modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
readme
stringlengths
0
186k
embedding
sequence
ai4bharat/IndicBARTSS
4b2669d25bc24a46ad2501c2b759451b7a4a1a26
2022-03-15T05:48:12.000Z
[ "pytorch", "mbart", "text2text-generation", "arxiv:2109.02903", "transformers", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/IndicBARTSS
2,151
2
transformers
IndicBARTSS is a multilingual, sequence-to-sequence pre-trained model focusing on Indic languages and English. It currently supports 11 Indian languages and is based on the mBART architecture. You can use IndicBARTSS model to build natural language generation applications for Indian languages by finetuning the model with supervised training data for tasks like machine translation, summarization, question generation, etc. Some salient features of the IndicBARTSS are: <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, Telugu and English. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Trained on large Indic language corpora (452 million sentences and 9 billion tokens) which also includes Indian English content. </li> <li> Unlike ai4bharat/IndicBART each language is written in its own script so you do not need to perform any script mapping to/from Devanagari. </li> </ul> You can read more about IndicBARTSS in this <a href="https://arxiv.org/abs/2109.02903">paper</a>. For detailed documentation, look here: https://github.com/AI4Bharat/indic-bart/ and https://indicnlp.ai4bharat.org/indic-bart/ # Pre-training corpus We used the <a href="https://indicnlp.ai4bharat.org/corpora/">IndicCorp</a> data spanning 12 languages with 452 million sentences (9 billion tokens). The model was trained using the text-infilling objective used in mBART. # Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBARTSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBARTSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBARTSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBARTSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]]) out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]]) model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am a boy # What if we mask? inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am happy inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मैं जानता हूँ inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मला ओळखलं पाहिजे ``` # Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to get logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore, I used the AlbertTokenizer class and not the MBartTokenizer class. # Fine-tuning on a downstream task 1. If you wish to fine-tune this model, then you can do so using the <a href="https://github.com/prajdabre/yanmtt">YANMTT</a> toolkit, following the instructions <a href="https://github.com/AI4Bharat/indic-bart ">here</a>. 2. (Untested) Alternatively, you may use the official huggingface scripts for <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/translation">translation</a> and <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization">summarization</a>. # Contributors <ul> <li> Raj Dabre </li> <li> Himani Shrotriya </li> <li> Anoop Kunchukuttan </li> <li> Ratish Puduppully </li> <li> Mitesh M. Khapra </li> <li> Pratyush Kumar </li> </ul> # Paper If you use IndicBARTSS, please cite the following paper: ``` @misc{dabre2021indicbart, title={IndicBART: A Pre-trained Model for Natural Language Generation of Indic Languages}, author={Raj Dabre and Himani Shrotriya and Anoop Kunchukuttan and Ratish Puduppully and Mitesh M. Khapra and Pratyush Kumar}, year={2021}, eprint={2109.02903}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # License The model is available under the MIT License.
[ -0.05840491130948067, -0.0971253290772438, 0.027299297973513603, -0.05429568514227867, -0.026637300848960876, 0.022271329537034035, -0.10089723765850067, 0.02821085788309574, 0.03767402097582817, -0.016876831650733948, -0.00884261354804039, -0.0740542784333229, 0.0491076223552227, -0.022409532219171524, 0.06983725726604462, 0.022273452952504158, -0.007336476817727089, 0.01934920810163021, -0.034091055393218994, -0.10390757769346237, 0.06381461024284363, 0.05524540692567825, -0.011475186794996262, -0.039712853729724884, 0.04742669686675072, 0.01618480309844017, 0.03615204244852066, -0.06677787750959396, 0.038119833916425705, -0.04161613807082176, 0.055203016847372055, 0.02832677587866783, 0.023685868829488754, 0.026905573904514313, -0.08851195126771927, -0.04248904436826706, -0.021343380212783813, 0.039033472537994385, 0.03647761419415474, -0.0315832793712616, -0.07450319826602936, -0.001927845412865281, -0.0026789195835590363, 0.015376750379800797, 0.11904140561819077, -0.04553904011845589, -0.10364268720149994, 0.029356343671679497, -0.061075691133737564, 0.018315929919481277, -0.09264234453439713, 0.03651436045765877, 0.04448145255446434, 0.007183059584349394, -0.025484884157776833, -0.16929370164871216, -0.05763368308544159, -0.006686049047857523, 0.03064591810107231, -0.0028813856188207865, -0.023068631067872047, -0.01733757182955742, -0.06273724138736725, 0.07967706024646759, 0.004368811845779419, 0.00400654599070549, 0.0530758872628212, 0.05545993894338608, 0.04102844372391701, -0.033647824078798294, -0.02706369385123253, -0.05264916270971298, 0.02394532971084118, 0.11683057993650436, -0.008369644172489643, 0.04710690677165985, 0.08476996421813965, 0.0019032839918509126, -0.024487819522619247, -0.05559663102030754, -0.009966121055185795, 0.09677054733037949, 0.13108307123184204, -0.006786115001887083, -0.0005502357380464673, -0.023469150066375732, 0.012343821115791798, 0.11795546859502792, -0.0028519246261566877, 0.0040937974117696285, 0.05756591632962227, -0.025971828028559685, 0.013599648140370846, 0.03323016315698624, 0.027105819433927536, 0.05407457798719406, -0.004635162185877562, -0.04074717313051224, -0.034228164702653885, 0.0352935791015625, 0.03997843712568283, 0.038951046764850616, -0.02148222178220749, -0.03258388862013817, -0.13646550476551056, -0.06335955858230591, 0.08262713253498077, -0.033655934035778046, 0.022833898663520813, -0.04692975431680679, 0.02776837721467018, -0.019163629040122032, -0.06765683740377426, -0.020468933507800102, 0.010237090289592743, -0.023167645558714867, -0.001581060467287898, -0.0044369082897901535, 0.07662175595760345, 0.006160714663565159, -0.12243498861789703, 0.044150788336992264, -0.006657202262431383, 0.043508131057024, -0.06499209254980087, -0.051100682467222214, -0.022372432053089142, 3.14128714535583e-33, 0.0037702969275414944, -0.01986922137439251, -0.043244462460279465, -0.02149149775505066, -0.037634894251823425, -0.07425426691770554, -0.008459752425551414, -0.01057754922658205, -0.04778014495968819, -0.05392369627952576, 0.0443744957447052, -0.008396925404667854, -0.054779037833213806, 0.041019849479198456, 0.0812125951051712, -0.02143937721848488, 0.005112580023705959, 0.0032396886963397264, 0.03343391790986061, 0.00767887756228447, 0.008504187688231468, 0.05172960087656975, 0.0934862494468689, -0.009891725145280361, 0.04721662029623985, 0.0744871124625206, 0.16247498989105225, -0.05564303696155548, -0.021024497225880623, 0.032226793467998505, -0.05106654763221741, -0.05396385118365288, -0.024326032027602196, -0.014862457290291786, -0.04505838453769684, 0.007892526686191559, -0.02734082005918026, -0.027607498690485954, -0.018200252205133438, 0.007223861292004585, -0.02650987170636654, -0.0029446862172335386, -0.04714305326342583, 0.005135309416800737, -0.013038706965744495, -0.0009172147838398814, -0.02336118184030056, 0.04857730492949486, -0.025239456444978714, 0.014362625777721405, -0.045696768909692764, 0.09383152425289154, -0.042194679379463196, 0.0057082888670265675, 0.07990395277738571, 0.08776693791151047, 0.011586503125727177, -0.008427157066762447, 0.022498849779367447, -0.01896638423204422, 0.02318466082215309, -0.022982366383075714, 0.06058218702673912, 0.001048840000294149, 0.08350639045238495, -0.00965418852865696, -0.03168507292866707, 0.026194419711828232, 0.085500568151474, -0.04953218251466751, -0.03322508558630943, -0.04639710858464241, 0.025458937510848045, 0.05399378016591072, -0.029174622148275375, 0.01442805491387844, 0.026959128677845, -0.025651033967733383, -0.005707037169486284, 0.07240753620862961, 0.012571228668093681, -0.009568244218826294, 0.016904786229133606, -0.06673324108123779, 0.05728689581155777, -0.014097359031438828, 0.0000816149331512861, 0.013981136493384838, -0.037232525646686554, -0.04955585300922394, 0.062023505568504333, -0.010807255282998085, 0.023522965610027313, 0.045905355364084244, 0.01794569380581379, -4.048115282799976e-33, -0.006533443462103605, -0.006548680830746889, -0.05981966853141785, 0.05868011713027954, -0.08326797932386398, -0.07946081459522247, -0.0023313334677368402, 0.08052578568458557, -0.03667239844799042, 0.0439273975789547, -0.013948754407465458, -0.02254808321595192, 0.07712724059820175, -0.011456454172730446, 0.06582463532686234, -0.007209246978163719, 0.005706766154617071, 0.008640622720122337, 0.0140038738027215, 0.0534343495965004, -0.02549293264746666, 0.05320601910352707, -0.08591809868812561, -0.007956097833812237, -0.0126586202532053, 0.05219118669629097, -0.09001807868480682, 0.0014624384930357337, -0.0652349516749382, -0.041601117700338364, 0.03787035122513771, 0.028433561325073242, -0.024137768894433975, -0.031813353300094604, -0.054925642907619476, -0.013188608922064304, 0.06205657869577408, -0.026815690100193024, -0.0701136440038681, 0.11979647725820541, 0.0438200905919075, 0.11087450385093689, -0.04820513725280762, -0.08383439481258392, -0.01871705800294876, 0.00020062287512701005, -0.04511271044611931, -0.025589486584067345, 0.06656350195407867, -0.070426344871521, 0.06953798979520798, 0.0030826041474938393, 0.006799252238124609, -0.06317088752985, 0.054230790585279465, -0.09468274563550949, -0.013185541145503521, 0.012112847529351711, -0.05495579168200493, -0.09848231077194214, -0.1036481261253357, -0.05836586654186249, 0.13784366846084595, -0.07599897682666779, 0.07262419909238815, -0.007830438204109669, -0.0028279514517635107, 0.015230396762490273, -0.013778739608824253, -0.07639934867620468, 0.01630227267742157, -0.08639821410179138, -0.010362546890974045, -0.012998681515455246, -0.031207436695694923, 0.03380134329199791, 0.039848316460847855, -0.0845177099108696, -0.0442349910736084, -0.08048581331968307, 0.007746138144284487, 0.023132754489779472, 0.044351547956466675, -0.006085276138037443, 0.01361026894301176, 0.004269350320100784, 0.04941888898611069, 0.01154640968888998, 0.010237800888717175, 0.04666372761130333, 0.036900319159030914, 0.09040289372205734, 0.07799341529607773, 0.11676246672868729, -0.02999696508049965, -4.518026841537903e-8, -0.018921880051493645, -0.06073511764407158, -0.10012602806091309, 0.061517808586359024, -0.06274446845054626, -0.07831926643848419, -0.06332366168498993, -0.02058197371661663, 0.013489984907209873, -0.037904176861047745, -0.02070068009197712, -0.029728930443525314, -0.07220825552940369, 0.04225683584809303, 0.041588328778743744, 0.005361753515899181, 0.05040321871638298, 0.029463665559887886, 0.028565624728798866, -0.06027927249670029, 0.04268472269177437, 0.01898757554590702, 0.05041428282856941, 0.09588634967803955, -0.018121810629963875, 0.005591197405010462, -0.0758100375533104, -0.03511304408311844, 0.09135894477367401, -0.04077455401420593, -0.04642188549041748, 0.043863486498594284, 0.017737234011292458, -0.07513837516307831, 0.043553225696086884, 0.04343133047223091, 0.03011244907975197, -0.024510610848665237, 0.030953189358115196, 0.06771314144134521, 0.08237103372812271, -0.022963490337133408, -0.04526916518807411, 0.008760705590248108, 0.0088396817445755, -0.053255077451467514, -0.05285883694887161, -0.028053870424628258, -0.03144514560699463, -0.09011255204677582, -0.0741540789604187, -0.014225422404706478, -0.0028493732679635286, -0.00042666762601584196, 0.05818115174770355, 0.07554758340120316, -0.06741760671138763, -0.020378507673740387, 0.1209733784198761, 0.043516431003808975, 0.004669609945267439, 0.02544267475605011, 0.021387549117207527, -0.02851998247206211 ]
zjukg/OntoProtein
d27d23e56e1b565958a5016eaf82847fa08a427a
2022-04-12T14:42:54.000Z
[ "pytorch", "bert", "fill-mask", "protein", "dataset:ProteinKG25", "transformers", "protein language model", "autotrain_compatible" ]
fill-mask
false
zjukg
null
zjukg/OntoProtein
2,150
3
transformers
--- language: protein tags: - protein language model datasets: - ProteinKG25 widget: - text: "D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T" --- # OntoProtein model Pretrained model on protein sequences using masked language modeling (MLM) and knowledge embedding (KE) objective objective. It was introduced in [this paper](https://openreview.net/pdf?id=yfe1VMYAXa4) and first released in [this repository](https://github.com/zjunlp/OntoProtein). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description OntoProtein is the first general framework that makes use of structure in GO (Gene Ontology) into protein pre-training models. We construct a novel large-scale knowledge graph that consists of GO and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph. We propose novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training. ### BibTeX entry and citation info ```bibtex @article{zhang2022ontoprotein, title={OntoProtein: Protein Pretraining With Gene Ontology Embedding}, author={Zhang, Ningyu and Bi, Zhen and Liang, Xiaozhuan and Cheng, Siyuan and Hong, Haosen and Deng, Shumin and Lian, Jiazhang and Zhang, Qiang and Chen, Huajun}, journal={arXiv preprint arXiv:2201.11147}, year={2022} } ```
[ -0.06640700995922089, -0.11526701599359512, -0.023672766983509064, 0.014363388530910015, 0.016232436522841454, 0.04524272680282593, 0.011677848175168037, 0.026764053851366043, 0.0066252765245735645, -0.03422898054122925, 0.014869536273181438, -0.034928224980831146, 0.05607284978032112, 0.14798906445503235, -0.019055040553212166, 0.07581619918346405, 0.07013801485300064, 0.06009924039244652, -0.03962375596165657, -0.0766763687133789, 0.06350214034318924, 0.0815623477101326, 0.0365266390144825, -0.03990890085697174, -0.04295553267002106, -0.03043113835155964, -0.04281298816204071, -0.047038283199071884, 0.022583644837141037, 0.014741063117980957, 0.026878898963332176, -0.04774293676018715, 0.053362663835287094, 0.04083995148539543, -0.009994958527386189, 0.07063081860542297, -0.06283536553382874, 0.005810330621898174, 0.019816311076283455, 0.009472844190895557, -0.006155930459499359, 0.03373408690094948, -0.00711318152025342, 0.049146756529808044, 0.059675924479961395, 0.07405520230531693, -0.03992670774459839, 0.024755725637078285, 0.04419313743710518, 0.05392134189605713, -0.11363445222377777, -0.09709855169057846, -0.06575067341327667, 0.011603300459682941, 0.047287531197071075, 0.052215661853551865, -0.06184079125523567, -0.05752161890268326, -0.02499757707118988, -0.052361153066158295, -0.00954697746783495, -0.09381367266178131, -0.004564951173961163, -0.05209898576140404, -0.0076025789603590965, -0.03720086067914963, 0.007605958264321089, 0.08613867312669754, -0.015124375000596046, 0.06832181662321091, 0.01597822643816471, 0.07138049602508545, -0.020342526957392693, 0.06608323752880096, -0.04782070592045784, 0.09133661538362503, 0.01730724237859249, 0.0273332130163908, 0.02101823315024376, -0.0987330749630928, 0.04743129760026932, 0.06119110807776451, 0.06868616491556168, 0.06683339923620224, 0.05179484933614731, 0.015318429097533226, 0.01612832583487034, 0.046861521899700165, -0.008977117948234081, 0.008625572547316551, -0.02183002047240734, -0.11452370136976242, 0.07831547409296036, -0.015777407214045525, 0.023842718452215195, 0.01250846590846777, 0.056416578590869904, -0.04546310380101204, -0.030852917581796646, 0.07995794713497162, -0.0025374186225235462, 0.03586984798312187, 0.027083296328783035, -0.08175522089004517, -0.01613057218492031, -0.0017917741788551211, -0.060016363859176636, 0.008589853532612324, 0.07228481769561768, -0.08672325313091278, 0.00556191336363554, 0.10407233238220215, 0.03312582150101662, -0.019063662737607956, 0.015115680173039436, 0.018712138757109642, 0.07406062632799149, -0.06781931966543198, 0.03880113363265991, 0.042934805154800415, -0.04764806851744652, 0.036398548632860184, 0.04613328352570534, 0.03102869540452957, -0.028016377240419388, -0.015706855803728104, -0.08322162926197052, 1.1120448391847467e-33, 0.0743563324213028, 0.019171694293618202, 0.06278179585933685, 0.017062004655599594, -0.0026955706998705864, -0.04199327901005745, -0.003764060325920582, 0.04557325690984726, -0.06767084449529648, -0.045188046991825104, 0.004615066573023796, -0.031787700951099396, -0.007545033935457468, 0.02569754607975483, -0.024517744779586792, -0.006357010919600725, -0.014697614125907421, 0.01785981096327305, -0.033231474459171295, -0.03112841583788395, 0.021414656192064285, 0.03111674264073372, -0.004009857773780823, 0.006876446306705475, 0.00482437526807189, 0.04175678640604019, 0.029628733173012733, -0.12378007173538208, -0.007636892609298229, 0.016104169189929962, -0.17233625054359436, 0.002045699628069997, 0.005856485106050968, 0.03212238848209381, 0.02185489982366562, -0.06860329210758209, 0.0137329725548625, -0.09744377434253693, 0.008828891441226006, -0.05927376449108124, 0.006242471747100353, 0.03129630535840988, -0.04146592691540718, -0.06122419983148575, -0.031105125322937965, -0.046973202377557755, 0.038655154407024384, -0.04384082928299904, 0.02621861919760704, -0.036328673362731934, 0.06773845106363297, -0.037686821073293686, 0.016191832721233368, -0.038470447063446045, -0.0669993981719017, 0.030124755576252937, -0.022275852039456367, 0.08070441335439682, 0.061778321862220764, 0.03724437952041626, -0.043668266385793686, -0.03548041731119156, 0.047929417341947556, 0.05812889337539673, 0.030806023627519608, 0.012416179291903973, -0.12496115267276764, -0.0054710679687559605, 0.03273891285061836, 0.02482018433511257, -0.008093217387795448, 0.010974033735692501, 0.0013300558784976602, -0.04434534162282944, -0.006670703645795584, 0.0025600530207157135, -0.03431226685643196, -0.0825321227312088, -0.05841892212629318, 0.10138723999261856, 0.003018143819645047, 0.0024844652507454157, -0.10922566056251526, -0.10419520735740662, -0.07515139132738113, -0.08270333707332611, 0.1176915243268013, -0.10541291534900665, 0.019280482083559036, -0.06510434299707413, 0.0016303384909406304, -0.043716538697481155, -0.04928047955036163, 0.03751731291413307, 0.04817427694797516, -1.9344115034704033e-33, 0.016351308673620224, -0.014977023005485535, -0.005191665142774582, 0.025292659178376198, -0.006396343931555748, -0.09072546660900116, 0.04858947917819023, 0.08565693348646164, -0.02477118745446205, -0.01178252138197422, 0.026471570134162903, -0.11226662248373032, -0.020096980035305023, -0.055473219603300095, 0.026540607213974, 0.03514708951115608, -0.06514066457748413, 0.07798773050308228, 0.023573948070406914, 0.08564884215593338, -0.07947107404470444, 0.002888381015509367, -0.1067974716424942, 0.07962116599082947, 0.04928796738386154, 0.09903883188962936, -0.013750632293522358, 0.11442703753709793, -0.024266868829727173, 0.03078315407037735, -0.056161776185035706, 0.025340568274259567, -0.041549164801836014, -0.009749448858201504, -0.1020258218050003, 0.040181972086429596, 0.01946958899497986, -0.03257311135530472, 0.04778105765581131, -0.030197927728295326, 0.04914683848619461, 0.05772635340690613, -0.02491547353565693, 0.007459008600562811, -0.0013453696155920625, -0.016401205211877823, -0.0802144929766655, -0.008594002574682236, 0.061346009373664856, -0.08158580213785172, 0.022587446495890617, -0.05072818696498871, -0.01592388190329075, -0.05568496510386467, -0.05256021395325661, -0.09064942598342896, 0.01108789723366499, 0.005177656654268503, -0.018663084134459496, -0.01587466336786747, -0.04037957638502121, -0.06273914873600006, 0.009444103576242924, 0.042971134185791016, -0.03385741636157036, -0.02870548702776432, -0.012956852093338966, 0.012682587839663029, 0.009702564217150211, -0.03291987627744675, -0.04897970333695412, 0.034532226622104645, 0.05876747891306877, 0.03518472611904144, 0.08826924115419388, -0.0448196716606617, 0.003593884175643325, -0.004602106288075447, -0.041147343814373016, -0.08958397805690765, -0.041505273431539536, -0.03520648181438446, 0.006729678716510534, 0.04679475352168083, 0.1137879341840744, 0.0666108950972557, 0.04061832278966904, 0.09277820587158203, 0.04428449645638466, 0.03732108697295189, -0.049989376217126846, -0.04174521937966347, -0.06186063215136528, 0.11388745158910751, 0.019145285710692406, -4.3250476977618746e-8, -0.05349825322628021, -0.03092813305556774, 0.0341460257768631, -0.002362629398703575, 0.04626955837011337, -0.008937451057136059, -0.04416273161768913, 0.06368717551231384, -0.019534103572368622, -0.0178051944822073, 0.07199201732873917, 0.042565543204545975, -0.08624773472547531, -0.05564284697175026, -0.05479880049824715, 0.054991740733385086, -0.03562668338418007, 0.02542039565742016, 0.031394194811582565, 0.035920556634664536, 0.032549820840358734, 0.01536193210631609, 0.021267710253596306, 0.0475209504365921, 0.0780070573091507, -0.09024856239557266, -0.032877691090106964, 0.08965587615966797, 0.06312209367752075, -0.0366714708507061, -0.06372625380754471, -0.031122447922825813, -0.009321813471615314, -0.02195669338107109, 0.03144139423966408, 0.04597083106637001, 0.028723478317260742, -0.07212186604738235, -0.03526904806494713, -0.007450438570231199, 0.0608365461230278, 0.0654403418302536, -0.0636218786239624, -0.035024844110012054, 0.03817470371723175, -0.0101632010191679, -0.05467892438173294, 0.010040785185992718, 0.0276927649974823, -0.004234231077134609, 0.026273181661963463, -0.03175193443894386, -0.00372262648306787, 0.010532883927226067, -0.0013122223317623138, 0.03875505179166794, -0.055135201662778854, -0.030450239777565002, 0.030749041587114334, -0.021117515861988068, 0.007263760082423687, 0.002596143167465925, 0.06309526413679123, 0.0337660014629364 ]
prajjwal1/bert-medium-mnli
82e4a3118f63cba6e97875aa1b7e6a674a193063
2021-10-05T17:56:07.000Z
[ "pytorch", "jax", "bert", "text-classification", "arxiv:1908.08962", "arxiv:2110.01518", "transformers" ]
text-classification
false
prajjwal1
null
prajjwal1/bert-medium-mnli
2,149
null
transformers
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). These BERT variants were introduced in the paper [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). These models are trained on MNLI. If you use the model, please consider citing the paper ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). ``` MNLI: 75.86% MNLI-mm: 77.03% ``` These models are trained for 4 epochs. [@prajjwal_1](https://twitter.com/prajjwal_1)
[ -0.09788774698972702, -0.06514044851064682, 0.04305513948202133, 0.053854115307331085, 0.026423117145895958, 0.050810474902391434, -0.0007797605358064175, 0.016668150201439857, -0.04501102864742279, -0.012287932448089123, 0.006685130298137665, 0.038580089807510376, 0.021358292549848557, 0.01878148689866066, -0.0023792090360075235, 0.03674514591693878, -0.0009333660709671676, -0.03087114356458187, -0.059926100075244904, -0.02405935898423195, 0.024990027770400047, 0.05209911987185478, -0.02203434146940708, -0.061362676322460175, 0.029483946040272713, -0.08549626916646957, -0.039729952812194824, -0.03715015575289726, 0.10267771780490875, 0.05506744235754013, 0.061975762248039246, 0.0463872030377388, 0.04730004444718361, 0.0722469687461853, 0.0635097473859787, 0.08549873530864716, -0.04004219174385071, 0.01351358462125063, 0.07104308903217316, 0.03724750131368637, 0.0003359560505487025, -0.016006097197532654, -0.02558239735662937, -0.057748906314373016, 0.08689751476049423, -0.06968552619218826, -0.014961841516196728, -0.04987373203039169, -0.06442078202962875, -0.03191566839814186, -0.07537708431482315, 0.003502520965412259, 0.06949708610773087, -0.0013229715405032039, -0.021989313885569572, 0.0033531063236296177, -0.027425946667790413, -0.037609271705150604, -0.00906334351748228, -0.1473996341228485, -0.12541252374649048, -0.06768559664487839, -0.07162073999643326, -0.040180668234825134, -0.03598414734005928, 0.07183584570884705, -0.025315215811133385, 0.010802967473864555, 0.10925733298063278, -0.007170251104980707, -0.019552193582057953, 0.07190949469804764, -0.03021315298974514, 0.040888331830501556, 0.0806264728307724, -0.03482760116457939, 0.11244107782840729, 0.04007010534405708, 0.009653953835368156, -0.09457726031541824, -0.00700289336964488, 0.024561993777751923, 0.1179293766617775, -0.01812363788485527, 0.038288310170173645, 0.04023471474647522, 0.010189363732933998, 0.00491721136495471, 0.10049524158239365, -0.08056795597076416, 0.03640131279826164, -0.04239637032151222, -0.04626257345080376, 0.027595313265919685, 0.04128534719347954, 0.0506657212972641, 0.08899658918380737, -0.040257588028907776, 0.013736427761614323, 0.10200124979019165, 0.07672547549009323, 0.023269737139344215, 0.047827765345573425, -0.05542147532105446, 0.06616295129060745, 0.019845232367515564, 0.07390538603067398, 0.015656625851988792, 0.04626477509737015, -0.04610814154148102, 0.042757272720336914, 0.011558320373296738, 0.012027928605675697, -0.02429303713142872, 0.009131155908107758, -0.0024075873661786318, -0.03446345031261444, 0.007040876429527998, -0.009704191237688065, 0.06115623936057091, -0.019774578511714935, -0.004150899592787027, 0.010371407493948936, 0.03690893203020096, -0.05551765859127045, -0.04847989231348038, -0.0706876739859581, 7.466289755150011e-33, 0.020133117213845253, 0.026498615741729736, -0.0030499056447297335, -0.025648823007941246, 0.006507859565317631, -0.0028629109729081392, 0.05314359441399574, -0.06207125261425972, 0.03708501160144806, -0.05941545218229294, -0.07189537584781647, 0.013163677416741848, -0.08291475474834442, 0.0753445252776146, -0.035245563834905624, -0.0022813265677541494, -0.11505432426929474, 0.060231249779462814, 0.06526103615760803, 0.050657693296670914, 0.08094123750925064, 0.015442661941051483, -0.006225495599210262, -0.13206134736537933, -0.03686416149139404, 0.0505230613052845, 0.1307280957698822, -0.03660650923848152, -0.045845530927181244, 0.05068325996398926, -0.1274682581424713, 0.024932803586125374, -0.030553115531802177, -0.002432215726003051, -0.025467535480856895, 0.02629098854959011, -0.07744420319795609, -0.037865471094846725, -0.0022636842913925648, -0.08490670472383499, -0.027288740500807762, 0.11159767955541611, -0.031549081206321716, -0.017503106966614723, -0.020481634885072708, -0.04349208623170853, 0.023337071761488914, 0.02151145040988922, 0.023607907816767693, -0.051832415163517, -0.026202650740742683, -0.004159054718911648, -0.08511428534984589, -0.07675091922283173, -0.01575930416584015, -0.04055444896221161, 0.0764862671494484, 0.07344821840524673, 0.07268871366977692, 0.04188734292984009, 0.06231238692998886, 0.022938130423426628, 0.013279172591865063, 0.10787027329206467, 0.06958235800266266, -0.04518388211727142, -0.048487283289432526, -0.007443455513566732, 0.057593122124671936, -0.017251327633857727, -0.03924453258514404, -0.04154811054468155, -0.009896961972117424, 0.013934449292719364, 0.027389397844672203, -0.08069821447134018, 0.046590015292167664, -0.06783363968133926, -0.023314088582992554, 0.001349254627712071, 0.0008446259307675064, 0.021814294159412384, -0.08719299733638763, -0.028128229081630707, -0.10532345622777939, -0.07368111610412598, 0.03936494514346123, -0.09040196985006332, -0.027083348482847214, -0.03801574185490608, 0.026187235489487648, -0.05398950353264809, 0.03874717280268669, 0.052201949059963226, -0.08065443485975266, -5.9998238183007446e-33, 0.044262826442718506, 0.054612983018159866, -0.029677344486117363, 0.02387051284313202, -0.056101903319358826, -0.0574805773794651, 0.05710882321000099, 0.0888059213757515, -0.021789316087961197, -0.007561128586530685, 0.005784717388451099, -0.006904765497893095, 0.025622963905334473, 0.0008066225564107299, 0.06716152280569077, 0.004406440071761608, 0.04506547749042511, 0.001370099140331149, 0.029448920860886574, 0.03752446919679642, 0.04013121873140335, -0.009132146835327148, -0.12795917689800262, 0.02619091421365738, -0.05156804621219635, 0.0616430938243866, -0.05691858381032944, 0.050009842962026596, -0.06551534682512283, 0.008551704697310925, -0.03525305539369583, -0.0204540453851223, -0.0513736717402935, 0.046991679817438126, 0.00324030639603734, 0.045505035668611526, -0.0005776170874014497, -0.007955657318234444, 0.031245816498994827, 0.027462631464004517, 0.07383367419242859, -0.0048749507404863834, -0.025615764781832695, -0.03641674667596817, 0.01420630794018507, 0.030361568555235863, -0.09353630244731903, -0.02911841869354248, 0.02796829864382744, -0.07337943464517593, -0.030169857665896416, -0.021200386807322502, -0.05208074674010277, -0.06387083232402802, -0.040594879537820816, -0.06331337243318558, 0.06504765152931213, -0.06299376487731934, 0.000684865633957088, -0.0036391408648341894, -0.07262835651636124, -0.03420674428343773, 0.026926428079605103, 0.011294356547296047, -0.04497559368610382, 0.009466365911066532, -0.020355138927698135, 0.07607854157686234, -0.04775537922978401, 0.03878059238195419, -0.03322484344244003, 0.001450072624720633, 0.038880035281181335, 0.013573347590863705, -0.024823669344186783, 0.014214077033102512, 0.034969571977853775, -0.06314109265804291, -0.004403316415846348, -0.11270622164011002, -0.04744882136583328, -0.06531617790460587, 0.008901884779334068, 0.08111008256673813, 0.024111973121762276, 0.0695621594786644, 0.04921707138419151, 0.019059941172599792, 0.04435368627309799, 0.030731331557035446, 0.005113172344863415, -0.023417461663484573, 0.038813769817352295, 0.07407662272453308, 0.004901112522929907, -6.667697505235992e-8, -0.09160012751817703, 0.02322857826948166, -0.04168491065502167, 0.06844652444124222, -0.03773044794797897, -0.047478146851062775, -0.060606732964515686, 0.013459974899888039, -0.009561608545482159, 0.014405442401766777, 0.029360022395849228, 0.05230507254600525, -0.03140542283654213, -0.01409412082284689, 0.015814408659934998, 0.0945654958486557, -0.0245362501591444, 0.021901486441493034, -0.035811565816402435, -0.02771449275314808, 0.0610172264277935, -0.005129834171384573, 0.0236892718821764, -0.0158474612981081, 0.04630585387349129, -0.06987912952899933, 0.004676796495914459, 0.1094369888305664, -0.03116499073803425, -0.01876765303313732, -0.04897104948759079, 0.062371667474508286, -0.05771437659859657, 0.027952980250120163, 0.1018626019358635, 0.11040100455284119, -0.019263487309217453, -0.02817624621093273, 0.03264090046286583, 0.03568077087402344, 0.0003892612876370549, 0.06507185846567154, -0.06816139817237854, -0.019395457580685616, 0.07614446431398392, 0.00004911017094855197, -0.07554464042186737, -0.059764232486486435, 0.02497064508497715, 0.015768712386488914, 0.03550311177968979, -0.032954953610897064, 0.007485062815248966, 0.0404963493347168, -0.02028428018093109, 0.04519294947385788, -0.09147068113088608, -0.0027313458267599344, 0.01635180227458477, -0.013664265163242817, 0.024192672222852707, 0.07293985784053802, 0.005031263921409845, 0.04888756945729256 ]
sentence-transformers/all-MiniLM-L12-v1
c8f1d5b49a00a0b0025e540ceca2c38101fc926f
2021-08-30T20:01:21.000Z
[ "pytorch", "bert", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "feature-extraction", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/all-MiniLM-L12-v1
2,148
2
sentence-transformers
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L12-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v1) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 128 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,124,818,467** |
[ -0.030681096017360687, -0.034574031829833984, 0.005059215240180492, 0.030977435410022736, 0.03437228128314018, 0.06355078518390656, -0.06853145360946655, 0.011841836385428905, 0.019633395597338676, -0.08080363273620605, 0.05672736093401909, -0.018334997817873955, 0.04258238524198532, 0.04904390126466751, 0.06345119327306747, 0.03198466822504997, 0.02896079234778881, 0.1105802059173584, -0.06819241493940353, -0.12342889606952667, 0.11967078596353531, 0.12316497415304184, 0.005652649328112602, 0.03863738849759102, -0.022140946239233017, 0.08604201674461365, -0.041076596826314926, -0.012194438837468624, 0.026146212592720985, -0.01473234873265028, 0.03311622142791748, -0.02040284126996994, -0.05656511336565018, 0.06475784629583359, 0.06195022165775299, 0.08561667799949646, -0.009048442356288433, 0.014484823681414127, -0.003876354545354843, -0.08422430604696274, 0.004798105917870998, -0.03911951556801796, -0.05752352625131607, -0.0308152474462986, 0.021906569600105286, -0.074110247194767, -0.1066836416721344, -0.029628660529851913, -0.024125853553414345, -0.029296278953552246, -0.08454254269599915, 0.02807544730603695, 0.015118565410375595, 0.07744501531124115, 0.004428069572895765, 0.03167876601219177, 0.036860350519418716, -0.006008625496178865, 0.01990346796810627, -0.12606693804264069, -0.08600804954767227, -0.025265857577323914, 0.018771817907691002, 0.005042460281401873, -0.053839631378650665, -0.031977612525224686, 0.04778430983424187, 0.013690273277461529, 0.021516580134630203, 0.019192706793546677, -0.09273598343133926, 0.04198628291487694, -0.0606045126914978, -0.04706030339002609, -0.05132941156625748, 0.008290654979646206, 0.09857857972383499, 0.0029699034057557583, 0.03779437020421028, 0.03788270428776741, -0.006952796597033739, -0.08867282420396805, 0.03489968925714493, 0.09212449938058853, 0.002909609582275152, -0.07620204240083694, -0.009780802763998508, -0.029692716896533966, -0.005255661904811859, -0.023000365123152733, -0.08656913042068481, -0.10565128922462463, 0.018455103039741516, -0.0286366268992424, 0.024099625647068024, 0.0311879925429821, -0.022581156343221664, -0.0028533036820590496, 0.04278160631656647, 0.048056043684482574, 0.03610639646649361, 0.034968312829732895, 0.06357628107070923, -0.10946519672870636, -0.028561202809214592, 0.03705495968461037, -0.03706301003694534, -0.01799837313592434, 0.04735482111573219, -0.12148608267307281, 0.02774425968527794, 0.01249329000711441, -0.012329202145338058, -0.02835162542760372, 0.08899901062250137, -0.05532897263765335, 0.03501014783978462, -0.03240127116441727, -0.004564796108752489, 0.11057674139738083, -0.029388412833213806, 0.06121610105037689, -0.011238937266170979, 0.02170109562575817, -0.0042672352865338326, -0.01272512972354889, 0.006192715838551521, 1.059855668031996e-34, -0.002573879901319742, -0.01129430253058672, -0.003503393614664674, -0.02631901390850544, 0.03349895775318146, 0.03151022270321846, 0.045275166630744934, 0.06236164644360542, -0.09268652647733688, -0.036336109042167664, -0.047972992062568665, 0.02422199584543705, -0.030874459072947502, 0.06087740138173103, 0.004214375279843807, -0.015198428183794022, -0.028659885749220848, -0.05226510763168335, 0.06322092562913895, 0.013006185181438923, 0.013905973173677921, 0.022472448647022247, 0.007072678301483393, -0.03224100545048714, -0.10419504344463348, -0.03152947500348091, 0.06207387521862984, -0.08928138017654419, -0.07450155168771744, 0.005920162424445152, -0.07001426815986633, 0.017924228683114052, -0.01495598815381527, 0.015739131718873978, -0.005634428467601538, -0.005624788347631693, 0.045766301453113556, -0.011230330914258957, -0.03815308213233948, -0.09057783335447311, -0.031120087951421738, 0.028474604710936546, -0.01996702514588833, -0.07490155845880508, -0.0024395142681896687, -0.001883524120785296, 0.04540098085999489, 0.02032635174691677, 0.09374450892210007, 0.0010935644386336207, 0.09620632976293564, -0.007366634439677, -0.011270681396126747, -0.05175922065973282, 0.02573411539196968, 0.008938327431678772, 0.04635174199938774, 0.027873052284121513, 0.09560549259185791, -0.012109457515180111, 0.022452056407928467, -0.023778829723596573, 0.04202685505151749, 0.030100226402282715, 0.10837683081626892, -0.020391106605529785, 0.07545935362577438, 0.03593993932008743, -0.0035866706166416407, 0.04862953722476959, -0.04152040556073189, 0.025506844744086266, -0.04164333641529083, 0.009119927883148193, 0.05661088228225708, -0.029874423518776894, -0.009370156563818455, -0.08720140159130096, -0.020543020218610764, 0.08376803249120712, -0.03918002173304558, -0.028065189719200134, 0.07230114191770554, -0.0500350259244442, -0.009824471548199654, -0.042697686702013016, 0.025887655094265938, -0.03330428525805473, 0.0668414905667305, -0.05652777850627899, 0.011413516476750374, -0.013473241589963436, 0.006394999101758003, 0.028917424380779266, 0.06737586110830307, -2.2805367334249874e-33, 0.02431890368461609, 0.027019895613193512, -0.062420301139354706, 0.03923801705241203, -0.00879931915551424, -0.05669547989964485, 0.04393541440367699, 0.0682361051440239, 0.01221569161862135, -0.011827666312456131, -0.05063878744840622, -0.021886320784687996, 0.08575866371393204, -0.09138131141662598, 0.07666699588298798, 0.06971149891614914, -0.02534038946032524, 0.0434773787856102, 0.06033758074045181, 0.059792786836624146, 0.018557004630565643, 0.06012256443500519, -0.11119448393583298, 0.057839829474687576, -0.013099335134029388, -0.025177402421832085, -0.01218267809599638, -0.009473376907408237, -0.00794658437371254, -0.052774880081415176, -0.0030668252147734165, -0.00024468504125252366, -0.04259953647851944, -0.026677878573536873, -0.13926297426223755, 0.011618262156844139, -0.03644319623708725, -0.014122525230050087, 0.044061046093702316, 0.051615532487630844, 0.021122103556990623, 0.08323066681623459, -0.03081665001809597, -0.0022780413273721933, -0.01726391725242138, -0.005598658695816994, -0.06716887652873993, -0.0815420001745224, 0.013900192454457283, 0.0013691746862605214, -0.028562044724822044, 0.0453132800757885, -0.1433895081281662, 0.04226766526699066, -0.0502188466489315, -0.07150313258171082, -0.052316416054964066, -0.014233987778425217, -0.0971955806016922, -0.06455500423908234, -0.060847435146570206, -0.029926011338829994, 0.011503778398036957, -0.06223960965871811, 0.06588014960289001, -0.04218120872974396, -0.013063193298876286, 0.026395348832011223, -0.03887183219194412, -0.04235139861702919, 0.013458059169352055, -0.02429322898387909, 0.011923998594284058, 0.046985771507024765, 0.04734012112021446, -0.057550590485334396, -0.013286399655044079, 0.008496006950736046, -0.020891882479190826, -0.0660652369260788, 0.04633740335702896, -0.027223501354455948, 0.008355013094842434, -0.04259961470961571, 0.03454345092177391, -0.0389859713613987, 0.026088126003742218, 0.08325536549091339, -0.010200814343988895, 0.03539995104074478, -0.009363300167024136, -0.0029375653248280287, 0.005048607010394335, 0.050550609827041626, 0.044319164007902145, -4.836777378613988e-8, -0.0856255441904068, -0.03741379454731941, -0.06278376281261444, 0.06712214648723602, -0.09188741445541382, -0.020231904461979866, 0.0613568015396595, 0.07523474842309952, -0.06687352061271667, -0.005089998245239258, 0.018809694796800613, 0.02426060475409031, -0.07824481278657913, 0.015087008476257324, -0.04657561704516411, 0.1294330507516861, -0.01108280848711729, 0.039222195744514465, 0.03805393725633621, 0.004618870560079813, 0.007556607946753502, 0.005059939809143543, -0.036302559077739716, 0.03313523903489113, -0.009852400980889797, 0.01873091049492359, -0.026201125234365463, 0.012833764776587486, 0.012446936219930649, -0.010675443336367607, -0.021995211020112038, 0.013886954635381699, -0.034434229135513306, -0.061524465680122375, 0.006797173526138067, 0.041857246309518814, 0.0538073405623436, -0.05881528928875923, 0.03630978614091873, 0.08165331184864044, 0.04913736879825592, 0.037445757538080215, -0.13736702501773834, -0.01846916601061821, 0.10539713501930237, 0.019891779869794846, 0.0008424305124208331, -0.07638360559940338, 0.04651637375354767, 0.02919742837548256, 0.09010912477970123, -0.07989683747291565, -0.019285470247268677, -0.029794706031680107, 0.024610061198472977, 0.03704182058572769, 0.02933189831674099, -0.021682340651750565, 0.08435172587633133, -0.06592670828104019, 0.060331448912620544, 0.105305977165699, 0.10624610632658005, -0.08441467583179474 ]
shahrukhx01/roberta-base-boolq
87b8505e8f651d5aadedb50ea6737871a45a83b8
2022-06-02T08:36:14.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "boolean-qa" ]
text-classification
false
shahrukhx01
null
shahrukhx01/roberta-base-boolq
2,147
null
transformers
--- language: "en" tags: - boolean-qa widget: - text: "Is Berlin the smallest city of Germany? <s> Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits " --- # Labels Map LABEL_0 => **"NO"** <br/> LABEL_1 => **"YES"** ```python from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, ) model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/roberta-base-boolq") model.to(device) #model.push_to_hub("roberta-base-boolq") tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/roberta-base-boolq") def predict(question, passage): sequence = tokenizer.encode_plus(question, passage, return_tensors="pt")['input_ids'].to(device) logits = model(sequence)[0] probabilities = torch.softmax(logits, dim=1).detach().cpu().tolist()[0] proba_yes = round(probabilities[1], 2) proba_no = round(probabilities[0], 2) print(f"Question: {question}, Yes: {proba_yes}, No: {proba_no}") passage = """Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits.""" question = "Is Berlin the smallest city of Germany?" predict(s_question, passage) ```
[ -0.04027774930000305, 0.0010535010369494557, -0.02835865132510662, 0.03511268272995949, -0.02613994851708412, 0.0933423638343811, 0.02112245373427868, 0.029584145173430443, -0.0344892218708992, -0.061691172420978546, -0.005555383861064911, -0.14769375324249268, 0.015224738977849483, 0.05613432824611664, -0.018821772187948227, 0.029872102662920952, -0.03723062574863434, -0.07522287964820862, -0.08834198862314224, -0.10468229651451111, 0.09289880841970444, 0.08480438590049744, 0.05149258300662041, 0.042738478630781174, 0.0908060148358345, -0.05171860381960869, 0.0276752021163702, 0.03988660126924515, 0.0011542036663740873, 0.05691375955939293, -0.012145576998591423, 0.04114999622106552, 0.022509654983878136, 0.08171739429235458, 0.07744364440441132, -0.008435823954641819, -0.06786265969276428, -0.017232514917850494, 0.01385580562055111, -0.040330156683921814, -0.0013805038761347532, -0.10233370214700699, -0.029561465606093407, -0.013366948813199997, 0.04394974559545517, 0.03467810899019241, -0.003291614819318056, 0.02536587044596672, -0.03448930382728577, -0.02915419079363346, 0.0005409153527580202, 0.029807770624756813, 0.006263419054448605, 0.031161490827798843, -0.04884945601224899, 0.017884934321045876, 0.009979979135096073, -0.030037328600883484, 0.02162940613925457, -0.054782234132289886, -0.07275441288948059, -0.06592977792024612, -0.020782627165317535, -0.003846237435936928, -0.02285674586892128, -0.041829295456409454, 0.00008564243034925312, 0.04694554582238197, 0.015495351515710354, 0.02859623357653618, -0.011241779662668705, -0.00469589326530695, -0.007218217011541128, 0.03344927355647087, 0.14801962673664093, -0.04513357952237129, 0.016834143549203873, 0.024323517456650734, 0.02468983829021454, -0.04149900749325752, -0.032518427819013596, -0.08029653131961823, 0.04812172055244446, 0.07191143184900284, 0.01575954258441925, -0.013912048190832138, 0.000055441934819100425, 0.030465492978692055, -0.012818604707717896, 0.021829206496477127, 0.009480143897235394, -0.06468266248703003, 0.00913246814161539, 0.033910028636455536, -0.027151834219694138, 0.06179843842983246, 0.0389750711619854, -0.0461714006960392, 0.021641943603754044, 0.048282112926244736, -0.024879224598407745, 0.005890398286283016, 0.023418039083480835, -0.02088252268731594, 0.002106694970279932, -0.07033564150333405, 0.04899153113365173, 0.014177870005369186, -0.009813185781240463, -0.06316886842250824, -0.012964650057256222, -0.04058903083205223, 0.03005354106426239, 0.0004959421348758042, -0.007414212450385094, 0.04839874058961868, 0.061518363654613495, 0.05174931511282921, -0.0582277849316597, 0.029910804703831673, 0.04703843593597412, 0.0037387132178992033, -0.07380115985870361, 0.05787689983844757, -0.02474190667271614, 0.008042490109801292, -0.06263277679681778, 4.3526340738781976e-33, 0.005035127513110638, 0.006080036051571369, 0.10029349476099014, 0.06824842095375061, -0.08932900428771973, 0.007456699851900339, -0.06509550660848618, 0.09572555869817734, 0.0006722479010932148, -0.001606740988790989, -0.03399215638637543, 0.03291124477982521, -0.0345340333878994, -0.000876009464263916, -0.0296881552785635, -0.002388342982158065, -0.054073087871074677, 0.012416178360581398, -0.0532926507294178, 0.05450486019253731, 0.0832551047205925, 0.020032867789268494, -0.0412064753472805, -0.06254716962575912, -0.03549954667687416, 0.014448922127485275, 0.06276919692754745, 0.008002759888768196, -0.007547872141003609, -0.003864178666844964, -0.15922407805919647, -0.025516510009765625, -0.015490434132516384, -0.061228152364492416, -0.016842307522892952, 0.033776044845581055, 0.01725030317902565, -0.03593660891056061, -0.08561142534017563, -0.12091485410928726, -0.03707681968808174, 0.005654462147504091, -0.036780111491680145, -0.07544408738613129, -0.0029391988646239042, -0.03436892852187157, 0.0022505815140902996, -0.0483078807592392, 0.05024569854140282, 0.01974925957620144, 0.09935969859361649, -0.036267150193452835, -0.08654599636793137, -0.03799799084663391, 0.04610332474112511, 0.04658203199505806, 0.07676036655902863, 0.04612173140048981, 0.0849020779132843, -0.021060261875391006, -0.031967394053936005, -0.011277991347014904, 0.044348880648612976, 0.015197302214801311, 0.08209676295518875, 0.026705896481871605, 0.04171103984117508, 0.0260888934135437, 0.047177936881780624, 0.03421910107135773, -0.029979288578033447, -0.06772315502166748, -0.02806798927485943, 0.007120566442608833, 0.0504298135638237, -0.009440407156944275, -0.0017971652559936047, -0.03454233333468437, -0.05884482339024544, -0.031851496547460556, -0.025448253378272057, -0.03224480152130127, -0.05602148547768593, -0.015217282809317112, 0.040025744587183, -0.030486201867461205, 0.07637680321931839, -0.05918999761343002, -0.06133851036429405, -0.05601129308342934, -0.023085633292794228, 0.0176802147179842, -0.010825521312654018, 0.034895241260528564, -0.05659961700439453, -6.690107896566178e-33, 0.037842243909835815, -0.0028974160086363554, -0.04893992468714714, -0.029114287346601486, -0.019368870183825493, -0.09784656018018723, 0.03489382192492485, 0.10684360563755035, 0.03777216747403145, -0.038914408534765244, 0.019841134548187256, -0.10622942447662354, 0.10571126639842987, 0.0013040662743151188, 0.057677481323480606, 0.014669684693217278, 0.0009808177128434181, -0.02461385726928711, -0.04335515573620796, 0.09963851422071457, -0.07534735649824142, 0.04806830734014511, -0.13596193492412567, -0.03919290378689766, -0.1221931204199791, 0.0025281584821641445, -0.03479264676570892, 0.07485618442296982, 0.032018132507801056, -0.02279146946966648, -0.09222835302352905, -0.07628842443227768, -0.016991935670375824, 0.035609595477581024, -0.052928898483514786, 0.0003374735824763775, 0.05633101984858513, -0.03989499434828758, -0.06575661897659302, 0.0828140527009964, 0.02913491614162922, 0.011939479038119316, -0.13158492743968964, 0.07795305550098419, -0.029757576063275337, -0.014107439666986465, 0.013905372470617294, -0.008890416473150253, 0.024540435522794724, -0.028129393234848976, 0.12622524797916412, 0.05650299787521362, -0.1294531673192978, 0.019875511527061462, -0.02975393645465374, 0.03139343857765198, 0.06017472594976425, -0.06185508146882057, 0.0056512802839279175, -0.032453592866659164, -0.05257430300116539, 0.009770282544195652, 0.07542598992586136, -0.053207289427518845, 0.03227229788899422, -0.09547895193099976, -0.06333193182945251, 0.033003807067871094, 0.059483859688043594, -0.02063470520079136, 0.0490574948489666, 0.046766217797994614, 0.0031929227989166975, -0.0045100850984454155, 0.017642993479967117, 0.009524520486593246, -0.00038843927904963493, -0.011560386046767235, 0.02953162044286728, -0.0237235389649868, -0.10335340350866318, 0.0164178516715765, 0.06628704816102982, 0.14954137802124023, -0.042388997972011566, -0.01678250916302204, 0.10128143429756165, 0.08949435502290726, 0.03511422127485275, 0.05895879864692688, -0.022017737850546837, 0.049552202224731445, 0.0007454543374478817, 0.11247671395540237, -0.07448233664035797, -5.769267730215688e-8, -0.08457180857658386, 0.05029333382844925, -0.043707769364118576, 0.06801524013280869, -0.03917510434985161, -0.03624618798494339, 0.004209122620522976, 0.021571364253759384, -0.04717621952295303, 0.01227184385061264, -0.044968873262405396, 0.026089150458574295, -0.09291628003120422, 0.0012006089091300964, -0.01504442747682333, 0.03992559015750885, -0.025229137390851974, 0.05515215918421745, -0.018756546080112457, -0.00040420840377919376, 0.024643808603286743, 0.003771201241761446, -0.0524786151945591, -0.00808035396039486, 0.028302470222115517, 0.0015606586821377277, -0.05249718949198723, 0.07163532078266144, -0.008465803228318691, -0.035324957221746445, 0.0283979382365942, -0.037870824337005615, -0.021334368735551834, -0.012167638167738914, -0.07168781757354736, 0.08161208778619766, 0.037181127816438675, -0.03224166855216026, 0.04159560054540634, 0.023696916177868843, 0.022640490904450417, 0.008439095690846443, -0.18268465995788574, 0.004902479704469442, 0.00015402499411720783, -0.06552673131227493, 0.019124113023281097, -0.08822862058877945, 0.03610982373356819, 0.03239789232611656, -0.03638989105820656, -0.04619283229112625, -0.01868601143360138, -0.02013770304620266, 0.037012241780757904, 0.013971107080578804, -0.009931736625730991, 0.0018840571865439415, -0.014040919952094555, 0.05132352188229561, 0.045620113611221313, 0.022865358740091324, 0.026538152247667313, 0.003267076797783375 ]
artemnech/enrut5-base
13523cbed3ee1390197d050cc52b0e6f9aa3ea45
2022-07-25T05:17:35.000Z
[ "pytorch", "mt5", "text2text-generation", "ru", "en", "transformers", "russian", "license:mit", "autotrain_compatible" ]
text2text-generation
false
artemnech
null
artemnech/enrut5-base
2,146
null
transformers
--- language: ["ru", "en"] tags: - russian license: mit widget: - text: "translate ru to en: Интересный момент. Модель не видела русских диалогов, но может их понимать" --- This pruned model of mt5-base [google/mt5-base](https://huggingface.co/google/mt5-base) with only some Rusian and English embeddings left. The model has been fine-tuned for several tasks: * translation (opus100 dataset) * dialog (daily dialog dataset) How to use: ``` # !pip install transformers sentencepiece from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer import torch model_name = 'artemnech/enrut5-base' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(text, **kwargs): model.eval() inputs = tokenizer(text, return_tensors='pt') with torch.no_grad(): hypotheses = model.generate(**inputs, **kwargs) return tokenizer.decode(hypotheses[0], skip_special_tokens=True) print(generate('translate ru to en: Интересный момент. Модель не видела русских диалогов, но может их понимать', num_beams=4,)) # The Model didn't see Russian dialogues, but can understand them. print(generate("translate en to ru: The Model didn't see Russian dialogues, but can understand them.", num_beams=4,)) # Модель не видела русских диалога, но может понимать их. print(generate('dialog: user1>>: Hello', num_beams=2)) # Hi print(generate('dialog: user1>>: Hello user2>>: Hi user1>>: Would you like to drink something?', num_beams=2)) # I'd like to drink a cup of coffee. #An interesting point. The model has not seen Russian dialogues, but can understand them print(generate('dialog: user1>>: Привет')) # Hi print(generate('dialog: user1>>: Привет user2>>: Hi user1>>: Хочешь выпить что-нибудь?', num_beams=2)) # I'd like to have a cup of coffee. ```
[ -0.11572178453207016, -0.05912119150161743, 0.04978984594345093, 0.00022305546735879034, 0.026459282264113426, -0.026849456131458282, 0.006122882477939129, 0.031718190759420395, -0.017213841900229454, -0.06695273518562317, -0.04727241024374962, -0.018260424956679344, 0.021225137636065483, 0.05479608476161957, 0.016268856823444366, -0.005450261291116476, 0.020337969064712524, 0.01869138702750206, -0.07393017411231995, -0.07910186052322388, 0.07278598099946976, 0.02153554931282997, 0.08556373417377472, 0.050819892436265945, 0.08736161887645721, 0.024240178987383842, -0.019849926233291626, 0.024887608364224434, 0.06551014631986618, -0.016863718628883362, 0.014495236799120903, 0.06354588270187378, -0.03308751434087753, 0.0143894637003541, 0.01583228074014187, 0.1422407031059265, -0.05850088223814964, -0.058364883065223694, -0.05644557252526283, 0.024495815858244896, 0.023151591420173645, -0.07393690943717957, -0.04859836772084236, -0.014848601073026657, 0.07965470105409622, -0.02864428609609604, -0.04668641462922096, -0.028640011325478554, 0.027694696560502052, 0.0020352057181298733, -0.07851462811231613, -0.03069395013153553, -0.00595508236438036, 0.05141162499785423, -0.04198487475514412, -0.04328916221857071, 0.0038971586618572474, -0.058506421744823456, 0.03919275477528572, -0.04098643735051155, -0.07226286083459854, -0.006586721632629633, -0.052383363246917725, -0.003750778269022703, -0.07978443801403046, 0.052053552120923996, 0.04447658360004425, 0.03581074997782707, 0.024609766900539398, 0.05735437199473381, -0.014265906065702438, 0.031954891979694366, -0.036341018974781036, 0.060010477900505066, -0.021793583407998085, -0.06769804656505585, 0.05578389763832092, -0.04791213572025299, -0.015169638209044933, -0.05807240679860115, 0.027640264481306076, 0.010782097466289997, 0.04874686896800995, 0.04267645999789238, 0.015419737435877323, -0.03165217116475105, 0.03796028718352318, 0.03131163492798805, 0.023957833647727966, -0.027075951918959618, -0.01402890495955944, -0.05686157941818237, 0.040665093809366226, 0.05927387252449989, -0.02554016187787056, 0.026799071580171585, -0.046384990215301514, 0.04600274935364723, -0.08360306918621063, 0.05135343223810196, -0.0023503517732024193, 0.024991974234580994, 0.02313893288373947, 0.006468970328569412, -0.0999767929315567, -0.04653356224298477, -0.04175242781639099, 0.054693397134542465, -0.053466279059648514, -0.11528269201517105, 0.023088594898581505, -0.04151708632707596, -0.020464785397052765, -0.036336757242679596, 0.06405987590551376, -0.0388864241540432, -0.030810002237558365, -0.0322042740881443, -0.03937597945332527, 0.05549679696559906, -0.012269118800759315, 0.07226911932229996, -0.06180272996425629, 0.015937233343720436, -0.01635812595486641, -0.03262017294764519, -0.016846859827637672, 8.789367421718037e-33, 0.05267973244190216, 0.0673794224858284, 0.019608451053500175, 0.06682420521974564, -0.05778013914823532, 0.02761421725153923, -0.013565856032073498, 0.02800583280622959, -0.12291454523801804, 0.006631303112953901, -0.03515766188502312, 0.06612617522478104, -0.0836162194609642, -0.008786700665950775, -0.003584763500839472, 0.01339415181428194, 0.02897348254919052, 0.028882397338747978, 0.03478933125734329, 0.06677356362342834, 0.09168080985546112, 0.10903310775756836, -0.046112094074487686, -0.028431303799152374, -0.03527529165148735, 0.0993281751871109, 0.05583519488573074, -0.11759984493255615, -0.02571704052388668, 0.03238493576645851, -0.13224488496780396, -0.01744401827454567, -0.0020731838885694742, 0.05162941291928291, -0.01076486986130476, -0.07663898169994354, -0.028688030317425728, -0.01504118274897337, -0.04636359214782715, -0.03998264670372009, 0.02311505377292633, -0.009817682206630707, -0.06070323660969734, -0.00852245558053255, 0.001857949304394424, 0.01544099673628807, 0.0484263114631176, 0.012604783289134502, 0.05005587264895439, -0.0008042527479119599, 0.04492802172899246, 0.04521631821990013, -0.005258623044937849, 0.01751074567437172, -0.004655067343264818, 0.012394550256431103, 0.05065467208623886, 0.025535374879837036, 0.06294766068458557, -0.04269634559750557, 0.04599371179938316, -0.0006254990585148335, 0.06841220706701279, 0.07351192831993103, 0.11324600875377655, -0.019384467974305153, -0.0028004420455545187, -0.019215522333979607, 0.04337135702371597, 0.02916402369737625, -0.109012670814991, -0.0061637223698198795, 0.02516426332294941, 0.14439038932323456, 0.03239677473902702, -0.045126982033252716, 0.004203128162771463, -0.07611825317144394, -0.040815070271492004, 0.08691725879907608, -0.0803544893860817, -0.0352671779692173, 0.032468583434820175, -0.01474417932331562, 0.005182890687137842, 0.024508846923708916, 0.12206760793924332, -0.09047591686248779, -0.02348448522388935, -0.0016371090896427631, -0.04857064038515091, -0.030199484899640083, -0.02878868393599987, 0.003897671587765217, -0.05246701091527939, -8.453081997834797e-33, 0.12103038281202316, -0.04997720941901207, -0.06600962579250336, 0.05723312869668007, -0.10823962837457657, -0.033373020589351654, 0.09568426758050919, 0.07611081004142761, 0.029660208150744438, 0.05450071021914482, 0.09838079661130905, -0.06682240217924118, 0.03172718361020088, -0.014331427402794361, 0.09510105103254318, -0.041923947632312775, 0.028897661715745926, -0.016126830130815506, -0.014559888280928135, 0.028867021203041077, -0.050202175974845886, 0.08405954390764236, -0.13416193425655365, 0.058850906789302826, -0.027162710204720497, 0.0281385388225317, 0.01930035836994648, -0.00609624246135354, 0.0005515397060662508, -0.03718234971165657, -0.04736229032278061, -0.032528407871723175, -0.059207506477832794, 0.028012175112962723, -0.06360913068056107, 0.06644030660390854, 0.00355758354999125, -0.009246738627552986, -0.026922602206468582, 0.07928231358528137, 0.027255747467279434, 0.06207781285047531, -0.03072148747742176, 0.015360474586486816, -0.028053613379597664, -0.0343356691300869, -0.07262276858091354, -0.004799465648829937, 0.012884418480098248, -0.07901545614004135, 0.0541045218706131, 0.018856903538107872, -0.12125243991613388, -0.057535964995622635, -0.003408192889764905, -0.0806204304099083, 0.01277647539973259, -0.09811297804117203, -0.021152283996343613, -0.05857550725340843, -0.023494642227888107, -0.02686237171292305, 0.04833673685789108, -0.12175091356039047, -0.0306917205452919, 0.005032129120081663, 0.023334501311182976, -0.005444460082799196, 0.041984979063272476, -0.035654887557029724, 0.04253530502319336, -0.024418151006102562, 0.09108072519302368, 0.012802796438336372, 0.03369557857513428, 0.03986348584294319, -0.037889644503593445, 0.04438244551420212, 0.06752055883407593, -0.056812040507793427, -0.04764324054121971, -0.04000907018780708, 0.02496473304927349, 0.01979161985218525, -0.009294318035244942, -0.007958527654409409, -0.014115258120000362, 0.09759210050106049, 0.10975825786590576, 0.00382817629724741, 0.0064820777624845505, 0.016278164461255074, -0.009429195895791054, 0.14454570412635803, 0.008009025827050209, -5.5916515862008964e-8, -0.04800458252429962, 0.0372513085603714, -0.03686771169304848, 0.03620821610093117, -0.05262824520468712, -0.04146554693579674, -0.004350495990365744, -0.00264935614541173, 0.00837579183280468, 0.03810090944170952, -0.011581262573599815, -0.04058157280087471, -0.07835149019956589, 0.006291377358138561, -0.05306187644600868, 0.07768749445676804, 0.01714012771844864, 0.1147303432226181, 0.011885538697242737, -0.04311475157737732, 0.03807542845606804, -0.004491542931646109, 0.02834118902683258, -0.08452638238668442, -0.02868509106338024, -0.023032840341329575, -0.033313170075416565, 0.019803566858172417, 0.0304577574133873, -0.0531039796769619, -0.010377204976975918, -0.03267316520214081, -0.046764809638261795, 0.0025532643776386976, 0.017498627305030823, 0.06382040679454803, 0.008464908227324486, -0.0014072690391913056, 0.033753231167793274, 0.03768274188041687, 0.07066471129655838, -0.023012176156044006, -0.08591093868017197, -0.014330164529383183, 0.007350754924118519, 0.011144833639264107, -0.037012021988630295, -0.08478997647762299, 0.04213634505867958, 0.009577019140124321, 0.04556252807378769, -0.016244417056441307, -0.06238679587841034, 0.07828251272439957, 0.03877924755215645, 0.03065286949276924, 0.03925967961549759, -0.11642886698246002, -0.020179232582449913, 0.0006900078733451664, -0.05925660952925682, 0.006190468557178974, -0.007479703053832054, -0.030484266579151154 ]
whaleloops/phrase-bert
6f68f4dc2d28aadefa038c79023dc7dfd51f6495
2021-11-03T15:04:02.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2109.06304", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
whaleloops
null
whaleloops/phrase-bert
2,144
5
sentence-transformers
