001977107604034245, -0.02811114490032196, 0.021069739013910294, 0.035631779581308365, 0.02297467738389969, -0.03416894003748894, 0.0008155335672199726, 0.05385203659534454, 0.04299607500433922, 0.07451315224170685, -0.055744633078575134, -0.023328252136707306, 0.02216048166155815, 0.025686785578727722, 0.05471885949373245, -0.12765462696552277, -0.02385869063436985, 0.12692242860794067, 0.005894669331610203, 0.007212773431092501, -0.09921809285879135, 0.07081791013479233, 0.034760236740112305, 0.07074441015720367, -0.05213676765561104, -0.028598302975296974, -0.040243420749902725, 0.03749953955411911, 0.039523933082818985, 0.001119699445553124, -0.04773476719856262, 0.02827974408864975, -0.10040505975484848, 0.0794353112578392, 0.0646015852689743, 0.07667277753353119, -0.014803140424191952 ]
p-christ/12412fsasf
73cb7588db19266796e71e3f3bbfe03d98baa9ec
2022-05-18T11:14:34.000Z
[ "pytorch", "t5", "text2text-generation", "generic" ]
text2text-generation
false
p-christ
null
p-christ/12412fsasf
2,641
null
generic
--- tags: - text2text-generation library_name: generic --- random test repo
[ -0.06363589316606522, -0.0274987630546093, -0.0379350371658802, 0.0028069557156413794, 0.06966287642717361, -0.038727402687072754, 0.07074781507253647, -0.011820419691503048, 0.021122507750988007, -0.0221461970359087, 0.07594586908817291, -0.07059419900178909, 0.04556693881750107, -0.009943380951881409, 0.029781412333250046, 0.06333059072494507, -0.00017728334933053702, -0.06592637300491333, 0.0267898328602314, 0.018121633678674698, 0.009974740445613861, 0.06376950442790985, 0.0652465671300888, 0.05541115254163742, 0.03775618225336075, 0.029055431485176086, -0.07973214983940125, 0.013894096948206425, 0.004817434120923281, 0.008221454918384552, 0.11805477738380432, 0.05988135188817978, -0.033488448709249496, -0.021765025332570076, 0.10946615785360336, 0.04870101436972618, -0.009571254253387451, -0.009281988255679607, -0.028674883767962456, 0.014226841740310192, 0.01733173429965973, 0.023774711415171623, 0.010963279753923416, 0.06549897789955139, -0.03215459734201431, -0.06325019896030426, 0.03368588164448738, -0.030587323009967804, -0.008441191166639328, 0.004589874297380447, -0.036369629204273224, -0.07802408188581467, -0.02311675250530243, -0.07477235794067383, 0.024254877120256424, 0.04802626371383667, -0.053057655692100525, 0.020498136058449745, 0.03198084235191345, 0.04929704591631889, 0.06912317126989365, -0.04362450912594795, -0.0012972623808309436, 0.020725859329104424, -0.03384698927402496, 0.058346617966890335, 0.08792933821678162, 0.009919332340359688, -0.008006202057003975, -0.02607923001050949, -0.05459616705775261, -0.0017019495135173202, 0.07728507369756699, 0.0647604763507843, 0.03960457816720009, 0.011292613111436367, -0.0390465073287487, 0.0025301554705947638, 0.04067312926054001, -0.059960123151540756, -0.023592250421643257, -0.04979638755321503, 0.03353666886687279, 0.014033290557563305, -0.046852998435497284, 0.041395872831344604, 0.10653983801603317, 0.021830910816788673, 0.02268359437584877, 0.08449088782072067, 0.01899443380534649, -0.09431719779968262, 0.12497878819704056, 0.03667348250746727, -0.12955647706985474, 0.044875651597976685, 0.02070006914436817, -0.021493962034583092, 0.03147464990615845, 0.060833897441625595, -0.009120545350015163, -0.04977460578083992, 0.05941268801689148, 0.0057953642681241035, -0.01651459001004696, -0.035516832023859024, -0.003927771933376789, -0.01659662462770939, -0.021771874278783798, -0.027441848069429398, 0.07155891507863998, -0.0034026941284537315, -0.020035505294799805, -0.05125230923295021, -0.042600516229867935, 0.032797180116176605, 0.005467591807246208, -0.053031500428915024, 0.013241306878626347, 0.0531558096408844, -0.038802847266197205, 0.010828058235347271, -0.05936644598841667, -0.09231852740049362, -0.15122397243976593, 0.04576154425740242, 0.028551224619150162, -2.5244266482946648e-33, 0.04337703436613083, -0.005497373174875975, 0.03579846769571304, 0.13755589723587036, 0.007358253467828035, -0.037556082010269165, -0.026666881516575813, 0.010216030292212963, -0.05991566181182861, -0.0808551087975502, 0.0664488896727562, -0.12257909774780273, -0.07270435988903046, 0.06192243471741676, 0.03049287013709545, -0.05350619554519653, 0.006169931031763554, 0.018035899847745895, 0.013171332888305187, 0.04222065582871437, -0.053504399955272675, 0.06090647354722023, 0.02245018631219864, -0.08001821488142014, -0.03097144514322281, 0.10680846124887466, 0.07603129744529724, -0.08945845812559128, 0.04745689406991005, 0.018205750733613968, -0.027617312967777252, -0.025777971372008324, 0.05983523651957512, 0.12099169194698334, -0.03008139692246914, -0.010454952716827393, -0.056853506714105606, -0.0030202313791960478, -0.07330409437417984, -0.00489836186170578, 0.0030043465085327625, 0.06010347604751587, 0.004910698160529137, -0.049304839223623276, 0.13350661098957062, -0.04479747265577316, 0.024570828303694725, -0.0030181771144270897, 0.003205769695341587, -0.06771213561296463, -0.0076326183043420315, 0.116928830742836, 0.006095401477068663, 0.023261047899723053, 0.01861140877008438, -0.009749536402523518, -0.03655947744846344, 0.058885347098112106, 0.06994745135307312, -0.02573494426906109, -0.03392656147480011, 0.02888810820877552, 0.02247682213783264, -0.04245295003056526, 0.0769980251789093, 0.04094059392809868, -0.02534247748553753, -0.06780759245157242, 0.06341059505939484, 0.05549953505396843, 0.06474070996046066, -0.0555008240044117, -0.05505134165287018, 0.10621435195207596, 0.05020826309919357, 0.010450211353600025, -0.010870923288166523, 0.01643507182598114, 0.004109922796487808, 0.007626183796674013, -0.050960417836904526, -0.054362110793590546, 0.04599063843488693, 0.00303196394816041, -0.07317423820495605, -0.037979841232299805, -0.009436581283807755, -0.11537928134202957, 0.013931091874837875, 0.03019814006984234, 0.0150472242385149, 0.01898675225675106, -0.08893375843763351, -0.08213341981172562, 0.007057536859065294, -4.896456055970486e-34, 0.021281642839312553, -0.019303059205412865, -0.058760352432727814, 0.02037268877029419, 0.018859561532735825, -0.03158024325966835, -0.046001821756362915, 0.05160640925168991, 0.009718596003949642, 0.030139852315187454, 0.003006062237545848, 0.013427169993519783, -0.0033382216934114695, -0.01691361702978611, 0.07678798586130142, -0.027147579938173294, 0.05944795161485672, -0.052402228116989136, 0.023034779354929924, -0.009219801053404808, 0.037717677652835846, 0.04797658696770668, 0.004156591836363077, 0.030331583693623543, 0.04693884029984474, -0.017872873693704605, 0.016241909936070442, 0.03465348109602928, 0.03546774759888649, -0.019151251763105392, -0.016228530555963516, 0.12140998244285583, -0.09176388382911682, -0.0067656380124390125, -0.019613174721598625, -0.044752709567546844, 0.015415582805871964, 0.0008757302421145141, -0.001367122051306069, 0.05522614344954491, 0.015116785652935505, 0.031500738114118576, 0.010982590727508068, -0.01643778197467327, -0.07173912972211838, -0.038762181997299194, -0.02414017915725708, -0.0360066220164299, 0.03284763544797897, -0.07207194715738297, -0.02836582250893116, -0.051065634936094284, -0.06662045419216156, -0.08971305191516876, -0.05738299712538719, -0.05167507007718086, 0.008173310197889805, 0.0785185694694519, -0.01918516866862774, 0.01702088676393032, -0.034101780503988266, -0.01614813320338726, -0.03431900218129158, -0.0014071821933612227, 0.007459684740751982, -0.046438440680503845, -0.11510515958070755, -0.020329829305410385, -0.022212795913219452, -0.0005968916229903698, 0.05041021108627319, 0.013948570936918259, -0.062125589698553085, -0.032015372067689896, -0.0304946880787611, -0.02956482023000717, 0.016929075121879578, 0.04536328837275505, 0.030920211225748062, -0.07288236916065216, 0.04891625791788101, 0.045675814151763916, 0.09169114381074905, 0.054981574416160583, 0.027817536145448685, -0.08310991525650024, 0.00945592112839222, 0.022879360243678093, -0.06196931004524231, 0.018538741394877434, 0.05118821561336517, 0.008192826993763447, -0.09641295671463013, 0.07727756351232529, 0.07846596091985703, -2.5587993945919152e-8, -0.036153800785541534, -0.0667629987001419, -0.10672593116760254, 0.05070841684937477, -0.007565166335552931, 0.050927042961120605, -0.08340221643447876, 0.0007013588328845799, 0.007611268665641546, -0.03351663053035736, -0.04842487350106239, 0.014659524895250797, -0.06417393684387207, 0.046552129089832306, -0.04775971546769142, 0.021805457770824432, -0.06981980055570602, 0.05193186178803444, -0.030150627717375755, -0.03661461919546127, -0.014372644014656544, -0.0032651943620294333, -0.000562406494282186, -0.05587877333164215, -0.024514123797416687, 0.017401235178112984, 0.06071317568421364, 0.05928519368171692, 0.015842966735363007, -0.02620091289281845, 0.07337324321269989, -0.01875564083456993, -0.17258432507514954, -0.10080549865961075, 0.01986285299062729, 0.02532920055091381, 0.0015879884595051408, -0.10347346216440201, 0.08098632097244263, -0.0205267071723938, -0.04003673419356346, 0.03505853936076164, -0.019438013434410095, -0.0074327015317976475, -0.03583982214331627, -0.07665243744850159, -0.06867541372776031, 0.0196559838950634, 0.026296377182006836, -0.06866703927516937, 0.030380716547369957, -0.047198861837387085, -0.02488894760608673, -0.04292319715023041, -0.03207272291183472, 0.02074703760445118, 0.0599929578602314, 0.009482256136834621, -0.0365728996694088, -0.074436254799366, 0.12186921387910843, 0.0023315181024372578, 0.08079418540000916, -0.05427908897399902 ]
cointegrated/rubert-base-cased-nli-threeway
982964680ac0044ca95f3b5bb930b9514e0ee895
2021-10-10T11:09:27.000Z
[ "pytorch", "bert", "text-classification", "ru", "transformers", "rubert", "russian", "nli", "rte", "zero-shot-classification" ]
zero-shot-classification
false
cointegrated
null
cointegrated/rubert-base-cased-nli-threeway
2,638
5
transformers
--- language: ru pipeline_tag: zero-shot-classification tags: - rubert - russian - nli - rte - zero-shot-classification widget: - text: "Я хочу поехать в Австралию" candidate_labels: "спорт,путешествия,музыка,кино,книги,наука,политика" hypothesis_template: "Тема текста - {}." --- # RuBERT for NLI (natural language inference) This is the [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) fine-tuned to predict the logical relationship between two short texts: entailment, contradiction, or neutral. ## Usage How to run the model for NLI: ```python # !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_checkpoint = 'cointegrated/rubert-base-cased-nli-threeway' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) if torch.cuda.is_available(): model.cuda() text1 = 'Сократ - человек, а все люди смертны.' text2 = 'Сократ никогда не умрёт.' with torch.inference_mode(): out = model(**tokenizer(text1, text2, return_tensors='pt').to(model.device)) proba = torch.softmax(out.logits, -1).cpu().numpy()[0] print({v: proba[k] for k, v in model.config.id2label.items()}) # {'entailment': 0.009525929, 'contradiction': 0.9332064, 'neutral': 0.05726764} ``` You can also use this model for zero-shot short text classification (by labels only), e.g. for sentiment analysis: ```python def predict_zero_shot(text, label_texts, model, tokenizer, label='entailment', normalize=True): label_texts tokens = tokenizer([text] * len(label_texts), label_texts, truncation=True, return_tensors='pt', padding=True) with torch.inference_mode(): result = torch.softmax(model(**tokens.to(model.device)).logits, -1) proba = result[:, model.config.label2id[label]].cpu().numpy() if normalize: proba /= sum(proba) return proba classes = ['Я доволен', 'Я недоволен'] predict_zero_shot('Какая гадость эта ваша заливная рыба!', classes, model, tokenizer) # array([0.05609814, 0.9439019 ], dtype=float32) predict_zero_shot('Какая вкусная эта ваша заливная рыба!', classes, model, tokenizer) # array([0.9059292 , 0.09407079], dtype=float32) ``` Alternatively, you can use [Huggingface pipelines](https://huggingface.co/transformers/main_classes/pipelines.html) for inference. ## Sources The model has been trained on a series of NLI datasets automatically translated to Russian from English. Most datasets were taken [from the repo of Felipe Salvatore](https://github.com/felipessalvatore/NLI_datasets): [JOCI](https://github.com/sheng-z/JOCI), [MNLI](https://cims.nyu.edu/~sbowman/multinli/), [MPE](https://aclanthology.org/I17-1011/), [SICK](http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf), [SNLI](https://nlp.stanford.edu/projects/snli/). Some datasets obtained from the original sources: [ANLI](https://github.com/facebookresearch/anli), [NLI-style FEVER](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [IMPPRES](https://github.com/facebookresearch/Imppres). ## Performance The table below shows ROC AUC (one class vs rest) for five models on the corresponding *dev* sets: - [tiny](https://huggingface.co/cointegrated/rubert-tiny-bilingual-nli): a small BERT predicting entailment vs not_entailment - [twoway](https://huggingface.co/cointegrated/rubert-base-cased-nli-twoway): a base-sized BERT predicting entailment vs not_entailment - [threeway](https://huggingface.co/cointegrated/rubert-base-cased-nli-threeway) (**this model**): a base-sized BERT predicting entailment vs contradiction vs neutral - [vicgalle-xlm](https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli): a large multilingual NLI model - [facebook-bart](https://huggingface.co/facebook/bart-large-mnli): a large multilingual NLI model |model |add_one_rte|anli_r1|anli_r2|anli_r3|copa|fever|help|iie |imppres|joci|mnli |monli|mpe |scitail|sick|snli|terra|total | |------------------------|-----------|-------|-------|-------|----|-----|----|-----|-------|----|-----|-----|----|-------|----|----|-----|------| |n_observations |387 |1000 |1000 |1200 |200 |20474|3355|31232|7661 |939 |19647|269 |1000|2126 |500 |9831|307 |101128| |tiny/entailment |0.77 |0.59 |0.52 |0.53 |0.53|0.90 |0.81|0.78 |0.93 |0.81|0.82 |0.91 |0.81|0.78 |0.93|0.95|0.67 |0.77 | |twoway/entailment |0.89 |0.73 |0.61 |0.62 |0.58|0.96 |0.92|0.87 |0.99 |0.90|0.90 |0.99 |0.91|0.96 |0.97|0.97|0.87 |0.86 | |threeway/entailment |0.91 |0.75 |0.61 |0.61 |0.57|0.96 |0.56|0.61 |0.99 |0.90|0.91 |0.67 |0.92|0.84 |0.98|0.98|0.90 |0.80 | |vicgalle-xlm/entailment |0.88 |0.79 |0.63 |0.66 |0.57|0.93 |0.56|0.62 |0.77 |0.80|0.90 |0.70 |0.83|0.84 |0.91|0.93|0.93 |0.78 | |facebook-bart/entailment|0.51 |0.41 |0.43 |0.47 |0.50|0.74 |0.55|0.57 |0.60 |0.63|0.70 |0.52 |0.56|0.68 |0.67|0.72|0.64 |0.58 | |threeway/contradiction | |0.71 |0.64 |0.61 | |0.97 | | |1.00 |0.77|0.92 | |0.89| |0.99|0.98| |0.85 | |threeway/neutral | |0.79 |0.70 |0.62 | |0.91 | | |0.99 |0.68|0.86 | |0.79| |0.96|0.96| |0.83 | For evaluation (and for training of the [tiny](https://huggingface.co/cointegrated/rubert-tiny-bilingual-nli) and [twoway](https://huggingface.co/cointegrated/rubert-base-cased-nli-twoway) models), some extra datasets were used: [Add-one RTE](https://cs.brown.edu/people/epavlick/papers/ans.pdf), [CoPA](https://people.ict.usc.edu/~gordon/copa.html), [IIE](https://aclanthology.org/I17-1100), and [SCITAIL](https://allenai.org/data/scitail) taken from [the repo of Felipe Salvatore](https://github.com/felipessalvatore/NLI_datasets) and translatted, [HELP](https://github.com/verypluming/HELP) and [MoNLI](https://github.com/atticusg/MoNLI) taken from the original sources and translated, and Russian [TERRa](https://russiansuperglue.com/ru/tasks/task_info/TERRa).