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # whaleloops/phrase-bert This is the official repository for the EMNLP 2021 long paper [Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration](https://arxiv.org/abs/2109.06304). We provide [code](https://github.com/sf-wa-326/phrase-bert-topic-model) for training and evaluating Phrase-BERT in addition to the datasets used in the paper. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Our model is tested on pytorch=1.9.0, tranformers=4.8.1, sentence-tranformers = 2.1.0 TODO Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle'] model = SentenceTransformer('whaleloops/phrase-bert') phrase_embs = model.encode( phrase_list ) [p1, p2, p3] = phrase_embs ``` As in sentence-BERT, the default output is a list of numpy arrays: ```` for phrase, embedding in zip(phrase_list, phrase_embs): print("Phrase:", phrase) print("Embedding:", embedding) print("") ```` An example of computing the dot product of phrase embeddings: ```` import numpy as np print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}') print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}') print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}') ```` An example of computing cosine similarity of phrase embeddings: ```` import torch from torch import nn cos_sim = nn.CosineSimilarity(dim=0) print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}') print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}') print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}') ```` The output should look like: ```` The dot product between phrase 1 and 2 is: 218.43600463867188 The dot product between phrase 1 and 3 is: 165.48483276367188 The dot product between phrase 2 and 3 is: 160.51708984375 The cosine similarity between phrase 1 and 2 is: 0.8142536282539368 The cosine similarity between phrase 1 and 3 is: 0.6130303144454956 The cosine similarity between phrase 2 and 3 is: 0.584893524646759 ```` ## Evaluation Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper: * Turney [[Download](https://storage.googleapis.com/phrase-bert/turney/data.txt) ] * BiRD [[Download](https://storage.googleapis.com/phrase-bert/bird/data.txt)] * PPDB [[Download](https://storage.googleapis.com/phrase-bert/ppdb/examples.json)] * PPDB-filtered [[Download](https://storage.googleapis.com/phrase-bert/ppdb_exact/examples.json)] * PAWS-short [[Download Train-split](https://storage.googleapis.com/phrase-bert/paws_short/train_examples.json) ] [[Download Dev-split](https://storage.googleapis.com/phrase-bert/paws_short/dev_examples.json) ] [[Download Test-split](https://storage.googleapis.com/phrase-bert/paws_short/test_examples.json) ] Change `config/model_path.py` with the model path according to your directories and * For evaluation on Turney, run `python eval_turney.py` * For evaluation on BiRD, run `python eval_bird.py` * for evaluation on PPDB / PPDB-filtered / PAWS-short, run `eval_ppdb_paws.py` with: ```` nohup python -u eval_ppdb_paws.py \ --full_run_mode \ --task <task-name> \ --data_dir <input-data-dir> \ --result_dir <result-storage-dr> \ >./output.txt 2>&1 & ```` ## Train your own Phrase-BERT If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to `phrase-bert/phrase_bert_finetune.py` The datasets we used to fine-tune Phrase-BERT are here: [training data csv file](https://storage.googleapis.com/phrase-bert/phrase-bert-ft-data/pooled_context_para_triples_p%3D0.8_train.csv) and [validation data csv file](https://storage.googleapis.com/phrase-bert/phrase-bert-ft-data/pooled_context_para_triples_p%3D0.8_valid.csv). To re-produce the trained Phrase-BERT, please run: export INPUT_DATA_PATH=<directory-of-phrasebert-finetuning-data> export TRAIN_DATA_FILE=<training-data-filename.csv> export VALID_DATA_FILE=<validation-data-filename.csv> export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens export OUTPUT_MODEL_PATH=<directory-of-saved-model> python -u phrase_bert_finetune.py \ --input_data_path $INPUT_DATA_PATH \ --train_data_file $TRAIN_DATA_FILE \ --valid_data_file $VALID_DATA_FILE \ --input_model_path $INPUT_MODEL_PATH \ --output_model_path $OUTPUT_MODEL_PATH ## Citation: Please cite us if you find this useful: ```` @inproceedings{phrasebertwang2021, author={Shufan Wang and Laure Thompson and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2021", Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration} } ````
[ -0.11470529437065125, -0.04245885834097862, 0.049170512706041336, 0.01923442631959915, 0.021510593593120575, 0.04200662299990654, 0.0030415314249694347, 0.06264961510896683, -0.005018340423703194, -0.014323093928396702, 0.005926281213760376, -0.003933824133127928, 0.017738226801156998, 0.08297602087259293, 0.05417389050126076, 0.10007882863283157, 0.043217312544584274, 0.03366667032241821, -0.0605522021651268, -0.0757230743765831, 0.10671312361955643, 0.1016741693019867, 0.011399016715586185, -0.0011657157447189093, 0.02477249503135681, 0.015936480835080147, -0.048739396035671234, -0.017916541546583176, 0.06000015139579773, 0.07335887104272842, 0.07302821427583694, -0.0007769392686896026, -0.03564458340406418, 0.05907699465751648, 0.054209448397159576, 0.06701178103685379, -0.023664137348532677, 0.0009312169859185815, 0.013382858596742153, 0.006991820875555277, 0.04000001400709152, -0.022837458178400993, -0.08076567202806473, -0.017210636287927628, 0.06179240718483925, -0.04688677936792374, -0.08821945637464523, -0.015726864337921143, -0.005061674863100052, -0.01124524511396885, -0.07964320480823517, 0.0012408738257363439, 0.03839176520705223, 0.08290223777294159, -0.023831814527511597, 0.05518350750207901, 0.0446171835064888, -0.05266984552145004, 0.011107387952506542, -0.14210355281829834, -0.10705319792032242, -0.03715401515364647, -0.005474083125591278, -0.02838457003235817, -0.07116284966468811, 0.015798749402165413, -0.0573900006711483, 0.01982148177921772, 0.010076697915792465, 0.039259862154722214, -0.05852202698588371, 0.07185214012861252, -0.04002268612384796, -0.023629415780305862, -0.04950210452079773, -0.06179587543010712, 0.10539929568767548, -0.005539515521377325, 0.03865203633904457, -0.05751026049256325, -0.0162053145468235, -0.055368538945913315, 0.08511198312044144, 0.014853473752737045, 0.03793655335903168, -0.030358225107192993, 0.018243523314595222, -0.029942262917757034, -0.02636735513806343, -0.00980602391064167, -0.041173093020915985, -0.15056416392326355, 0.06082894280552864, -0.03406115993857384, 0.049317412078380585, 0.008971413597464561, -0.002876884303987026, -0.03236812353134155, 0.021205056458711624, 0.03091345727443695, 0.013347890228033066, 0.06413491070270538, 0.019019970670342445, -0.1405269056558609, 0.03247249126434326, 0.06246359646320343, -0.019645271822810173, -0.026660220697522163, 0.06312549859285355, -0.10129070281982422, 0.001568682724609971, 0.01388978585600853, 0.009001148864626884, -0.02751728892326355, 0.07031023502349854, -0.07296282052993774, -0.011060455814003944, -0.03570052236318588, -0.0020281567703932524, 0.12233629822731018, 0.009446394629776478, 0.03515345975756645, -0.027860188856720924, 0.05095313489437103, -0.045829739421606064, -0.014049993827939034, 0.032054271548986435, -1.4158171683913221e-34, -0.004009705036878586, -0.003878842806443572, -0.01071967463940382, -0.03414403274655342, 0.0067866044119000435, 0.020786458626389503, 0.011844296008348465, 0.02371007204055786, -0.053078439086675644, -0.02654324099421501, -0.07837332785129547, 0.01702909730374813, -0.07966093719005585, 0.05258161947131157, -0.018413284793496132, -0.011479535140097141, -0.05290616303682327, 0.024105112999677658, 0.06995923072099686, 0.050797462463378906, 0.0362091138958931, 0.04481958970427513, 0.005894507747143507, -0.07127635180950165, -0.044706106185913086, -0.016920706257224083, 0.06042119860649109, -0.06287328153848648, -0.022507313638925552, 0.02242698334157467, -0.10432232171297073, 0.05767533555626869, 0.013264509849250317, 0.018281465396285057, -0.03639036789536476, -0.03249365836381912, -0.0023100306279957294, -0.03256615996360779, -0.013818039558827877, -0.04475168138742447, -0.04106969013810158, 0.028164172545075417, -0.012723375111818314, -0.06474485248327255, 0.019739149138331413, -0.008527014404535294, 0.058886270970106125, 0.011706299148499966, 0.11935000121593475, 0.023905480280518532, 0.06098980829119682, -0.018750488758087158, -0.05662858858704567, -0.010738059878349304, 0.023344630375504494, -0.05776415765285492, 0.05279449746012688, 0.010799223557114601, 0.11707406491041183, -0.0032115033827722073, 0.007822049781680107, 0.012347610667347908, 0.054753270000219345, -0.028498442843556404, 0.08860141783952713, 0.0024432518985122442, 0.04005584865808487, 0.07841653376817703, -0.03069416992366314, 0.044503211975097656, -0.014725897461175919, 0.003332003252580762, -0.07794686406850815, 0.016031980514526367, 0.058533478528261185, -0.03924708068370819, 0.002876468701288104, -0.0701976791024208, -0.05590726062655449, 0.07489880919456482, -0.03479485586285591, -0.03671391308307648, 0.009740992449223995, -0.03815164789557457, -0.031787972897291183, -0.005296293646097183, 0.04738239943981171, -0.06897597759962082, 0.024980634450912476, -0.06040063872933388, 0.028451163321733475, -0.042105041444301605, -0.027883119881153107, 0.02894452214241028, 0.016061319038271904, -1.759393435273419e-33, 0.03168488293886185, 0.030354822054505348, -0.08348025381565094, 0.0513666607439518, -0.01864718459546566, -0.08888082951307297, 0.006920659448951483, 0.11245322972536087, 0.016985278576612473, -0.035110682249069214, -0.07098269462585449, -0.06802746653556824, -0.0397757887840271, -0.06665505468845367, 0.1136072501540184, 0.04764426499605179, -0.06632595509290695, 0.0909605398774147, 0.024771353229880333, 0.040231965482234955, 0.0033614151179790497, -0.035760387778282166, -0.10792567580938339, 0.06620021164417267, -0.028162743896245956, 0.01121450774371624, -0.02903546392917633, -0.01477794535458088, 0.016769012436270714, -0.03288900852203369, -0.062433257699012756, 0.04083886742591858, -0.06843126565217972, -0.00016859531751833856, -0.10324255377054214, 0.03393344208598137, 0.0028850631788372993, -0.038275763392448425, 0.05203177034854889, -0.011131907813251019, 0.06029142066836357, 0.07585892826318741, -0.006277814973145723, 0.008668346330523491, -0.05654704570770264, 0.009312966838479042, -0.11628025025129318, -0.06608448922634125, 0.03580353781580925, -0.02249835431575775, 0.002540646819397807, 0.011076166294515133, -0.10592103004455566, 0.02500002831220627, -0.09749442338943481, -0.09442191570997238, 0.00018693305901251733, -0.04126225411891937, -0.12757866084575653, -0.047352295368909836, -0.03600189834833145, 0.0043747322633862495, 0.08289880305528641, -0.04308832809329033, 0.05621427670121193, -0.025853285565972328, -0.002053376752883196, 0.04640154913067818, -0.017528867349028587, -0.02812942862510681, -0.030889613553881645, -0.025071965530514717, 0.04112876579165459, 0.029586967080831528, 0.01319351140409708, 0.02493894100189209, 0.023221492767333984, -0.04998958855867386, -0.014397564344108105, -0.051114436239004135, 0.013163073919713497, -0.04736120253801346, 0.011933131143450737, -0.00004599714884534478, -0.04971034452319145, 0.016356736421585083, 0.035136982798576355, 0.051403023302555084, -0.02083049900829792, 0.040814466774463654, 0.005373646505177021, -0.03014707937836647, 0.006850733887404203, 0.09336492419242859, 0.0510978177189827, -5.032992689280036e-8, -0.062116630375385284, 0.005717922002077103, -0.044300030916929245, 0.038024112582206726, -0.09650630503892899, -0.014476151205599308, -0.004826321266591549, 0.0761149451136589, -0.060904454439878464, -0.03728574514389038, 0.028148680925369263, 0.06764869391918182, -0.08695662021636963, 0.019858134910464287, -0.026023365557193756, 0.11168178915977478, -0.04177936911582947, 0.021822957322001457, 0.04893431439995766, -0.0027009029872715473, -0.0027514284010976553, 0.02438022382557392, 0.007710671983659267, 0.028223169967532158, 0.004163224715739489, 0.011439234018325806, -0.03128151595592499, 0.08827470242977142, -0.009940709918737411, 0.023825986310839653, 0.036238349974155426, 0.0012696172343567014, -0.10335887223482132, 0.006811026018112898, 0.10431737452745438, 0.047396037727594376, 0.009917045012116432, -0.06379851698875427, 0.012653201818466187, 0.0673130601644516, 0.056197576224803925, 0.03832637891173363, -0.10950600355863571, 0.0019391090609133244, 0.12457282841205597, 0.009922313503921032, -0.00005152601806912571, -0.0328652560710907, 0.026877105236053467, -0.0017023371765390038, 0.061733316630125046, -0.061797354370355606, -0.05340127274394035, -0.04328617826104164, -0.0018981730099767447, 0.032513782382011414, -0.048765067011117935, -0.023612651973962784, 0.07413514703512192, -0.054648928344249725, 0.01629376783967018, 0.08920247852802277, 0.09847357124090195, 0.007072666194289923 ]
michaelrglass/albert-base-rci-wikisql-col
d51bdace09428c72213107d0fe12709c1d7d5d2f
2021-06-16T15:58:03.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-wikisql-col
2,143
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
jjzha/jobspanbert-base-cased
0565591b92a2f8da7094dbf05c3ec6e2b93c0987
2022-07-26T08:15:15.000Z
[ "pytorch", "bert", "en", "transformers", "continuous pretraining", "job postings", "JobSpanBERT" ]
null
false
jjzha
null
jjzha/jobspanbert-base-cased
2,140
null
transformers
--- language: - en tags: - continuous pretraining - job postings - JobSpanBERT --- # JobSpanBERT This is the JobSpanBERT model from: Mike Zhang, Kristian Nørgaard Jensen, Sif Dam Sonniks, and Barbara Plank. __SkillSpan: Hard and Soft Skill Extraction from Job Postings__. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. This model is continuously pre-trained from a spanbert-base-cased checkpoint (which can also be found in our repository) on ~3.2M sentences from job postings. More information can be found in the paper. If you use this model, please cite the following paper: ``` @inproceedings{zhang-etal-2022-skillspan, title = "{S}kill{S}pan: Hard and Soft Skill Extraction from {E}nglish Job Postings", author = "Zhang, Mike and Jensen, Kristian N{\o}rgaard and Sonniks, Sif and Plank, Barbara", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.366", pages = "4962--4984", abstract = "Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.", } ```
[ -0.05598774924874306, -0.05565176159143448, 0.03357158228754997, 0.015421109274029732, 0.005415663123130798, 0.023664088919758797, 0.05156513303518295, -0.05692017450928688, -0.0102796396240592, -0.04219409078359604, 0.03475611284375191, 0.04258475452661514, 0.06996939331293106, 0.01257933396846056, -0.0013045337982475758, 0.044166531413793564, 0.04916468262672424, 0.012058485299348831, -0.062291547656059265, -0.09932954609394073, 0.05502225086092949, 0.03364217281341553, 0.02708386816084385, 0.01463782787322998, 0.04906556010246277, -0.025906655937433243, -0.03758813068270683, -0.018200716003775597, 0.08247169107198715, -0.020677650347352028, -0.034557756036520004, 0.05077458918094635, 0.021099330857396126, 0.07570933550596237, 0.026409238576889038, 0.11507215350866318, -0.042185939848423004, -0.01876671425998211, 0.0394335575401783, -0.008910325355827808, -0.012430379167199135, -0.06748054176568985, 0.010286415927112103, -0.00858611986041069, 0.08637319505214691, 0.019549783319234848, -0.025236885994672775, 0.006928915623575449, -0.11340835690498352, -0.05916562303900719, -0.07128031551837921, -0.06725358963012695, 0.14388757944107056, 0.06169223040342331, 0.01566365920007229, 0.022714585065841675, 0.017791030928492546, 0.027985600754618645, 0.01598198525607586, -0.02089715003967285, -0.07502919435501099, -0.04871046915650368, -0.07478711754083633, -0.011397065594792366, 0.037162020802497864, 0.0026259382721036673, -0.08330297470092773, 0.007699719630181789, -0.05554758757352829, 0.046143487095832825, -0.06235511228442192, 0.009235837496817112, -0.07272930443286896, 0.06014289706945419, 0.033742647618055344, -0.015761684626340866, 0.03135247528553009, 0.01333524752408266, 0.023539436981081963, -0.1020951196551323, 0.03609198331832886, -0.07213281095027924, 0.020138410851359367, -0.015001491643488407, 0.0006050250958651304, 0.017800137400627136, 0.03278479352593422, 0.014156414195895195, 0.09064953029155731, -0.01597338356077671, -0.016304882243275642, -0.06779064983129501, 0.008202052675187588, 0.01813550479710102, -0.07834137231111526, 0.0028953966684639454, -0.01894962042570114, 0.10152465105056763, -0.039399027824401855, 0.05301593616604805, 0.05459548905491829, 0.005334882996976376, 0.03133506327867508, -0.01895894855260849, -0.05593378096818924, -0.059939198195934296, -0.005712694022804499, 0.09259936958551407, -0.007902830839157104, -0.0254812054336071, -0.021154556423425674, 0.015392987057566643, -0.06186642497777939, 0.015348010696470737, 0.0010599000379443169, 0.006378531455993652, 0.016661573201417923, 0.0019969837740063667, 0.042597342282533646, 0.08569572865962982, 0.0023266319185495377, 0.0891658216714859, -0.0029946190770715475, -0.05539475008845329, -0.043742403388023376, -0.03694693744182587, 0.0036721392534673214, 4.907780382837224e-33, 0.07843972742557526, 0.07887952774763107, -0.010495925322175026, 0.03952965512871742, -0.017142891883850098, -0.04972311481833458, -0.044794704765081406, 0.05436941236257553, 0.048177123069763184, -0.023567823693156242, -0.04727133736014366, 0.02043311856687069, -0.013290674425661564, 0.06726931780576706, -0.01650886796414852, 0.001122923451475799, 0.028232600539922714, 0.003452690551057458, 0.015375109389424324, 0.027421120554208755, 0.08250803500413895, 0.04133540764451027, -0.03883899748325348, -0.015691274777054787, -0.016287514939904213, 0.02118079364299774, 0.05139797553420067, -0.08785709738731384, -0.05462417006492615, 0.0470488965511322, -0.08512169867753983, 0.0031982557848095894, -0.04508237913250923, 0.01877320557832718, -0.0008011428290046751, 0.018106261268258095, -0.004484521225094795, -0.037122692912817, 0.04492011293768883, -0.02784378081560135, -0.050842221826314926, 0.019456416368484497, 0.08967192471027374, -0.03298125043511391, -0.0574038065969944, -0.05140737444162369, 0.029861366376280785, -0.015182546339929104, 0.003316171932965517, 0.07179596275091171, 0.0708826556801796, -0.002825358184054494, 0.019912075251340866, -0.054078955203294754, -0.004966953303664923, 0.09685809165239334, 0.061313800513744354, 0.030233515426516533, 0.021618176251649857, 0.0766926184296608, 0.0020311204716563225, -0.023378783836960793, 0.022995376959443092, 0.03274206444621086, 0.08875320851802826, -0.016483034938573837, -0.0669097974896431, 0.04621654003858566, 0.13586370646953583, -0.034012049436569214, -0.05081807076931, -0.028328100219368935, -0.025222087278962135, -0.006438558921217918, 0.027197761461138725, -0.05600395426154137, 0.019161006435751915, -0.10914924740791321, -0.019587576389312744, 0.08380318433046341, 0.005135863553732634, -0.05062531307339668, -0.029012851417064667, -0.0328545942902565, 0.021233079954981804, -0.035856496542692184, 0.054983511567115784, -0.09088770300149918, 0.0347290113568306, 0.013372831046581268, 0.02599175274372101, -0.04402494803071022, 0.01969991996884346, 0.05123237892985344, -0.04198312386870384, -5.691249939054171e-33, -0.00552188279107213, 0.023095469921827316, -0.10482335835695267, 0.07506958395242691, 0.016455577686429024, -0.07320371270179749, 0.13539624214172363, 0.10133086144924164, -0.010126810520887375, -0.03639347851276398, -0.010746654123067856, -0.05909901112318039, 0.020617593079805374, 0.0291023850440979, -0.0030734864994883537, -0.03088921122252941, -0.009021501988172531, 0.03765149414539337, 0.023585565388202667, 0.09294089674949646, 0.03951141983270645, -0.027032623067498207, -0.11322060972452164, 0.07970104366540909, 0.04342280700802803, 0.033215951174497604, 0.0148477079346776, 0.037499941885471344, -0.06986385583877563, 0.08067229390144348, -0.05131823197007179, -0.022503234446048737, -0.03911026939749718, 0.0565790981054306, -0.10535068064928055, -0.04006390646100044, -0.05121351778507233, 0.004304422065615654, 0.03307056427001953, 0.06322718411684036, 0.031599510461091995, -0.004790385253727436, -0.0785367414355278, -0.017396407201886177, -0.04791446775197983, -0.0316016748547554, -0.10624368488788605, -0.05157720297574997, -0.044072601944208145, 0.017307955771684647, 0.022606901824474335, 0.042473092675209045, -0.09678328037261963, 0.020312989130616188, -0.07625400274991989, -0.10257052630186081, 0.04398225620388985, -0.12842440605163574, -0.07603581249713898, -0.010711060836911201, -0.05947502702474594, 0.06533670425415039, 0.04977934807538986, -0.007799998391419649, 0.09225916862487793, -0.122822105884552, -0.008849798701703548, 0.03233174607157707, -0.046385668218135834, -0.09802491217851639, 0.09121674299240112, 0.006986682768911123, -0.030704861506819725, 0.007613162975758314, -0.06810746341943741, -0.04595319926738739, 0.007504885550588369, -0.04222770780324936, -0.014224443584680557, -0.04433593526482582, -0.09650479257106781, -0.0629432275891304, 0.025083787739276886, 0.06916630268096924, 0.00026459372020326555, 0.06885171681642532, -0.02853439189493656, 0.00040882721077650785, 0.03028997778892517, -0.03216230496764183, -0.013187237083911896, 0.023356949910521507, -0.02940448559820652, 0.06254695355892181, -0.10053818672895432, -6.414413888933268e-8, -0.08910912275314331, -0.016035383567214012, -0.040152084082365036, 0.023321112617850304, 0.03885515779256821, -0.04961665719747543, -0.018147775903344154, 0.022207682952284813, 0.014178403653204441, -0.0413762629032135, -0.019042616710066795, 0.05423976480960846, -0.023634282872080803, -0.08670033514499664, 0.0256053376942873, 0.08765175193548203, 0.04242897033691406, 0.03824916109442711, -0.06331916898488998, -0.06952542066574097, 0.07386960834264755, 0.055543676018714905, -0.03419129177927971, -0.03351937234401703, 0.018894707784056664, -0.009096214547753334, -0.07776028662919998, 0.11257510632276535, 0.003582478268072009, 0.0022880504839122295, -0.010234592482447624, -0.007110831327736378, -0.05548635497689247, -0.030958684161305428, 0.07178928703069687, 0.07327147573232651, 0.03883320465683937, -0.11701097339391708, -0.013951338827610016, 0.054405950009822845, 0.02923567220568657, 0.010536612942814827, -0.06484529376029968, -0.022688541561365128, 0.0944422036409378, -0.00536387600004673, -0.052275776863098145, -0.0212105643004179, 0.03645854815840721, -0.01731843873858452, 0.05572674050927162, -0.008159722201526165, -0.047942861914634705, 0.03628968447446823, 0.042186152189970016, 0.02485402673482895, 0.031404029577970505, -0.08379030227661133, 0.006671524606645107, 0.017595261335372925, 0.04032259061932564, 0.0545109361410141, 0.06764189153909683, -0.0034674175549298525 ]
Laggrif/DialoGPT-medium-Luke
36fcfc7f3d7209dcb7a349804a7a6f5dab2ddd94
2022-06-21T17:50:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Laggrif
null
Laggrif/DialoGPT-medium-Luke
2,138
null
transformers
--- tags: - conversational --- # Luke DialoGPT Model
[ -0.0526893176138401, -0.0894097313284874, 0.05479353293776512, -0.0293112862855196, 0.010608881711959839, 0.009249537251889706, 0.10537885129451752, 0.03502672165632248, 0.10639014095067978, -0.01961355097591877, 0.009214483201503754, -0.013150538317859173, 0.03444003313779831, 0.012775237672030926, 0.0396619588136673, -0.0007137682987377048, -0.014399743638932705, -0.06745891273021698, -0.023374294862151146, 0.033646292984485626, 0.005280607845634222, 0.14833825826644897, 0.031009720638394356, 0.025535419583320618, 0.000935589661821723, 0.0349755585193634, -0.042661383748054504, -0.034270431846380234, 0.05768926069140434, -0.014739257283508778, 0.05357423797249794, 0.06516434252262115, 0.0376121923327446, 0.002690446563065052, -0.055041611194610596, -0.003547523869201541, 0.006839607376605272, 0.04339976981282234, 0.050900865346193314, -0.0011980986455455422, -0.06371702998876572, -0.005351820960640907, -0.03946700692176819, -0.00604829890653491, 0.06098208576440811, -0.04506806284189224, -0.059215690940618515, -0.024177704006433487, 0.00997361820191145, 0.048387277871370316, -0.09319135546684265, -0.03621356934309006, 0.007168231066316366, 0.09274788200855255, -0.008571036159992218, 0.04680420085787773, -0.0615130178630352, -0.08317676186561584, 0.07475356757640839, 0.012447904795408249, -0.058252181857824326, 0.01861867681145668, -0.09669565409421921, 0.047370657324790955, 0.0010304073803126812, 0.0727267861366272, -0.07219858467578888, 0.015450715087354183, -0.03309013321995735, 0.08548319339752197, -0.0037370752543210983, 0.02785654179751873, 0.05902979150414467, -0.03518078476190567, -0.02043243497610092, -0.015051278285682201, 0.013489753939211369, -0.014066913165152073, 0.06554282456636429, -0.0003985466610174626, 0.0017604733584448695, -0.11191651970148087, 0.016616106033325195, 0.01091669499874115, -0.021902404725551605, -0.04650679603219032, -0.007727142423391342, -0.05814417451620102, 0.020407136529684067, 0.020873958244919777, -0.08849147707223892, -0.09963588416576385, 0.06213408708572388, 0.03216971084475517, -0.027526186779141426, 0.014342619106173515, -0.04554985836148262, -0.09174438565969467, -0.042556215077638626, 0.10788771510124207, -0.013571163639426231, 0.06373988091945648, 0.0503225140273571, -0.07542797178030014, 0.004124489612877369, 0.03155837953090668, -0.003917742986232042, 0.002465061144903302, 0.045089393854141235, -0.037222400307655334, -0.013844575732946396, -0.045803457498550415, 0.01035788469016552, -0.03279595822095871, 0.08562345057725906, -0.07970194518566132, 0.08569809049367905, -0.03517930209636688, 0.023025983944535255, -0.012367719784379005, -0.019537555053830147, 0.004160820972174406, -0.022238323464989662, -0.022647427394986153, -0.020082995295524597, -0.02995426207780838, -0.042308010160923004, -2.7289571552079733e-33, 0.10587260872125626, -0.009339005686342716, 0.07939033955335617, 0.08419574052095413, 0.04419710114598274, 0.05739142373204231, -0.07549930363893509, -0.06134985387325287, -0.006019668187946081, -0.03206055611371994, -0.028253352269530296, -0.08377210050821304, -0.07907312363386154, 0.0631401464343071, 0.0033153691329061985, 0.050371356308460236, -0.09079482406377792, 0.005117482505738735, -0.016943132504820824, -0.06414962559938431, -0.026626400649547577, 0.06178291514515877, 0.011701553128659725, 0.06890431046485901, 0.116502545773983, 0.062464114278554916, 0.0915885791182518, -0.057565875351428986, -0.036462485790252686, 0.06637521833181381, -0.05276785418391228, 0.045279961079359055, -0.027804534882307053, 0.012671501375734806, 0.013604114763438702, 0.04920767620205879, -0.03666403517127037, -0.007471953984349966, 0.028648318722844124, -0.08328387141227722, -0.02952684462070465, -0.017000621184706688, -0.025673866271972656, -0.039701566100120544, -0.026283126324415207, 0.05243980512022972, 0.009451182559132576, 0.041022516787052155, 0.010799562558531761, 0.055320240557193756, -0.025390708819031715, 0.04851160943508148, -0.025563683360815048, -0.0604332834482193, -0.001372873899526894, -0.05431791767477989, -0.004896410275250673, 0.07107667624950409, 0.014895042404532433, -0.0048537482507526875, -0.0020748514216393232, 0.0058206114917993546, 0.04672528803348541, -0.058548230677843094, 0.07603945583105087, 0.047567736357450485, -0.07699110358953476, -0.0548115074634552, 0.025833427906036377, -0.05269067734479904, -0.06867892295122147, 0.019004452973604202, -0.00645454041659832, 0.03784600645303726, -0.010735183954238892, 0.020301369950175285, -0.04767220467329025, -0.08254074305295944, 0.06121357902884483, 0.04193812981247902, -0.05653974413871765, -0.10842923074960709, -0.035784199833869934, -0.0010965430410578847, 0.0003011144290212542, -0.07185345143079758, 0.04809162765741348, -0.06053617224097252, 0.013443728908896446, -0.008765616454184055, 0.06138652190566063, 0.022061483934521675, -0.037264131009578705, 0.02338133193552494, -0.082307830452919, 5.433437028282973e-34, -0.03583727031946182, -0.011135163716971874, -0.10356228798627853, 0.09991397708654404, 0.03280539810657501, -0.06939071416854858, 0.017517821863293648, 0.13391011953353882, 0.04069456085562706, -0.040729936212301254, -0.043564628809690475, 0.05534830316901207, -0.034628041088581085, -0.000024147977455868386, 0.12301640212535858, -0.0005336266476660967, 0.04823155328631401, -0.05460255593061447, -0.011930957436561584, 0.019374236464500427, 0.11647932976484299, -0.002493214560672641, -0.13496658205986023, 0.002784022130072117, -0.01041165366768837, -0.004853151272982359, -0.05185827612876892, 0.08459313958883286, 0.09521501511335373, -0.05282492935657501, -0.08520771563053131, 0.027624329552054405, -0.015070146881043911, -0.05099678412079811, -0.023666732013225555, 0.02097335085272789, 0.06066349148750305, 0.004547464195638895, 0.015818139538168907, 0.042617782950401306, 0.06005597114562988, -0.04577859118580818, -0.008766957558691502, -0.04581109434366226, -0.01341517735272646, -0.05355963855981827, -0.0202105063945055, -0.05875985696911812, -0.0782180055975914, 0.0007938285125419497, 0.007175665348768234, -0.038268737494945526, -0.02978977933526039, -0.027619346976280212, -0.07914897054433823, -0.02736695669591427, 0.0040484643541276455, -0.016312861815094948, 0.02981739491224289, 0.006216596346348524, -0.03163247928023338, -0.05698630213737488, 0.04695127159357071, -0.01981458067893982, 0.01653103157877922, -0.07381957024335861, 0.028601180762052536, 0.0007323076715692878, 0.017602941021323204, -0.037369515746831894, 0.06517615169286728, -0.01821717619895935, -0.0029928646981716156, 0.03252057731151581, 0.0725775957107544, -0.00275333016179502, -0.021245330572128296, -0.06855858862400055, 0.02335568331182003, -0.08709560334682465, -0.026384852826595306, -0.020114056766033173, 0.04652481898665428, 0.0866672545671463, 0.02560841664671898, 0.05313611775636673, 0.026942534372210503, 0.0788472592830658, 0.003434441750869155, 0.02447705715894699, 0.007259608246386051, -0.009445317089557648, 0.03156520426273346, 0.06813231110572815, -0.031050710007548332, -2.2690860745910868e-8, -0.09099132567644119, -0.02760530449450016, -0.024584874510765076, 0.039453912526369095, 0.03888306766748428, 0.03573960065841675, 0.05891590192914009, 0.04605509713292122, -0.0007312737870961428, 0.0012003821320831776, 0.07648446410894394, 0.10752055048942566, -0.0007955793989822268, 0.03373293578624725, -0.03562712296843529, 0.05395315960049629, -0.06258240342140198, 0.01814737543463707, -0.02808569185435772, -0.03836102411150932, 0.07535266131162643, -0.018994558602571487, -0.015604202635586262, 0.08145580440759659, 0.056440453976392746, -0.05942760780453682, -0.08234068006277084, 0.10083857923746109, -0.10237855464220047, 0.06104230135679245, -0.014345947653055191, 0.10640992224216461, -0.13020065426826477, -0.06103232130408287, -0.08512687683105469, 0.014924733899533749, 0.003179488703608513, -0.04485630616545677, 0.025152286514639854, -0.011256908066570759, 0.02945082075893879, 0.03687401860952377, -0.0985434278845787, -0.004129305947571993, 0.08615656197071075, 0.015797534957528114, 0.03103627637028694, -0.07229790836572647, -0.017681928351521492, -0.06707017868757248, -0.03405211493372917, 0.0019694699440151453, 0.017780082300305367, -0.0011022606631740928, -0.024024562910199165, -0.013622754253447056, -0.003740692511200905, 0.02060490846633911, 0.057125382125377655, -0.012460929341614246, 0.061712443828582764, 0.05702982470393181, -0.009655366651713848, -0.05280081927776337 ]
GroNLP/gpt2-small-italian
9a5b0043f33d9adacd23d53e3a8e9c70f71febc9
2021-05-21T09:58:53.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "it", "arxiv:2012.05628", "transformers", "adaption", "recycled", "gpt2-small" ]
text-generation
false
GroNLP
null
GroNLP/gpt2-small-italian
2,136
null
transformers
--- language: it tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # GPT-2 recycled for Italian (small) [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) • [Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) ## Model description This model is based on the small OpenAI GPT-2 ([`gpt2`](https://huggingface.co/gpt2)) model. For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle). ## Related models ### Dutch - [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings. ### Italian - [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings. ## How to use ```python from transformers import pipeline pipe = pipeline("text-generation", model="GroNLP/gpt2-small-italian") ``` ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-small-italian") model = AutoModel.from_pretrained("GroNLP/gpt2-small-italian") # PyTorch model = TFAutoModel.from_pretrained("GroNLP/gpt2-small-italian") # Tensorflow ``` ## BibTeX entry ```bibtex @misc{devries2020good, title={As good as new. How to successfully recycle English GPT-2 to make models for other languages}, author={Wietse de Vries and Malvina Nissim}, year={2020}, eprint={2012.05628}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.11205121874809265, -0.012354469858109951, -0.020820504054427147, 0.02239690162241459, 0.06895915418863297, -0.07969732582569122, -0.027879701927304268, 0.0686274841427803, -0.007760918233543634, -0.0899244025349617, 0.000037691912439186126, -0.00284908851608634, -0.043342225253582, 0.05863972380757332, -0.024696212261915207, 0.007106631062924862, -0.008107306435704231, 0.06675665080547333, -0.024381617084145546, -0.010808021761476994, 0.033447474241256714, 0.017796199768781662, 0.06339248269796371, 0.018569236621260643, 0.03303966298699379, 0.020792122930288315, 0.028940588235855103, 0.006634693592786789, 0.04988918825984001, -0.029871374368667603, 0.03507004305720329, 0.06732909381389618, -0.040817879140377045, 0.0412314236164093, 0.002856082748621702, 0.08817464113235474, -0.01672433689236641, -0.0286265816539526, -0.061865296214818954, -0.022004539147019386, 0.06785380095243454, -0.01246094610542059, -0.01765824481844902, 0.007710270117968321, 0.08517578989267349, -0.01924184337258339, -0.021021807566285133, -0.034952472895383835, -0.18947453796863556, -0.040063027292490005, 0.01966319978237152, -0.05115027725696564, -0.02426634356379509, 0.038239337503910065, 0.029141541570425034, 0.006480146199464798, -0.03635337948799133, -0.07954370230436325, -0.006088973488658667, -0.021439779549837112, 0.06257493793964386, -0.008340015076100826, -0.11292358487844467, 0.00402724277228117, -0.01081128604710102, 0.06096179783344269, 0.012101462110877037, 0.04497166723012924, -0.015012962743639946, -0.0292158592492342, -0.0438440702855587, 0.01534857228398323, -0.08789608627557755, 0.0005318408948369324, 0.021938402205705643, 0.07432691007852554, 0.049063362181186676, 0.006782192271202803, -0.024409493431448936, -0.039096783846616745, 0.04739852249622345, 0.03433727100491524, 0.09187152236700058, -0.04563506692647934, -0.0035872231237590313, 0.01503452006727457, 0.07002156972885132, 0.02197963558137417, 0.049854785203933716, -0.02696089632809162, -0.04554472118616104, 0.04558802768588066, 0.07855235785245895, 0.032687339931726456, -0.006780683994293213, -0.037393201142549515, 0.0330669991672039, 0.012536752037703991, -0.04681890830397606, 0.08137331902980804, 0.020622344687581062, 0.05426938459277153, 0.02011610008776188, 0.02656150422990322, -0.07305063307285309, -0.0376385934650898, -0.017006760463118553, 0.03730718791484833, -0.008300704881548882, -0.02565460279583931, 0.01844591461122036, -0.013806450180709362, -0.007372591644525528, -0.06510064005851746, -0.024110132828354836, 0.02358103357255459, -0.045349497348070145, -0.02504807710647583, 0.004766352940350771, 0.062386203557252884, -0.09787119925022125, 0.03231121227145195, -0.02885979227721691, -0.0969659686088562, -0.025179952383041382, 0.07406994700431824, -0.055445533245801926, 3.201367396310327e-33, 0.05795983597636223, 0.072576142847538, -0.016333656385540962, 0.020416686311364174, 0.06684286147356033, 0.04364960268139839, -0.00041501439409330487, -0.10105424374341965, -0.02370475046336651, -0.08272106945514679, -0.01715785823762417, 0.02129075862467289, -0.09829457104206085, 0.043134938925504684, 0.01312334556132555, -0.05024297535419464, -0.020816927775740623, 0.08432038128376007, 0.03136688470840454, 0.01910294219851494, 0.04093330726027489, 0.14795076847076416, -0.017323093488812447, -0.03145401179790497, 0.008526962250471115, 0.024452682584524155, 0.006561994086951017, -0.08825592696666718, -0.01218319684267044, 0.03471718356013298, -0.043314334005117416, 0.005378709174692631, -0.0035811616107821465, 0.04167468845844269, -0.042254239320755005, -0.031047021970152855, -0.041719093918800354, -0.1220078319311142, 0.026446782052516937, -0.06841905415058136, 0.068113312125206, 0.03748564422130585, 0.07109460979700089, -0.07918136566877365, -0.03473077714443207, -0.06600194424390793, 0.048873964697122574, 0.025989409536123276, -0.015903452411293983, 0.016266200691461563, -0.0177537240087986, 0.060471706092357635, -0.08564111590385437, 0.034731391817331314, -0.022175809368491173, 0.010126297362148762, 0.04302690178155899, 0.017084671184420586, 0.10989031940698624, 0.05208325386047363, -0.008143511600792408, 0.05953556299209595, 0.062336016446352005, 0.013553161174058914, 0.04066247493028641, 0.09578082710504532, -0.054769501090049744, 0.02023959718644619, 0.04485497251152992, 0.07145530730485916, -0.06354192644357681, 0.03825930133461952, -0.01601267419755459, 0.035622380673885345, 0.09380359947681427, -0.04925772547721863, 0.019822556525468826, -0.10451031476259232, 0.014889881946146488, 0.0057134986855089664, -0.13878871500492096, -0.015234633348882198, 0.013083439320325851, -0.02954000234603882, -0.07811111211776733, -0.10119003057479858, 0.024817142635583878, -0.08933987468481064, 0.0018109324155375361, -0.010232744738459587, -0.04375665634870529, -0.05954710766673088, -0.06262598186731339, -0.032702021300792694, 0.055754467844963074, -3.0877191331048894e-33, 0.08110249042510986, -0.021533280611038208, -0.008847828954458237, 0.1003909781575203, -0.043630775064229965, -0.14202457666397095, 0.008320213295519352, 0.10483671724796295, 0.01677592098712921, -0.033468641340732574, 0.03944046050310135, 0.02480223961174488, 0.09279792755842209, 0.0335979200899601, 0.10487724095582962, -0.06869321316480637, 0.014143862761557102, -0.09016616642475128, 0.047874875366687775, 0.06128005310893059, 0.048137836158275604, 0.004528477322310209, -0.11938270181417465, 0.01961682178080082, -0.0036057177931070328, 0.03145948052406311, 0.01272554136812687, -0.05906018242239952, 0.05193629115819931, -0.051744163036346436, -0.016996972262859344, 0.018594713881611824, -0.05562012642621994, 0.019057128578424454, -0.05639071762561798, 0.02476874366402626, 0.09013084322214127, 0.06513852626085281, -0.03599221259355545, 0.03515453264117241, 0.02432326041162014, -0.008407180197536945, -0.025730885565280914, 0.031009817495942116, -0.03905108571052551, 0.03297895938158035, -0.022122565656900406, 0.01213311031460762, -0.014504059217870235, -0.09757304936647415, 0.031929146498441696, 0.015498603694140911, -0.0405111201107502, 0.0346708670258522, -0.0262150801718235, -0.07791391760110855, 0.07531265169382095, -0.02356773614883423, -0.11723380535840988, -0.006772016640752554, -0.00200302479788661, -0.06376946717500687, 0.03171583265066147, -0.043362807482481, -0.006780441850423813, -0.1000048816204071, -0.04112166911363602, -0.027817625552415848, 0.029202500358223915, -0.017221393063664436, 0.04910654574632645, -0.031725671142339706, 0.00881209596991539, 0.026062730699777603, 0.01781078428030014, -0.024200424551963806, 0.01064752135425806, 0.013888955116271973, 0.09287925064563751, -0.04898638650774956, -0.022673912346363068, 0.023999415338039398, 0.05951809510588646, 0.027186697348952293, 0.10262025147676468, -0.08295261114835739, 0.01590091548860073, 0.022459901869297028, 0.01764390617609024, 0.05152465030550957, -0.05446596071124077, 0.10225459188222885, 0.002804012503474951, 0.11923506110906601, -0.010844185948371887, -5.185985330058429e-8, -0.0480765774846077, -0.04851033538579941, -0.032634034752845764, 0.09864836186170578, -0.10182902216911316, -0.08302383869886398, -0.005803620908409357, 0.01991288550198078, -0.004109142813831568, 0.0077090151607990265, 0.008733406662940979, 0.012505173683166504, -0.058446891605854034, -0.06570305675268173, 0.0033234120346605778, 0.08099089562892914, 0.010507547296583652, 0.032437365502119064, -0.06150703877210617, 0.00763903371989727, -0.06540579348802567, 0.029585514217615128, 0.04362509772181511, -0.041379738599061966, -0.03516823425889015, -0.03698260337114334, -0.006303003989160061, 0.019430937245488167, 0.02121219038963318, -0.018501155078411102, 0.06185544654726982, 0.02971312589943409, -0.0070960186421871185, 0.046740997582674026, 0.0060888552106916904, 0.017713842913508415, -0.02697952650487423, -0.015281849540770054, 0.047761667519807816, -0.026915479451417923, 0.09605255722999573, -0.03259860724210739, -0.07984990626573563, -0.00010504922101972625, 0.08281373232603073, 0.00977332703769207, -0.06886535882949829, -0.08894144743680954, 0.006708852481096983, 0.02538258023560047, -0.03254443779587746, 0.012755978852510452, -0.03379008546471596, 0.03727586939930916, 0.01877729222178459, 0.0421019084751606, -0.03574177995324135, -0.011284888722002506, 0.05480074882507324, 0.01369891595095396, 0.015931319445371628, 0.016379699110984802, 0.05849003791809082, 0.020860474556684494 ]
hf-internal-testing/tiny-random-unispeech
a90315fed34d4891a62a539637210f2bdd30e68f
2022-01-26T13:56:35.000Z
[ "pytorch", "unispeech", "audio-classification", "transformers" ]
audio-classification
false
hf-internal-testing
null
hf-internal-testing/tiny-random-unispeech
2,136
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
mrsinghania/asr-question-detection
90b29f15265e6819044d484039b1ae9ca683342d
2021-09-21T06:44:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mrsinghania
null
mrsinghania/asr-question-detection
2,136
2
transformers
<i>Question vs Statement classifier</i> trained on more than 7k samples which were coming from spoken data in an interview setting <b>Code for using in Transformers:</b> from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("mrsinghania/asr-question-detection") model = AutoModelForSequenceClassification.from_pretrained("mrsinghania/asr-question-detection")
[ -0.06994037330150604, 0.021035272628068924, -0.04242785647511482, 0.04690863937139511, -0.015079021453857422, 0.020538851618766785, 0.018428444862365723, 0.028734387829899788, -0.0365055613219738, -0.08027040213346481, -0.055534277111291885, -0.09425815939903259, -0.026135282590985298, -0.028871480375528336, -0.014969364739954472, 0.016330834478139877, 0.017589882016181946, -0.056620508432388306, -0.09342555701732635, -0.08298061788082123, 0.04163229838013649, 0.11854005604982376, 0.06716598570346832, 0.07609681785106659, 0.061842985451221466, -0.0323706790804863, 0.027317877858877182, -0.01512688584625721, 0.08863634616136551, 0.03291149437427521, -0.0017353249713778496, 0.018432358279824257, 0.03318661078810692, 0.12141896039247513, -0.027515456080436707, 0.00693716574460268, -0.04924030229449272, 0.03717353940010071, 0.02398710697889328, -0.02080518566071987, 0.007747516501694918, -0.08656870573759079, -0.024499811232089996, -0.053285714238882065, 0.03499767184257507, -0.05986279994249344, -0.060028042644262314, 0.028406741097569466, 0.02754782885313034, -0.019745375961065292, -0.09132065623998642, -0.024844978004693985, 0.006647518370300531, 0.06300806254148483, -0.08785552531480789, -0.021642664447426796, 0.009240850806236267, -0.001286364160478115, -0.013527458533644676, 0.03989957645535469, -0.1131359115242958, -0.07701314240694046, 0.01960049569606781, 0.052400682121515274, -0.07269926369190216, -0.019443295896053314, 0.0011449585435912013, 0.009741542860865593, 0.058902692049741745, -0.04256190359592438, -0.05444807559251785, 0.07436531782150269, 0.032139912247657776, 0.09471534937620163, 0.06460786610841751, 0.03507635369896889, -0.0035123296547681093, -0.04183870926499367, 0.07964416593313217, -0.04440882056951523, 0.03172922134399414, -0.08395495265722275, 0.03889156132936478, 0.04842235893011093, 0.07988908141851425, -0.021127974614501, -0.009657267481088638, 0.010023967362940311, -0.056448064744472504, -0.016363391652703285, -0.041213005781173706, -0.11524907499551773, 0.016051650047302246, 0.03628293424844742, -0.02019139938056469, 0.054659195244312286, -0.04320515692234039, 0.010489674285054207, 0.0613584890961647, 0.01072701346129179, 0.011111527681350708, -0.004969645757228136, -0.01066967286169529, 0.013299916870892048, -0.07729315757751465, -0.053811658173799515, 0.02554410882294178, -0.02783898264169693, 0.05233803391456604, -0.03517621010541916, 0.002497493289411068, 0.02408258430659771, 0.031047850847244263, -0.05944286286830902, 0.03374739736318588, 0.044435128569602966, -0.012648272328078747, 0.022409824654459953, -0.0548020601272583, 0.069724902510643, -0.0167850349098444, 0.02837495319545269, -0.05870168283581734, 0.0024332241155207157, 0.07890520989894867, -0.03549644351005554, -0.03896896168589592, 7.861410875343815e-33, -0.017695650458335876, 0.026272060349583626, 0.0489693246781826, 0.01727164164185524, -0.06037236005067825, 0.004222580697387457, 0.0026675236877053976, 0.05642283335328102, 0.06294938176870346, -0.03678160533308983, -0.019814033061265945, 0.0007047919789329171, -0.014686609618365765, 0.026584995910525322, -0.01977439969778061, 0.011425523087382317, -0.08532311767339706, -0.002277837134897709, -0.04526950418949127, 0.011881017126142979, 0.11151953786611557, 0.0018297693459317088, 0.005987129174172878, 0.03949906677007675, 0.01837640255689621, 0.004775443580001593, 0.05758900195360184, -0.0467112697660923, -0.009683940559625626, 0.00008821923984214664, -0.13591179251670837, -0.0872822254896164, -0.01137517485767603, -0.015341714955866337, 0.0660107210278511, 0.026425352320075035, 0.07998186349868774, -0.019295042380690575, -0.07040972262620926, -0.08232678472995758, -0.023062918335199356, -0.0008307982352562249, 0.05609261617064476, -0.013181619346141815, -0.03843251243233681, -0.017533589154481888, -0.05229566991329193, -0.011505001224577427, 0.008359771221876144, 0.046464692801237106, 0.0012929099611938, -0.024977434426546097, -0.07032003998756409, -0.0040347762405872345, 0.09839726984500885, 0.0014601375441998243, 0.06941850483417511, 0.00837444793432951, 0.0754474475979805, 0.03595415875315666, -0.026304231956601143, -0.01710863970220089, 0.04713529348373413, 0.028202340006828308, 0.0925227627158165, -0.029847808182239532, -0.017133772373199463, 0.01138900127261877, 0.04275413602590561, 0.014634151011705399, 0.010288065299391747, -0.04822351783514023, -0.03408604860305786, -0.015744363889098167, -0.02525714784860611, 0.025464536622166634, -0.03402704745531082, 0.03823172673583031, -0.01424828078597784, 0.017881281673908234, 0.01850905828177929, -0.013347811065614223, -0.005417036823928356, -0.05965954437851906, -0.0029188296757638454, 0.030056802555918694, 0.08866465091705322, -0.0712861567735672, 0.03190401941537857, -0.01987217739224434, 0.012727354653179646, 0.05123727396130562, -0.031077386811375618, -0.009620945900678635, 0.008375514298677444, -9.925468752792362e-33, 0.01787329837679863, 0.0717330053448677, -0.0741218626499176, 0.09051962941884995, -0.03191603720188141, 0.0038106886204332113, 0.06498855352401733, 0.1512586772441864, -0.01787658780813217, -0.030442943796515465, 0.057394132018089294, -0.0570511631667614, 0.08311353623867035, -0.044967591762542725, 0.03745283931493759, 0.021183930337429047, -0.034017499536275864, 0.03798660263419151, 0.05235534533858299, 0.11820364743471146, -0.03692323714494705, 0.12837444245815277, -0.09688209742307663, 0.002067331923171878, -0.1158921867609024, -0.012733166106045246, -0.07466722279787064, 0.05588085204362869, 0.033174630254507065, -0.0018747097346931696, -0.04529457539319992, -0.014011320658028126, -0.038046132773160934, -0.009782717563211918, -0.07477512210607529, -0.0035471338778734207, 0.05725989490747452, -0.09142793715000153, 0.0026386750396341085, 0.11058894544839859, 0.06543044745922089, 0.0015864226734265685, -0.12684881687164307, 0.009642777033150196, -0.06225096434354782, -0.10650947690010071, -0.06381313502788544, -0.03286726027727127, 0.07433486729860306, -0.01595713384449482, 0.02059752121567726, -0.026377379894256592, -0.0025505004450678825, 0.0019272490171715617, -0.040438469499349594, -0.04030286520719528, 0.0288603026419878, -0.04168028384447098, -0.03529207035899162, -0.020046021789312363, -0.033364783972501755, 0.04629550129175186, 0.042180173099040985, -0.12485212832689285, 0.015973959118127823, -0.026848381385207176, -0.02358967997133732, 0.028237666934728622, 0.02769147977232933, -0.01910199224948883, -0.04356600344181061, 0.02442016638815403, 0.04120718315243721, 0.00018127770454157144, -0.01525166630744934, -0.010190434753894806, -0.08689620345830917, -0.05284487456083298, -0.031890302896499634, -0.036273159086704254, -0.08646294474601746, -0.03379512578248978, 0.04092957824468613, 0.14104506373405457, -0.05043558403849602, 0.08696827292442322, 0.04353814199566841, 0.05134256184101105, 0.03114341013133526, 0.017582913860678673, 0.018039440736174583, 0.017652148380875587, 0.022706512361764908, 0.01243678294122219, -0.05161568894982338, -5.0675794227572624e-8, -0.05923568084836006, 0.05980922654271126, 0.024414721876382828, -0.01382029615342617, 0.035979487001895905, -0.08589192479848862, -0.09668659418821335, 0.06756541132926941, -0.054312847554683685, 0.03183974698185921, -0.017986517399549484, -0.004022806417196989, -0.04900623485445976, -0.002502691699191928, 0.011754737235605717, 0.03098924458026886, 0.012675294652581215, 0.07337528467178345, 0.005544215440750122, -0.1529151052236557, 0.0683048740029335, -0.009167639538645744, 0.0003696483909152448, 0.06689095497131348, -0.0016142023960128427, 0.040491025894880295, 0.011513855308294296, 0.07216981798410416, -0.06053376570343971, -0.02545815519988537, -0.06851290911436081, 0.017831094563007355, -0.09122540056705475, -0.07250344753265381, 0.0456172451376915, 0.07187595963478088, 0.01746705174446106, -0.07612448185682297, -0.013488070107996464, 0.029550746083259583, -0.02811218611896038, -0.03904999792575836, -0.10885364562273026, 0.0007915960159152746, -0.0013741027796640992, 0.00854069646447897, -0.05272301658987999, -0.12421932816505432, -0.00011632480891421437, -0.042266830801963806, -0.008389842696487904, -0.014548195526003838, -0.017781313508749008, 0.009158573113381863, 0.07574355602264404, 0.03908030688762665, -0.020210085436701775, -0.04357659071683884, -0.09131982177495956, -0.009601944126188755, 0.05031930282711983, 0.07283147424459457, -0.014993628486990929, -0.030180759727954865 ]
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
351a8218e59777dcb0a1b454ead77a0c39014bc5
2021-05-19T21:10:03.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ktrapeznikov
null
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
2,135
1
transformers
### Model **[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** This model is cased. ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=monologg/biobert_v1.1_pubmed python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.97068980038743 | | f1 | 79.37043950121722 | | total | 11873.0 | | HasAns_exact | 74.13967611336032 | | HasAns_f1 | 80.94892513460755 | | HasAns_total | 5928.0 | | NoAns_exact | 77.79646761984861 | | NoAns_f1 | 77.79646761984861 | | NoAns_total | 5945.0 | | best_exact | 75.97068980038743 | | best_exact_thresh | 0.0 | | best_f1 | 79.37043950121729 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
[ -0.03852738440036774, -0.012833156622946262, -0.05821830406785011, 0.01829357072710991, 0.045406524091959, -0.015766242519021034, -0.049227308481931686, 0.12100313603878021, -0.04791204631328583, -0.06379124522209167, 0.02770586684346199, -0.057590898126363754, 0.011363998986780643, 0.05232508108019829, 0.0374700129032135, 0.0040505980141460896, -0.000007222120530059328, -0.042246997356414795, -0.08558723330497742, 0.0001755682606017217, 0.0566791370511055, 0.02793613262474537, 0.07320982962846756, -0.005897833965718746, -0.07585974782705307, -0.060195598751306534, -0.004572051577270031, 0.0016880277544260025, -0.034502219408750534, -0.04586450010538101, 0.013212982565164566, 0.07407817989587784, -0.003446376882493496, 0.06196177750825882, 0.07595277577638626, 0.10690340399742126, -0.0141562195494771, -0.06650324910879135, -0.04014063626527786, 0.017147257924079895, 0.03348616138100624, -0.037145283073186874, 0.003985641989856958, -0.0010805053170770407, 0.04639801010489464, -0.03509549796581268, -0.03184550628066063, -0.017827996984124184, 0.05287801846861839, -0.05398176610469818, -0.07913941890001297, -0.0974029004573822, -0.00019416243594605476, 0.028061527758836746, -0.003003225428983569, 0.029256537556648254, -0.04093579575419426, -0.04411199316382408, -0.049387361854314804, -0.07001090049743652, -0.04170863330364227, -0.013152423314750195, -0.06744777411222458, -0.01628352701663971, -0.04292896017432213, -0.033001113682985306, -0.016450626775622368, 0.02834238111972809, 0.025824718177318573, 0.03156454116106033, -0.04752493277192116, 0.024540476500988007, -0.04317774996161461, -0.030213557183742523, -0.047972820699214935, 0.03433744236826897, 0.06857132166624069, 0.014303784817457199, 0.05661627650260925, -0.15232586860656738, -0.04049057513475418, -0.09228958934545517, 0.02779049053788185, 0.010736553929746151, 0.05385540425777435, 0.011457192711532116, 0.07811469584703445, -0.0024645612575113773, 0.03360382840037346, 0.013370084576308727, -0.019848773255944252, -0.019999586045742035, 0.07532966136932373, 0.036776985973119736, 0.025236105546355247, 0.0695880800485611, 0.03479169309139252, 0.0408489890396595, -0.050368014723062515, 0.10354185849428177, -0.015732239931821823, -0.024056127294898033, 0.07246638834476471, 0.0910470187664032, -0.024030309170484543, -0.016791867092251778, 0.00968210119754076, 0.05052721127867699, 0.004004190675914288, -0.05983149632811546, 0.02243851311504841, 0.03328900411725044, 0.017145903781056404, 0.005163491237908602, 0.054500192403793335, 0.07041060924530029, 0.008062108419835567, 0.05655830726027489, -0.11818896234035492, 0.09498143941164017, 0.038107842206954956, -0.045154400169849396, -0.013864122331142426, 0.009314213879406452, 0.04017418995499611, -0.036468058824539185, -0.032007522881031036, 1.3057545532567515e-33, 0.09442710131406784, -0.05580845847725868, 0.0643375888466835, 0.03345843032002449, 0.05736006796360016, 0.06574149429798126, -0.01628933474421501, 0.08150435984134674, -0.055896759033203125, 0.08815367519855499, -0.12327920645475388, 0.008465655148029327, -0.014864412136375904, 0.05148770660161972, -0.013121278956532478, -0.03893230855464935, -0.06255260109901428, 0.07686885446310043, 0.005391180515289307, 0.07346980273723602, 0.15782193839550018, 0.03310738876461983, -0.06760723143815994, -0.015849372372031212, -0.005986666772514582, 0.017918966710567474, -0.007581792771816254, -0.04594434052705765, 0.01837834343314171, 0.04029405117034912, -0.07946278154850006, -0.0612700954079628, -0.076254703104496, 0.008958861231803894, -0.0448685884475708, -0.040229979902505875, -0.04021921381354332, -0.03276129439473152, 0.007689408492296934, -0.00278931250795722, -0.006325636524707079, 0.01661776192486286, -0.020985571667551994, -0.11275674402713776, -0.028801532462239265, -0.06541161239147186, -0.014624467119574547, 0.00024409028992522508, -0.023788893595337868, 0.03928103670477867, 0.008737437427043915, -0.023876940831542015, -0.013097620569169521, -0.06252796202898026, -0.018797840923070908, 0.013304934836924076, 0.017155198380351067, 0.06689164787530899, 0.025113224983215332, 0.01814238540828228, 0.07688917219638824, 0.019089536741375923, -0.028270790353417397, 0.03287266939878464, 0.04212311655282974, 0.012120419181883335, -0.03972260653972626, -0.046328190714120865, 0.048269666731357574, 0.03450977802276611, -0.07907695323228836, -0.0285408403724432, -0.004767736420035362, -0.0010271896608173847, 0.10055163502693176, -0.07671710848808289, 0.010662198998034, -0.00452245119959116, -0.057615675032138824, -0.07621019333600998, -0.06106298416852951, 0.0634404793381691, -0.05855594947934151, -0.04313158243894577, 0.004083266016095877, -0.009314978495240211, 0.012991562485694885, -0.047579988837242126, -0.09705346077680588, -0.03270336240530014, -0.06872168928384781, -0.02534092217683792, -0.07730960845947266, -0.00917807687073946, -0.009172032587230206, -2.092385270922449e-33, 0.05356530472636223, -0.007589799351990223, -0.026848744601011276, 0.019565008580684662, 0.06715402007102966, -0.019901560619473457, 0.06631386280059814, 0.04321404919028282, -0.009258564561605453, -0.02088744193315506, 0.01813570037484169, -0.005272742360830307, 0.002697567455470562, -0.026667887344956398, 0.04201463982462883, 0.0017000421648845077, -0.08216425776481628, -0.08319403976202011, -0.004673046059906483, 0.02207004837691784, -0.035144511610269547, 0.09680350869894028, -0.046758051961660385, 0.029390519484877586, -0.03601885586977005, 0.05493231117725372, 0.013258151710033417, 0.07987261563539505, 0.06457990407943726, 0.02557545155286789, -0.05855975300073624, 0.02737315557897091, -0.10410375893115997, 0.06936542689800262, -0.031774118542671204, 0.0767439529299736, 0.012842428870499134, 0.0017657841090112925, 0.010067264549434185, 0.13477806746959686, 0.05138115584850311, 0.03332281857728958, -0.09850979596376419, 0.016658157110214233, 0.000558210420422256, -0.028188228607177734, -0.0016120767686516047, -0.06941613554954529, 0.01356307789683342, -0.05743271857500076, 0.016782548278570175, -0.027582377195358276, -0.07731295377016068, 0.058381956070661545, -0.07143617421388626, -0.08738387376070023, 0.019919930025935173, -0.04632028937339783, -0.0359470471739769, -0.019873425364494324, 0.025844434276223183, 0.014438728801906109, -0.019552579149603844, -0.0660589337348938, -0.07274385541677475, -0.06219784542918205, -0.08021900057792664, 0.03270655870437622, 0.05489800497889519, 0.025473732501268387, -0.016949094831943512, 0.007438453380018473, 0.0993732139468193, 0.029353810474276543, -0.002278066473081708, 0.04619032144546509, -0.05904413387179375, -0.06238970905542374, 0.02857012115418911, 0.020855039358139038, -0.08989283442497253, -0.024828573688864708, 0.06864183396100998, 0.09777428209781647, -0.041970234364271164, 0.07222326844930649, 0.06876222044229507, 0.1505616158246994, 0.0428420789539814, -0.03388088569045067, 0.04676945134997368, 0.014500029385089874, 0.10576191544532776, 0.14430847764015198, -0.006514676380902529, -5.7119013519013606e-8, 0.02024717628955841, 0.021318020299077034, 0.050116077065467834, 0.07797821611166, -0.03331923112273216, -0.026987949386239052, -0.06321859359741211, 0.007370366249233484, 0.06403013318777084, 0.024836214259266853, 0.028586527332663536, 0.014460636302828789, -0.04812327027320862, 0.0022081476636230946, 0.00976293720304966, 0.05484989285469055, -0.04918227344751358, 0.05460432544350624, -0.06795396655797958, -0.061110347509384155, -0.015934426337480545, -0.014847159385681152, -0.03656558692455292, -0.01894461363554001, 0.0598551407456398, -0.054288044571876526, -0.0669938400387764, -0.030921384692192078, -0.10004869848489761, 0.012371030636131763, 0.008153903298079967, 0.029013680294156075, -0.01690654084086418, -0.0017593030352145433, 0.007952048443257809, 0.06567342579364777, 0.04868590086698532, -0.023039646446704865, 0.024930639192461967, 0.02317594364285469, 0.03861679509282112, 0.00006941586616449058, -0.07191824913024902, -0.006523482501506805, 0.11049740016460419, -0.02042047493159771, 0.04040832445025444, -0.0902586504817009, -0.00481391791254282, -0.019364850595593452, 0.01226005982607603, 0.046448562294244766, -0.07425935566425323, 0.07610805332660675, -0.009945888072252274, 0.04572351649403572, -0.06759769469499588, -0.02622460573911667, -0.02607891894876957, 0.05051189288496971, -0.04168092831969261, -0.025248069316148758, 0.00467647984623909, -0.025204991921782494 ]
aware-ai/wav2vec2-xls-r-1b-5gram-german
4bfed40b06b3286744027db0cf211efdfb1c7aa6
2022-06-01T13:33:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:common_voice", "transformers", "audio", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/wav2vec2-xls-r-1b-5gram-german
2,127
1
transformers
--- language: de datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-xls-r-1b-5gram-german with LM by Florian Zimmermeister @A\\Ware results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 de type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 --- ## Evaluation The model can be evaluated as follows on the German test data of Common Voice. ```python import torch from transformers import AutoModelForCTC, AutoProcessor from unidecode import unidecode import re from datasets import load_dataset, load_metric import datasets counter = 0 wer_counter = 0 cer_counter = 0 device = "cuda" if torch.cuda.is_available() else "cpu" special_chars = [["Ä"," AE "], ["Ö"," OE "], ["Ü"," UE "], ["ä"," ae "], ["ö"," oe "], ["ü"," ue "]] def clean_text(sentence): for special in special_chars: sentence = sentence.replace(special[0], special[1]) sentence = unidecode(sentence) for special in special_chars: sentence = sentence.replace(special[1], special[0]) sentence = re.sub("[^a-zA-Z0-9öäüÖÄÜ ,.!?]", " ", sentence) return sentence def main(model_id): print("load model") model = AutoModelForCTC.from_pretrained(model_id).to(device) print("load processor") processor = AutoProcessor.from_pretrained(processor_id) print("load metrics") wer = load_metric("wer") cer = load_metric("cer") ds = load_dataset("mozilla-foundation/common_voice_8_0","de") ds = ds["test"] ds = ds.cast_column( "audio", datasets.features.Audio(sampling_rate=16_000) ) def calculate_metrics(batch): global counter, wer_counter, cer_counter resampled_audio = batch["audio"]["array"] input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values.to(device)).logits.cpu().numpy()[0] decoded = processor.decode(logits) pred = decoded.text.lower() ref = clean_text(batch["sentence"]).lower() wer_result = wer.compute(predictions=[pred], references=[ref]) cer_result = cer.compute(predictions=[pred], references=[ref]) counter += 1 wer_counter += wer_result cer_counter += cer_result if counter % 100 == True: print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") return batch ds.map(calculate_metrics, remove_columns=ds.column_names) print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") model_id = "flozi00/wav2vec2-xls-r-1b-5gram-german" main(model_id) ```
[ -0.06033414974808693, -0.07789084315299988, -0.015358850359916687, -0.09364037215709686, -0.01063525676727295, -0.0013783758040517569, -0.020906507968902588, -0.017267417162656784, -0.01630781777203083, -0.07726844400167465, 0.03709043562412262, -0.1764192134141922, -0.041393641382455826, -0.013449118472635746, -0.014339607208967209, -0.05838965252041817, -0.027245672419667244, -0.08300626277923584, -0.022534212097525597, -0.06838708370923996, 0.007970456965267658, 0.12284433096647263, 0.02058033086359501, -0.018410595133900642, 0.06460974365472794, 0.003334958804771304, -0.06980296224355698, 0.025915799662470818, -0.009958423674106598, -0.04957756772637367, 0.14230121672153473, 0.06380414962768555, 0.12155414372682571, 0.034387487918138504, 0.041311901062726974, -0.001732839155010879, 0.015185325406491756, -0.05746595934033394, -0.030209051445126534, -0.037675969302654266, -0.038317978382110596, 0.013535118661820889, 0.015829773619771004, -0.06130477041006088, -0.031089115887880325, -0.03987155482172966, -0.11621446162462234, 0.00024992250837385654, -0.02419346012175083, 0.045532725751399994, -0.055858954787254333, 0.014785255305469036, 0.042508091777563095, 0.05901310592889786, -0.07222352176904678, 0.011061606928706169, -0.0006881604203954339, 0.07885410636663437, 0.05458185449242592, 0.011133749969303608, -0.056046415120363235, -0.028501540422439575, -0.036371130496263504, 0.007601223420351744, -0.06598042696714401, -0.02240941673517227, -0.006482305470854044, -0.05906521528959274, -0.022894836962223053, 0.03168223798274994, -0.09917153418064117, 0.052853669971227646, 0.008645775727927685, 0.06853063404560089, 0.046585772186517715, -0.018107835203409195, 0.003086486365646124, -0.0463079959154129, 0.07313434034585953, -0.09033636748790741, -0.023178236559033394, -0.046606022864580154, -0.0030871666967868805, 0.004705739673227072, 0.08160080760717392, -0.007731888443231583, 0.0025711229536682367, -0.042265333235263824, -0.018709903582930565, -0.05300774797797203, -0.08083610981702805, -0.05221181362867355, -0.061569467186927795, 0.1056680902838707, 0.0027052592486143112, 0.07792773097753525, 0.08982755988836288, 0.11313264071941376, 0.034283168613910675, 0.06113863363862038, -0.013809886761009693, -0.05809324234724045, 0.006279794033616781, -0.0025723937433212996, -0.029082298278808594, -0.03538516163825989, 0.024661367759108543, 0.04225054755806923, 0.03815164789557457, -0.0722137838602066, 0.006278474349528551, -0.01435956172645092, -0.024321023374795914, -0.0516250841319561, 0.03703363984823227, -0.0029333392158150673, -0.04063393920660019, -0.049944665282964706, 0.01851760782301426, 0.020947549492120743, -0.0336742140352726, -0.00634723948314786, -0.04181254282593727, -0.00962886307388544, 0.02463875524699688, 0.03300437331199646, -0.0022250309120863676, 1.14223256267142e-32, 0.016850970685482025, -0.010853404179215431, 0.0249025821685791, 0.009370814077556133, 0.004459977615624666, -0.05791642144322395, -0.06043826416134834, 0.07773049175739288, -0.02843690663576126, -0.002466680249199271, -0.03634455427527428, -0.0310964398086071, -0.08502647280693054, 0.024429650977253914, 0.03499086946249008, 0.050667162984609604, 0.02853410691022873, -0.01309621799737215, -0.05165249481797218, -0.018321115523576736, 0.14057618379592896, -0.001679514884017408, 0.04453137516975403, -0.020429575815796852, 0.08714711666107178, 0.07032204419374466, 0.07031421363353729, -0.06684672832489014, 0.0023178004194051027, 0.02570641040802002, -0.04106983542442322, -0.05539052560925484, 0.0037810583598911762, -0.032588113099336624, 0.05865878239274025, 0.026535945013165474, 0.03799651935696602, 0.07254400849342346, -0.07380062341690063, -0.09183349460363388, 0.06164786219596863, 0.025102101266384125, -0.022737501189112663, -0.03434276953339577, -0.0024190943222492933, -0.06766142696142197, -0.04134245961904526, -0.0036205437500029802, 0.03974694758653641, 0.05559660121798515, -0.06732095777988434, 0.005170547403395176, -0.04766067862510681, 0.022943181917071342, 0.003898223862051964, 0.0037589254789054394, 0.06934180855751038, 0.05851590633392334, -0.00750320591032505, -0.00964419450610876, -0.01843259111046791, 0.02136194333434105, -0.005418168846517801, -0.02088771015405655, 0.11293289810419083, -0.07863562554121017, -0.016983339563012123, -0.012492690235376358, 0.014630720019340515, 0.02038636803627014, -0.022512884810566902, -0.059658825397491455, 0.11447324603796005, 0.07463444024324417, 0.008946763351559639, 0.018400713801383972, -0.004363234154880047, -0.025473112240433693, 0.00539236469194293, 0.030946878716349602, -0.03860863298177719, 0.03143468126654625, -0.02437814511358738, -0.06335728615522385, -0.007382705807685852, -0.027499478310346603, 0.019332675263285637, -0.07086677104234695, -0.014083856716752052, 0.0286048986017704, -0.04602369666099548, 0.08402291685342789, -0.09462092071771622, -0.025765487924218178, -0.10029018670320511, -1.3484170636047325e-32, -0.048428475856781006, 0.11480488628149033, -0.0010496992617845535, 0.09512361139059067, 0.024971311911940575, 0.0028850403614342213, 0.11460523307323456, 0.07852523028850555, 0.045438192784786224, 0.005219311453402042, 0.04656336084008217, -0.0734761506319046, 0.09762690216302872, -0.03057830221951008, 0.08509672433137894, 0.044403575360774994, -0.04525664076209068, 0.004855838138610125, 0.02841239422559738, 0.07826364040374756, 0.007379031740128994, 0.10781903564929962, -0.017878757789731026, 0.05837889760732651, -0.08990616351366043, -0.043020524084568024, -0.06977040320634842, 0.020352615043520927, 0.018068784847855568, -0.03998927026987076, -0.028801484033465385, 0.029467467218637466, -0.12377332150936127, 0.03852519392967224, -0.007836987264454365, -0.04593149572610855, 0.0055852425284683704, 0.004779960494488478, -0.005260069854557514, 0.049692943692207336, 0.06812889873981476, 0.049050092697143555, -0.09357918053865433, -0.07691050320863724, 0.06015745550394058, -0.06934254616498947, 0.01194214727729559, 0.0006345988367684186, -0.022454453632235527, -0.04436756670475006, 0.06042255461215973, -0.012980717234313488, 0.003901675809174776, 0.028714260086417198, -0.02172483503818512, -0.012459367513656616, -0.00039928738260641694, -0.05323118343949318, -0.05046061798930168, -0.0075773983262479305, 0.028031503781676292, 0.0013285479508340359, -0.08861379325389862, -0.05202966183423996, 0.0590539425611496, 0.039687760174274445, -0.05292829871177673, 0.006127428729087114, 0.031560640782117844, -0.02956654131412506, -0.021448634564876556, -0.024589942768216133, -0.00011768485273933038, -0.02920965477824211, -0.034722667187452316, -0.03486350551247597, -0.14675842225551605, -0.04835300147533417, -0.02442268095910549, -0.043263211846351624, 0.00425291433930397, 0.028119059279561043, 0.08440224081277847, 0.023464618250727654, 0.043041642755270004, 0.06874028593301773, -0.027979305014014244, 0.022109033539891243, 0.0008618419524282217, 0.011011551134288311, -0.02691693603992462, 0.059263914823532104, -0.03715645894408226, 0.06766918301582336, 0.011024052277207375, -6.349542758243842e-8, -0.06792864203453064, -0.002959988545626402, -0.0355207733809948, -0.047051429748535156, 0.015765825286507607, -0.11650709062814713, -0.035151880234479904, -0.008494400419294834, 0.01266663707792759, -0.039210401475429535, 0.027379034087061882, -0.029003525152802467, -0.09855218976736069, 0.05305548757314682, 0.010254761204123497, -0.04560087248682976, -0.06076988950371742, 0.1273432821035385, -0.03572867438197136, -0.0992429256439209, 0.06764746457338333, 0.012211850844323635, 0.027701634913682938, 0.011601568199694157, 0.01859854906797409, -0.02796793356537819, 0.00938748475164175, 0.07213275134563446, 0.004643611144274473, -0.018987705931067467, -0.05132841318845749, 0.08006227016448975, -0.02630241960287094, -0.07794199138879776, 0.07031639665365219, 0.024663036689162254, -0.04338639974594116, 0.015860607847571373, -0.021443987265229225, 0.06039798632264137, 0.029196709394454956, 0.09119307994842529, -0.10129949450492859, 0.0284566693007946, 0.04582881182432175, -0.023978395387530327, -0.02247699163854122, -0.055645618587732315, 0.06185358762741089, -0.026471508666872978, 0.024938063696026802, -0.0038874123711138964, -0.006697623524814844, -0.003547206288203597, 0.025614086538553238, 0.03866396099328995, -0.007666279096156359, 0.012108889408409595, 0.020009344443678856, -0.03932805359363556, 0.08145353943109512, -0.033222347497940063, -0.03662586212158203, -0.024279965087771416 ]
readerbench/RoBERT-large
2677d2cc3bc009380161e71eda03515abfb5feb4
2021-05-20T04:07:47.000Z
[ "pytorch", "tf", "jax", "bert", "ro", "transformers" ]
null
false
readerbench
null
readerbench/RoBERT-large
2,125
null
transformers
Model card for RoBERT-large --- language: - ro --- # RoBERT-large ## Pretrained BERT model for Romanian Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://www.aclweb.org/anthology/2020.coling-main.581/). Three BERT models were released: RoBERT-small, RoBERT-base and **RoBERT-large**, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 | | RoBERT-base | 114M | 12 | 768 | 12 | 0.6511 | 0.9802 | | *RoBERT-large* | *341M* | *24* | *1024* | *24* | *0.6929* | *0.9843* | All models are available: * [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small) * [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) * [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = TFAutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = AutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Training data The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process. | Corpus | Words | Sentences | Size (GB)| |-----------|:---------:|:---------:|:--------:| | Oscar | 1.78B | 87M | 10.8 | | RoTex | 240M | 14M | 1.5 | | RoWiki | 50M | 2M | 0.3 | | **Total** | **2.07B** | **103M** | **12.6** | ## Downstream performance ### Sentiment analysis We report Macro-averaged F1 score (in %) | Model | Dev | Test | |------------------|:--------:|:--------:| | multilingual-BERT| 68.96 | 69.57 | | XLM-R-base | 71.26 | 71.71 | | BERT-base-ro | 70.49 | 71.02 | | RoBERT-small | 66.32 | 66.37 | | RoBERT-base | 70.89 | 71.61 | | *RoBERT-large* | **72.48**| **72.11**| ### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %). | Model | Dialect Classification | MD to RO | RO to MD | |-------------------|:----------------------:|:--------:|:--------:| | 2-CNN + SVM | 93.40 | 65.09 | 75.21 | | Char+Word SVM | 96.20 | 69.08 | 81.93 | | BiGRU | 93.30 | **70.10**| 80.30 | | multilingual-BERT | 95.34 | 68.76 | 78.24 | | XLM-R-base | 96.28 | 69.93 | 82.28 | | BERT-base-ro | 96.20 | 69.93 | 78.79 | | RoBERT-small | 95.67 | 69.01 | 80.40 | | RoBERT-base | 97.39 | 68.30 | 81.09 | | *RoBERT-large* | **97.78** | *69.91* | **83.65**| ### Diacritics Restoration Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %. | Model | word level | char level | |-----------------------------|:----------:|:----------:| | BiLSTM | 99.42 | - | | CharCNN | 98.40 | 99.65 | | CharCNN + multilingual-BERT | 99.72 | 99.94 | | CharCNN + XLM-R-base | 99.76 | **99.95** | | CharCNN + BERT-base-ro | **99.79** | **99.95** | | CharCNN + RoBERT-small | 99.73 | 99.94 | | CharCNN + RoBERT-base | 99.78 | **99.95** | | *CharCNN + RoBERT-large* | *99.76* | **99.95** | ### BibTeX entry and citation info ```bibtex @inproceedings{masala2020robert, title={RoBERT--A Romanian BERT Model}, author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6626--6637}, year={2020} } ```
[ -0.06179095432162285, -0.06221776455640793, -0.01094813458621502, 0.03353476524353027, -0.01905711740255356, 0.1390560120344162, -0.041893042623996735, 0.04355796426534653, 0.01320213358849287, -0.022508300840854645, -0.006025333888828754, -0.0714028999209404, -0.0008968995534814894, 0.037207599729299545, -0.05912485718727112, 0.01393017079681158, 0.05360272899270058, 0.017394617199897766, -0.058811090886592865, -0.0759880542755127, 0.06016137823462486, 0.07955130934715271, 0.0156317837536335, -0.03735547140240669, 0.018994569778442383, -0.030405445024371147, -0.0665738582611084, -0.10043008625507355, 0.07064306735992432, 0.03448254242539406, -0.0027339530643075705, -0.02551327459514141, 0.08653666824102402, 0.09352360665798187, -0.0483834370970726, -0.04318511113524437, -0.06422889977693558, 0.032144807279109955, 0.011811870150268078, -0.011722560971975327, -0.06886514276266098, -0.004044665489345789, -0.03486185520887375, 0.015112608671188354, 0.11219368875026703, -0.05409667268395424, -0.049213506281375885, 0.04485459253191948, -0.07262292504310608, 0.005380390211939812, -0.09481389075517654, -0.024722756817936897, 0.031006205826997757, 0.03063059225678444, -0.06612393260002136, -0.033529166132211685, -0.022621456533670425, -0.032787639647722244, -0.004814290441572666, -0.03693637251853943, -0.06696119904518127, -0.010494668036699295, -0.09208331257104874, 0.02315836027264595, -0.02386074885725975, 0.023086920380592346, -0.08955138176679611, 0.01324448361992836, -0.032140325754880905, 0.05165102705359459, -0.001708613708615303, -0.001278931275010109, 0.008998829871416092, 0.01515865232795477, -0.018234295770525932, -0.02323116362094879, 0.10453271865844727, -0.005010821390897036, 0.024387212470173836, -0.02189316414296627, 0.03081141971051693, -0.017472120001912117, 0.052276697009801865, -0.03245506435632706, 0.081447072327137, 0.007090349681675434, 0.03877534344792366, -0.028822269290685654, -0.04808054119348526, -0.0338425487279892, -0.012729395180940628, -0.11568049341440201, 0.028245681896805763, 0.014435365796089172, 0.0032076502684503794, 0.02820412628352642, 0.007832009345293045, -0.019144779071211815, -0.06254512816667557, 0.0955992043018341, 0.01901761069893837, 0.04476071894168854, 0.004576170351356268, -0.05843508243560791, 0.007225853390991688, 0.012126547284424305, 0.062155432999134064, -0.02094632014632225, 0.047638699412345886, -0.060955699533224106, 0.050588663667440414, 0.0009722675895318389, -0.02374972216784954, -0.04822962358593941, 0.0624319426715374, -0.0026052952744066715, 0.012300679460167885, -0.024265721440315247, 0.006877006031572819, 0.12223509699106216, -0.04571572318673134, 0.016818642616271973, 0.03396563604474068, 0.04549460858106613, -0.05575776845216751, -0.016317902132868767, 0.042943548411130905, -3.218401044137711e-33, -0.03904679790139198, -0.01712862402200699, -0.023232905194163322, -0.04431227594614029, -0.014863218180835247, -0.014875506050884724, 0.04858127236366272, -0.001319601316936314, -0.007473750039935112, -0.0159937534481287, -0.028662804514169693, -0.04972658306360245, -0.08490883558988571, 0.0950252041220665, -0.03970559686422348, 0.036648306995630264, 0.012049161829054356, 0.02191721275448799, -0.00799756869673729, -0.0040793269872665405, 0.05884367600083351, 0.0875263437628746, 0.02556321583688259, -0.0798095315694809, 0.05148027092218399, 0.06488008052110672, 0.06202273443341255, -0.137164905667305, -0.018061039969325066, 0.034407489001750946, -0.1122351586818695, 0.044645290821790695, -0.05306423455476761, -0.007834970951080322, -0.01981712132692337, -0.01184995286166668, 0.002427708823233843, -0.06929516792297363, 0.003636944340541959, -0.03779256343841553, 0.016195032745599747, 0.030689075589179993, 0.029229240491986275, -0.07619073241949081, -0.05669194087386131, -0.027114590629935265, -0.01562810316681862, 0.006276722997426987, -0.010291416198015213, -0.013273855671286583, 0.05928317829966545, 0.01215451117604971, -0.14245304465293884, 0.02031216211616993, 0.026208363473415375, -0.03778031840920448, 0.026077184826135635, 0.03303245082497597, 0.08101744204759598, 0.020910369232296944, 0.017164014279842377, -0.03488844633102417, 0.016121208667755127, 0.047720763832330704, 0.00870935432612896, -0.046052735298871994, -0.07891026139259338, -0.03625154495239258, 0.041687168180942535, 0.013577647507190704, -0.03823772817850113, -0.022107640281319618, 0.036624133586883545, 0.05407366901636124, -0.01106531172990799, 0.014035899192094803, 0.025943197309970856, -0.04508782550692558, -0.010459898971021175, 0.047253094613552094, -0.017090553417801857, 0.01974492147564888, -0.014242615550756454, -0.07840494811534882, -0.07181106507778168, -0.02851984091103077, 0.08052115887403488, -0.030234094709157944, -0.002669601235538721, 0.0029269095975905657, 0.018074525520205498, 0.005218732636421919, 0.04729023575782776, 0.02721436135470867, -0.0324195921421051, -1.486387260017843e-33, -0.027555711567401886, 0.07568056881427765, -0.039439938962459564, 0.031662747263908386, -0.030140213668346405, -0.09933499991893768, -0.01498393528163433, 0.11277492344379425, -0.011209211312234402, -0.006130308378487825, -0.005627525504678488, -0.0699298232793808, 0.048940107226371765, -0.010660527274012566, 0.11514800041913986, -0.013373317196965218, 0.025690371170639992, 0.013148840516805649, 0.04188993200659752, 0.03274358808994293, 0.056950416415929794, 0.028620369732379913, -0.124695785343647, 0.06310166418552399, -0.016651371493935585, -0.006462567485868931, -0.0177149698138237, 0.040229201316833496, -0.07950390875339508, -0.013737635686993599, -0.059999629855155945, 0.0046621947549283504, -0.03670012205839157, 0.04324774071574211, -0.08929548412561417, 0.10536175221204758, 0.0042665922082960606, -0.010819588787853718, -0.02809726446866989, 0.10854407399892807, 0.0708143562078476, 0.0014584858436137438, -0.0876140221953392, 0.015114196576178074, -0.020880773663520813, -0.010869242250919342, -0.07736928761005402, -0.05616005137562752, 0.08479244261980057, -0.10308364778757095, 0.005990954581648111, -0.0053737410344183445, -0.06241414695978165, -0.037248533219099045, -0.08388780057430267, -0.039100226014852524, 0.007199496030807495, -0.09663694351911545, -0.008256361819803715, -0.0007849510293453932, -0.042589183896780014, -0.025168348103761673, 0.0654197707772255, -0.10198815912008286, 0.038394007831811905, -0.02444619871675968, -0.030738389119505882, 0.11499647051095963, 0.0059278132393956184, -0.03181334212422371, -0.02139594592154026, -0.02754770591855049, 0.04814211279153824, 0.10634713619947433, -0.04262440279126167, -0.002564852125942707, 0.033624086529016495, -0.05596790462732315, 0.005125907715409994, -0.08242100477218628, -0.08418550342321396, -0.06227680668234825, 0.04870020970702171, 0.06994375586509705, 0.037788812071084976, 0.08616286516189575, 0.05638287588953972, -0.03609505668282509, -0.016191700473427773, 0.07403495162725449, -0.03552085533738136, 0.05130722373723984, 0.07404235005378723, 0.004725569859147072, -0.02247561700642109, -5.290647564493156e-8, -0.04670465365052223, -0.02003532275557518, -0.031631942838430405, 0.06393515318632126, -0.03242321312427521, -0.05893160030245781, -0.057412777096033096, -0.0649784728884697, -0.07436561584472656, -0.036188285797834396, 0.02356937900185585, 0.042203910648822784, -0.054362814873456955, -0.008840157650411129, -0.01679905876517296, 0.043182291090488434, -0.025877567008137703, 0.016432922333478928, 0.025222864001989365, -0.07877115905284882, 0.07681334763765335, 0.04979710653424263, 0.029336590319871902, -0.0029573668725788593, -0.009995324537158012, -0.04196980968117714, -0.029751375317573547, 0.11486618220806122, -0.018145481124520302, 0.07229488343000412, 0.0013223731657490134, 0.06926654279232025, -0.0525677427649498, 0.027199728414416313, 0.08953705430030823, 0.09123186767101288, 0.011637210845947266, -0.04743950068950653, -0.018534163013100624, 0.027401208877563477, 0.07659629732370377, 0.000425651523983106, -0.06236489117145538, 0.0006954986019991338, 0.08104957640171051, -0.004909939598292112, -0.004631855990737677, -0.19653907418251038, 0.00789815653115511, -0.05902252346277237, 0.03715413808822632, -0.026409320533275604, -0.01762033812701702, 0.0969930961728096, 0.0725056454539299, 0.01559508964419365, -0.03847290948033333, -0.03078259900212288, -0.0011418898357078433, -0.04662153497338295, 0.00958932377398014, 0.05287711322307587, -0.012550212442874908, 0.07041394710540771 ]
IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment
21ff55d0bd2f7904d2a5380165ac2fd6d0d74b81
2022-05-27T07:59:44.000Z
[ "pytorch", "bert", "text-classification", "zh", "transformers", "NLU", "Sentiment", "Chinese", "license:apache-2.0" ]
text-classification
false
IDEA-CCNL
null
IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment
2,124
4
transformers
--- language: - zh license: apache-2.0 tags: - bert - NLU - Sentiment - Chinese inference: true widget: - text: "今天心情不好" --- # Erlangshen-Roberta-110M-Semtiment, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 8 sentiment datasets in the Chinese domain for finetune, with a total of 227347 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment') text='今天心情不好' output=model(torch.tensor([tokenizer.encode(text)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks | Model | ASAP-SENT | ASAP-ASPECT | ChnSentiCorp | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Sentiment | 97.77 | 97.31 | 96.61 | | Erlangshen-Roberta-330M-Sentiment | 97.9 | 97.51 | 96.66 | | Erlangshen-MegatronBert-1.3B-Sentiment | 98.1 | 97.8 | 97 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
[ -0.08709655702114105, -0.0722990334033966, 0.07701954245567322, 0.041991714388132095, 0.03149540349841118, 0.03384114429354668, 0.025520043447613716, 0.0040841554291546345, 0.04542120173573494, -0.02865923009812832, 0.03528405725955963, -0.09324324876070023, 0.013453560881316662, -0.012478427961468697, 0.05564378947019577, 0.07974134385585785, 0.012300804257392883, -0.04634853079915047, -0.15248017013072968, -0.0949406772851944, 0.03764059394598007, 0.050695568323135376, 0.055521782487630844, -0.007598993368446827, 0.015838004648685455, -0.05443115532398224, -0.01298938412219286, 0.018508898094296455, 0.09384230524301529, 0.005115598440170288, 0.0196062158793211, 0.14168226718902588, -0.03356187790632248, 0.08738093078136444, 0.026232177391648293, 0.07818195968866348, -0.06648901849985123, -0.04045693948864937, 0.02811119332909584, 0.048198916018009186, 0.016869941726326942, 0.036569975316524506, 0.017824651673436165, -0.06320077180862427, 0.0742897167801857, -0.016086051240563393, -0.0018130082171410322, -0.052397359162569046, -0.006876520812511444, -0.022518333047628403, -0.053778935223817825, 0.04323159530758858, -0.01413756888359785, 0.0864938348531723, -0.05500520393252373, -0.05680961161851883, 0.011803319677710533, -0.02932504378259182, 0.03207942470908165, -0.05921201407909393, -0.09671512246131897, -0.023452920839190483, -0.013243473134934902, -0.04714931547641754, -0.07400970906019211, -0.02669498138129711, -0.08967149257659912, 0.06003411114215851, 0.04118582233786583, 0.03089805319905281, 0.0004255702951923013, 0.0386984720826149, -0.02780815213918686, 0.07744553685188293, -0.004905744455754757, -0.019787821918725967, 0.07766765356063843, -0.03031807951629162, 0.04033433273434639, -0.1551591008901596, -0.026260126382112503, -0.03261682763695717, 0.11006978154182434, 0.02303212881088257, 0.10485435277223587, -0.044590264558792114, 0.008788722567260265, 0.052986208349466324, -0.02578381821513176, 0.027775876224040985, -0.01571471430361271, -0.042463310062885284, 0.0676548033952713, 0.04018223285675049, 0.010300783440470695, 0.0895296186208725, 0.022795358672738075, -0.028614407405257225, -0.039811860769987106, 0.12770593166351318, 0.026664014905691147, 0.10081527382135391, 0.03567621111869812, -0.06707307696342468, -0.026821419596672058, -0.023556308820843697, 0.014207292348146439, 0.06499475240707397, 0.020765135064721107, -0.10020697861909866, 0.004790873266756535, 0.016073904931545258, 0.0023505371063947678, -0.025822512805461884, 0.053941380232572556, -0.03149028867483139, 0.01054401509463787, 0.004310715477913618, -0.041538506746292114, 0.057785436511039734, -0.002352913608774543, 0.03218885883688927, -0.0024672949220985174, 0.01528833992779255, -0.03382920101284981, 0.001681973342783749, -0.035493403673172, 5.4331591340715986e-33, 0.060234300792217255, 0.05887254327535629, 0.027698349207639694, 0.001829526387155056, -0.03466029465198517, 0.00588569650426507, 0.005902073346078396, 0.0318867564201355, -0.09349159151315689, -0.003283114405348897, -0.06388513743877411, 0.027886684983968735, -0.08120609819889069, 0.04499848186969757, -0.010710093192756176, -0.01752765104174614, -0.05355601757764816, -0.004259494598954916, 0.025053732097148895, 0.015683535486459732, 0.07487459480762482, 0.035212986171245575, -0.02018670178949833, -0.10632380843162537, -0.08987262845039368, 0.030252542346715927, 0.09252644330263138, -0.026631509885191917, -0.045670006424188614, 0.02403958886861801, -0.08100535720586777, 0.0692591518163681, 0.023736268281936646, 0.022755905985832214, 0.003943201620131731, -0.023332076147198677, 0.02766716480255127, -0.008063621819019318, 0.014072118327021599, -0.07984081655740738, 0.013011584989726543, 0.06723234802484512, -0.029061315581202507, -0.029430633410811424, -0.03352788835763931, 0.023261399939656258, -0.014403657987713814, -0.05618448927998543, 0.07940855622291565, 0.04788776487112045, 0.014839738607406616, 0.018748769536614418, -0.005831862334161997, 0.06187065690755844, -0.05199002847075462, -0.02139476127922535, 0.044613540172576904, -0.01301787793636322, 0.09079091995954514, -0.014922942966222763, 0.0030018133111298084, -0.03644498810172081, 0.0035326185170561075, -0.010371629148721695, 0.08005746454000473, 0.021205145865678787, -0.02378387376666069, 0.01831744611263275, -0.026689069345593452, -0.006636634003371, -0.0317823551595211, -0.0357397124171257, 0.0052692280150949955, -0.040322814136743546, 0.02311897464096546, -0.07759358733892441, -0.01629401370882988, -0.07493416219949722, -0.042160484939813614, 0.03435703366994858, -0.013660157099366188, -0.01934286765754223, -0.02864779904484749, -0.01882382109761238, -0.043684687465429306, -0.014822149649262428, 0.05677805840969086, -0.056548718363046646, -0.026840588077902794, -0.010563547722995281, -0.009539785794913769, -0.01803002320230007, 0.01782285049557686, -0.014916900545358658, -0.08297692984342575, -5.198322546084168e-33, -0.036993518471717834, 0.054300498217344284, -0.06355956941843033, 0.06230736896395683, 0.012893631123006344, -0.10957425087690353, 0.04250045493245125, 0.11724637448787689, -0.03851621225476265, -0.02547513321042061, 0.07937134057283401, -0.08576592803001404, 0.01230724435299635, -0.003022683784365654, 0.04712042212486267, 0.028528792783617973, 0.0170523002743721, 0.07345625013113022, 0.01955166645348072, 0.056013379245996475, -0.03601839393377304, 0.027108553797006607, -0.14398330450057983, 0.07755143940448761, -0.03770091012120247, 0.11421110481023788, -0.02199467271566391, 0.00657745823264122, 0.029043104499578476, -0.01573438197374344, -0.06091455742716789, 0.009062341414391994, -0.0748249962925911, 0.039179477840662, -0.10632787644863129, -0.01731591671705246, -0.03998640552163124, -0.04776474088430405, -0.04335327446460724, 0.06734654307365417, 0.07409562915563583, -0.009857839904725552, -0.06356562674045563, 0.045437704771757126, -0.025920558720827103, -0.019214866682887077, -0.06646479666233063, -0.04102574288845062, 0.020267199724912643, -0.005478565115481615, 0.010510454885661602, 0.014821049757301807, -0.06536663323640823, 0.04418748989701271, -0.02977500483393669, -0.07789453119039536, 0.03377482295036316, -0.0860808789730072, -0.04743761569261551, -0.04738900065422058, -0.06565798819065094, 0.025761129334568977, -0.009188272058963776, -0.03962419927120209, 0.012068229727447033, -0.011001314967870712, 0.03944242000579834, 0.0582684651017189, 0.014505993574857712, -0.047167107462882996, 0.05001578852534294, 0.07860090583562851, 0.016416067257523537, -0.031885311007499695, -0.0033380857203155756, 0.02159205451607704, -0.021304255351424217, -0.020847873762249947, 0.007687569595873356, -0.0490771047770977, -0.07257981598377228, -0.017260806635022163, 0.03335781767964363, -0.018792981281876564, -0.04535520821809769, -0.015161515213549137, 0.008136213757097721, 0.07933314889669418, 0.008176441304385662, 0.01817847415804863, 0.0001360794121865183, -0.011907591484487057, 0.037415143102407455, 0.08838909864425659, 0.049269188195466995, -5.147917647718714e-8, -0.11537602543830872, -0.043757256120443344, -0.06019112095236778, 0.07028158009052277, -0.08378533273935318, -0.02506924420595169, -0.022388532757759094, 0.08804191648960114, -0.01322236843407154, -0.016459405422210693, 0.0787673071026802, 0.04197169095277786, -0.1390567123889923, 0.027984915301203728, -0.0189979150891304, 0.01040048711001873, -0.014689026400446892, 0.09302748739719391, 0.0013698493130505085, -0.031146340072155, 0.02748328447341919, 0.05026846379041672, 0.059917278587818146, -0.06348513066768646, 0.029399700462818146, -0.011244229972362518, -0.06551595777273178, 0.08171786367893219, -0.04113375395536423, -0.026441683992743492, -0.0008249770035035908, -0.025780795142054558, -0.08909159153699875, -0.03612127900123596, 0.02487444132566452, 0.06069111451506615, -0.06476162374019623, -0.080284483730793, 0.020959148183465004, -0.001314549706876278, 0.04624095559120178, 0.032660070806741714, -0.11076541244983673, 0.0010113705648109317, 0.11533752083778381, -0.07499057799577713, -0.0064829266630113125, -0.09433696419000626, 0.11583013087511063, 0.042505741119384766, -0.002667458029463887, -0.019497808068990707, -0.022772688418626785, -0.00266881356947124, -0.01677589677274227, 0.04429478570818901, -0.0626695305109024, 0.000997783150523901, 0.001259782467968762, -0.00559414504095912, 0.022608047351241112, -0.024318834766745567, -0.030689725652337074, -0.004394433926790953 ]
facebook/contriever-msmarco
abe8c1493371369031bcb1e02acb754cf4e162fa
2022-06-25T17:19:59.000Z
[ "pytorch", "bert", "arxiv:2112.09118", "transformers", "feature-extraction" ]
feature-extraction
false
facebook
null
facebook/contriever-msmarco
2,121
null
transformers
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the finetuned version of the pre-trained contriever model available here https://huggingface.co/facebook/contriever, following the approach described in [Towards Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). The associated GitHub repository is available here https://github.com/facebookresearch/contriever. ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers requires to add a mean pooling operation to obtain a sentence embedding. ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/contriever-msmarco') model = AutoModel.from_pretrained('facebook/contriever-msmarco') sentences = [ "Where was Marie Curie born?", "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings outputs = model(**inputs) # Mean pooling def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask']) ```
[ -0.05973246321082115, -0.003820281010121107, 0.029406532645225525, 0.0905199944972992, 0.07488294690847397, -0.0025456889998167753, -0.07535018771886826, -0.027842730283737183, -0.030140535905957222, -0.11075305193662643, 0.015893571078777313, -0.06382659822702408, 0.005084634758532047, 0.02924598753452301, 0.021726587787270546, 0.06124576926231384, 0.04308748617768288, 0.05372457578778267, -0.10365509241819382, -0.044556982815265656, 0.014212891459465027, 0.0618288591504097, 0.06363773345947266, -0.01711195893585682, 0.05988481640815735, -0.006267381366342306, -0.07676096260547638, -0.06027543172240257, 0.12273148447275162, 0.023486167192459106, 0.06782689690589905, 0.019589493051171303, -0.04232793673872948, 0.12180294096469879, -0.014355478808283806, 0.0956914871931076, -0.0712757259607315, 0.020438557490706444, -0.022354908287525177, -0.049190111458301544, 0.04612572118639946, -0.0384150967001915, -0.03911715745925903, 0.010211185552179813, 0.08897639811038971, 0.029296372085809708, -0.06852216273546219, 0.010324811562895775, -0.017275525256991386, -0.024368438869714737, -0.09588289260864258, -0.06896712630987167, 0.011638735421001911, 0.08038900792598724, -0.020673617720603943, 0.05261966958642006, -0.009236904792487621, -0.08622511476278305, 0.022971244528889656, -0.060383543372154236, -0.02964545600116253, -0.05784027278423309, -0.006520417984575033, -0.016633987426757812, -0.04646681621670723, -0.006082342937588692, -0.0024563453625887632, 0.04211803153157234, 0.04667705297470093, 0.02207338809967041, 0.03383035957813263, 0.052966900169849396, 0.002981300000101328, 0.02957092598080635, 0.055005114525556564, 0.030485253781080246, 0.03438505902886391, 0.01314765214920044, 0.03928392753005028, -0.03410657122731209, 0.026747751981019974, -0.06241634860634804, 0.0904872715473175, 0.011839414946734905, 0.03317759931087494, -0.019855372607707977, -0.023296790197491646, -0.05159248039126396, -0.09378111362457275, 0.048664458096027374, -0.07823753356933594, -0.07570245862007141, -0.040043387562036514, -0.022252172231674194, -0.07498311996459961, -0.03743719682097435, -0.021195748820900917, 0.018750200048089027, -0.05693698301911354, 0.10182555019855499, -0.02277960628271103, 0.035050664097070694, 0.046410322189331055, -0.0059526292607188225, -0.04882621765136719, -0.032089006155729294, -0.009215258061885834, 0.0018231736030429602, 0.022571764886379242, -0.03690069168806076, 0.029714860022068024, -0.0041998764500021935, -0.03281587362289429, -0.06272697448730469, 0.04092320054769516, -0.024785980582237244, 0.030442018061876297, -0.019454680383205414, 0.10902965068817139, 0.04079660773277283, 0.03745940327644348, 0.04108394309878349, -0.012620833702385426, -0.029695305973291397, -0.011727487668395042, -0.04977954179048538, -0.04244084283709526, 4.810493898969279e-33, 0.012313836254179478, 0.04794301465153694, 0.02413245663046837, 0.010846429504454136, -0.02614043653011322, 0.04374151676893234, -0.020360765978693962, -0.03170480579137802, -0.0642765462398529, -0.006449935492128134, -0.03400498628616333, 0.06725995987653732, -0.03695603087544441, 0.029830940067768097, -0.04579107463359833, -0.04900166764855385, -0.01264398917555809, -0.03587545454502106, -0.007730776909738779, 0.04841351509094238, 0.01837366819381714, -0.006066167261451483, -0.0510617159307003, -0.05838076025247574, -0.1240493580698967, -0.04921010509133339, 0.02103998139500618, 0.015497029758989811, 0.005319278687238693, 0.017230002209544182, -0.10732722282409668, 0.04976295307278633, 0.022930437698960304, 0.004552875645458698, 0.04481050744652748, -0.029582064598798752, 0.034237176179885864, -0.039426542818546295, -0.04479024186730385, -0.06610524654388428, -0.004996518138796091, 0.053203076124191284, -0.006842518225312233, -0.1303243637084961, -0.06593921780586243, 0.03621191158890724, 0.014433721080422401, -0.048233889043331146, 0.034631576389074326, 0.02227560617029667, 0.07569048553705215, -0.012027701362967491, -0.04505616053938866, 0.006595301907509565, -0.022723263129591942, 0.029025612398982048, 0.06302068382501602, 0.03584887832403183, 0.0677775964140892, -0.03799128532409668, -0.005326960701495409, -0.003993976395577192, 0.11556986719369888, 0.011354085989296436, 0.03310827538371086, 0.03862980380654335, 0.04971633851528168, 0.11016219854354858, -0.010537412948906422, -0.023763015866279602, -0.04340323060750961, 0.043232955038547516, -0.06398317962884903, -0.07131194323301315, 0.007417564280331135, -0.03929271176457405, 0.04716255143284798, -0.04502962902188301, 0.007168476935476065, 0.03334726393222809, 0.023175165057182312, 0.0011745874071493745, 0.027922596782445908, -0.006600608583539724, -0.058492328971624374, -0.02484525553882122, 0.056019991636276245, -0.09478265047073364, 0.009240684099495411, -0.04033010080456734, -0.011388462036848068, 0.005330926273018122, 0.04191030189394951, -0.06980199366807938, -0.03187105059623718, -5.4237158736726647e-33, 0.09942507743835449, 0.011940127238631248, -0.00676887109875679, -0.03482755273580551, 0.015517793595790863, -0.04679400846362114, 0.04988811910152435, 0.09702622890472412, -0.026419486850500107, -0.08647586405277252, 0.03212989866733551, -0.07649710029363632, -0.018321800976991653, -0.0864575058221817, 0.06651214510202408, 0.06127188727259636, -0.00021707976702600718, 0.035501524806022644, -0.0017165469471365213, 0.05298948287963867, -0.030745159834623337, 0.03756706416606903, -0.14330169558525085, 0.07025782763957977, -0.03755364567041397, 0.03297669440507889, 0.02858630008995533, 0.03211278095841408, 0.05089893937110901, -0.0678400993347168, 0.0018137552542611957, -0.023580437526106834, -0.06805245578289032, 0.03625794127583504, -0.1311781406402588, 0.013366492465138435, -0.009372875094413757, 0.02194567210972309, -0.0018296249909326434, 0.00020956608932465315, 0.09745222330093384, 0.05750429630279541, -0.13635337352752686, 0.08035822212696075, -0.017766054719686508, 0.02407274954020977, -0.06718626618385315, -0.011881135404109955, 0.017362849786877632, 0.06601868569850922, 0.018939990550279617, -0.02727700211107731, -0.08797433972358704, 0.01190093718469143, -0.108094222843647, -0.08835781365633011, 0.08445975929498672, -0.02674141153693199, -0.04752110317349434, -0.005570659879595041, -0.05176600068807602, -0.03138837590813637, -0.07218824326992035, -0.08485827594995499, 0.031950294971466064, -0.06805721670389175, -0.04588516801595688, 0.036447152495384216, -0.04703271761536598, 0.008281458169221878, 0.005498568993061781, 0.057897962629795074, 0.01647099480032921, 0.02474099211394787, 0.034882303327322006, 0.06269794702529907, 0.038862451910972595, -0.027004901319742203, -0.0033205028157681227, -0.01567704789340496, -0.11429527401924133, -0.021766413003206253, 0.037484992295503616, 0.08283054083585739, 0.02400645986199379, 0.001466575195081532, 0.003208798123523593, 0.04565777629613876, 0.02535570040345192, -0.03646683692932129, -0.03180473670363426, 0.012808163650333881, 0.011246005073189735, 0.06339666992425919, 0.023382220417261124, -5.61181145997125e-8, -0.11237289756536484, -0.03016063943505287, -0.0792553648352623, 0.005548399407416582, -0.07077696919441223, 0.01520825456827879, 0.026058170944452286, 0.009998978115618229, -0.0331464558839798, -0.006222131662070751, -0.048577308654785156, 0.048236045986413956, -0.035959165543317795, -0.024843238294124603, -0.03714042156934738, 0.05100330337882042, 0.024112287908792496, 0.058118972927331924, -0.014660459011793137, 0.014034067280590534, 0.009582621976733208, 0.00620298134163022, 0.025201819837093353, -0.015060216188430786, 0.0498526506125927, -0.04831637442111969, -0.08793078362941742, 0.047937046736478806, -0.054387710988521576, 0.004919559229165316, 0.007940304465591908, 0.018160440027713776, 0.027770549058914185, -0.04862569272518158, 0.07413262873888016, 0.08424071222543716, 0.02930956520140171, -0.13801933825016022, -0.013282615691423416, 0.04165521636605263, 0.09869620203971863, 0.08189351856708527, -0.06650137156248093, -0.01649557054042816, 0.002514186315238476, 0.03703151270747185, 0.07191222161054611, -0.06169021874666214, 0.08750637620687485, 0.08013111352920532, 0.025632187724113464, -0.01862473599612713, -0.09921509027481079, 0.05056420713663101, 0.022415995597839355, -0.010322274640202522, 0.02327340468764305, 0.07871776819229126, 0.0790623128414154, 0.045454978942871094, 0.06882309913635254, 0.03365930914878845, 0.06097203865647316, 0.020306991413235664 ]
textattack/distilbert-base-cased-CoLA
73fd8dc841293aab1caea98581bb57481c87ff55
2020-06-09T16:45:43.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-cased-CoLA
2,120
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
SEBIS/legal_t5_small_trans_fr_en
2940039b5f8da8f9a6f3c09be0c9667be9d7a9a9
2021-06-23T09:52:57.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French English", "dataset:dcep europarl jrc-acquis", "transformers", "translation French English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_en
2,119
null
transformers
--- language: French English tags: - translation French English model datasets: - dcep europarl jrc-acquis widget: - text: "quels montants ont été attribués et quelles sommes ont été effectivement utilisées dans chaque État membre? 4." --- # legal_t5_small_trans_fr_en model Model on translating legal text from French to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to English. ### How to use Here is how to use this model to translate legal text from French to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_en", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "quels montants ont été attribués et quelles sommes ont été effectivement utilisées dans chaque État membre? 4." pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_en | 51.44| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
[ -0.025606190785765648, -0.05472900718450546, -0.013601262122392654, -0.05703667923808098, 0.04314785823225975, 0.0399705208837986, -0.026793818920850754, 0.07951846718788147, 0.10081396251916885, -0.006382662802934647, 0.04180935025215149, -0.03271105885505676, 0.017123233526945114, -0.03732677921652794, -0.056459009647369385, -0.054997868835926056, 0.01638522371649742, 0.03963484242558479, -0.14073798060417175, -0.07936036586761475, 0.027576223015785217, 0.037695132195949554, 0.06063934043049812, 0.008102437481284142, 0.07111417502164841, -0.025301221758127213, -0.08831824362277985, -0.022166170179843903, 0.01786058582365513, -0.031249936670064926, 0.011419159360229969, 0.07693306356668472, -0.04987361282110214, 0.08718958497047424, -0.030631551519036293, 0.002386132488027215, -0.046215880662202835, -0.05590737611055374, 0.03686283528804779, 0.028828447684645653, -0.007546086795628071, -0.030903035774827003, -0.04401577636599541, 0.010208112187683582, 0.10373090952634811, -0.00573750352486968, -0.048195671290159225, 0.051299240440130234, -0.04489605873823166, -0.015137088485062122, -0.11090052127838135, -0.032824188470840454, 0.004482359625399113, 0.06122219190001488, -0.06383863836526871, -0.06911461055278778, -0.0017473542829975486, -0.007930165156722069, 0.05701562389731407, 0.00023641657026018947, -0.060335922986269, -0.010197962634265423, -0.06907551735639572, 0.048093151301145554, -0.022904351353645325, -0.029258091002702713, 0.007907162420451641, 0.011807992123067379, -0.020254390314221382, -0.014555374160408974, -0.05402694642543793, 0.02610819786787033, 0.003966088406741619, 0.0856272354722023, 0.02519225887954235, -0.0062265219166874886, 0.02056320197880268, 0.022508056834340096, 0.062418702989816666, -0.16851802170276642, 0.011063394136726856, 0.01124575175344944, 0.04166683182120323, -0.032134126871824265, 0.036721426993608475, -0.06487889587879181, 0.01789344660937786, 0.03719937056303024, 0.12964849174022675, 0.005184561479836702, 0.02927582897245884, -0.015324839390814304, 0.0342385470867157, 0.05234835669398308, -0.06270338594913483, 0.02441275864839554, 0.02911955490708351, 0.05547286570072174, -0.05787239596247673, 0.08343413472175598, 0.06648220866918564, 0.07995044440031052, 0.0921974927186966, 0.014040748588740826, -0.07933877408504486, -0.05242424085736275, 0.07337445765733719, 0.04442344605922699, 0.017378337681293488, -0.14524149894714355, -0.0012104922207072377, 0.024488581344485283, -0.02802344039082527, -0.05943518504500389, 0.057061828672885895, 0.025882937014102936, -0.00738033652305603, -0.07474313676357269, 0.013000966981053352, 0.0068546780385077, -0.07642898708581924, 0.05329824984073639, -0.039912838488817215, -0.06572956591844559, 0.003502747043967247, -0.01063764188438654, -0.07956091314554214, 5.0299260008311676e-33, 0.024521637707948685, 0.1047961488366127, 0.017513040453195572, 0.08346796780824661, -0.0343744158744812, -0.030296294018626213, -0.05898726359009743, 0.06527677923440933, -0.08424540609121323, 0.016079723834991455, -0.07863064110279083, -0.021867750212550163, -0.06767091155052185, 0.09689280390739441, 0.021850617602467537, -0.04184131324291229, 0.05066181346774101, 0.004991546738892794, -0.008351336233317852, 0.05045889690518379, 0.1443195939064026, -0.0013030257541686296, 0.044962309300899506, 0.004319299012422562, -0.0041417828761041164, 0.07718504965305328, 0.027710089460015297, -0.08208286017179489, -0.054862067103385925, 0.06303815543651581, -0.12569983303546906, -0.010337761603295803, 0.006054915487766266, 0.009848705492913723, 0.04829634726047516, -0.026501070708036423, 0.04059109836816788, -0.021604616194963455, 0.01785150170326233, -0.04166237264871597, 0.02426694706082344, 0.022180233150720596, 0.049363378435373306, -0.02486814744770527, -0.034668587148189545, -0.010177331045269966, -0.03344796970486641, -0.05837760865688324, -0.018316220492124557, 0.01261071301996708, 0.03893526270985603, -0.013801123946905136, -0.03702498972415924, -0.04929666966199875, 0.06700541824102402, 0.1283424347639084, -0.0482323095202446, 0.05432841554284096, 0.012641304172575474, 0.06375781446695328, 0.01659517176449299, 0.009093119762837887, 0.0231331717222929, 0.0743168294429779, 0.11377923935651779, 0.0455603264272213, -0.11362271755933762, -0.009027605876326561, 0.10439830273389816, -0.02037646435201168, -0.08566273748874664, 0.027063541114330292, 0.042901813983917236, 0.04378825053572655, 0.09004152566194534, 0.009404651820659637, 0.004355776589363813, -0.07952798902988434, 0.012228394858539104, -0.027838192880153656, -0.10470666736364365, -0.00601828983053565, -0.04070340096950531, -0.016078412532806396, -0.028424030169844627, -0.03899417445063591, 0.07163537293672562, -0.052555885165929794, 0.02254766784608364, 0.008303230628371239, 0.0009415175300091505, -0.053495652973651886, -0.047589804977178574, -0.03899458423256874, 0.017955569550395012, -5.011387720234731e-33, -0.02898075059056282, -0.026029733940958977, -0.08678677678108215, 0.04297225549817085, -0.040585558861494064, -0.05876097455620766, -0.007121299393475056, 0.10574765503406525, 0.0005390067235566676, -0.06502620130777359, 0.03331724926829338, -0.09523217380046844, 0.05740971490740776, -0.01951150968670845, 0.06232088804244995, -0.044910088181495667, 0.03277646750211716, -0.02481946162879467, 0.08767570555210114, 0.1073656901717186, 0.007552372291684151, 0.00405703904107213, -0.08885233104228973, 0.045529041439294815, -0.020677635446190834, 0.04897112026810646, -0.04320752993226051, 0.04069065302610397, 0.025518298149108887, -0.0038946266286075115, -0.060055144131183624, -0.020765451714396477, -0.008089425973594189, 0.05157047510147095, -0.0862840786576271, 0.025217745453119278, 0.017305515706539154, -0.012648012489080429, -0.028837330639362335, 0.045159902423620224, 0.04176928848028183, 0.01940479874610901, -0.05663039907813072, -0.04523063078522682, -0.04480491206049919, 0.02140248939394951, -0.11591742187738419, -0.05520504340529442, 0.033865585923194885, -0.06484048813581467, 0.07732044160366058, 0.013287421315908432, -0.0673849806189537, 0.011533019132912159, -0.014161154627799988, -0.07760360836982727, 0.0026468306314200163, -0.06731078773736954, -0.05044570192694664, -0.06307335197925568, -0.0023514183703809977, 0.02653234638273716, -0.01414372306317091, -0.06301825493574142, 0.06372914463281631, -0.030069956555962563, -0.06031838059425354, 0.04238857701420784, 0.009770194999873638, -0.041841719299554825, 0.10422973334789276, -0.08800310641527176, 0.005191461183130741, -0.025884799659252167, -0.012208758853375912, -0.07987045496702194, -0.01016196794807911, -0.03587307035923004, -0.004169776104390621, -0.029357055202126503, -0.04695422947406769, -0.049761466681957245, -0.003324968973174691, 0.05677180737257004, 0.018429137766361237, 0.048587825149297714, -0.009754368104040623, 0.02371545508503914, 0.05118529871106148, 0.04538259655237198, 0.031768955290317535, 0.06036052852869034, 0.0008773705922067165, 0.09397459030151367, -0.017575355246663094, -5.520809409631511e-8, -0.04696130380034447, 0.01875200867652893, -0.059040945023298264, 0.055728666484355927, -0.02490198239684105, -0.060372721403837204, -0.06186997890472412, 0.014318233355879784, -0.05140566825866699, 0.0029609412886202335, 0.030441801995038986, 0.03150253742933273, -0.03348853439092636, -0.0131145678460598, -0.01995910331606865, 0.05462586134672165, 0.013648301362991333, 0.037337079644203186, -0.0031339460983872414, 0.0024801616091281176, 0.0020910196471959352, 0.05332198739051819, 0.02195940911769867, -0.049544427543878555, 0.04950600489974022, -0.049773238599300385, -0.057176340371370316, 0.04803215339779854, 0.01332765817642212, -0.08332021534442902, -0.016380557790398598, 0.04990800842642784, -0.03930355980992317, -0.01576007343828678, 0.03618653491139412, 0.04275145381689072, -0.01070618350058794, -0.0044000823982059956, 0.019394109025597572, 0.06760598719120026, 0.0970497652888298, -0.03971020132303238, -0.07949722558259964, 0.0038481249939650297, 0.08198989927768707, 0.0011390340514481068, -0.025188051164150238, -0.08753806352615356, 0.08804921060800552, -0.022817643359303474, 0.015034024603664875, 0.02108551748096943, -0.0009147559758275747, 0.03159679099917412, -0.01331156026571989, 0.05437494441866875, 0.02330845408141613, -0.029049022123217583, 0.002680770121514797, 0.004241349175572395, 0.01676667481660843, -0.006684620399028063, 0.006594719830900431, -0.03128521516919136 ]
dbmdz/convbert-base-turkish-cased
6d9b09e4e6f249c477aac7b73f3bcf9aa78ed1a8
2021-03-15T23:29:04.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "tr", "arxiv:2008.02496", "transformers", "license:mit" ]
feature-extraction
false
dbmdz
null
dbmdz/convbert-base-turkish-cased
2,119
null
transformers
--- language: tr license: mit --- # 🤗 + 📚 dbmdz Turkish ConvBERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources a cased ConvBERT model for Turkish 🎉 # 🇹🇷 ConvBERTurk ConvBERTurk is a community-driven cased ConvBERT model for Turkish. In addition to the BERT and ELECTRA based models, we also trained a ConvBERT model. The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. We follow a different training procedure: instead of using a two-phase approach, that pre-trains the model for 90% with 128 sequence length and 10% with 512 sequence length, we pre-train the model with 512 sequence length for 1M steps on a v3-32 TPU. ## Stats The current version of the model is trained on a filtered and sentence segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/), a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/). The final training corpus has a size of 35GB and 44,04,976,662 tokens. Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model on a TPU v3-32! ## Usage With Transformers >= 4.3 our cased ConvBERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/convbert-base-turkish-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` ## Results For results on PoS tagging, NER and Question Answering downstream tasks, please refer to [this repository](https://github.com/stefan-it/turkish-bert). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our DBMDZ BERT models in general, just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing us the Turkish NER dataset for evaluation. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
[ -0.12887485325336456, -0.0630696639418602, 0.04466338828206062, -0.02069954387843609, -0.02033671922981739, 0.036361560225486755, -0.0796685591340065, 0.021850204095244408, 0.017036043107509613, -0.03186916559934616, -0.06118922308087349, 0.02171807549893856, 0.034395404160022736, -0.02171330526471138, -0.020923566073179245, -0.02230929024517536, 0.047088783234357834, -0.006568666081875563, -0.022388681769371033, -0.035337403416633606, 0.03255194425582886, 0.04529915377497673, 0.04053796827793121, -0.05167793482542038, 0.032822027802467346, -0.05675508826971054, 0.004883793648332357, -0.04064051806926727, 0.10777068883180618, -0.031580887734889984, 0.08576931804418564, 0.06592987477779388, -0.0068426476791501045, 0.06518381834030151, -0.06147076189517975, 0.03938765823841095, -0.007245290093123913, -0.06450781971216202, -0.013495632447302341, 0.019587481394410133, 0.0360441654920578, 0.015811625868082047, 0.004440524149686098, 0.046217743307352066, 0.06599223613739014, -0.04022694379091263, -0.028392285108566284, 0.014154868200421333, -0.044191282242536545, 0.05081939697265625, -0.10927548259496689, -0.023772165179252625, 0.03748658299446106, 0.11151059716939926, -0.020592665299773216, 0.023342492058873177, 0.027129046618938446, 0.056008145213127136, -0.010111388750374317, -0.04624178633093834, -0.04452555254101753, -0.01946501061320305, -0.10198064893484116, -0.05758417025208473, -0.06416446715593338, -0.014854680746793747, -0.04702714830636978, 0.08417164534330368, 0.02511591836810112, 0.05094193294644356, -0.029237480834126472, 0.047573693096637726, -0.029747676104307175, 0.04552140831947327, -0.02975362166762352, -0.011937647126615047, 0.12058155983686447, -0.045435868203639984, 0.09105336666107178, -0.12700490653514862, -0.004443770740181208, -0.021689530462026596, 0.04999755695462227, -0.1267940104007721, 0.07489289343357086, -0.040164608508348465, -0.022738385945558548, 0.007986106909811497, 0.07565708458423615, 0.022001920267939568, 0.059763744473457336, 0.007871920242905617, 0.048175591975450516, -0.03326365724205971, 0.053678594529628754, 0.08858068287372589, 0.03732436150312424, 0.04375986382365227, 0.05453641712665558, 0.10463140904903412, 0.05749032646417618, 0.053537517786026, 0.03028612583875656, 0.02403084561228752, -0.014640036039054394, -0.04858509451150894, 0.10700874030590057, -0.0032342125196009874, -0.020371031016111374, -0.053806401789188385, 0.034822843968868256, -0.019900521263480186, 0.10440826416015625, -0.0831671878695488, 0.008008461445569992, 0.04157262295484543, -0.0140488026663661, -0.03642093017697334, 0.09437073767185211, -0.04759508743882179, -0.0032867533154785633, 0.002548163291066885, 0.025515882298350334, 0.07105199992656708, 0.006275380030274391, -0.017520828172564507, -0.02957100421190262, 5.431752214270458e-33, -0.014950530603528023, 0.008593490347266197, -0.008776108734309673, -0.001565449987538159, -0.021942831575870514, -0.008993735536932945, -0.013836048543453217, -0.0011338993208482862, -0.10247856378555298, 0.015377325005829334, -0.096502885222435, 0.0009242663509212434, -0.07820581644773483, 0.049718696624040604, 0.03731979429721832, 0.0004047703987453133, -0.03835320845246315, 0.044343169778585434, -0.06605152040719986, 0.04466257989406586, 0.08454665541648865, 0.04030207172036171, 0.017315568402409554, -0.058493148535490036, 0.019152993336319923, 0.05594843626022339, 0.06032487750053406, -0.026482682675123215, -0.05955268442630768, 0.0585489459335804, -0.0330483578145504, 0.04131939634680748, -0.09677613526582718, 0.02286383882164955, -0.048128847032785416, -0.04170072451233864, -0.038385774940252304, -0.021141229197382927, -0.04624073952436447, -0.06085291877388954, -0.002024911344051361, 0.02908153459429741, -0.004922168329358101, -0.030221546068787575, -0.10609178990125656, -0.02685067243874073, 0.07035280764102936, -0.047669243067502975, -0.028286634013056755, -0.03116738609969616, 0.08570448309183121, 0.03840329870581627, -0.10701952129602432, -0.04751742631196976, -0.007537460420280695, 0.04864391312003136, 0.03350979834794998, 0.04486605152487755, 0.10567010939121246, 0.09390002489089966, 0.0012878794223070145, -0.019126934930682182, 0.03941837698221207, 0.051680270582437515, 0.036686141043901443, -0.03317418694496155, -0.034710563719272614, 0.04360940307378769, 0.08107923716306686, -0.005989613011479378, -0.00507179694250226, -0.022293586283922195, -0.028226127848029137, -0.03365428373217583, 0.030991824343800545, -0.050494637340307236, 0.06530610471963882, -0.1347890943288803, -0.10437966883182526, -0.0017934844363480806, -0.03408437222242355, 0.02302597463130951, -0.045878294855356216, -0.025455830618739128, -0.009805440902709961, -0.0012734857155010104, 0.029598983004689217, -0.08297505229711533, -0.0569472536444664, -0.08870291709899902, -0.007419710047543049, -0.019308632239699364, 0.0156694408506155, 0.042971350252628326, -0.004407098051160574, -4.6901173999733224e-33, 0.03434854745864868, 0.018519142642617226, -0.07197146117687225, 0.031748514622449875, -0.07965336740016937, -0.058355920016765594, 0.03042869083583355, 0.10072159022092819, 0.008187252096831799, -0.058221619576215744, 0.0006698116194456816, -0.10748486965894699, 0.008867784403264523, -0.011430004611611366, 0.08403221517801285, -0.023044971749186516, -0.011354034766554832, -0.0048017301596701145, 0.0022579894866794348, 0.04714708775281906, 0.060321226716041565, -0.0008408111170865595, -0.09411460161209106, 0.03500988334417343, -0.06560418754816055, 0.01782236434519291, -0.01871890015900135, 0.07898224890232086, 0.0013494255254045129, 0.016973815858364105, -0.04524482041597366, -0.01960160955786705, -0.02424711175262928, 0.05741385743021965, -0.11185774207115173, 0.014379044063389301, 0.07418067008256912, -0.01989651843905449, -0.021181141957640648, 0.05234035104513168, 0.14260804653167725, 0.030783291906118393, -0.0694955512881279, 0.03001077100634575, -0.03785988315939903, -0.010016177780926228, -0.06119375675916672, 0.019723784178495407, -0.0056677162647247314, -0.09855636954307556, 0.02848910354077816, -0.03402523696422577, -0.030831411480903625, -0.003199174301698804, 0.004315156023949385, -0.01789039559662342, -0.04388338699936867, -0.016609186306595802, 0.01830773428082466, -0.0322386734187603, -0.052720021456480026, -0.006601914297789335, 0.02076805755496025, -0.09364673495292664, 0.10590570420026779, 0.01790618523955345, -0.04937909170985222, 0.07611242681741714, -0.007887796498835087, 0.012310605496168137, -0.031181855127215385, 0.0096669290214777, -0.020207390189170837, 0.04170970991253853, -0.012086907401680946, 0.003991822712123394, 0.002491367980837822, -0.04899044707417488, -0.017114687711000443, -0.011351347900927067, -0.10260624438524246, -0.03602919727563858, 0.019406430423259735, 0.029724054038524628, 0.014424648135900497, 0.08870219439268112, 0.03956117853522301, 0.04717874899506569, 0.04367722198367119, 0.06638145446777344, -0.05819793418049812, 0.05657001584768295, 0.029307929798960686, 0.10060806572437286, -0.003496748860925436, -5.582040785157005e-8, -0.052323099225759506, 0.04041755944490433, -0.050661250948905945, 0.05205400288105011, -0.0039407191798090935, -0.04827237129211426, -0.07525602728128433, 0.03632684424519539, -0.023797599598765373, -0.0233237873762846, 0.03890557959675789, 0.03710462152957916, -0.07449917495250702, 0.013842115178704262, -0.05603950843214989, 0.1231967881321907, -0.056136541068553925, -0.009534441865980625, -0.036541134119033813, 0.034913696348667145, 0.038184113800525665, 0.09187359362840652, 0.02788614295423031, 0.020765816792845726, -0.03712844476103783, -0.027971774339675903, -0.06379203498363495, 0.103336401283741, 0.037490151822566986, -0.04192856699228287, -0.04889945313334465, 0.08040590584278107, -0.058873988687992096, 0.007052520290017128, -0.013358109630644321, 0.04962075501680374, -0.012774985283613205, -0.035785794258117676, 0.002701082732528448, 0.033543724566698074, 0.10436411947011948, 0.011943437159061432, -0.05129339545965195, -0.022363724187016487, -0.017121994867920876, 0.006882849149405956, -0.025873538106679916, -0.10261514782905579, 0.05525730922818184, 0.03380497545003891, 0.021252427250146866, 0.019311653450131416, -0.04061438515782356, 0.06398283690214157, 0.03262816742062569, -0.011174614541232586, -0.07062274217605591, -0.025768624618649483, 0.038682520389556885, 0.03323294594883919, 0.04378538578748703, -0.01719418354332447, 0.04026104137301445, -0.012827100232243538 ]
valurank/distilroberta-bias
c1e4a2773522c3acc929a7b2c9af2b7e4137b96d
2022-06-08T20:44:39.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:valurank/wikirev-bias", "transformers", "license:other" ]
text-classification
false
valurank
null
valurank/distilroberta-bias
2,114
null
transformers
--- license: other language: en datasets: - valurank/wikirev-bias --- # DistilROBERTA fine-tuned for bias detection This model is based on [distilroberta-base](https://huggingface.co/distilroberta-base) pretrained weights, with a classification head fine-tuned to classify text into 2 categories (neutral, biased). ## Training data The dataset used to fine-tune the model is [wikirev-bias](https://huggingface.co/datasets/valurank/wikirev-bias), extracted from English wikipedia revisions, see https://github.com/rpryzant/neutralizing-bias for details on the WNC wiki edits corpus. ## Inputs Similar to its base model, this model accepts inputs with a maximum length of 512 tokens.