[ -0.04571026563644409, -0.039892394095659256, -0.0036129935178905725, 0.008560040965676308, 0.04648280516266823, 0.04915259778499603, -0.0030769382137805223, 0.05452689900994301, -0.010778489522635937, -0.0768294632434845, -0.00849726889282465, -0.06503335386514664, -0.02644917741417885, 0.06324781477451324, 0.0358104482293129, 0.02803172916173935, -0.0008902226109057665, -0.03049740567803383, -0.09567410498857498, -0.10189308226108551, 0.08656086772680283, 0.04067651182413101, 0.08969654887914658, 0.002475143177434802, -0.019061867147684097, 0.017554644495248795, -0.02141880989074707, 0.021331854164600372, 0.018610943108797073, 0.024240821599960327, 0.014798210933804512, 0.054613012820482254, -0.03623711317777634, 0.07044211775064468, 0.057034723460674286, 0.03968795761466026, -0.05115525424480438, 0.0003855392278637737, 0.042026665061712265, 0.0719841718673706, -0.004973174072802067, -0.07494118809700012, -0.08003055304288864, 0.04810164123773575, 0.0802026018500328, 0.019096739590168, -0.09762100130319595, 0.014249352738261223, -0.02608347125351429, 0.019540509209036827, -0.15405499935150146, -0.007308681961148977, 0.00337940058670938, 0.06883418560028076, 0.006277525797486305, -0.03364650160074234, 0.04554509371519089, -0.018227724358439445, -0.00350496475584805, -0.07630941271781921, -0.03189840912818909, -0.05871891975402832, -0.045794811099767685, -0.021728571504354477, -0.01296630222350359, 0.008338149636983871, -0.03828652575612068, 0.03297958895564079, -0.0036067303735762835, 0.11475536972284317, 0.0004173702618572861, 0.06993836164474487, -0.06827488541603088, 0.06155526265501976, -0.0580315962433815, -0.02768985740840435, 0.05759882554411888, 0.006168945226818323, 0.009687226265668869, -0.03118498995900154, -0.024615218862891197, 0.02025040239095688, 0.04270593822002411, 0.003743694396689534, 0.028129208832979202, -0.005756007041782141, 0.025466760620474815, -0.009693418629467487, -0.018504569306969643, 0.01582358591258526, -0.055013805627822876, -0.08705151081085205, 0.05443894490599632, -0.0007173257181420922, 0.033603303134441376, 0.0452137291431427, -0.029162589460611343, -0.011807054281234741, -0.0247908066958189, 0.06041482463479042, -0.04929215461015701, -0.034280821681022644, 0.004110611043870449, -0.035940371453762054, -0.06542859226465225, 0.017477573826909065, -0.0266241654753685, -0.08511554449796677, 0.030607251450419426, -0.11448748409748077, 0.017243102192878723, -0.03333672136068344, -0.01877438835799694, -0.01822071336209774, 0.01040578167885542, -0.012163328938186169, 0.012560373172163963, 0.021286750212311745, -0.014642506837844849, 0.0075825355015695095, -0.02717062085866928, 0.04750337451696396, -0.07567236572504044, 0.05473159998655319, 0.00041415749001316726, -0.05870460346341133, -0.016903145238757133, 7.837527034187014e-33, 0.0745725929737091, 0.03497263789176941, -0.02271977812051773, 0.019615398719906807, -0.05388064309954643, -0.023398956283926964, -0.06334824860095978, 0.006983795203268528, -0.11444690078496933, 0.10059478878974915, -0.02447415143251419, 0.0358484610915184, -0.06892551481723785, -0.011635547503829002, -0.0009595078299753368, 0.01161110494285822, -0.007668784353882074, 0.018506763502955437, -0.030042115598917007, 0.0676352009177208, 0.07986781746149063, 0.0517667755484581, -0.032481204718351364, -0.03167036175727844, -0.05222154036164284, 0.043838515877723694, 0.07064394652843475, -0.10626579821109772, -0.05768391489982605, -0.01246003620326519, -0.10137496888637543, -0.016780730336904526, 0.048497579991817474, 0.041423771530389786, -0.03767770901322365, -0.11778993904590607, -0.07820840924978256, -0.020297029986977577, -0.008206745609641075, -0.042659223079681396, -0.07219177484512329, 0.024806374683976173, 0.008952224627137184, -0.045863278210163116, 0.012186238542199135, -0.05226900056004524, -0.03309207037091255, -0.006230877712368965, 0.04672423005104065, 0.05219704657793045, 0.03048449568450451, -0.018729250878095627, 0.027298901230096817, 0.05441982299089432, 0.005702952854335308, -0.01796414889395237, 0.04774460569024086, 0.05734248086810112, 0.07124678790569305, -0.011167152784764767, 0.02796279266476631, -0.026789477095007896, 0.03148217126727104, -0.013731017708778381, 0.047775864601135254, 0.04451990872621536, -0.04800019785761833, -0.004615974612534046, 0.09725764393806458, 0.04001021012663841, -0.05966143310070038, 0.008525298908352852, -0.048517100512981415, 0.06601127982139587, 0.08294188231229782, -0.02196640521287918, -0.01530092116445303, -0.08222010731697083, -0.06517960131168365, 0.06974126398563385, -0.0927594006061554, -0.00222934246994555, 0.036459967494010925, 0.01355043426156044, -0.04309040307998657, -0.015172834508121014, 0.02164652943611145, -0.08968614041805267, -0.042269546538591385, -0.018702566623687744, -0.061463505029678345, 0.017763519659638405, -0.06575562059879303, 0.028275927528738976, 0.05236773565411568, -8.670283231824016e-33, 0.08380551636219025, -0.006495547015219927, -0.057825058698654175, 0.029949845746159554, -0.03343288600444794, -0.05510643869638443, 0.036013126373291016, 0.06196226924657822, 0.10649622976779938, 0.023118669167160988, 0.05037352442741394, -0.06222284212708473, -0.008087670430541039, 0.041418809443712234, 0.08475495129823685, 0.00868528988212347, -0.02542342245578766, 0.02618071623146534, -0.01567838154733181, 0.09529703855514526, 0.033806122839450836, 0.08260465413331985, -0.14574061334133148, 0.03309875726699829, -0.00936486292630434, 0.015246601775288582, 0.09463194757699966, 0.0006092461408115923, -0.062382061034440994, -0.041512567549943924, -0.023692641407251358, -0.04524417594075203, -0.12682312726974487, 0.00609594164416194, -0.016866888850927353, 0.01936110481619835, 0.010203985497355461, -0.06606107205152512, -0.039745643734931946, 0.08593576401472092, 0.06349637359380722, 0.05921078473329544, -0.046116188168525696, 0.015453541651368141, -0.0835118368268013, -0.05441562831401825, -0.053118184208869934, 0.011785781010985374, 0.05135264992713928, -0.032331433147192, 0.016065794974565506, 0.030777383595705032, -0.09745250642299652, 0.04364414140582085, -0.03005853295326233, -0.12529639899730682, 0.010488690808415413, -0.08985971659421921, -0.06020274758338928, 0.005844527389854193, -0.028964409604668617, 0.04014933109283447, 0.046090271323919296, -0.04613847658038139, -0.019313666969537735, -0.056512631475925446, -0.045018505305051804, 0.040357351303100586, 0.08563138544559479, -0.02637956663966179, 0.06418653577566147, 0.019511401653289795, 0.039463724941015244, 0.07273134589195251, -0.001072201645001769, 0.026735682040452957, -0.004313683602958918, 0.04138045012950897, 0.050127897411584854, -0.012988926842808723, 0.007495010271668434, -0.029155651107430458, -0.0058731334283947945, 0.05520661920309067, 0.06932961195707321, 0.12377701699733734, 0.010007279925048351, 0.10063356906175613, 0.05096680670976639, 0.010259370319545269, 0.0304725281894207, 0.011799373663961887, 0.03202992305159569, 0.11083924025297165, -0.035902801901102066, -5.616715270662098e-8, -0.042137548327445984, -0.004869662690907717, -0.0805600956082344, 0.05597104877233505, -0.07476523518562317, -0.05362695828080177, 0.018031951040029526, -0.023975741118192673, -0.07368126511573792, -0.02947186306118965, 0.05633706599473953, 0.08757200092077255, -0.11397147923707962, -0.04710932448506355, -0.04761770740151405, 0.0982167199254036, -0.01815592311322689, 0.06726229935884476, 0.01861686073243618, 0.026989690959453583, 0.05797193571925163, -0.016739198938012123, -0.05838501825928688, 0.012680407613515854, -0.03874649107456207, -0.019494712352752686, 0.01350548304617405, 0.01448331493884325, 0.0003324977878946811, -0.018654797226190567, 0.07492213696241379, 0.03365642949938774, -0.08909671753644943, -0.02838277444243431, 0.05738912150263786, 0.09556186944246292, -0.00007845200889278203, 0.011786775663495064, 0.04437829926609993, 0.013433554209768772, 0.0035370883997529745, 0.01602267473936081, -0.13839666545391083, -0.03939064219594002, 0.02055404894053936, 0.01739192008972168, -0.04281912371516228, -0.12416829913854599, 0.03213507682085037, 0.02192254737019539, -0.014909821562469006, -0.013632378540933132, -0.035278789699077606, 0.05615720525383949, -0.01262294314801693, 0.043409448117017746, 0.04704011231660843, -0.02148386649787426, -0.04637819901108742, -0.02810988761484623, 0.04971957206726074, 0.012716241180896759, 0.06759791821241379, -0.04519665613770485 ]
facebook/dpr-ctx_encoder-multiset-base
6c01adf9e9e7c812c0fa998fed97eec3262c2cf4
2020-11-25T16:58:57.000Z
[ "pytorch", "tf", "dpr", "transformers" ]
null
false
facebook
null
facebook/dpr-ctx_encoder-multiset-base
2,636
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
debyve/dumbbot
04edc136f4f0028b01c2dc18d4ec0e4423441f7f
2022-07-15T07:17:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
debyve
null
debyve/dumbbot
2,636
null
transformers
--- tags: - conversational --- # debyve/tobbmud Model
[ -0.06998490542173386, -0.06302614510059357, 0.00997486524283886, -0.013300815597176552, 0.021166140213608742, -0.03511122614145279, 0.05950848385691643, -0.008696346543729305, 0.07581824064254761, -0.0013395952992141247, -0.00336818746291101, -0.04189386963844299, 0.016979800537228584, 0.011734687723219395, 0.003173263743519783, 0.06731520593166351, 0.07674895972013474, -0.019333576783537865, -0.011015347205102444, 0.02518230862915516, -0.010436727665364742, 0.0916433036327362, -0.042889587581157684, 0.033808592706918716, 0.030095066875219345, 0.0509711429476738, -0.01257425919175148, 0.0083992388099432, -0.004555917344987392, -0.015795137733221054, 0.0694630965590477, 0.06695833057165146, 0.015145559795200825, 0.09017717093229294, -0.04368166625499725, 0.06566048413515091, 0.028926189988851547, 0.0029716885183006525, 0.0316704660654068, 0.003577176947146654, -0.05087587237358093, 0.06001349166035652, -0.06169665977358818, 0.0026890281587839127, 0.05764982849359512, -0.05422800034284592, -0.11234962195158005, 0.015463072806596756, -0.046498823910951614, -0.004011358134448528, -0.05160580202937126, 0.005208397284150124, 0.02013544924557209, 0.11915332078933716, 0.006033735349774361, 0.06608853489160538, -0.0694407969713211, -0.06255465000867844, -0.01820722036063671, -0.01571699231863022, -0.027632733806967735, -0.031140446662902832, -0.05092281475663185, 0.06276635825634003, 0.005082447547465563, 0.04818824306130409, -0.06421709060668945, 0.05262039229273796, -0.03031218610703945, 0.13471795618534088, 0.047256190329790115, -0.009352197870612144, 0.018688132986426353, -0.01810797117650509, -0.021277297288179398, 0.0408075675368309, 0.018035199493169785, -0.02889077365398407, 0.03681235760450363, -0.05910352244973183, -0.03179667517542839, -0.06346047669649124, 0.050146762281656265, -0.0754753053188324, 0.014291866682469845, -0.04249364137649536, -0.030743001028895378, -0.07846847921609879, 0.006973871495574713, -0.007916211150586605, -0.05688820779323578, -0.03839947283267975, 0.05521615967154503, 0.06490909308195114, -0.0292289350181818, 0.012520192191004753, 0.03856731206178665, 0.005157523788511753, -0.030083181336522102, 0.11539153009653091, -0.042086414992809296, 0.04443821683526039, -0.009607136249542236, -0.057775840163230896, -0.025533799082040787, -0.03247583657503128, 0.025335030630230904, 0.00724015012383461, 0.002996262861415744, -0.03742499649524689, -0.05255994200706482, -0.0040517752058804035, 0.014336192049086094, -0.014435051009058952, 0.050258442759513855, -0.061739481985569, 0.07208842039108276, -0.023693304508924484, 0.07608836144208908, -0.0648687481880188, 0.01578141190111637, 0.022969329729676247, -0.038115452975034714, -0.03901103883981705, -0.05616199970245361, 0.026565562933683395, -0.024155179038643837, -1.1494504469603543e-33, 0.1384362280368805, -0.02031891606748104, 0.05362527072429657, 0.0975182056427002, 0.016703080385923386, 0.06289799511432648, -0.06280133873224258, 0.0037410701625049114, -0.009390980936586857, -0.005136782303452492, 0.008405166678130627, 0.00004872518184129149, -0.03943072259426117, 0.04961298406124115, 0.026371486485004425, -0.06574641168117523, -0.08825043588876724, -0.01478424109518528, -0.020005380734801292, -0.010497813113033772, -0.006309142801910639, 0.02594601735472679, -0.04721563681960106, 0.03694651275873184, 0.06970687210559845, 0.05455239117145538, 0.042645324021577835, -0.07718147337436676, -0.04411961883306503, 0.0769261047244072, -0.07160016894340515, -0.04714324697852135, -0.03240036219358444, 0.01677550934255123, -0.011693395674228668, 0.0479569211602211, -0.03243173286318779, 0.007541181985288858, 0.002223752671852708, -0.12163539230823517, 0.010536114685237408, -0.06540510058403015, -0.0714908242225647, -0.09509379416704178, -0.05076838284730911, 0.06140263378620148, 0.03957676514983177, -0.0016829747473821044, -0.06743641942739487, -0.012018847279250622, 0.015662385150790215, -0.005040754098445177, -0.023925555869936943, -0.05698699504137039, -0.045056212693452835, -0.04489899054169655, 0.017243575304746628, 0.037351734936237335, 0.05357785150408745, 0.055834122002124786, 0.026264850050210953, 0.013447407633066177, 0.08511493355035782, -0.12363774329423904, 0.1116657629609108, 0.012250425294041634, -0.07666076719760895, -0.03059004247188568, 0.021354902535676956, -0.09866608679294586, -0.07410221546888351, 0.06356044858694077, -0.02088993787765503, 0.042785778641700745, 0.011387895792722702, 0.01273056399077177, -0.018195487558841705, -0.0593426413834095, 0.04173174127936363, 0.015232543461024761, -0.037893787026405334, -0.1240343302488327, -0.0693817287683487, -0.009528353810310364, 0.011757719330489635, -0.02794751524925232, 0.024329306557774544, -0.11535428464412689, -0.013539399951696396, 0.012822763063013554, -0.004002859815955162, 0.05415209010243416, -0.048233721405267715, -0.0587986521422863, 0.02472570538520813, -1.5862129953545563e-33, -0.032385535538196564, -0.02144269272685051, -0.12815596163272858, 0.08757753670215607, 0.01507613342255354, -0.04200371727347374, 0.02871154248714447, 0.09432127326726913, 0.011456512846052647, -0.0443120151758194, -0.03274746239185333, -0.04367704316973686, -0.052125029265880585, -0.007460415828973055, 0.11612282693386078, 0.05293397232890129, 0.030546629801392555, -0.11225432902574539, 0.014338635839521885, 0.0026797568425536156, 0.07131018489599228, 0.050387684255838394, -0.11800985783338547, -0.004571536555886269, 0.01953398808836937, 0.010746849700808525, 0.0015767838340252638, 0.06146247684955597, 0.09653899073600769, -0.03538678586483002, -0.035328783094882965, 0.00029158592224121094, 0.014253063127398491, -0.025564439594745636, -0.08803687989711761, 0.04586908221244812, -0.011981401592493057, -0.006672970484942198, 0.0005692303529940546, 0.04003419354557991, -0.015921836718916893, -0.025110946968197823, -0.059806276112794876, 0.03140809014439583, 0.0259231049567461, -0.039349477738142014, -0.06845250725746155, -0.03241861239075661, -0.010895557701587677, 0.05040648952126503, 0.06380468606948853, -0.03158291429281235, -0.07983997464179993, -0.02908417396247387, -0.08052203059196472, -0.06364012509584427, 0.03038826212286949, -0.06439545005559921, -0.010723575949668884, 0.023478731513023376, -0.0519927516579628, 0.0011099058901891112, 0.03821977972984314, -0.0161829125136137, 0.0163838192820549, -0.084539994597435, -0.04507732018828392, -0.048142608255147934, -0.013729166239500046, -0.0640501007437706, 0.12451314926147461, 0.006275740452110767, -0.07596705108880997, 0.0575852133333683, 0.04736679792404175, -0.04868915304541588, -0.01440654881298542, -0.01987479068338871, 0.031663600355386734, -0.10353434830904007, -0.10122177004814148, -0.020440971478819847, 0.07833622395992279, 0.12701785564422607, 0.07076439261436462, -0.005034660920500755, 0.014132113195955753, 0.03044099174439907, -0.06907918304204941, 0.0009751720353960991, -0.015969183295965195, -0.011239617131650448, -0.014714246615767479, 0.11970414966344833, -0.015373088419437408, -2.8580551258983178e-8, -0.10481307655572891, -0.07213712483644485, -0.017863614484667778, 0.049800630658864975, 0.035891734063625336, -0.0043761152774095535, 0.09896013140678406, 0.029659219086170197, 0.005123875103890896, -0.05183624103665352, 0.06709408760070801, 0.09743602573871613, -0.05662669986486435, 0.06690237671136856, 0.012732787057757378, 0.04719403386116028, 0.010082253254950047, 0.025600196793675423, -0.03672624006867409, -0.010229094885289669, 0.05821346864104271, 0.011658894829452038, -0.08051785081624985, 0.032630886882543564, 0.0941891297698021, -0.00485198013484478, -0.044943954795598984, 0.06010352820158005, 0.04945693910121918, 0.04081089049577713, 0.03274097293615341, 0.047536592930555344, -0.10151274502277374, 0.017011919990181923, 0.014754444360733032, 0.013775347732007504, -0.052110154181718826, -0.04974720627069473, -0.0003134553844574839, 0.01623619720339775, 0.012690509669482708, 0.029184099286794662, -0.07805419713258743, 0.033252373337745667, 0.06767134368419647, 0.02819347195327282, -0.016345307230949402, -0.07451888173818588, 0.027226127684116364, -0.004447573330253363, -0.06336601078510284, -0.03562716394662857, 0.026418648660182953, 0.022931015118956566, -0.037311527878046036, 0.04255162924528122, 0.020353956148028374, 0.027583014219999313, 0.04727958142757416, 0.01292849238961935, 0.05017303302884102, 0.06791427731513977, -0.026385091245174408, 0.021853020414710045 ]
uclanlp/plbart-java-cs
0426c742606ceb3c2e12de0ae9c46a969bba6023
2021-11-09T17:08:40.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-java-cs
2,625
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
tli8hf/unqover-roberta-large-newsqa
8e7427744cb23cd65a671630a85537824dc4216e
2021-05-20T22:36:39.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
tli8hf
null
tli8hf/unqover-roberta-large-newsqa
2,613
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
moussaKam/barthez
1ad22b19fab9b29d16d53872717e40a5b7758dd1
2021-11-15T12:59:17.000Z
[ "pytorch", "mbart", "text2text-generation", "fr", "arxiv:2010.12321", "transformers", "summarization", "bart", "license:apache-2.0", "fill-mask", "autotrain_compatible" ]
fill-mask
false
moussaKam
null
moussaKam/barthez
2,610
3
transformers
--- tags: - summarization - bart language: - fr widget: - text: Barthez est le meilleur <mask> du monde. license: apache-2.0 pipeline_tag: "fill-mask" --- A french sequence to sequence pretrained model based on [BART](https://huggingface.co/facebook/bart-large). <br> BARThez is pretrained by learning to reconstruct a corrupted input sentence. A corpus of 66GB of french raw text is used to carry out the pretraining. <br> Unlike already existing BERT-based French language models such as CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks (such as abstractive summarization), since not only its encoder but also its decoder is pretrained. In addition to BARThez that is pretrained from scratch, we continue the pretraining of a multilingual BART [mBART](https://huggingface.co/facebook/mbart-large-cc25) which boosted its performance in both discriminative and generative tasks. We call the french adapted version [mBARThez](https://huggingface.co/moussaKam/mbarthez). | Model | Architecture | #layers | #params | | ------------- |:-------------:| :-----:|:-----:| | [BARThez](https://huggingface.co/moussaKam/barthez) | BASE | 12 | 165M | | [mBARThez](https://huggingface.co/moussaKam/mbarthez) | LARGE | 24 | 458M | <br> paper: https://arxiv.org/abs/2010.12321 \ github: https://github.com/moussaKam/BARThez ``` @article{eddine2020barthez, title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model}, author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2010.12321}, year={2020} } ```
[ -0.08240929991006851, -0.033741291612386703, 0.04310769587755203, -0.02391718700528145, 0.012750690802931786, 0.030433380976319313, -0.03185059130191803, 0.04668458551168442, 0.08894018828868866, -0.012212513014674187, -0.038837824016809464, -0.020367901772260666, 0.007192298304289579, 0.039990782737731934, 0.010327450931072235, -0.002694702474400401, 0.07035684585571289, 0.06775861233472824, -0.004335709381848574, -0.07236051559448242, 0.07115308940410614, 0.013457413762807846, 0.04325764626264572, -0.018960876390337944, 0.03392138332128525, -0.06012373045086861, -0.06492295861244202, -0.056392449885606766, 0.10293391346931458, -0.012517242692410946, 0.05761921778321266, 0.07438285648822784, 0.03431594371795654, 0.1052660346031189, -0.12506626546382904, 0.09367751330137253, -0.011728824116289616, 0.015167920850217342, 0.01612871326506138, 0.0341557115316391, -0.0438305027782917, 0.05378662422299385, -0.07562588900327682, 0.009703784249722958, 0.07580239325761795, -0.07408734411001205, -0.035282548516988754, -0.014530771411955357, -0.030170472338795662, -0.0020974231883883476, -0.12260550260543823, 0.04425078257918358, 0.0016346285119652748, 0.06375566869974136, 0.035654742270708084, -0.018055621534585953, -0.009722838178277016, -0.06249736621975899, 0.05302856117486954, -0.08536654710769653, -0.06964407861232758, -0.06159190088510513, -0.009862714447081089, -0.007812058087438345, -0.011609538458287716, -0.04026099294424057, -0.012964700348675251, 0.07072395831346512, -0.02972560003399849, 0.0918322503566742, -0.021020332351326942, 0.04422809183597565, -0.02209034189581871, 0.04459507390856743, 0.003913793712854385, 0.032510656863451004, 0.03271216154098511, -0.04312172904610634, 0.018494319170713425, -0.0808597132563591, 0.007169427815824747, 0.0023034089244902134, 0.03629095107316971, 0.012560955248773098, 0.06459555774927139, 0.008028765209019184, 0.062341801822185516, 0.01885467953979969, 0.0067483242601156235, -0.0006165368249639869, -0.06277081370353699, -0.06932540237903595, 0.030464310199022293, 0.03654581680893898, -0.059137534350156784, 0.01685890182852745, 0.038352616131305695, -0.019257891923189163, 0.0024427948519587517, 0.11161871999502182, 0.0771944597363472, 0.06739293783903122, 0.039403028786182404, -0.13177500665187836, -0.04310981556773186, -0.023350616917014122, 0.006623107474297285, 0.03294994309544563, 0.029285673052072525, -0.10233128070831299, 0.061705611646175385, -0.008082575164735317, -0.04376571998000145, -0.027077389881014824, -0.0347910113632679, -0.0045976596884429455, 0.03177864849567413, -0.06927244365215302, 0.1041097491979599, 0.05998640134930611, 0.02451581135392189, 0.07067982107400894, 0.002612011507153511, -0.015575182624161243, -0.04670311138033867, -0.04674306884407997, 0.028329191729426384, 2.17135259368779e-33, -0.008369721472263336, 0.01981574483215809, -0.012065164744853973, 0.05090278014540672, -0.028381692245602608, -0.023706480860710144, -0.028769319877028465, 0.039506252855062485, -0.024924153462052345, -0.03502710908651352, 0.05899357795715332, 0.04798736795783043, -0.09819246828556061, 0.12759490311145782, 0.02120058797299862, -0.03820609301328659, -0.005207792390137911, 0.009604358114302158, 0.026191290467977524, -0.022883541882038116, 0.0596497543156147, -0.004945504944771528, 0.041811294853687286, -0.051051896065473557, 0.022728292271494865, 0.03772619366645813, 0.09358368813991547, -0.10456455498933792, -0.013896284624934196, 0.05929519608616829, -0.12087001651525497, -0.033283036202192307, 0.013346402905881405, 0.023433776572346687, -0.013239878229796886, 0.002610534429550171, -0.01697424054145813, -0.07037052512168884, 0.02507513388991356, -0.09459564834833145, -0.028831781819462776, -0.010453008115291595, -0.03752700239419937, -0.05998630449175835, -0.05652398243546486, -0.05143894627690315, 0.00014543425641022623, -0.0026521391700953245, 0.02164875902235508, 0.00698190089315176, 0.0266753938049078, -0.01320571918040514, -0.006295100785791874, -0.04608670994639397, -0.010898560285568237, 0.03816741332411766, 0.02178117074072361, -0.0035714921541512012, 0.04391099140048027, -0.0028234091587364674, -0.04460519552230835, 0.02242962270975113, 0.06009823828935623, 0.09336462616920471, 0.03415204957127571, 0.01543007418513298, 0.0037364016752690077, 0.09169725328683853, 0.034039873629808426, -0.047771651297807693, -0.0903875008225441, 0.01511190365999937, -0.003169124945998192, -0.004325494170188904, 0.06869509816169739, 0.04213283956050873, 0.0033665895462036133, -0.10859741270542145, -0.09882381558418274, 0.010705639608204365, -0.050616249442100525, -0.023326698690652847, -0.023750385269522667, 0.011558052152395248, -0.0731731727719307, 0.01100634504109621, 0.09600590914487839, -0.01976689137518406, 0.024999968707561493, -0.02844415232539177, 0.010961131192743778, -0.022259702906012535, 0.019930969923734665, 0.009914524853229523, -0.0033540825825184584, -4.0734321250388264e-33, -0.02658672071993351, 0.035588402301073074, -0.09930281341075897, 0.02480820193886757, -0.024118144065141678, -0.054887622594833374, 0.027323836460709572, 0.09237358719110489, -0.0736604779958725, -0.08000773936510086, -0.061531275510787964, -0.10060366243124008, -0.028504008427262306, -0.017024457454681396, 0.051210131496191025, -0.008528470061719418, 0.010972975753247738, 0.03383063152432442, -0.007563858758658171, 0.03486877307295799, 0.016630541533231735, 0.03035375475883484, -0.07786501944065094, 0.09071233868598938, 0.025390582159161568, 0.10017018765211105, -0.023341313004493713, 0.059431292116642, -0.04264847934246063, -0.02327544055879116, -0.020804865285754204, 0.007576394360512495, 0.014765055850148201, 0.002226593205705285, -0.10344859957695007, 0.036983489990234375, 0.03515929356217384, 0.019390327855944633, -0.029448676854372025, 0.08012163639068604, 0.07123755663633347, -0.021972933784127235, -0.008811128325760365, -0.0008746602688916028, -0.025761742144823074, -0.05017717927694321, -0.08759256452322006, -0.11646848917007446, 0.07709932327270508, 0.03215010091662407, 0.025188380852341652, 0.042370378971099854, -0.12469492852687836, -0.05090497434139252, -0.07057610154151917, -0.06857403367757797, 0.0024760731030255556, -0.06838610023260117, -0.054660167545080185, -0.07574662566184998, -0.10924402624368668, 0.0072923386469483376, 0.07449359446763992, -0.014864504337310791, 0.0682426318526268, -0.1191684752702713, -0.05633968114852905, -0.022548332810401917, -0.052134983241558075, -0.029764430597424507, 0.09828262776136398, 0.030066946521401405, 0.008842889219522476, 0.07538709044456482, 0.030184991657733917, 0.02419101446866989, 0.06124194338917732, -0.024493150413036346, -0.07975445687770844, -0.047469571232795715, -0.017693012952804565, -0.06774307787418365, 0.04091598093509674, 0.05663704499602318, 0.0060676513239741325, 0.04763668030500412, -0.017550723627209663, 0.012264542281627655, 0.007967451587319374, 0.0011196064297109842, -0.007731548976153135, 0.03393074497580528, -0.046296264976263046, 0.040332820266485214, 0.009398994036018848, -4.9343469754603575e-8, -0.11846641451120377, 0.011213455349206924, -0.07585154473781586, 0.03417209908366203, -0.05516846105456352, -0.12686829268932343, -0.02106355130672455, 0.02606595680117607, -0.05779203027486801, -0.06867258995771408, 0.027557507157325745, 0.053211864084005356, -0.059188809245824814, -0.018187571316957474, -0.025482473894953728, 0.07095177471637726, 0.01587687060236931, -0.013369552791118622, -0.006196647882461548, -0.028860561549663544, 0.008362989872694016, 0.012600391171872616, -0.033668678253889084, -0.02050858549773693, 0.0324026420712471, -0.05333929881453514, -0.08562637865543365, 0.04390056058764458, 0.027010837569832802, -0.03520810231566429, 0.018683720380067825, 0.08376512676477432, -0.057992689311504364, -0.009111526422202587, 0.041287392377853394, 0.07474572211503983, -0.0012025822652503848, -0.05152234807610512, -0.0185294970870018, 0.04722563922405243, 0.08316583186388016, 0.05743078514933586, -0.07854925096035004, -0.017168138176202774, 0.04932025820016861, -0.023564811795949936, -0.039335981011390686, -0.04004109278321266, 0.057893864810466766, 0.0059736305847764015, 0.0005123879527673125, -0.037673745304346085, 0.006089122034609318, -0.01672198437154293, 0.04049072787165642, 0.08062559366226196, -0.061090435832738876, -0.021089505404233932, 0.06330593675374985, 0.002592109376564622, 0.06275179237127304, 0.0664670541882515, 0.031750742346048355, 0.02156207524240017 ]
indobenchmark/indobert-large-p1
ee2669aee95421008ad3833c3866c57a006e662d
2021-05-19T20:26:01.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "id", "dataset:Indo4B", "arxiv:2009.05387", "transformers", "indobert", "indobenchmark", "indonlu", "license:mit" ]
feature-extraction
false
indobenchmark
null
indobenchmark/indobert-large-p1
2,607
null
transformers
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT Large Model (phase1 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-large-p1") model = AutoModel.from_pretrained("indobenchmark/indobert-large-p1") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