[ -0.02942579798400402, -0.055089376866817474, -0.05088803172111511, 0.00426904484629631, 0.014935962855815887, 0.008648215793073177, 0.04608653858304024, 0.019209766760468483, 0.016845911741256714, 0.0024407831951975822, -0.005859118886291981, 0.016711082309484482, 0.018617970868945122, -0.018605995923280716, -0.038371823728084564, 0.027219949290156364, 0.06092679500579834, 0.02184324339032173, -0.13056422770023346, -0.04242958128452301, 0.03857755288481712, 0.029071763157844543, 0.05023648217320442, 0.003810772905126214, 0.0068854112178087234, -0.022388774901628494, -0.028359729796648026, 0.04007924720644951, 0.02051699534058571, -0.05086209625005722, 0.009869884699583054, -0.005987865384668112, 0.06893840432167053, 0.03777097538113594, -0.11348361521959305, 0.02618243359029293, -0.0702110081911087, -0.02558698132634163, 0.014316285960376263, 0.07090701907873154, 0.01572526805102825, 0.013258005492389202, -0.028815336525440216, 0.1103590577840805, 0.07986986637115479, 0.030084513127803802, -0.060322873294353485, 0.027236655354499817, -0.1136067733168602, 0.033809516578912735, -0.032156698405742645, -0.04281909391283989, 0.002833946608006954, 0.14503659307956696, -0.06173618137836456, -0.0849343091249466, -0.012777108699083328, 0.11847910284996033, 0.03001151792705059, 0.012262220494449139, 0.01216017547994852, -0.04264940693974495, -0.0784449502825737, -0.005033663008362055, -0.05496663972735405, -0.05150065943598747, -0.008812577463686466, 0.060242339968681335, 0.027010370045900345, -0.06323429942131042, 0.00917692482471466, 0.04413799196481705, -0.033451635390520096, 0.0519215352833271, 0.04443679377436638, 0.02544216439127922, 0.11106173694133759, 0.005921319127082825, 0.07264702022075653, -0.11143036931753159, 0.01691044308245182, -0.015450014732778072, 0.08664824068546295, -0.03544467315077782, 0.08685897290706635, -0.0032359932083636522, -0.07890639454126358, 0.04319777339696884, 0.029170947149395943, 0.055527977645397186, 0.022092780098319054, -0.02173663303256035, 0.026716038584709167, 0.0056803105399012566, -0.002402589423581958, 0.05297568067908287, -0.0563029907643795, 0.013288895599544048, -0.024426547810435295, 0.08685603737831116, -0.00021787453442811966, -0.031224384903907776, -0.0713401809334755, 0.049860332161188126, -0.047022271901369095, -0.08658656477928162, 0.09182742238044739, 0.03305558115243912, -0.02083474025130272, -0.09050227701663971, -0.015380777418613434, -0.034979529678821564, 0.0008299120818264782, -0.029999755322933197, -0.007922870106995106, 0.03242190182209015, 0.023805053904652596, 0.027511216700077057, -0.019309187307953835, -0.0126127228140831, -0.029991822317242622, -0.0638866275548935, -0.0066661830060184, -0.039367128163576126, -0.017423853278160095, -0.020433608442544937, -0.05953517556190491, 3.053028825444185e-33, 0.08484362810850143, 0.06744445115327835, -0.05819988250732422, 0.00431109918281436, -0.03402627632021904, -0.0701412782073021, -0.03018934838473797, -0.018149640411138535, -0.11514674127101898, 0.05139300972223282, 0.003803243627771735, 0.07228739559650421, -0.04283098503947258, 0.01903955079615116, 0.015663733705878258, -0.06215611472725868, -0.02412017621099949, 0.09607122093439102, 0.007929650135338306, 0.051518764346838, 0.04763753339648247, 0.06662745773792267, 0.02225346677005291, -0.06967148929834366, -0.05594956874847412, 0.019466590136289597, -0.00046715670032426715, -0.003682653186842799, -0.04146350920200348, 0.03858231380581856, -0.0948922410607338, -0.02071339450776577, 0.018816571682691574, -0.013386688195168972, -0.0070278760977089405, -0.059994280338287354, -0.0604557991027832, -0.01786688156425953, 0.04467553272843361, -0.052572183310985565, 0.051176127046346664, -0.0019482043571770191, 0.11264385282993317, -0.0014784488594159484, 0.01160250324755907, -0.01365911215543747, -0.0069668907672166824, -0.06613807380199432, 0.028042543679475784, 0.01863628625869751, -0.0019080133643001318, 0.055222880095243454, 0.037715472280979156, 0.014025654643774033, -0.021334977820515633, 0.10435493290424347, 0.030637379735708237, 0.05097534880042076, 0.07359693199396133, 0.06103525683283806, -0.006419561803340912, 0.08962836861610413, 0.03114798292517662, -0.02085588499903679, -0.0015685608377680182, -0.007112998981028795, -0.061255503445863724, -0.06422450393438339, -0.010487359017133713, 0.04432925954461098, 0.0034556519240140915, -0.044982027262449265, -0.0887090265750885, 0.0278097502887249, -0.020401563495397568, -0.0025355303660035133, 0.024807536974549294, 0.0004845825023949146, -0.06923464685678482, -0.034343671053647995, -0.00023696156858932227, 0.0039077079854905605, 0.011759517714381218, -0.04550518840551376, -0.11496049910783768, 0.023496272042393684, -0.02309412881731987, -0.12530885636806488, 0.02397344261407852, 0.012113305740058422, -0.03176136687397957, 0.07735715061426163, -0.0700354278087616, -0.06549516320228577, -0.005634004715830088, -3.237268095810393e-33, -0.0022548509296029806, 0.03349248319864273, -0.0708218663930893, 0.10113575309515, -0.0606551393866539, -0.002273878548294306, -0.010514420457184315, 0.04059924930334091, 0.04472547024488449, 0.03797568008303642, 0.11015637964010239, -0.06949707865715027, 0.009270242415368557, 0.022120889276266098, -0.016279684379696846, -0.019362550228834152, 0.007237321697175503, 0.0009681285009719431, 0.004437972325831652, 0.008164995349943638, 0.10176029056310654, 0.03801281750202179, -0.10270127654075623, 0.04026562720537186, -0.010318455286324024, 0.02204250730574131, 0.04044671729207039, 0.03607476130127907, 0.009441602043807507, 0.014820382930338383, -0.13543114066123962, -0.04050428047776222, -0.011492634192109108, -0.003976432606577873, -0.03283261880278587, -0.02437911368906498, 0.029291782528162003, 0.009379374794661999, -0.055650752037763596, 0.06227247416973114, 0.05678465589880943, 0.03951924294233322, -0.04031885415315628, -0.017512092366814613, -0.030782224610447884, -0.060700684785842896, -0.0834793746471405, 0.04952457174658775, 0.018701283261179924, -0.01540079154074192, 0.06996279209852219, 0.049020200967788696, -0.043908536434173584, 0.13213224709033966, 0.00787695124745369, -0.07217384874820709, 0.02288724109530449, 0.01027708314359188, 0.05000055208802223, 0.03778472915291786, -0.029812173917889595, -0.008149387314915657, -0.08950889110565186, -0.04725447669625282, 0.020610835403203964, -0.0017010580049827695, -0.027793334797024727, -0.034644048660993576, 0.05011163279414177, 0.024291837587952614, 0.07262388616800308, -0.012835646979510784, 0.011242842301726341, -0.030481377616524696, -0.10085241496562958, -0.0020694108679890633, 0.015404527075588703, -0.04525841772556305, -0.04535989090800285, 0.013492136262357235, 0.0011429899604991078, -0.016029689460992813, 0.0852321907877922, 0.0013507961994037032, 0.051511190831661224, 0.037809062749147415, -0.01965540647506714, -0.0034093984868377447, -0.042168520390987396, 0.02519666962325573, -0.007523819804191589, -0.05355697125196457, 0.04008151963353157, 0.02027725987136364, -0.04258381947875023, -4.985959023429132e-8, -0.0661003440618515, -0.0675402507185936, -0.09910780191421509, 0.08742086589336395, -0.08763650059700012, -0.08783315122127533, 0.02628372609615326, -0.06254648417234421, -0.06399773061275482, 0.022358136251568794, 0.030838927254080772, 0.04257485643029213, -0.028848858550190926, -0.019942080602049828, 0.06464403122663498, 0.07896888256072998, 0.012747452594339848, 0.07589332014322281, -0.00689360685646534, 0.06334389001131058, 0.09334924072027206, 0.032734837383031845, 0.0222842488437891, -0.09138017147779465, 0.04484972357749939, -0.024511605501174927, -0.0342266708612442, 0.032290250062942505, 0.032923031598329544, -0.07688393443822861, 0.002643600571900606, 0.06524275243282318, -0.030058985576033592, -0.09855718910694122, 0.06643415242433548, 0.12215043604373932, -0.1045256033539772, -0.02528325654566288, -0.034715622663497925, 0.0887334868311882, -0.004542239010334015, 0.0600406639277935, -0.05053197965025902, 0.01132581289857626, -0.03540334478020668, -0.005433158949017525, 0.010333947837352753, -0.0008545891614630818, -0.011534915305674076, -0.004016229882836342, 0.09670275449752808, 0.02483978681266308, 0.01885301060974598, -0.01507629919797182, -0.0726688876748085, 0.04384029284119606, 0.02642907202243805, -0.042403366416692734, -0.06309284269809723, 0.037893228232860565, 0.06827680766582489, 0.018782049417495728, 0.07695728540420532, -0.10971008986234665 ]
fhswf/bert_de_ner
97b17ba2e2bfe2e9d1b8d6e348cb60e0e82fc0b4
2021-05-19T16:49:54.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "de", "dataset:germeval_14", "transformers", "German", "NER", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
fhswf
null
fhswf/bert_de_ner
2,113
2
transformers
--- language: de license: cc-by-sa-4.0 datasets: - germeval_14 tags: - German - de - NER --- # BERT-DE-NER ## What is it? This is a German BERT model fine-tuned for named entity recognition. ## Base model & training This model is based on [bert-base-german-dbmdz-cased](https://huggingface.co/bert-base-german-dbmdz-cased) and has been fine-tuned for NER on the training data from [GermEval2014](https://sites.google.com/site/germeval2014ner). ## Model results The results on the test data from GermEval2014 are (entities only): | Precision | Recall | F1-Score | |----------:|-------:|---------:| | 0.817 | 0.842 | 0.829 | ## How to use ```Python >>> from transformers import pipeline >>> classifier = pipeline('ner', model="fhswf/bert_de_ner") >>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.') [{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6}, {'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7}, {'word': 'international', 'score': 0.9996932744979858, 'entity': 'I-ORG', 'index': 8}, {'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}] ```
[ -0.1450337916612625, 0.0011599728604778647, 0.016816282644867897, -0.011684613302350044, -0.011903299018740654, 0.00879985187202692, -0.015275263227522373, 0.06008461117744446, -0.02085556462407112, -0.04426681995391846, 0.019751595333218575, -0.058505307883024216, 0.03231952339410782, 0.0667620599269867, 0.03934632986783981, 0.06324216723442078, 0.017521968111395836, -0.03693562000989914, -0.08278564363718033, -0.07232990115880966, 0.0367068387567997, 0.11701085418462753, 0.018856605514883995, -0.06264292448759079, 0.03001677617430687, -0.08491818606853485, -0.041090480983257294, -0.025934752076864243, 0.06283702701330185, 0.010388032533228397, 0.0471218079328537, 0.04126085713505745, -0.01346429344266653, 0.10982829332351685, 0.04868793115019798, 0.056781888008117676, -0.02347508817911148, -0.028485096991062164, 0.000030180966859916225, 0.0573771633207798, 0.018600931391119957, -0.03353559225797653, -0.03637336567044258, -0.02237313613295555, 0.024968180805444717, 0.06358840316534042, -0.07118305563926697, -0.043452825397253036, -0.031274281442165375, -0.03409523516893387, -0.10155423730611801, 0.01533117238432169, 0.055215269327163696, 0.09374126046895981, 0.008769485168159008, 0.04733992740511894, 0.029005955904722214, -0.09995109587907791, -0.05868249386548996, -0.08638838678598404, -0.08737541735172272, -0.03298277035355568, -0.03257261961698532, -0.048592232167720795, -0.11071914434432983, 0.04025640711188316, -0.013488668017089367, -0.004337646998465061, 0.018719151616096497, -0.012402091175317764, -0.011459953151643276, -0.03880753740668297, 0.024640588089823723, 0.023900577798485756, 0.013369771651923656, -0.05023892596364021, 0.06920912116765976, -0.012847798876464367, 0.07349392771720886, -0.1063196137547493, -0.019548939540982246, 0.014742324128746986, 0.025818005204200745, 0.01379257533699274, 0.1032024621963501, -0.014601449482142925, 0.05055639520287514, -0.0634295791387558, 0.008957924321293831, 0.02010932005941868, -0.04918333888053894, -0.12102977186441422, 0.06523195654153824, 0.01126718707382679, 0.0018499717116355896, 0.051344383507966995, 0.07401593774557114, -0.0035522575490176678, 0.014178876765072346, 0.05029768869280815, -0.03777443245053291, 0.05802450701594353, 0.01872481405735016, -0.009457321837544441, -0.04044539853930473, 0.00965159758925438, 0.02712775208055973, 0.046518873423337936, 0.04206918179988861, -0.040262944996356964, 0.023753631860017776, 0.018562892451882362, 0.016734983772039413, -0.0931374803185463, 0.0033513789530843496, -0.06403972953557968, -0.01727237179875374, -0.0036336116027086973, -0.04797257483005524, 0.002645969158038497, 0.04805921018123627, -0.015341110527515411, -0.031274840235710144, 0.06169912591576576, -0.0015237239422276616, 0.07384799420833588, -0.04019440338015556, 3.034207875190574e-33, 0.019862450659275055, -0.0292463768273592, 0.020308412611484528, -0.015485621057450771, -0.057905469089746475, 0.041635170578956604, -0.02545541152358055, 0.07150489091873169, -0.05743161588907242, 0.02531568333506584, -0.0845726877450943, 0.02165396325290203, -0.07356160134077072, 0.017319951206445694, -0.06240218132734299, 0.04237476736307144, -0.008314955048263073, 0.0014412258751690388, -0.0033593543339520693, 0.05741250514984131, 0.11887213587760925, 0.057432930916547775, 0.014771953225135803, -0.06482835859060287, -0.026690324768424034, 0.01935308426618576, 0.028803611174225807, -0.06637132167816162, -0.06683768332004547, 0.013020242564380169, -0.06342894583940506, -0.025419088080525398, 0.011853724718093872, 0.053923074156045914, -0.0012523450423032045, 0.020928790792822838, 0.002638602163642645, -0.024209363386034966, -0.031576007604599, -0.06184585392475128, 0.007335027679800987, 0.08493602275848389, 0.021235905587673187, -0.06268013268709183, -0.03551776334643364, 0.024407552555203438, 0.028477758169174194, -0.032242242246866226, 0.04680041968822479, 0.03232945129275322, 0.03804272040724754, 0.014642956666648388, -0.10661505907773972, 0.05562096834182739, 0.03356334567070007, 0.014482011087238789, 0.04475795477628708, 0.04854712262749672, 0.049524810165166855, -0.007296225056052208, -0.05459042638540268, 0.02721392549574375, 0.008267439901828766, -0.013888335786759853, 0.10368423163890839, -0.06769917905330658, -0.014559721574187279, 0.010779539123177528, -0.010335494764149189, 0.022317681461572647, -0.015674665570259094, 0.011635640636086464, 0.007526572328060865, 0.07837198674678802, 0.016530774533748627, -0.04061588644981384, 0.02826661802828312, -0.09886397421360016, -0.003423372283577919, 0.005719567649066448, 0.018780112266540527, 0.027219397947192192, -0.07072874158620834, -0.04449373483657837, -0.04279659315943718, -0.008267327211797237, 0.0072075119242072105, -0.07892660796642303, -0.04663769528269768, -0.027896441519260406, 0.006027061026543379, -0.027585433796048164, -0.031724922358989716, -0.026981472969055176, -0.10979699343442917, -4.382060370899126e-33, 0.010590489022433758, 0.011219081468880177, -0.09668184816837311, 0.02384554035961628, -0.049654271453619, -0.07539264112710953, 0.07061393558979034, 0.10133211314678192, -0.04604138806462288, -0.028288010507822037, 0.04900887981057167, -0.043489158153533936, 0.027049630880355835, -0.06522595137357712, 0.09053352475166321, 0.04339887946844101, -0.07439661771059036, -0.028900528326630592, -0.020860949531197548, 0.07979279011487961, 0.009570729918777943, 0.07718803733587265, -0.14607925713062286, 0.03399296849966049, -0.058473970741033554, 0.06222105398774147, -0.02203153818845749, 0.07103011012077332, 0.02379642426967621, 0.0021990081295371056, -0.04350573942065239, 0.037959951907396317, -0.041450001299381256, 0.03680099546909332, -0.052510567009449005, -0.03673313930630684, 0.017283009365200996, -0.04055744782090187, -0.017799878492951393, -0.052951522171497345, 0.005146485287696123, 0.0840277373790741, -0.09826033562421799, 0.07646847516298294, -0.00973267387598753, 0.013157153502106667, -0.09228106588125229, -0.026701468974351883, 0.09686283767223358, -0.047385718673467636, 0.016132008284330368, -0.04693928733468056, -0.09082648903131485, -0.016627108678221703, -0.06196160614490509, -0.07741809636354446, 0.04915574938058853, -0.10361544042825699, -0.038990918546915054, 0.018148666247725487, 0.003153572091832757, 0.0623321607708931, 0.04109984263777733, -0.001547692110762, -0.039424601942300797, 0.027153966948390007, -0.05621704086661339, 0.08721587806940079, 0.004466851241886616, -0.03727714717388153, -0.01416846178472042, 0.02329345978796482, 0.07660380005836487, -0.0547235831618309, -0.021547602489590645, -0.009640064090490341, -0.031689271330833435, -0.01780400238931179, 0.01662914641201496, -0.01708432473242283, -0.03768272325396538, -0.05019545182585716, 0.02645377442240715, 0.08456406742334366, -0.030632296577095985, 0.07800614833831787, 0.05317347124218941, 0.06030355393886566, 0.024183986708521843, 0.000419927469920367, -0.04250518977642059, 0.035640496760606766, -0.02725614234805107, 0.13337329030036926, 0.04266432300209999, -5.8682893211425835e-8, -0.07829982042312622, 0.030656050890684128, 0.007888298481702805, -0.0019349526846781373, -0.023489564657211304, -0.03732415288686752, -0.060411155223846436, 0.04490939900279045, -0.027977094054222107, 0.02291862480342388, 0.04789786413311958, 0.059027038514614105, -0.160806804895401, -0.016651790589094162, 0.046684879809617996, 0.06877397745847702, -0.017434800043702126, 0.0779663473367691, -0.01629718951880932, -0.007148479111492634, -0.00005042965494794771, 0.02275410294532776, -0.006649096962064505, -0.04869748651981354, -0.014628903940320015, -0.044677332043647766, -0.026688775047659874, 0.09218285232782364, 0.02782120555639267, -0.0524790994822979, -0.028132135048508644, 0.07138990610837936, 0.004699853714555502, 0.04600115865468979, 0.0944119542837143, 0.04606315866112709, 0.012910104356706142, -0.030055642127990723, 0.0036869505420327187, 0.01923658326268196, 0.07378605008125305, 0.06713476777076721, -0.1036805808544159, 0.025302104651927948, 0.018677830696105957, -0.019897690042853355, -0.008422662504017353, -0.09625117480754852, 0.0398702472448349, 0.06131383776664734, 0.06596748530864716, -0.044080425053834915, -0.05844727158546448, 0.09262026846408844, -0.07591841369867325, 0.03668595850467682, -0.06885890662670135, -0.03654320538043976, -0.02396848425269127, 0.017171723768115044, 0.006193622946739197, -0.026516113430261612, 0.032376017421483994, 0.09979848563671112 ]
ixa-ehu/SciBERT-SQuAD-QuAC
df352e10c506e443875447c166a679b6a5ee34e9
2021-06-29T22:55:53.000Z
[ "pytorch", "bert", "question-answering", "en", "arxiv:1808.07036", "transformers", "autotrain_compatible" ]
question-answering
false
ixa-ehu
null
ixa-ehu/SciBERT-SQuAD-QuAC
2,110
null
transformers
--- language: en --- # SciBERT-SQuAD-QuAC This is the [SciBERT language representation model](https://huggingface.co/allenai/scibert_scivocab_uncased) fine tuned for Question Answering. SciBERT is a pre-trained language model based on BERT that has been trained on a large corpus of scientific text. When fine tuning for Question Answering we combined [SQuAD2.0](https://www.aclweb.org/anthology/P18-2124/) and [QuAC](https://arxiv.org/abs/1808.07036) datasets. If using this model, please cite the following paper: ``` @inproceedings{otegi-etal-2020-automatic, title = "Automatic Evaluation vs. User Preference in Neural Textual {Q}uestion{A}nswering over {COVID}-19 Scientific Literature", author = "Otegi, Arantxa and Campos, Jon Ander and Azkune, Gorka and Soroa, Aitor and Agirre, Eneko", booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020", month = dec, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.nlpcovid19-2.15", doi = "10.18653/v1/2020.nlpcovid19-2.15", } ```
[ -0.06901852041482925, -0.058135416358709335, -0.01078801229596138, 0.04283185675740242, 0.014553511515259743, 0.05824289843440056, 0.017340855672955513, 0.09025508910417557, 0.037824418395757675, 0.00008996385440696031, 0.0035636054817587137, -0.03186975419521332, 0.029077300801873207, 0.02993241883814335, -0.04408359155058861, 0.026729576289653778, 0.0834074467420578, -0.05751585587859154, -0.07293263077735901, -0.012903672643005848, 0.00012173839058959857, 0.04604025557637215, 0.12330760061740875, -0.03792106732726097, 0.03815753012895584, -0.06229732930660248, -0.06661317497491837, 0.0010439350735396147, 0.017377378419041634, 0.04875272884964943, 0.05008934438228607, 0.09468656033277512, 0.022984886541962624, 0.062334123998880386, -0.002259777393192053, 0.05337768793106079, -0.04521683230996132, -0.07192505896091461, 0.031224317848682404, 0.0339946448802948, -0.07794985920190811, -0.06238473206758499, -0.003633475862443447, 0.03976404666900635, 0.1007971242070198, -0.01833534613251686, -0.08611445873975754, -0.00855463556945324, -0.0031173480674624443, 0.005275609903037548, -0.12726588547229767, -0.03408128768205643, 0.05990979075431824, 0.024250878021121025, -0.009052008390426636, 0.010092326439917088, -0.008835525251924992, 0.00019927180255763233, -0.013732275925576687, -0.06445197016000748, -0.06192615255713463, -0.09813179075717926, -0.09327863156795502, 0.04722234979271889, -0.0022712352219969034, -0.0018218006007373333, -0.03570877015590668, 0.0035208447370678186, -0.06610766798257828, 0.02014615386724472, -0.045564647763967514, 0.05158409848809242, 0.007467709947377443, 0.10557402670383453, 0.041355982422828674, 0.03029271960258484, 0.07147552818059921, -0.019609615206718445, 0.10562647134065628, -0.12235711514949799, 0.014635373838245869, -0.046717606484889984, 0.028119897469878197, 0.0012852853396907449, 0.09280329197645187, -0.00010850306716747582, 0.04422484338283539, 0.017977172508835793, 0.008850856684148312, 0.07749365270137787, -0.02382197417318821, -0.059813473373651505, 0.11532679200172424, -0.031552355736494064, -0.009471067227423191, 0.07565069198608398, 0.06022424250841141, -0.014865027740597725, -0.024024074897170067, 0.05861341208219528, 0.05552436038851738, 0.04132663831114769, -0.023659395053982735, -0.013729579746723175, -0.05417266860604286, -0.09015221148729324, 0.023331059142947197, 0.025697749108076096, 0.015637869015336037, -0.1010943055152893, -0.036074135452508926, 0.025061143562197685, -0.03348793834447861, 0.002169255632907152, 0.03242452070116997, -0.02426687255501747, 0.10891003161668777, 0.06035347282886505, -0.009385311044752598, 0.026827767491340637, -0.05287191644310951, -0.029822075739502907, -0.0065840077586472034, 0.006247972138226032, 0.037505581974983215, 0.024151746183633804, -0.04921097308397293, 5.015793987340391e-33, 0.07266617566347122, 0.05028748884797096, -0.0034360988065600395, 0.009521127678453922, -0.03868936747312546, 0.005258424207568169, -0.038462989032268524, 0.01759485900402069, -0.07842908054590225, -0.05137663334608078, -0.04153253883123398, 0.053001828491687775, -0.0049014524556696415, 0.03720174357295036, -0.015680523589253426, 0.03054451197385788, -0.06537118554115295, 0.024990040808916092, -0.05099652707576752, -0.027275528758764267, 0.08755061030387878, 0.06512804329395294, 0.06576027721166611, -0.030346881598234177, 0.01841943897306919, -0.040176596492528915, 0.02226630225777626, -0.08553826063871384, -0.06209893897175789, 0.04225527495145798, -0.12776699662208557, -0.011824398301541805, -0.025682616978883743, 0.021420061588287354, 0.011653165332973003, -0.04728546738624573, 0.007126720622181892, -0.033223800361156464, 0.041622985154390335, 0.021909285336732864, 0.07431846112012863, 0.03993174061179161, 0.08507014811038971, -0.019273366779088974, -0.039380285888910294, -0.00888929795473814, 0.017998766154050827, 0.03171705827116966, 0.002864065347239375, -0.03116421401500702, 0.00437333295121789, 0.007705588825047016, -0.04114563763141632, -0.017282700166106224, 0.06798209249973297, 0.06032814830541611, 0.019821858033537865, 0.04597492516040802, -0.026574132964015007, -0.016064897179603577, 0.0655427798628807, 0.07907362282276154, 0.06518587470054626, 0.0065411836840212345, 0.029333192855119705, 0.0008391712326556444, -0.03707985579967499, 0.00909416377544403, 0.03800288960337639, 0.07043065875768661, -0.017908602952957153, 0.0038882873486727476, -0.056265704333782196, 0.04572875425219536, 0.03351902589201927, -0.03456276282668114, 0.011792230419814587, -0.07123135030269623, 0.027928125113248825, 0.026478391140699387, 0.015313825570046902, -0.015075309202075005, -0.00904568750411272, -0.050095416605472565, -0.06991229206323624, -0.06356919556856155, 0.009202641434967518, -0.04858602583408356, 0.016718363389372826, -0.07239807397127151, 0.07409384846687317, -0.10068535804748535, 0.0035816021263599396, -0.019197478890419006, -0.07853911072015762, -4.732675805602859e-33, -0.03550553694367409, -0.07134586572647095, -0.07615657150745392, 0.07722105085849762, -0.012255373410880566, -0.0569213330745697, 0.004783547017723322, 0.04522019624710083, 0.03345140814781189, -0.04607982933521271, 0.05066501349210739, -0.04718766361474991, 0.03850648179650307, -0.05700775235891342, 0.056532349437475204, -0.040949638932943344, -0.0723058357834816, -0.0644955188035965, -0.006917272228747606, 0.06063671410083771, -0.013892000541090965, 0.0019346887711435556, -0.035468313843011856, 0.06418201327323914, 0.011094342917203903, 0.044798944145441055, 0.012922306545078754, 0.028674719855189323, -0.03323015198111534, 0.005186343565583229, -0.03566717728972435, -0.027076415717601776, -0.08574675768613815, -0.03136393055319786, -0.037181612104177475, 0.09471778571605682, 0.0535995177924633, -0.06355340778827667, -0.03331856429576874, 0.12009155005216599, 0.021748796105384827, 0.07538386434316635, -0.11495897173881531, -0.021540112793445587, -0.03769627586007118, 0.004196351859718561, -0.10536400973796844, -0.04975072667002678, -0.03761148452758789, 0.022697070613503456, 0.016463054344058037, 0.020952872931957245, -0.03684038296341896, 0.02550004981458187, -0.08907066285610199, -0.07626155763864517, 0.019064322113990784, -0.03189340978860855, -0.03175738453865051, 0.05575399845838547, -0.02529818005859852, 0.04967145249247551, -0.029326865449547768, 0.008240332826972008, -0.0055109248496592045, -0.04917418956756592, -0.029902968555688858, 0.09813512116670609, 0.023746542632579803, -0.07720097154378891, 0.06378747522830963, -0.13495750725269318, 0.01959805004298687, 0.008176769129931927, -0.0022435046266764402, 0.028952931985259056, 0.025426842272281647, -0.08124198019504547, 0.03128486126661301, -0.036162637174129486, -0.057825956493616104, 0.007663023192435503, 0.06118588149547577, 0.10131505876779556, 0.017735304310917854, 0.05223136767745018, -0.04059615731239319, 0.07524228096008301, -0.02464020438492298, 0.042021531611680984, 0.058980222791433334, -0.05540647730231285, 0.00866248644888401, 0.10519278049468994, -0.05298943817615509, -6.516202688544581e-8, -0.010229193605482578, 0.023071009665727615, -0.008290794678032398, 0.08108539879322052, 0.013594143092632294, -0.07148587703704834, -0.0814819484949112, 0.02033965475857258, -0.04160086438059807, 0.021001847460865974, 0.017134029418230057, 0.0546683669090271, -0.04588925093412399, -0.04890477657318115, 0.01616809330880642, 0.10039585083723068, 0.015098470263183117, 0.047215674072504044, -0.04326315596699715, -0.03654177859425545, 0.08814167231321335, 0.051073186099529266, -0.04590578377246857, -0.05274587869644165, 0.028595928102731705, 0.02308981865644455, -0.14301516115665436, 0.026806335896253586, -0.025805536657571793, -0.005224677734076977, -0.03262832760810852, -0.004095448646694422, -0.09283451735973358, -0.026145078241825104, 0.07267099618911743, 0.08529718965291977, -0.022162189707159996, -0.08752641826868057, 0.015033051371574402, 0.07746198028326035, 0.0737384632229805, 0.03740730136632919, -0.07049459964036942, 0.04138309881091118, 0.07066148519515991, 0.027254333719611168, -0.0032031473238021135, -0.08308529853820801, 0.07083586603403091, -0.02220379002392292, 0.06684765219688416, -0.037168268114328384, -0.03802787885069847, 0.05232224613428116, -0.04478336125612259, 0.04055071994662285, -0.05696208029985428, -0.015286040492355824, 0.012421296909451485, -0.010877064429223537, 0.013773469254374504, 0.032156817615032196, 0.027042368426918983, -0.0059589664451777935 ]
hf-internal-testing/tiny-random-blenderbot
9432cd260adf10352afc43e7080b154ca0313105
2021-09-17T19:25:13.000Z
[ "pytorch", "tf", "blenderbot", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-blenderbot
2,106
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
JamesStratford/PLord-bot-DialoGPT-medium
a1f8100aa348ae0b41363d6089d81529e0ac3484
2022-07-08T01:37:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
JamesStratford
null
JamesStratford/PLord-bot-DialoGPT-medium
2,105
null
transformers
--- tags: - conversational --- # PlordBot - medium
[ -0.04313283413648605, -0.04160225763916969, 0.04087880998849869, -0.045091647654771805, 0.07174453139305115, -0.041430581361055374, 0.0829135999083519, 0.03301629424095154, 0.02080393396317959, -0.00828311126679182, 0.01817755587399006, 0.033393509685993195, 0.013027019798755646, -0.015865495428442955, 0.018745267763733864, 0.08349945396184921, 0.006186053156852722, 0.04667951539158821, -0.031178662553429604, 0.041237059980630875, 0.033772487193346024, 0.09600096940994263, 0.05562791973352432, -0.0022842923644930124, 0.032405633479356766, 0.06388604640960693, -0.054884035140275955, 0.03347901627421379, 0.05087852478027344, -0.04990902543067932, 0.01380529347807169, 0.07669062912464142, 0.03483236953616142, 0.08160898089408875, 0.005929930135607719, 0.05389407277107239, 0.018466847017407417, -0.018030911684036255, -0.018547365441918373, 0.0152271818369627, -0.00762847950682044, -0.01812729611992836, -0.0496022067964077, -0.010462392121553421, -0.03605033457279205, -0.0055463616736233234, -0.06591929495334625, 0.027924221009016037, -0.0643249899148941, 0.03438003733754158, -0.09674236923456192, -0.06215880438685417, -0.03462904691696167, 0.1047007367014885, 0.030642611905932426, 0.009925343096256256, -0.06723286956548691, -0.04542845860123634, 0.09204604476690292, -0.03448764607310295, -0.09020587801933289, -0.008489192463457584, -0.035563696175813675, 0.018451817333698273, -0.005261031445115805, 0.009178921580314636, -0.07630787789821625, 0.0016043306095525622, -0.07036980986595154, 0.10531698167324066, 0.06269706785678864, 0.03335189074277878, 0.07016286998987198, 0.03700166940689087, 0.003932265564799309, -0.04463569074869156, -0.023946786299347878, -0.0189229603856802, -0.019094539806246758, 0.0190241988748312, -0.05902250483632088, -0.06341154128313065, -0.02644648589193821, 0.03636057302355766, -0.00762128084897995, -0.06220085918903351, 0.005618833005428314, 0.009782206267118454, -0.01793617196381092, -0.00032808579271659255, -0.033817414194345474, -0.0777154341340065, 0.02570684440433979, 0.059262312948703766, -0.03511837497353554, 0.04706582427024841, -0.05140673741698265, -0.08806908130645752, -0.053650036454200745, 0.12109383195638657, 0.015257788822054863, 0.007915554568171501, 0.0008745508384890854, -0.07500199228525162, -0.03857987001538277, -0.010211032815277576, -0.007494102697819471, 0.09243235737085342, 0.00925231259316206, -0.01551008690148592, -0.02356821298599243, -0.05237602815032005, 0.00493909465149045, -0.020904112607240677, 0.07803452759981155, -0.02911968342959881, 0.0495564229786396, 0.030489329248666763, 0.06021743640303612, -0.07368896156549454, 0.017409512773156166, 0.029519394040107727, -0.07962227612733841, -0.05593256279826164, 0.031155619770288467, -0.0027531636878848076, -0.00860453862696886, -2.8926713758538627e-33, 0.06331020593643188, -0.0333343930542469, 0.03956687077879906, 0.060348134487867355, 0.011538404040038586, 0.07450229674577713, -0.05916151404380798, -0.039875876158475876, -0.01995883882045746, 0.02399887517094612, 0.05076562985777855, 0.03448718041181564, -0.09862754493951797, 0.05844118818640709, 0.03554575890302658, -0.08776186406612396, 0.05111958086490631, 0.04426843672990799, -0.02777218259871006, -0.00557135883718729, 0.005403218790888786, 0.045995257794857025, -0.00999747309833765, 0.06982173770666122, 0.03793514892458916, 0.04786751791834831, 0.012801125645637512, -0.14346542954444885, 0.06381922215223312, 0.037601910531520844, -0.07381734251976013, 0.013090967200696468, -0.02316577546298504, 0.015048859640955925, -0.01851554587483406, 0.027041254565119743, -0.05316038802266121, -0.012964760884642601, -0.034430913627147675, -0.046351730823516846, -0.012797934003174305, -0.0448620542883873, -0.12304449826478958, -0.08014700561761856, 0.0648949146270752, 0.016647567972540855, 0.00305448891595006, 0.03979835286736488, 0.03765561431646347, -0.030301684513688087, -0.053205445408821106, 0.08519619703292847, 0.07681815326213837, 0.0043378411792218685, -0.02651546150445938, -0.06391116976737976, -0.019455788657069206, 0.03257804736495018, -0.02978668361902237, -0.08876491338014603, 0.02342873439192772, 0.014751886948943138, 0.08701319992542267, -0.06478018313646317, 0.10436258465051651, -0.04467591643333435, -0.03367778658866882, 0.013828293420374393, 0.04806333780288696, -0.01921556517481804, -0.04344015195965767, 0.11011387407779694, -0.05583088472485542, 0.048086244612932205, -0.028172580525279045, -0.0355127714574337, -0.035845715552568436, -0.019603600725531578, 0.08246272802352905, 0.03877878561615944, -0.07700517028570175, -0.07079043984413147, -0.04077892750501633, -0.06151978671550751, -0.05164239555597305, -0.01784391887485981, -0.027099767699837685, -0.07059749960899353, 0.07139880955219269, 0.0009629568085074425, -0.012687748298048973, -0.0010961440857499838, -0.043474409729242325, -0.009047236293554306, -0.11157678067684174, 1.0740609432898323e-33, -0.03445877879858017, -0.05311722308397293, -0.029002543538808823, 0.13520529866218567, -0.005849218461662531, -0.01981060393154621, -0.03505171090364456, 0.13648852705955505, -0.021724224090576172, 0.04112900048494339, -0.07460111379623413, -0.01946892961859703, -0.053881675004959106, -0.021937986835837364, 0.13972386717796326, 0.08721643686294556, -0.010320466943085194, -0.02035439759492874, 0.035142358392477036, -0.02029038406908512, 0.03684871271252632, -0.003119342029094696, -0.09010401368141174, 0.08944611251354218, 0.056877363473176956, -0.006127126980572939, 0.04530029743909836, 0.06195075809955597, 0.03634311631321907, -0.04159870743751526, 0.029789503663778305, 0.03780251368880272, 0.025441735982894897, -0.04863794520497322, 0.03383972868323326, -0.03373942896723747, -0.0019403640180826187, 0.04954298958182335, 0.014099223539233208, 0.07743095606565475, 0.05813658982515335, 0.03002803772687912, 0.010772084817290306, -0.048058636486530304, -0.026022523641586304, -0.06840336322784424, -0.03163925185799599, -0.05980297550559044, -0.03339596465229988, 0.020500652492046356, 0.023997459560632706, 0.004072265699505806, -0.002563609043136239, -0.16912735998630524, -0.03591238334774971, -0.02276846580207348, -0.023406216874718666, -0.02748725563287735, -0.059865664690732956, -0.040014754980802536, -0.05246802046895027, -0.08874092251062393, -0.02711201272904873, 0.010101770982146263, 0.04088839143514633, 0.006915257312357426, -0.009949376806616783, -0.007277755998075008, -0.04665271192789078, -0.05895695090293884, 0.13660039007663727, -0.014903857372701168, -0.039945561438798904, 0.050385482609272, 0.029298286885023117, 0.020337536931037903, 0.03019564598798752, -0.0025098947808146477, 0.02522548846900463, -0.01441190391778946, -0.02331802435219288, -0.014164146035909653, -0.0018464932218194008, 0.08584216237068176, -0.003211260074749589, 0.05025819316506386, 0.05795006826519966, 0.014712341129779816, -0.08288362622261047, 0.011810963042080402, 0.00355873117223382, -0.050288956612348557, 0.0674135610461235, 0.05189491808414459, -0.05234120413661003, -2.4953299870844603e-8, -0.03894346207380295, -0.11586662381887436, -0.03727314621210098, 0.06024365499615669, 0.014339235611259937, 0.015810180455446243, 0.029930641874670982, -0.033794887363910675, -0.08233433961868286, -0.01337473001331091, 0.046747904270887375, 0.026622537523508072, 0.0131310373544693, 0.05292865261435509, 0.11242596060037613, 0.034408070147037506, 0.00783493835479021, -0.036073457449674606, -0.03190802410244942, -0.1103157103061676, 0.024918880313634872, -0.04045123979449272, -0.04475599154829979, 0.08351725339889526, 0.0007543300744146109, 0.04622289538383484, -0.034268271178007126, 0.07365845143795013, -0.008705602958798409, 0.10088662058115005, -0.0035546335857361555, 0.05150110647082329, -0.09449728578329086, -0.005881614983081818, -0.052803944796323776, 0.02730274200439453, 0.0051611377857625484, -0.045266710221767426, 0.007166053168475628, -0.036327797919511795, 0.015325046144425869, 0.06061559170484543, 0.056887026876211166, -0.04885935038328171, 0.0649125874042511, -0.04149846360087395, -0.04497548192739487, -0.0798642635345459, -0.016346033662557602, -0.058122459799051285, -0.05668391287326813, -0.0034402674064040184, 0.029785223305225372, 0.020852504298090935, 0.038247525691986084, 0.059048064053058624, 0.032019153237342834, 0.003650030354037881, 0.006689437665045261, 0.002281665103510022, 0.07600861042737961, 0.10169439762830734, 0.02954547107219696, -0.0006524836062453687 ]
ktrapeznikov/gpt2-medium-topic-news
d079f5fb6ab7eaf5a38dc2a72bd708a60879d23c
2021-05-23T06:18:56.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
ktrapeznikov
null
ktrapeznikov/gpt2-medium-topic-news
2,101
1
transformers
--- language: - en thumbnail: widget: - text: "topic: climate article:" --- # GPT2-medium-topic-news ## Model description GPT2-medium fine tuned on a large news corpus conditioned on a topic ## Intended uses & limitations #### How to use To generate a news article text conditioned on a topic, prompt model with: `topic: climate article:` The following tags were used during training: `arts law international science business politics disaster world conflict football sport sports artanddesign environment music film lifeandstyle business health commentisfree books technology media education politics travel stage uk society us money culture religion science news tv fashion uk australia cities global childrens sustainable global voluntary housing law local healthcare theguardian` Zero shot generation works pretty well as long as `topic` is a single word and not too specific. ```python device = "cuda:0" tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model = AutoModelWithLMHead.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model.to(device) topic = "climate" prompt = tokenizer(f"topic: {topic} article:", return_tensors="pt") out = model.generate(prompt["input_ids"].to(device), do_sample=True,max_length=500, early_stopping=True, top_p=.9) print(tokenizer.decode(list(out.cpu()[0]))) ``` ## Training data ## Training procedure
[ 0.009488138370215893, 0.0065520526841282845, -0.025096198543906212, 0.07207126170396805, 0.10381163656711578, 0.012702981941401958, 0.015589464455842972, 0.00575883686542511, -0.02551005221903324, -0.007964757271111012, -0.04055188596248627, -0.07502543181180954, 0.061210304498672485, 0.05674389749765396, 0.07635200023651123, -0.005854147486388683, 0.006633337587118149, -0.013100913725793362, -0.08392887562513351, -0.046790711581707, 0.006799222901463509, 0.1235072985291481, 0.07493072748184204, 0.040782079100608826, -0.02939329855144024, -0.041229233145713806, -0.023949595168232918, -0.019068587571382523, -0.033576007932424545, 0.03426738083362579, 0.024836814031004906, 0.045061953365802765, -0.025277772918343544, 0.08005135506391525, 0.051618218421936035, 0.04687198996543884, -0.0741216242313385, -0.009535633958876133, -0.05710316821932793, 0.038197048008441925, 0.04721023142337799, -0.04976831004023552, -0.04219986870884895, 0.0027467762120068073, 0.04161704704165459, -0.002885950729250908, -0.07015284150838852, 0.006187022663652897, -0.01642766036093235, 0.014994822442531586, -0.10155262798070908, -0.0919560045003891, 0.012157452292740345, -0.00427278783172369, 0.009930236265063286, 0.013433193787932396, -0.026030054315924644, -0.015071903355419636, 0.04115820676088333, -0.11447448283433914, -0.026510436087846756, -0.021207217127084732, -0.1282014101743698, -0.007611769717186689, -0.0002011714968830347, -0.038783784955739975, -0.025113031268119812, 0.1268962025642395, 0.031232506036758423, 0.003425436792895198, -0.01788819208741188, 0.11760100722312927, 0.029643269255757332, 0.08173341304063797, -0.003256851341575384, -0.05982309207320213, -0.01618618331849575, -0.02093225158751011, 0.03184029459953308, -0.03934626281261444, 0.07004331052303314, -0.07088952511548996, 0.03852178901433945, -0.04285694286227226, 0.04348580166697502, -0.07467565685510635, 0.017662975937128067, 0.006881895009428263, 0.026981612667441368, 0.04225040227174759, -0.03846622258424759, -0.03855802118778229, 0.15932589769363403, 0.0016665186267346144, 0.018406778573989868, 0.03627524524927139, 0.04148183763027191, -0.07775271683931351, -0.010751810856163502, 0.04567906633019447, 0.028903312981128693, -0.07023303955793381, -0.029468713328242302, 0.051532015204429626, -0.03049449622631073, -0.11037097871303558, -0.05167493224143982, 0.0017118671676144004, -0.036544203758239746, 0.01047645602375269, -0.007142489776015282, 0.06745579838752747, -0.04858258366584778, -0.04793421924114227, 0.06667101383209229, 0.056658241897821426, 0.05409734696149826, -0.03112952411174774, 0.026898019015789032, 0.0674879401922226, -0.08693525940179825, 0.02184356562793255, -0.06227043643593788, 0.009958039969205856, 0.005502647720277309, -0.0004351568641141057, -0.00981956347823143, 1.2701504456750768e-32, 0.035437390208244324, -0.012948586605489254, -0.002290565986186266, 0.0713779628276825, -0.019581254571676254, 0.039718613028526306, -0.07636535912752151, -0.06217338889837265, 0.016747698187828064, -0.09813268482685089, -0.007926709949970245, 0.09483583271503448, -0.08435095846652985, 0.0763787105679512, 0.02741973288357258, -0.03955693170428276, -0.08784037828445435, 0.05720079317688942, -0.02594960853457451, 0.05522531270980835, 0.012100516818463802, 0.03334914892911911, -0.016898222267627716, -0.019239794462919235, -0.06029589846730232, 0.0691618099808693, 0.051068928092718124, -0.07071541994810104, 0.01120743341743946, 0.034729134291410446, -0.08638709783554077, -0.021689385175704956, -0.0025801712181419134, 0.033963289111852646, -0.007820484228432178, 0.004503276199102402, 0.0012463132152333856, -0.04550952464342117, 0.023645050823688507, -0.06227818876504898, -0.026761572808027267, -0.01889919303357601, 0.03677893429994583, -0.10048747062683105, 0.009560995735228062, 0.014741136692464352, 0.012861308641731739, 0.025187013670802116, -0.03207812085747719, 0.03242645412683487, 0.0254532303661108, -0.013550221920013428, 0.011185119859874249, -0.02418617345392704, -0.02917446568608284, 0.05929120257496834, 0.04527118057012558, -0.010175504721701145, 0.05283467099070549, -0.10696178674697876, 0.03640696033835411, 0.025540119037032127, 0.10893899202346802, -0.01376871857792139, 0.10279928147792816, 0.04428223893046379, 0.019101852551102638, 0.07532569020986557, 0.011540552601218224, 0.018089119344949722, -0.024458294734358788, -0.021352648735046387, -0.05164705589413643, -0.0036021831911057234, 0.0467122346162796, 0.024734295904636383, 0.0042083910666406155, -0.089357890188694, -0.11139824986457825, 0.07169760763645172, -0.04067840054631233, 0.0014124445151537657, 0.0024497387930750847, -0.07132549583911896, -0.004182968754321337, -0.06028362736105919, 0.058949194848537445, -0.0548764169216156, -0.0029384936206042767, -0.0504123717546463, -0.05604509264230728, -0.011436198838055134, 0.007047116290777922, 0.04651431366801262, -0.026241036131978035, -1.4282725090863184e-32, 0.03415021300315857, -0.05478615313768387, -0.00997766200453043, 0.03143489733338356, 0.055193230509757996, -0.04327267408370972, -0.02737882360816002, 0.008682243525981903, 0.06679307669401169, -0.021100936457514763, 0.04462733119726181, -0.09287756681442261, -0.090053491294384, 0.002417664509266615, 0.059116292744874954, -0.03830664977431297, -0.06991376727819443, 0.046654343605041504, -0.04447666183114052, 0.07902225106954575, -0.08028317987918854, -0.03215324878692627, -0.15774983167648315, 0.07345358282327652, 0.0009619955671951175, -0.03109915927052498, 0.03326764330267906, 0.02916664630174637, 0.03906740993261337, 0.03668172284960747, -0.07304582744836807, 0.06491599231958389, -0.06868213415145874, 0.03146210312843323, -0.056114595383405685, 0.02182876132428646, 0.0747719332575798, -0.07591444253921509, -0.014185115694999695, 0.046661000698804855, 0.13283035159111023, 0.0013479443732649088, -0.05600273981690407, -0.003131620120257139, -0.08535599708557129, 0.001764540676958859, -0.024604232981801033, 0.023257730528712273, 0.044988229870796204, -0.014965836890041828, 0.06683275103569031, -0.07377282530069351, -0.024297185242176056, 0.00994040071964264, -0.08192918449640274, -0.03036336414515972, -0.00831137876957655, -0.05967749282717705, -0.0959310531616211, -0.01733669824898243, -0.0637846365571022, -0.01148079615086317, -0.014073807746171951, -0.10771017521619797, -0.0017442228272557259, -0.15344366431236267, -0.053764067590236664, 0.009961357340216637, -0.009892771951854229, 0.010134226642549038, -0.031025908887386322, 0.0515412911772728, 0.021881019696593285, -0.07657312601804733, -0.03147785738110542, 0.0893687829375267, -0.02709575928747654, 0.0023553550709038973, 0.03341865539550781, -0.010676993988454342, 0.00025268096942454576, 0.04969426989555359, 0.008525731973350048, 0.030653435736894608, 0.06652796268463135, 0.01902846060693264, -0.0023836668115109205, 0.08411276340484619, -0.01871579699218273, 0.00876529049128294, 0.022372622042894363, -0.05488405376672745, 0.0580771341919899, 0.13879112899303436, -0.08812198787927628, -6.881000302882967e-8, -0.026240242645144463, -0.028721584007143974, -0.036252461373806, 0.06395704299211502, -0.07309965044260025, 0.00767397228628397, -0.02091323211789131, -0.08507980406284332, -0.0018874173983931541, -0.0033422918058931828, -0.04257836192846298, -0.012820418924093246, -0.060689814388751984, 0.01929948478937149, -0.04850860685110092, 0.014830980449914932, -0.05083595588803291, 0.02765987440943718, 0.0014258221490308642, -0.06061160936951637, 0.03961741924285889, -0.07361102104187012, -0.018786631524562836, 0.0026557394303381443, 0.03828426077961922, 0.038259465247392654, -0.06532659381628036, 0.0011314692674204707, 0.03420571610331535, -0.014049521647393703, 0.004365027882158756, -0.052473410964012146, -0.12264098972082138, 0.009067694656550884, 0.040084224194288254, 0.04935987666249275, 0.13236553966999054, -0.04107099771499634, -0.0066778529435396194, -0.02152564562857151, 0.03696108236908913, 0.0005410690209828317, -0.06753835827112198, -0.0051073371432721615, 0.02023840881884098, 0.009953799657523632, -0.031754158437252045, -0.0056160083040595055, 0.022520780563354492, 0.025119779631495476, -0.06564047932624817, -0.03990660980343819, 0.021120542660355568, -0.014254343695938587, 0.013633846305310726, 0.05982503667473793, 0.00558189582079649, 0.054307419806718826, -0.004668236710131168, -0.01138350646942854, 0.04581489786505699, 0.004231890197843313, 0.007121887058019638, 0.03757820278406143 ]
Qishuai/distilbert_punctuator_en
3b5050a2775440ef59b76082ad75eb9574973ad3
2021-12-13T14:47:49.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Qishuai
null
Qishuai/distilbert_punctuator_en
2,098
5
transformers
# Punctuator for Uncased English The model is fine-tuned based on `DistilBertForTokenClassification` for adding punctuations to plain text (uncased English) ## Usage ```python from transformers import DistilBertForTokenClassification, DistilBertTokenizerFast model = DistilBertForTokenClassification.from_pretrained("Qishuai/distilbert_punctuator_en") tokenizer = DistilBertTokenizerFast.from_pretrained("Qishuai/distilbert_punctuator_en") ``` ## Model Overview ### Training data Combination of following three dataset: - BBC news: From BBC news website corresponding to stories in five topical areas from 2004-2005. [Reference](https://www.kaggle.com/hgultekin/bbcnewsarchive) - News articles: 20000 samples of short news articles scraped from Hindu, Indian times and Guardian between Feb 2017 and Aug 2017 [Reference](https://www.kaggle.com/sunnysai12345/news-summary?select=news_summary_more.csv) - Ted talks: transcripts of over 4,000 TED talks between 2004 and 2019 [Reference](https://www.kaggle.com/miguelcorraljr/ted-ultimate-dataset) ### Model Performance - Validation with 500 samples of dataset scraped from https://www.thenews.com.pk website. [Reference](https://www.kaggle.com/asad1m9a9h6mood/news-articles) - Metrics Report: | | precision | recall | f1-score | support | |:--------------:|:---------:|:------:|:--------:|:-------:| | COMMA | 0.66 | 0.55 | 0.60 | 7064 | | EXLAMATIONMARK | 1.00 | 0.00 | 0.00 | 5 | | PERIOD | 0.73 | 0.63 | 0.68 | 6573 | | QUESTIONMARK | 0.54 | 0.41 | 0.47 | 17 | | micro avg | 0.69 | 0.59 | 0.64 | 13659 | | macro avg | 0.73 | 0.40 | 0.44 | 13659 | | weighted avg | 0.69 | 0.59 | 0.64 | 13659 | - Validation with 86 news ted talks of 2020 which are not included in training dataset [Reference](https://www.kaggle.com/thegupta/ted-talk) - Metrics Report: | | precision | recall | f1-score | support | |:--------------:|:---------:|:------:|:--------:|:-------:| | COMMA | 0.71 | 0.56 | 0.63 | 10712 | | EXLAMATIONMARK | 0.45 | 0.07 | 0.12 | 75 | | PERIOD | 0.75 | 0.65 | 0.70 | 7921 | | QUESTIONMARK | 0.73 | 0.67 | 0.70 | 827 | | micro avg | 0.73 | 0.60 | 0.66 | 19535 | | macro avg | 0.66 | 0.49 | 0.53 | 19535 | | weighted avg | 0.73 | 0.60 | 0.66 | 19535 |
[ -0.01037026010453701, -0.033465802669525146, 0.05477744713425636, 0.05313171446323395, -0.02260603755712509, 0.02112329564988613, -0.043683670461177826, 0.03406726196408272, -0.05485139787197113, -0.07472700625658035, 0.029058843851089478, -0.023424115031957626, 0.004317182116210461, 0.031640782952308655, 0.0653376579284668, 0.01747065596282482, -0.019138429313898087, 0.03012252226471901, -0.10531596094369888, -0.13009105622768402, 0.10954268276691437, 0.09027141332626343, 0.044241972267627716, 0.009995629079639912, 0.07175282388925552, 0.003090647980570793, -0.010976468212902546, -0.02484527789056301, 0.012991614639759064, -0.017419960349798203, -0.03506689891219139, -0.01604013703763485, 0.004660430364310741, 0.019403917714953423, 0.02015119232237339, 0.03143494948744774, 0.0216892771422863, 0.0011136371176689863, 0.0755605474114418, 0.03290528059005737, 0.03108828142285347, -0.06485140323638916, -0.005863697733730078, -0.006618998479098082, 0.07159898430109024, 0.03852887451648712, -0.05352042242884636, 0.02113310806453228, -0.044203463941812515, -0.005788684822618961, -0.09033311903476715, 0.01725267805159092, 0.029945462942123413, 0.0668158084154129, -0.07413802295923233, -0.037846583873033524, -0.034062135964632034, 0.007947313599288464, 0.08592166006565094, -0.10457161068916321, -0.09779887646436691, 0.009093397296965122, -0.036831241101026535, -0.006647706497460604, -0.024878883734345436, -0.025053974241018295, 0.025167062878608704, -0.011472229845821857, 0.06635689735412598, 0.0020968387834727764, -0.06818034499883652, 0.0469491221010685, -0.018264010548591614, 0.05384247004985809, -0.007992442697286606, 0.016208689659833908, 0.04114553704857826, 0.013172455132007599, 0.0034320943523198366, -0.07741987705230713, 0.03302410617470741, -0.06507448852062225, 0.06048193573951721, 0.042131658643484116, 0.06662541627883911, -0.08569679409265518, -0.035827912390232086, -0.032209061086177826, 0.014952827244997025, -0.0373716875910759, 0.013524120673537254, -0.09011460095643997, 0.06964921951293945, 0.05137774348258972, -0.028995219618082047, 0.035030510276556015, -0.017447149381041527, 0.041172273457050323, -0.035500749945640564, 0.07850010693073273, -0.023630613461136818, -0.041073866188526154, -0.01998966373503208, -0.020123369991779327, -0.11539293825626373, -0.07090173661708832, -0.034196168184280396, -0.02948145568370819, 0.026165656745433807, -0.0705396831035614, 0.015856564044952393, 0.0208680909126997, -0.03319142013788223, -0.06458357721567154, 0.026137905195355415, -0.004412371199578047, -0.06260063499212265, -0.0372631773352623, 0.046138275414705276, 0.10185449570417404, -0.043198708444833755, 0.07379471510648727, -0.016721457242965698, 0.03228343278169632, -0.04182913899421692, -0.02527402527630329, -0.008560101501643658, 1.2041135975029793e-32, 0.0099291130900383, 0.07367070764303207, 0.0032752908300608397, 0.014236590825021267, -0.07372807711362839, -0.02335251308977604, -0.07028175890445709, 0.0015961048193275928, -0.011011283844709396, -0.06647927314043045, -0.017396626994013786, 0.06889340281486511, -0.08013462275266647, -0.034201350063085556, -0.057745080441236496, -0.01018909178674221, 0.004867915529757738, 0.046709004789590836, 0.03117583505809307, 0.02796405926346779, 0.08401673287153244, 0.039381034672260284, 0.04992522671818733, -0.057575248181819916, -0.05009520426392555, 0.03448475897312164, 0.11371692270040512, -0.06957786530256271, -0.025543726980686188, 0.04170050844550133, -0.046694375574588776, -0.03415064513683319, 0.006988445296883583, -0.03672192990779877, 0.033393535763025284, -0.038786038756370544, 0.023098846897482872, -0.06852616369724274, -0.004443929065018892, -0.05435610190033913, -0.046435870230197906, 0.011391833424568176, 0.020232750102877617, -0.028517691418528557, -0.013460438698530197, 0.058408912271261215, 0.011094183661043644, -0.007778963539749384, 0.027492202818393707, 0.0010422342456877232, -0.023958107456564903, 0.012607939541339874, -0.04643522575497627, -0.04768461361527443, 0.030247781425714493, 0.00638560438528657, 0.10587527602910995, -0.01683902181684971, 0.07627677172422409, -0.024021785706281662, 0.037454187870025635, 0.07231815159320831, 0.06217150762677193, -0.03234159201383591, 0.02995740808546543, 0.029779311269521713, -0.01237453706562519, 0.03463466092944145, -0.015571883879601955, 0.04369252920150757, -0.05598407983779907, -0.048061802983284, -0.022397581487894058, 0.049548376351594925, 0.0007714733947068453, -0.026957442983984947, 0.0016269467305392027, -0.08904791623353958, -0.03069508634507656, 0.016439087688922882, 0.010652742348611355, -0.027567807585000992, 0.03018311597406864, -0.0383571982383728, -0.022990047931671143, -0.045890651643276215, 0.035606835037469864, -0.06689074635505676, 0.03810925409197807, -0.06816067546606064, -0.0014136639656499028, 0.03534829244017601, -0.06594467163085938, 0.0342135950922966, 0.020906204357743263, -1.240134785174005e-32, -0.018037671223282814, 0.05494866147637367, -0.07729953527450562, 0.106864333152771, -0.009608710184693336, -0.04792175069451332, 0.033425744622945786, 0.17845234274864197, 0.08215361088514328, -0.022145578637719154, 0.08098112791776657, -0.07136962562799454, 0.00376828177832067, -0.009619674645364285, 0.00807638093829155, 0.05863474681973457, 0.010177246294915676, 0.06050807982683182, -0.02591467835009098, 0.0651346817612648, -0.009391509927809238, 0.030121201649308205, -0.2140626758337021, 0.044294118881225586, -0.008161372505128384, 0.026555221527814865, 0.019722478464245796, -0.017003988847136497, 0.007367778569459915, -0.014882486313581467, -0.09377909451723099, -0.028759580105543137, -0.03947870433330536, 0.0012793190544471145, -0.1625465452671051, 0.02587370201945305, -0.0007836624863557518, -0.06137208268046379, -0.02376028336584568, 0.05754859372973442, 0.04144391417503357, 0.054018691182136536, -0.03968869522213936, 0.01711283251643181, -0.026867907494306564, -0.045518532395362854, -0.03847271949052811, 0.009242016822099686, 0.07375913113355637, 0.020943868905305862, 0.06969606876373291, 0.04584401473402977, -0.0828685611486435, -0.03213915228843689, -0.017083700746297836, -0.07483354210853577, 0.0022885713260620832, -0.07514284551143646, -0.08431538194417953, -0.05257532373070717, -0.09310557693243027, 0.0289005134254694, 0.021109694615006447, -0.091886006295681, 0.013463011011481285, -0.08908410370349884, 0.011512565426528454, -0.001967823598533869, 0.05971977859735489, -0.0686010867357254, 0.0809050127863884, -0.023109862580895424, 0.029844556003808975, -0.07832350581884384, -0.048798367381095886, 0.07073269784450531, 0.003418167820200324, 0.022791322320699692, 0.002371457638218999, 0.010484595783054829, -0.06474647670984268, -0.004673718940466642, 0.05645447596907616, 0.07507066428661346, 0.04341539368033409, 0.07459285855293274, -0.008271940983831882, 0.09165742993354797, 0.03655947744846344, 0.051260560750961304, 0.009820148348808289, 0.035424165427684784, -0.0000767121382523328, 0.12486853450536728, 0.005149968434125185, -6.835224297674358e-8, -0.042332474142313004, -0.020857375115156174, -0.08537635207176208, 0.08177405595779419, -0.012775388546288013, -0.024780506268143654, -0.029159681871533394, 0.010113014839589596, -0.038554541766643524, 0.0037469095550477505, -0.012099772691726685, 0.005794151686131954, -0.12066036462783813, -0.01226745918393135, -0.04488950967788696, 0.09825391322374344, 0.025741448625922203, 0.129271000623703, -0.02310539223253727, -0.02487645484507084, 0.06766261160373688, 0.02565525472164154, 0.039603717625141144, -0.031120916828513145, 0.011739236302673817, 0.011464934796094894, -0.08079761266708374, 0.012227579951286316, -0.01918650232255459, -0.022723913192749023, -0.018844155594706535, -0.003495878539979458, -0.08133427053689957, -0.08752042800188065, -0.04749034345149994, 0.06934751570224762, 0.002714922185987234, 0.023425482213497162, -0.0028478645253926516, 0.0724894180893898, 0.044687796384096146, -0.049317505210638046, -0.07140600681304932, 0.06307340413331985, 0.07490284740924835, 0.006147780921310186, -0.05262726917862892, -0.10362725704908371, 0.027133041992783546, 0.016181396320462227, 0.04206457361578941, -0.07031658291816711, 0.010842083021998405, 0.0013623738195747137, -0.012458899058401585, 0.053512055426836014, -0.0004528673889581114, -0.03888823837041855, -0.057958878576755524, -0.009551714174449444, 0.046806834638118744, -0.05158368870615959, 0.037505701184272766, 0.009524400345981121 ]
johngiorgi/declutr-base
3a644f1c78aae97f6e7ed0e2463bcbbaef2e7383
2022-03-11T14:47:09.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "arxiv:2006.03659", "transformers", "autotrain_compatible" ]
fill-mask
false
johngiorgi
null
johngiorgi/declutr-base
2,095
1
transformers
# DeCLUTR-base ## Model description The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-base") # Prepare some text to embed texts = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base") model = AutoModel.from_pretrained("johngiorgi/declutr-base") # Prepare some text to embed text = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @article{Giorgi2020DeCLUTRDC, title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations}, author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang}, journal={ArXiv}, year={2020}, volume={abs/2006.03659} } ```
[ -0.044719502329826355, -0.08998658508062363, 0.009725366719067097, -0.010423085652291775, -0.023786641657352448, 0.007124846335500479, -0.1138182058930397, 0.037695642560720444, 0.010254251770675182, -0.050631068646907806, 0.035369839519262314, -0.03548182547092438, 0.017322812229394913, 0.08099794387817383, -0.018332118168473244, 0.013525412417948246, 0.0756882056593895, 0.09545853734016418, -0.08296389132738113, -0.12401261180639267, 0.11432559043169022, 0.05552910640835762, -0.010147251188755035, -0.004502265714108944, 0.0818028450012207, 0.0518467016518116, -0.0010615497594699264, -0.0046846140176057816, 0.047496091574430466, -0.039546336978673935, 0.026287587359547615, -0.0521966926753521, 0.04080749303102493, 0.10398080945014954, 0.025209149345755577, 0.06055748090147972, -0.015328977257013321, -0.03482922539114952, -0.0011637614807114005, 0.010469792410731316, -0.0030424222350120544, 0.006246513687074184, 0.0016816871939226985, 0.027278216555714607, 0.08256618678569794, -0.034501660615205765, -0.11003478616476059, 0.0003766674781218171, -0.009065713733434677, -0.05047405883669853, -0.014010710641741753, 0.07781525701284409, -0.007237260229885578, 0.08446834981441498, -0.06368663161993027, 0.010913134552538395, 0.008519835770130157, -0.008982192724943161, -0.023813990876078606, -0.1184462457895279, -0.05424676090478897, -0.014329127036035061, -0.04722447693347931, -0.04941534623503685, -0.01998569257557392, 0.022747907787561417, 0.004660502541810274, 0.015164719894528389, -0.030887532979249954, 0.06240968033671379, -0.04607096314430237, 0.03727688267827034, 0.015966031700372696, 0.013220760971307755, -0.04438527300953865, 0.016665130853652954, 0.07136833667755127, 0.002353869378566742, 0.04670734703540802, -0.05130472406744957, 0.06539200991392136, 0.004886926151812077, 0.0835162028670311, 0.06060412898659706, 0.07704188674688339, -0.03865484148263931, -0.05541844666004181, 0.02318933792412281, -0.015490338206291199, 0.03520234674215317, -0.05004602670669556, -0.13441090285778046, 0.020481016486883163, -0.010748487897217274, -0.017079031094908714, 0.010769343003630638, 0.002612958662211895, -0.010362938046455383, -0.04980744794011116, 0.006289453711360693, 0.02392769418656826, 0.0018765224376693368, 0.039619218558073044, -0.10949239879846573, -0.058715999126434326, -0.014784635975956917, 0.04378106817603111, -0.019075604155659676, 0.11007930338382721, -0.12409821152687073, -0.04355815798044205, 0.0006806859746575356, -0.08511435240507126, -0.0012000385904684663, 0.06662951409816742, -0.016329895704984665, 0.03322349488735199, -0.027065444737672806, 0.03689459711313248, -0.010319255292415619, 0.015249048359692097, 0.011186630465090275, -0.047345176339149475, 0.06876470893621445, -0.0022303189616650343, -0.07996626198291779, -0.0409151054918766, 4.737306886003114e-33, -0.008507530204951763, 0.0353081189095974, 0.013223573565483093, 0.019699277356266975, 0.007746294606477022, 0.052394308149814606, -0.0791591927409172, 0.05954204499721527, -0.09474173933267593, 0.010845187120139599, -0.05530587583780289, 0.08143483102321625, -0.05534522607922554, 0.07366988062858582, -0.021996162831783295, -0.025665439665317535, -0.007336392533034086, -0.02278286963701248, -0.02496429532766342, -0.00957054365426302, 0.03193731606006622, 0.11691123247146606, -0.045393671840429306, -0.04135202616453171, -0.12674276530742645, -0.012782045640051365, 0.03585607931017876, -0.049036905169487, -0.02521846629679203, 0.020372506231069565, -0.1419585645198822, 0.010803398676216602, 0.020273784175515175, 0.03866559639573097, 0.06930309534072876, -0.03084728494286537, -0.0242313239723444, -0.009312047623097897, 0.019017238169908524, -0.0652124360203743, 0.0060498095117509365, 0.05449439957737923, -0.04372057691216469, -0.04919213429093361, -0.030396632850170135, 0.018036630004644394, 0.03558595851063728, -0.06398585438728333, 0.04148366302251816, -0.0018329296726733446, 0.06092340871691704, 0.040272071957588196, -0.09933124482631683, -0.09346392005681992, 0.02228389121592045, 0.020587341859936714, 0.0796201080083847, 0.06042985990643501, 0.06808532029390335, -0.040798112750053406, 0.03972150757908821, 0.029933316633105278, 0.062226247042417526, 0.030685218051075935, 0.05528244003653526, 0.019855014979839325, -0.0518735907971859, 0.006297457497566938, -0.023054761812090874, 0.05523671209812164, -0.08180174231529236, 0.04036027938127518, -0.06606581807136536, 0.037793777883052826, 0.025162989273667336, -0.002615587320178747, 0.05901787057518959, -0.0031674166675657034, -0.040531255304813385, 0.01200571283698082, -0.015641992911696434, 0.018329598009586334, 0.00872566644102335, -0.10690254718065262, -0.08097189664840698, 0.004956556484103203, 0.045818910002708435, -0.07817629724740982, -0.012624348513782024, -0.0328153595328331, 0.014055807143449783, -0.035674694925546646, 0.0011849267175421119, -0.01558142900466919, 0.0727899894118309, -7.20763985566683e-33, 0.024839306250214577, 0.0412401482462883, -0.06373048573732376, 0.04631955921649933, -0.06375768035650253, -0.03896933048963547, 0.046420060098171234, 0.07801593840122223, 0.07397668063640594, -0.008389730006456375, 0.014291107654571533, -0.015193966217339039, 0.03837580233812332, -0.018393488600850105, 0.10230529308319092, 0.08323805779218674, -0.005812431685626507, 0.06822103261947632, -0.03394841030240059, 0.0006152569549158216, 0.01741287112236023, 0.1263795793056488, -0.132792666554451, -0.007429463788866997, -0.029109638184309006, 0.03251554071903229, -0.050288889557123184, 0.027745980769395828, 0.01423716638237238, -0.0645613819360733, -0.0767960473895073, 0.028234217315912247, -0.011358595453202724, 0.006413287948817015, -0.1538967341184616, 0.026498524472117424, -0.012985303066670895, -0.05923767015337944, -0.04624741151928902, 0.0003540634934324771, 0.07989432662725449, 0.016827547922730446, -0.02053235098719597, 0.04907124862074852, 0.02131711132824421, 0.0019545843824744225, -0.08139882236719131, -0.06277619302272797, 0.059436675161123276, 0.036777105182409286, -0.006391406524926424, 0.002931619295850396, -0.11519861966371536, 0.01682206243276596, -0.038053303956985474, -0.015446232631802559, -0.016016419976949692, -0.052973825484514236, -0.0018696587067097425, 0.008958028629422188, -0.05560237541794777, -0.02351406402885914, -0.005809797905385494, -0.07228124141693115, 0.023585502058267593, -0.057514168322086334, -0.01597149297595024, 0.024982621893286705, 0.03343333676457405, -0.06577868014574051, 0.03333773463964462, -0.02684895694255829, 0.01730637438595295, 0.01646493934094906, 0.029728488996624947, -0.028922559693455696, -0.04135887697339058, 0.006215989589691162, -0.10565730929374695, -0.016813714057207108, -0.02561025321483612, -0.04114210978150368, -0.002194908680394292, 0.047582365572452545, 0.04799932241439819, 0.011272369883954525, 0.004242969676852226, 0.07916224002838135, -0.026979370042681694, 0.027007373049855232, -0.034421972930431366, -0.032476652413606644, 0.0399743877351284, 0.06326018273830414, 0.020101193338632584, -5.723611806729423e-8, -0.10251256078481674, -0.011908645741641521, -0.03997280076146126, 0.013444304466247559, -0.019885506480932236, -0.06370456516742706, 0.0031579991336911917, -0.01307633239775896, -0.06518152356147766, -0.004297330044209957, 0.02798810973763466, -0.017200713977217674, -0.06525909900665283, -0.024390336126089096, -0.05193581059575081, 0.15783119201660156, 0.025263575837016106, -0.005334966816008091, 0.06028928607702255, 0.06820210069417953, 0.04412563517689705, 0.022237030789256096, -0.012136454693973064, 0.03881767392158508, -0.05238371714949608, 0.04626668617129326, -0.0576922744512558, 0.0816749781370163, -0.00995862577110529, 0.012052861973643303, 0.0543670691549778, 0.05820760130882263, -0.0037939869798719883, -0.057293906807899475, -0.0605493001639843, 0.05621061474084854, 0.025739213451743126, -0.01971183717250824, 0.03224365785717964, 0.04047174006700516, 0.03524456173181534, 0.028859928250312805, -0.13635751605033875, 0.08398924767971039, 0.05205755680799484, 0.04422241449356079, 0.05667402967810631, -0.08718425780534744, -0.016299795359373093, 0.02465566247701645, 0.03421752527356148, -0.03771545737981796, -0.040830712765455246, 0.009629190899431705, 0.06977218389511108, -0.030081452801823616, 0.029565731063485146, -0.014798750169575214, -0.021004078909754753, -0.004272107500582933, 0.012252841144800186, 0.10181985795497894, 0.057962458580732346, -0.012663849629461765 ]