[ -0.055342353880405426, -0.07549097388982773, 0.04854533076286316, -0.004957129247486591, -0.03858387842774391, 0.115557961165905, 0.004609860945492983, -0.007012510672211647, 0.05067291855812073, 0.016636110842227936, 0.04763784632086754, -0.0876988023519516, -0.0438600592315197, 0.0022234206553548574, 0.01837686076760292, 0.028128577396273613, 0.08398758620023727, -0.008369294926524162, -0.04483155161142349, -0.15514181554317474, 0.06799456477165222, 0.0982184186577797, 0.04565649852156639, -0.05433523654937744, 0.03000115416944027, 0.0035857544280588627, 0.019629377871751785, -0.06684307754039764, 0.049015019088983536, 0.03855450078845024, -0.008259763941168785, 0.0003008101775776595, 0.006642034277319908, 0.09248948842287064, -0.006306278053671122, 0.015391557477414608, -0.05951422080397606, -0.020190009847283363, 0.08319191634654999, 0.0031489378307014704, -0.05624164640903473, -0.042852457612752914, -0.039828550070524216, -0.06645944714546204, 0.1359713077545166, -0.04930102080106735, -0.07529844343662262, 0.01204230822622776, -0.020886553451418877, -0.05277614668011665, -0.10918918997049332, -0.040412697941064835, 0.015216310508549213, 0.027766570448875427, -0.01865079440176487, -0.047554340213537216, 0.02257990464568138, 0.019850116223096848, 0.011628019623458385, -0.0322721041738987, -0.10392405837774277, -0.025320911779999733, -0.03842821717262268, 0.04503336921334267, -0.059302106499671936, 0.04810929298400879, -0.060164883732795715, 0.024974901229143143, -0.005099737551063299, 0.05968833714723587, -0.029960403218865395, 0.07913246750831604, 0.03799806907773018, 0.018414035439491272, -0.08006850630044937, -0.03357408940792084, 0.09983981400728226, -0.006187304388731718, 0.04933740571141243, -0.04227044805884361, 0.017796490341424942, 0.024422094225883484, 0.09585250169038773, 0.008674168027937412, 0.0351097509264946, 0.0009992931736633182, 0.012930832803249359, -0.01550525426864624, -0.0578620508313179, -0.026225341483950615, -0.00849900022149086, -0.09547805786132812, 0.04738277569413185, -0.016931181773543358, -0.00047506490955129266, 0.05071353539824486, -0.011036665178835392, -0.007380020339041948, -0.005896087270230055, 0.0474933385848999, 0.03970130905508995, 0.06881207227706909, -0.04017651081085205, -0.07053034007549286, 0.006052285432815552, -0.03966408967971802, 0.016895025968551636, -0.06501073390245438, 0.0869813784956932, -0.04381800442934036, -0.01171646174043417, -0.008109399117529392, -0.010685168206691742, -0.041086699813604355, -0.022015448659658432, -0.054574426263570786, -0.005080417264252901, -0.00023509757011197507, -0.014802303165197372, 0.05284759774804115, -0.04791935533285141, 0.001443038578145206, 0.03437013179063797, 0.030737636610865593, -0.06399565935134888, -0.03257598355412483, 0.006239386275410652, -5.272634727549261e-33, 0.006837188731878996, -0.025112953037023544, 0.04424407705664635, -0.07207826524972916, -0.013804036192595959, -0.04341017082333565, 0.0023523655254393816, -0.05379611253738403, -0.025319868698716164, -0.05262616276741028, -0.04843030869960785, -0.04134992137551308, -0.13984380662441254, 0.028329115360975266, -0.029645908623933792, 0.046899568289518356, -0.05501898005604744, 0.05022946000099182, 0.007999631576240063, -0.0070823379792273045, 0.0439959317445755, 0.046940140426158905, 0.02424696274101734, -0.09052526950836182, -0.03450079262256622, 0.022372132167220116, 0.08729788661003113, -0.11478547751903534, -0.06934405118227005, 0.05331142246723175, -0.12621575593948364, 0.019115028902888298, -0.07826732844114304, 0.03298335522413254, -0.10463717579841614, -0.03964461013674736, 0.018772397190332413, -0.07394754141569138, -0.0043456363491714, -0.018903886899352074, -0.023432128131389618, 0.02995784766972065, 0.05391846224665642, -0.056561268866062164, 0.013597232289612293, -0.02289854921400547, -0.0280893687158823, -0.01821768842637539, 0.010647964663803577, 0.07148328423500061, -0.01252016332000494, -0.005387897603213787, -0.03624877706170082, -0.0002121042343787849, 0.026707123965024948, -0.00019703780708368868, 0.04396994039416313, -0.0285512562841177, 0.02671995759010315, 0.04448267072439194, 0.004882372450083494, -0.08388330042362213, 0.0038918431382626295, -0.02148834802210331, 0.031345121562480927, -0.01423425879329443, -0.03332029655575752, -0.06254859268665314, 0.0269778985530138, -0.01910751312971115, -0.025714386254549026, -0.0528610460460186, 0.06343919783830643, 0.0780334621667862, -0.0036294476594775915, -0.016756750643253326, 0.046985626220703125, -0.04500485211610794, -0.029920458793640137, 0.02577182464301586, -0.003927094861865044, -0.021699706092476845, -0.01757836528122425, -0.06205444410443306, -0.012943471781909466, -0.02005707286298275, 0.03701169788837433, -0.0343131348490715, 0.015224289149045944, -0.016197584569454193, 0.026815684512257576, -0.024205094203352928, -0.01836238242685795, 0.05822446569800377, -0.023045960813760757, -2.2593019789903598e-34, -0.011189590208232403, 0.07756923139095306, -0.1303521990776062, 0.012048141099512577, -0.0775856152176857, -0.08386478573083878, 0.017540758475661278, 0.1470913589000702, -0.00011005714623024687, -0.008555985055863857, -0.004113079514354467, -0.07184461504220963, 0.07530433684587479, 0.009283790364861488, 0.053525660187006, 0.004325781483203173, 0.020524142310023308, 0.0714636892080307, 0.019867470487952232, 0.051359258592128754, 0.023697789758443832, 0.025134021416306496, -0.10517636686563492, 0.09080641716718674, 0.014108075760304928, 0.022356176748871803, -0.017234714701771736, 0.07277817279100418, -0.0850108340382576, 0.051297642290592194, 0.0011272223200649023, -0.01732793264091015, -0.07932732999324799, 0.05528842285275459, -0.07596878707408905, -0.03778934106230736, 0.036976706236600876, -0.06340167671442032, -0.029739635065197945, 0.0651577040553093, 0.05784258991479874, 0.03748709335923195, -0.0846812054514885, -0.0024919298011809587, -0.03982311114668846, -0.0157125573605299, -0.08599965274333954, -0.015105970203876495, 0.07454976439476013, -0.11002010107040405, -0.03245534002780914, 0.023211712017655373, -0.034144721925258636, -0.025783447548747063, -0.09671079367399216, -0.04303828626871109, -0.0041281613521277905, -0.06868726760149002, -0.03652182221412659, -0.015249088406562805, -0.07002395391464233, -0.028874952346086502, 0.09502403438091278, -0.004869763273745775, 0.041650645434856415, 0.006113692652434111, 0.052092041820287704, 0.12360448390245438, 0.027590051293373108, -0.12741895020008087, 0.01168652344495058, -0.04864209145307541, 0.007877159863710403, 0.07365568727254868, 0.015035328455269337, -0.005080157890915871, -0.011900321580469608, -0.09124726802110672, -0.004649537615478039, -0.06409349292516708, -0.004201545380055904, -0.042240340262651443, 0.018581978976726532, -0.019416317343711853, 0.03247304633259773, 0.08331181108951569, 0.01967628486454487, 0.017916902899742126, -0.013894681818783283, 0.044629912823438644, 0.0067990561947226524, 0.0382949523627758, 0.0005427980213426054, 0.08272043615579605, -0.01204012893140316, -4.871676040352213e-8, -0.02852700464427471, -0.02645678073167801, 0.03731952980160713, 0.0374288409948349, -0.042339179664850235, -0.05653581768274307, -0.028521833941340446, 0.012144932523369789, -0.06900311261415482, -0.08690287917852402, -0.010102824307978153, 0.05487634241580963, -0.07637137919664383, 0.049402132630348206, -0.021549178287386894, 0.05229060351848602, 0.004441964440047741, 0.0807822123169899, 0.022850023582577705, -0.08861236274242401, 0.044278789311647415, 0.01924837753176689, 0.05172697827219963, -0.024830244481563568, 0.013780093751847744, -0.0004816674627363682, -0.013057749718427658, 0.09557229280471802, 0.03239991143345833, 0.044079091399908066, -0.05468196049332619, 0.05730374529957771, -0.07844153046607971, 0.04976202920079231, 0.03389600291848183, 0.08639923483133316, 0.02306271716952324, -0.044863827526569366, -0.0383775494992733, 0.06410679221153259, 0.050627175718545914, -0.011006961576640606, -0.07080961763858795, -0.001869953703135252, 0.10889379680156708, 0.05247711390256882, 0.04577126353979111, -0.12240895628929138, 0.04859349504113197, -0.06050770729780197, 0.005837978795170784, -0.01269331481307745, -0.016447056084871292, 0.009477704763412476, -0.012917897664010525, 0.03063253127038479, -0.10537232458591461, 0.02738368511199951, 0.04044993594288826, -0.018219588324427605, 0.05966084823012352, 0.049389567226171494, 0.011281673796474934, 0.06487315893173218 ]
castorini/monot5-base-med-msmarco
7a4324f2785ab5f1dea00e7a39d6f81f3e2d273f
2021-06-23T11:40:06.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/monot5-base-med-msmarco
2,603
null
transformers
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch) and then fine-tuned again on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf) for 1k steps. For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
[ -0.10545282810926437, -0.06650065630674362, 0.028889667242765427, -0.006616164930164814, -0.017721518874168396, 0.045337095856666565, -0.09542584419250488, 0.05743452161550522, -0.028010772541165352, -0.04267255216836929, -0.046818703413009644, 0.08185259997844696, 0.015109661035239697, -0.009319649077951908, -0.10988821089267731, 0.005593643523752689, 0.022662339732050896, 0.017911570146679878, -0.020250104367733, -0.0829797089099884, -0.013807485811412334, 0.021129032596945763, 0.04491715878248215, 0.002829022239893675, 0.049860190600156784, -0.07862470299005508, -0.03960127383470535, 0.05409238487482071, 0.056719545274972916, -0.04056579992175102, 0.05190463364124298, 0.1017511710524559, 0.03725326061248779, 0.05429929494857788, -0.031662121415138245, 0.04493154585361481, -0.03645830228924751, -0.10675176978111267, -0.0034106511157006025, 0.013822603970766068, 0.07060902565717697, 0.009168501943349838, -0.00043268842273391783, 0.029894204810261726, 0.11129551380872726, -0.045141689479351044, -0.05232780799269676, -0.019421691074967384, -0.04305609315633774, -0.001792554627172649, -0.11372075974941254, 0.019915198907256126, -0.05403565615415573, 0.12920986115932465, -0.01833968795835972, 0.04041244462132454, -0.00030275937751866877, -0.07068359851837158, -0.007017364259809256, -0.10177010297775269, -0.01768764853477478, -0.04041536524891853, -0.06608767062425613, -0.06855994462966919, 0.035583142191171646, 0.00040897243889048696, -0.008173220790922642, 0.006731424480676651, 0.05266888812184334, 0.04791365563869476, 0.001646713586524129, 0.00028826171183027327, 0.04812140762805939, 0.030273422598838806, -0.02591659501194954, 0.022117553278803825, 0.07448716461658478, -0.0056625488214194775, 0.0004464029334485531, -0.08651024848222733, -0.04188045859336853, -0.04708339646458626, 0.004188300110399723, -0.023153219372034073, -0.011352292262017727, -0.1312321126461029, 0.07265017181634903, -0.03044790029525757, 0.06923463195562363, 0.026839392259716988, 0.0481514111161232, -0.010650708340108395, 0.015792442485690117, -0.03802214190363884, -0.021388789638876915, 0.09117459505796432, 0.014925082214176655, -0.0273131150752306, -0.011674902401864529, 0.08546502888202667, 0.015448685735464096, 0.09814925491809845, 0.06852807849645615, -0.03870904818177223, 0.032280873507261276, 0.006706973537802696, 0.054867956787347794, 0.09515931457281113, -0.0008594191749580204, -0.09131080657243729, -0.012783008627593517, 0.03257102519273758, -0.0015077961143106222, -0.013204225338995457, -0.013558833859860897, -0.020403344184160233, -0.019984805956482887, 0.026667101308703423, 0.02523525059223175, 0.062450893223285675, 0.00008012877515284345, 0.013767682015895844, 0.0026083458214998245, -0.019096996635198593, -0.014149977825582027, 0.02062178961932659, -0.05275878682732582, 1.986997610596423e-33, 0.08477957546710968, 0.008207338862121105, 0.019158346578478813, -0.06002815440297127, 0.007206337992101908, 0.01778344251215458, 0.019872788339853287, -0.02066841721534729, -0.11259593814611435, -0.048457272350788116, -0.11035750061273575, 0.0243651382625103, -0.05249794200062752, 0.01444730069488287, -0.02957444079220295, -0.09008678793907166, -0.05249697342514992, 0.07580031454563141, -0.062468692660331726, -0.00019930968119297177, 0.10250424593687057, -0.049313828349113464, -0.013476175256073475, -0.1213802844285965, -0.014240034855902195, 0.07364920526742935, -0.04118955880403519, -0.06196051463484764, -0.068552166223526, 0.046477410942316055, -0.0667055994272232, 0.06325690448284149, -0.0540056973695755, -0.0193177480250597, 0.0456937812268734, 0.023529887199401855, -0.013652944937348366, -0.010858474299311638, 0.10775334388017654, -0.11104654520750046, 0.0028327268082648516, 0.0289655439555645, 0.055775709450244904, -0.068069227039814, -0.0895005613565445, -0.007190210744738579, -0.052892059087753296, 0.06786973774433136, 0.07275279611349106, 0.008427510969340801, 0.016408920288085938, -0.011786479502916336, -0.020866991952061653, -0.013376058079302311, -0.02352645993232727, -0.03879089280962944, 0.06982163339853287, 0.12614211440086365, 0.03397431597113609, 0.05853139981627464, 0.08772672712802887, 0.04902542009949684, -0.0007743585738353431, 0.06437897682189941, 0.0999310240149498, 0.020775122568011284, -0.06415864080190659, 0.03239698335528374, 0.0800471380352974, 0.04703059792518616, 0.00939465407282114, 0.058926910161972046, -0.014980797655880451, -0.010292253457009792, 0.04874006658792496, -0.05649217963218689, 0.06748535484075546, -0.09052250534296036, -0.005727019626647234, 0.0019079542253166437, -0.054414425045251846, -0.03880052641034126, -0.022246062755584717, -0.09609337151050568, -0.0032060430385172367, -0.02792411670088768, 0.020138558000326157, -0.03308909013867378, -0.07497149705886841, -0.0357840396463871, 0.02266857773065567, 0.017089074477553368, 0.05986078083515167, 0.04327036067843437, -0.020709093660116196, -1.295629689805333e-33, 0.021212056279182434, -0.017657240852713585, 0.06633444130420685, 0.08665633946657181, 0.002972797956317663, -0.0352264903485775, -0.0266294926404953, 0.08997705578804016, -0.05445173382759094, 0.035933542996644974, 0.046616967767477036, -0.029685167595744133, 0.09059459716081619, -0.060555506497621536, 0.04540727287530899, -0.037135425955057144, 0.04850930720567703, -0.05058671161532402, 0.025052636861801147, 0.046927258372306824, 0.011685075238347054, 0.013305594213306904, -0.13979309797286987, 0.06057976558804512, 0.025679856538772583, 0.035975441336631775, 