LeBenchmark/wav2vec2-FR-7K-large
970d57910b508c27e9cafd52b781fee76cebfc8b
2021-11-23T17:54:37.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "fr", "transformers", "license:apache-2.0" ]
feature-extraction
false
LeBenchmark
null
LeBenchmark/wav2vec2-FR-7K-large
2,092
3
transformers
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 7K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Task Agnostic and Task Specific Self-Supervised Learning from Speech with LeBenchmark](https://openreview.net/pdf?id=TSvj5dmuSd) ## Model and data descriptions We release four different models that can be found under our HuggingFace organization. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (1K), medium (3K), and large (7K) corpus. A larger one should come later. In short: - [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**). - [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` @article{Evain2021LeBenchmarkAR, title={LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech}, author={Sol{\`e}ne Evain and Ha Nguyen and Hang Le and Marcely Zanon Boito and Salima Mdhaffar and Sina Alisamir and Ziyi Tong and N. Tomashenko and Marco Dinarelli and Titouan Parcollet and A. Allauzen and Y. Est{\`e}ve and B. Lecouteux and F. Portet and S. Rossato and F. Ringeval and D. Schwab and L. Besacier}, journal={ArXiv}, year={2021}, volume={abs/2104.11462} } ```
[ -0.050674133002758026, -0.10285968333482742, 0.042683012783527374, -0.04666152596473694, 0.0782104954123497, 0.04967045038938522, -0.05681654065847397, -0.021900855004787445, -0.0017419015057384968, -0.031061338260769844, -0.04434194415807724, -0.09681036323308945, 0.003902298165485263, -0.0036174084525555372, -0.018546218052506447, -0.03945721313357353, 0.09988021850585938, 0.00261093070730567, -0.04887958616018295, -0.03868670389056206, 0.0428551584482193, 0.05395449325442314, 0.10365675389766693, -0.053223010152578354, 0.10772323608398438, 0.022077148780226707, -0.09770087897777557, 0.032603416591882706, 0.08294111490249634, -0.030493592843413353, 0.10269500315189362, 0.010504115372896194, 0.038199298083782196, 0.011264310218393803, -0.04497375711798668, -0.03964495658874512, 0.04230177402496338, -0.025159472599625587, -0.014635968022048473, 0.016100795939564705, -0.027974393218755722, 0.051053717732429504, -0.04288056865334511, -0.01103055290877819, 0.031951144337654114, -0.01606590300798416, -0.04020330682396889, 0.013337488286197186, -0.09886712580919266, 0.008883805014193058, -0.06499266624450684, -0.04874412342905998, -0.005101209972053766, 0.11533133685588837, -0.10017290711402893, 0.03628694266080856, -0.0064854128286242485, 0.04143550246953964, 0.03963453322649002, 0.045925941318273544, -0.0313536673784256, -0.0941900834441185, -0.041614629328250885, -0.009014680981636047, 0.016323938965797424, -0.01068267785012722, -0.0461413636803627, 0.025008607655763626, 0.018648436293005943, 0.02500198595225811, -0.08437076210975647, 0.06064143031835556, 0.030193546786904335, 0.03862761706113815, 0.09593255072832108, 0.009396987035870552, 0.044144708663225174, 0.026626750826835632, 0.06349413841962814, -0.127881720662117, -0.007741022389382124, -0.0626806914806366, 0.05652390420436859, -0.045163001865148544, 0.09986606240272522, -0.021325303241610527, 0.041128192096948624, 0.0045835101045668125, -0.028754476457834244, -0.036577608436346054, -0.02282659523189068, -0.024888930842280388, -0.007313563954085112, 0.026556948199868202, 0.006084072403609753, 0.050436101853847504, 0.05768078565597534, 0.06413231045007706, -0.02977452427148819, 0.06448094546794891, 0.027704672887921333, -0.04829668998718262, -0.023065686225891113, -0.06299613416194916, 0.003478002268821001, -0.05663007125258446, -0.026036109775304794, 0.048001307994127274, 0.044148582965135574, -0.09841834008693695, 0.032634276896715164, 0.0429459810256958, -0.0324283093214035, 0.0009259347571060061, 0.056917980313301086, 0.025340162217617035, -0.031058134511113167, -0.06716777384281158, 0.05433114618062973, 0.016316421329975128, -0.0670456811785698, -0.02368731051683426, 0.010437926277518272, -0.015605452470481396, -0.03648960590362549, -0.004788604099303484, -0.06555810570716858, 7.720128944002453e-33, 0.048662614077329636, 0.08516676723957062, -0.008298791013658047, -0.034749843180179596, -0.029765505343675613, -0.056386351585388184, -0.039931830018758774, 0.04044226184487343, -0.02880091778934002, -0.027307113632559776, -0.03567168861627579, 0.018872642889618874, -0.01610667072236538, 0.08557846397161484, 0.035103410482406616, 0.012842047959566116, -0.05653343349695206, 0.005254419054836035, -0.008638686500489712, -0.004483778029680252, 0.17963235080242157, 0.035862069576978683, 0.05611088126897812, -0.0026686182245612144, 0.08517862111330032, 0.010688398033380508, 0.07154194265604019, -0.07350841164588928, -0.03909585624933243, 0.06802130490541458, -0.078246109187603, -0.07566920667886734, 0.00641428679227829, -0.008441387675702572, -0.015113015659153461, 0.010066529735922813, 0.011029348708689213, -0.02404584176838398, -0.03485977649688721, -0.1072060689330101, 0.01830332726240158, -0.006518235430121422, 0.030502799898386, -0.04389577358961105, -0.06585641950368881, -0.09974513947963715, -0.0027033966034650803, 0.032916467636823654, -0.004656381905078888, -0.04196691885590553, -0.005857858806848526, -0.0027248014230281115, -0.05389789119362831, 0.0218204315751791, -0.006132996175438166, 0.029164453968405724, 0.084036685526371, 0.025976646691560745, 0.0219376552850008, 0.035059235990047455, 0.0229507926851511, 0.006505555473268032, 0.030075836926698685, 0.01734137162566185, 0.05712631717324257, -0.016002999618649483, -0.07048407942056656, 0.021333543583750725, 0.031797412782907486, -0.05177977681159973, 0.0027110630180686712, -0.004085168708115816, 0.06745099276304245, -0.007979737594723701, 0.054606880992650986, -0.030655918642878532, 0.05576227605342865, -0.08996912837028503, -0.029383622109889984, 0.03795977309346199, -0.02144153043627739, 0.02170855738222599, -0.03808608651161194, -0.10273934155702591, -0.09023384749889374, -0.09735328704118729, 0.012704283930361271, -0.1478261798620224, -0.08435443043708801, 0.03981423377990723, -0.05639299750328064, 0.033641450107097626, 0.011462377384305, -0.00039469925104640424, -0.04549025371670723, -8.279673071201493e-33, -0.0030272353906184435, 0.10038774460554123, -0.05127999931573868, 0.10739139467477798, 0.014439408667385578, -0.004155809059739113, 0.057647671550512314, 0.11661618202924728, -0.0497477687895298, -0.06846828758716583, 0.048144999891519547, -0.08704957365989685, 0.07002654671669006, -0.013186592608690262, 0.023806093260645866, -0.04359707981348038, -0.015569374896585941, 0.002518234308809042, 0.1157039999961853, 0.0591580867767334, 0.056950606405735016, 0.0023697379510849714, -0.007607220206409693, 0.08306398242712021, -0.01733633130788803, -0.0043692318722605705, -0.03091476298868656, 0.014270010404288769, -0.01507195457816124, -0.012045665644109249, -0.08665674924850464, 0.020942773669958115, -0.06361086666584015, -0.017477620393037796, -0.022834274917840958, 0.05523758754134178, -0.02513005957007408, -0.05716128647327423, -0.015254740603268147, 0.057644642889499664, 0.03500639274716377, 0.04172001779079437, -0.0750017762184143, -0.07147753983736038, 0.010102763772010803, -0.02546946331858635, -0.09330398589372635, 0.03591885417699814, 0.014338119886815548, -0.022373715415596962, 0.055803388357162476, -0.013471544720232487, -0.05270484834909439, 0.05166688561439514, -0.04118935763835907, -0.013446992263197899, -0.003094941610470414, -0.07353803515434265, -0.041014447808265686, -0.0017368737608194351, -0.025568243116140366, 0.0014096411177888513, -0.05748960003256798, -0.03172965347766876, 0.060284681618213654, -0.003673091297969222, -0.05539041757583618, 0.0326969213783741, 0.036997269839048386, 0.004805436357855797, 0.006322285160422325, -0.04804817959666252, 0.013205121271312237, 0.02865407057106495, -0.0696728527545929, -0.0426790788769722, -0.019537845626473427, -0.05522245913743973, -0.06385699659585953, -0.06952562928199768, -0.049753040075302124, 0.030038021504878998, 0.042138468474149704, -0.010984188877046108, 0.07739918678998947, 0.1255478709936142, 0.013848170638084412, -0.019778123125433922, -0.018638476729393005, 0.03869747370481491, 0.0003201178915333003, 0.09469705820083618, -0.01571567915380001, 0.028824154287576675, 0.042394839227199554, -5.5025626721771914e-8, -0.051563289016485214, 0.0017637477722018957, 0.026378141716122627, 0.0005843472317792475, -0.02802939899265766, -0.11938348412513733, -0.029987258836627007, 0.030705634504556656, -0.02952890284359455, 0.005081062205135822, 0.04245352745056152, -0.007564544677734375, -0.027339834719896317, 0.01917428709566593, 0.0013688368489965796, 0.06592311710119247, 0.02365913800895214, 0.0752764567732811, -0.03127042576670647, -0.11932250112295151, 0.04487205669283867, 0.022523637861013412, 0.05187305063009262, -0.002726857317611575, 0.031487077474594116, -0.03032159060239792, -0.03459281846880913, 0.06312082707881927, 0.01118483953177929, 0.005269959568977356, -0.05247077718377113, 0.03704530745744705, -0.024413563311100006, -0.08318261802196503, 0.0318562276661396, 0.07717075198888779, -0.08628548681735992, -0.017296766862273216, -0.014263888821005821, 0.10980869829654694, 0.06291808187961578, 0.08089203387498856, -0.06975821405649185, -0.003101406618952751, 0.09682463109493256, -0.04018609970808029, -0.008395083248615265, -0.09213822335004807, 0.04934123903512955, 0.014456016942858696, 0.014649834483861923, 0.006445345468819141, -0.044050127267837524, 0.00006612862489419058, 0.0763295441865921, 0.07846754789352417, -0.07750308513641357, -0.026539888232946396, 0.04097713902592659, 0.011930804699659348, 0.05817066878080368, 0.022360386326909065, -0.04384595528244972, 0.014823522418737411 ]
hustvl/yolos-small
5f960fd774250e41a01086ccbbf5e44d9d603c14
2022-06-27T08:37:45.000Z
[ "pytorch", "yolos", "object-detection", "dataset:coco", "arxiv:2106.00666", "transformers", "vision", "license:apache-2.0" ]
object-detection
false
hustvl
null
hustvl/yolos-small
2,089
10
transformers
--- license: apache-2.0 tags: - object-detection - vision datasets: - coco widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # YOLOS (small-sized) model YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). Disclaimer: The team releasing YOLOS did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model. ## Intended uses & limitations You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models. ### How to use Here is how to use this model: ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small') model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` Currently, both the feature extractor and model support PyTorch. ## Training data The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. ### Training The model was pre-trained for 200 epochs on ImageNet-1k and fine-tuned for 150 epochs on COCO. ## Evaluation results This model achieves an AP (average precision) of **36.1** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-00666, author = {Yuxin Fang and Bencheng Liao and Xinggang Wang and Jiemin Fang and Jiyang Qi and Rui Wu and Jianwei Niu and Wenyu Liu}, title = {You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection}, journal = {CoRR}, volume = {abs/2106.00666}, year = {2021}, url = {https://arxiv.org/abs/2106.00666}, eprinttype = {arXiv}, eprint = {2106.00666}, timestamp = {Fri, 29 Apr 2022 19:49:16 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ -0.06679151952266693, 0.004586847964674234, 0.05742426961660385, -0.018529441207647324, 0.14868931472301483, -0.05666124075651169, -0.013755842112004757, 0.008189009502530098, 0.01832091435790062, -0.02930036000907421, 0.03650052845478058, -0.0765552893280983, -0.03984060510993004, 0.05477694049477577, 0.0062383185140788555, 0.01712675392627716, -0.014147322624921799, 0.07314404845237732, -0.055236514657735825, -0.008121367543935776, -0.007835940457880497, -0.006074044853448868, 0.047118376940488815, -0.03698059171438217, -0.06553015857934952, 0.004440357908606529, -0.047118090093135834, -0.05213635787367821, 0.0016093801241368055, -0.09786371141672134, -0.027984438464045525, 0.052797239273786545, 0.02898332290351391, 0.091064453125, -0.023419825360178947, 0.04612109810113907, 0.054056622087955475, -0.03232774883508682, -0.04660061001777649, -0.007795026991516352, 0.01050516776740551, 0.00991534162312746, 0.04421822354197502, -0.03074042685329914, 0.03911949694156647, 0.03278704732656479, 0.027748923748731613, -0.058556921780109406, 0.018583694472908974, -0.05360358580946922, -0.08091621845960617, -0.05149625241756439, -0.04040553420782089, 0.09608066082000732, 0.005331950727850199, 0.026097716763615608, -0.0278035756200552, -0.07031681388616562, 0.07005879282951355, 0.012082519009709358, 0.035704758018255234, 0.02538757212460041, -0.02920401655137539, 0.00011918481322936714, -0.024054525420069695, -0.07749461382627487, 0.018582453951239586, -0.06864835321903229, 0.06351307779550552, -0.01082524098455906, -0.015698205679655075, 0.04015444591641426, 0.054643310606479645, 0.011352543719112873, -0.01191793940961361, 0.03705794736742973, 0.0692487359046936, 0.013034740462899208, 0.08911815285682678, -0.13977007567882538, 0.01559087261557579, -0.009567614644765854, 0.07401257753372192, -0.019898729398846626, 0.06521416455507278, 0.007325183134526014, -0.11088575422763824, 0.019190005958080292, -0.031520918011665344, 0.0009341969271190464, -0.029101546853780746, -0.07274913042783737, -0.02138056792318821, 0.05773112550377846, -0.050039783120155334, -0.0665363296866417, 0.021208660677075386, -0.011245445348322392, -0.03285212814807892, 0.1067056730389595, -0.0005654914421029389, -0.056807562708854675, 0.10870067030191422, 0.05117712542414665, 0.0282736849039793, -0.0034874596167355776, 0.011304403655230999, 0.07700259238481522, 0.056949716061353683, 0.009630703367292881, 0.007407160475850105, 0.005445593502372503, -0.04839874058961868, -0.0234232060611248, -0.07621343433856964, 0.011810198426246643, -0.04250818490982056, 0.03505980223417282, -0.02547306939959526, -0.01651903986930847, 0.004424587357789278, -0.036961495876312256, -0.019378850236535072, -0.054475802928209305, 0.008277368731796741, -0.04039108380675316, -0.04547314718365669, 3.6540734133570214e-33, 0.027183586731553078, -0.012250439263880253, 0.0002588499628473073, -0.00847987737506628, 0.025286348536610603, -0.041674353182315826, -0.01708371378481388, 0.04638688638806343, -0.0984315276145935, 0.05015037581324577, -0.04291842132806778, 0.002285181311890483, -0.06101221963763237, 0.05233067274093628, 0.040191978216171265, -0.0902075469493866, -0.03662663325667381, 0.013831164687871933, -0.04004334285855293, 0.06498764455318451, -0.011381830088794231, -0.024786297231912613, -0.015981266275048256, -0.036033764481544495, -0.03223070129752159, 0.10042990744113922, 0.014403779990971088, -0.032121967524290085, 0.027315134182572365, 0.03998429700732231, 0.025459332391619682, 0.07764710485935211, 0.006358632817864418, 0.03390837833285332, -0.005432303994894028, -0.07218990474939346, 0.024786461144685745, -0.024393541738390923, -0.07184619456529617, -0.05290238931775093, -0.0046716900542378426, 0.07039698958396912, -0.026483241468667984, -0.08655443787574768, 0.01743553951382637, 0.026684986427426338, 0.035412728786468506, 0.0580722950398922, -0.005150629673153162, 0.09040794521570206, 0.04284309223294258, 0.006729291286319494, -0.09872977435588837, -0.06417258828878403, -0.005595340393483639, -0.0021678342018276453, 0.015607373788952827, 0.01183579582720995, -0.0006540809408761561, 0.023934639990329742, -0.01562490314245224, -0.04052746295928955, -0.022605817764997482, 0.014310124330222607, -0.017615772783756256, 0.002047727582976222, -0.005626793950796127, 0.00684231286868453, -0.043330054730176926, 0.05251670628786087, -0.03989777714014053, 0.05223242938518524, -0.02014220505952835, -0.042794328182935715, 0.034671954810619354, -0.041210826486349106, 0.022166835144162178, 0.039002858102321625, -0.07539507746696472, 0.026553435251116753, -0.09826754778623581, 0.06811502575874329, 0.07224775850772858, -0.014344558119773865, -0.052467502653598785, 0.05372041091322899, 0.06058655306696892, 0.0020414090249687433, -0.04723915457725525, 0.035065628588199615, 0.008137532509863377, 0.08916117250919342, -0.0727214589715004, -0.0342639721930027, -0.048854511231184006, -3.775471490412239e-33, 0.05313943326473236, 0.04305008053779602, -0.05823977664113045, -0.00009764847345650196, -0.02331985905766487, -0.021084459498524666, 0.06289629638195038, 0.11098223924636841, 0.034610096365213394, -0.07745017111301422, 0.04446462541818619, -0.04335867986083031, -0.02491348795592785, -0.04773290082812309, 0.00971356499940157, -0.06537485867738724, -0.03431777283549309, -0.09389394521713257, -0.07662073522806168, 0.02928386628627777, 0.0449359230697155, 0.10793488472700119, -0.0799596831202507, -0.03188371658325195, -0.08235393464565277, 0.0771137923002243, 0.014489790424704552, 0.08386736363172531, -0.01807500049471855, -0.034412845969200134, -0.00416716281324625, -0.02984681911766529, -0.03797674551606178, 0.0401490293443203, -0.021445035934448242, -0.017789263278245926, 0.015559236519038677, -0.03495216369628906, -0.06394880264997482, 0.023049376904964447, 0.06743930280208588, 0.0584908165037632, -0.14029498398303986, 0.04107341915369034, -0.05186110734939575, -0.06160234659910202, 0.009030373767018318, 0.059879809617996216, 0.03140905126929283, 0.015223289839923382, -0.04388609156012535, -0.06279244273900986, -0.16742870211601257, 0.0033041732385754585, -0.05502355471253395, 0.03832508623600006, 0.06009453162550926, 0.00783238373696804, -0.020880701020359993, 0.008546411991119385, 0.01783137395977974, -0.0077778249979019165, -0.11872265487909317, -0.03937671333551407, 0.046732522547245026, 0.032406073063611984, -0.03579559922218323, -0.016533268615603447, 0.07639841735363007, 0.05379829555749893, 0.062492843717336655, 0.030097542330622673, 0.015175078064203262, -0.01308699045330286, 0.009988000616431236, -0.014065471477806568, 0.015022329054772854, -0.000832721998449415, 0.07844949513673782, -0.01638791710138321, -0.06782054156064987, -0.0159755926579237, 0.06747075170278549, 0.1449117213487625, 0.08604201674461365, 0.12025852501392365, 0.0033352356404066086, 0.004978467710316181, 0.022128183394670486, 0.04306325688958168, -0.029185257852077484, 0.003305260092020035, 0.037454959005117416, 0.13142135739326477, 0.033482085913419724, -5.925172530396594e-8, -0.08753668516874313, 0.046505946666002274, -0.09429202973842621, -0.03722809627652168, -0.06709554046392441, -0.0005361753283068538, 0.012834900990128517, 0.04628362879157066, -0.024526841938495636, -0.005841113161295652, 0.02076331339776516, 0.05533311888575554, -0.06788107752799988, 0.07795605063438416, 0.01906345970928669, -0.050241321325302124, -0.04609951004385948, 0.05325551703572273, -0.0908169075846672, 0.02435285784304142, -0.06666424125432968, -0.019493835046887398, 0.025052523240447044, 0.007225788198411465, -0.0023370643611997366, -0.04916628450155258, -0.11010751873254776, 0.04541908577084541, -0.027080226689577103, -0.05097498744726181, -0.06895910203456879, 0.07447463274002075, 0.03927452117204666, -0.03505828231573105, 0.0732969120144844, 0.06303782016038895, -0.059276726096868515, -0.01349326130002737, 0.006901073269546032, -0.03794148564338684, 0.05487445741891861, -0.056183017790317535, -0.04156259819865227, 0.019309036433696747, 0.051896095275878906, 0.011806869879364967, 0.0983087345957756, -0.09520160406827927, -0.03453606739640236, 0.04976283386349678, 0.06440486758947372, -0.012220256961882114, -0.04697399213910103, 0.06498965620994568, 0.02522752620279789, -0.02334911935031414, 0.024505294859409332, -0.08982868492603302, 0.013647849671542645, 0.0883297473192215, 0.06391073763370514, -0.030151275917887688, -0.027106724679470062, -0.010648754425346851 ]
hyunwoongko/kobart
b5a881942b2536ed7851752a77d7da36d58f2e49
2022-04-11T01:19:27.000Z
[ "pytorch", "bart", "text2text-generation", "ko", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
hyunwoongko
null
hyunwoongko/kobart
2,083
1
transformers
--- language: ko tags: - bart license: mit --- ## KoBART-base-v2 With the addition of chatting data, the model is trained to handle the semantics of sequences longer than KoBART. ```python from transformers import PreTrainedTokenizerFast, BartModel tokenizer = PreTrainedTokenizerFast.from_pretrained('hyunwoongko/kobart') model = BartModel.from_pretrained('hyunwoongko/kobart') ``` ### Performance NSMC - acc. : 0.901 ### hyunwoongko/kobart - Added bos/eos post processor - Removed token_type_ids
[ -0.12081006914377213, -0.0069268848747015, 0.025432558730244637, -0.020224617794156075, -0.017781516537070274, -0.029650287702679634, -0.009337184019386768, 0.0648166835308075, 0.005995850544422865, -0.07163005322217941, 0.04287656024098396, -0.040475111454725266, -0.018176954239606857, -0.028717784211039543, 0.07442307472229004, 0.01346746739000082, -0.009047677740454674, 0.0025442689657211304, -0.0373699925839901, -0.08536656200885773, 0.07542728632688522, 0.03627076745033264, -0.0004310652439016849, 0.044886596500873566, 0.042845938354730606, -0.03010137937963009, 0.004150177352130413, -0.03191051632165909, 0.04426125809550285, 0.012609857134521008, 0.03639949858188629, 0.07003969699144363, 0.02998024970293045, 0.048839692026376724, -0.037615254521369934, 0.061738718301057816, -0.0014609773643314838, -0.07187295705080032, 0.05768517032265663, -0.0012859496055170894, 0.02892722561955452, 0.008070211857557297, -0.021589472889900208, 0.01480577141046524, 0.033785462379455566, 0.008421213366091251, -0.03199447691440582, -0.043948788195848465, -0.04449324309825897, -0.05130908265709877, -0.0682227835059166, -0.01638595387339592, 0.05527687817811966, 0.08251506835222244, -0.018306788057088852, -0.0046896906569600105, -0.06302992254495621, 0.012115097604691982, 0.12274270504713058, -0.05652613192796707, -0.0422002449631691, -0.003837308846414089, 0.0013353530084714293, 0.05530943349003792, -0.0671619176864624, -0.037610575556755066, 0.06079818680882454, 0.019800478592514992, 0.039856549352407455, 0.04711635410785675, -0.010404709726572037, 0.016063077375292778, 0.009244304150342941, 0.11910530924797058, 0.07218720018863678, -0.05160030350089073, 0.08906758576631546, -0.003286150051280856, 0.015441606752574444, -0.11476263403892517, -0.011743144132196903, -0.07229078561067581, -0.011987599544227123, 0.025431787595152855, -0.012340139597654343, -0.040817633271217346, -0.02999073453247547, -0.028291825205087662, 0.04001913592219353, 0.04735228046774864, -0.04965030401945114, -0.09504663199186325, 0.056205809116363525, -0.013573752716183662, -0.079244464635849, 0.04692280292510986, 0.025328030809760094, 0.09213956445455551, -0.07064475119113922, 0.1026974692940712, 0.010627157986164093, 0.07540710270404816, 0.0277725700289011, 0.017167380079627037, -0.015021521598100662, -0.05334373190999031, 0.0083461944013834, 0.018263962119817734, -0.007362297736108303, 0.03995862603187561, 0.06235288456082344, -0.06901004910469055, 0.0017576911486685276, -0.055387143045663834, 0.035438574850559235, 0.07962267100811005, -0.047843579202890396, 0.006296846549957991, -0.03292739763855934, 0.10512176156044006, 0.07002757489681244, -0.0276127140969038, -0.029387131333351135, 0.014222190715372562, -0.08647321909666061, 0.005837603472173214, 0.01473532896488905, 5.580383189356367e-33, -0.01792745105922222, -0.01672755554318428, 0.050900425761938095, 0.025678982958197594, -0.024568375200033188, -0.05283365398645401, -0.0374651663005352, -0.0019969558343291283, -0.08808159828186035, -0.055805787444114685, -0.06705015897750854, 0.05540004000067711, -0.08271031081676483, 0.06227993220090866, 0.00048708400572650135, -0.032911136746406555, -0.03649510070681572, 0.03504929691553116, 0.08868958801031113, 0.03702967241406441, 0.11701598763465881, -0.028224926441907883, -0.05012715980410576, 0.001977210631594062, 0.013140633702278137, 0.04671309515833855, 0.04761321470141411, -0.12618745863437653, -0.029850268736481667, 0.06984012573957443, -0.0684535801410675, 0.04101261496543884, -0.01847255416214466, 0.03314953297376633, -0.03697700798511505, -0.025361543521285057, 0.024517858400940895, -0.09201478213071823, -0.030926814302802086, -0.15231071412563324, -0.012959320098161697, 0.017112739384174347, -0.07516211271286011, -0.02717873826622963, -0.057878997176885605, -0.04560540243983269, 0.005128368269652128, 0.006373682990670204, 0.0695759579539299, 0.07589104771614075, 0.0005830711452290416, -0.007219995371997356, -0.033047452569007874, 0.05145702883601189, 0.0322926789522171, 0.0002400442463112995, 0.06456798315048218, 0.02807406149804592, 0.0694146603345871, -0.0025039645843207836, -0.01550831738859415, 0.045635830610990524, 0.04929053783416748, 0.05201225355267525, 0.07914993911981583, -0.037807758897542953, -0.035854946821928024, -0.006533370353281498, 0.005115497391670942, -0.060547225177288055, -0.08484189212322235, -0.06163956969976425, -0.04800007492303848, 0.008758132345974445, -0.01616610400378704, -0.06328818947076797, -0.004519662819802761, -0.058256398886442184, -0.13156536221504211, 0.029080942273139954, -0.019125401973724365, -0.032620977610349655, -0.031254034489393234, -0.005755688063800335, 0.04343191906809807, -0.053131185472011566, 0.06396439671516418, 0.009336750954389572, -0.060980647802352905, -0.022087136283516884, -0.0040803151205182076, -0.025225885212421417, 0.002277305582538247, 0.026437409222126007, -0.05463059991598129, -6.947461813527578e-33, 0.0022007818333804607, 0.057433389127254486, -0.015403293073177338, 0.026955479755997658, -0.01568767800927162, -0.029183190315961838, 0.05184045806527138, 0.13640213012695312, -0.04971718788146973, -0.006607407238334417, 0.006163895595818758, -0.13268133997917175, 0.006117352284491062, -0.052182167768478394, 0.12547434866428375, 0.02741502970457077, -0.045523352921009064, 0.012604924850165844, 0.0034859618172049522, 0.01809491217136383, 0.025382041931152344, 0.05949072167277336, -0.14205649495124817, 0.08325419574975967, -0.040548041462898254, 0.06024211272597313, -0.022370390594005585, 0.09597991406917572, 0.023408975452184677, 0.0018766849534586072, -0.041615311056375504, -0.0008406464476138353, -0.04323931783437729, 0.060274265706539154, -0.047552455216646194, -0.016022440046072006, 0.04265090450644493, 0.0488552562892437, -0.025345927104353905, 0.011859710328280926, 0.0877302885055542, 0.03145122528076172, -0.10273117572069168, 0.03146137297153473, -0.011800169944763184, -0.020868081599473953, -0.017049239948391914, -0.050282761454582214, 0.083527110517025, -0.06408890336751938, 0.0659901425242424, 0.022464986890554428, -0.07057465612888336, -0.04063558578491211, -0.06673986464738846, -0.029500262811779976, 0.05950965732336044, 0.004342384170740843, -0.038875043392181396, -0.11448778957128525, -0.041788071393966675, -0.08163920044898987, 0.07310955971479416, -0.038918379694223404, 0.031876496970653534, -0.10318701714277267, -0.03583923354744911, 0.005175756756216288, 0.014686883427202702, -0.07973426580429077, 0.0027854852378368378, 0.0270791444927454, 0.025637909770011902, -0.029774677008390427, 0.000021300411390257068, 0.007579723838716745, -0.05768485367298126, -0.010797123424708843, 0.02041313610970974, -0.012146864086389542, -0.117097407579422, -0.003639375790953636, 0.10890588164329529, 0.11586187034845352, -0.023019786924123764, 0.026000358164310455, 0.0520298071205616, 0.07824308425188065, 0.06598889827728271, -0.021007966250181198, 0.016302872449159622, 0.03979228064417839, 0.007326054852455854, 0.08650940656661987, -0.004629983566701412, -5.021266957783155e-8, -0.022061387076973915, -0.10175414383411407, -0.046622201800346375, 0.07048894464969635, 0.02066129632294178, 0.012645356357097626, -0.06381914764642715, 0.01117241382598877, -0.026553725823760033, -0.04608387500047684, 0.0005767134134657681, 0.046993374824523926, -0.04428529366850853, 0.018474208191037178, 0.059249576181173325, 0.015575251542031765, -0.04309528321027756, 0.09072897583246231, -0.053597331047058105, -0.04106384515762329, -0.014719897881150246, -0.02795247547328472, 0.009317103773355484, -0.005878838244825602, -0.022835558280348778, 0.006430891342461109, -0.0028690171893686056, 0.09778359532356262, -0.005984625779092312, -0.0527828074991703, -0.07405263185501099, 0.001081165042705834, -0.0748610645532608, -0.00555403484031558, -0.005726037546992302, 0.03921182453632355, 0.0015669104177504778, -0.045999735593795776, -0.029827609658241272, 0.07399794459342957, -0.044697392731904984, -0.026878900825977325, -0.11831720173358917, 0.020196402445435524, 0.0537821389734745, 0.026549672707915306, -0.023943757638335228, -0.011705618351697922, 0.02770640328526497, -0.007343416567891836, -0.050612371414899826, -0.019247395917773247, -0.055654559284448624, -0.022194579243659973, -0.01927300915122032, 0.041729021817445755, -0.05997693911194801, -0.04367661848664284, -0.0036008793395012617, 0.02502472884953022, 0.03233495354652405, 0.020404765382409096, 0.06003916263580322, 0.011087439954280853 ]
richielleisart/Childe
5da9de8d7f9e9cfde2c126b6ac6531b3ddff606a
2022-01-19T18:52:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
richielleisart
null
richielleisart/Childe
2,080
null
transformers
--- tags: - conversational --- # Childe Chatbot Model
[ -0.08342590183019638, -0.01777823083102703, 0.04956606775522232, 0.03118353709578514, 0.047361504286527634, -0.08925030380487442, 0.08672982454299927, 0.012996003031730652, 0.0705133005976677, -0.012105018831789494, 0.0010526645928621292, -0.02044222690165043, -0.004734580870717764, 0.04789955914020538, 0.07216192036867142, 0.06365247815847397, 0.05846608430147171, -0.03514132276177406, -0.008041972294449806, -0.04475462809205055, 0.0179605595767498, 0.10268010199069977, 0.06439937651157379, 0.01193477027118206, -0.0005066842422820628, 0.0707617998123169, -0.022742513567209244, -0.0009815257508307695, 0.04205695912241936, -0.008337927050888538, 0.04860885441303253, 0.05701566860079765, 0.044379085302352905, 0.07985548675060272, -0.013880645856261253, 0.0396929495036602, 0.03670274466276169, -0.013096727430820465, 0.03231976553797722, 0.014024506323039532, -0.0489455908536911, -0.0011231827083975077, -0.09395167231559753, -0.0690259337425232, -0.004895724821835756, -0.02979600802063942, -0.09589990973472595, -0.035736147314310074, -0.00502714654430747, 0.030305147171020508, -0.08677757531404495, -0.04728717729449272, 0.03280142322182655, 0.13927756249904633, -0.04639167711138725, 0.04616974666714668, -0.06777554005384445, -0.0765509232878685, 0.11400686949491501, 0.01203970517963171, -0.049876268953084946, 0.007357686758041382, -0.04433467984199524, 0.010219712741672993, -0.04578985646367073, -0.004383676219731569, -0.058512959629297256, 0.0017066745785996318, -0.005545696243643761, 0.05652330070734024, 0.014522210694849491, 0.03465273976325989, 0.03494110330939293, 0.0669131726026535, -0.013649395667016506, 0.019479546695947647, -0.005523153115063906, -0.028696462512016296, 0.034473076462745667, -0.04979288578033447, -0.11021257191896439, -0.06837634742259979, 0.040918782353401184, -0.03771364688873291, -0.011926167644560337, 0.0005848607397638261, 0.021875562146306038, -0.008608253672719002, -0.014251855202019215, 0.02617807500064373, -0.07365155965089798, -0.07682190835475922, 0.12126260250806808, 0.09929309785366058, -0.022279147058725357, -0.00967106968164444, 0.009932163171470165, -0.05044565722346306, -0.0860336497426033, 0.062485795468091965, 0.013287621550261974, 0.03353692218661308, 0.03221924602985382, -0.024952350184321404, 0.01711174100637436, -0.025019660592079163, 0.012290273793041706, 0.025663968175649643, 0.019257154315710068, -0.03922499716281891, -0.06558003276586533, -0.048955224454402924, 0.06066935136914253, -0.012132962234318256, 0.06907011568546295, -0.08041231334209442, 0.10635032504796982, 0.00602645892649889, 0.010713246650993824, -0.020605823025107384, 0.11555544286966324, 0.0070497398264706135, -0.046690717339515686, -0.014738543890416622, 0.023307088762521744, -0.022669311612844467, -0.07273226231336594, -2.0225915795393218e-33, 0.0656004250049591, -0.0014419492799788713, 0.039851557463407516, 0.11773498356342316, 0.00790238194167614, 0.10836848616600037, -0.032919805496931076, -0.00047175533836707473, -0.03597363457083702, -0.019953038543462753, -0.05617978796362877, -0.04716712236404419, -0.06078973039984703, -0.014158680103719234, 0.03127771243453026, -0.023198220878839493, -0.06429125368595123, 0.03521563112735748, 0.024568693712353706, 0.02380252629518509, -0.04042962193489075, 0.059885282069444656, 0.018346382305026054, 0.11954393982887268, 0.08373171836137772, 0.1439063847064972, 0.03397022932767868, -0.09164534509181976, -0.0022964882664382458, 0.03879236429929733, -0.06082872673869133, 0.017435453832149506, -0.03798740729689598, 0.03152284026145935, -0.01719454862177372, 0.01309578400105238, 0.02021992951631546, -0.04256522282958031, -0.038306739181280136, -0.03884422406554222, -0.060570769011974335, -0.06265228241682053, -0.06033945083618164, -0.10641515254974365, 0.007274631876498461, -0.0012659822823479772, -0.030764464288949966, -0.02227337658405304, 0.032529011368751526, -0.004849460907280445, -0.012748966924846172, 0.0879993662238121, -0.024809885770082474, -0.007692351471632719, -0.032029781490564346, -0.04563721641898155, -0.04251252859830856, 0.08074133098125458, -0.0034935197327286005, -0.07756298780441284, 0.012339073233306408, -0.06017376855015755, 0.02703671343624592, -0.09736540913581848, 0.06349632889032364, -0.02190697379410267, 0.015858184546232224, 0.022099602967500687, 0.02306239679455757, -0.036495957523584366, -0.019151177257299423, 0.09777660667896271, -0.0381673239171505, 0.030776074156165123, -0.06603645533323288, -0.016124235466122627, 0.004704839084297419, -0.06190748140215874, 0.06001059338450432, 0.022520888596773148, -0.08870386332273483, -0.08434221893548965, -0.030593475326895714, -0.0521228089928627, -0.0027343991678208113, -0.09792134910821915, 0.009300070814788342, -0.05130400508642197, -0.018511388450860977, 0.021162165328860283, -0.040987156331539154, 0.008079223334789276, -0.051601167768239975, 0.026973500847816467, -0.059172045439481735, 3.627755564210049e-34, 0.032253555953502655, -0.023975001648068428, -0.08937975019216537, 0.061808984726667404, 0.00021271109289955348, -0.07042139023542404, 0.03954631835222244, 0.09601259976625443, 0.006101618520915508, -0.0028962884098291397, -0.061843082308769226, -0.014948321506381035, -0.03391087427735329, -0.01450586598366499, 0.10562287271022797, 0.07550168037414551, 0.01742600090801716, -0.05517175421118736, 0.050002023577690125, -0.023026157170534134, 0.036447811871767044, 0.0645132064819336, -0.13709361851215363, 0.05950004979968071, 0.07668891549110413, -0.030139096081256866, -0.04296833649277687, 0.05263037979602814, 0.0813538208603859, 0.002207805635407567, 0.005424292758107185, 0.03702962398529053, 0.06598500162363052, 0.0032602997962385416, 0.04171281307935715, -0.015638191252946854, -0.002343716798350215, -0.0033806192222982645, 0.025260936468839645, 0.0054510533809661865, 0.0688881203532219, -0.019296806305646896, -0.03690072521567345, 0.02348029613494873, -0.021200045943260193, -0.022215649485588074, -0.03473195433616638, -0.011179603636264801, -0.06023170426487923, 0.028091756626963615, 0.023546775802969933, -0.038570985198020935, -0.036891061812639236, -0.12722636759281158, -0.08076708018779755, -0.007727603893727064, 0.056767914444208145, 0.005970808677375317, -0.018154935911297798, 0.0015168034005910158, -0.0028919570613652468, -0.08217357099056244, 0.03532002121210098, 0.0037278018426150084, -0.03434498608112335, -0.05188244208693504, -0.07268615812063217, 0.04367247223854065, -0.00037583938683383167, -0.060326021164655685, 0.153590589761734, 0.024404970929026604, -0.014438840560615063, 0.04942543804645538, 0.0363161526620388, -0.05178557336330414, 0.01618023030459881, 0.024607088416814804, 0.06538240611553192, -0.04366676136851311, -0.06749279797077179, -0.008016654290258884, 0.04483357071876526, 0.04491153359413147, 0.03436700999736786, -0.022383293136954308, 0.00751018151640892, 0.059769243001937866, -0.04943397268652916, 0.00402828911319375, 0.04107936844229698, -0.030038518831133842, -0.00006890160875627771, 0.039428018033504486, -0.03209582343697548, -2.1084646917302052e-8, -0.02074485458433628, -0.09756335616111755, -0.009194891899824142, 0.059880081564188004, 0.05520738661289215, -0.006380544975399971, 0.006915569771081209, 0.012540247291326523, -0.04225858300924301, 0.0007672336068935692, 0.02783939242362976, 0.06379061937332153, -0.00915510393679142, 0.019687119871377945, 0.04314728453755379, 0.01839836873114109, -0.05260644480586052, 0.011036364361643791, 0.00990042369812727, -0.010463406331837177, 0.0980464518070221, 0.031923603266477585, -0.06265126168727875, 0.08323924243450165, -0.03418256714940071, -0.05783955007791519, -0.063123919069767, 0.07914601266384125, -0.09212241321802139, 0.025788895785808563, -0.00556894252076745, 0.03658032789826393, -0.06655891984701157, 0.018860213458538055, 0.006959681864827871, -0.0064959656447172165, -0.095746248960495, -0.025706207379698753, -0.02433391474187374, 0.03263940289616585, 0.045856453478336334, 0.05234919860959053, -0.021708955988287926, -0.0637887716293335, 0.07312465459108353, -0.0014228866202756763, -0.05602685734629631, -0.12110962718725204, 0.004072874318808317, -0.03086153231561184, -0.06443466991186142, -0.0475088469684124, 0.02247135527431965, -0.020099394023418427, 0.047346461564302444, 0.015244878828525543, 0.040803246200084686, 0.0010493180016055703, 0.015932966023683548, 0.04295290261507034, 0.07020635902881622, 0.12250029295682907, 0.05388657748699188, 0.006952969823032618 ]
nvidia/mit-b5
9707ed6bec8a37b67fc9b6d03fe6fbb0e8020f76
2022-07-29T13:15:56.000Z
[ "pytorch", "tf", "segformer", "image-classification", "dataset:imagenet_1k", "arxiv:2105.15203", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
nvidia
null
nvidia/mit-b5
2,076
null
transformers
--- license: apache-2.0 tags: - vision datasets: - imagenet_1k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b5-sized) encoder pre-trained-only SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. This repository only contains the pre-trained hierarchical Transformer, hence it can be used for fine-tuning purposes. ## Intended uses & limitations You can use the model for fine-tuning of semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b5") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b5") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ -0.08144903182983398, 0.01023835502564907, 0.042061638087034225, -0.024326853454113007, 0.07283542305231094, -0.13717906177043915, -0.01180750411003828, -0.03150502219796181, -0.08676953613758087, -0.09427668154239655, 0.01944034919142723, -0.06613258272409439, 0.0055740694515407085, 0.0019551333971321583, 0.03838624805212021, 0.08383958041667938, -0.012067459523677826, 0.1248125359416008, -0.08841819316148758, -0.03575419634580612, 0.0015964561607688665, 0.016946325078606606, 0.00044648293987847865, -0.05711384117603302, 0.03142648562788963, -0.019211813807487488, -0.03702438250184059, 0.006592562887817621, 0.01782643236219883, -0.04827704653143883, 0.08936082571744919, 0.04898204654455185, 0.010360383428633213, 0.06982708722352982, 0.012770644389092922, 0.08390799909830093, 0.015147385187447071, -0.0022078638430684805, -0.06766558438539505, 0.012475837953388691, -0.004848418291658163, 0.0029721001628786325, -0.03870968520641327, -0.05635969340801239, -0.003886660560965538, -0.03008401207625866, 0.019256675615906715, -0.04687303304672241, -0.060047734528779984, -0.02243081107735634, -0.04250388219952583, -0.02848154492676258, -0.029838286340236664, 0.06534148752689362, 0.0016394015401601791, 0.016611715778708458, -0.004458597395569086, -0.020881090313196182, 0.016775446012616158, 0.06243768334388733, -0.021566512063145638, 0.01329526212066412, 0.014960304833948612, -0.0025464631617069244, -0.0788002759218216, -0.011012694798409939, 0.14510920643806458, -0.06586936116218567, 0.027061481028795242, -0.06723170727491379, -0.04605657979846001, -0.001721890876069665, -0.0011603744933381677, -0.000870854826644063, -0.02387259714305401, 0.05739641189575195, 0.018359344452619553, 0.012037244625389576, 0.09394960105419159, -0.14363066852092743, 0.04917752742767334, -0.032274141907691956, 0.039538390934467316, 0.03595392033457756, 0.07750554382801056, 0.023188717663288116, -0.031715139746665955, 0.013551127165555954, -0.04255210980772972, 0.08575768768787384, -0.0035774772986769676, -0.0751640796661377, -0.049700718373060226, 0.018980853259563446, 0.031017497181892395, -0.056754786521196365, -0.0017451932653784752, -0.05141132324934006, -0.01945577748119831, 0.09473669528961182, -0.051735006272792816, -0.01443160604685545, 0.019857104867696762, 0.05122130736708641, 0.012545445933938026, -0.0501762330532074, 0.024043550714850426, 0.08504996448755264, 0.04364928975701332, -0.04067318141460419, 0.03789404034614563, 0.020502986386418343, 0.009835883043706417, -0.13366307318210602, 0.0064151594415307045, 0.01931120455265045, -0.042139388620853424, 0.004426427651196718, 0.07737120240926743, -0.027206478640437126, -0.02040611207485199, 0.02742018736898899, -0.10587654262781143, 0.004307424649596214, 0.07045116275548935, -0.01520761102437973, -0.13225118815898895, 4.6556981906972766e-33, 0.07567203044891357, 0.0352594368159771, 0.0519808866083622, -0.015019080601632595, -0.023095807060599327, -0.016851922497153282, -0.02031131461262703, 0.027635211125016212, -0.08556041866540909, -0.03218039497733116, -0.04420628771185875, -0.0241678599268198, 0.004866597708314657, 0.11115720868110657, 0.054127342998981476, -0.12757806479930878, -0.01603773981332779, 0.010053672827780247, -0.04614477977156639, 0.0357474610209465, 0.009438097476959229, -0.012271908111870289, -0.055403754115104675, 0.05065997689962387, -0.12455322593450546, -0.005349030718207359, 0.014897781424224377, -0.025386804714798927, 0.057338789105415344, 0.01764543727040291, -0.08423863351345062, -0.005681012291461229, 0.08079119026660919, 0.011944527737796307, 0.013927889987826347, -0.06646811217069626, 0.003868195228278637, -0.0008663471089676023, -0.05325326323509216, -0.045596253126859665, 0.035591304302215576, 0.0720815360546112, 0.03854447230696678, -0.0613153837621212, -0.04660041630268097, 0.0035858035553246737, -0.015839209780097008, 0.075782909989357, 0.004346764180809259, 0.013790858909487724, 0.07481760531663895, 0.0012518229195848107, -0.015919944271445274, -0.04062943160533905, 0.021521348506212234, -0.00048472563503310084, 0.04183996468782425, -0.012915320694446564, 0.013888521119952202, 0.07862451672554016, -0.040951501578092575, -0.02831573784351349, 0.024005603045225143, 0.017715737223625183, -0.015823446214199066, -0.020014997571706772, 0.04617694765329361, -0.04881758987903595, -0.09917346388101578, -0.02970171347260475, -0.052381038665771484, 0.08508031815290451, 0.00733846053481102, -0.035696424543857574, 0.06632627546787262, 0.009602370671927929, -0.02379775047302246, 0.014562204480171204, -0.10165834426879883, 0.033761341124773026, -0.1165553480386734, 0.10694379359483719, 0.03353949263691902, -0.030905302613973618, -0.04186420515179634, -0.025833506137132645, 0.04928402602672577, -0.03840005770325661, 0.00174740853253752, -0.004763658624142408, 0.017960863187909126, -0.040157124400138855, -0.018626054748892784, -0.046835631132125854, -0.05257420614361763, -3.551866383604931e-33, 0.049795810133218765, 0.04272934049367905, -0.04636111482977867, 0.07394656538963318, -0.07252296805381775, -0.002599956002086401, 0.11803840100765228, 0.13427072763442993, 0.00813672412186861, -0.06219000369310379, 0.05332479625940323, 0.040829624980688095, 0.005562352482229471, -0.09479882568120956, 0.015883242711424828, -0.026362545788288116, -0.01603672280907631, -0.05056421831250191, 0.008638858795166016, 0.06323408335447311, 0.0390324741601944, 0.12502172589302063, -0.01929657906293869, 0.061490487307310104, -0.03851708024740219, 0.06546447426080704, -0.031226560473442078, 0.05184205248951912, -0.030699143186211586, -0.01716569997370243, -0.0010871326085180044, -0.0662965252995491, -0.01933646947145462, 0.010505936108529568, -0.03465614095330238, 0.03293401375412941, 0.06300602853298187, -0.024161141365766525, -0.06314633786678314, 0.013062190264463425, -0.004889644216746092, 0.013220896013081074, -0.03301858901977539, 0.11434426158666611, -0.02943125180900097, -0.03408704698085785, -0.01804105006158352, 0.022570494562387466, -0.007305428851395845, 0.04500667378306389, -0.050851158797740936, 0.03338494524359703, -0.10893111675977707, -0.01799624413251877, -0.03669595345854759, -0.036834318190813065, 0.004275018349289894, -0.043857309967279434, -0.03207874670624733, 0.056958604604005814, 0.015476727858185768, -0.019990159198641777, -0.035037633031606674, 0.00461161183193326, -0.005358564667403698, 0.030587289482355118, -0.04588271304965019, -0.04025471210479736, 0.0002126651379512623, -0.0059396871365606785, 0.05869722738862038, 0.012539653107523918, 0.026360685005784035, 0.04610924422740936, 0.051190175116062164, -0.04888865724205971, 0.0012716561323031783, 0.02105538733303547, 0.01877962425351143, -0.019575875252485275, -0.06817696988582611, -0.006231353152543306, 0.03335370495915413, 0.11217577010393143, 0.05221504345536232, 0.037160031497478485, 0.009088702499866486, 0.02978089638054371, 0.06537862122058868, -0.029184741899371147, -0.05836266651749611, -0.009406141005456448, 0.03650849312543869, 0.1502891331911087, 0.07306802272796631, -6.177935318874006e-8, -0.06503969430923462, 0.023973282426595688, -0.07025089114904404, -0.06583869457244873, -0.02323160134255886, -0.06173599138855934, 0.05937446653842926, 0.08599009364843369, -0.01775727979838848, -0.017450422048568726, 0.07419075071811676, 0.022343602031469345, -0.12760567665100098, 0.028059743344783783, 0.02753170020878315, -0.002770340535789728, 0.0894622877240181, 0.05067175254225731, -0.046264275908470154, -0.025374600663781166, -0.06151258572936058, 0.009500403888523579, -0.06467290222644806, -0.04213562235236168, 0.05199321731925011, -0.05018439516425133, -0.030671337619423866, 0.04467495158314705, 0.054534051567316055, -0.032162927091121674, -0.01367371529340744, 0.01979505643248558, 0.057114433497190475, -0.03055041842162609, 0.0366123802959919, 0.07346359640359879, -0.11371123045682907, -0.015070146881043911, 0.004889794159680605, -0.002619426930323243, 0.04130427539348602, -0.04236350208520889, -0.029683256521821022, -0.03024309314787388, 0.0811406746506691, 0.016848517581820488, 0.04188487306237221, -0.03277009353041649, 0.0005373635212890804, 0.031106604263186455, 0.07263354957103729, 0.013385635800659657, -0.04099644720554352, 0.0718187689781189, 0.03607851266860962, -0.08051615953445435, 0.026562826707959175, -0.020298143848776817, 0.0871710553765297, 0.07312358915805817, 0.005846165120601654, 0.033715687692165375, -0.014369366690516472, 0.011005549691617489 ]
microsoft/deberta-v2-xlarge-mnli
5272422ce68b8d61766079390b96b033a64414d2
2021-05-21T20:08:15.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta", "deberta-mnli", "license:mit" ]
text-classification
false
microsoft
null
microsoft/deberta-v2-xlarge-mnli
2,075
2
transformers
--- language: en tags: - deberta - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa V2 xlarge model fine-tuned with MNLI task, 24 layers, 1536 hidden size. Total parameters 900M. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
[ -0.11069395393133163, -0.08945441246032715, 0.03497905284166336, 0.00196813209913671, 0.0229331087321043, -0.01818605698645115, -0.010388246737420559, 0.02470458298921585, -0.018931392580270767, 0.03592129051685333, 0.013637084513902664, -0.007165652699768543, 0.0002688775130081922, 0.01668824814260006, 0.04203568398952484, 0.10769359022378922, 0.11147819459438324, -0.004799175076186657, -0.13016177713871002, -0.010431419126689434, 0.07888037711381912, -0.010717717930674553, 0.0399203822016716, -0.06847000122070312, 0.07608090341091156, -0.014685031026601791, -0.053682129830121994, -0.06170407310128212, 0.048394959419965744, -0.005310468841344118, 0.041461046785116196, 0.014912917278707027, 0.040568653494119644, 0.10973318666219711, 0.01579328626394272, 0.11200705170631409, -0.020642664283514023, -0.038166336715221405, 0.05095181241631508, 0.009914222173392773, -0.058669015765190125, 0.08545678108930588, -0.039405014365911484, -0.049351371824741364, 0.05533093586564064, -0.07110393792390823, -0.013087318278849125, -0.014993465505540371, -0.030114253982901573, -0.022010494023561478, -0.09994622319936752, -0.010996636003255844, 0.06155776605010033, 0.05111014097929001, -0.003052211133763194, -0.002278879750519991, -0.005473962984979153, -0.012602477334439754, -0.03394477069377899, -0.028491603210568428, -0.0505559928715229, -0.05663283169269562, -0.03699847310781479, -0.006518007256090641, -0.020655812695622444, 0.0006827001343481243, -0.015605091117322445, -0.01804606430232525, 0.01407308503985405, -0.02306704968214035, -0.017239520326256752, 0.042942628264427185, -0.028665747493505478, -0.005812095012515783, 0.035448819398880005, 0.0038868116680532694, 0.04351154714822769, -0.02745075896382332, 0.04434782639145851, -0.13140127062797546, 0.04924706742167473, -0.005021002143621445, 0.09133397042751312, 0.007458101958036423, 0.12286702543497086, -0.008385466411709785, 0.025221852585673332, 0.0065148514695465565, -0.02552284486591816, -0.05195331573486328, -0.046080537140369415, -0.07043607532978058, 0.03861421346664429, 0.03467271849513054, 0.028694549575448036, 0.005374196916818619, 0.04900703206658363, -0.007859023287892342, -0.07343096286058426, 0.09604516625404358, -0.01452245656400919, 0.02151457965373993, -0.006101027596741915, -0.039923813194036484, -0.016785426065325737, -0.024297550320625305, 0.11120723932981491, 0.03855794668197632, 0.005221696104854345, -0.07352207601070404, 0.03447825834155083, 0.00211623078212142, -0.0019718962721526623, -0.013563917949795723, 0.02916853129863739, -0.03861797973513603, 0.08933597803115845, 0.00847918726503849, 0.06296122074127197, 0.0160471610724926, 0.03162660822272301, -0.02574898488819599, -0.032972659915685654, -0.012532510794699192, -0.00575297512114048, 0.021887177601456642, -0.015487384982407093, 4.723168627698599e-33, 0.056400470435619354, 0.04890439286828041, -0.006077706813812256, 0.00602714903652668, -0.009060973301529884, -0.01617150753736496, 0.0068857092410326, 0.003330874489620328, -0.04653312638401985, 0.012203707359731197, -0.09490533918142319, 0.03399750962853432, -0.057588763535022736, 0.10244100540876389, -0.010503541678190231, -0.03897282853722572, -0.008162476122379303, 0.07127968966960907, 0.029976477846503258, 0.05976862087845802, 0.0924636647105217, 0.04647912085056305, -0.01736726611852646, -0.06942194700241089, -0.029559947550296783, 0.019701387733221054, 0.1360614150762558, -0.09060362726449966, -0.03333911672234535, 0.04941025376319885, -0.15835650265216827, 0.0157428327947855, -0.022869599983096123, 0.02554037980735302, 0.0034343248698860407, -0.03896990790963173, -0.06373412907123566, -0.036796245723962784, 0.03493940457701683, -0.022437704727053642, 0.012895992957055569, 0.06975363194942474, -0.026677697896957397, -0.053110796958208084, -0.053205087780952454, 0.013988029211759567, 0.050407081842422485, -0.02152593433856964, 0.02812720090150833, -0.007846805267035961, 0.08080394566059113, 0.03809605911374092, -0.09598950296640396, -0.06146413832902908, -0.00010384607594460249, -0.058971524238586426, 0.13567912578582764, 0.07226593047380447, 0.10462437570095062, 0.0764397531747818, 0.015334569849073887, -0.07893218100070953, 0.014940822497010231, 0.02632020227611065, 0.0785919651389122, -0.031832076609134674, -0.060820069164037704, 0.0027783033438026905, 0.018019279465079308, -0.0158116165548563, -0.0723089948296547, -0.024542253464460373, 0.058565277606248856, -0.015497565269470215, 0.04042024165391922, -0.02020856738090515, 0.05159134790301323, -0.095041923224926, -0.0015106152277439833, -0.001907003577798605, -0.007013273425400257, 0.03784210607409477, -0.06976748257875443, -0.072773277759552, -0.08902294188737869, -0.06181436404585838, 0.02729816362261772, -0.09418981522321701, -0.023149341344833374, 0.02082771249115467, 0.016690729185938835, -0.014355823397636414, -0.022191304713487625, -0.020417535677552223, -0.03307567909359932, -2.929071293111044e-33, -0.023186249658465385, 0.04340533912181854, -0.1019270122051239, 0.043054237961769104, -0.026832086965441704, -0.0002639681624714285, 0.01827685721218586, 0.1117931678891182, 0.025545740500092506, -0.0010409173555672169, 0.04155060276389122, -0.07783721387386322, -0.020194942131638527, 0.010854127816855907, -0.0014118183171376586, 0.05195723474025726, 0.06792924553155899, 0.009353578090667725, -0.023829014971852303, -0.04149381071329117, 0.017524171620607376, 0.05988927185535431, 0.005832731258124113, 0.043422847986221313, -0.00736737996339798, 0.07075686752796173, -0.03240106627345085, 0.05355878919363022, 0.005335692316293716, -0.04627300426363945, -0.024117378517985344, 0.008686195127665997, -0.04601721093058586, 0.013483408838510513, -0.06001873314380646, 0.05662619695067406, -0.022022832185029984, -0.011905928142368793, -0.028135890141129494, 0.02555888146162033, 0.06762930005788803, -0.049809958785772324, -0.02990417182445526, 0.08027464151382446, 0.022060701623558998, -0.06316795200109482, -0.09972697496414185, -0.09425968676805496, -0.04519137367606163, 0.08131924271583557, 0.023325858637690544, -0.004190854262560606, -0.11295370012521744, -0.021344659850001335, -0.06205642968416214, -0.07074335962533951, 0.043609246611595154, -0.06330713629722595, -0.004320378415286541, 0.0022085262462496758, -0.0038518079090863466, 0.0153739545494318, 0.005657600238919258, 0.045680154114961624, -0.011054350063204765, 0.018646974116563797, 0.030359884724020958, 0.00554583640769124, 0.002905026078224182, 0.048027828335762024, 0.04680145904421806, -0.04440834000706673, 0.032691583037376404, 0.028801506385207176, -0.0021952029783278704, 0.03970162197947502, -0.017342770472168922, -0.07564350962638855, -0.0488792285323143, -0.06184225156903267, -0.08800704777240753, -0.0524689145386219, 0.021009273827075958, 0.06340602785348892, 0.023569568991661072, 0.11604097485542297, 0.039837323129177094, 0.042898159474134445, -0.04815521091222763, 0.01984167844057083, -0.022956607863307, -0.013294192962348461, 0.016277693212032318, 0.07563761621713638, 0.03389924392104149, -5.0243393445725815e-8, -0.08880047500133514, 0.01943020708858967, -0.06584850698709488, -0.0012655461905524135, -0.07370530813932419, -0.09442795813083649, -0.07166825234889984, 0.06335504353046417, 0.018745185807347298, -0.00732297683134675, 0.12161696702241898, 0.029235316440463066, -0.11611414700746536, 0.030731575563549995, 0.06758258491754532, 0.0761796310544014, 0.0237172432243824, 0.03276576101779938, -0.008213397115468979, -0.05623120069503784, 0.06651309132575989, 0.035070180892944336, 0.007652658503502607, -0.03876035660505295, 0.007682169787585735, -0.046466246247291565, -0.06350376456975937, 0.11332139372825623, 0.024804051965475082, -0.03075558878481388, 0.03217804804444313, 0.0645592212677002, -0.05126536637544632, -0.05372363328933716, 0.027881259098649025, 0.024898072704672813, -0.006549658253788948, -0.0399150624871254, -0.03001454472541809, 0.06481634825468063, 0.07326559722423553, 0.03972134366631508, -0.08384232968091965, 0.0022425311617553234, 0.07942907512187958, 0.01753813773393631, -0.00007490663847420365, -0.10663294792175293, 0.03446267917752266, -0.014250273816287518, 0.055943358689546585, -0.053039487451314926, -0.03722366690635681, 0.0982694923877716, -0.032068125903606415, 0.029707007110118866, -0.0373808890581131, -0.010109822265803814, 0.04554405435919762, 0.030528763309121132, -0.010623874142765999, 0.024790359660983086, -0.048284485936164856, 0.00968837644904852 ]
hf-internal-testing/tiny-random-longformer
5690941b3c077e091b13b5f992b42e2ead18b35d
2021-09-17T19:24:34.000Z
[ "pytorch", "tf", "longformer", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-longformer
2,070
1
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment
6ef16021f303c8a2bac02fd5af16601593e665d2
2021-10-17T12:09:14.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment
2,064
2
transformers
--- language: - ar license: apache-2.0 widget: - text: "أنا بخير" --- # CAMeLBERT Mix SA Model ## Model description **CAMeLBERT Mix SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT Mix SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
[ -0.07104498893022537, -0.05099228024482727, 0.04781763255596161, 0.05118279159069061, -0.04921862855553627, 0.03468291833996773, 0.045174747705459595, -0.028838014230132103, 0.012287568300962448, -0.013280537910759449, 0.030459383502602577, -0.061211880296468735, 0.06807728856801987, -0.04698414355516434, 0.039403513073921204, 0.004191813059151173, 0.10704003274440765, -0.040582336485385895, -0.1053663119673729, -0.05543765053153038, 0.049167219549417496, 0.07744160294532776, 0.059980589896440506, 0.021994054317474365, -0.002900769468396902, -0.027907423675060272, -0.04651282727718353, -0.007162650115787983, 0.050122447311878204, 0.012796296738088131, 0.003236629068851471, 0.0879555493593216, 0.008839888498187065, 0.09589648991823196, -0.03521716594696045, 0.08617547899484634, -0.028245773166418076, 0.0010724276071414351, 0.05792837589979172, 0.07928454130887985, -0.014456963166594505, -0.03785812854766846, 0.016990188509225845, -0.011247131042182446, 0.04766423627734184, -0.06327860802412033, -0.04330369457602501, -0.0023363761138170958, -0.025620145723223686, 0.05723489448428154, -0.0981605127453804, 0.015552597120404243, 0.009419484995305538, -0.033687032759189606, -0.017874334007501602, -0.12022005021572113, -0.01950102671980858, -0.011321134865283966, 0.013721696101129055, -0.07209538668394089, -0.05919482931494713, -0.0606786273419857, -0.06106007844209671, -0.020206555724143982, -0.03710930794477463, -0.04966915398836136, 0.030920857563614845, -0.04032212495803833, 0.0016629075398668647, -0.009488733485341072, -0.04614323377609253, 0.018399227410554886, -0.018067387863993645, 0.07474827766418457, -0.05815847963094711, 0.007038270588964224, 0.10021290928125381, -0.07500465214252472, -0.006010718643665314, -0.03654327243566513, -0.005915895104408264, 0.02176966518163681, 0.06053760275244713, -0.03063773363828659, 0.10131991654634476, -0.06390052288770676, 0.03273883834481239, 0.00935703981667757, 0.03584972769021988, 0.035826314240694046, 0.013633697293698788, -0.04788009449839592, 0.045513927936553955, -0.006528536789119244, 0.07109536975622177, 0.007934052497148514, 0.053640738129615784, -0.014987927861511707, -0.06381868571043015, 0.0825830027461052, 0.043714914470911026, 0.024461112916469574, 0.05643771216273308, 0.014235126785933971, 0.002712789224460721, -0.04777961224317551, -0.05704541504383087, 0.04152403771877289, 0.005659549031406641, -0.15418162941932678, -0.07793257385492325, -0.030751999467611313, -0.01644524559378624, -0.039681095629930496, 0.025883732363581657, 0.01610706001520157, -0.015504604205489159, -0.07814700156450272, -0.009598443284630775, 0.015610253438353539, -0.021860778331756592, -0.03661705553531647, 0.05134272947907448, -0.016227737069129944, -0.020264359191060066, 0.039223141968250275, -0.030712256208062172, 1.1244327818091126e-34, 0.03746136277914047, 0.01366027444601059, -0.003138404106721282, 0.002127915620803833, -0.07204645872116089, 0.004138131160289049, -0.04534147307276726, 0.03372780606150627, -0.07735779881477356, -0.047699056565761566, -0.055347736924886703, 0.0456908755004406, -0.05642475560307503, 0.06663481146097183, 0.030662715435028076, -0.030985526740550995, -0.027331126853823662, -0.012809228152036667, 0.008730992674827576, -0.04139077290892601, 0.07196509838104248, 0.06449010968208313, 0.036042552441358566, -0.022188415750861168, -0.06333872675895691, -0.03128448873758316, 0.1269954890012741, -0.05356968194246292, -0.0645793229341507, 0.07069247215986252, -0.10655640810728073, 0.0016745657194405794, -0.03732464089989662, -0.0031108150724321604, -0.05069451034069061, -0.04948112368583679, -0.12396218627691269, -0.008928894065320492, 0.038092371076345444, -0.06321805715560913, -0.013822613283991814, 0.06993386894464493, 0.10343969613313675, -0.006665610242635012, -0.056764405220746994, -0.013300493359565735, 0.038128383457660675, 0.04664158821105957, 0.053029004484415054, 0.018205052241683006, 0.00981227122247219, 0.06894069910049438, 0.03336171805858612, 0.012060972861945629, -0.013469483703374863, 0.02290758676826954, 0.08087252080440521, 0.029438717290759087, -0.029243694618344307, 0.03760698810219765, 0.03989231586456299, -0.018219847232103348, 0.025997065007686615, -0.021278314292430878, 0.033219289034605026, 0.015308304689824581, -0.02897319756448269, 0.01623428985476494, 0.052683185786008835, -0.056657515466213226, 0.02162293531000614, 0.040737319737672806, 0.04199214279651642, 0.07587485015392303, 0.005731832701712847, -0.02345145307481289, 0.02339223399758339, -0.05833910033106804, -0.020026978105306625, -0.02473909594118595, -0.011846665292978287, 0.08244593441486359, 0.05271004140377045, -0.033162765204906464, -0.10882139950990677, -0.07483604550361633, 0.08574006706476212, -0.031725119799375534, -0.00575431389734149, -0.02692369930446148, -0.01633639633655548, 0.06302011013031006, -0.025829268619418144, -0.019701141864061356, 0.0429992638528347, -1.66344370888755e-33, 0.005602515302598476, -0.023976828902959824, -0.09897257387638092, 0.06968414783477783, -0.06334761530160904, -0.05747535452246666, 0.14976243674755096, 0.1323564499616623, -0.010919717140495777, -0.020039966329932213, 0.03708109259605408, -0.0499805323779583, 0.027873549610376358, -0.052251096814870834, 0.03988093137741089, -0.03569571673870087, -0.049829088151454926, 0.005682501941919327, 0.05400059372186661, 0.042901165783405304, 0.01783294603228569, 0.015115833841264248, -0.07006806135177612, 0.03930580988526344, 0.020719630643725395, -0.015675459057092667, -0.02359425649046898, 0.01386992260813713, -0.04509929195046425, 0.07173233479261398, -0.001901407027617097, 0.02934844046831131, -0.04392578825354576, 0.06330644339323044, -0.08160784840583801, -0.024412428960204124, 0.01657729782164097, -0.04614952951669693, -0.0704987496137619, 0.08639209717512131, 0.08786418288946152, 0.051993221044540405, -0.029094865545630455, 0.0009907088242471218, 0.03707612305879593, 0.05653470754623413, -0.048827674239873886, -0.01698020100593567, -0.014090544544160366, -0.1455419957637787, 0.0029137046076357365, 0.034020937979221344, -0.025696491822600365, 0.018208252266049385, 0.00967650767415762, -0.0450715646147728, 0.01776566542685032, -0.08796316385269165, -0.03864974156022072, -0.04927501082420349, -0.0801645889878273, -0.011740355752408504, 0.06588030606508255, -0.10984203219413757, -0.010421487502753735, -0.08671025931835175, 0.018095947802066803, -0.045950997620821, 0.04239869862794876, 0.004003122914582491, 0.016221195459365845, -0.024798432365059853, -0.024164684116840363, -0.04076709598302841, 0.028465479612350464, -0.019443636760115623, -0.017059482634067535, 0.005688696634024382, -0.019299017265439034, -0.07665639370679855, -0.031610988080501556, 0.01559544075280428, 0.0043563819490373135, 0.05087980628013611, 0.0022138701751828194, 0.08919969946146011, 0.024774398654699326, 0.0862017422914505, -0.06210745871067047, 0.06441051512956619, -0.03048485703766346, -0.024375736713409424, 0.002389675471931696, 0.06739016622304916, 0.011457964777946472, -5.278835146782512e-8, -0.08121879398822784, 0.010726772248744965, -0.011933532543480396, 0.07740911841392517, -0.018112478777766228, 0.03480321541428566, -0.0332968644797802, 0.010696266777813435, 0.007591868285089731, 0.05122207850217819, 0.0424799881875515, 0.06955200433731079, -0.08150836080312729, 0.005794052965939045, -0.06652770191431046, 0.022908128798007965, 0.017361516132950783, 0.056431353092193604, -0.006105236243456602, -0.035400278866291046, 0.07221729308366776, 0.043989744037389755, 0.001445137313567102, -0.012060279957950115, 0.036268409341573715, -0.002658131532371044, -0.0960858091711998, 0.04636721312999725, 0.005755406338721514, -0.017523422837257385, 0.025232572108507156, -0.010791206732392311, -0.0666608065366745, -0.08207231760025024, 0.01689365692436695, 0.06423576921224594, -0.07417193800210953, 0.0051384977996349335, 0.045961957424879074, 0.059745993465185165, 0.09041480720043182, -0.001645807409659028, -0.10787911713123322, -0.007512963376939297, 0.14214776456356049, 0.03260063752532005, -0.041373275220394135, -0.07589240372180939, -0.06021237373352051, 0.020149365067481995, 0.12885119020938873, -0.027237998321652412, 0.0023657912388443947, 0.08624017238616943, 0.029751192778348923, -0.0018492669332772493, -0.05468001961708069, -0.0951952338218689, 0.03008594736456871, 0.04472961276769638, 0.08397585898637772, 0.017985675483942032, -0.04529568552970886, 0.012954038567841053 ]
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
dce2aa07b3e1e5c91c2f411c5534b399462f7b16
2021-07-25T21:33:06.000Z
[ "pytorch", "mpnet", "fill-mask", "arxiv:2102.07033", "arxiv:2104.08727", "sentence-transformers", "feature-extraction", "sentence-similarity" ]
sentence-similarity
false
flax-sentence-embeddings
null
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
2,064
1
sentence-transformers
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-A ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-A](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
[ -0.05941617861390114, -0.09878981858491898, -0.03278364613652229, 0.061484500765800476, 0.07150906324386597, 0.054682034999132156, -0.06952426582574844, 0.022128066048026085, -0.02004602551460266, -0.10085403174161911, 0.014421924017369747, -0.03631352260708809, 0.043370962142944336, 0.11276673525571823, -0.007059652358293533, 0.055554669350385666, 0.10986382514238358, 0.03913488611578941, -0.09896381944417953, -0.013386857695877552, 0.01700841821730137, 0.0627388283610344, 0.06918708980083466, 0.02337798662483692, -0.008346982300281525, 0.06703004986047745, 0.004940365441143513, -0.02082282491028309, 0.02441643550992012, 0.0030713556334376335, 0.06281193345785141, -0.018408311530947685, 0.00967686902731657, 0.09132105112075806, 0.014163634739816189, 0.10159224271774292, -0.03454877808690071, 0.03312935680150986, -0.03085370548069477, -0.0833761915564537, -0.046731799840927124, -0.003429027507081628, -0.01919868215918541, 0.025166988372802734, 0.08361242711544037, -0.04203730449080467, -0.07861022651195526, -0.02788163162767887, 0.023320084437727928, 0.04748386889696121, -0.07626532763242722, -0.0071290940977633, -0.027486471459269524, 0.07267771661281586, -0.03372419998049736, 0.057747963815927505, -0.0554821640253067, -0.011945907026529312, -0.008830873295664787, -0.100086510181427, -0.047038909047842026, -0.06934987753629684, -0.013913419097661972, 0.02422276698052883, -0.03756437450647354, -0.05304666608572006, -0.024037400260567665, 0.03506462648510933, 0.031350407749414444, -0.008213511668145657, -0.05397611856460571, 0.07973424345254898, -0.012715683318674564, 0.02193077839910984, -0.06412830948829651, 0.11100677400827408, 0.08126495033502579, -0.004044676199555397, 0.03410828858613968, -0.03331182152032852, 0.012848573736846447, -0.038949742913246155, 0.046417221426963806, 0.009587094187736511, 0.07036096602678299, 0.019961843267083168, 0.01581910252571106, -0.003719527740031481, -0.057001303881406784, -0.02223280631005764, -0.1167929396033287, -0.003964947536587715, 0.09798070043325424, -0.06786566972732544, 0.03985898196697235, -0.026076195761561394, 0.020495085045695305, -0.06309475749731064, -0.011965871788561344, 0.13023705780506134, 0.039746105670928955, 0.06675159931182861, 0.04373691603541374, -0.07222632318735123, -0.02089543454349041, 0.0033256616443395615, -0.041528452187776566, 0.007317536976188421, 0.020610395818948746, -0.1267387717962265, 0.02198982611298561, 0.0736188143491745, -0.027807947248220444, -0.041895389556884766, 0.07521793246269226, -0.014635908417403698, 0.03405666723847389, -0.01908211037516594, -0.010763914324343204, 0.08237365633249283, -0.05255449563264847, 0.039141833782196045, -0.003537136595696211, -0.009502310305833817, 0.04843674227595329, -0.05661594495177269, -0.025681938976049423, 1.2333703661979998e-33, 0.06248995661735535, 0.025383729487657547, 0.05104048550128937, 0.0028701445553451777, 0.057761989533901215, -0.021933456882834435, 0.003458993975073099, 0.05745426192879677, -0.06123267859220505, -0.03971873223781586, -0.0037615890614688396, 0.04960531368851662, 0.0012835148954764009, 0.062270671129226685, 0.003372078761458397, -0.05588975176215172, -0.09873859584331512, -0.034140873700380325, -0.025163574144244194, -0.007994990795850754, -0.00735607510432601, -0.03416607901453972, 0.015982074663043022, 0.01861017756164074, -0.0738934576511383, -0.04663177579641342, 0.09982097893953323, -0.07490827143192291, -0.001635421416722238, 0.013628392480313778, -0.1003633588552475, -0.014447255060076714, -0.01544704008847475, 0.006016951519995928, 0.007159320171922445, 0.005302156321704388, 0.019936716184020042, -0.10918296873569489, 0.00043466719216667116, -0.06297741830348969, -0.04831111431121826, 0.032544899731874466, 0.01589333452284336, -0.07796508073806763, -0.021574601531028748, -0.01628325693309307, 0.0046711149625480175, -0.06279010325670242, 0.025487536564469337, -0.0357632152736187, 0.10499044507741928, -0.04100404679775238, -0.012798981741070747, -0.058187589049339294, -0.012362044304609299, 0.001862820121459663, 0.022539447993040085, 0.05704647675156593, 0.05213485285639763, 0.03783769905567169, 0.02683265507221222, -0.07307406514883041, 0.030828827992081642, 0.016829615458846092, 0.013937203213572502, 0.027517782524228096, 0.009947801940143108, 0.08881373703479767, 0.040352173149585724, 0.029877178370952606, 0.022217772901058197, 0.023333938792347908, -0.013256530277431011, -0.02137642540037632, 0.06679821759462357, 0.04719678685069084, 0.008121456019580364, -0.07795070111751556, -0.004603642039000988, 0.06638167798519135, -0.037259891629219055, -0.008657784201204777, 0.004280540160834789, -0.09089068323373795, -0.06669709831476212, -0.055615976452827454, 0.03839438781142235, -0.11194249242544174, 0.07788946479558945, 0.01696542277932167, 0.02946162223815918, -0.007265214342623949, 0.013922298327088356, 0.01030901912599802, 0.11045483499765396, -2.9639389810325775e-34, -0.032706018537282944, 0.010810424573719501, -0.11453085392713547, 0.03315065801143646, 0.0042084213346242905, -0.02643662318587303, 0.015503628179430962, 0.08822491765022278, -0.034721847623586655, -0.03448662534356117, -0.027354521676898003, -0.02156243845820427, 0.02215520106256008, -0.052649401128292084, 0.004244902636855841, 0.04606647044420242, 0.03738836944103241, 0.05317626893520355, 0.046227362006902695, 0.12415055930614471, -0.0008581136935390532, 0.06694330275058746, -0.11285004764795303, 0.09079660475254059, 0.007065270561724901, 0.046665407717227936, 0.004846741911023855, -0.006434650160372257, -0.026084361597895622, -0.04827963188290596, -0.02797926776111126, 0.0052910237573087215, -0.045263756066560745, -0.10353951156139374, -0.10548023134469986, 0.05271722376346588, -0.0031122337095439434, -0.05975071340799332, -0.00225509749725461, 0.04484080895781517, 0.029383547604084015, -0.010166403837502003, -0.0565197691321373, -0.005758782383054495, -0.0647999718785286, -0.005644127260893583, -0.10057099163532257, -0.09916974604129791, 0.0385536253452301, 0.031957414001226425, -0.027685590088367462, 0.0030471310019493103, -0.12079031020402908, 0.010390223935246468, -0.03392742946743965, -0.0813048705458641, -0.000013701342140848283, 0.007610459346324205, -0.019786270335316658, 0.026064440608024597, -0.0000871035226737149, -0.009786790236830711, 0.03488204628229141, -0.00527331605553627, 0.07828264683485031, -0.08104170113801956, 0.02169645205140114, 0.028801709413528442, -0.059427790343761444, -0.009007674641907215, -0.015720482915639877, 0.008942273445427418, 0.04598315805196762, 0.049174822866916656, 0.03700072318315506, -0.08219476044178009, 0.02765076607465744, -0.019911816343665123, -0.03527120500802994, -0.08873596042394638, 0.033373601734638214, -0.03169647976756096, -0.004301225300878286, 0.04303870350122452, 0.05530873313546181, 0.031334176659584045, 0.08627890050411224, 0.05812457948923111, 0.011544044129550457, 0.06907772272825241, -0.0044668978080153465, -0.037681061774492264, 0.0025312325451523066, 0.046083204448223114, -0.012981748208403587, -4.590953039951273e-8, -0.07937952131032944, -0.013745100237429142, -0.07436152547597885, 0.04670410975813866, -0.08517569303512573, -0.03650471940636635, 0.02425742894411087, 0.02197221852838993, -0.030720889568328857, -0.01598394103348255, 0.04662654176354408, 0.05733426660299301, -0.03745352104306221, -0.018185459077358246, -0.04135112464427948, 0.10800379514694214, -0.003688968252390623, 0.009519820101559162, 0.043414462357759476, -0.031315065920352936, 0.05984274670481682, 0.06162552908062935, -0.008961052633821964, 0.07031967490911484, 0.07918160408735275, 0.03012591414153576, -0.06587952375411987, 0.08523012697696686, 0.05738356336951256, -0.019848017022013664, -0.003796821692958474, 0.010845507495105267, -0.05812589451670647, -0.07236111164093018, 0.014988039620220661, 0.06416931003332138, 0.033362261950969696, -0.05658328905701637, -0.007257090415805578, 0.049893464893102646, 0.05281231552362442, 0.07380609214305878, -0.06446636468172073, -0.03284931927919388, 0.11449264734983444, 0.07297425717115402, -0.0324438251554966, -0.037198103964328766, 0.027177808806300163, -0.054960161447525024, 0.007432160433381796, -0.06959261745214462, -0.014713022857904434, 0.014409756287932396, 0.07180524617433548, -0.014832502231001854, -0.01061595045030117, -0.0038757254369556904, 0.09864235669374466, -0.019040148705244064, 0.04031343013048172, 0.052107490599155426, 0.04267431050539017, -0.010957919992506504 ]
transfaeries/DialoGPT-medium-Discord-1.0
fdd1f5fa445bd30233a0a2d854d89741fad3fa80
2021-09-02T04:19:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
transfaeries
null
transfaeries/DialoGPT-medium-Discord-1.0
2,062
null
transformers
--- tags: - conversational --- # Discord Model Medium 7 epochs
[ -0.03739439323544502, -0.06000816449522972, 0.05572880432009697, 0.018031371757388115, 0.03370935842394829, -0.04772641137242317, 0.06766233593225479, -0.016146164387464523, 0.025703784078359604, -0.06150631606578827, 0.00934563297778368, -0.08359815180301666, -0.04436887428164482, 0.012471102178096771, -0.02483672834932804, -0.014034261927008629, -0.018552793189883232, -0.10439291596412659, -0.057988241314888, -0.04345516115427017, -0.04429006949067116, 0.037509944289922714, 0.011217688210308552, 0.051422104239463806, 0.07372531294822693, -0.05008037015795708, -0.03119824454188347, 0.005935290362685919, 0.053845375776290894, -0.03397221863269806, 0.03386411815881729, 0.048163335770368576, 0.03747135028243065, 0.09564096480607986, -0.019775420427322388, 0.05158447101712227, 0.024985486641526222, -0.019924212247133255, 0.00854637660086155, 0.0512530617415905, 0.03750580549240112, -0.054958075284957886, 0.019504722207784653, 0.04094085842370987, 0.04299870505928993, -0.043061066418886185, -0.06353065371513367, -0.010330624878406525, -0.06406663358211517, 0.06488561630249023, -0.04659784585237503, -0.027118464931845665, 0.014997430145740509, 0.15402096509933472, 0.00880367960780859, 0.022083330899477005, -0.046720970422029495, -0.005583718419075012, 0.046204715967178345, -0.05867142975330353, -0.05768295377492905, -0.09086275100708008, -0.03609631955623627, -0.010523414239287376, -0.02682444080710411, 0.01171019859611988, -0.015812629833817482, 0.08385008573532104, -0.008783151395618916, 0.0811857208609581, 0.015578780323266983, 0.04246902838349342, -0.05270298197865486, 0.02890905737876892, -0.0009242405649274588, 0.05147133022546768, -0.02958354726433754, 0.0007068578852340579, 0.019652368500828743, -0.08092880249023438, 0.05086405575275421, -0.03772246465086937, 0.004755100235342979, -0.06863992661237717, 0.041455794125795364, -0.07020452618598938, -0.013720927760004997, 0.00851407554000616, -0.06204924359917641, -0.03001483902335167, -0.05783265456557274, 0.038311250507831573, 0.013326853513717651, 0.0444355309009552, -0.03868136182427406, 0.10037114471197128, 0.002653462579473853, 0.012541676871478558, -0.01806660182774067, 0.1390809863805771, -0.023717796429991722, 0.04440468177199364, -0.03689827769994736, -0.000046456676500383765, 0.004792109597474337, 0.0290912464261055, 0.016998425126075745, 0.07541581988334656, 0.02427133172750473, -0.026519829407334328, 0.004424653481692076, 0.01877000369131565, 0.01490661222487688, -0.04615958780050278, 0.1514836996793747, -0.027193108573555946, 0.05292602628469467, 0.012628347612917423, 0.09177123755216599, 0.014105274342000484, 0.006171875633299351, 0.03071603737771511, -0.005753684788942337, -0.05149751529097557, -0.06251786649227142, 0.0466538704931736, -0.013985611498355865, -9.665193732369168e-34, 0.05894612893462181, 0.0008830504375509918, -0.05168524757027626, 0.09168614447116852, 0.032660484313964844, 0.005159351509064436, -0.05551590025424957, -0.027410276234149933, -0.07089637219905853, -0.06756306439638138, -0.07111840695142746, -0.016363415867090225, 0.02656850963830948, -0.023902935907244682, 0.029779905453324318, -0.06510588526725769, 0.047689031809568405, 0.017770862206816673, 0.03060602769255638, -0.06620168685913086, 0.013481433503329754, -0.018224649131298065, -0.052669741213321686, 0.05623302236199379, 0.07724356651306152, 0.08103588223457336, 0.011828185059130192, -0.0628378614783287, 0.015499195083975792, 0.03592918440699577, -0.0600765086710453, 0.06338661164045334, 0.00980442576110363, 0.0732259526848793, 0.043928198516368866, 0.03031911328434944, 0.015928367152810097, -0.004308763891458511, 0.01658168062567711, -0.10722963511943817, -0.019746776670217514, -0.035790737718343735, -0.04465951398015022, -0.12061101943254471, -0.05959303304553032, -0.011431808583438396, 0.034789085388183594, -0.05197529122233391, 0.021023793146014214, -0.029106225818395615, -0.019040105864405632, 0.028370682150125504, 0.04490427300333977, -0.01065783016383648, 0.020972106605768204, -0.057181596755981445, 0.037480678409338, 0.03572104498744011, 0.016186388209462166, -0.018477588891983032, 0.08765985816717148, -0.01720697060227394, 0.05576193332672119, -0.07664711773395538, 0.0479077473282814, 0.05220409110188484, -0.10255443304777145, 0.03200703114271164, 0.03357082977890968, -0.025202905759215355, -0.05192917212843895, 0.06755401939153671, -0.05689023807644844, -0.019051307812333107, 0.011827214621007442, -0.04860720783472061, -0.014180516824126244, -0.05455328896641731, 0.03661182150244713, 0.07630020380020142, -0.08155391365289688, -0.08100325614213943, -0.12341131269931793, -0.015138440765440464, -0.04508691281080246, -0.05530396103858948, 0.04617638513445854, -0.058183833956718445, -0.01403919979929924, 0.01542083453387022, -0.053013838827610016, 0.04626164212822914, 0.03794700652360916, 0.02384728379547596, -0.07182405143976212, 3.882149875677892e-35, 0.015371011570096016, 0.04793276637792587, -0.07362497597932816, 0.10499518364667892, 0.037700995802879333, -0.034901104867458344, 0.05058019980788231, 0.15067797899246216, -0.03360549360513687, 0.009250175207853317, 0.0747581422328949, -0.025810780003666878, -0.08710047602653503, -0.09084372222423553, 0.10729732364416122, -0.02081114798784256, 0.04771741107106209, -0.06313763558864594, 0.04903625324368477, -0.020801769569516182, 0.0374162420630455, -0.023957539349794388, -0.1257554441690445, 0.04711844399571419, 0.06507978588342667, -0.020453596487641335, 0.04062514752149582, 0.04117967560887337, 0.032835133373737335, -0.036537054926157, -0.006775812245905399, -0.026797156780958176, -0.018325135111808777, -0.015123935416340828, -0.018625307828187943, 0.04093380644917488, 0.07572849839925766, 0.012907423079013824, -0.014622841961681843, -0.07397227734327316, 0.06372332572937012, 0.0254572294652462, -0.08865558356046677, 0.04501447454094887, 0.012789878994226456, 0.03831856697797775, -0.030787399038672447, 0.011941480450332165, -0.06982647627592087, -0.008128711022436619, 0.11861997842788696, -0.06570016592741013, 0.009179627522826195, -0.026746446266770363, -0.11644180864095688, -0.00011063341662520543, -0.020981188863515854, -0.0043420675210654736, -0.010553419589996338, -0.0018389140022918582, -0.03670622408390045, -0.0921853557229042, -0.002316768281161785, -0.03455596789717674, 0.06244221702218056, -0.05743943899869919, -0.0723186582326889, 0.05715401843190193, -0.06230105832219124, -0.00868936162441969, 0.12091423571109772, 0.030074167996644974, -0.09432988613843918, 0.050936512649059296, 0.025453153997659683, -0.09425017237663269, -0.020108535885810852, -0.05943010374903679, 0.011746944859623909, -0.02601262740790844, -0.07800579071044922, 0.02396930195391178, -0.0012447470799088478, 0.08664705604314804, 0.017146989703178406, 0.01893327571451664, 0.06369494646787643, 0.0668669119477272, -0.01685810461640358, -0.02641858160495758, 0.009552303701639175, -0.06610148400068283, -0.03826376423239708, 0.07806077599525452, -0.0422089658677578, -2.46788633972983e-8, -0.07498063147068024, -0.03229716420173645, -0.023823929950594902, 0.01661892607808113, 0.07408395409584045, 0.03858484327793121, 0.014969859272241592, 0.004061793442815542, 0.044277336448431015, 0.02909695729613304, 0.06734231114387512, 0.01841902546584606, 0.0032281633466482162, 0.046491868793964386, -0.007352646440267563, -0.008512584492564201, -0.061835579574108124, 0.06115664169192314, -0.01346312090754509, -0.07735282927751541, 0.0751735121011734, 0.013495242223143578, -0.039146844297647476, 0.01749177649617195, 0.038970962166786194, -0.012783471494913101, -0.002758769551292062, 0.12730097770690918, -0.06606914103031158, -0.0667201355099678, -0.012301215901970863, 0.004347479436546564, -0.05302441865205765, 0.006214942317456007, -0.06526603549718857, 0.08803331106901169, -0.0777195617556572, -0.02188391424715519, 0.026403607800602913, 0.013139274902641773, 0.03148980438709259, -0.010603859089314938, -0.036568593233823776, -0.027434788644313812, -0.01344282552599907, -0.0014665273483842611, -0.045137178152799606, -0.010883171111345291, 0.021661434322595596, 0.015935303643345833, -0.005783747881650925, 0.019464507699012756, 0.042136985808610916, 0.047212760895490646, 0.046427302062511444, -0.05156468600034714, 0.07733213156461716, 0.00006927437789272517, 0.07287062704563141, -0.009445804171264172, 0.11084549129009247, 0.022295959293842316, -0.06432489305734634, -0.03279854729771614 ]
hf-internal-testing/tiny-random-t5-v1.1
95197e7dc6c034b9ae97b124952afb5e15ed0fb2
2021-11-02T21:08:45.000Z
[ "pytorch", "tf", "t5", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-t5-v1.1
2,060
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
M-CLIP/M-BERT-Distil-40
ff20c09c1a088589cb65a169d165b5ddcbe792ca
2021-03-21T15:39:15.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
M-CLIP
null
M-CLIP/M-BERT-Distil-40
2,056
1
transformers
<br /> <p align="center"> <h1 align="center">M-BERT Distil 40</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Distil-40') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for [40 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Distil%2040/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 40 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages. ## Evaluation [These results can be viewed at Github](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040). <br> A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br> When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
[ -0.08732310682535172, -0.10284658521413803, 0.005678316578269005, -0.0322919636964798, -0.007392597384750843, 0.01713128574192524, -0.038218703120946884, 0.05018702894449234, 0.010684877634048462, -0.04977305978536606, -0.0050992644391953945, -0.06435437500476837, -0.024379689246416092, 0.06960180401802063, -0.009267345070838928, 0.08532190322875977, -0.03711985796689987, 0.11214273422956467, -0.0718383714556694, -0.023692164570093155, 0.1375589370727539, -0.02093980275094509, 0.027554133906960487, -0.022145116701722145, 0.04245688393712044, -0.006907847244292498, 0.004530159290879965, 0.020698508247733116, 0.08199302107095718, 0.022732315585017204, 0.08183316886425018, -0.03303099796175957, 0.10738107562065125, 0.10610892623662949, 0.0039354851469397545, 0.04551124572753906, -0.07423185557126999, -0.06037086248397827, 0.05861132964491844, 0.037055931985378265, -0.04873548448085785, 0.07348275184631348, -0.0665152445435524, -0.08855053037405014, 0.009509815834462643, -0.046886418014764786, -0.048559803515672684, 0.061592936515808105, -0.018902810290455818, -0.017788119614124298, -0.07086050510406494, 0.000557132821995765, 0.00212857942096889, -0.0033718349877744913, -0.03658992052078247, -0.0192415788769722, 0.050714872777462006, -0.08335667848587036, 0.029835207387804985, -0.12780901789665222, -0.02087578736245632, 0.017373336479067802, 0.028794273734092712, 0.03568632900714874, -0.08002545684576035, 0.04438220337033272, -0.05933709442615509, 0.06299644708633423, -0.05103538557887077, -0.011897473596036434, -0.05948735401034355, -0.029751121997833252, 0.0016750349896028638, -0.021154101938009262, 0.003128733951598406, -0.07209462672472, 0.10733816772699356, -0.049977898597717285, 0.006381163839250803, -0.040386661887168884, 0.06325875967741013, -0.011943095363676548, 0.11836790293455124, 0.03711449354887009, 0.08689644932746887, -0.011414271779358387, 0.015671415254473686, 0.023573601618409157, 0.02485618367791176, -0.04848241060972214, -0.04099101573228836, -0.06988324970006943, -0.023824015632271767, -0.0009403172880411148, 0.09264767915010452, 0.007623761426657438, 0.004681472200900316, -0.03450299799442291, -0.039683375507593155, 0.0375199131667614, 0.025592688471078873, -0.004064074717462063, 0.054522570222616196, -0.08467162400484085, 0.021284600719809532, 0.04555479809641838, 0.07669254392385483, 0.017048969864845276, 0.0396575853228569, -0.08361269533634186, 0.007177852559834719, -0.0027453226502984762, 0.02558111771941185, -0.06431645154953003, 0.04999230429530144, 0.0002622461470309645, 0.002481874544173479, -0.02051960676908493, 0.034633759409189224, -0.00008624500333098695, -0.003939976450055838, -0.020824171602725983, -0.0642966628074646, 0.012845714576542377, -0.02156340517103672, 0.007702882867306471, 0.013949464075267315, 6.659954997099648e-33, -0.04086354747414589, 0.024558305740356445, -0.020246805623173714, -0.04501945897936821, 0.005863700527697802, 0.010452893562614918, 0.013231243938207626, 0.005305953789502382, -0.06787475943565369, -0.10112036019563675, -0.04739649221301079, -0.03282523155212402, -0.060995664447546005, 0.06694693118333817, -0.08392958343029022, 0.004815325140953064, 0.01124547515064478, 0.07624354213476181, 0.060726527124643326, 0.08681757748126984, 0.02845793589949608, 0.023989245295524597, -0.01568857952952385, -0.05167660117149353, -0.005352407693862915, 0.015074948780238628, 0.030547427013516426, -0.05770443007349968, -0.00039151415694504976, 0.019818494096398354, -0.054662760347127914, 0.0010636039078235626, 0.008108899928629398, -0.04909580573439598, -0.03182203322649002, -0.00024350905732717365, 0.038311075419187546, 0.02354463003575802, -0.02645125240087509, -0.0067102909088134766, 0.03391867130994797, 0.0862249806523323, -0.03234515339136124, -0.06655246019363403, -0.04752277955412865, -0.008506356738507748, 0.04287225753068924, 0.08727870881557465, -0.019731301814317703, 0.05540046468377113, 0.04456934332847595, -0.012879220768809319, -0.09712056815624237, -0.09437171369791031, -0.0027109035290777683, -0.03684357926249504, 0.03826863318681717, -0.0010308540659025311, 0.11341666430234909, -0.02344544790685177, -0.03913578763604164, -0.016702665016055107, 0.08050746470689774, -0.02389366738498211, 0.1275366246700287, -0.0572892501950264, -0.004325002897530794, -0.003944460302591324, -0.034328002482652664, 0.08259468525648117, -0.08669745177030563, 0.0017930662725120783, -0.016624851152300835, 0.009065890684723854, -0.01874447800219059, -0.010619983077049255, -0.031239069998264313, -0.06357667595148087, -0.06631290912628174, 0.0666271299123764, -0.008377151563763618, 0.025939950719475746, 0.01940341293811798, -0.10639362782239914, -0.02942209504544735, 0.010893534868955612, 0.0720151886343956, -0.07710716128349304, -0.0008239233866333961, -0.01074201986193657, 0.032660432159900665, -0.08812788873910904, -0.036677759140729904, 0.01504424586892128, 0.014015769585967064, -5.9825723366764736e-33, 0.022387156262993813, 0.1153518483042717, 0.01323442067950964, 0.058243196457624435, -0.05444982647895813, -0.03508753329515457, 0.03170457109808922, 0.14172515273094177, -0.04085354879498482, -0.010889342986047268, -0.016699273139238358, -0.07594440877437592, -0.03097471594810486, -0.020349539816379547, 0.06172257289290428, 0.02410493604838848, 0.02439242973923683, 0.11368127167224884, -0.028843283653259277, -0.0014821081422269344, 0.0554184764623642, -0.046005409210920334, -0.05013393983244896, 0.06820584088563919, -0.040734853595495224, 0.10337290167808533, -0.02031010203063488, 0.0006073979893699288, 0.026692228391766548, -0.04822813719511032, -0.0535709448158741, 0.023927468806505203, -0.05270235985517502, 0.0769965872168541, -0.09215442091226578, 0.08336760103702545, -0.00742523605003953, 0.026639284566044807, -0.008815471082925797, -0.020769694820046425, 0.051182836294174194, 0.019391315057873726, -0.05072504281997681, 0.03173600137233734, -0.027701176702976227, -0.0615294948220253, -0.027903079986572266, 0.04784445837140083, -0.027936043217778206, -0.05253361165523529, -0.06468011438846588, -0.023627515882253647, -0.06955431401729584, 0.02132462151348591, -0.06947090476751328, -0.006014928221702576, 0.00501290475949645, -0.047256406396627426, -0.048984888941049576, -0.04609740898013115, -0.07988570630550385, -0.04328298568725586, 0.007307862397283316, -0.060943976044654846, 0.02986249513924122, -0.011606285348534584, -0.004863932263106108, 0.08033978193998337, -0.06607324630022049, -0.00781523808836937, -0.00860203243792057, 0.013017093762755394, 0.0833687037229538, 0.04061531648039818, 0.03937723487615585, 0.03803231939673424, -0.057937681674957275, 0.007450312841683626, 0.02525092475116253, 0.006413079332560301, -0.05705932155251503, -0.07860931754112244, 0.05107380822300911, 0.04456913098692894, -0.019508369266986847, 0.07613116502761841, 0.00970802828669548, 0.03235717490315437, 0.011700115166604519, 0.01198186818510294, -0.04417005181312561, 0.055551882833242416, 0.06025759130716324, 0.08669114857912064, 0.08785074204206467, -5.404166714129133e-8, -0.08294656127691269, -0.025940977036952972, -0.01184093113988638, 0.02304232493042946, -0.11146830022335052, -0.052211467176675797, -0.02506665140390396, -0.03910243138670921, -0.014733394607901573, 0.0025746054016053677, 0.04797973856329918, 0.020250331610441208, -0.08045308291912079, 0.06809934228658676, -0.014343494549393654, 0.07708622515201569, 0.006497896276414394, 0.05397410690784454, 0.0416078045964241, 0.014005990698933601, 0.04699249193072319, -0.029062265530228615, 0.061018895357847214, 0.02377062290906906, 0.007207710761576891, -0.05029823258519173, -0.08161468803882599, 0.0576479434967041, 0.03144339472055435, -0.005853019189089537, 0.025104945525527, 0.052952684462070465, -0.07199832051992416, -0.015277779661118984, 0.030251607298851013, -0.038165848702192307, -0.10855703800916672, -0.01689106412231922, -0.011164556257426739, 0.06603329628705978, 0.1405671238899231, 0.002159283496439457, -0.029079940170049667, -0.030255088582634926, 0.10121002048254013, 0.0019372694659978151, 0.03483014553785324, -0.07468930631875992, 0.04032004997134209, 0.0028817374259233475, 0.031359121203422546, -0.09049282968044281, -0.034588102251291275, 0.06472288817167282, -0.061703868210315704, -0.045739077031612396, -0.02898797020316124, 0.012040427885949612, 0.08054103702306747, -0.00560848880559206, -0.038395944982767105, 0.03636925667524338, -0.011591508984565735, 0.010431655682623386 ]
voidful/albert_chinese_base
549e8a023d81bd68e70cf3e2b4aa621e145695ed
2021-08-03T05:02:21.000Z
[ "pytorch", "albert", "fill-mask", "zh", "transformers", "autotrain_compatible" ]
fill-mask
false
voidful
null
voidful/albert_chinese_base
2,054
4
transformers
--- language: zh pipeline_tag: fill-mask widget: - text: "今天[MASK]情很好" --- # albert_chinese_base This a albert_chinese_base model from [Google's github](https://github.com/google-research/ALBERT) converted by huggingface's [script](https://github.com/huggingface/transformers/blob/master/src/transformers/convert_albert_original_tf_checkpoint_to_pytorch.py) ## Notice *Support AutoTokenizer* Since sentencepiece is not used in albert_chinese_base model you have to call BertTokenizer instead of AlbertTokenizer !!! we can eval it using an example on MaskedLM 由於 albert_chinese_base 模型沒有用 sentencepiece 用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer !!! 我們可以跑MaskedLM預測來驗證這個做法是否正確 ## Justify (驗證有效性) ```python from transformers import AutoTokenizer, AlbertForMaskedLM import torch from torch.nn.functional import softmax pretrained = 'voidful/albert_chinese_base' tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AlbertForMaskedLM.from_pretrained(pretrained) inputtext = "今天[MASK]情很好" maskpos = tokenizer.encode(inputtext, add_special_tokens=True).index(103) input_ids = torch.tensor(tokenizer.encode(inputtext, add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, prediction_scores = outputs[:2] logit_prob = softmax(prediction_scores[0, maskpos],dim=-1).data.tolist() predicted_index = torch.argmax(prediction_scores[0, maskpos]).item() predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0] print(predicted_token, logit_prob[predicted_index]) ``` Result: `感 0.36333346366882324`
[ -0.08486413210630417, 0.047565918415784836, 0.04070831090211868, 0.009689551778137684, -0.007355625741183758, 0.06383921951055527, -0.005943899042904377, 0.04361318051815033, 0.01197945885360241, -0.05198395997285843, 0.02936236746609211, -0.1411629319190979, 0.01193983294069767, 0.022436846047639847, 0.10053405165672302, 0.06601488590240479, 0.009796923957765102, 0.0618637353181839, -0.07617328315973282, -0.07695389539003372, 0.07949873059988022, 0.02291364036500454, 0.033151205629110336, -0.032426610589027405, 0.02445964515209198, 0.03475543111562729, -0.051980335265398026, -0.01454776618629694, 0.12779411673545837, 0.07041701674461365, -0.037561118602752686, -0.016856981441378593, 0.01852353662252426, 0.06819330155849457, 0.07526915520429611, 0.07637285441160202, -0.013551570475101471, 0.043085649609565735, 0.03285500779747963, -0.007428031414747238, 0.043069325387477875, 0.025885233655571938, -0.048886582255363464, -0.04408513009548187, 0.07227561622858047, 0.014241309836506844, -0.02793145924806595, -0.009599258191883564, -0.1035156175494194, -0.021158969029784203, -0.06440023332834244, -0.03301234915852547, 0.07107079029083252, 0.03911010921001434, -0.037961848080158234, 0.06869149953126907, 0.016304533928632736, -0.046956587582826614, 0.02843409776687622, -0.05454579368233681, -0.10903868079185486, -0.012323805131018162, 0.01805015467107296, 0.01867865025997162, -0.08000487089157104, 0.020885581150650978, -0.05298694223165512, 0.019714079797267914, -0.0008435705676674843, 0.09625030308961868, -0.051503099501132965, -0.04463163763284683, -0.01435706578195095, -0.025968756526708603, -0.02566678076982498, -0.01907782256603241, 0.08405300974845886, -0.08158212900161743, 0.007608628366142511, -0.006144761107861996, 0.008371100760996342, -0.04334083944559097, 0.0710047110915184, 0.07503586262464523, 0.008963917382061481, -0.019622264429926872, -0.029000552371144295, -0.04423382133245468, 0.00011514028301462531, 0.01725929044187069, -0.04728947579860687, -0.0764077752828598, 0.07086824625730515, 0.03626804053783417, 0.013195513747632504, -0.008639533072710037, -0.006514823064208031, 0.002402179641649127, -0.04899618774652481, 0.0711938887834549, 0.0098008643835783, -0.014730258844792843, -0.01097271777689457, -0.07690154761075974, -0.0044402373023331165, 0.032338857650756836, -0.05348923057317734, -0.044335998594760895, 0.048811230808496475, -0.029985833913087845, 0.046967513859272, -0.08722499758005142, -0.02556717023253441, -0.08667416125535965, 0.025667771697044373, -0.013047736138105392, 0.00694251898676157, -0.043023526668548584, 0.015987951308488846, 0.05009118467569351, 0.05907650291919708, 0.017198147252202034, -0.03551790490746498, 0.030670229345560074, -0.03321005403995514, -0.034643229097127914, 0.05989990755915642, -1.4344209506553936e-33, 0.003639353672042489, 0.04826824367046356, 0.025986023247241974, 0.002220765221863985, -0.024973884224891663, -0.008971250616014004, 0.017607782036066055, 0.03421170637011528, -0.08360283076763153, -0.021508069708943367, 0.006840068846940994, 0.019658854231238365, -0.1298397034406662, 0.015633298084139824, -0.11159093677997589, -0.015074823051691055, -0.027306165546178818, 0.047641098499298096, 0.027203494682908058, 0.048492103815078735, 0.08013438433408737, 0.027072977274656296, -0.03781326860189438, -0.04452897980809212, -0.0735604539513588, 0.04152309149503708, 0.06554088741540909, -0.11889511346817017, -0.03881753236055374, 0.021441055461764336, -0.07075301557779312, 0.027066323906183243, -0.013598158955574036, 0.013487286865711212, -0.0650758221745491, -0.036912061274051666, -0.021384110674262047, -0.04665813595056534, -0.040555231273174286, -0.057848792523145676, -0.037243809551000595, 0.0201861634850502, -0.03169667348265648, -0.06728468090295792, -0.023874185979366302, 0.01647838205099106, -0.00786990113556385, 0.006251565646380186, 0.08367367833852768, -0.004265882074832916, 0.024855978786945343, 0.025475643575191498, -0.054259270429611206, 0.031427234411239624, 0.033641621470451355, -0.06486330181360245, -0.005917803850024939, 0.03997243195772171, 0.049260854721069336, -0.04163260757923126, -0.005661506671458483, -0.03567681461572647, 0.06005329266190529, 0.08427824079990387, 0.06781284511089325, 0.036675065755844116, -0.018516741693019867, -0.04106596112251282, -0.037659671157598495, 0.012460682541131973, -0.06589581072330475, 0.01655193790793419, -0.053790781646966934, 0.024232851341366768, 0.013496276922523975, -0.06455216556787491, -0.015162074938416481, -0.036351922899484634, -0.038257528096437454, 0.01564949005842209, -0.06431552767753601, -0.006295257713645697, 0.014305885881185532, -0.026992864906787872, -0.055348411202430725, -0.05865734815597534, 0.05248504504561424, -0.011074735783040524, 0.021621743217110634, -0.0352606326341629, -0.013299248181283474, -0.09015485644340515, 0.008548201993107796, -0.011613617651164532, -0.07185454666614532, -1.455786938014031e-33, 0.009637976065278053, 0.019626716151833534, -0.06073921173810959, 0.037025272846221924, 0.004824398551136255, -0.05433656647801399, 0.027507444843649864, 0.10425816476345062, 0.00454676104709506, 0.006686485838145018, -0.03410406783223152, -0.02363506332039833, -0.015319467522203922, -0.028822388499975204, 0.03199866786599159, 0.008879235945641994, 0.004794781096279621, 0.07842785865068436, 0.020349064841866493, 0.03743014857172966, 0.05833571404218674, 0.007385448087006807, -0.1449204981327057, 0.04091670736670494, -0.05437466874718666, 0.07387556880712509, 0.003208167152479291, -0.0028002904728055, 0.05518772825598717, 0.02837192825973034, -0.04719778522849083, 0.055012088268995285, -0.031427279114723206, 0.1118488758802414, -0.07190799713134766, 0.014301340095698833, -0.03635832667350769, -0.03096678853034973, -0.03300119563937187, -0.013633789494633675, 0.02645125985145569, -0.003951411694288254, -0.058202847838401794, 0.06171863153576851, -0.01790107972919941, -0.03460269793868065, -0.0733291283249855, -0.042377062141895294, 0.02201819233596325, -0.061773061752319336, -0.005434258840978146, -0.015486691147089005, -0.07891114801168442, -0.023860231041908264, -0.08839567750692368, 0.027785154059529305, 0.017409393563866615, -0.08783578872680664, -0.05479530990123749, -0.059006355702877045, -0.05063460022211075, -0.030258366838097572, 0.07448701560497284, -0.06844133883714676, 0.002904796041548252, -0.04088125005364418, 0.07167775928974152, 0.02925843745470047, 0.021266235038638115, -0.06567719578742981, 0.08994163572788239, 0.07177745550870895, 0.04911765828728676, 0.08128534257411957, 0.03646225854754448, 0.08322485536336899, 0.07533732801675797, -0.05386888235807419, -0.04177350923418999, -0.012583854608237743, -0.08390694856643677, -0.02670062705874443, 0.09110243618488312, 0.09265969693660736, -0.007824921049177647, -0.014219729229807854, 0.013602817431092262, 0.08354891091585159, -0.007750878110527992, 0.053346194326877594, -0.050828173756599426, 0.020413102582097054, 0.008241058327257633, 0.09542293101549149, 0.04595058783888817, -5.0604025858547175e-8, -0.05922660231590271, -0.04340086132287979, -0.06211479753255844, 0.011885486543178558, -0.13889150321483612, -0.019886063411831856, -0.02161424234509468, -0.05255334824323654, -0.028357328847050667, -0.09159036725759506, 0.028566405177116394, 0.043512120842933655, -0.05713295936584473, 0.03372012823820114, -0.028389746323227882, 0.043017297983169556, -0.07031060755252838, 0.045788493007421494, -0.0040056598372757435, -0.01091404352337122, -0.08233005553483963, 0.03530963137745857, 0.03695838525891304, -0.10898872464895248, -0.044496651738882065, 0.033978015184402466, -0.09717084467411041, 0.12171761691570282, -0.05443357303738594, -0.0013176779029890895, 0.04252547025680542, 0.006143311504274607, -0.00926838256418705, 0.04504133760929108, 0.0015987645601853728, 0.020342795178294182, 0.02858593314886093, -0.12506404519081116, 0.015215789899230003, 0.03293416276574135, 0.09089107066392899, -0.006864781025797129, -0.10433131456375122, 0.02174295112490654, 0.11080846190452576, 0.024835944175720215, 0.01866115629673004, -0.08324545621871948, 0.029798928648233414, 0.09683873504400253, 0.033999379724264145, -0.04871075600385666, -0.07695139944553375, -0.007554312236607075, -0.015099259093403816, 0.02737065777182579, -0.011722179129719734, 0.015997860580682755, 0.043335579335689545, 0.020321568474173546, 0.020131515339016914, 0.08791416138410568, 0.08546097576618195, 0.0062320660799741745 ]
M-CLIP/XLM-Roberta-Large-Vit-B-32
cfb9f55a6aad08a948167a8360fc11bce171d941
2022-06-02T23:23:21.000Z
[ "pytorch", "tf", "M-CLIP", "multilingual", "transformers" ]
null
false
M-CLIP
null
M-CLIP/XLM-Roberta-Large-Vit-B-32
2,052
null
transformers
--- language: multilingual --- ## Multilingual-clip: XLM-Roberta-Large-Vit-B-32 Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model *only* contains the multilingual text encoder. The corresponding image model `ViT-B-32` can be retrieved via instructions found on OpenAI's [CLIP repository on Github](https://github.com/openai/CLIP). We provide a usage example below. ## Requirements To use both the multilingual text encoder and corresponding image encoder, we need to install the packages [`multilingual-clip`](https://github.com/FreddeFrallan/Multilingual-CLIP) and [`clip`](https://github.com/openai/CLIP). ``` pip install multilingual-clip pip install git+https://github.com/openai/CLIP.git ``` ## Usage Extracting embeddings from the text encoder can be done in the following way: ```python from multilingual_clip import pt_multilingual_clip import transformers texts = [ 'Three blind horses listening to Mozart.', 'Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?' ] model_name = 'M-CLIP/XLM-Roberta-Large-Vit-B-32' # Load Model & Tokenizer model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) embeddings = model.forward(texts, tokenizer) print("Text features shape:", embeddings.shape) ``` Extracting embeddings from the corresponding image encoder: ```python import torch import clip import requests from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) print("Image features shape:", image_features.shape) ``` ## Evaluation results None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results: | Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp | | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: | | [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - | | [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - | | [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - | | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 | | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 | | [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 | | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| **95.0** | **93.0** | **93.6** | **93.1** | **94.0** | **93.1** | **94.4** | **89.0** | **90.0** | **93.0** | **84.2** | ## Training/Model details Further details about the model training and data can be found in the [model card](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_mclip.md).
[ -0.03681173548102379, -0.06648742407560349, -0.0462019257247448, -0.05530110374093056, 0.03595270588994026, -0.02202083170413971, -0.07926861196756363, 0.01737033575773239, 0.045329634100198746, -0.08139368146657944, 0.06330745667219162, -0.11164659261703491, -0.008179321885108948, 0.07272990047931671, 0.08337252587080002, 0.026162493973970413, -0.0024961349554359913, 0.11429019272327423, -0.056838519871234894, -0.1032315045595169, 0.04229311645030975, 0.008803490549325943, 0.08514396846294403, -0.015608681365847588, 0.05443580821156502, 0.0012595681473612785, -0.05222022905945778, 0.0037965408992022276, 0.06280232220888138, -0.006194825749844313, 0.07646936178207397, 0.035275667905807495, 0.04662451893091202, 0.06881053000688553, 0.02944500558078289, 0.09898074716329575, -0.055405233055353165, -0.1109343096613884, -0.020201046019792557, -0.023664794862270355, -0.005893790628761053, 0.04251883178949356, 0.006543224677443504, -0.09875664114952087, 0.04036162421107292, -0.00894517544656992, -0.010444443672895432, -0.0010040062479674816, -0.017295485362410545, -0.040858808904886246, -0.10187958925962448, -0.01634540595114231, -0.03420599550008774, 0.033273328095674515, 0.037780534476041794, -0.05377824604511261, 0.03234946355223656, -0.015237828716635704, -0.031325649470090866, 0.011648726649582386, -0.05690668150782585, 0.013425435870885849, -0.019166219979524612, 0.05702955648303032, -0.06458065658807755, 0.027882039546966553, 0.04335735738277435, 0.01941109634935856, -0.038252729922533035, -0.061432965099811554, -0.0489928312599659, -0.06751486659049988, -0.0611700713634491, -0.01234691496938467, -0.018577706068754196, 0.01288660615682602, 0.03226698562502861, 0.030491190031170845, -0.03171510249376297, -0.06946248561143875, 0.05591638758778572, -0.0031752544455230236, 0.07416973263025284, 0.023111317306756973, 0.05688965320587158, 0.0016708328621461987, 0.017190121114253998, 0.06092118099331856, 0.05421964451670647, 0.007698503788560629, -0.009760124608874321, -0.06919670104980469, 0.02684822492301464, 0.07089813798666, 0.03445640578866005, -0.03703814744949341, -0.011507156305015087, 0.07721777260303497, -0.04568478837609291, 0.027593905106186867, -0.06229375675320625, -0.07154024392366409, 0.0830015167593956, 0.03066597506403923, -0.03459406644105911, 0.03656795620918274, 0.06827615201473236, 0.03926248848438263, 0.039490580558776855, -0.08342768251895905, 0.05805424600839615, -0.03197142109274864, 0.017202220857143402, -0.04152227193117142, 0.028505519032478333, 0.05554571747779846, 0.005991695914417505, -0.06759345531463623, 0.05448810011148453, 0.05906073749065399, -0.08460590243339539, -0.0384853258728981, -0.003923952113837004, -0.028725862503051758, 0.010049661621451378, 0.019275857135653496, 0.0012412333162501454, 5.076607820238198e-33, 0.04259462654590607, 0.01996573433279991, 0.03750359266996384, 0.006316490471363068, 0.03474436700344086, 0.013055715709924698, 0.019936444237828255, -0.03256191685795784, -0.09819211065769196, -0.094231016933918, -0.028110239654779434, -0.0022609864827245474, -0.07035746425390244, 0.11799934506416321, -0.015689225867390633, 0.008174180053174496, -0.009002283215522766, 0.016044359654188156, 0.05975771322846413, 0.10500913113355637, 0.1045868992805481, 0.02532305382192135, -0.03178495541214943, 0.004502614960074425, -0.04527999460697174, -0.0021437183022499084, 0.10044603794813156, -0.13854026794433594, 0.019675543531775475, 0.0052597965113818645, -0.05091625824570656, -0.0042480891570448875, 0.050860773772001266, 0.030414175242185593, -0.029708316549658775, -0.024453775957226753, -0.02690182439982891, 0.021442865952849388, -0.08529835194349289, -0.012358914129436016, 0.0906331017613411, 0.06664904206991196, -0.023648018017411232, -0.03003394789993763, 0.028870951384305954, -0.04200278967618942, -0.041435301303863525, 0.07433383911848068, -0.02802257426083088, 0.028329918161034584, 0.06601826846599579, 0.0339595302939415, -0.0785415768623352, -0.036571986973285675, 0.03407997265458107, -0.01711771823465824, 0.06279958039522171, 0.01434476301074028, 0.059918902814388275, 0.0031751745846122503, -0.06275417655706406, 0.004080569837242365, 0.07498078048229218, 0.052553340792655945, 0.13675466179847717, 0.0164599921554327, -0.039046965539455414, -0.03813636675477028, -0.017823772504925728, 0.05141211301088333, -0.10179080069065094, 0.025344839319586754, -0.008536855690181255, -0.01828899420797825, 0.02312440611422062, -0.016996849328279495, -0.07236699014902115, -0.09973086416721344, 0.028816713020205498, 0.023729905486106873, -0.05056900531053543, 0.030228672549128532, 0.04093049094080925, -0.03393642604351044, -0.07652673125267029, 0.028632935136556625, 0.062103379517793655, -0.03903555870056152, 0.02277141995728016, 0.004783273208886385, 0.04583483561873436, 0.01237547118216753, -0.03588443621993065, -0.06205383315682411, 0.03997030854225159, -3.914998629093014e-33, 0.059564609080553055, 0.04609180986881256, -0.0175540279597044, 0.09609360992908478, -0.04853435233235359, -0.05851500481367111, 0.04277905076742172, 0.04480110853910446, 0.01381111890077591, -0.044183433055877686, 0.031443484127521515, -0.051430508494377136, 0.10193654149770737, 0.002145528793334961, 0.018736757338047028, -0.05692818760871887, 0.01723630167543888, 0.010170107707381248, 0.021015044301748276, 0.03424689918756485, -0.061106517910957336, -0.002880154876038432, 0.012629115954041481, 0.025987429544329643, -0.03650137409567833, 0.055493783205747604, 0.002424195408821106, -0.011394459754228592, -0.014060907065868378, -0.023019343614578247, -0.025776240974664688, 0.030567266047000885, -0.1039680615067482, 0.03261733427643776, -0.05023682117462158, 0.09673264622688293, 0.006000503432005644, 0.03530719503760338, 0.010624161921441555, 0.033475521951913834, 0.07944895327091217, 0.0034923048224300146, -0.08286161720752716, -0.0024135620333254337, -0.06435558944940567, -0.007657863665372133, -0.0339297316968441, 0.03596332669258118, -0.06532756239175797, -0.05402044206857681, -0.024592304602265358, -0.01728670485317707, -0.09409337490797043, 0.016087640076875687, -0.001826609717682004, -0.047372303903102875, 0.03088372014462948, -0.03553784638643265, -0.07051771879196167, -0.09666689485311508, -0.04056428000330925, -0.02589637227356434, 0.01820496656000614, -0.07012373208999634, 0.012347287498414516, -0.04933419078588486, -0.017946844920516014, 0.006105921696871519, -0.003647857578471303, -0.06888503581285477, 0.027250545099377632, -0.04998326674103737, 0.08252720534801483, 0.04922109097242355, 0.06713706254959106, 0.03772002086043358, -0.08977462351322174, 0.020346034318208694, 0.010366602800786495, -0.008225846104323864, -0.07456449419260025, -0.029317650943994522, 0.037684883922338486, 0.059098020195961, 0.0487271212041378, 0.03925497084856033, -0.009421514347195625, 0.03195979446172714, 0.09557867795228958, -0.0019446532242000103, -0.003343636402860284, 0.07501331716775894, 0.01641576923429966, 0.06503409892320633, 0.10858024656772614, -4.855551338778241e-8, -0.03897816687822342, -0.06756915152072906, -0.13134750723838806, 0.021361837163567543, -0.057937141507864, -0.022626429796218872, -0.017193587496876717, 0.03447222709655762, 0.018787115812301636, 0.035246241837739944, 0.03142198547720909, -0.010885193012654781, -0.11559586971998215, -0.007150862365961075, -0.0182422436773777, 0.08661048114299774, 0.04535596817731857, 0.08307220786809921, 0.02621425874531269, 0.037285540252923965, -0.019799236208200455, -0.024839673191308975, 0.061377957463264465, -0.06087353453040123, -0.07629120349884033, -0.02808019518852234, -0.08177706599235535, 0.028149478137493134, 0.015841791406273842, -0.07392407953739166, 0.08528449386358261, -0.011641056276857853, -0.043624021112918854, -0.05317182093858719, -0.027992036193609238, -0.043031707406044006, -0.0046558924950659275, -0.015476725064218044, 0.08534540235996246, 0.022103989496827126, 0.08531539887189865, -0.04348747059702873, -0.09050901234149933, -0.033652421087026596, 0.041448406875133514, -0.04434501379728317, -0.001498978934250772, -0.08456913381814957, -0.034846674650907516, 0.0383487343788147, 0.034074973315000534, -0.06350582093000412, 0.02836924046278, 0.10964952409267426, 0.030455756932497025, -0.03406306356191635, -0.0005474732024595141, -0.005889940541237593, 0.10347718745470047, 0.03783321753144264, -0.04062718525528908, -0.024255013093352318, 0.018219996243715286, -0.024699801579117775 ]
textattack/roberta-base-MNLI
6f2e633322381bc5897405e417ec531ea3633a3f
2021-05-20T22:06:43.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/roberta-base-MNLI
2,037
1
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
philschmid/MiniLM-L6-H384-uncased-sst2
0c0ecdc39368f87291727ec084111e89e30b45b2
2021-09-24T09:53:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
philschmid
null
philschmid/MiniLM-L6-H384-uncased-sst2
2,034
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
lidiya/bart-base-samsum
eeb19117db15f1388c7188cb455e7a98af647792
2022-07-20T14:56:27.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:samsum", "transformers", "seq2seq", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
lidiya
null
lidiya/bart-base-samsum
2,030
1
transformers
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n" model-index: - name: bart-base-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 46.6619 - name: Validation ROUGE-2 type: rouge-2 value: 23.3285 - name: Validation ROUGE-L type: rouge-l value: 39.4811 - name: Test ROUGE-1 type: rouge-1 value: 44.9932 - name: Test ROUGE-2 type: rouge-2 value: 21.7286 - name: Test ROUGE-L type: rouge-l value: 38.1921 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 45.0148 verified: true - name: ROUGE-2 type: rouge value: 21.6861 verified: true - name: ROUGE-L type: rouge value: 38.1728 verified: true - name: ROUGE-LSUM type: rouge value: 41.2794 verified: true - name: loss type: loss value: 1.597476601600647 verified: true - name: gen_len type: gen_len value: 17.6606 verified: true --- ## `bart-base-samsum` This model was obtained by fine-tuning `facebook/bart-base` on Samsum dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="lidiya/bart-base-samsum") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' summarizer(conversation) ``` ## Training procedure - Colab notebook: https://colab.research.google.com/drive/1RInRjLLso9E2HG_xjA6j8JO3zXzSCBRF?usp=sharing ## Results | key | value | | --- | ----- | | eval_rouge1 | 46.6619 | | eval_rouge2 | 23.3285 | | eval_rougeL | 39.4811 | | eval_rougeLsum | 43.0482 | | test_rouge1 | 44.9932 | | test_rouge2 | 21.7286 | | test_rougeL | 38.1921 | | test_rougeLsum | 41.2672 |
[ -0.10074169188737869, -0.04047642648220062, 0.003605861682444811, -0.005681260488927364, 0.03903839364647865, 0.04243213310837746, -0.05308918654918671, 0.00017262752226088196, -0.03246826305985451, -0.010472914204001427, 0.031036755070090294, -0.0805387943983078, 0.029658988118171692, -0.05514615774154663, 0.06239739805459976, 0.024031147360801697, 0.0011508641764521599, -0.017195003107190132, -0.07197105884552002, 0.013436510227620602, 0.05383699759840965, -0.010064875707030296, 0.0030612004920840263, -0.020716657862067223, -0.008753279224038124, 0.039200276136398315, -0.030040502548217773, 0.04727207124233246, 0.08700932562351227, -0.05460205301642418, 0.030695520341396332, 0.02648855373263359, 0.09443247318267822, 0.04589562118053436, -0.023024018853902817, 0.13590900599956512, 0.0013975946931168437, -0.01599280908703804, -0.0551883727312088, -0.022083301097154617, -0.057284966111183167, -0.03389487788081169, -0.056422557681798935, -0.044513702392578125, 0.0905175432562828, -0.03822726756334305, -0.07231709361076355, -0.05439240485429764, 0.011622251011431217, -0.028327403590083122, -0.1710282564163208, -0.06924772262573242, 0.0029814704321324825, 0.021536849439144135, 0.005533964838832617, 0.05914228782057762, -0.01582464762032032, -0.019786378368735313, -0.0035041612572968006, -0.0665721744298935, 0.052063263952732086, -0.03608229383826256, -0.025451775640249252, 0.05030064657330513, -0.01000046357512474, 0.01150920893996954, 0.0006777099915780127, 0.07464227080345154, 0.024225564673542976, -0.038270607590675354, -0.10678084939718246, -0.053029704838991165, -0.026785483583807945, 0.020807022228837013, 0.0029650419019162655, 0.0212467722594738, 0.0017584034940227866, -0.01551024429500103, 0.014649211429059505, -0.08842745423316956, -0.035415906459093094, 0.047116611152887344, -0.010936734266579151, 0.04632864519953728, -0.025745995342731476, 0.02076566405594349, 0.08090290427207947, 0.004656576551496983, -0.009485728107392788, 0.008135639131069183, -0.021784583106637, -0.07231743633747101, 0.03220006078481674, -0.017146065831184387, -0.0238101314753294, 0.05226223170757294, 0.003405866678804159, 0.009561853483319283, 0.015026349574327469, 0.10012952983379364, 0.011136961169540882, -0.008360370062291622, 0.024779899045825005, -0.06093038618564606, -0.06499544531106949, -0.030530070886015892, -0.05610234662890434, 0.04578665643930435, 0.046493057161569595, -0.06566991657018661, 0.026241518557071686, -0.009347797371447086, -0.08859221637248993, -0.05919709801673889, 0.029807178303599358, -0.030071604996919632, 0.010991629213094711, -0.07533708214759827, 0.044422298669815063, 0.005466949660331011, 0.037905920296907425, 0.00048007420264184475, 0.05500209704041481, -0.026195921003818512, -0.049586959183216095, -0.01076523493975401, -0.03316693380475044, 5.553358941572947e-33, 0.06528294086456299, 0.005624639336019754, -0.026642784476280212, 0.06287162750959396, 0.0788826271891594, -0.05421524494886398, -0.014727777801454067, 0.03590315207839012, -0.059874553233385086, -0.028453931212425232, 0.023050157353281975, 0.06743685901165009, -0.040977708995342255, 0.05534486845135689, -0.04816855862736702, -0.065221406519413, -0.023577962070703506, 0.004106106236577034, 0.02419838309288025, -0.008194522932171822, 0.050388552248477936, -0.041235316544771194, 0.017005423083901405, -0.0038257925771176815, 0.005048448219895363, 0.09512753039598465, 0.0941687673330307, -0.04662192240357399, 0.019400129094719887, 0.025861889123916626, -0.02173985168337822, -0.048197999596595764, -0.019667815417051315, -0.01759340986609459, 0.04158081114292145, 0.01269574649631977, -0.027362681925296783, -0.041392721235752106, 0.036969419568777084, -0.043691765516996384, 0.00037524965591728687, 0.019216103479266167, 0.026531629264354706, -0.07099878787994385, -0.030965568497776985, 0.01704372465610504, 0.05611424520611763, -0.010638481937348843, 0.10484511405229568, -0.015383018180727959, -0.057113587856292725, -0.018842194229364395, 0.045346975326538086, -0.011743023991584778, -0.01700720004737377, -0.014704256318509579, 0.0006120670004747808, 0.05727371573448181, -0.01295510958880186, -0.02134520560503006, -0.03598802909255028, 0.04000081121921539, 0.03085302747786045, 0.023067165166139603, 0.019307123497128487, 0.028311965987086296, -0.0656377524137497, 0.01979483850300312, 0.08395696431398392, -0.022647734731435776, -0.05204210802912712, 0.052995309233665466, 0.04165290296077728, 0.06187049299478531, 0.006409475579857826, -0.04357011243700981, -0.0018364849966019392, -0.0440070666372776, -0.027789458632469177, 0.024979187175631523, -0.13727809488773346, 0.06362276524305344, 0.03089652583003044, 0.024856096133589745, -0.07593942433595657, -0.047035571187734604, 0.09332588315010071, 0.011872109957039356, -0.0013650571927428246, -0.026145976036787033, -0.01406495738774538, 0.04571161046624184, -0.05069877952337265, -0.045795440673828125, -0.014259208925068378, -6.378781891170741e-33, 0.03481627255678177, 0.03254309669137001, -0.11296682059764862, 0.006604500114917755, 0.027394277974963188, 0.03313407674431801, 0.03270183876156807, 0.12007129937410355, -0.0036321026273071766, -0.05018627271056175, 0.05136542394757271, -0.03904404118657112, 0.04299924895167351, -0.04710124060511589, -0.00015589536633342505, 0.0022451758850365877, -0.027131743729114532, -0.06415779888629913, -0.036009419709444046, 0.03386214002966881, -0.035095881670713425, 0.06348845362663269, -0.08721274137496948, 0.016655826941132545, 0.07058420777320862, 0.000671190966386348, 0.04158226028084755, 0.03813925012946129, -0.007994433864951134, -0.0007624007412232459, 0.08128155767917633, -0.02407173439860344, -0.10995062440633774, 0.05444199591875076, -0.10086887329816818, -0.055979982018470764, 0.02477974072098732, -0.0073256706818938255, -0.04846355691552162, 0.016341587528586388, 0.14298464357852936, -0.012740852311253548, -0.038199927657842636, -0.022509777918457985, -0.05232760310173035, 0.018664121627807617, -0.10184997320175171, -0.04567813128232956, -0.0310042817145586, -0.08669055253267288, 0.03532766178250313, -0.055107954889535904, -0.06440113484859467, -0.07495427876710892, -0.0737338662147522, -0.017716970294713974, 0.10084530711174011, 0.019405432045459747, -0.040782563388347626, -0.02536560222506523, -0.07290948927402496, -0.004497390240430832, -0.015736505389213562, -0.020153585821390152, 0.0009070406085811555, -0.06684453040361404, -0.019408756867051125, -0.049093157052993774, -0.04264729470014572, -0.06903038918972015, 0.013811303302645683, 0.02737387642264366, 0.052541621029376984, 0.04451792687177658, 0.07119747996330261, 0.00006802835559938103, 0.009419810026884079, -0.0372321754693985, 0.0329580120742321, -0.06139988824725151, 0.008871638216078281, -0.048027295619249344, 0.08340837061405182, 0.0774792954325676, 0.05462609604001045, 0.07882601767778397, -0.03620751574635506, 0.14730830490589142, -0.02363765984773636, 0.02157820761203766, -0.1314571648836136, 0.04533714801073074, -0.033477019518613815, 0.14059248566627502, -0.0026220043655484915, -5.450625550906807e-8, -0.08061232417821884, -0.029905330389738083, 0.006580989342182875, 0.021244358271360397, -0.08327889442443848, 0.043354522436857224, 0.024972250685095787, -0.018045885488390923, -0.0009870530338957906, 0.006862764246761799, -0.002330449875444174, 0.006822660565376282, -0.0843873918056488, 0.020950887352228165, -0.046622272580862045, 0.06443885713815689, 0.0034198754001408815, 0.13534098863601685, -0.03545315936207771, -0.11472772806882858, 0.029774315655231476, 0.01115364208817482, 0.026738811284303665, -0.04356289654970169, 0.07133802026510239, 0.003701520152390003, -0.06933838129043579, 0.11168289929628372, -0.03866241127252579, -0.07901447266340256, 0.024230338633060455, 0.03220296651124954, 0.015493696555495262, -0.031113190576434135, 0.07547859102487564, 0.06614089757204056, -0.030949359759688377, -0.01891172118484974, 0.032443832606077194, 0.07750142365694046, 0.06398815661668777, 0.09211000800132751, -0.1075373962521553, 0.0007059643394313753, 0.09110400825738907, 0.02400187961757183, -0.028330467641353607, -0.057518370449543, 0.007726656273007393, 0.05941952392458916, 0.030639488250017166, -0.08387162536382675, 0.00746125727891922, 0.036204781383275986, -0.03881797567009926, 0.08773503452539444, 0.009319953620433807, -0.03147150203585625, 0.10139315575361252, 0.025782782584428787, 0.04157981276512146, 0.05218612030148506, -0.02092810720205307, 0.056818392127752304 ]
akdeniz27/roberta-large-cuad
32cd27aa93ae12e576f214c40c558bdcc5081220
2021-11-14T08:43:30.000Z
[ "pytorch", "roberta", "question-answering", "en", "dataset:cuad", "transformers", "autotrain_compatible" ]
question-answering
false
akdeniz27
null
akdeniz27/roberta-large-cuad
2,024
null
transformers
--- language: en datasets: - cuad --- # RoBERTa Large Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset https://huggingface.co/datasets/cuad Link for model checkpoint: https://github.com/TheAtticusProject/cuad For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