0.03969297185540199, 0.052294738590717316, -0.09045054018497467, -0.06675311923027039, -0.001218288904055953, -0.0336807556450367, -0.04102521389722824, -0.019578732550144196, -0.01719924993813038, 0.05693252012133598, 0.026957988739013672, -0.01451621949672699, -0.03900344669818878, 0.08931177854537964, 0.08122340589761734, 0.08705907315015793, -0.06956370919942856, 0.00915560033172369, 0.0011904699495062232, 0.02461407519876957, -0.11807674914598465, 0.07272011041641235, -0.003132142825052142, -0.05575239285826683, 0.0203237384557724, 0.06458111107349396, -0.01765662617981434, 0.01210024394094944, -0.038757242262363434, 0.03732030466198921, -0.0694059431552887, -0.044681500643491745, -0.06629372388124466, 0.005648219492286444, -0.015518531203269958, 0.017161915078759193, -0.039328623563051224, 0.004525148309767246, 0.07799655944108963, -0.022105686366558075, -0.030964722856879234, -0.04002014547586441, -0.07687430083751678, 0.008149951696395874, 0.02661214955151081, 0.004492956679314375, 0.04703323543071747, -0.01826207898557186, -0.014907521195709705, -0.05660971999168396, -0.023166047409176826, 0.002685720566660166, -0.030205022543668747, -0.08674595504999161, -0.007607627660036087, 0.004724273923784494, 0.019726263359189034, 0.04169087111949921, -0.014948616735637188, 0.03397981449961662, 0.062187209725379944, 0.03915832191705704, 0.04655226692557335, 0.02133123017847538, 0.005932495463639498, -0.04418158531188965, -0.0026901436503976583, 0.026693759486079216, 0.0026516802608966827, -5.160230287515333e-8, -0.05548539757728577, 0.04491396248340607, -0.0475168451666832, 0.11337342113256454, 0.06487616151571274, 0.014325222931802273, 0.01069878414273262, 0.11437541991472244, -0.01660957746207714, 0.007756234146654606, 0.0672520101070404, -0.01630041003227234, -0.05044778063893318, 0.013009490445256233, 0.04913075268268585, 0.021287983283400536, 0.0012572857085615396, 0.04873015731573105, -0.058988384902477264, -0.026071276515722275, 0.04448137432336807, 0.02700578048825264, 0.10127734392881393, -0.0194901991635561, -0.011184066534042358, -0.013484042137861252, 0.015169930644333363, 0.06638005375862122, 0.04340318217873573, -0.04946872964501381, 0.017615901306271553, -0.0013396325521171093, -0.031115185469388962, 0.04413526505231857, -0.008818085305392742, 0.12895220518112183, -0.05756106600165367, -0.004607159178704023, -0.049133822321891785, 0.031157005578279495, 0.04526686668395996, 0.0575033500790596, -0.038130030035972595, 0.008408835157752037, -0.008241860195994377, -0.03618527576327324, -0.06977739185094833, -0.056862469762563705, 0.06571458280086517, -0.008824487216770649, 0.024375122040510178, -0.028041254729032516, -0.04851827770471573, -0.05137104168534279, 0.04558153823018074, 0.0701327845454216, 0.017395393922924995, 0.00018117106810677797, -0.03307095542550087, -0.01581623964011669, 0.050054971128702164, -0.06903692334890366, -0.02252379059791565, 0.03628412261605263 ]
sshleifer/distilbart-xsum-12-1
e85cfe19c276077efa4389e576f99d456a45755b
2021-06-14T07:56:06.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
sshleifer
null
sshleifer/distilbart-xsum-12-1
2,601
1
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
[ -0.10242787003517151, -0.08055665343999863, 0.058801449835300446, 0.001729630515910685, -0.01020839437842369, -0.020107010379433632, -0.09146951138973236, 0.055804893374443054, -0.03275766223669052, -0.0814155638217926, 0.047091152518987656, -0.024555958807468414, 0.02256167307496071, -0.06064292788505554, -0.07659092545509338, 0.011284125037491322, 0.03928124159574509, -0.0036749355494976044, -0.08591760694980621, -0.05708478391170502, 0.052746228873729706, -0.040730513632297516, -0.02270055003464222, -0.05265913903713226, 0.08935019373893738, 0.0025974700693041086, -0.03890107572078705, 0.012740290723741055, 0.0906219556927681, -0.04279907047748566, -0.004099974874407053, 0.04570003226399422, -0.07850365340709686, 0.018990738317370415, -0.01020409632474184, 0.08468351513147354, 0.006208515260368586, -0.007276525720953941, 0.02783900499343872, 0.03190219774842262, 0.04338159039616585, -0.002901187865063548, -0.030336445197463036, -0.02716916799545288, 0.04014960676431656, -0.058358509093523026, 0.013790902681648731, -0.017771178856492043, 0.01821342296898365, -0.02310691587626934, -0.049805302172899246, -0.00339138088747859, -0.005217964760959148, 0.061979468911886215, -0.018776532262563705, -0.02264600805938244, 0.039845243096351624, -0.019266774877905846, 0.021008379757404327, -0.0679703801870346, -0.09366007894277573, -0.0025608239229768515, -0.0858554095029831, -0.027356861159205437, -0.02404315024614334, -0.004478763323277235, 0.03164851665496826, 0.01056541409343481, 0.0023012161254882812, 0.014064272865653038, -0.06235840544104576, 0.028858404606580734, 0.03378373011946678, 0.004465024918317795, 0.07923771440982819, -0.02148638851940632, 0.11610335111618042, 0.0398324579000473, 0.06239284574985504, -0.17593292891979218, 0.04951082542538643, -0.022424643859267235, 0.0025099257472902536, 0.021336156874895096, 0.042870569974184036, -0.02120130881667137, -0.0128794489428401, -0.004414125811308622, 0.07955142110586166, -0.06996607035398483, -0.05295264348387718, 0.016240382567048073, -0.11916537582874298, 0.008669688366353512, -0.028409382328391075, 0.08660409599542618, -0.015133734792470932, 0.042395152151584625, -0.020870883017778397, 0.110101617872715, -0.031033620238304138, -0.06374292075634003, 0.038810137659311295, 0.0009930998785421252, -0.0503569021821022, -0.058442480862140656, 0.0753164291381836, 0.1175476536154747, -0.032253846526145935, -0.014065131545066833, 0.14000876247882843, 0.021389251574873924, 0.036053162068128586, -0.01974489726126194, 0.030817579478025436, 0.0031923118513077497, -0.030438171699643135, -0.05716529116034508, -0.010146639309823513, -0.039032574743032455, -0.0023189843632280827, 0.025894414633512497, 0.0314161442220211, 0.03209250792860985, -0.049785830080509186, -0.043941400945186615, 0.04122624173760414, 5.461544774208938e-35, -0.024408750236034393, -0.03235231712460518, 0.009395932778716087, 0.0143541619181633, -0.019927645102143288, 0.011538815684616566, -0.004154409281909466, 0.004460239317268133, -0.039520375430583954, -0.05001825839281082, -0.027546891942620277, -0.001932688639499247, -0.1829814612865448, 0.011275903321802616, -0.05464207008481026, -0.009606490842998028, -0.010763490572571754, 0.05929546430706978, -0.017166277393698692, 0.009892466478049755, 0.08686050772666931, -0.052564844489097595, -0.0730401873588562, -0.012235877104103565, -0.05119817703962326, 0.05293474346399307, 0.047535110265016556, -0.024820925667881966, -0.051516685634851456, 0.038043733686208725, -0.0038780367467552423, 0.04933198168873787, 0.02613821066915989, -0.034857045859098434, -0.05000770092010498, 0.012604543007910252, -0.08287376910448074, 0.0021607009693980217, -0.04153299331665039, -0.0480438731610775, -0.023325279355049133, 0.06455279886722565, -0.03618278354406357, -0.10329894721508026, -0.08560588955879211, -0.012695742771029472, 0.06148916110396385, -0.0014318762114271522, 0.012406377121806145, -0.0063721551559865475, 0.010638606734573841, 0.03645683452486992, -0.059038691222667694, -0.05735098943114281, -0.022052470594644547, 0.043612636625766754, 0.06302247941493988, 0.04900328069925308, 0.03978622704744339, 0.031266748905181885, 0.014886674471199512, 0.04121227562427521, -0.025450652465224266, 0.03354961797595024, 0.06778407096862793, 0.009504653513431549, 0.010917606763541698, 0.03269919008016586, 0.04048515111207962, 0.0311855711042881, -0.09321687370538712, -0.10306260734796524, 0.001251904759556055, 0.019347315654158592, 0.10530905425548553, -0.05783497914671898, 0.05076569691300392, 0.0006828922196291387, -0.05174199864268303, -0.014428242109715939, -0.08407353609800339, -0.0058699436485767365, -0.05062512680888176, -0.06463600695133209, -0.01425554696470499, -0.0345621332526207, 0.07267823815345764, -0.02438926324248314, -0.0994235947728157, -0.08070188015699387, -0.003353934967890382, 0.02165825664997101, 0.01772112026810646, -0.02488882653415203, -0.04665885865688324, -4.1838000243215e-33, 0.03438884764909744, 0.08637094497680664, -0.027995970100164413, 0.09967635571956635, 0.03033537231385708, 0.004250023048371077, 0.013211085461080074, 0.14391984045505524, -0.018230015411973, 0.0008563397568650544, 0.05915218964219093, -0.08577528595924377, -0.08741530030965805, -0.02476281300187111, 0.02089402638375759, 0.009236098267138004, 0.0022220034152269363, -0.04552528262138367, -0.04196701943874359, 0.034156158566474915, 0.04021655395627022, 0.11718633025884628, -0.09590455889701843, 0.08863051980733871, -0.059591080993413925, 0.012649881653487682, 0.004810936748981476, 0.09402202069759369, -0.08010457456111908, -0.03196941688656807, -0.03389061987400055, -0.01679762452840805, -0.030047638341784477, 0.02232223190367222, -0.08654878288507462, -0.010027778334915638, 0.021284284070134163, -0.007165788672864437, -0.063999705016613, 0.09917820245027542, 0.09497607499361038, -0.020452525466680527, -0.11983459442853928, 0.041702888906002045, -0.07234808802604675, -0.00285915844142437, 0.00486419815570116, -0.11438306421041489, 0.06041710078716278, -0.00478691840544343, 0.08743700385093689, 0.03726685792207718, -0.05595160648226738, 0.03092111274600029, -0.03529880940914154, -0.028061416000127792, 0.05210427567362785, -0.034117504954338074, 0.02170790731906891, 0.009024888277053833, -0.08601925522089005, -0.05220189690589905, -0.04853806272149086, -0.11871526390314102, 0.019619103521108627, -0.020090097561478615, -0.03150482475757599, -0.03657294064760208, -0.008592593483626842, 0.05554542690515518, 0.014322890900075436, 0.026464898139238358, 0.05759655684232712, -0.038530249148607254, -0.01761936955153942, -0.01743265800178051, 0.02374177984893322, 0.006342989392578602, 0.05594303831458092, -0.06053014099597931, -0.11985619366168976, -0.08457670360803604, 0.045173369348049164, 0.05776109918951988, -0.0056351907551288605, 0.019826533272862434, -0.014123903587460518, 0.01049207616597414, 0.02468194253742695, 0.030179986730217934, -0.03690095618367195, -0.04178742691874504, -0.0030118089634925127, 0.045938149094581604, 0.014063847251236439, -5.811313386061556e-8, -0.053576551377773285, 0.039514027535915375, -0.06619477272033691, 0.02592553198337555, -0.01849374733865261, -0.04122321680188179, 0.022507496178150177, 0.09204138815402985, -0.05198988318443298, 0.004503786563873291, 0.099793940782547, -0.00479306373745203, -0.02616720274090767, -0.009290494956076145, 0.007529478054493666, 0.03442858159542084, 0.038063887506723404, 0.07039548456668854, -0.08950836211442947, -0.060046736150979996, -0.008433334529399872, -0.005172078497707844, -0.0021744512487202883, -0.04427023604512215, 0.025741849094629288, -0.0708618089556694, 0.008174183778464794, 0.044057417660951614, 0.019644221290946007, -0.023653121665120125, -0.04487171024084091, 0.02623075805604458, -0.04028204083442688, -0.05899606645107269, -0.06468623876571655, 0.0873165875673294, -0.0000015408877516165376, -0.02174311690032482, 0.030886435881257057, 0.094451904296875, 0.030695859342813492, 0.06706656515598297, -0.07480531930923462, 0.002431778237223625, 0.045595936477184296, 0.06469754129648209, -0.01883578673005104, -0.03154022619128227, 0.001480140257626772, 0.07079560309648514, 0.027046171948313713, -0.05088590830564499, -0.0037020540330559015, 0.0017577537801116705, -0.005329455714672804, -0.0219523087143898, 0.0181431882083416, -0.015050824731588364, 0.010762940160930157, 0.022556515410542488, 0.050926342606544495, -0.026853499934077263, 0.0590292252600193, -0.013102889992296696 ]
mental/mental-bert-base-uncased
93f3ff553a76674e1307d8f01dd2441fd8909284
2022-04-05T17:43:03.000Z
[ "pytorch", "bert", "fill-mask", "arxiv:2110.15621", "transformers", "autotrain_compatible" ]
fill-mask
false
mental
null
mental/mental-bert-base-uncased
2,590
5
transformers
# MentalBERT [MentalBERT](https://arxiv.org/abs/2110.15621) is a model initialized with BERT-Base (`uncased_L-12_H-768_A-12`) and trained with mental health-related posts collected from Reddit. We follow the standard pretraining protocols of BERT and RoBERTa with [Huggingface’s Transformers library](https://github.com/huggingface/transformers). We use four Nvidia Tesla v100 GPUs to train the two language models. We set the batch size to 16 per GPU, evaluate every 1,000 steps, and train for 624,000 iterations. Training with four GPUs takes around eight days. ## Usage Load the model via [Huggingface’s Transformers library](https://github.com/huggingface/transformers): ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("mental/mental-bert-base-uncased") model = AutoModel.from_pretrained("mental/mental-bert-base-uncased") ``` ## Paper For more details, refer to the paper [MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare](https://arxiv.org/abs/2110.15621). ``` @inproceedings{ji2022mentalbert, title = {{MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare}}, author = {Shaoxiong Ji and Tianlin Zhang and Luna Ansari and Jie Fu and Prayag Tiwari and Erik Cambria}, year = {2022}, booktitle = {Proceedings of LREC} } ``` ## Social Impact We train and release masked language models for mental health to facilitate the automatic detection of mental disorders in online social content for non-clinical use. The models may help social workers find potential individuals in need of early prevention. However, the model predictions are not psychiatric diagnoses. We recommend anyone who suffers from mental health issues to call the local mental health helpline and seek professional help if possible. Data privacy is an important issue, and we try to minimize the privacy impact when using social posts for model training. During the data collection process, we only use anonymous posts that are manifestly available to the public. We do not collect user profiles even though they are also manifestly public online. We have not attempted to identify the anonymous users or interact with any anonymous users. The collected data are stored securely with password protection even though they are collected from the open web. There might also be some bias, fairness, uncertainty, and interpretability issues during the data collection and model training. Evaluation of those issues is essential in future research.