[ -0.06537282466888428, -0.054273571819067, -0.03968266770243645, -0.07697393000125885, -0.03899088501930237, 0.01574712246656418, -0.05326983705163002, -0.004687028471380472, -0.04908955097198486, 0.03284201771020889, -0.005614298861473799, -0.039843328297138214, 0.012881170026957989, -0.0926748588681221, -0.06678672134876251, -0.02838195487856865, 0.03988778218626976, 0.013089578598737717, -0.046217869967222214, -0.02561514638364315, -0.07099425047636032, 0.03785065934062004, 0.014318186789751053, 0.002742449287325144, 0.028432238847017288, -0.003643463831394911, 0.006586459930986166, -0.00498203095048666, 0.041062358766794205, -0.07452050596475601, 0.01812843233346939, 0.0599234513938427, -0.006007977295666933, 0.07284167408943176, 0.02882976271212101, 0.10919967293739319, -0.0824226662516594, -0.04794028773903847, -0.08209051191806793, -0.07103142142295837, 0.06870551407337189, 0.05037838965654373, 0.03467097505927086, 0.02133181132376194, 0.016809457913041115, -0.09839451313018799, 0.014040084555745125, 0.03796766698360443, -0.002958783647045493, -0.02950288914144039, -0.05743103846907616, -0.06442819535732269, -0.013598215766251087, 0.0802796259522438, 0.023244358599185944, -0.029061222448945045, -0.01631239242851734, -0.09204038232564926, -0.05685122311115265, -0.045496102422475815, -0.006146488711237907, -0.053186461329460144, -0.11568959802389145, -0.02497926354408264, 0.045085906982421875, 0.02135205827653408, -0.027285993099212646, 0.04758777841925621, 0.03203263878822327, -0.015028119087219238, 0.0061837551183998585, 0.029283206909894943, -0.0264561977237463, 0.016836445778608322, 0.012279137969017029, 0.07395543903112411, 0.06153527647256851, 0.05397791415452957, 0.09690793603658676, -0.11944360285997391, -0.035747770220041275, 0.0161498561501503, 0.027472982183098793, -0.041599493473768234, 0.0328349694609642, -0.0134124755859375, 0.02422296069562435, 0.06253809481859207, 0.07091379165649414, -0.0467011034488678, 0.08662065863609314, 0.08009321987628937, 0.022220872342586517, -0.03298531100153923, -0.11427591741085052, 0.02339259721338749, 0.038060758262872696, 0.005091584753245115, -0.038275547325611115, 0.047429993748664856, -0.021431852132081985, 0.11530061811208725, 0.03554486855864525, 0.03549155220389366, -0.07013841718435287, -0.04791109263896942, 0.09281928837299347, 0.0695456713438034, -0.0738501325249672, -0.015445713885128498, 0.02509707398712635, 0.030214611440896988, -0.021199794486165047, 0.0270469319075346, 0.09894466400146484, -0.008166221901774406, -0.030049242079257965, -0.06917188316583633, -0.009031795896589756, -0.002552070189267397, -0.03198016434907913, -0.020956775173544884, -0.016987215727567673, -0.0015919089782983065, -0.05222351476550102, 0.07235090434551239, -0.013880296610295773, 2.556603602096517e-33, 0.06702032685279846, 0.040338143706321716, 0.025499729439616203, 0.0055481791496276855, 0.08245120942592621, 0.02037787437438965, -0.08211849629878998, -0.024274438619613647, -0.052893806248903275, 0.049510855227708817, -0.10204586386680603, 0.015765642747282982, -0.07668686658143997, 0.04726455360651016, 0.017062416300177574, -0.014803650788962841, -0.041495390236377716, 0.04355918988585472, -0.012249836698174477, 0.02778460830450058, 0.08576271682977676, 0.06369733810424805, -0.032601647078990936, -0.02017521671950817, 0.03365028649568558, 0.03774759918451309, 0.06548578292131424, 0.011919945478439331, -0.049197327345609665, 0.04097184166312218, -0.03645047917962074, 0.06260932236909866, -0.014455139636993408, 0.00042480669799260795, 0.027600904926657677, -0.0077315992675721645, -0.06738965958356857, -0.019048430025577545, 0.007023146841675043, -0.03381650149822235, 0.07698102295398712, -0.0077217319048941135, -0.002309092553332448, -0.019607484340667725, -0.04843656346201897, -0.061167165637016296, 0.05315041169524193, 0.017214734107255936, 0.045003265142440796, -0.06723884493112564, 0.06463391333818436, 0.04195333272218704, -0.023772727698087692, -0.03215561807155609, -0.01995476521551609, 0.02619621902704239, 0.11771111190319061, 0.012852037325501442, 0.036976445466279984, 0.09188437461853027, 0.03391909599304199, -0.040581442415714264, 0.037813350558280945, 0.03319333493709564, 0.05225798860192299, 0.010330289602279663, -0.10670650750398636, -0.03126287832856178, 0.0666496530175209, 0.06746742874383926, -0.07233162224292755, 0.0022132967133075, 0.04430035501718521, 0.052878689020872116, 0.02035384438931942, -0.05195801705121994, 0.009823770262300968, -0.04784921929240227, -0.05822466313838959, -0.002246580319479108, -0.04866757243871689, 0.020988311618566513, -0.045050859451293945, -0.01577751152217388, -0.028517520055174828, -0.10958131402730942, 0.024755744263529778, -0.02941242977976799, -0.06284128129482269, -0.05201026052236557, -0.005871844477951527, 0.10023567825555801, 0.02086709253489971, -0.042375996708869934, -0.05480535700917244, -2.7601573466726893e-33, 0.019758086651563644, -0.03065846487879753, -0.006396437995135784, 0.0249570794403553, 0.007104517892003059, -0.010252509266138077, -0.021841468289494514, 0.09468919038772583, 0.0008000268135219812, -0.03822818398475647, 0.05286356061697006, -0.054878052324056625, 0.0572517104446888, -0.07707107067108154, 0.09319168329238892, -0.05546867102384567, 0.04159315302968025, -0.10251860320568085, 0.007068876177072525, 0.02198655903339386, -0.046330634504556656, 0.0008987589972093701, -0.0018830093322321773, 0.018968993797898293, -0.03486519679427147, -0.0475679486989975, 0.0032691943924874067, 0.08171786367893219, -0.013018365949392319, -0.009021816775202751, 0.031825751066207886, -0.07555341720581055, -0.02423744834959507, 0.04593924805521965, -0.10923555493354797, 0.023920278996229172, 0.12205315381288528, -0.009243488311767578, -0.012188298627734184, 0.01656004972755909, 0.12904009222984314, 0.04053330793976784, -0.10570169985294342, 0.007862130180001259, -0.017027998343110085, -0.026539167389273643, -0.11743529886007309, 0.03811707720160484, -0.1023920401930809, -0.01787877269089222, 0.06301249563694, -0.0016211768379434943, 0.028015531599521637, 0.03526860475540161, 0.043154485523700714, -0.03597574681043625, 0.05173460394144058, -0.07732594013214111, 0.061530422419309616, 0.02801509015262127, -0.058007702231407166, -0.041668590158224106, -0.05253469571471214, -0.024359874427318573, 0.06839076429605484, -0.08283038437366486, -0.040760040283203125, -0.001781390281394124, -0.029485926032066345, 0.06445670872926712, 0.016890710219740868, -0.03985561430454254, -0.01247331127524376, 0.08266330510377884, -0.0054842280223965645, -0.02735939621925354, -0.04568108171224594, -0.04651926830410957, 0.05344162508845329, -0.042884185910224915, -0.06432493031024933, 0.013146327808499336, 0.08524816483259201, 0.08314765989780426, 0.05514579266309738, 0.08527267724275589, 0.04428951442241669, 0.05112725868821144, 0.03656237944960594, 0.053873833268880844, -0.050378669053316116, -0.06053338944911957, -0.030263859778642654, 0.07699046283960342, -0.014968425035476685, -4.336069636678985e-8, -0.04301605746150017, 0.014011654071509838, -0.019947201013565063, 0.008035213686525822, -0.018291177228093147, -0.03211961314082146, -0.008234452456235886, 0.03187539801001549, 0.01063451450318098, 0.07083213329315186, 0.034670501947402954, 0.015531765297055244, -0.03629826381802559, -0.002629652852192521, -0.0360398106276989, 0.08966755121946335, 0.04815615713596344, 0.01857382245361805, -0.06354453414678574, 0.021705182269215584, -0.001401327783241868, 0.11229926347732544, 0.0007915259920991957, -0.005271878559142351, 0.06045927479863167, 0.00709073431789875, -0.0644124299287796, 0.11892620474100113, -0.013309184461832047, -0.041286151856184006, -0.010844769887626171, -0.031307462602853775, 0.09475112706422806, -0.06058894470334053, -0.04270952567458153, 0.09758415818214417, 0.05286993458867073, -0.028799938037991524, 0.03582002967596054, -0.007684053387492895, 0.04951269552111626, 0.029102008789777756, -0.08622054010629654, -0.048524513840675354, 0.013727035373449326, 0.0032127434387803078, 0.00432767765596509, -0.030010830610990524, 0.010886380448937416, 0.11396956443786621, -0.018839316442608833, 0.014513346366584301, -0.019977757707238197, -0.0017994687659665942, -0.05466597154736519, -0.04419591650366783, -0.0846414789557457, -0.04096679762005806, 0.0842675268650055, -0.0057164402678608894, 0.07803503423929214, -0.047830965369939804, -0.045389678329229355, 0.000950827612541616 ]
deepset/tapas-large-nq-hn-reader
3b9b9fcfd1789686d05a3b63d8492ac162c7d9fc
2022-01-23T14:58:08.000Z
[ "pytorch", "tapas", "en", "transformers", "license:apache-2.0" ]
null
false
deepset
null
deepset/tapas-large-nq-hn-reader
2,024
null
transformers
--- language: en tags: - tapas license: apache-2.0 --- This model contains the converted PyTorch checkpoint of the original Tensorflow model available in the [TaPas repository](https://github.com/google-research/tapas/blob/master/DENSE_TABLE_RETRIEVER.md#reader-models). It is described in Herzig et al.'s (2021) [paper](https://aclanthology.org/2021.naacl-main.43/) _Open Domain Question Answering over Tables via Dense Retrieval_. This model has 2 versions which can be used differing only in the table scoring head. The default one has an adapted table scoring head in order to be able to generate probabilities out of the logits. The other (non-default) version corredponds to the original checkpoint from the TaPas repository and can be accessed setting `revision="original"`. # Usage ## In Haystack If you want to use this model for question-answering over tables, you can load it in [Haystack](https://github.com/deepset-ai/haystack/): ```python from haystack.nodes import TableReader table_reader = TableReader(model_name_or_path="deepset/tapas-large-nq-hn-reader") ```
[ -0.05595678091049194, -0.1580241620540619, -0.059637390077114105, 0.00029897800413891673, 0.007156631909310818, -0.057767804712057114, -0.02009437419474125, -0.003179040038958192, 0.005680174566805363, 0.013105287216603756, -0.015977278351783752, -0.022349895909428596, 0.013213252648711205, 0.008397658355534077, -0.031945787370204926, 0.009477567858994007, 0.026224926114082336, 0.018898682668805122, -0.0648600235581398, -0.01651942916214466, -0.0142646050080657, 0.0317545123398304, 0.0612495094537735, -0.006845772732049227, 0.039242301136255264, -0.01861213892698288, -0.02881815657019615, -0.009964258410036564, 0.028475511819124222, -0.03219882398843765, 0.026799743995070457, 0.06926562637090683, -0.086898073554039, 0.08816179633140564, -0.029768705368041992, 0.015091928653419018, -0.03783028945326805, -0.029236456379294395, -0.003516442608088255, -0.03945884853601456, 0.01749943383038044, -0.052259232848882675, -0.00011627610365394503, 0.007446314208209515, 0.034903500229120255, -0.049792323261499405, -0.08737727999687195, -0.04772390425205231, 0.026328910142183304, 0.03399310261011124, -0.0685596838593483, 0.02360554039478302, 0.02856888435781002, 0.07169336080551147, 0.009385433048009872, 0.03462250903248787, -0.022507846355438232, -0.02839280478656292, -0.025645365938544273, -0.02770569920539856, -0.10740850865840912, -0.062164194881916046, -0.007783098611980677, 0.02973446622490883, 0.019376704469323158, 0.013843297958374023, -0.046424977481365204, 0.0010572337778285146, 0.0728379637002945, -0.03258192911744118, -0.019401030614972115, -0.010150196962058544, -0.00509309908375144, 0.021971305832266808, 0.011668349616229534, 0.01272581610828638, 0.09913951903581619, 0.030697457492351532, 0.013532809913158417, -0.012712398543953896, -0.01427936740219593, -0.025890707969665527, 0.08576073497533798, -0.0171036459505558, 0.03799011558294296, 0.001636662520468235, 0.05045194551348686, 0.045183125883340836, 0.08615114539861679, -0.03949790075421333, -0.00048445863649249077, 0.006442606914788485, 0.0631607249379158, -0.04405159875750542, 0.03965940698981285, 0.04839257523417473, 0.08729049563407898, -0.01279269065707922, -0.03339144214987755, 0.07488860189914703, 0.04978407546877861, -0.016952402889728546, 0.0022142468951642513, -0.03380822762846947, -0.01174616813659668, -0.011481554247438908, -0.0066890413872897625, 0.04752874746918678, 0.0009549098904244602, -0.03883315995335579, 0.04322867467999458, 0.07654543966054916, 0.0725664272904396, -0.08668684214353561, -0.00705769332125783, -0.031017253175377846, -0.06359007209539413, -0.013470591977238655, 0.05721253529191017, 0.00675638671964407, -0.06286630034446716, 0.02573423646390438, -0.02447345294058323, -0.019955873489379883, 0.007050985936075449, 0.04629432037472725, -0.08032375574111938, 1.7048275385212255e-33, 0.031606849282979965, -0.002851179800927639, 0.05871099606156349, -0.08440452069044113, 0.07025895267724991, 0.015567043796181679, 0.05893182381987572, 0.023073215037584305, 0.00956304743885994, -0.019013404846191406, -0.06614261865615845, 0.045126207172870636, -0.05656137317419052, -0.030247069895267487, 0.006047315429896116, 0.03399166464805603, -0.11111915111541748, 0.02841152250766754, -0.01789766177535057, 0.06023658439517021, 0.08135205507278442, -0.007076920010149479, 0.0007139131193980575, 0.07869662344455719, 0.0658048465847969, 0.025774894282221794, 0.029514959082007408, -0.010583631694316864, -0.015139280818402767, 0.04302389174699783, -0.054644424468278885, -0.055647533386945724, -0.08527807146310806, -0.08126845955848694, 0.005116501823067665, -0.01017534825950861, 0.005862893536686897, -0.019930372014641762, -0.03916185721755028, -0.09104125201702118, 0.03108830191195011, 0.042917124927043915, -0.009485256858170033, -0.047781802713871, -0.12614208459854126, -0.05395787954330444, -0.023405911400914192, 0.07646428048610687, 0.00542089669033885, -0.05028363689780235, 0.015214669518172741, -0.06088357791304588, -0.060128021985292435, -0.028554538264870644, 0.013879033736884594, -0.04167453572154045, 0.0018235360039398074, -0.0013570385053753853, 0.07523225247859955, 0.10272201150655746, 0.06088091433048248, -0.0338619165122509, 0.0005217964644543827, 0.014433963224291801, 0.06519340723752975, 0.050839073956012726, -0.10419227927923203, 0.011225592344999313, 0.11640054732561111, 0.01591089367866516, -0.05440462753176689, 0.019186895340681076, -0.04379463195800781, 0.05055380240082741, 0.03869333490729332, -0.07667209208011627, -0.0030199545435607433, -0.07408138364553452, 0.06471212953329086, -0.015517945401370525, -0.021350279450416565, 0.04463973641395569, -0.0762711688876152, 0.0060364301316440105, -0.09604426473379135, -0.018910694867372513, 0.01811188831925392, -0.08251774311065674, -0.05440528318285942, -0.06934953480958939, -0.002330974442884326, -0.015647925436496735, 0.04448719695210457, -0.03993535786867142, -0.06642244011163712, -1.0952839427809518e-33, -0.02266417071223259, -0.04567214474081993, -0.11424096673727036, 0.08806216716766357, 0.01792168989777565, -0.06478629261255264, 0.06487180292606354, 0.0516355000436306, 0.04604683443903923, -0.06717793643474579, 0.022185562178492546, 0.006564109120517969, 0.01855546422302723, -0.03398105502128601, 0.1049303188920021, -0.032332658767700195, -0.03200612962245941, -0.05774986743927002, -0.03921179473400116, 0.09347183257341385, -0.041918233036994934, 0.04308096691966057, -0.030007055029273033, 0.04023659974336624, 0.013995913788676262, -0.007310920394957066, -0.0264479611068964, 0.014818036928772926, 0.002105678664520383, -0.029442600905895233, -0.01827339269220829, -0.00005126693577039987, -0.02144291251897812, -0.013923564925789833, -0.06861431896686554, 0.011842024512588978, 0.08952973783016205, -0.08106772601604462, -0.011292102746665478, 0.0934998095035553, 0.046921540051698685, 0.06309444457292557, -0.03156868740916252, 0.06234198436141014, -0.022955838590860367, 0.07491789758205414, -0.08954083174467087, 0.06383448839187622, -0.05078232288360596, -0.04928179830312729, 0.049247633665800095, -0.06448366492986679, 0.012490471825003624, 0.036165013909339905, -0.0154134351760149, 0.0013887147651985288, 0.052132878452539444, -0.031460609287023544, -0.03201289474964142, 0.005575967952609062, -0.04853092133998871, 0.05889549106359482, 0.025553863495588303, 0.027294611558318138, 0.036036230623722076, 0.0084956344217062, -0.04045199230313301, 0.036892205476760864, -0.08013779670000076, 0.021927891299128532, -0.07673540711402893, -0.06763242185115814, 0.08021692931652069, 0.04864601790904999, 0.11601398140192032, 0.032179635018110275, -0.02700016088783741, 0.005444135516881943, 0.023764124140143394, -0.12701810896396637, -0.08049247413873672, -0.010731630958616734, 0.07884985953569412, 0.06697829067707062, 0.08854828774929047, 0.01509201992303133, 0.059288475662469864, 0.0023299609310925007, 0.012313634157180786, 0.057975783944129944, -0.024393390864133835, -0.07961799204349518, -0.09327003359794617, 0.1266258805990219, 0.0076243760995566845, -5.8163415417311626e-8, -0.08828294277191162, 0.10154125839471817, -0.08107831329107285, 0.051030442118644714, 0.020030122250318527, -0.012760897167026997, 0.030042365193367004, 0.07662717252969742, 0.0020213276147842407, -0.007296738214790821, 0.04438644275069237, 0.049063414335250854, -0.06060551479458809, -0.016062147915363312, 0.010939042083919048, 0.13240572810173035, 0.056332532316446304, 0.08097446709871292, -0.050706710666418076, -0.027384735643863678, 0.04690871760249138, 0.04194179177284241, -0.025075864046812057, 0.023223700001835823, 0.028828775510191917, 0.04003790020942688, -0.06166394054889679, 0.10674112290143967, 0.0019117745105177164, -0.054488226771354675, 0.006476365961134434, -0.0030090962536633015, 0.020832430571317673, -0.03228374943137169, 0.079962819814682, 0.10097147524356842, -0.008417187258601189, -0.023934565484523773, 0.017740851268172264, 0.12208814918994904, -0.006502529140561819, 0.03067205101251602, -0.054048147052526474, -0.046962764114141464, -0.0014110972406342626, -0.00570718152448535, -0.0859561637043953, -0.04725532606244087, 0.032437656074762344, 0.03397002071142197, -0.0014336099848151207, -0.0508248545229435, -0.051582422107458115, 0.05557119846343994, -0.007168502081185579, -0.0008085277513600886, -0.013354456052184105, -0.06523165851831436, 0.030856076627969742, -0.017941290512681007, 0.16831600666046143, 0.014131181873381138, 0.01318478025496006, 0.06148405373096466 ]
facebook/wav2vec2-large-robust
2493a2c576276145c3e066d9243b0e391fab673a
2021-11-05T12:45:27.000Z
[ "pytorch", "wav2vec2", "pretraining", "en", "dataset:libri_light", "dataset:common_voice", "dataset:switchboard", "dataset:fisher", "arxiv:2104.01027", "transformers", "speech", "license:apache-2.0" ]
null
false
facebook
null
facebook/wav2vec2-large-robust
2,021
9
transformers
--- language: en datasets: - libri_light - common_voice - switchboard - fisher tags: - speech license: apache-2.0 --- # Wav2Vec2-Large-Robust [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained on 16kHz sampled speech audio. Speech datasets from multiple domains were used to pretrain the model: - [Libri-Light](https://github.com/facebookresearch/libri-light): open-source audio books from the LibriVox project; clean, read-out audio data - [CommonVoice](https://huggingface.co/datasets/common_voice): crowd-source collected audio data; read-out text snippets - [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62): telephone speech corpus; noisy telephone data - [Fisher](https://catalog.ldc.upenn.edu/LDC2004T19): conversational telephone speech; noisy telephone data When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper Robust Wav2Vec2](https://arxiv.org/abs/2104.01027) Authors: Wei-Ning Hsu, Anuroop Sriram, Alexei Baevski, Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Jacob Kahn, Ann Lee, Ronan Collobert, Gabriel Synnaeve, Michael Auli **Abstract** Self-supervised learning of speech representations has been a very active research area but most work is focused on a single domain such as read audio books for which there exist large quantities of labeled and unlabeled data. In this paper, we explore more general setups where the domain of the unlabeled data for pre-training data differs from the domain of the labeled data for fine-tuning, which in turn may differ from the test data domain. Our experiments show that using target domain data during pre-training leads to large performance improvements across a variety of setups. On a large-scale competitive setup, we show that pre-training on unlabeled in-domain data reduces the gap between models trained on in-domain and out-of-domain labeled data by 66%-73%. This has obvious practical implications since it is much easier to obtain unlabeled target domain data than labeled data. Moreover, we find that pre-training on multiple domains improves generalization performance on domains not seen during training. Code and models will be made available at this https URL. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
[ -0.11485451459884644, -0.17325398325920105, -0.017741020768880844, -0.03250914067029953, -0.002429984277114272, -0.0013032082933932543, -0.06846262514591217, -0.0421626903116703, -0.038179781287908554, -0.040125660598278046, 0.003664658172056079, -0.006724386941641569, -0.046876952052116394, -0.03297920525074005, -0.007760441862046719, 0.0015597825404256582, 0.08309445530176163, 0.04157296195626259, -0.005458292085677385, -0.03375859931111336, 0.06350641697645187, 0.06033943593502045, 0.04984022676944733, -0.013049301691353321, 0.0947079136967659, 0.0510130450129509, -0.013293344527482986, -0.015895066782832146, 0.08246447890996933, -0.027518434450030327, 0.08719465136528015, 0.06101482734084129, 0.10171660035848618, -0.044144727289676666, -0.06461286544799805, -0.0004358711012173444, 0.03078310191631317, -0.012594391591846943, -0.004160972777754068, 0.0237279050052166, 0.013099486008286476, 0.02964833192527294, -0.0027373728808015585, -0.008444329723715782, -0.040299635380506516, -0.00010331368685001507, -0.020960697904229164, -0.02750401757657528, -0.05517829582095146, 0.013590864837169647, -0.0369902066886425, -0.06906147301197052, 0.052009206265211105, 0.11328960955142975, -0.06233180686831474, -0.023286109790205956, 0.026905618607997894, 0.04351544752717018, 0.07254811376333237, 0.047634731978178024, -0.06118228659033775, -0.005021481774747372, -0.040830086916685104, 0.016595270484685898, -0.05036041513085365, 0.03926390781998634, -0.02888251096010208, 0.05686359480023384, 0.07563485205173492, -0.07397395372390747, -0.09948674589395523, 0.08768125623464584, 0.07243546098470688, 0.07288014143705368, 0.03038088232278824, -0.0014582183212041855, 0.10212177783250809, -0.01026954222470522, 0.03474368155002594, -0.12178865820169449, 0.01930975168943405, -0.04709862545132637, 0.05711505562067032, -0.016742147505283356, 0.050662703812122345, -0.024733226746320724, 0.0018662576330825686, 0.02207041345536709, -0.057912759482860565, -0.04155552387237549, -0.07494424283504486, 0.022497154772281647, 0.042896971106529236, 0.03023107536137104, 0.00021143302728887647, 0.08256667107343674, -0.0224754735827446, -0.01635616272687912, 0.054084572941064835, 0.05204015597701073, 0.025668084621429443, 0.0055429525673389435, 0.016804514452815056, -0.004769619088619947, -0.06725781410932541, -0.12602517008781433, -0.005890564061701298, 0.08087421208620071, 0.019535832107067108, 0.021117225289344788, 0.04232874512672424, 0.03600737452507019, -0.05023445934057236, -0.08099614828824997, 0.08573030680418015, -0.04478956386446953, -0.03451858088374138, -0.059255704283714294, 0.02648373693227768, 0.0836046040058136, -0.09237293154001236, 0.006184793543070555, -0.020273404195904732, 0.01141990628093481, 0.043812111020088196, -0.02729622647166252, -0.02312081679701805, 7.952351526427242e-34, 0.0635932981967926, 0.050548721104860306, -0.043101321905851364, 0.048075489699840546, 0.012161177583038807, -0.09004002809524536, -0.009733128361403942, -0.02386224828660488, -0.04796478524804115, 0.024070391431450844, 0.016318878158926964, 0.04427218437194824, -0.08218587189912796, 0.08567310869693756, 0.007750953081995249, -0.001959713874384761, -0.05423794686794281, 0.007484173867851496, 0.02983805537223816, 0.02487110160291195, 0.08440355956554413, 0.01596241444349289, 0.09116705507040024, 0.06366626918315887, 0.09047393500804901, 0.06295912712812424, 0.043972864747047424, -0.043152324855327606, 0.03498813882470131, 0.04582381621003151, -0.08376780152320862, -0.053594257682561874, 0.03998396918177605, -0.026213068515062332, 0.061417724937200546, 0.04265053942799568, -0.0005440646200440824, -0.07278058677911758, -0.05626009777188301, -0.08829547464847565, 0.033142510801553726, 0.016648493707180023, 0.052146535366773605, -0.06642329692840576, -0.0661153569817543, -0.03733370825648308, -0.04433311149477959, 0.009104778990149498, 0.0018469878705218434, 0.003275812603533268, 0.00025516594178043306, -0.003583722747862339, -0.09696445614099503, 0.00796284805983305, -0.027923153713345528, -0.029211705550551414, 0.036122847348451614, 0.021735932677984238, 0.055814195424318314, 0.0604233518242836, -0.006621420383453369, 0.07420685887336731, 0.040524765849113464, -0.002231447957456112, 0.0408245250582695, -0.01764853484928608, -0.018228286877274513, -0.01894538477063179, -0.015422755852341652, -0.08138067275285721, -0.04624062404036522, -0.04895194619894028, 0.030407872051000595, 0.008318501524627209, 0.009043561294674873, 0.02764531597495079, -0.0074499486945569515, -0.08141490072011948, -0.010750574059784412, 0.05840194225311279, -0.01733303628861904, 0.007005461025983095, -0.039622146636247635, -0.06803707033395767, -0.028641939163208008, -0.019257793202996254, -0.004970394540578127, -0.1227516308426857, -0.08189065754413605, -0.03398723155260086, -0.03210565447807312, 0.04017721489071846, -0.053604066371917725, -0.02999320812523365, -0.057401277124881744, -1.9058719700003767e-33, -0.01413178164511919, 0.09388335049152374, -0.004041074775159359, 0.11161413043737411, 0.01913919858634472, 0.021000145003199577, 0.08791746944189072, 0.08871609717607498, 0.020235348492860794, -0.029379645362496376, 0.022429179400205612, -0.07243414968252182, 0.07370981574058533, -0.04887717589735985, 0.05989369377493858, -0.026143744587898254, 0.019509289413690567, -0.04314231500029564, 0.03490252420306206, 0.024238577112555504, 0.032893601804971695, 0.0047615449875593185, -0.012623651884496212, 0.04963093250989914, -0.04796146601438522, -0.01421324536204338, -0.08204053342342377, 0.04562285542488098, -0.016231941059231758, -0.004177709575742483, -0.06750714778900146, -0.011903184466063976, -0.03938004747033119, -0.03109074756503105, -0.060788773000240326, 0.035664089024066925, 0.06025759130716324, 0.04231790080666542, -0.008202482014894485, -0.04945145547389984, 0.10128992050886154, 0.061614274978637695, -0.041700903326272964, -0.1348937600851059, -0.03422040492296219, -0.04343819245696068, -0.17250174283981323, 0.03356289863586426, -0.005304307676851749, -0.05666636303067207, 0.04748229309916496, 0.016206223517656326, 0.01987464912235737, 0.014686636626720428, -0.015187421813607216, -0.06235256791114807, 0.026468632742762566, 0.004246565047651529, 0.030323335900902748, 0.014808603562414646, -0.05299019813537598, -0.013858198188245296, -0.0822620764374733, -0.01456590835005045, 0.006259085610508919, 0.03472311794757843, 0.009585094638168812, -0.005159776657819748, 0.02399682253599167, -0.009755722247064114, 0.023862585425376892, -0.025708286091685295, 0.02024938352406025, 0.0035922820679843426, -0.09832869470119476, 0.00033119527506642044, -0.07123076170682907, -0.037490539252758026, -0.04889308288693428, -0.03855384513735771, 0.0367405079305172, 0.018650144338607788, 0.06174567714333534, 0.0602232851088047, 0.11938333511352539, 0.0753713920712471, 0.028584174811840057, -0.047110989689826965, 0.0027135408017784357, 0.00763760507106781, -0.06472043693065643, 0.04676099866628647, -0.003964108880609274, 0.024009274318814278, 0.005971904844045639, -4.832400080090338e-8, -0.07171275466680527, 0.03480156883597374, 0.04284104332327843, -0.03251929208636284, -0.017078742384910583, -0.10782843828201294, 0.02324756048619747, 0.07306328415870667, -0.009556537494063377, 0.0407087467610836, 0.06901838630437851, -0.014907739125192165, 0.004366849083453417, 0.055957041680812836, 0.0138119887560606, 0.06935662776231766, 0.010826083831489086, 0.016510700806975365, -0.025141730904579163, -0.11130884289741516, 0.050548993051052094, 0.06438802927732468, 0.03749161958694458, 0.008828145451843739, 0.12458769977092743, -0.025885554030537605, -0.001889158971607685, 0.05059623718261719, 0.026915976777672768, -0.05547347664833069, -0.059464309364557266, 0.05272431671619415, 0.0036839800886809826, -0.08880715817213058, 0.058006804436445236, 0.025149598717689514, -0.09662539511919022, -0.03563597425818443, -0.02848409116268158, 0.05237884819507599, 0.002837663283571601, 0.0698816180229187, -0.0904683843255043, -0.022317832335829735, 0.06471718102693558, 0.009647593833506107, -0.04688630253076553, -0.06354911625385284, 0.004294820129871368, 0.046343863010406494, -0.009579666890203953, 0.07233067601919174, -0.022777942940592766, -0.03185249865055084, 0.04260025545954704, 0.05831030011177063, -0.03486984223127365, -0.00456378934904933, 0.018759101629257202, 0.019653983414173126, -0.011230789124965668, 0.011050974018871784, -0.03574956953525543, 0.031928058713674545 ]
hf-internal-testing/tiny-random-deberta
449491e17107f61f2e8df35a0e20a55e9c4afd3c
2021-09-17T19:22:32.000Z
[ "pytorch", "tf", "deberta", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-deberta
2,019
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
Helsinki-NLP/opus-mt-ur-en
c803d32b6f7a3a7a8cb1ba91d2947de0009f8cdc
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "ur", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ur-en
2,017
1
transformers
--- language: - ur - en tags: - translation license: apache-2.0 --- ### urd-eng * source group: Urdu * target group: English * OPUS readme: [urd-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md) * model: transformer-align * source language(s): urd * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.urd.eng | 23.2 | 0.435 | ### System Info: - hf_name: urd-eng - source_languages: urd - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ur', 'en'] - src_constituents: {'urd'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt - src_alpha3: urd - tgt_alpha3: eng - short_pair: ur-en - chrF2_score: 0.435 - bleu: 23.2 - brevity_penalty: 0.975 - ref_len: 12029.0 - src_name: Urdu - tgt_name: English - train_date: 2020-06-17 - src_alpha2: ur - tgt_alpha2: en - prefer_old: False - long_pair: urd-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
[ -0.08449462801218033, -0.002718463074415922, -0.009004054591059685, -0.043939508497714996, -0.020228758454322815, 0.022150268778204918, -0.04535124823451042, -0.0463683046400547, 0.04170478507876396, 0.0004827983502764255, 0.03506169468164444, -0.05356161668896675, -0.0060081337578594685, -0.021728994324803352, -0.006575449835509062, 0.01945064589381218, -0.04578618332743645, 0.0809946283698082, -0.06257764250040054, -0.05633089318871498, 0.03672134131193161, 0.050689250230789185, 0.04251185059547424, 0.014965242706239223, 0.06749455630779266, 0.07399937510490417, -0.06008954346179962, 0.003147828858345747, 0.04725780710577965, -0.05883566290140152, 0.028085270896553993, 0.04173721373081207, 0.005391017533838749, 0.03977133706212044, 0.06729929149150848, 0.08314783126115799, -0.047550179064273834, -0.07097518444061279, 0.018781524151563644, 0.01621638983488083, 0.011857706122100353, 0.02706156298518181, -0.0066688754595816135, -0.021926814690232277, 0.02590709738433361, 0.03308345749974251, -0.025057202205061913, 0.04361472278833389, -0.016884196549654007, -0.02593955025076866, -0.1501632183790207, -0.025053204968571663, 0.003714008955284953, 0.05701051279902458, -0.0329691581428051, 0.022579142823815346, 0.029668543487787247, 0.007954435423016548, 0.03295539692044258, -0.07906193286180496, -0.10701628774404526, 0.019487101584672928, -0.07642925530672073, 0.027235297486186028, 0.003239615121856332, -0.012599929235875607, 0.03988583758473396, 0.04545995965600014, -0.05841154232621193, 0.04710477590560913, -0.051762424409389496, -0.008691267110407352, -0.015127965249121189, 0.0919293463230133, -0.04039740562438965, 0.01180268730968237, 0.041759345680475235, -0.04538458585739136, -0.0017576342215761542, -0.08291391283273697, 0.006205422338098288, -0.05488920956850052, 0.06504710763692856, 0.007829256355762482, 0.08021147549152374, 0.011318366974592209, 0.021857254207134247, 0.005322093144059181, 0.018347477540373802, 0.04591943696141243, 0.01395587157458067, -0.015029571019113064, 0.04030607268214226, 0.03837186470627785, 0.0000227990767598385, 0.035565465688705444, 0.03261388838291168, 0.05185871571302414, -0.03907368704676628, 0.1034308671951294, 0.042410917580127716, -0.0009262232924811542, 0.06386405974626541, -0.043073397129774094, -0.10280943661928177, -0.055538516491651535, 0.03559516370296478, 0.045638538897037506, -0.006124464329332113, -0.06576959043741226, 0.016516203060746193, -0.035672999918460846, -0.015823479741811752, -0.08568088710308075, 0.012142656370997429, -0.06539535522460938, 0.008497873321175575, -0.023041794076561928, -0.00452376576140523, 0.02906663343310356, -0.06516704708337784, 0.025450890883803368, -0.038937535136938095, 0.031640246510505676, -0.04465339332818985, -0.03754084184765816, -0.0054899356327950954, 2.3813267414713597e-33, 0.05215999856591225, 0.01859435997903347, -0.024611322209239006, 0.027730528265237808, -0.03740900754928589, -0.01976104825735092, -0.020452264696359634, -0.011034074239432812, -0.09956984966993332, -0.05068967863917351, -0.044990312308073044, -0.04283794015645981, -0.10075836628675461, 0.010059121996164322, -0.05853469297289848, -0.019161151722073555, 0.023709887638688087, 0.0376754105091095, 0.017341163009405136, 0.039435673505067825, 0.03980733081698418, 0.029585786163806915, 0.015715541318058968, -0.05233513563871384, -0.05889147147536278, 0.0635649636387825, 0.05834447965025902, -0.12043515592813492, -0.08765513449907303, 0.027669817209243774, -0.06039755418896675, -0.00926037784665823, -0.0478614866733551, -0.04820600524544716, 0.01428607665002346, -0.060139965265989304, 0.0331643782556057, -0.058781251311302185, -0.10551579296588898, -0.05998876318335533, -0.04524269700050354, 0.01216853503137827, 0.025384288281202316, -0.04036465287208557, 0.031032763421535492, 0.01648816093802452, -0.007203131914138794, 0.025314347818493843, 0.07201412320137024, 0.03136545047163963, 0.007182147353887558, 0.022115373983979225, -0.052224237471818924, 0.008024325594305992, -0.00372372311539948, 0.07006402313709259, 0.058251846581697464, -0.02269643172621727, 0.04447650909423828, 0.046768587082624435, 0.026264581829309464, -0.007424081210047007, 0.039121951907873154, -0.017003007233142853, 0.1383540779352188, -0.022530166432261467, -0.04400429502129555, -0.07575014233589172, 0.06530784070491791, 0.038384996354579926, -0.09530819952487946, -0.05552210658788681, 0.08664082735776901, 0.11611379683017731, 0.04197849705815315, -0.02741698920726776, -0.01932820864021778, -0.0782378688454628, 0.0025655922945588827, -0.0024075915571302176, -0.10335015505552292, 0.01635110192000866, 0.04323333874344826, -0.06757935136556625, -0.012238851748406887, -0.019824285060167313, 0.04643544554710388, -0.09255412966012955, 0.00008467486622976139, 0.009284202009439468, 0.03504569083452225, 0.05145133659243584, -0.057451434433460236, -0.02363477647304535, 0.017488226294517517, -2.852630732186994e-33, 0.037026915699243546, 0.015058922581374645, -0.07163167744874954, 0.07891567051410675, -0.021984942257404327, -0.0752871111035347, 0.03550620749592781, 0.13174425065517426, 0.060416001826524734, 0.041544124484062195, 0.058887314051389694, -0.09497162699699402, 0.008415477350354195, -0.0572822205722332, 0.07124848663806915, -0.02818003110587597, 0.06802400201559067, 0.009089307859539986, 0.041686512529850006, 0.08370911329984665, -0.0028321179561316967, 0.10166525095701218, -0.08401993662118912, 0.09658350795507431, 0.01461524236947298, 0.0006554964347742498, -0.016080345958471298, 0.0565248541533947, 0.016696106642484665, -0.010183087550103664, 0.02688516117632389, -0.025188816711306572, -0.11412596702575684, 0.041099291294813156, -0.10769858956336975, 0.050436291843652725, 0.004131239373236895, 0.05527403950691223, 0.03457462415099144, 0.09686947613954544, 0.051160864531993866, 0.04371832683682442, -0.05851224064826965, -0.017863623797893524, 0.016552714630961418, -0.046131353825330734, -0.04880056530237198, 0.019752074033021927, -0.023911653086543083, -0.07548077404499054, 0.026265528053045273, 0.016615064814686775, -0.011609319597482681, -0.06624805927276611, 0.0384221151471138, -0.07502913475036621, -0.026834022253751755, -0.11983513087034225, -0.07057885080575943, -0.03618834167718887, -0.016802430152893066, 0.048214998096227646, -0.0011620329460129142, -0.09637149423360825, 0.04611344262957573, -0.0077537246979773045, 0.04557514190673828, 0.019332503899931908, -0.0035353652201592922, 0.007634059526026249, 0.0033025380689650774, -0.05323117598891258, 0.015474967658519745, 0.033130038529634476, 0.026127472519874573, -0.08583138138055801, -0.038455016911029816, 0.0818725973367691, 0.07477074861526489, -0.0549502968788147, -0.05103396624326706, 0.0332624688744545, 0.010925594717264175, 0.04683341830968857, 0.08007488399744034, 0.08499963581562042, 0.020144859328866005, 0.01229886058717966, 0.030092837288975716, 0.03215653449296951, 0.025499023497104645, 0.04925728961825371, 0.04243425652384758, 0.1279008686542511, 0.01581789366900921, -5.3544471967370555e-8, -0.10627534985542297, -0.03145698457956314, -0.13029475510120392, 0.04591509699821472, -0.04787096381187439, -0.046716563403606415, -0.04612931236624718, -0.030872683972120285, -0.03170210123062134, -0.06837017089128494, -0.009482033550739288, -0.014900514855980873, -0.08741434663534164, 0.03789087012410164, -0.034116145223379135, 0.05037609115242958, -0.029842689633369446, 0.0760873481631279, -0.04896572604775429, -0.07635807245969772, 0.06046811863780022, 0.05871368572115898, 0.007574613206088543, -0.021890124306082726, -0.0012899149442091584, 0.0379566065967083, -0.061725519597530365, 0.044295042753219604, 0.018725838512182236, 0.009284439496695995, 0.02185862325131893, 0.023814158514142036, -0.04207903891801834, -0.059881117194890976, 0.03113614022731781, 0.08744761347770691, 0.00021841403213329613, 0.001399530447088182, 0.02499730885028839, 0.08409540355205536, 0.08478569984436035, 0.042075470089912415, -0.06393376737833023, 0.010383539833128452, 0.026007164269685745, -0.04018016159534454, -0.06590467691421509, -0.07312056422233582, 0.02056560292840004, -0.07094766199588776, 0.11056412756443024, -0.03724407032132149, -0.025364384055137634, 0.03347191959619522, 0.03571685776114464, 0.027111932635307312, 0.05421685427427292, -0.04077371209859848, 0.020821604877710342, 0.015145641751587391, 0.10566822439432144, -0.00987569522112608, -0.029392359778285027, 0.004137938376516104 ]
aychang/roberta-base-imdb
cb6bcadd0540b61c9623bd6295d51ac445ceb135
2021-05-20T14:25:56.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "dataset:imdb", "transformers", "license:mit" ]
text-classification
false
aychang
null
aychang/roberta-base-imdb
2,017
1
transformers
--- language: - en thumbnail: tags: - text-classification license: mit datasets: - imdb metrics: --- # IMDB Sentiment Task: roberta-base ## Model description A simple base roBERTa model trained on the "imdb" dataset. ## Intended uses & limitations #### How to use ##### Transformers ```python # Load model and tokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use pipeline from transformers import pipeline model_name = "aychang/roberta-base-imdb" nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]) ``` ##### AdaptNLP ```python from adaptnlp import EasySequenceClassifier model_name = "aychang/roberta-base-imdb" texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."] classifer = EasySequenceClassifier results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) ``` #### Limitations and bias This is minimal language model trained on a benchmark dataset. ## Training data IMDB https://huggingface.co/datasets/imdb ## Training procedure #### Hardware One V100 #### Hyperparameters and Training Args ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir='./models', overwrite_output_dir=False, num_train_epochs=2, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, evaluation_strategy="steps", logging_dir='./logs', fp16=False, eval_steps=800, save_steps=300000 ) ``` ## Eval results ``` {'epoch': 2.0, 'eval_accuracy': 0.94668, 'eval_f1': array([0.94603457, 0.94731017]), 'eval_loss': 0.2578844428062439, 'eval_precision': array([0.95762642, 0.93624502]), 'eval_recall': array([0.93472, 0.95864]), 'eval_runtime': 244.7522, 'eval_samples_per_second': 102.144} ```
[ -0.11160767823457718, -0.06180599331855774, -0.012959432788193226, 0.0666927620768547, -0.018593059852719307, 0.047591518610715866, 0.025127286091446877, 0.09364642202854156, -0.028776507824659348, -0.022726155817508698, 0.006121745333075523, -0.06142342835664749, 0.019239453598856926, 0.029337015002965927, -0.012794687412679195, 0.05002308636903763, 0.0369383841753006, -0.013017305172979832, -0.14709262549877167, -0.08662605285644531, 0.051144253462553024, 0.05931995064020157, 0.02497032843530178, -0.001804581144824624, 0.05667820945382118, 0.008071563206613064, -0.04991075396537781, 0.01649608090519905, 0.0026177363470196724, 0.007393497042357922, -0.021725576370954514, 0.003210037015378475, -0.015142418444156647, 0.09129995852708817, 0.03451581671833992, 0.08537671715021133, -0.01876785047352314, -0.0049316235817968845, 0.017835067585110664, -0.04784766584634781, 0.022748978808522224, -0.03798003867268562, -0.021942278370261192, -0.029811875894665718, 0.008664583787322044, -0.10110220313072205, -0.005688315257430077, -0.02884346805512905, 0.050267238169908524, -0.056791599839925766, -0.13119567930698395, 0.0024723177775740623, -0.026390111073851585, -0.010830569081008434, -0.04441864788532257, 0.019764769822359085, 0.044478558003902435, -0.01738659292459488, 0.004621187224984169, -0.0930260419845581, -0.04087294638156891, -0.07043927907943726, -0.037323128432035446, -0.01393816713243723, -0.02811015211045742, -0.09718991070985794, -0.05278988927602768, 0.047421105206012726, 0.05802477151155472, 0.019673483446240425, -0.07037424296140671, -0.011446303687989712, -0.0454549603164196, 0.05262093245983124, 0.0335410013794899, -0.03239414840936661, 0.07575129717588425, 0.0056373197585344315, 0.0363466702401638, -0.05304422974586487, -0.05034434050321579, -0.07286471128463745, 0.07759951055049896, 0.06766781955957413, 0.05305108055472374, -0.04031871631741524, 0.027314411476254463, 0.054695043712854385, 0.018116841092705727, -0.037956856191158295, -0.0640418604016304, -0.07701484858989716, 0.02194708026945591, -0.0009018367272801697, 0.01617608591914177, 0.07274825125932693, -0.0293869748711586, -0.026872292160987854, -0.03017505444586277, 0.11840872466564178, -0.0019048862159252167, 0.03760343790054321, 0.030901987105607986, -0.03057960607111454, -0.02553943358361721, -0.00853559747338295, 0.007624057121574879, 0.034299202263355255, 0.024783194065093994, -0.06827817857265472, 0.018814902752637863, 0.03341839462518692, -0.0689045786857605, -0.005344736389815807, 0.11062280833721161, 0.022949377074837685, 0.018521547317504883, -0.025730691850185394, -0.047106578946113586, 0.0992291271686554, 0.030898304656147957, 0.013968887738883495, -0.039114173501729965, 0.058485157787799835, 0.012204843573272228, 0.04450540617108345, -0.010027873329818249, 6.128717875894362e-33, -0.019650965929031372, -0.009306329302489758, 0.07743145525455475, 0.011860387399792671, -0.03378548100590706, -0.00109862070530653, -0.01343199796974659, 0.03644351661205292, -0.06577592343091965, 0.005197616759687662, -0.03434600681066513, 0.06367810070514679, -0.052070338279008865, 0.006497231312096119, -0.08925914019346237, -0.020008957013487816, -0.10536106675863266, -0.0033896295353770256, 0.07054682821035385, 0.06893925368785858, 0.07959295064210892, 0.03043520450592041, -0.03959040716290474, -0.05191744491457939, -0.07042287290096283, -0.015385785140097141, 0.08013714849948883, -0.05024828761816025, -0.07329662144184113, 0.0248713418841362, -0.07561881095170975, 0.005638581234961748, -0.005164249800145626, -0.04350831359624863, -0.023839034140110016, -0.0658627524971962, 0.011983158998191357, 0.007638180162757635, -0.01580783724784851, -0.11121073365211487, -0.04480794444680214, 0.06413315236568451, -0.049284566193819046, -0.03352481499314308, 0.011454332619905472, 0.051430221647024155, -0.012107967399060726, 0.024219252169132233, 0.05760399252176285, 0.02919834293425083, 0.0711405873298645, -0.01629060134291649, 0.015586438588798046, 0.037608783692121506, -0.024272499606013298, 0.07049153745174408, 0.06647814065217972, 0.06170300394296646, 0.11005236208438873, -0.09315983951091766, -0.0007637758390046656, -0.01892816834151745, 0.01399246882647276, -0.009768001735210419, 0.10749373584985733, 0.0085605438798666, 0.044199202209711075, 0.01426498219370842, 0.04686257243156433, 0.07157931476831436, -0.0835200697183609, -0.04297006502747536, -0.032554034143686295, 0.004775515291839838, 0.08906935155391693, -0.03316063806414604, 0.014063697308301926, -0.055036723613739014, -0.0419338084757328, 0.03762778267264366, 0.04233691468834877, -0.006420224439352751, -0.01490561943501234, -0.07589590549468994, -0.044554393738508224, -0.025593625381588936, 0.035684484988451004, -0.0806872621178627, -0.05296702682971954, -0.028061164543032646, 0.002017986262217164, 0.09406761825084686, -0.035897381603717804, 0.03815511241555214, -0.04433535784482956, -7.044667849500889e-33, 0.07768594473600388, 0.01447584480047226, -0.03397093713283539, 0.006243868265300989, 0.03981664404273033, -0.04303712770342827, -0.007862730883061886, 0.04958426579833031, 0.016692332923412323, -0.0052057490684092045, 0.050096191465854645, -0.10028500109910965, 0.0026053457986563444, -0.0035319344606250525, 0.053060561418533325, -0.006784922908991575, -0.039615239948034286, -0.025126708671450615, -0.00248247804120183, 0.06293614208698273, -0.10904315859079361, 0.11548430472612381, -0.12178415060043335, 0.041482068598270416, -0.08143797516822815, 0.024306604638695717, -0.029813870787620544, 0.07680365443229675, 0.025743603706359863, -0.054210178554058075, -0.002146500162780285, 0.002197316149249673, -0.06901150196790695, -0.003566419007256627, -0.08262251317501068, 0.042596228420734406, 0.014054559171199799, -0.08864761143922806, -0.031093880534172058, 0.09385859966278076, 0.10686791688203812, 0.06768838316202164, -0.094144307076931, 0.01125700119882822, -0.038844361901283264, -0.034979235380887985, 0.018681302666664124, -0.019695540890097618, -0.04330267757177353, -0.011016554199159145, 0.027529679238796234, -0.01309998519718647, -0.10102009028196335, 0.05481433868408203, -0.03906476870179176, -0.053196173161268234, 0.10801123827695847, -0.06188623607158661, -0.05994095280766487, 0.041089531034231186, -0.06848873198032379, 0.008330515585839748, 0.0068182493560016155, -0.058749567717313766, 0.0030331816524267197, -0.0728958323597908, -0.028615692630410194, -0.007820717990398407, -0.04592079669237137, 0.052164558321237564, 0.016108373180031776, 0.0074674938805401325, 0.06380023062229156, -0.01893302984535694, 0.09275776892900467, 0.06945805251598358, -0.04886016622185707, -0.007157057989388704, -0.04494956135749817, -0.06518455594778061, -0.1027890220284462, -0.022700738161802292, 0.03475439175963402, 0.07151881605386734, -0.028828680515289307, 0.022855296730995178, 0.07308802753686905, 0.1216786801815033, 0.02956969663500786, -0.0056031132116913795, 0.015495090745389462, -0.0026367439422756433, 0.06621478497982025, 0.07623124122619629, 0.03793006017804146, -5.342450037915114e-8, -0.0740908682346344, -0.009914999827742577, -0.0226737093180418, 0.05861286446452141, -0.05472751334309578, 0.0243903249502182, -0.03848506882786751, 0.07981782406568527, -0.03566461428999901, 0.023846838623285294, 0.007581021636724472, -0.012396940030157566, -0.10805149376392365, 0.055254995822906494, -0.01584484428167343, 0.04907483235001564, 0.023331336677074432, 0.08869269490242004, -0.012369468808174133, -0.02260814607143402, 0.00730849476531148, 0.01998768001794815, 0.008443753235042095, -0.04585868865251541, -0.00899585708975792, -0.008590090088546276, -0.03906618058681488, 0.06077299639582634, -0.040280360728502274, 0.00028406447381712496, 0.028123803436756134, 0.027876749634742737, -0.03447616845369339, -0.04906190186738968, -0.03961459547281265, 0.039043642580509186, 0.06676448881626129, -0.09939195960760117, -0.02181994915008545, 0.020548291504383087, 0.0016879300819709897, 0.10062640905380249, -0.13203635811805725, -0.014210447669029236, 0.02632567472755909, -0.023556848987936974, 0.03280603513121605, -0.08753474056720734, 0.0312807634472847, 0.06366641819477081, 0.0014394845347851515, -0.06467482447624207, -0.06379648298025131, -0.0026876144111156464, -0.005854110699146986, -0.0161189753562212, 0.01792890951037407, -0.023555707186460495, 0.010787438601255417, 0.021853674203157425, 0.02573978900909424, 0.027419840916991234, 0.019608628004789352, -0.03434105962514877 ]
stas/pegasus-cnn_dailymail-tiny-random
600d1e9bb307c4c4c7361688317e80fc2612bc5c
2021-07-01T05:33:00.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/pegasus-cnn_dailymail-tiny-random
2,015
null
transformers
This is a tiny random pegasus-cnn_dailymail model used for testing. See `make-pegasus-cnn_dailymail-tiny-random.py` for how it was created.
[ -0.10069649666547775, 0.0402926430106163, -0.01991148293018341, 0.047542788088321686, 0.07618647813796997, -0.13899047672748566, 0.03711189329624176, -0.03854881972074509, 0.0337371788918972, -0.04584392160177231, 0.03367296978831291, 0.06628968566656113, -0.07178644090890884, 0.036509912461042404, -0.11461460590362549, 0.03923725336790085, 0.006049045827239752, -0.054390668869018555, -0.03299683704972267, 0.027842193841934204, -0.026792991906404495, 0.05290089175105095, 0.07169313728809357, 0.10415131598711014, 0.004868445452302694, -0.04314802959561348, -0.01709357649087906, -0.0037030722014606, 0.037823449820280075, -0.10501118749380112, 0.11189965903759003, 0.05590673163533211, -0.0036770645529031754, 0.050647519528865814, 0.030471792444586754, 0.008902547881007195, 0.010648488067090511, -0.028429556638002396, 0.009665307588875294, 0.004942681640386581, 0.08433006703853607, -0.07263271510601044, 0.0383710153400898, -0.0031070357654243708, -0.015214352868497372, 0.06024980545043945, 0.001439599902369082, -0.034361012279987335, 0.04258222132921219, -0.003448018804192543, -0.003628771984949708, -0.07951929420232773, -0.09993697702884674, 0.024072159081697464, 0.006842413451522589, 0.01944727450609207, -0.0507931187748909, -0.02574813924729824, 0.017378950491547585, -0.03462378680706024, 0.03263016417622566, 0.04972384497523308, 0.0008771218126639724, 0.031315285712480545, 0.0027299458160996437, -0.02551380917429924, -0.07669246196746826, -0.06858629733324051, 0.10557848960161209, -0.14982189238071442, -0.013011667877435684, 0.0023800726048648357, -0.004156004171818495, 0.09209339320659637, 0.024608150124549866, -0.020757419988512993, 0.07240380346775055, -0.04044230654835701, 0.11418591439723969, 0.03596547618508339, -0.019078480079770088, -0.022504692897200584, -0.0038765461649745703, 0.04303251951932907, 0.08020813018083572, -0.024591289460659027, 0.020854134112596512, 0.04474082961678505, 0.05471734330058098, -0.08448167890310287, -0.07065795361995697, 0.03196737542748451, -0.06878852099180222, 0.04163920879364014, -0.0827401727437973, -0.002291383920237422, -0.01900060847401619, -0.02999131940305233, -0.07952649146318436, 0.12887008488178253, 0.06131177395582199, -0.03685881942510605, 0.12526312470436096, -0.005434267222881317, 0.027477655559778214, -0.04916076734662056, -0.006270875688642263, -0.024332556873559952, -0.007110548205673695, -0.04590023308992386, 0.010135435499250889, 0.030313685536384583, -0.009489934891462326, -0.03519432991743088, 0.05222484469413757, -0.06360185891389847, -0.11297279596328735, 0.07313546538352966, 0.006401898339390755, 0.04443066567182541, 0.006505480036139488, -0.017758529633283615, -0.056299708783626556, -0.11917147040367126, -0.041122373193502426, 0.027252282947301865, -0.04222923517227173, -1.3257565079909543e-33, 0.021304382011294365, -0.0013364689657464623, 0.01143589522689581, -0.003480107756331563, 0.08220425993204117, -0.018171515315771103, 0.0286893080919981, 0.040468502789735794, -0.07765387743711472, -0.01318084541708231, -0.051239509135484695, -0.03136978670954704, 0.0015680466312915087, 0.11157157272100449, -0.042424242943525314, -0.09505519270896912, 0.0020737573504447937, 0.0154647221788764, 0.033084265887737274, -0.03953345865011215, -0.010786126367747784, 0.05691711977124214, -0.02868444286286831, -0.06895621120929718, 0.04010992497205734, -0.018499715253710747, 0.02790447697043419, -0.04099172353744507, 0.006388970650732517, 0.07054797559976578, 0.02497701533138752, 0.05359545722603798, -0.007793134544044733, 0.05466712638735771, 0.004207099787890911, -0.001703006448224187, -0.045149579644203186, -0.09678523987531662, -0.033738721162080765, 0.029895607382059097, 0.008934969082474709, -0.023676350712776184, 0.0002773393061943352, -0.0431167408823967, -0.07009248435497284, 0.04440247267484665, 0.04964546486735344, 0.05746083706617355, 0.00906253419816494, -0.04870512709021568, 0.02861880138516426, -0.02888864278793335, 0.011194528080523014, -0.04658687487244606, -0.04968957602977753, -0.01923072710633278, 0.07030369341373444, -0.008348432369530201, 0.043132852762937546, -0.007907303981482983, -0.02194978855550289, 0.005151304416358471, -0.07151240110397339, 0.02486570179462433, 0.046813055872917175, -0.03216543421149254, -0.004179247189313173, -0.014282910153269768, 0.007703850977122784, 0.07491305470466614, 0.05578789860010147, -0.013461213558912277, -0.026385769248008728, 0.0044359066523611546, 0.020157696679234505, -0.06600527465343475, 0.020634658634662628, -0.00875493697822094, -0.053259797394275665, 0.04259606450796127, 0.014409148134291172, -0.016745494678616524, 0.038127560168504715, -0.05431101843714714, -0.12328258901834488, 0.051314350217580795, -0.003253000555559993, -0.011254509910941124, -0.03931129723787308, 0.016801834106445312, -0.05337335169315338, -0.0655682161450386, 0.016831425949931145, 0.024065261706709862, -0.033479899168014526, 9.72454793189104e-34, -0.07902710884809494, 0.00746555021032691, -0.05569947138428688, 0.05270599201321602, 0.02078324556350708, 0.009572505950927734, 0.025898784399032593, 0.08948235213756561, -0.03570648282766342, 0.039952363818883896, 0.04905903711915016, -0.01278811413794756, 0.028401795774698257, -0.017297353595495224, 0.10389617085456848, 0.019346389919519424, -0.018535621464252472, -0.11092258989810944, 0.006295242812484503, -0.01279879454523325, -0.062423333525657654, 0.06951376795768738, -0.040083304047584534, 0.05897102877497673, 0.007806804496794939, 0.00312510272487998, 0.04069577530026436, 0.03266848623752594, 0.0688127800822258, -0.037060510367155075, -0.126140296459198, -0.03141690418124199, 0.011576148681342602, 0.03148535266518593, 0.0033666419330984354, 0.03739805519580841, 0.06589242815971375, -0.10427549481391907, 0.02550903707742691, -0.043419983237981796, 0.03622234985232353, 0.06104821711778641, 0.016087090596556664, 0.02197645977139473, -0.0480540432035923, 0.034556806087493896, -0.021663593128323555, 0.08182217925786972, 0.01014777086675167, -0.018709490075707436, -0.004425495397299528, 0.012138905003666878, 0.000558346975594759, 0.04204576835036278, -0.07390907406806946, 0.08390834182500839, -0.06879064440727234, 0.02167677879333496, 0.08109252154827118, 0.021147524937987328, -0.015038980171084404, -0.08274517953395844, -0.04655919224023819, -0.017448486760258675, -0.010494397953152657, -0.004954999312758446, -0.056914858520030975, -0.007098443806171417, -0.04455544054508209, 0.06097828969359398, 0.10236074030399323, 0.03833019733428955, -0.003999911714345217, -0.05397043004631996, -0.03923134133219719, -0.04171064868569374, -0.027842702344059944, 0.001996975392103195, 0.015205305069684982, 0.01715199463069439, 0.024396987631917, -0.10179460048675537, 0.05698370561003685, 0.022121364250779152, 0.06129087135195732, -0.07862650603055954, 0.0010242513380944729, 0.06723365932703018, -0.005846406798809767, 0.07897509634494781, 0.01525599230080843, 0.05492938309907913, -0.045767661184072495, 0.10178030282258987, 0.009243356995284557, -2.3355317679829568e-8, 0.05527760833501816, -0.05313863605260849, 0.0026462050154805183, 0.048402246087789536, 0.0012027538614347577, 0.0005803031381219625, 0.05231282487511635, -0.00888031255453825, 0.039033208042383194, -0.01631111651659012, -0.022447245195508003, -0.013264067471027374, -0.07019946724176407, -0.0007374773267656565, -0.01379560586065054, 0.03302888572216034, -0.0895840972661972, 0.07311797142028809, -0.006742806173861027, -0.027723224833607674, 0.10099964588880539, 0.000966991763561964, 0.04059021174907684, -0.03732352703809738, -0.0366273857653141, 0.04303183779120445, 0.02149207703769207, 0.10387393832206726, -0.0052603078074753284, -0.05155038833618164, -0.03613210469484329, 0.02075246162712574, -0.035520173609256744, -0.07352553308010101, -0.05262522026896477, 0.15137939155101776, -0.07770801335573196, -0.06390548497438431, 0.03761952370405197, -0.003361316630616784, 0.08100306987762451, -0.05127030983567238, 0.08178820461034775, -0.007338931784033775, -0.018029039725661278, 0.01511016208678484, -0.00988916214555502, -0.14308691024780273, 0.041916947811841965, 0.005623942706733942, 0.032472193241119385, 0.00605853833258152, 0.0035148528404533863, 0.0604381300508976, -0.10221727192401886, 0.012255517765879631, 0.04110074043273926, -0.07611444592475891, -0.009586812928318977, -0.004642031621187925, -0.01992121897637844, 0.06902318447828293, 0.026592636480927467, -0.011606358923017979 ]
hf-internal-testing/tiny-random-big_bird
0ab074a1d464a4cc6846332560f1f2abca400a71
2022-03-25T17:49:02.000Z
[ "pytorch", "big_bird", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-big_bird
2,010
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
stas/tiny-m2m_100
4df2a26e27b5f4823e2e797424de47f14c2e1b27
2022-04-29T23:57:25.000Z
[ "pytorch", "m2m_100", "text2text-generation", "en", "transformers", "testing", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/tiny-m2m_100
2,009
null
transformers
--- language: - en thumbnail: tags: - testing license: apache-2.0 --- # Tiny M2M100 model This is a tiny model that is used in the `transformers` test suite. It doesn't do anything useful beyond functional testing. Do not try to use it for anything that requires quality. The model is indeed 4MB in size. You can see how it was created [here](https://huggingface.co/stas/tiny-m2m_100/blob/main/m2m-make-tiny-model.py) If you're looking for the real model, please go to [https://huggingface.co/facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M).
[ -0.06283226609230042, 0.0664181187748909, -0.010833976790308952, 0.021445905789732933, 0.074300616979599, -0.08732432126998901, -0.1254691779613495, 0.05449266359210014, -0.107417993247509, 0.0025695424992591143, 0.10799375176429749, -0.02743741124868393, 0.03798001632094383, 0.00909283384680748, -0.02114800736308098, 0.053301356732845306, 0.05518873408436775, -0.017070388421416283, -0.048467956483364105, 0.001121018547564745, 0.02281026914715767, 0.009327908977866173, 0.014792573638260365, -0.025211002677679062, -0.006761318538337946, -0.007963591255247593, -0.0027885609306395054, 0.029576200991868973, 0.051274508237838745, -0.12292520701885223, 0.07471103221178055, 0.11913695931434631, -0.004292456898838282, 0.02659882977604866, 0.12401683628559113, 0.05669669061899185, 0.025228627026081085, -0.045839592814445496, -0.011866191402077675, -0.0412861704826355, 0.08915621787309647, -0.021606087684631348, 0.07029861956834793, -0.09885143488645554, 0.013686789199709892, -0.0004198556416667998, 0.05257517844438553, -0.026859372854232788, -0.02880723774433136, -0.1109791025519371, -0.009156184270977974, -0.06185867637395859, -0.04119940474629402, 0.03662587329745293, -0.011056695133447647, -0.09163836389780045, -0.014736276119947433, -0.05204147845506668, -0.05427452549338341, 0.04126580432057381, 0.001542121870443225, 0.07402181625366211, -0.02665211632847786, 0.027759946882724762, 0.027969883754849434, 0.06271866708993912, 0.054294388741254807, -0.0790708139538765, -0.00582317216321826, -0.05749642103910446, 0.033642515540122986, -0.05282297357916832, 0.012135046534240246, 0.07507968693971634, -0.010353543795645237, -0.040902551263570786, 0.07133302837610245, 0.05668580159544945, 0.05499635636806488, 0.032625969499349594, -0.013625449500977993, -0.0740419328212738, 0.013349964283406734, -0.0321359820663929, 0.024197358638048172, 0.03123691864311695, 0.04850028455257416, 0.015248182229697704, -0.0035938022192567587, -0.06387573480606079, -0.04950427636504173, 0.015258928760886192, -0.11238671094179153, 0.07679209113121033, -0.02791331335902214, 0.006014329381287098, 0.00688217394053936, 0.000802624796051532, -0.08388719707727432, 0.10650420188903809, 0.07331874221563339, 0.01323260460048914, 0.09623398631811142, 0.026872610673308372, -0.0026525696739554405, 0.016382206231355667, 0.036280885338783264, 0.07862700521945953, 0.04738108441233635, 0.024681834504008293, 0.042876891791820526, -0.011220676824450493, -0.0856483206152916, -0.0214503463357687, 0.04129654914140701, -0.10847173631191254, 0.010038974694907665, -0.023932306095957756, -0.019765419885516167, 0.01226513460278511, 0.02401013858616352, 0.04107855632901192, -0.05215372517704964, -0.09284761548042297, -0.006584677845239639, 0.09566035866737366, -0.06102279946208, 1.3392664278307564e-33, 0.059199053794145584, 0.06334033608436584, 0.025201668962836266, -0.004712214693427086, 0.09236981719732285, 0.03900143504142761, 0.07539112865924835, 0.048981741070747375, -0.03108026646077633, -0.01080814003944397, -0.050742827355861664, -0.013505592942237854, -0.038692083209753036, 0.06746503710746765, -0.05322842299938202, -0.08000610023736954, 0.0040170736610889435, -0.023153765127062798, 0.009533480741083622, 0.03716116026043892, 0.006590251810848713, -0.013024557381868362, -0.011365590617060661, -0.04518936574459076, -0.018396930769085884, 0.01378901768475771, 0.07587756216526031, -0.04891170561313629, 0.02758961170911789, 0.05542782321572304, -0.07006170600652695, 0.03683176264166832, 0.00033775405609048903, -0.07479356229305267, -0.02419460564851761, -0.05461650341749191, -0.10144711285829544, -0.0744229406118393, -0.08722642064094543, -0.11052700877189636, 0.0011599039426073432, 0.013003057800233364, -0.07372099161148071, -0.02619396708905697, -0.08104799687862396, -0.04182500019669533, 0.0368197076022625, -0.03324376419186592, 0.035835254937410355, -0.03758877143263817, 0.027636991813778877, 0.017568202689290047, -0.04875807464122772, -0.010314653627574444, 0.011602370999753475, 0.021597011014819145, 0.10429747402667999, 0.0144322095438838, 0.009854668751358986, -0.03119400516152382, -0.007418102119117975, 0.011817429214715958, 0.02568710595369339, 0.07951889932155609, 0.1012992262840271, 0.010790395550429821, 0.001885525300167501, -0.000152128966874443, 0.006064622197300196, 0.008427854627370834, 0.006683467887341976, -0.04396329075098038, 0.025210319086909294, 0.017529670149087906, 0.04861350357532501, -0.1143312007188797, 0.054200056940317154, -0.034950435161590576, -0.03374166041612625, 0.007204002235084772, 0.019240280613303185, -0.002289267722517252, 0.06412486732006073, -0.04413279891014099, -0.053421974182128906, -0.0922991931438446, 0.09127645194530487, -0.04028146341443062, 0.0067418962717056274, -0.04508903622627258, 0.006334456615149975, 0.04451119154691696, 0.004356019198894501, -0.058537330478429794, -0.06296343356370926, -1.3836911144132154e-33, 0.017559705302119255, 0.05632994323968887, -0.013710008934140205, 0.1089765727519989, -0.03473532944917679, -0.07887095957994461, 0.05705004557967186, 0.1895528882741928, -0.07790482044219971, 0.01375906728208065, 0.057231493294239044, -0.02768300473690033, 0.034012556076049805, -0.10236230492591858, 0.08378855139017105, -0.025525948032736778, 0.014271494932472706, -0.1291714310646057, 0.09370208531618118, 0.00229838490486145, 0.021871039643883705, 0.09661778062582016, 0.045532774180173874, 0.011550196446478367, -0.07473783195018768, 0.0020682034082710743, -0.001659195520915091, -0.015599200502038002, 0.003565185470506549, -0.03347298130393028, -0.044012390077114105, 0.018357422202825546, -0.05900413542985916, 0.023557238280773163, -0.028519684448838234, -0.03622796759009361, 0.014826291240751743, 0.017353059723973274, 0.05413510650396347, 0.02398361638188362, 0.021088913083076477, 0.031680770218372345, -0.04140201210975647, 0.019165359437465668, -0.044431280344724655, -0.04491276666522026, 0.030220894142985344, -0.04667352885007858, 0.06952332705259323, -0.020409129559993744, 0.02433270402252674, 0.01904587261378765, -0.03082146681845188, 0.024483755230903625, -0.024788789451122284, -0.04921523109078407, -0.05304516851902008, 0.00536351790651679, 0.008862863294780254, -0.006956224329769611, -0.03296231850981712, -0.07893659919500351, -0.09188707172870636, -0.04807678610086441, -0.0067348056472837925, 0.019513355568051338, -0.04998160898685455, -0.03759758919477463, -0.001170401694253087, 0.06837120652198792, 0.05552159622311592, 0.038434673100709915, 0.06374293565750122, 0.04153713956475258, 0.01619899272918701, -0.05260901525616646, -0.05453427881002426, -0.005800427868962288, 0.10742687433958054, -0.066475048661232, -0.010827675461769104, 0.011448092758655548, -0.024222616106271744, -0.010976153425872326, 0.026544999331235886, -0.04769335314631462, 0.0007540728547610343, 0.09396103024482727, -0.022106247022747993, 0.03763182461261749, -0.029252270236611366, 0.09097245335578918, -0.017063841223716736, 0.05002850666642189, 0.02609165571630001, -5.0828830922000634e-8, 0.02100585773587227, 0.007908309809863567, -0.0056144725531339645, -0.008540989831089973, -0.07867763191461563, -0.033997971564531326, 0.023413142189383507, -0.0065374793484807014, 0.06839805096387863, 0.06158558651804924, 0.014648745767772198, 0.001989237265661359, -0.1249287948012352, 0.07050637900829315, -0.0193564984947443, -0.009344102814793587, -0.029442088678479195, 0.03172741085290909, -0.046107497066259384, -0.028810817748308182, -0.010824453085660934, 0.024740474298596382, 0.02649099752306938, -0.04499317333102226, 0.04009188711643219, 0.03608981519937515, -0.0037148380652070045, 0.08941172063350677, -0.0717809647321701, -0.05533640459179878, -0.006608814001083374, 0.051396433264017105, -0.052623748779296875, -0.05823181942105293, -0.03028411976993084, 0.07011653482913971, -0.0379040353000164, 0.032862115651369095, 0.05073193460702896, -0.01747780479490757, 0.04519009217619896, -0.02131834253668785, -0.03875080496072769, -0.006876983679831028, 0.0065108719281852245, -0.04758140817284584, -0.017487362027168274, -0.081653892993927, -0.059266217052936554, 0.02498715929687023, 0.044513504952192307, -0.020885329693555832, -0.056648433208465576, 0.020327575504779816, -0.06233281269669533, -0.017669452354311943, 0.036560721695423126, -0.02269653230905533, -0.0028188819997012615, 0.05325343459844589, 0.08465182781219482, 0.02954411692917347, 0.004947321489453316, 0.02688022330403328 ]
hf-internal-testing/tiny-random-mpnet
490e676cf9e1714ddd21f9169dc14652e9a9e7f4
2021-09-17T19:25:01.000Z
[ "pytorch", "tf", "mpnet", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-mpnet
2,008
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-electra
7479c5defabc4a550d08c170f7f4fb0b0e6be19b
2021-07-16T01:27:58.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hf-internal-testing
null
hf-internal-testing/tiny-electra
2,005
null
transformers
This is a tiny-electra random model to be used for basic testing.