[ -0.08884184062480927, -0.05216280370950699, -0.010745597071945667, 0.0486561581492424, -0.04808295890688896, 0.008079677820205688, -0.05764789134263992, 0.040640704333782196, -0.04294143244624138, -0.10342282801866531, -0.02293010987341404, -0.013511424884200096, 0.013692670501768589, 0.044357575476169586, 0.012425821274518967, 0.03083687089383602, 0.054750919342041016, -0.02985357865691185, -0.09674159437417984, 0.0014788322150707245, 0.04404187947511673, 0.024355854839086533, 0.05949696898460388, -0.02082887291908264, 0.06173177808523178, 0.005693670362234116, -0.015564344823360443, -0.095145583152771, 0.1165836974978447, 0.04283866658806801, 0.05513779819011688, 0.015384852886199951, -0.017870906740427017, 0.07182109355926514, -0.0036364856641739607, 0.06318985670804977, -0.08948284387588501, -0.03878679499030113, -0.025741666555404663, -0.04881911724805832, 0.02651236578822136, -0.028684210032224655, -0.0286105927079916, 0.021622752770781517, 0.08978098630905151, -0.017760176211595535, -0.010669277980923653, 0.008784652687609196, 0.014662792906165123, -0.11346504092216492, -0.0632178783416748, -0.007191051263362169, 0.04369450733065605, 0.029125962406396866, -0.06753545254468918, 0.043520618230104446, 0.07059496641159058, -0.06513781100511551, -0.01357278972864151, -0.017900723963975906, -0.054239027202129364, -0.07755118608474731, -0.032321829348802567, -0.019454821944236755, -0.037378180772066116, 0.008104611188173294, 0.026768825948238373, -0.02263585850596428, 0.039684392511844635, 0.06814055144786835, 0.011336863040924072, 0.06033650040626526, -0.011651373468339443, 0.014967289753258228, 0.0340108796954155, -0.02494385652244091, 0.04066628962755203, -0.04854089021682739, 0.045771386474370956, -0.07912678271532059, 0.021310240030288696, -0.02807827666401863, 0.08862343430519104, 0.03111618384718895, 0.09114845842123032, -0.020489711314439774, 0.06712798774242401, 0.020472727715969086, -0.019968222826719284, -0.0058756619691848755, -0.012270099483430386, -0.07136104255914688, 0.0645885020494461, -0.00003573138019419275, -0.006971862632781267, 0.033323273062705994, 0.010216125287115574, -0.04827694967389107, -0.07349128276109695, 0.055585429072380066, 0.0016178454970940948, 0.01086137630045414, 0.053936317563056946, 0.06918434798717499, -0.01861616224050522, 0.031595926731824875, 0.047105856239795685, 0.053062353283166885, -0.052737604826688766, -0.03739321604371071, 0.026595082134008408, 0.007643839810043573, -0.005271573550999165, 0.020062066614627838, -0.016534313559532166, 0.07557258754968643, -0.02663511037826538, -0.010679858736693859, -0.006528133992105722, 0.13210341334342957, -0.0046691023744642735, -0.0395173616707325, 0.026944970712065697, 0.025748098269104958, -0.0029667012859135866, -0.0024351770989596844, -0.054868824779987335, 3.8580944169376454e-33, -0.011203489266335964, 0.0263090617954731, -0.00992679875344038, -0.02629866451025009, 0.005881232209503651, 0.044542569667100906, 0.030266735702753067, 0.0349326953291893, 0.06813899427652359, -0.024273168295621872, -0.08021807670593262, 0.09749295562505722, -0.05170420557260513, 0.11373113095760345, -0.0726696103811264, -0.05438665300607681, -0.03681948781013489, 0.08354178071022034, 0.012182901613414288, 0.04312938451766968, 0.1368822157382965, 0.0598461739718914, 0.003234762931242585, -0.05257394164800644, -0.09636241942644119, 0.06379378587007523, 0.02661995403468609, -0.020130429416894913, -0.01966465264558792, 0.038828689604997635, -0.07027611881494522, 0.0318111777305603, -0.08962642401456833, 0.012867685407400131, 0.03521471470594406, -0.02151363529264927, 0.07305196672677994, -0.04784088954329491, 0.0388251356780529, -0.04550265148282051, -0.009176976978778839, 0.08283940702676773, 0.008435343392193317, -0.14630275964736938, -0.05069856718182564, 0.019375940784811974, 0.03150772675871849, -0.03227424621582031, -0.030623633414506912, 0.0021292720921337605, 0.025390366092324257, 0.0480414517223835, -0.10467227548360825, -0.035038191825151443, -0.009211455471813679, -0.04531153663992882, 0.0704847127199173, 0.05546695366501808, 0.11488829553127289, 0.004698935896158218, 0.015834150835871696, 0.0007409556419588625, -0.006194386165589094, 0.06021547690033913, 0.016316315159201622, -0.01868888922035694, -0.029439378529787064, 0.03125939145684242, -0.0195323396474123, 0.03906052187085152, -0.06815379112958908, 0.026008952409029007, -0.017260825261473656, -0.05162206292152405, 0.08801094442605972, -0.0675446018576622, 0.03567015379667282, -0.03410545736551285, -0.08977590501308441, -0.038169022649526596, -0.006566551048308611, 0.08909066021442413, -0.05412554740905762, -0.04871407523751259, 0.027406498789787292, -0.04032287374138832, -0.0013546223053708673, -0.07846624404191971, -0.1064540445804596, -0.033674273639917374, -0.03189815953373909, -0.04393405094742775, 0.056099776178598404, 0.02471821941435337, -0.044608257710933685, -4.633822975512443e-33, 0.05347852036356926, 0.010734251700341702, 0.032774776220321655, 0.07545938342809677, 0.0494084507226944, -0.047563761472702026, 0.02140149287879467, 0.13522912561893463, 0.008970648050308228, -0.019439300522208214, 0.016360659152269363, -0.01911068707704544, 0.00037990938290022314, 0.009486963041126728, 0.032385364174842834, -0.031014801934361458, -0.0007283652666956186, 0.01360669918358326, -0.02857830747961998, -0.011455288156867027, -0.03263895586133003, 0.06749089807271957, -0.10714801400899887, 0.009630236774682999, -0.0494101457297802, 0.05435559153556824, -0.026136407628655434, 0.005325021222233772, 0.07171767950057983, -0.0043815504759550095, -0.045511193573474884, 0.029591331258416176, -0.0794842392206192, 0.04796605929732323, -0.018493935465812683, 0.06576115638017654, 0.03831826150417328, 0.04773774370551109, -0.04951145127415657, 0.04644499719142914, 0.14735840260982513, -0.012918675318360329, -0.049742843955755234, 0.0465027391910553, 0.024454066529870033, 0.01768597960472107, -0.10169656574726105, -0.08884061872959137, -0.029123617336153984, -0.017808876931667328, 0.0398050919175148, -0.01827455312013626, -0.08405490219593048, 0.005810616537928581, -0.0373847596347332, -0.11327491700649261, 0.040933094918727875, -0.0655151903629303, -0.02765611931681633, -0.02791532129049301, -0.03773561120033264, -0.009990901686251163, -0.02214125543832779, -0.06765671819448471, -0.041303135454654694, -0.058709245175123215, -0.06952783465385437, 0.06483273953199387, 0.018434060737490654, 0.06197071447968483, -0.019651923328638077, 0.04173218831419945, 0.01822364702820778, -0.014373408630490303, -0.0775325745344162, 0.06238497421145439, -0.009174885228276253, -0.1531537026166916, 0.03283804655075073, -0.08472379297018051, -0.10816089063882828, -0.056184183806180954, 0.06031263619661331, 0.03537975996732712, -0.015705598518252373, 0.07337522506713867, 0.06087057664990425, 0.06263018399477005, 0.09397172182798386, 0.008174948394298553, -0.02820882573723793, 0.05412726476788521, 0.04828374832868576, 0.05567377433180809, -0.01834961771965027, -5.0133859730294716e-8, 0.006746124010533094, 0.017840402200818062, 0.009462788701057434, 0.0795821100473404, -0.008578624576330185, -0.020440872758626938, -0.08192173391580582, 0.03040079027414322, -0.03511272370815277, -0.006082725711166859, 0.07835550606250763, 0.003852010704576969, -0.04032984375953674, -0.01351314876228571, -0.03821416199207306, 0.05135587602853775, -0.009834213182330132, 0.04679013043642044, -0.0171368345618248, -0.006700511090457439, -0.04961610957980156, 0.024161871522665024, 0.02764950506389141, -0.04512340947985649, -0.0390937402844429, -0.09417720884084702, 0.021647989749908447, 0.030371489003300667, 0.0020372578874230385, -0.0452473983168602, -0.019221223890781403, 0.023693107068538666, -0.04637681320309639, 0.017491456121206284, -0.03196467459201813, -0.0011423529358580709, 0.02991923689842224, -0.03233134746551514, 0.04557706043124199, 0.01743233948945999, 0.05453425645828247, 0.048503577709198, -0.0725957527756691, -0.029688628390431404, 0.04155915975570679, -0.005571749992668629, -0.06498374789953232, -0.14033424854278564, 0.018879711627960205, 0.06281609833240509, 0.0002102852304233238, 0.03548736497759819, -0.10828068852424622, 0.07430722564458847, 0.018323585391044617, 0.005112530663609505, -0.0835576057434082, -0.05563759803771973, 0.012447521090507507, 0.010624796152114868, -0.052003130316734314, -0.015838637948036194, -0.0021208280231803656, 0.02709163911640644 ]
ixa-ehu/berteus-base-cased
be4efdc31716b33b989efa20ec1e93f404a03fff
2021-05-19T20:33:41.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "eu", "arxiv:2004.00033", "transformers" ]
feature-extraction
false
ixa-ehu
null
ixa-ehu/berteus-base-cased
2,589
1
transformers
--- language: eu --- # BERTeus base cased This is the Basque language pretrained model presented in [Give your Text Representation Models some Love: the Case for Basque](https://arxiv.org/pdf/2004.00033.pdf). This model has been trained on a Basque corpus comprising Basque crawled news articles from online newspapers and the Basque Wikipedia. The training corpus contains 224.6 million tokens, of which 35 million come from the Wikipedia. BERTeus has been tested on four different downstream tasks for Basque: part-of-speech (POS) tagging, named entity recognition (NER), sentiment analysis and topic classification; improving the state of the art for all tasks. See summary of results below: | Downstream task | BERTeus | mBERT | Previous SOTA | | --------------- | ------- | ------| ------------- | | Topic Classification | **76.77** | 68.42 | 63.00 | | Sentiment | **78.10** | 71.02 | 74.02 | | POS | **97.76** | 96.37 | 96.10 | | NER | **87.06** | 81.52 | 76.72 | If using this model, please cite the following paper: ``` @inproceedings{agerri2020give, title={Give your Text Representation Models some Love: the Case for Basque}, author={Rodrigo Agerri and I{\~n}aki San Vicente and Jon Ander Campos and Ander Barrena and Xabier Saralegi and Aitor Soroa and Eneko Agirre}, booktitle={Proceedings of the 12th International Conference on Language Resources and Evaluation}, year={2020} } ```
[ -0.0764126405119896, -0.03101978451013565, 0.020400263369083405, 0.011478693224489689, 0.016003338620066643, 0.025687681511044502, 0.005272213835269213, -0.004965291358530521, 0.06190603971481323, -0.04536929726600647, -0.012527958489954472, -0.021345192566514015, 0.06336509436368942, 0.07629700750112534, 0.02878027968108654, 0.023299941793084145, 0.03513645380735397, 0.01051193755120039, -0.04805374890565872, -0.06995329260826111, 0.03589693829417229, 0.06781111657619476, 0.0348895899951458, -0.009352035820484161, -0.006652926094830036, -0.04158662632107735, 0.0010443817591294646, -0.10326366871595383, 0.020867399871349335, -0.019400957971811295, -0.04564560577273369, 0.04031791538000107, 0.008747988380491734, 0.03151306137442589, -0.03772639483213425, 0.059181563556194305, -0.04227356240153313, 0.0009610599372535944, -0.011561439372599125, 0.046335820108652115, -0.04460630193352699, -0.05260077118873596, -0.06702470034360886, 0.012851033359766006, 0.10602099448442459, 0.01196153461933136, -0.025727014988660812, 0.022759264335036278, -0.015996236354112625, 0.03563547506928444, -0.11771447211503983, -0.03525892645120621, 0.073118656873703, 0.03604699298739433, -0.051401108503341675, -0.02626427635550499, -0.01788596622645855, 0.03498666733503342, 0.016730017960071564, -0.07022882252931595, -0.012823425233364105, -0.0571092925965786, -0.019736258313059807, -0.045103903859853745, -0.027310235425829887, -0.026134204119443893, -0.0339910127222538, 0.033130943775177, -0.05315271019935608, -0.0057069347240030766, 0.03580795228481293, 0.054209087044000626, -0.007335430942475796, 0.058916863054037094, 0.00944814458489418, -0.022567642852663994, -0.006054024677723646, -0.016739051789045334, 0.03584125638008118, -0.05895668640732765, 0.03574518486857414, 0.0247808825224638, 0.038970671594142914, -0.04748640954494476, 0.08906865864992142, -0.028984401375055313, 0.055390652269124985, 0.007620449177920818, -0.0309920497238636, 0.025927066802978516, -0.03203528746962547, -0.11162815988063812, 0.11992960423231125, -0.06349790841341019, 0.013124861754477024, 0.03302983567118645, 0.0010182138066738844, 0.022927571088075638, 0.010544261895120144, 0.08870537579059601, 0.051162708550691605, 0.06079699844121933, 0.0010621558176353574, -0.0652678981423378, -0.04170404374599457, 0.014167818240821362, -0.03716925159096718, 0.00674132164567709, 0.04240971431136131, -0.04648422822356224, -0.039228785783052444, 0.039000485092401505, -0.005024564452469349, -0.0874832421541214, 0.011225048452615738, -0.02155771479010582, 0.07567377388477325, -0.009188232943415642, 0.06338118761777878, 0.10298481583595276, -0.024061765521764755, 0.04440437629818916, 0.011198184452950954, 0.06546305865049362, 0.011243931949138641, 0.05021478235721588, -0.02177102118730545, 1.9888572793936223e-33, 0.0006277748616412282, 0.014721361920237541, -0.0030732066370546818, 0.01298467442393303, -0.09832264482975006, -0.04408399388194084, -0.01167664211243391, -0.06795158237218857, -0.10281910747289658, -0.09759918600320816, -0.056911155581474304, 0.055499330163002014, -0.033792268484830856, 0.08787698298692703, -0.006213288754224777, -0.052700918167829514, 0.00933387316763401, -0.009989089332520962, 0.013583255000412464, -0.0324409157037735, 0.07229432463645935, 0.02400985360145569, 0.03353593125939369, -0.025702940300107002, 0.029039515182375908, 0.00871277041733265, 0.0317176878452301, -0.1132422536611557, -0.031248807907104492, 0.03667691349983215, -0.08515840023756027, -0.031968969851732254, 0.004714415408670902, 0.014820088632404804, 0.001821409328840673, 0.020558135583996773, -0.03801794722676277, -0.012984721921384335, -0.02178705856204033, -0.08706034719944, -0.04052044078707695, 0.00955719780176878, 0.012736747041344643, -0.01891092211008072, -0.06761809438467026, -0.032028455287218094, -0.027232401072978973, -0.06918145716190338, 0.03468484804034233, -0.03809373825788498, 0.038681577891111374, -0.03405902534723282, -0.022570669651031494, 0.05088435858488083, 0.05545409768819809, 0.05122603848576546, 0.011133170686662197, 0.013595310971140862, 0.02802860736846924, -0.04859770089387894, 0.06540429592132568, -0.012706203386187553, 0.029504617676138878, 0.028093816712498665, 0.04850860685110092, 0.03075599856674671, -0.020351143553853035, 0.1129884347319603, 0.02140628546476364, -0.03025200590491295, 0.01775760017335415, 0.024230193346738815, 0.03387824073433876, -0.028809748589992523, -0.02947901003062725, 0.07258317619562149, -0.008160650730133057, -0.09725376963615417, -0.03978665918111801, 0.045014940202236176, 0.004701386671513319, -0.11543288826942444, 0.04179113358259201, -0.058905910700559616, -0.015051125548779964, 0.02861005999147892, 0.054941363632678986, -0.08209863305091858, 0.0032577503006905317, 0.04822198674082756, 0.007154087536036968, 0.05586346611380577, -0.02651282586157322, 0.046421438455581665, -0.021033581346273422, -3.4680014738294845e-33, -0.049671877175569534, 0.011862813495099545, -0.046227797865867615, 0.0007067342521622777, -0.0796697735786438, -0.022244460880756378, -0.01418521162122488, 0.10141445696353912, -0.0441809818148613, 0.01618259586393833, -0.03534161299467087, -0.12284085154533386, -0.015468208119273186, -0.0018484077882021666, -0.0028923882637172937, 0.08524999022483826, 0.02928745374083519, 0.03981159254908562, 0.03576938435435295, 0.13753874599933624, -0.08138155192136765, 0.05529491603374481, -0.13273897767066956, 0.0921437218785286, -0.006154912058264017, 0.02776065655052662, 0.0202780868858099, 0.0198994018137455, -0.04883870854973793, -0.04660334438085556, -0.098983034491539, -0.03824203088879585, -0.031947165727615356, 0.019144363701343536, -0.08728310465812683, -0.017245149239897728, -0.012229268439114094, -0.04801633581519127, 0.04807377979159355, 0.06783483177423477, 0.05235736072063446, 0.07038240879774094, -0.061686933040618896, -0.009414545260369778, -0.07511342316865921, -0.00043807848123833537, -0.0698842778801918, 0.008523223921656609, -0.032384637743234634, -0.08396042138338089, 0.03266071528196335, 0.010717560537159443, -0.07594785839319229, 0.04065490514039993, 0.014667876996099949, -0.0846049040555954, 0.03636297956109047, -0.045804329216480255, -0.07365266233682632, -0.010852592997252941, -0.06527780741453171, 0.06088593602180481, 0.024624964222311974, -0.015179276466369629, 0.06133455038070679, -0.07068531215190887, -0.08764278888702393, 0.10138072818517685, -0.07980465888977051, -0.03826580569148064, 0.06415743380784988, 0.028625840321183205, -0.006833009421825409, -0.0058530764654278755, 0.004152711946517229, -0.007221528794616461, -0.005644954741001129, -0.00792963057756424, -0.005925564561039209, -0.056813132017850876, -0.01569974794983864, -0.06403058767318726, 0.003106953576207161, -0.011360246688127518, 0.07321694493293762, 0.04048799350857735, 0.028861815109848976, 0.025977957993745804, 0.023819636553525925, 0.01427337247878313, 0.01644245535135269, -0.011778109706938267, 0.02020549215376377, 0.08470331877470016, 0.07101278007030487, -5.037278683062141e-8, -0.09705747663974762, -0.042377907782793045, -0.08299306780099869, 0.028425011783838272, -0.03615826368331909, -0.06939534842967987, 0.00579498428851366, 0.05019194260239601, -0.0780184268951416, -0.01942756585776806, -0.008715879172086716, 0.04249976947903633, -0.1169612854719162, -0.020007222890853882, 0.0017123790457844734, 0.06992842257022858, 0.033853136003017426, 0.08304215967655182, 0.062481749802827835, -0.036575838923454285, 0.08009768277406693, 0.0444486066699028, 0.013023244217038155, -0.026474379003047943, 0.02907843142747879, -0.04005784913897514, -0.0023768760729581118, 0.02749837562441826, 0.038288820534944534, -0.11874393373727798, -0.07957229018211365, 0.03976578265428543, -0.18443290889263153, -0.008311926387250423, 0.063319131731987, 0.09989891201257706, 0.008168214000761509, -0.038740649819374084, -0.06331970542669296, 0.07768901437520981, 0.07914109528064728, 0.03470364958047867, -0.09369441121816635, -0.03497716039419174, 0.09150328487157822, 0.02046826295554638, -0.04993108659982681, -0.11669108271598816, 0.06817397475242615, -0.033015161752700806, 0.029306894168257713, -0.012081698514521122, 0.05708641931414604, 0.06861753016710281, 0.0602777898311615, 0.025307971984148026, -0.01361518632620573, 0.0173379797488451, 0.015674250200390816, 0.060865625739097595, 0.03550788015127182, 0.060034289956092834, 0.05806684121489525, 0.01769999787211418 ]
facebook/data2vec-audio-base-960h
32331f3123e703528918aa688a9a38232d58c872
2022-05-24T10:41:22.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
facebook
null
facebook/data2vec-audio-base-960h
2,585
4
transformers
--- language: en datasets: - librispeech_asr tags: - speech - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: data2vec-audio-base-960h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 2.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 7.08 --- # Data2Vec-Audio-Base-960h [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-960h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/data2vec-audio-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch from jiwer import wer # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h").to("cuda") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-960h") librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 2.77 | 7.08 |
[ -0.10373582690954208, -0.16067510843276978, -0.02905401401221752, -0.028970962390303612, 0.04285217821598053, 0.003429416799917817, 0.01652468554675579, -0.04338693246245384, -0.05188877508044243, -0.09332482516765594, 0.03871799632906914, -0.11418624967336655, -0.06788241118192673, -0.014504456892609596, 0.013844098895788193, -0.06041858345270157, -0.015331893227994442, -0.04861815646290779, -0.050742316991090775, -0.044967714697122574, 0.06614916771650314, 0.07899648696184158, 0.06695770472288132, -0.00005955491724307649, -0.013112093321979046, -0.015582217834889889, -0.04127965122461319, 0.004299168474972248, 0.03583759069442749, -0.047070879489183426, 0.1515388786792755, 0.04975712299346924, 0.10311175882816315, 0.01702984794974327, 0.003157525323331356, -0.017079375684261322, 0.014242050237953663, -0.08064519613981247, -0.04699668288230896, -0.0002590919320937246, -0.028767874464392662, -0.004289119970053434, 0.036563441157341, -0.05654989555478096, -0.008598977699875832, -0.07347913086414337, -0.07240408658981323, -0.035838790237903595, 0.003445590613409877, 0.09642305225133896, -0.07713033258914948, 0.019027898088097572, -0.03125080093741417, 0.04915228858590126, -0.08260194212198257, 0.040346596390008926, -0.028150124475359917, 0.020957177504897118, 0.0608842670917511, 0.03343609347939491, -0.02357078529894352, 0.015193729661405087, -0.006082489155232906, 0.03155524656176567, -0.0795401930809021, -0.019096538424491882, -0.002614184282720089, -0.02014707773923874, 0.041907988488674164, -0.0027741703670471907, -0.10783779621124268, 0.05151833966374397, 0.03843272849917412, 0.08994872123003006, 0.038786258548498154, -0.030775420367717743, 0.022679969668388367, 0.019358495250344276, 0.0673070028424263, -0.09295563399791718, -0.005211822688579559, -0.06311774253845215, -0.027878446504473686, 0.042671818286180496, 0.06621046364307404, -0.0317041277885437, -0.03199901804327965, -0.02278580144047737, -0.01000041514635086, 0.026757067069411278, -0.03205770254135132, -0.020997101441025734, -0.0292686577886343, 0.07274188101291656, 0.016005517914891243, 0.09615376591682434, 0.03365085646510124, 0.08898383378982544, -0.051121313124895096, 0.1024971455335617, -0.05184974521398544, -0.04372302442789078, 0.039310604333877563, -0.001002417178824544, -0.07449257373809814, -0.09550853073596954, -0.025651710107922554, 0.03307504579424858, 0.014096589758992195, -0.05926200747489929, 0.006767830811440945, -0.015303226187825203, 0.018672829493880272, -0.12079022824764252, 0.023471765220165253, 0.020666079595685005, -0.07044554501771927, -0.04897521063685417, 0.02118830382823944, 0.04823832958936691, -0.006839053239673376, 0.009402947500348091, 0.02954123727977276, 0.00401564734056592, 0.05604616180062294, 0.00008661355241201818, -0.03310360759496689, 8.039551166739178e-33, 0.06809747964143753, -0.012548328377306461, -0.005266414023935795, 0.041884325444698334, 0.03633849322795868, -0.08885508030653, -0.014531907625496387, 0.022255724295973778, -0.08431942015886307, -0.005109163001179695, 0.042725179344415665, -0.03405372425913811, -0.09104053676128387, -0.013397054746747017, 0.020911768078804016, 0.005533603485673666, -0.009585542604327202, 0.011376176960766315, -0.013224618509411812, -0.03698493167757988, 0.13939714431762695, 0.05826951935887337, 0.06205422431230545, -0.008370705880224705, 0.08245864510536194, 0.061766915023326874, 0.02401050366461277, -0.04479076340794563, -0.011210964061319828, 0.0636134073138237, -0.023787453770637512, -0.06700760126113892, 0.004478926304727793, 0.006119620054960251, 0.04925716668367386, 0.0000746766381780617, -0.028475891798734665, -0.02137031964957714, -0.07336533814668655, -0.08198550343513489, 0.007445756811648607, 0.009404878132045269, -0.031574174761772156, -0.03286297246813774, -0.01631455309689045, -0.10294771194458008, -0.02131836488842964, 0.07041112333536148, 0.07621082663536072, 0.02928965352475643, -0.03235716000199318, 0.01567133329808712, -0.007919006049633026, 0.06148912012577057, -0.0007776113343425095, 0.03697199001908302, 0.01494512613862753, 0.07957722246646881, 0.033126652240753174, -0.021039418876171112, 0.017093554139137268, 0.05420787259936333, 0.005179280880838633, -0.016374941915273666, 0.061534203588962555, -0.005942728370428085, -0.03612712025642395, -0.01994253881275654, 0.1256732940673828, -0.0023607106413692236, 0.009249087423086166, -0.07461702078580856, 0.036932725459337234, 0.08389164507389069, 0.03571830689907074, -0.01657608523964882, 0.007443028502166271, -0.05566457659006119, -0.06177651882171631, 0.025885969400405884, -0.05283169075846672, 0.009459744207561016, 0.027240345254540443, 0.001013761037029326, -0.03333492577075958, -0.017227355390787125, 0.0645451694726944, -0.04396650940179825, -0.0164237879216671, -0.04919697344303131, 0.001491468632593751, 0.029473789036273956, -0.02968692034482956, -0.08575362712144852, -0.0440404936671257, -9.085577304445868e-33, -0.04953830689191818, 0.06968852132558823, -0.05609966814517975, 0.07683365046977997, 0.012228678911924362, -0.03786493092775345, 0.13374395668506622, 0.048632826656103134, 0.026965366676449776, -0.02442096173763275, 0.04013415798544884, -0.06021969020366669, 0.03229549154639244, -0.0946749672293663, 0.07472556829452515, 0.06515976041555405, -0.00805190671235323, -0.05308806896209717, 0.04425961524248123, 0.08518014848232269, -0.027802493423223495, 0.09318733215332031, 0.04569936916232109, 0.06844507902860641, -0.07988667488098145, -0.05599270015954971, -0.028331156820058823, 0.038385938853025436, 0.03578267991542816, -0.020150208845734596, 0.015834985300898552, 0.07093654572963715, -0.14916923642158508, -0.000871916941832751, -0.0586906261742115, -0.06690796464681625, 0.007530826143920422, -0.006079813465476036, -0.054549552500247955, 0.0358763225376606, 0.12084679305553436, 0.044332996010780334, -0.0937323272228241, -0.0918113961815834, 0.03880432993173599, -0.03492332249879837, -0.044813863933086395, -0.008934344165027142, -0.009659020230174065, -0.056766755878925323, 0.02765795588493347, -0.009346110746264458, -0.0027942475862801075, 0.011100050993263721, -0.013324111700057983, -0.023406527936458588, 0.033382315188646317, -0.008621147833764553, -0.07886852324008942, 0.02701684832572937, 0.03930545970797539, -0.0489349290728569, -0.05927259474992752, -0.0346793495118618, 0.10455328971147537, -0.0030063772574067116, -0.05523333325982094, 0.04403415694832802, -0.0013598246732726693, -0.04591630399227142, -0.061494119465351105, -0.034340355545282364, 0.041374459862709045, 0.013741554692387581, 0.02677985653281212, -0.01147126592695713, -0.11122466623783112, -0.02411964349448681, -0.002277066232636571, -0.008968761190772057, -0.044507697224617004, 0.018098851665854454, 0.06686215847730637, 0.005381621886044741, 0.002218382665887475, 0.03586173430085182, -0.02006002515554428, 0.06651579588651657, 0.02183333970606327, 0.012147415429353714, -0.034442704170942307, 0.008943495340645313, 0.02101057767868042, 0.05927649140357971, -0.020973650738596916, -5.4741498445309844e-8, -0.09855201840400696, 0.018574994057416916, -0.00655707623809576, -0.011762568727135658, -0.011992629617452621, -0.0491800382733345, -0.0050501092337071896, -0.005469915922731161, 0.000620358856394887, -0.05300058424472809, 0.05039374157786369, -0.007664505857974291, -0.03157466650009155, 0.055145855993032455, 0.019867487251758575, -0.028262069448828697, -0.05174047872424126, 0.17199717462062836, -0.0492195188999176, -0.15964137017726898, 0.04979716241359711, 0.044717561453580856, -0.009118231013417244, 0.01280591357499361, 0.022370140999555588, 0.023319212719798088, -0.038002774119377136, 0.05915317311882973, -0.009844490326941013, -0.007488433737307787, -0.04682521894574165, 0.015318188816308975, 0.00011912500485777855, -0.05096251145005226, 0.039966411888599396, 0.03861364722251892, -0.0710451528429985, -0.029266182333230972, -0.024320725351572037, 0.07279229909181595, 0.01541841309517622, 0.09508778154850006, -0.08423087000846863, 0.011112588457763195, 0.07661056518554688, 0.021004432812333107, -0.016384737566113472, -0.02311626635491848, 0.05756459757685661, 0.008770334534347057, 0.018719064071774483, 0.02470257878303528, -0.050194691866636276, -0.015890181064605713, 0.07306293398141861, 0.032821644097566605, -0.003929266706109047, 0.04075715318322182, 0.00581342214718461, -0.051156606525182724, 0.013825088739395142, -0.0021224399097263813, -0.017908861860632896, -0.004179673735052347 ]
lysandre/tiny-tapas-random-sqa
2174c2e3dd74ba8a3bdaa58a6c566a7898e36cec
2020-12-14T23:23:58.000Z
[ "pytorch", "tapas", "table-question-answering", "transformers" ]
table-question-answering
false
lysandre
null
lysandre/tiny-tapas-random-sqa
2,580
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
google/vit-base-patch16-384
be89a4abf1f427fe502d37f261b8b6d6da7894bc
2022-01-12T08:05:44.000Z
[ "pytorch", "tf", "jax", "vit", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2010.11929", "arxiv:2006.03677", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
google
null
google/vit-base-patch16-384
2,578
2
transformers
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet - imagenet-21k --- # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 384x384. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. Disclaimer: The team releasing ViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-384') model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-384') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. Tensorflow and JAX/FLAX are coming soon, and the API of ViTFeatureExtractor might change. ## Training data The ViT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/google-research/vision_transformer/blob/master/vit_jax/input_pipeline.py). Images are resized/rescaled to the same resolution (224x224 during pre-training, 384x384 during fine-tuning) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining The model was trained on TPUv3 hardware (8 cores). All model variants are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet, the authors found it beneficial to additionally apply gradient clipping at global norm 1. Pre-training resolution is 224. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 2 and 5 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
[ -0.09721251577138901, -0.029362304136157036, -0.022420303896069527, -0.03852984309196472, 0.041249584406614304, -0.045458488166332245, -0.016961142420768738, 0.06472743302583694, -0.03152628615498543, -0.04276318848133087, 0.02611558511853218, 0.0012826889287680387, 0.07469795644283295, 0.04358575865626335, -0.05123632401227951, 0.040719132870435715, 0.04134805127978325, 0.10965802520513535, -0.09626258164644241, -0.019305527210235596, 0.02036515437066555, -0.01293032057583332, 0.04005448892712593, -0.05993042141199112, 0.036723457276821136, 0.003800989594310522, -0.016427941620349884, -0.08491842448711395, 0.0036820124369114637, -0.048183031380176544, -0.052741944789886475, 0.039843685925006866, 0.0020502437837421894, 0.024215880781412125, -0.04277776926755905, 0.06777909398078918, -0.003852756228297949, -0.01686861366033554, -0.035374414175748825, -0.02404116839170456, 0.0008219882729463279, 0.0031954895239323378, 0.0023707200307399035, -0.02044137567281723, 0.046751223504543304, 0.050445567816495895, 0.08286403119564056, -0.049828074872493744, -0.007132955361157656, -0.05940907076001167, -0.029311565682291985, -0.02978779375553131, -0.030683666467666626, 0.09727001190185547, -0.054024238139390945, 0.004369498696178198, -0.013277663849294186, -0.04604555293917656, -0.04686199873685837, 0.03396892920136452, -0.027303045615553856, 0.036115873605012894, -0.06746332347393036, 0.025335658341646194, -0.07437098771333694, 0.003984496463090181, 0.04884504899382591, -0.09784328937530518, 0.0549631342291832, -0.13957656919956207, -0.02644573152065277, 0.03176628053188324, -0.000075157469836995, 0.042815692722797394, 0.027931267395615578, 0.019080914556980133, 0.14920857548713684, -0.0010067519033327699, 0.07629840821027756, -0.07269657403230667, 0.045528754591941833, -0.0008730224799364805, 0.07104302197694778, -0.030555086210370064, 0.09640929847955704, 0.030890924856066704, -0.03733179718255997, 0.1077093631029129, 0.014045663177967072, 0.020814070478081703, -0.03196476027369499, -0.07801061123609543, -0.039483603090047836, 0.002958639059215784, 0.0119027029722929, -0.013427428901195526, -0.03141854703426361, -0.06357072293758392, -0.04259078949689865, 0.07795456796884537, 0.023812495172023773, -0.05293237417936325, 0.08168568462133408, -0.01974540390074253, 0.04017200320959091, 0.032202303409576416, 0.02561485581099987, 0.11172933131456375, 0.058616749942302704, -0.04204445704817772, 0.04875900596380234, -0.028275221586227417, -0.04631400480866432, -0.08298730105161667, 0.060968562960624695, 0.030213337391614914, -0.030743783339858055, 0.033357229083776474, 0.016666898503899574, 0.03418578580021858, -0.02785365842282772, -0.01567932404577732, -0.028819113969802856, -0.05122583732008934, 0.031037598848342896, 0.04951246455311775, -0.1338418424129486, 3.6387023553520815e-33, -0.02540782280266285, 0.07896443456411362, 0.0622824989259243, -0.003753121243789792, 0.059890713542699814, -0.04512181878089905, 0.061871517449617386, -0.005501054227352142, -0.04037472605705261, -0.0625242292881012, -0.03264417499303818, -0.004150900989770889, -0.013090139254927635, 0.11198554933071136, 0.010229462757706642, -0.10536973178386688, -0.021497555077075958, 0.025705894455313683, 0.05089562386274338, 0.03601858764886856, 0.038857053965330124, 0.012080933898687363, 0.02616191655397415, 0.005458333995193243, -0.09282196313142776, -0.00796216819435358, 0.004197950474917889, -0.019716953858733177, 0.010058032348752022, 0.010339994914829731, -0.06863585114479065, 0.02437029965221882, 0.04765937477350235, 0.005712899379432201, -0.003170786891132593, -0.05557434633374214, -0.04137406125664711, -0.06882771849632263, 0.01410431507974863, -0.09378986060619354, -0.0011130146449431777, 0.09089026600122452, 0.01892833784222603, -0.04486428573727608, -0.009069247171282768, -0.004823802039027214, -0.009073354303836823, 0.07305417209863663, 0.002377510303631425, -0.015704195946455002, 0.047423359006643295, 0.016676390543580055, -0.081780344247818, -0.023478815332055092, 0.0043658604845404625, 0.03552500531077385, 0.07329350709915161, 0.04013707488775253, 0.03793994337320328, 0.02392464131116867, 0.03545403108000755, 0.028357647359371185, -0.00230911816470325, 0.06732572615146637, 0.029776014387607574, -0.043484579771757126, -0.005055889952927828, -0.024421749636530876, -0.13266324996948242, 0.04995064064860344, -0.016001038253307343, 0.03691614791750908, -0.00016374517872463912, -0.05962631478905678, 0.10911168903112411, -0.024001654237508774, 0.05709889531135559, -0.0530078150331974, -0.03545766696333885, 0.09682273119688034, -0.08405414968729019, 0.054698195308446884, 0.050292208790779114, -0.08260419219732285, -0.04576919227838516, 0.05509615316987038, 0.04666604846715927, -0.056623078882694244, 0.05582372844219208, 0.0008060396648943424, 0.09474416077136993, 0.04127988964319229, -0.03183324262499809, -0.025023693218827248, -0.05087300390005112, -2.0318755971879178e-33, -0.026079608127474785, 0.08543131500482559, -0.08155260980129242, 0.06798134744167328, -0.0021802999544888735, -0.05132248252630234, 0.02707374095916748, 0.10638570785522461, -0.020284408703446388, -0.07513672858476639, 0.0748729258775711, 0.006023853085935116, -0.06454847007989883, -0.043065134435892105, 0.036152955144643784, -0.0727868527173996, 0.029524806886911392, -0.061170607805252075, 0.0041474709287285805, 0.010935910977423191, 0.05815634876489639, 0.11572792381048203, -0.06663496047258377, 0.03876509144902229, -0.0913926362991333, -0.0013469012919813395, -0.02963384985923767, 0.047625381499528885, 0.0026919108349829912, -0.003469314891844988, -0.014707047492265701, -0.09111056476831436, -0.0017105435254052281, 0.012724601663649082, -0.04333001747727394, 0.013750369660556316, 0.050066471099853516, -0.01275321189314127, -0.021601242944598198, 0.0840955525636673, 0.04379677027463913, -0.030845923349261284, -0.017985928803682327, 0.03366069495677948, -0.09201351553201675, -0.06353212147951126, -0.020524658262729645, -0.05438210442662239, 0.04309413209557533, 0.01358349621295929, -0.008353346958756447, 0.016320044174790382, -0.08549833297729492, 0.039306316524744034, -0.029872752726078033, -0.0466863177716732, -0.006256651598960161, 0.04026195779442787, 0.06471368670463562, -0.0027750839944928885, -0.051563017070293427, -0.04565409943461418, -0.07512158155441284, 0.006874930113554001, -0.026527659967541695, 0.04826544225215912, -0.08008318394422531, 0.02751925401389599, -0.04997913911938667, 0.10777834802865982, 0.006714385002851486, -0.011732341721653938, 0.047744810581207275, 0.021742992103099823, -0.021787459030747414, -0.07304833829402924, 0.04015490785241127, 0.056097570806741714, 0.016076216474175453, -0.06293294578790665, -0.014362323097884655, -0.028817549347877502, 0.017591018229722977, 0.08170535415410995, 0.08140294998884201, 0.07260674238204956, 0.062331024557352066, -0.03442860767245293, 0.024544712156057358, 0.022701038047671318, -0.012619417160749435, 0.005986046511679888, 0.03222344443202019, 0.02995951659977436, 0.03750507906079292, -5.3931142218743844e-8, -0.07123597711324692, 0.08682450652122498, -0.06897705793380737, -0.058750081807374954, 0.00741612259298563, -0.0493321567773819, 0.03115866333246231, 0.12470954656600952, -0.018113622441887856, 0.07457074522972107, 0.04780422896146774, 0.010761368088424206, -0.033928435295820236, 0.010239098221063614, 0.009800500236451626, 0.054702356457710266, 0.004004229325801134, 0.041933074593544006, -0.0029561729170382023, -0.048250678926706314, -0.04722857102751732, -0.005018506199121475, -0.0019478061003610492, -0.0387786440551281, 0.015175707638263702, -0.029025768861174583, -0.08658172935247421, 0.029817556962370872, -0.0008946263114921749, -0.04682840034365654, -0.05186482146382332, 0.06690903007984161, -0.032871779054403305, -0.08789490163326263, 0.11018189042806625, 0.04995102435350418, -0.08995898067951202, 0.005020748823881149, -0.051806606352329254, -0.011423622258007526, 0.019985299557447433, 0.0022365895565599203, -0.005698021501302719, 0.011156541295349598, 0.1022384837269783, 0.035370342433452606, -0.02226260118186474, -0.07607369869947433, -0.022090932354331017, 0.021711165085434914, 0.08963154256343842, 0.065971739590168, -0.013836403377354145, 0.055099207907915115, 0.03778572008013725, -0.020201610401272774, 0.035474490374326706, -0.11164023727178574, 0.023169364780187607, 0.07747125625610352, 0.024924593046307564, -0.004157981835305691, -0.01158243790268898, -0.009257031604647636 ]