[ -0.03501860052347183, 0.03153549134731293, -0.07524871081113815, 0.061836693435907364, 0.04573119431734085, -0.08133674412965775, 0.01244229357689619, 0.011787359602749348, 0.0000867993658175692, 0.05535188317298889, 0.0648735910654068, -0.010716596618294716, 0.015677087008953094, 0.0010169469751417637, -0.11600378900766373, -0.02944428287446499, 0.032986804842948914, -0.04179530218243599, -0.020813466981053352, 0.035072244703769684, 0.03754914551973343, 0.003755660494789481, -0.023382490500807762, -0.031548600643873215, -0.03275161609053612, -0.0821942612528801, 0.03119158372282982, 0.0922740176320076, 0.029894711449742317, -0.12236928194761276, 0.09551212191581726, 0.033652689307928085, 0.05415322631597519, -0.014422748237848282, 0.00711292726919055, -0.025845583528280258, -0.022444281727075577, -0.031825002282857895, -0.0339006669819355, 0.05637427419424057, 0.011470010504126549, -0.0834401473402977, 0.07669080793857574, 0.0229780375957489, 0.047452282160520554, -0.04337143525481224, -0.05702045559883118, -0.052229464054107666, -0.01305905357003212, -0.018892357125878334, 0.036789409816265106, -0.060668110847473145, -0.08380342274904251, 0.007317143492400646, 0.03470602631568909, -0.08473135530948639, -0.015115339308977127, -0.11787135154008865, -0.008481397293508053, 0.0038700809236615896, 0.06847703456878662, 0.005699884612113237, -0.09122633188962936, 0.060603730380535126, 0.04611140117049217, 0.011871139518916607, -0.004667986650019884, -0.03157634288072586, 0.05678008869290352, -0.14379917085170746, -0.07456054538488388, -0.013459380716085434, -0.0016644794959574938, 0.09085343778133392, 0.03091975674033165, 0.0033727807458490133, -0.01118948683142662, -0.03456279635429382, 0.02697504684329033, 0.07853702455759048, -0.12686949968338013, -0.06961346417665482, -0.04684227332472801, 0.004264296032488346, 0.0032340586185455322, 0.06848103553056717, 0.09962970018386841, 0.002053268486633897, 0.030131282284855843, -0.02342185191810131, -0.008578390814363956, 0.09232437610626221, -0.03754830360412598, 0.002181800315156579, -0.03668593615293503, 0.03686477616429329, 0.03233599290251732, -0.07245977967977524, 0.012863974086940289, 0.08163013309240341, 0.05597630888223648, 0.022554943338036537, 0.06623609364032745, 0.014026825316250324, -0.08083142340183258, -0.10964877903461456, 0.09370870888233185, -0.04606081172823906, 0.03744938597083092, -0.02268959768116474, -0.02129235677421093, 0.021607305854558945, -0.026906874030828476, 0.01744704134762287, 0.006616718601435423, -0.04375883564352989, -0.08574134111404419, 0.026438619941473007, -0.01650124415755272, 0.06783618777990341, 0.05668003857135773, 0.02004944533109665, -0.07230407744646072, -0.05165386572480202, 0.003728253301233053, 0.05558684095740318, -0.011670702137053013, -2.8654818241773586e-33, 0.04865003377199173, 0.00805780477821827, 0.013645470142364502, 0.06254998594522476, 0.08734729886054993, 0.055995240807533264, -0.010398667305707932, 0.03755765035748482, 0.0019412949914112687, 0.06594132632017136, -0.05389416217803955, 0.06683453172445297, -0.008523142896592617, 0.06970030814409256, -0.006980265490710735, -0.024099698290228844, -0.06046171858906746, 0.046888597309589386, -0.0038516023196280003, 0.030485263094305992, 0.02561798319220543, -0.002734073204919696, 0.031476590782403946, -0.07620441913604736, 0.06225012242794037, 0.03797101974487305, 0.031189320608973503, -0.012884828262031078, -0.0028074586298316717, 0.057072870433330536, -0.02816598117351532, 0.06433863192796707, -0.10286534577608109, 0.0008293476421386003, -0.0324653759598732, 0.036598626524209976, -0.007415255531668663, -0.032436590641736984, -0.02619699016213417, -0.030888373032212257, 0.02771337889134884, -0.027994658797979355, 0.051649078726768494, 0.010675666853785515, -0.031162617728114128, -0.01500824373215437, 0.02363884449005127, -0.0004651751078199595, 0.07766719907522202, -0.0031495762523263693, -0.009341913275420666, -0.027063563466072083, 0.016402214765548706, -0.006138352211564779, -0.00981680117547512, 0.13235649466514587, 0.010260005481541157, 0.018268026411533356, -0.030467649921774864, 0.05793016403913498, -0.065088652074337, 0.05919535085558891, -0.025060482323169708, 0.01756203919649124, 0.014438540674746037, 0.08027365058660507, -0.0703921765089035, -0.14495833218097687, 0.08370603621006012, 0.031506218016147614, 0.01973767764866352, -0.013205558061599731, 0.025084389373660088, 0.0036139588337391615, -0.014248854480683804, -0.03035976178944111, 0.021151449531316757, 0.021618051454424858, -0.001966361654922366, -0.041312411427497864, -0.0033462238498032093, -0.07080540806055069, -0.0031057647429406643, -0.09211941063404083, -0.1082182452082634, -0.031115448102355003, -0.01923321560025215, -0.00958364736288786, -0.0977439358830452, -0.06090417876839638, 0.03809957206249237, 0.021286122500896454, -0.0009663496748544276, -0.032695669680833817, 0.019184768199920654, 7.910512192732623e-34, -0.09593638777732849, 0.0010716773103922606, 0.019865551963448524, 0.11153340339660645, 0.08850078284740448, -0.0380234532058239, 0.0028388455975800753, 0.041533321142196655, -0.0040226406417787075, 0.06094569340348244, 0.03571508452296257, 0.03374040126800537, 0.08053933829069138, -0.02841844968497753, 0.0883592963218689, 0.042385444045066833, -0.025071484968066216, -0.10110513865947723, 0.05236368253827095, 0.027200566604733467, -0.004438404459506273, 0.12439672648906708, -0.057824961841106415, -0.05673102289438248, -0.0022600842639803886, 0.01868012174963951, -0.04168166220188141, -0.03796660527586937, 0.000532798352651298, -0.02214009314775467, -0.11942470073699951, -0.01525757648050785, 0.004492557607591152, 0.03126073256134987, -0.049420759081840515, -0.05636783689260483, 0.10949664562940598, -0.04572497680783272, 0.04329827427864075, -0.04359675571322441, 0.018544888123869896, 0.06400059163570404, 0.03068201057612896, -0.012923983857035637, 0.013140806928277016, 0.029094582423567772, 0.023511936888098717, 0.021939830854535103, 0.05818270146846771, 0.02105584554374218, 0.0025240725371986628, -0.017909441143274307, -0.07140558958053589, 0.02648693136870861, -0.04474623501300812, 0.004766231868416071, -0.08136669546365738, 0.04149813577532768, -0.013925251550972462, 0.08774853497743607, -0.02241567149758339, -0.036991801112890244, 0.007182118482887745, 0.02532920427620411, -0.05711476877331734, -0.014616968110203743, 0.009030311368405819, -0.01974649354815483, -0.010069403797388077, 0.0634203851222992, 0.10742273181676865, 0.05946098268032074, 0.024006934836506844, -0.05286959558725357, -0.027047453448176384, -0.14568325877189636, -0.0560046024620533, -0.04245482012629509, -0.009987901896238327, -0.036849670112133026, -0.008059894666075706, -0.004800619091838598, -0.002698146039620042, -0.014395286329090595, 0.012324294075369835, -0.05255004018545151, 0.02130402810871601, 0.01890440471470356, 0.0008472225163131952, 0.07678169012069702, -0.055556558072566986, 0.11005036532878876, 0.03851092979311943, 0.010280878283083439, -0.05878547951579094, -2.0255185972928302e-8, 0.07875022292137146, -0.050510477274656296, 0.06596582382917404, 0.027321424335241318, -0.02242131344974041, 0.018923914059996605, 0.002030714647844434, -0.06027798727154732, -0.005281882360577583, -0.07372169196605682, 0.08362428843975067, 0.032573260366916656, -0.01888127624988556, 0.021774694323539734, 0.0368863046169281, 0.006180077791213989, -0.0006208158447407186, 0.05847739428281784, -0.050299305468797684, -0.0022149747237563133, -0.0033360281959176064, 0.05523398518562317, 0.04660116136074066, -0.008632712066173553, 0.03210264816880226, 0.007703233044594526, -0.007085510063916445, 0.08409503847360611, 0.025116903707385063, -0.09610365331172943, -0.011902212165296078, 0.04752753674983978, 0.0006832325598224998, -0.002582396613433957, -0.061617154628038406, 0.16438962519168854, -0.032022155821323395, -0.02767755091190338, 0.023361727595329285, -0.006418323144316673, -0.0047886427491903305, -0.10417301952838898, -0.004629411268979311, -0.0008276287699118257, -0.04745645076036453, -0.02894662693142891, -0.05122434347867966, -0.16332796216011047, 0.019556090235710144, -0.017618723213672638, 0.002849276876077056, -0.010065109468996525, -0.04939025267958641, -0.03617147356271744, -0.034582048654556274, 0.07857736945152283, -0.012623089365661144, -0.015048986300826073, -0.006621593609452248, -0.009720888920128345, 0.051579054445028305, 0.054997142404317856, -0.03193158283829689, -0.01751052401959896 ]
hf-internal-testing/tiny-random-funnel
ec246a681806cada4b3c073569afba96f7ac8eb8
2021-09-17T19:25:04.000Z
[ "pytorch", "tf", "funnel", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-funnel
2,002
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
Helsinki-NLP/opus-mt-en-sv
13d9f7f708dd86e1edf61f0cd438298267b83850
2021-09-09T21:39:27.000Z
[ "pytorch", "rust", "marian", "text2text-generation", "en", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sv
1,998
1
transformers
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-sv * source languages: en * target languages: sv * OPUS readme: [en-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.zip) * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.test.txt) * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.sv | 60.1 | 0.736 |
[ -0.05733996257185936, -0.026217835023999214, 0.018503934144973755, -0.012865296564996243, 0.0037398573476821184, 0.08888401836156845, -0.06012595444917679, 0.030412517488002777, 0.02650635875761509, -0.011737650260329247, 0.00891454890370369, -0.04083113372325897, -0.08312101662158966, -0.029162190854549408, -0.033798396587371826, -0.0075004249811172485, -0.034235820174217224, 0.08051542192697525, -0.06830327212810516, -0.01909932680428028, 0.03672266751527786, 0.028705336153507233, 0.030521303415298462, -0.012708690017461777, 0.11048060655593872, 0.08588480204343796, -0.10123922675848007, -0.008989302441477776, 0.09408511966466904, -0.0441548153758049, -0.007414121180772781, -0.0011271584080532193, 0.059314992278814316, 0.07993704825639725, 0.03926882520318031, 0.07574246823787689, -0.011569298803806305, -0.06934447586536407, -0.03505153954029083, 0.05365534499287605, 0.03827643766999245, 0.053413134068250656, -0.04589304327964783, -0.006094362586736679, 0.0435447171330452, 0.020542053505778313, -0.08648787438869476, 0.016512690111994743, 0.014723648317158222, 0.0010612531332299113, -0.11947041749954224, -0.017031831666827202, 0.023840727284550667, 0.07174751907587051, -0.07941726595163345, 0.035376306623220444, 0.055552005767822266, -0.0035458458587527275, 0.0680321678519249, -0.022282611578702927, -0.1248168870806694, -0.03534495830535889, -0.09759995341300964, -0.000018266251572640613, -0.010307385586202145, -0.019212273880839348, 0.01501528825610876, 0.06096666306257248, -0.06540637463331223, 0.05790381878614426, -0.01192146260291338, -0.00594476331025362, 0.003884296864271164, 0.05981786921620369, -0.01377585157752037, 0.039596572518348694, 0.008215396665036678, -0.0694739818572998, 0.0009614856098778546, -0.08041852712631226, 0.008734402246773243, -0.056914471089839935, 0.05703411251306534, 0.0008102222927846014, 0.07774956524372101, 0.011935974471271038, 0.018842114135622978, -0.001183255109935999, -0.014891121536493301, 0.04628335312008858, -0.07083084434270859, -0.043075576424598694, -0.0004544729890767485, 0.012397653423249722, 0.0060692597180604935, 0.0572156198322773, 0.01599133014678955, 0.06438834965229034, 0.02042330615222454, 0.06253992766141891, 0.026800910010933876, 0.010824681259691715, 0.06914796680212021, -0.04337283596396446, -0.10537111014127731, -0.025934353470802307, 0.06140593811869621, 0.04812313988804817, 0.0029607422184199095, -0.08706263452768326, 0.019983965903520584, -0.027895716950297356, -0.020017409697175026, -0.08393633365631104, 0.031068192794919014, -0.05637199804186821, 0.013307387009263039, -0.01173231191933155, -0.015753503888845444, 0.04919538274407387, -0.03851527348160744, -0.013763802126049995, -0.02548707276582718, 0.008141864091157913, -0.04691184684634209, -0.05399065092206001, 0.023645954206585884, 8.31248717967569e-34, 0.05022300034761429, -0.030464667826890945, -0.024610400199890137, -0.00043127575190737844, -0.06971555203199387, -0.011033378541469574, -0.034090664237737656, 0.02717456966638565, -0.11182677000761032, -0.0014321244088932872, -0.013591323979198933, -0.013961863704025745, -0.08343179523944855, 0.019637595862150192, -0.022892262786626816, 0.017927436158061028, 0.07686670869588852, 0.016649939119815826, 0.029210170730948448, 0.02903961017727852, 0.08145651966333389, 0.04654150456190109, -0.007197648286819458, -0.041566457599401474, -0.0498504675924778, 0.050852179527282715, 0.02021351270377636, -0.11830894649028778, -0.12205364555120468, 0.01651395671069622, -0.09839661419391632, 0.029213691130280495, -0.013918107375502586, 0.01508075837045908, -0.0069982195273041725, -0.019060833379626274, -0.002693123882636428, -0.005621030926704407, -0.047176457941532135, -0.09294277429580688, -0.002424401929602027, 0.011522646062076092, -0.01744142547249794, -0.05954161658883095, 0.03379439190030098, 0.01856314018368721, 0.0009905846090987325, 0.008605648763477802, 0.10523494333028793, 0.0024502133019268513, 0.008123919367790222, 0.06283087283372879, -0.05528442934155464, 0.004973942879587412, 0.034536343067884445, 0.11508549004793167, 0.0765155702829361, 0.013185769319534302, 0.019467003643512726, 0.03527981415390968, 0.06933695822954178, 0.032862477004528046, 0.02210930921137333, 0.011447291821241379, 0.10499569028615952, -0.01850229687988758, -0.03402069956064224, -0.07462755590677261, 0.06940875202417374, 0.039257872849702835, -0.14163067936897278, -0.04802917316555977, 0.06501121819019318, 0.0819903016090393, 0.05573343485593796, -0.022939227521419525, -0.027686186134815216, -0.024221526458859444, -0.01959657296538353, -0.020897461101412773, -0.07057557255029678, 0.017077481374144554, -0.0010119711514562368, -0.024258827790617943, -0.02500239759683609, -0.0027463152073323727, 0.04975736141204834, -0.07027111202478409, -0.04278341308236122, 0.00040383345913141966, 0.044984765350818634, 0.04948042705655098, -0.09487809985876083, -0.010065140202641487, -0.007503151893615723, -1.549094006162458e-33, 0.0860731452703476, 0.017262516543269157, -0.05247551575303078, 0.07170981168746948, -0.026122525334358215, -0.06546612828969955, -0.0011655710404738784, 0.11471722275018692, 0.0483442023396492, 0.051387909799814224, 0.0719359815120697, -0.14453226327896118, 0.026392001658678055, -0.07345808297395706, 0.06951995939016342, -0.04517272487282753, -0.009838469326496124, 0.0515676848590374, 0.027269715443253517, 0.024956580251455307, 0.014997970312833786, 0.09043712168931961, -0.018832115456461906, 0.0939713716506958, -0.0005589217180386186, -0.0240783654153347, -0.011372996494174004, 0.07640894502401352, -0.0033985082991421223, -0.00856047309935093, 0.0035929863806813955, -0.003396125975996256, -0.10814815759658813, -0.01769261807203293, -0.06922831386327744, 0.04689301922917366, 0.02489318512380123, 0.035680368542671204, 0.035970866680145264, 0.0653262510895729, 0.057099033147096634, 0.07072703540325165, -0.04521647095680237, -0.032769110053777695, 0.014033057726919651, -0.03256602585315704, 0.011452832259237766, 0.008140301331877708, 0.0008033349877223372, -0.08585818856954575, 0.023025143891572952, -0.0003118524618912488, -0.08310036361217499, -0.010134603828191757, -0.008220835588872433, -0.07676286995410919, -0.017729850485920906, -0.13388365507125854, -0.05010807141661644, -0.022418353706598282, -0.015006289817392826, 0.030588248744606972, -0.0438365712761879, -0.06912010908126831, 0.03147801384329796, -0.0012659018393605947, 0.039950188249349594, 0.008855660445988178, 0.016889745369553566, 0.05894661322236061, -0.02637922577559948, -0.05814644321799278, 0.07087266445159912, 0.09146378934383392, 0.0019240730907768011, -0.05019286274909973, -0.041109684854745865, 0.03383777290582657, 0.055256832391023636, -0.07964544743299484, -0.025428669527173042, 0.018149150535464287, 0.011325359344482422, 0.043049126863479614, 0.1126742735505104, 0.1106194481253624, 0.02598787099123001, -0.0034613963216543198, -0.008945813402533531, 0.07130618393421173, 0.022110210731625557, 0.021438095718622208, 0.018766136839985847, 0.11184791475534439, -0.00715851504355669, -4.965154687397444e-8, -0.09687219560146332, 0.004911581985652447, -0.11086437851190567, 0.04993084445595741, -0.04268181324005127, -0.0735488161444664, -0.06410493701696396, -0.025382474064826965, -0.05324063077569008, -0.02238025888800621, -0.009494544938206673, 0.020167654380202293, -0.07326023280620575, -0.010446717962622643, -0.042614471167325974, 0.01707579381763935, -0.015074197202920914, 0.09150262176990509, -0.02712886966764927, -0.03016963228583336, 0.05590159073472023, 0.04955258220434189, 0.03865884616971016, -0.06863176077604294, -0.005780661012977362, 0.0033925827592611313, -0.042007509618997574, 0.035013724118471146, 0.01829158514738083, 0.008446168154478073, 0.0402509942650795, 0.043193407356739044, -0.015930937603116035, -0.09050533175468445, 0.05273185670375824, 0.06264108419418335, -0.0013672715285792947, -0.03149295598268509, -0.013339225202798843, 0.07080470770597458, 0.09172149002552032, 0.03995486721396446, -0.10449466854333878, 0.026216302067041397, 0.027038903906941414, -0.024427779018878937, -0.0579257495701313, -0.03149574622511864, 0.034507088363170624, -0.06438866257667542, 0.07882561534643173, -0.06385833770036697, -0.05978259816765785, 0.02806621417403221, 0.03441471979022026, 0.007334426511079073, 0.06708201766014099, -0.007877635769546032, 0.007801218889653683, -0.014044053852558136, 0.048198550939559937, -0.024124780669808388, -0.021421222016215324, -0.016138724982738495 ]
hf-internal-testing/tiny-random-prophetnet
d5071e4655fd0413b0e71405a91dfb4280e31b81
2021-09-17T19:24:57.000Z
[ "pytorch", "prophetnet", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-prophetnet
1,998
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-random-mobilebert
1f919a6d77ef448d41e0de29f79f854ace43bc4c
2021-09-17T19:24:24.000Z
[ "pytorch", "tf", "mobilebert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-mobilebert
1,996
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-random-squeezebert
da3eaaeb3b2fa22836d34097046f192db387e961
2021-09-17T19:25:10.000Z
[ "pytorch", "squeezebert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-squeezebert
1,995
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
Helsinki-NLP/opus-mt-tc-big-en-tr
dc016b6b79636a066052e581101c734ca5934667
2022-06-01T13:01:51.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tr", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-tr
1,995
1
transformers
--- language: - en - tr tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-tr results: - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: flores101-devtest type: flores_101 args: eng tur devtest metrics: - name: BLEU type: bleu value: 31.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newsdev2016 type: newsdev2016 args: eng-tur metrics: - name: BLEU type: bleu value: 21.9 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-tur metrics: - name: BLEU type: bleu value: 42.3 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2016 type: wmt-2016-news args: eng-tur metrics: - name: BLEU type: bleu value: 23.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2017 type: wmt-2017-news args: eng-tur metrics: - name: BLEU type: bleu value: 25.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2018 type: wmt-2018-news args: eng-tur metrics: - name: BLEU type: bleu value: 22.6 --- # opus-mt-tc-big-en-tr Neural machine translation model for translating from English (en) to Turkish (tr). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): tur * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-tur README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tur/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "I know Tom didn't want to eat that.", "On Sundays, we would get up early and go fishing." ] model_name = "pytorch-models/opus-mt-tc-big-en-tr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tom'un bunu yemek istemediğini biliyorum. # Pazar günleri erkenden kalkıp balık tutmaya giderdik. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-tr") print(pipe("I know Tom didn't want to eat that.")) # expected output: Tom'un bunu yemek istemediğini biliyorum. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-tur | tatoeba-test-v2021-08-07 | 0.68726 | 42.3 | 13907 | 84364 | | eng-tur | flores101-devtest | 0.62829 | 31.4 | 1012 | 20253 | | eng-tur | newsdev2016 | 0.58947 | 21.9 | 1001 | 15958 | | eng-tur | newstest2016 | 0.57624 | 23.4 | 3000 | 50782 | | eng-tur | newstest2017 | 0.58858 | 25.4 | 3007 | 51977 | | eng-tur | newstest2018 | 0.57848 | 22.6 | 3000 | 53731 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:11:39 EEST 2022 * port machine: LM0-400-22516.local
[ -0.027986979112029076, -0.03167511522769928, -0.0033575885463505983, 0.0027195753064006567, 0.026706408709287643, -0.012718847952783108, 0.02529796026647091, -0.026579199358820915, 0.027986768633127213, -0.021980924531817436, 0.00827842392027378, -0.163065567612648, -0.02755395881831646, -0.026454510167241096, -0.018146811053156853, -0.04358651116490364, -0.04521859064698219, -0.029275916516780853, -0.07922603189945221, -0.11339493095874786, 0.014955463819205761, 0.08683536946773529, 0.03218516334891319, 0.011351463384926319, 0.030843498185276985, 0.00789207685738802, -0.1179218515753746, 0.003485017688944936, -0.016013972461223602, -0.07390624284744263, -0.007445275317877531, 0.10778167843818665, -0.002141897566616535, 0.038432005792856216, 0.07348674535751343, 0.1100495383143425, -0.06634164601564407, -0.0350036695599556, -0.014066116884350777, -0.030149592086672783, 0.002615937264636159, 0.01341820228844881, 0.07376554608345032, -0.05485406517982483, 0.03554701805114746, -0.06849592924118042, -0.06588739901781082, -0.058366674929857254, 0.037006277590990067, 0.04909554123878479, -0.13829630613327026, 0.043826598674058914, -0.05309535562992096, 0.04919777065515518, 0.03401516377925873, 0.011459378525614738, -0.07683129608631134, -0.010937361046671867, 0.08834794163703918, -0.05085603892803192, -0.05863119289278984, -0.015999704599380493, -0.0639122873544693, 0.0020295651629567146, -0.028846489265561104, -0.025083158165216446, 0.00043527749949134886, 0.042619504034519196, -0.046782903373241425, 0.07462530583143234, -0.002437159651890397, 0.045678190886974335, -0.06592818349599838, 0.08582020550966263, 0.0017232035752385855, 0.02809666283428669, 0.010800374671816826, -0.010631941258907318, 0.03940858319401741, -0.10349807888269424, -0.025295112282037735, -0.02012750878930092, 0.011399672366678715, -0.01591394655406475, 0.04893948510289192, -0.02846105955541134, 0.054895490407943726, -0.008620287291705608, 0.01650688238441944, -0.010480789467692375, 0.013350863009691238, -0.015941325575113297, -0.012604320421814919, 0.0776282474398613, 0.0034604135435074568, 0.0008342875516973436, 0.0029367131646722555, 0.07241680473089218, 0.014193267561495304, 0.08192698657512665, -0.0032153711654245853, 0.045017555356025696, 0.03535999357700348, 0.029163895174860954, -0.07871899753808975, -0.012500028125941753, 0.03031829185783863, 0.043442174792289734, -0.01609855145215988, -0.030021077021956444, 0.003395967883989215, 0.031708840280771255, 0.005740190856158733, -0.04897806793451309, 0.0176395196467638, -0.01720833219587803, -0.030758628621697426, -0.031505655497312546, 0.007910395972430706, 0.0860326886177063, -0.01831263117492199, -0.0031062988564372063, -0.03820699080824852, -0.02764885686337948, -0.06939013302326202, -0.0031825422775000334, 0.006718805525451899, 1.1498012034543801e-32, 0.07653703540563583, -0.004336502403020859, 0.07007759809494019, -0.025370532646775246, 0.01250851433724165, -0.025849442929029465, -0.06709180772304535, 0.05915834382176399, -0.10032331198453903, -0.001921023242175579, -0.07374368607997894, -0.01410975493490696, -0.10007819533348083, 0.0058073303662240505, 0.048486482352018356, -0.03292011097073555, 0.0036710838321596384, 0.025310475379228592, -0.03026479110121727, 0.050517670810222626, 0.060629211366176605, -0.015111476182937622, -0.02143450640141964, -0.04387066513299942, 0.003848320571705699, 0.06109493225812912, 0.0437876358628273, -0.07254815846681595, -0.08399713784456253, 0.04792589321732521, -0.06755109131336212, 0.019939441233873367, -0.044366367161273956, 0.010823325254023075, 0.006887252442538738, -0.06609226763248444, 0.0005996658583171666, -0.0008266547811217606, -0.01645359955728054, -0.003204731270670891, 0.004076886456459761, 0.04548560082912445, -0.08839491009712219, -0.03238259628415108, 0.008575295098125935, -0.02267151139676571, 0.03653206676244736, -0.02181849256157875, 0.053725916892290115, 0.0192842036485672, -0.02720741555094719, 0.0016723546432331204, -0.036413948982954025, -0.0317629873752594, -0.018962042406201363, 0.03892180696129799, 0.051918186247348785, 0.0627615749835968, 0.0098638366907835, 0.02050926350057125, -0.009082367643713951, 0.03786304220557213, 0.03650152310729027, 0.006714909803122282, 0.09837640076875687, -0.0010085083777084947, -0.000021750101950601675, -0.025918763130903244, 0.06541416049003601, -0.012844597920775414, -0.04510369896888733, -0.08465045690536499, 0.05489141866564751, 0.06763970851898193, 0.1397312432527542, -0.014971481636166573, 0.012872911058366299, -0.0654413253068924, -0.005329070147126913, 0.015661325305700302, -0.0606716014444828, 0.011191820725798607, -0.011142013594508171, -0.06067289784550667, -0.009779202751815319, -0.020839925855398178, 0.06181424856185913, -0.04060646891593933, -0.04064740985631943, -0.020194003358483315, -0.04808276146650314, 0.07782337814569473, -0.09125904738903046, -0.03780463710427284, -0.0829806700348854, -1.1306190458272805e-32, 0.0062921177595853806, 0.04625711590051651, -0.004614903125911951, 0.0313383974134922, 0.004999659024178982, -0.08374829590320587, 0.10490182787179947, 0.05600385740399361, 0.11123908311128616, 0.02049649879336357, 0.051305510103702545, -0.12481710314750671, 0.036476071923971176, -0.0380854494869709, 0.05603990703821182, -0.013487451709806919, 0.006020266562700272, -0.021105995401740074, -0.05366230010986328, 0.07056572288274765, -0.07273901998996735, 0.0938025563955307, -0.06368837505578995, 0.08819890022277832, -0.02150004729628563, 0.007095520384609699, -0.025499887764453888, 0.016543740406632423, 0.027094915509223938, -0.062485963106155396, 0.006977941375225782, -0.01290410291403532, -0.11494681984186172, 0.05176973715424538, -0.07417552918195724, 0.0032692730892449617, 0.03819212689995766, 0.0017167461337521672, -0.02152777649462223, 0.14575091004371643, 0.05944281816482544, 0.08489912748336792, -0.0708928257226944, -0.036892764270305634, 0.011855843476951122, -0.013754191808402538, 0.014572955667972565, 0.02889254502952099, -0.04068486765027046, -0.0752076581120491, 0.09965207427740097, 0.045699987560510635, -0.0786939412355423, -0.017705386504530907, 0.018492309376597404, -0.0806533619761467, -0.007867608219385147, -0.1270216852426529, -0.11091002076864243, -0.06552762538194656, 0.018965182825922966, -0.024213077500462532, 0.0036661347839981318, -0.049705229699611664, 0.1015942394733429, 0.028098059818148613, -0.00006112203118391335, -0.034287042915821075, -0.00047630866174586117, 0.015333186835050583, 0.014261338859796524, -0.051879093050956726, 0.029394205659627914, -0.017718585208058357, 0.045536644756793976, -0.0006566533702425659, -0.07289719581604004, -0.016840778291225433, 0.07424396276473999, -0.02272152341902256, -0.08877184242010117, 0.04734509065747261, 0.08172757923603058, 0.019489288330078125, -0.023871323093771935, 0.06481542438268661, -0.008360403589904308, 0.07754845172166824, 0.03781166300177574, 0.06540917605161667, -0.019402548670768738, -0.044357363134622574, 0.0076790121383965015, 0.12333008646965027, -0.010703678242862225, -6.228386695283916e-8, -0.056365858763456345, -0.009465239942073822, -0.12628397345542908, 0.06657064706087112, -0.039193328469991684, -0.015649445354938507, -0.06066722422838211, 0.0013812134275212884, 0.04535182565450668, -0.03500109165906906, 0.026152867823839188, -0.004332997370511293, -0.08711820095777512, 0.025949200615286827, 0.017357362434267998, -0.02776765078306198, -0.02145479992032051, 0.11058901250362396, -0.025456884875893593, -0.06426352262496948, 0.05517084151506424, 0.05189172178506851, -0.004136556759476662, -0.04465089738368988, 0.04173542186617851, -0.019889602437615395, -0.026502320542931557, 0.027999484911561012, 0.03474272042512894, 0.00042221948388032615, 0.053079038858413696, -0.039111677557229996, -0.03240811824798584, -0.057774078100919724, 0.07834666222333908, 0.023244069889187813, -0.010828856378793716, 0.033326275646686554, 0.01778707094490528, 0.06725253164768219, 0.0403192900121212, 0.046061038970947266, -0.09885360300540924, 0.04389570280909538, 0.01253118459135294, -0.03773673251271248, -0.06100030615925789, 0.01996324583888054, 0.041243840008974075, -0.07344275712966919, 0.03391018509864807, -0.07625768333673477, -0.05595686286687851, -0.0019439877942204475, 0.06319296360015869, 0.032763008028268814, 0.021591980010271072, 0.0019389452645555139, -0.0027382373809814453, -0.07771018147468567, 0.08158725500106812, -0.03401469066739082, -0.09139243513345718, -0.0320136584341526 ]
hf-internal-testing/tiny-layoutlm
7bc6366344bf3e7363a5e0e2f4fdd3087ab68e4a
2021-08-04T04:33:04.000Z
[ "pytorch", "layoutlm", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hf-internal-testing
null
hf-internal-testing/tiny-layoutlm
1,992
null
transformers
This is a tiny-layoutlm random model to be used for basic testing.
[ -0.03318405523896217, 0.0012343220878392458, -0.07536199688911438, 0.0014319210313260555, 0.014109555631875992, -0.0634647086262703, -0.014394184574484825, -0.01187045220285654, 0.0069629424251616, 0.011518323794007301, 0.06769188493490219, -0.0023834644816815853, 0.05398649722337723, 0.006080150604248047, -0.11198654770851135, -0.043609391897916794, 0.03979593515396118, -0.014882856979966164, -0.03473272547125816, 0.012141297571361065, -0.01717432029545307, 0.019509905949234962, -0.025610817596316338, -0.0063265105709433556, -0.02091010846197605, -0.06226439028978348, 0.07435228675603867, 0.06334151327610016, 0.06253356486558914, -0.10538532584905624, 0.08568593859672546, 0.07708388566970825, 0.06827837973833084, 0.02790968492627144, 0.052872154861688614, -0.03585398197174072, -0.03986323997378349, -0.006604828406125307, -0.006966238841414452, 0.028111563995480537, -0.04290612041950226, -0.06135588139295578, 0.076189324259758, 0.04440850019454956, 0.03382571414113045, 0.005247427150607109, -0.07580521702766418, -0.06926772743463516, -0.03936469554901123, -0.008900225162506104, -0.010195931419730186, -0.03977265954017639, -0.06731283664703369, -0.01512584276497364, 0.017803682014346123, -0.042924780398607254, -0.008263788186013699, -0.0877036526799202, -0.04229407012462616, 0.05791078507900238, 0.04826287552714348, -0.015413089655339718, -0.05948527529835701, 0.061493586748838425, 0.05428450182080269, 0.07026541233062744, -0.033678166568279266, -0.013624027371406555, 0.045024774968624115, -0.13228167593479156, -0.08965794742107391, 0.006442916113883257, 0.009985986165702343, 0.10393153131008148, 0.059971362352371216, -0.002757210750132799, -0.04786556214094162, -0.06723368167877197, 0.04710371047258377, -0.017627723515033722, -0.11305058002471924, -0.023314738646149635, 0.010068015195429325, 0.041044287383556366, 0.03743699938058853, 0.0439995676279068, 0.09088148921728134, 0.04343879967927933, 0.02533509023487568, -0.0048330845311284065, -0.015140905976295471, 0.08836447447538376, -0.06380189955234528, 0.021481933072209358, -0.08569582551717758, 0.04138382896780968, 0.05970973148941994, -0.11803388595581055, -0.007732028141617775, 0.0812426432967186, 0.033515557646751404, -0.018740298226475716, 0.12951454520225525, 0.011486977338790894, -0.00990112405270338, -0.09604383260011673, 0.08825619518756866, -0.0522223599255085, 0.028866305947303772, -0.05246049165725708, -0.018145252019166946, 0.03893425688147545, -0.06698814779520035, -0.0031982806976884604, -0.018952149897813797, -0.10232043266296387, -0.04490627720952034, 0.014336276799440384, -0.0058431476354599, 0.04342436417937279, 0.056171804666519165, 0.0404573529958725, -0.08713573962450027, -0.06967293471097946, -0.048027053475379944, 0.038587406277656555, -0.007200327236205339, -2.360956342726571e-33, 0.047714512795209885, -0.00398619519546628, -0.019894862547516823, 0.0890006348490715, 0.11287137120962143, 0.044002894312143326, -0.00971592590212822, 0.022316593676805496, -0.00046509585808962584, 0.03498026356101036, 0.0010246700840070844, -0.02391897328197956, -0.026361413300037384, 0.08548688888549805, 0.03073832392692566, -0.03203701972961426, -0.040140122175216675, 0.10377375036478043, -0.029184211045503616, 0.016858641058206558, 0.022334666922688484, 0.01069451030343771, 0.021978529170155525, -0.08412621915340424, 0.05649914965033531, 0.06448538601398468, 0.0024488007184118032, -0.0061989822424948215, -0.004201582167297602, 0.05310634523630142, -0.05068754404783249, 0.05642734467983246, -0.10006444901227951, -0.006924056448042393, -0.009647014550864697, 0.005732821300625801, -0.0026096461806446314, -0.03011990152299404, -0.03336043283343315, -0.02737361565232277, -0.007282678037881851, -0.053035981953144073, 0.027753259986639023, -0.04222765192389488, -0.048236578702926636, -0.012945994734764099, 0.016767116263508797, 0.014358626678586006, 0.058442432433366776, -0.04682460054755211, 0.01853475160896778, 0.017879635095596313, 0.037219755351543427, -0.025410864502191544, -0.012337742373347282, 0.026641152799129486, 0.032606761902570724, 0.0046071759425103664, -0.01091225165873766, 0.10704806447029114, -0.05552608519792557, 0.04154875501990318, -0.05488951504230499, 0.03806711733341217, 0.014960577711462975, 0.02749808132648468, -0.07152828574180603, -0.17061443626880646, 0.07970163226127625, 0.04843365028500557, 0.029922176152467728, -0.0023705651983618736, 0.0005511559429578483, 0.037894513458013535, -0.06552314013242722, -0.026404473930597305, 0.010532468557357788, -0.004747261758893728, -0.052810680121183395, -0.018932223320007324, -0.017709510400891304, -0.025200363248586655, -0.0035321912728250027, -0.10356905311346054, -0.1175520122051239, -0.036152396351099014, 0.02641826868057251, -0.0554284006357193, -0.09609292447566986, -0.08927319198846817, -0.01632019504904747, -0.0053239855915308, 0.03001469559967518, 0.010500342585146427, 0.04616227000951767, 7.274842041183874e-34, -0.11753882467746735, 0.032999467104673386, 0.027950037270784378, 0.09395494312047958, 0.04687255248427391, -0.04147868603467941, 0.03725219517946243, 0.04787065088748932, 0.012726168148219585, 0.051597412675619125, 0.004441327415406704, 0.047333668917417526, 0.017043253406882286, -0.02440822310745716, 0.03523138538002968, 0.0398077555000782, -0.006186674349009991, -0.10126906633377075, 0.030398186296224594, 0.011106587946414948, 0.01638253778219223, 0.11788105964660645, -0.09878220409154892, -0.01830233447253704, 0.010235436260700226, 0.04156108945608139, -0.013332098722457886, 0.0375269316136837, 0.006326044909656048, 0.017016280442476273, -0.08509556204080582, -0.02033464051783085, 0.015509874559938908, -0.0025675345677882433, -0.0003560149052646011, -0.023801852017641068, 0.08082840591669083, -0.012445768341422081, 0.011002453044056892, -0.02447778917849064, -0.002758831949904561, 0.031419165432453156, -0.015951281413435936, 0.025521960109472275, -0.016913708299398422, 0.04852579906582832, 0.0394783578813076, 0.0010432401904836297, 0.052936770021915436, -0.010037699714303017, -0.015504103153944016, 0.04627273976802826, -0.03224792703986168, -0.0017457903595641255, -0.07656901329755783, 0.033388152718544006, -0.1292300671339035, 0.02312132529914379, 0.019843734800815582, 0.05799457058310509, -0.03718588501214981, -0.02666494995355606, -0.0173113364726305, 0.026038426905870438, -0.014940072782337666, -0.01422030571848154, -0.03362421318888664, -0.07554532587528229, -0.04163643717765808, 0.06455931812524796, 0.07164648920297623, 0.06633193045854568, 0.02607349492609501, 0.007195749320089817, 0.014833459630608559, -0.15351158380508423, -0.0001446988753741607, -0.014824788086116314, 0.008295158855617046, 0.017131786793470383, 0.017529336735606194, -0.0697018951177597, 0.020611559972167015, 0.007440756540745497, 0.013232029043138027, -0.0405438095331192, 0.014181981794536114, 0.05688364803791046, 0.02975742518901825, 0.06575821340084076, -0.07401331514120102, 0.09996472299098969, 0.026372363790869713, 0.04528648406267166, -0.04350852593779564, -2.0624961294402056e-8, 0.048095449805259705, -0.09161525964736938, 0.04450240358710289, 0.01450835820287466, -0.03276071324944496, 0.049854643642902374, 0.02354777231812477, -0.04572976008057594, -0.018987352028489113, -0.06682020425796509, 0.03563378378748894, 0.03718213364481926, -0.09036702662706375, 0.037246499210596085, 0.015414698049426079, 0.0294790156185627, -0.02813219092786312, 0.04989713057875633, -0.0491945743560791, -0.0262227151542902, 0.0071798572316765785, 0.04792073369026184, 0.06174562871456146, -0.04495185241103172, -0.01993047632277012, 0.011165859177708626, 0.004644801374524832, 0.09553325176239014, 0.021647723391652107, -0.08636597543954849, 0.04748916253447533, 0.02910204790532589, 0.04402901977300644, 0.019573470577597618, -0.019922038540244102, 0.20505249500274658, -0.05470672622323036, 0.01709340512752533, 0.008265708573162556, -0.00022161667584441602, -0.020605988800525665, -0.09354467689990997, -0.0053907353430986404, 0.01133069209754467, -0.004588003270328045, -0.016102883964776993, -0.03033267892897129, -0.11080849915742874, 0.050052717328071594, -0.04454699158668518, -0.020472394302487373, 0.008341453969478607, -0.04132016748189926, -0.012685125693678856, -0.02768346294760704, 0.09131579101085663, 0.03547540679574013, -0.008644286543130875, 0.04473497346043587, -0.001493514166213572, 0.011568427085876465, 0.0898667648434639, -0.023697897791862488, -0.033647969365119934 ]
hf-internal-testing/tiny-random-gpt_neo
b95a8110971dfc560caa02c286c3b8aa0118941a
2021-09-17T19:25:26.000Z
[ "pytorch", "gpt_neo", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-gpt_neo
1,992
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-random-led
2774e58f25d3fdda4c0d86b140cca8e049ee6a9f
2021-09-17T19:24:21.000Z
[ "pytorch", "tf", "led", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-led
1,992
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-random-deberta-v2
924b47948998e199d88e95e1df46ab125e0f325a
2021-09-17T19:23:17.000Z
[ "pytorch", "tf", "deberta-v2", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-deberta-v2
1,991
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
lincoln/mbart-mlsum-automatic-summarization
17a3a2e474932a90e664ef2c75c5e46ef964fc1a
2021-09-07T08:21:55.000Z
[ "pytorch", "tf", "mbart", "text2text-generation", "fr", "dataset:MLSUM", "arxiv:2004.14900", "transformers", "summarization", "bart", "license:mit", "autotrain_compatible" ]
summarization
false
lincoln
null
lincoln/mbart-mlsum-automatic-summarization
1,991
3
transformers
--- language: - fr license: mit datasets: - MLSUM pipeline_tag: "summarization" widget: - text: « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. tags: - summarization - mbart - bart --- # Résumé automatique d'article de presses Ce modèles est basé sur le modèle [`facebook/mbart-large-50`](https://huggingface.co/facebook/mbart-large-50) et été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM. L'hypothèse à été faite que les chapeaux des articles faisaient de bon résumés de référence. ## Entrainement Nous avons testé deux architecture de modèles (T5 et BART) avec des textes en entrée de 512 ou 1024 tokens. Finallement c'est le modèle BART avec 512 tokens qui à été retenu. Il a été entrainé sur 2 epochs (~700K articles) sur une Tesla V100 (32 heures d'entrainement). ## Résultats ![Score de novelty](assets/novelty.png) Nous avons comparé notre modèle (`mbart-large-512-full` sur le graphique) à deux références: * MBERT qui correspond aux performances du modèle entrainé par l'équipe à l'origine de la base d'articles MLSUM * Barthez qui est un autre modèle basé sur des articles de presses issus de la base de données OrangeSum On voit que le score de novelty (cf papier MLSUM) de notre modèle n'est pas encore comparable à ces deux références et encore moins à une production humaine néanmoins les résumés générés sont dans l'ensemble de bonne qualité. ## Utilisation ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import SummarizationPipeline model_name = 'lincoln/mbart-mlsum-automatic-summarization' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) nlp = SummarizationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp(""" « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. """) ``` ## Citation ```bibtex @article{scialom2020mlsum, title={MLSUM: The Multilingual Summarization Corpus}, author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano}, year={2020}, eprint={2004.14900}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.033752623945474625, 0.07255825400352478, -0.023322252556681633, -0.04990364611148834, 0.042897630482912064, 0.017792681232094765, 0.03042132407426834, 0.029856493696570396, 0.1065765917301178, 0.002893788507208228, -0.0016870573163032532, -0.08872511237859726, -0.0003398474946152419, -0.011296681128442287, -0.07410614937543869, -0.1277349293231964, -0.017978861927986145, 0.06834549456834793, -0.008600043132901192, 0.03432133421301842, 0.04887932911515236, 0.007072777487337589, -0.013504592701792717, 0.033030543476343155, 0.004904580302536488, -0.012431644834578037, -0.08891063183546066, 0.028765320777893066, -0.03862280026078224, 0.008043562062084675, 0.007202232722193003, 0.04494320973753929, -0.012015455402433872, 0.03592512384057045, 0.05004033446311951, -0.015006395988166332, -0.0013957031769677997, -0.0372711606323719, -0.021053140982985497, 0.07066706568002701, -0.0013175884960219264, -0.030027491971850395, -0.108932264149189, -0.0074822804890573025, -0.05222902074456215, -0.0029134959913790226, 0.04351815581321716, 0.031122546643018723, -0.055553652346134186, 0.03935263305902481, -0.07973439246416092, 0.04688938707113266, -0.011464105919003487, -0.06585927307605743, -0.04983906075358391, 0.005292147863656282, -0.022812610492110252, -0.026079699397087097, 0.08167075365781784, -0.004341410472989082, -0.0904681459069252, -0.07292434573173523, -0.014306544326245785, 0.0382436141371727, 0.015658285468816757, -0.0491362027823925, -0.027705298736691475, 0.009060664102435112, -0.11427761614322662, 0.010544469580054283, 0.004890462849289179, -0.03717684745788574, -0.03827530890703201, 0.002382767852395773, 0.04971502348780632, 0.09783855825662613, -0.01939898543059826, -0.01629273034632206, 0.009959748014807701, -0.18050990998744965, 0.030162665992975235, -0.07602947950363159, 0.036667969077825546, 0.025930901989340782, 0.00510575482621789, -0.021158110350370407, 0.03836394101381302, 0.01129857823252678, 0.15699248015880585, -0.027778958901762962, -0.024452704936265945, 0.034856610000133514, -0.08026082068681717, 0.03972958028316498, 0.013576430268585682, 0.004920301493257284, -0.021866871044039726, -0.022537628188729286, 0.04165364056825638, 0.06932394206523895, 0.0003409830096643418, 0.021640902385115623, 0.014505496248602867, 0.02305293269455433, -0.03373687341809273, -0.06343705207109451, 0.04546188935637474, -0.016762904822826385, -0.06016647443175316, 0.0078208576887846, 0.02591334655880928, -0.01354814413934946, -0.021131183952093124, -0.05193625018000603, -0.04093721881508827, -0.013240888714790344, -0.009915914386510849, -0.1192697063088417, 0.03359353542327881, -0.06138068065047264, 0.01462441124022007, -0.015532609075307846, -0.0742039754986763, -0.009883360005915165, -0.05742965638637543, 0.04354741796851158, 0.07882927358150482, 1.55520929511742e-32, 0.009455162100493908, 0.011774679645895958, 0.0019180140225216746, 0.003788161324337125, 0.04687145724892616, 0.016023803502321243, -0.025899291038513184, 0.08116403967142105, -0.010177114978432655, -0.015485871583223343, 0.01645250990986824, -0.03641856089234352, -0.1019689291715622, 0.0209075715392828, 0.00909015815705061, -0.020267987623810768, 0.14593449234962463, 0.01357800979167223, -0.023180607706308365, -0.008656552992761135, 0.03602404147386551, 0.01565270870923996, 0.11233248561620712, -0.00776993902400136, 0.058740098029375076, 0.021790293976664543, -0.023489467799663544, -0.08242771029472351, -0.017109496518969536, 0.0417332649230957, 0.0189240500330925, -0.0450371578335762, 0.027655592188239098, -0.018747398629784584, 0.02339920960366726, -0.036953315138816833, -0.03021874837577343, 0.011313258670270443, -0.007630136329680681, -0.0023846414405852556, -0.010458528995513916, 0.007577782031148672, 0.004867223557084799, -0.10857242345809937, -0.05724690854549408, 0.08520641922950745, 0.042176175862550735, 0.07194823771715164, 0.08911225944757462, -0.01502201147377491, 0.013211075216531754, 0.00613403832539916, -0.0530080571770668, -0.09795740246772766, 0.03518866375088692, -0.035823091864585876, -0.08910001069307327, -0.013653679750859737, -0.017714813351631165, -0.032701194286346436, -0.0813450813293457, 0.03588326275348663, -0.002936032135039568, 0.04053131118416786, 0.026649978011846542, 0.023718388751149178, -0.0275419969111681, 0.08086206018924713, 0.15006905794143677, -0.06470511108636856, -0.05312514677643776, 0.05490688607096672, 0.0797162726521492, 0.044413093477487564, 0.06900046020746231, 0.07903485745191574, 0.028445033356547356, 0.017482761293649673, -0.05434345081448555, 0.005683104041963816, -0.026010360568761826, -0.02095366269350052, 0.0030330666340887547, -0.006801581010222435, -0.008202262222766876, 0.035637810826301575, 0.05030260235071182, 0.053718410432338715, 0.0385904461145401, -0.05803363025188446, -0.013084071688354015, -0.03145524859428406, -0.041982460767030716, -0.05287650600075722, -0.04740860313177109, -1.5883964393770103e-32, -0.029381148517131805, 0.06509874761104584, -0.06632696092128754, 0.09110262244939804, -0.011167583055794239, 0.010983464308083057, -0.0295440424233675, 0.05216981843113899, 0.05216280743479729, -0.05208110064268112, -0.04942627623677254, -0.07330159097909927, 0.019553489983081818, -0.060694243758916855, -0.05162244290113449, 0.054044920951128006, -0.051901064813137054, -0.09268985688686371, -0.004327582661062479, 0.023930387571454048, -0.048572007566690445, -0.008403223007917404, 0.04262828454375267, 0.007713093888014555, 0.005229312460869551, 0.009280222468078136, 0.045884206891059875, 0.035033218562603, -0.077791228890419, -0.013858240097761154, 0.04029802978038788, 0.005811342969536781, -0.012823458760976791, 0.020110072568058968, -0.03126148134469986, -0.031130952760577202, 0.04452253505587578, 0.03177685663104057, -0.02718524821102619, 0.17594189941883087, 0.03249211609363556, -0.043813906610012054, -0.012440384365618229, -0.04416372999548912, 0.0013917280593886971, -0.04116569831967354, 0.02311091311275959, -0.11605042219161987, 0.015436658635735512, -0.03466109186410904, 0.031397607177495956, -0.016359364613890648, -0.11372646689414978, -0.010148313827812672, -0.005775779020041227, 0.0067421505227684975, 0.07051853090524673, 0.00005452726691146381, -0.05227929726243019, -0.10303511470556259, 0.023743819445371628, 0.08375759422779083, -0.027740895748138428, -0.028697922825813293, 0.08128849416971207, -0.03395357355475426, -0.03611653670668602, -0.1144610270857811, -0.021094098687171936, 0.034614041447639465, 0.08218751847743988, -0.05394255742430687, -0.005524656269699335, -0.016785819083452225, -0.06153807416558266, 0.12049150466918945, 0.07536039501428604, 0.020812269300222397, -0.024975595995783806, 0.09693046659231186, -0.11760535836219788, -0.05604685842990875, 0.04007399082183838, 0.035870444029569626, 0.051005441695451736, 0.02926141396164894, -0.08274602890014648, -0.019340820610523224, -0.014811706729233265, 0.009500741958618164, -0.05122829228639603, -0.017212796956300735, 0.03753145784139633, 0.028458042070269585, 0.021014763042330742, -7.493624565313439e-8, -0.01955220103263855, -0.031655941158533096, -0.12128458172082901, 0.03504645451903343, 0.025935098528862, -0.15169604122638702, 0.03578728064894676, -0.007883063517510891, -0.008862953633069992, 0.028511755168437958, 0.03668283298611641, -0.021344570443034172, -0.0524628721177578, -0.016703179106116295, -0.0289914533495903, 0.072222501039505, -0.0021329973824322224, 0.026351094245910645, -0.057344675064086914, 0.005639081355184317, -0.023621736094355583, 0.03038371354341507, -0.05548076704144478, -0.12487038969993591, 0.0016480869380757213, -0.04664852097630501, -0.06766925752162933, -0.010348566807806492, 0.002553696744143963, -0.039239220321178436, 0.06616011261940002, -0.00608594948425889, 0.05698367953300476, -0.07704668492078781, -0.013697831891477108, -0.045561566948890686, 0.013439860194921494, -0.022249020636081696, 0.003278035204857588, 0.03324452415108681, 0.12701937556266785, 0.030657382681965828, -0.02107313647866249, -0.013364064507186413, 0.09520910680294037, 0.005684949923306704, -0.020826075226068497, 0.03278593346476555, 0.0033780091907829046, 0.06706222146749496, -0.06709572672843933, 0.023288128897547722, 0.044618505984544754, -0.004890720825642347, 0.058896955102682114, -0.03970281779766083, -0.009990965947508812, -0.017505399882793427, 0.013910551555454731, 0.013658649288117886, 0.04506003484129906, 0.02748308889567852, -0.03730788454413414, -0.08870074152946472 ]
hf-internal-testing/tiny-random-camembert
8fa65c628a3f475b1ed4e8dff6adf09db1b6bb83
2022-07-27T10:07:32.000Z
[ "pytorch", "camembert", "feature-extraction", "transformers" ]
feature-extraction
false
hf-internal-testing
null
hf-internal-testing/tiny-random-camembert
1,990
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
microsoft/DialogRPT-human-vs-rand
7206b425c2c016dd5533e2a99e665ba3546e5ce0
2021-05-23T09:18:07.000Z
[ "pytorch", "gpt2", "text-classification", "arxiv:2009.06978", "transformers" ]
text-classification
false
microsoft
null
microsoft/DialogRPT-human-vs-rand
1,986
1
transformers
# Demo Please try this [➤➤➤ Colab Notebook Demo (click me!)](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) | Context | Response | `human_vs_rand` score | | :------ | :------- | :------------: | | I love NLP! | He is a great basketball player. | 0.027 | | I love NLP! | Can you tell me how it works? | 0.754 | | I love NLP! | Me too! | 0.631 | The `human_vs_rand` score predicts how likely the response is corresponding to the given context, rather than a random response. # DialogRPT-human-vs-rand ### Dialog Ranking Pretrained Transformers > How likely a dialog response is upvoted 👍 and/or gets replied 💬? This is what [**DialogRPT**](https://github.com/golsun/DialogRPT) is learned to predict. It is a set of dialog response ranking models proposed by [Microsoft Research NLP Group](https://www.microsoft.com/en-us/research/group/natural-language-processing/) trained on 100 + millions of human feedback data. It can be used to improve existing dialog generation model (e.g., [DialoGPT](https://huggingface.co/microsoft/DialoGPT-medium)) by re-ranking the generated response candidates. Quick Links: * [EMNLP'20 Paper](https://arxiv.org/abs/2009.06978/) * [Dataset, training, and evaluation](https://github.com/golsun/DialogRPT) * [Colab Notebook Demo](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) We considered the following tasks and provided corresponding pretrained models. |Task | Description | Pretrained model | | :------------- | :----------- | :-----------: | | **Human feedback** | **given a context and its two human responses, predict...**| | `updown` | ... which gets more upvotes? | [model card](https://huggingface.co/microsoft/DialogRPT-updown) | | `width`| ... which gets more direct replies? | [model card](https://huggingface.co/microsoft/DialogRPT-width) | | `depth`| ... which gets longer follow-up thread? | [model card](https://huggingface.co/microsoft/DialogRPT-depth) | | **Human-like** (human vs fake) | **given a context and one human response, distinguish it with...** | | `human_vs_rand`| ... a random human response | this model | | `human_vs_machine`| ... a machine generated response | [model card](https://huggingface.co/microsoft/DialogRPT-human-vs-machine) | ### Contact: Please create an issue on [our repo](https://github.com/golsun/DialogRPT) ### Citation: ``` @inproceedings{gao2020dialogrpt, title={Dialogue Response RankingTraining with Large-Scale Human Feedback Data}, author={Xiang Gao and Yizhe Zhang and Michel Galley and Chris Brockett and Bill Dolan}, year={2020}, booktitle={EMNLP} } ```
[ -0.08221784979104996, -0.0684313178062439, 0.0354909747838974, 0.014281258918344975, 0.05558816343545914, -0.01630459725856781, 0.09241504967212677, 0.0011068449821323156, 0.10466919839382172, 0.004171146545559168, -0.0003360148402862251, -0.08933521807193756, 0.028311708942055702, -0.003218272468075156, 0.02992299757897854, -0.005410661455243826, 0.04857548698782921, -0.06310442090034485, -0.11697313189506531, -0.0348455086350441, 0.05563023313879967, 0.021985497325658798, 0.03347264975309372, -0.04283558204770088, 0.03443322703242302, -0.0644475445151329, -0.035721633583307266, 0.03349905088543892, -0.014801401644945145, -0.017367858439683914, 0.020878102630376816, 0.027263488620519638, 0.026840919628739357, 0.020940745249390602, -0.08488579839468002, 0.02100054733455181, -0.03650104999542236, -0.03689122572541237, -0.027800101786851883, -0.0010308728087693453, -0.07135618478059769, -0.040774617344141006, -0.007548022083938122, 0.039502568542957306, 0.050651103258132935, 0.01295418106019497, -0.12244158238172531, -0.05086817592382431, -0.05791210010647774, 0.056658193469047546, -0.11907152831554413, 0.045566316694021225, 0.04881839081645012, 0.0860443264245987, -0.02030320093035698, 0.09070145338773727, -0.01883075013756752, 0.01297321729362011, 0.03986728563904762, -0.08995191752910614, -0.053388312458992004, -0.08934955298900604, -0.06274755299091339, 0.004021496511995792, 0.020939724519848824, -0.007814685814082623, -0.06613602489233017, 0.0009622123907320201, 0.02208840847015381, -0.007796318270266056, -0.04187360033392906, 0.02086968906223774, -0.02585112303495407, 0.042570412158966064, 0.023609457537531853, -0.006305923219770193, -0.019612930715084076, -0.0775662437081337, 0.05304809659719467, -0.018776042386889458, 0.01526129525154829, -0.027679400518536568, 0.09490375965833664, 0.07523688673973083, 0.01198893878608942, -0.030890733003616333, 0.05385482311248779, 0.08369550108909607, -0.018488341942429543, 0.03348896652460098, -0.04813123121857643, -0.032338228076696396, 0.023369386792182922, 0.050827931612730026, -0.01869904436171055, 0.13240177929401398, -0.051241934299468994, -0.11870100349187851, -0.009124460630118847, 0.07396029680967331, 0.023237649351358414, 0.0313393771648407, 0.002093386836349964, -0.1149929091334343, -0.03838060423731804, -0.005810142494738102, -0.03759429231286049, 0.03402059152722359, 0.06093292683362961, -0.011841902509331703, -0.015399190597236156, 0.01575327478349209, 0.02347872592508793, 0.06048709899187088, 0.016383066773414612, -0.03416530787944794, 0.0033624405041337013, 0.02683139033615589, 0.004038217943161726, 0.025755958631634712, 0.030540650710463524, 0.048060342669487, -0.05512501671910286, -0.00347709353081882, 0.004724323749542236, 0.00599618861451745, 0.07775022089481354, 3.902464185893402e-33, 0.09483656287193298, -0.04165010154247284, 0.0314006432890892, 0.02298044227063656, 0.0403917022049427, -0.005270292982459068, -0.00634436309337616, 0.03453987091779709, -0.07639895379543304, -0.027086686342954636, -0.02776925265789032, 0.019733484834432602, -0.04306144267320633, 0.05283856391906738, -0.0335841029882431, 0.032754380255937576, -0.0837305337190628, -0.00731669133529067, -0.054319117218256, 0.028064262121915817, 0.05415525659918785, 0.10093763470649719, 0.010013016872107983, -0.02578006125986576, 0.07458851486444473, -0.010502289980649948, 0.008721016347408295, -0.05052857846021652, -0.05638738349080086, 0.03666555881500244, -0.112519770860672, 0.050959713757038116, -0.13428747653961182, -0.020640017464756966, 0.014534199610352516, -0.03977213799953461, -0.03692752867937088, -0.022327160462737083, -0.1135190799832344, -0.05554993078112602, -0.05133695900440216, 0.008269054815173149, -0.027062997221946716, -0.03778774291276932, -0.07934603095054626, -0.014195257797837257, -0.038816899061203, 0.012059845961630344, 0.010423709638416767, 0.0370243638753891, 0.02857103757560253, 0.015159624628722668, 0.0269404798746109, 0.01575382426381111, 0.039579056203365326, -0.018511470407247543, 0.033764999359846115, 0.06878864765167236, 0.01517970860004425, 0.00878774095326662, 0.047960180789232254, 0.005874982103705406, 0.04983924701809883, 0.007205243222415447, 0.02354881912469864, 0.04227307811379433, -0.05588584393262863, -0.027767617255449295, 0.11210322380065918, -0.006847540382295847, 0.03584005683660507, 0.013611426576972008, 0.007061840500682592, 0.0472419448196888, -0.06585060805082321, 0.027531297877430916, 0.01744663715362549, -0.0008907688315957785, 0.03815843164920807, 0.018082918599247932, -0.01613306999206543, -0.044015899300575256, -0.054764747619628906, -0.08839242905378342, 0.004296967759728432, -0.010797667317092419, 0.03902335837483406, -0.09772249311208725, -0.019155114889144897, -0.00207308866083622, -0.004972267895936966, 0.011619006283581257, -0.08038200438022614, 0.023837454617023468, -0.053750526160001755, -5.602177956646566e-33, -0.07893002778291702, 0.08089738339185715, -0.031180929392576218, 0.04160970821976662, 0.002098098862916231, -0.021105803549289703, 0.07961685210466385, 0.03909328207373619, 0.11849266290664673, -0.01365391444414854, -0.044708434492349625, 0.0109470896422863, 0.0367155484855175, 0.014732959680259228, 0.12765580415725708, 0.02872631698846817, -0.0005840944941155612, 0.03044773079454899, -0.06273189932107925, 0.055137619376182556, 0.03066224604845047, 0.10647870600223541, -0.1612749546766281, 0.05479443073272705, -0.02811247855424881, -0.015591044910252094, 0.0008437010110355914, 0.03597075864672661, 0.025045320391654968, -0.06606753915548325, 0.0037860695738345385, 0.055991411209106445, -0.06006782501935959, 0.03443816676735878, -0.027643967419862747, -0.028836067765951157, 0.021725540980696678, -0.05606852471828461, 0.009443148970603943, 0.04336109012365341, 0.07485811412334442, -0.010363884270191193, -0.056213751435279846, -0.045973554253578186, -0.0018558208830654621, 0.01472934428602457, -0.020656300708651543, -0.0856395959854126, -0.01440014410763979, -0.005222196690738201, 0.014992667362093925, 0.0034127982798963785, -0.0705009251832962, 0.0537673644721508, -0.07048096507787704, -0.045201316475868225, 0.015401397831737995, -0.051586639136075974, -0.0030904498416930437, -0.000250151235377416, -0.03818097338080406, 0.04188523441553116, 0.03540883958339691, 0.009994682855904102, 0.006139433477073908, -0.04176672548055649, -0.003205850487574935, -0.06846696883440018, 0.04935236647725105, -0.0514088049530983, 0.03852672874927521, 0.0235530287027359, 0.12399992346763611, -0.046665605157613754, 0.08855552226305008, 0.011555107310414314, -0.017585361376404762, -0.011721765622496605, -0.03598259761929512, -0.06666233390569687, -0.04078086465597153, 0.0587032251060009, 0.057313837110996246, 0.0281258262693882, -0.0028635927010327578, 0.03711472451686859, 0.02057710662484169, 0.09909451007843018, 0.0676782876253128, -0.007246689405292273, 0.012118221260607243, 0.043390654027462006, -0.009921746328473091, 0.08971000462770462, 0.0015660729259252548, -5.733873109647902e-8, -0.06048666313290596, 0.009257769212126732, -0.03436711058020592, 0.1105896532535553, -0.027660559862852097, 0.06881681084632874, 0.00930835586041212, -0.017072536051273346, -0.034163929522037506, -0.07765676826238632, 0.08281008154153824, 0.035485271364450455, -0.032901689410209656, -0.03605104610323906, 0.0012338509550318122, 0.03683366999030113, -0.06003119423985481, 0.03633110597729683, -0.03242754563689232, -0.012260505929589272, 0.10816782712936401, -0.004060198552906513, -0.023314764723181725, 0.07101254165172577, -0.05955023691058159, 0.016294118016958237, -0.10406143963336945, 0.05608370155096054, -0.11483635753393173, -0.08814556151628494, -0.0014521072153002024, 0.01713910512626171, -0.05678202211856842, -0.05053733289241791, 0.022740403190255165, 0.09214646369218826, 0.06425457447767258, -0.0951923057436943, 0.03238676115870476, -0.011471232399344444, 0.031044239178299904, -0.054507650434970856, -0.11292225867509842, 0.003981805872172117, 0.05016225576400757, -0.023013070225715637, -0.027509408071637154, -0.1253870576620102, 0.03267550840973854, -0.027346748858690262, 0.012734884396195412, -0.06725525110960007, -0.052066922187805176, -0.01679779402911663, 0.06727834790945053, -0.009495023638010025, -0.015467406250536442, 0.0068668886087834835, 0.00042178796138614416, 0.01363879069685936, 0.11327002197504044, 0.062235523015260696, -0.03297409415245056, -0.049579918384552 ]
dbmdz/bert-base-italian-uncased
d91243bae3a97a72691e9a6bfdf5d9f8fa4be9e4
2021-05-19T15:00:42.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "it", "dataset:wikipedia", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-base-italian-uncased
1,984
2
transformers
--- language: it license: mit datasets: - wikipedia --- # 🤗 + 📚 dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models 🎉 # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
[ -0.12498454004526138, -0.07147540897130966, 0.04052244871854782, 0.006542092654854059, 0.020640812814235687, 0.04376183822751045, -0.03273192048072815, 0.06505201011896133, 0.04264163225889206, -0.0211293026804924, 0.00739902351051569, -0.004474298097193241, -0.022958645597100258, 0.03814525157213211, 0.014773232862353325, 0.04743432253599167, -0.00021307790302671492, 0.03318164497613907, -0.07638270407915115, -0.013923517428338528, 0.05248960480093956, 0.03583260625600815, 0.050060249865055084, -0.04940240830183029, 0.056047163903713226, 0.00044328131480142474, -0.05043663829565048, -0.04728589206933975, 0.059585314244031906, -0.007592213340103626, 0.05404745414853096, 0.013073126785457134, 0.04950361326336861, 0.07780371606349945, 0.046797510236501694, 0.04504270851612091, -0.009540412575006485, -0.02298252284526825, 0.014746108092367649, 0.013288036920130253, 0.020289553329348564, 0.0399797186255455, 0.007611314300447702, 0.06601886451244354, 0.13683778047561646, 0.008140509948134422, -0.06348061561584473, 0.028384512290358543, -0.033145029097795486, 0.000465056044049561, -0.09794432669878006, 0.02288021892309189, 0.025172358378767967, 0.1866016983985901, -0.0334286093711853, -0.0077613783068954945, -0.007005505729466677, 0.02708148956298828, -0.023638185113668442, -0.04852624610066414, -0.08648895472288132, -0.03566216304898262, -0.09802451729774475, -0.03323129191994667, -0.05655867978930473, -0.007545363157987595, -0.05167776718735695, 0.03606130927801132, 0.002982419915497303, 0.056965772062540054, -0.04200463742017746, 0.058904409408569336, -0.04948803409934044, 0.09705120325088501, -0.07016117125749588, 0.015208118595182896, 0.09047840535640717, -0.014605803415179253, 0.014933556318283081, -0.14106401801109314, 0.032952211797237396, -0.010509386658668518, 0.07723858207464218, -0.026626726612448692, 0.04051816835999489, -0.051385100930929184, 0.0500471256673336, 0.03749948740005493, -0.029595790430903435, 0.030541136860847473, -0.012098812498152256, -0.05849812552332878, 0.08572371304035187, -0.0164277795702219, -0.013928684405982494, 0.013208271004259586, 0.047656286507844925, 0.011752328835427761, 0.028121566399931908, 0.10674791038036346, 0.05763169005513191, 0.061564765870571136, 0.018778512254357338, -0.0583847314119339, -0.03705809637904167, -0.028425035998225212, 0.05771791189908981, 0.004840111825615168, 0.03436916694045067, -0.04585037752985954, 0.007311003282666206, 0.06415402889251709, -0.020468782633543015, -0.05652232840657234, 0.04329171031713486, -0.018596110865473747, -0.03904455155134201, -0.0038676259573549032, 0.06760073453187943, 0.10170800238847733, -0.06940634548664093, 0.012994434684515, -0.007726691663265228, 0.02597210183739662, -0.0246561411768198, -0.020375125110149384, 0.007415780331939459, 3.339119171179375e-33, 0.02810736931860447, 0.046207528561353683, -0.027390167117118835, -0.02636856958270073, -0.04590104520320892, 0.021456874907016754, -0.003578181378543377, 0.0299234502017498, -0.08262316137552261, 0.014378078281879425, -0.0993434339761734, 0.010736505500972271, -0.06027475371956825, 0.03270807862281799, 0.020982161164283752, 0.025327695533633232, -0.012232779525220394, 0.04799799993634224, -0.0101996548473835, 0.0175267793238163, 0.06441860646009445, 0.001666825613938272, 0.02756473794579506, -0.033563219010829926, -0.020698804408311844, -0.022855494171380997, 0.07631576806306839, -0.09802012145519257, -0.07846327126026154, 0.05603728070855141, -0.15476278960704803, 0.010744299739599228, -0.015284011140465736, 0.06527296453714371, 0.030740441754460335, 0.002980019198730588, -0.047394003719091415, -0.05857335403561592, 0.026679961010813713, -0.06831510365009308, -0.03413095697760582, 0.023328131064772606, 0.028735069558024406, -0.02107648178935051, -0.05709505453705788, 0.001064305892214179, -0.025943245738744736, -0.019602226093411446, 0.044968053698539734, -0.029835505411028862, 0.08666768670082092, 0.01970306783914566, -0.06678209453821182, 0.01609126292169094, 0.050415702164173126, 0.05125335976481438, 0.04267434403300285, 0.012459445744752884, 0.08477797359228134, 0.05411247909069061, 0.035219255834817886, 0.013550910167396069, 0.06379558891057968, 0.08726520091295242, 0.046761732548475266, 0.024728579446673393, -0.10480578988790512, 0.010140450671315193, 0.03675716370344162, -0.03127247095108032, -0.0650620311498642, -0.054758068174123764, 0.031182508915662766, 0.03386343643069267, 0.021408366039395332, -0.034747425466775894, 0.07002581655979156, -0.11546274274587631, -0.05723569169640541, 0.0376538448035717, 0.005707211792469025, -0.05849055200815201, -0.012307226657867432, -0.08249643445014954, -0.057030562311410904, -0.02180338464677334, 0.03398485109210014, -0.06406387686729431, -0.02829717844724655, -0.0182411577552557, 0.009446290321648121, -0.042463984340429306, -0.03959795460104942, -0.017405696213245392, -0.00960163027048111, -2.7392329962150756e-33, -0.0011624033795669675, 0.019448790699243546, -0.07094529271125793, 0.01313756313174963, -0.06057184562087059, -0.0871473178267479, -0.02745390310883522, 0.16888895630836487, -0.000990270054899156, -0.006795684807002544, 0.014399449340999126, -0.08510465174913406, 0.04631973057985306, -0.05133597552776337, 0.01641441509127617, -0.005971778649836779, 0.0074147554114460945, 0.05585873872041702, 0.059886395931243896, 0.08367715030908585, 0.0346740297973156, -0.012075232341885567, -0.09548452496528625, 0.06974640488624573, -0.06030629202723503, 0.06298307329416275, -0.05769311264157295, 0.0516727939248085, -0.014756576158106327, 0.012797743082046509, -0.05703878402709961, -0.01385444588959217, -0.06168140098452568, -0.022115081548690796, -0.08276398479938507, -0.013722565956413746, 0.023327240720391273, -0.005703356117010117, 0.023792143911123276, 0.043543264269828796, 0.063088059425354, 0.01587376557290554, -0.048171982169151306, 0.04586717486381531, 0.005787954665720463, -0.05177084356546402, -0.14608506858348846, -0.01948508247733116, 0.03178272396326065, -0.037448134273290634, 0.00936514139175415, 0.009839586913585663, -0.04391953721642494, 0.004269181750714779, -0.0023104758001863956, -0.12209293991327286, -0.026864560320973396, -0.0781085267663002, -0.0685475617647171, -0.019762925803661346, -0.044346023350954056, 0.01982296071946621, 0.009836806915700436, -0.0021994588896632195, 0.05324501171708107, -0.06760197132825851, -0.031352125108242035, 0.039677347987890244, -0.02063819020986557, -0.0051642428152263165, -0.010285119526088238, -0.020513949915766716, 0.012521807104349136, 0.07105756551027298, -0.062192659825086594, 0.030875666067004204, 0.0054783569648861885, -0.07574820518493652, -0.022833630442619324, -0.04968776926398277, -0.020647794008255005, -0.0022600076626986265, 0.05071530491113663, 0.03967204689979553, 0.0054221320897340775, 0.09751056879758835, 0.05506902560591698, 0.004654203541576862, -0.007884598337113857, 0.04310626536607742, -0.002460829447954893, 0.045461177825927734, 0.052081409841775894, 0.09528554230928421, -0.00194712751545012, -5.297954430716345e-8, -0.035455428063869476, 0.0515703521668911, -0.02789660170674324, 0.06134089082479477, -0.020066654309630394, -0.09035556018352509, -0.07825298607349396, 0.08924761414527893, 0.012308508157730103, -0.06035691872239113, 0.06578279286623001, 0.07355862855911255, -0.10284532606601715, 0.003650607308372855, -0.049144014716148376, 0.07591896504163742, 0.0037915457505732775, -0.006680874619632959, 0.005442341323941946, 0.049888283014297485, 0.06265541911125183, 0.07253765314817429, 0.045494671911001205, -0.02475634589791298, 0.0309684369713068, -0.05210667848587036, -0.03201683983206749, 0.1147666871547699, -0.009377646259963512, -0.05991372838616371, -0.017156168818473816, 0.02436886541545391, -0.08233232796192169, -0.03305939957499504, 0.034850459545850754, 0.09879845380783081, -0.030211301520466805, -0.08478494733572006, -0.02950950525701046, -0.014486029744148254, 0.08360416442155838, -0.008824186399579048, -0.05558478832244873, -0.0003103356284555048, 0.05851684883236885, -0.05116251856088638, -0.026308393105864525, -0.09283085912466049, 0.05670680105686188, -0.020705122500658035, 0.036290042102336884, -0.022483404725790024, -0.0466264933347702, -0.009814205579459667, 0.049709856510162354, 0.06106751784682274, -0.07387179881334305, 0.013170256279408932, 0.023372014984488487, -0.014098810032010078, -0.011001862585544586, -0.03597194701433182, -0.005817764438688755, 0.032177265733480453 ]
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
1b7b1b212ea53c7a64546076569fbb01c3df8fbd
2022-07-28T16:24:07.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "dataset:multi_nli", "dataset:anli", "dataset:fever", "dataset:lingnli", "dataset:alisawuffles/WANLI", "arxiv:2104.07179", "arxiv:2111.09543", "transformers", "zero-shot-classification", "license:mit", "model-index" ]
zero-shot-classification
false
MoritzLaurer
null
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
1,980
4
transformers
--- language: - en tags: - text-classification - zero-shot-classification license: mit metrics: - accuracy datasets: - multi_nli - anli - fever - lingnli - alisawuffles/WANLI pipeline_tag: zero-shot-classification #- text-classification #widget: #- text: "I first thought that I really liked the movie, but upon second thought it was actually disappointing. [SEP] The movie was not good." model-index: # info: https://github.com/huggingface/hub-docs/blame/main/modelcard.md - name: DeBERTa-v3-large-mnli-fever-anli-ling-wanli results: - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: MultiNLI-matched # Required. A pretty name for the dataset. Example: Common Voice (French) split: validation_matched # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,912 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: MultiNLI-mismatched # Required. A pretty name for the dataset. Example: Common Voice (French) split: validation_mismatched # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,908 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: ANLI-all # Required. A pretty name for the dataset. Example: Common Voice (French) split: test_r1+test_r2+test_r3 # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,702 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: ANLI-r3 # Required. A pretty name for the dataset. Example: Common Voice (French) split: test_r3 # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,64 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: alisawuffles/WANLI # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: WANLI # Required. A pretty name for the dataset. Example: Common Voice (French) split: test # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,77 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: lingnli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: LingNLI # Required. A pretty name for the dataset. Example: Common Voice (French) split: test # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,87 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). --- # DeBERTa-v3-large-mnli-fever-anli-ling-wanli ## Model description This model was fine-tuned on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. This model is the best performing NLI model on the Hugging Face Hub as of 06.06.22 and can be used for zero-shot classification. It significantly outperforms all other large models on the [ANLI benchmark](https://github.com/facebookresearch/anli). The foundation model is [DeBERTa-v3-large from Microsoft](https://huggingface.co/microsoft/deberta-v3-large). DeBERTa-v3 combines several recent innovations compared to classical Masked Language Models like BERT, RoBERTa etc., see the [paper](https://arxiv.org/abs/2111.09543) ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was not good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. Note that [SNLI](https://huggingface.co/datasets/snli) was explicitly excluded due to quality issues with the dataset. More data does not necessarily make for better NLI models. ### Training procedure DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained using the Hugging Face trainer with the following hyperparameters. Note that longer training with more epochs hurt performance in my tests (overfitting). ``` training_args = TrainingArguments( num_train_epochs=4, # total number of training epochs learning_rate=5e-06, per_device_train_batch_size=16, # batch size per device during training gradient_accumulation_steps=2, # doubles the effective batch_size to 32, while decreasing memory requirements per_device_eval_batch_size=64, # batch size for evaluation warmup_ratio=0.06, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the test sets for MultiNLI, ANLI, LingNLI, WANLI and the dev set for Fever-NLI. The metric used is accuracy. The model achieves state-of-the-art performance on each dataset. Surprisingly, it outperforms the previous [state-of-the-art on ANLI](https://github.com/facebookresearch/anli) (ALBERT-XXL) by 8,3%. I assume that this is because ANLI was created to fool masked language models like RoBERTa (or ALBERT), while DeBERTa-v3 uses a better pre-training objective (RTD), disentangled attention and I fine-tuned it on higher quality NLI data. |Datasets|mnli_test_m|mnli_test_mm|anli_test|anli_test_r3|ling_test|wanli_test| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Accuracy|0.912|0.908|0.702|0.64|0.87|0.77| |Speed (text/sec, A100 GPU)|696.0|697.0|488.0|425.0|828.0|980.0| ## Limitations and bias Please consult the original DeBERTa-v3 paper and literature on different NLI datasets for more information on the training data and potential biases. The model will reproduce statistical patterns in the training data. ## Citation If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.
[ -0.10130587220191956, -0.075241819024086, -0.013113987632095814, -0.025018131360411644, 0.07778599858283997, 0.05180315300822258, -0.024484779685735703, 0.0042124222964048386, 0.03419836238026619, -0.10865657031536102, 0.04373316839337349, -0.07330653071403503, -0.009922200813889503, 0.01630418375134468, -0.02493094839155674, -0.014354174956679344, 0.04775156453251839, -0.023299146443605423, -0.0866948738694191, -0.06551526486873627, 0.036861956119537354, 0.12020102888345718, 0.07921408861875534, 0.042192377150058746, -0.01740843430161476, -0.00944508332759142, -0.024277864024043083, 0.05081075802445412, -0.02972331829369068, -0.03601200506091118, 0.0270856823772192, 0.11168907582759857, 0.020426273345947266, 0.02021598070859909, 0.017811985686421394, 0.025431763380765915, -0.029017839580774307, -0.030460339039564133, -0.03938259556889534, 0.012201757170259953, 0.017666470259428024, -0.012636744417250156, 0.05547269061207771, -0.035878539085388184, 0.06455942988395691, -0.04141198471188545, -0.13160797953605652, -0.057241275906562805, 0.02228955179452896, 0.009307881817221642, -0.1294085681438446, -0.016720028594136238, 0.023248573765158653, 0.06312388926744461, -0.06095816567540169, -0.04507382586598396, 0.0006116767763160169, -0.03251082822680473, 0.01780514419078827, -0.028715943917632103, 0.009931232780218124, -0.05051204934716225, -0.01061389409005642, 0.02664896659553051, 0.026581568643450737, -0.002473903354257345, -0.014905272983014584, -0.014432879164814949, 0.025130121037364006, 0.03239878639578819, -0.03598504513502121, 0.06365619599819183, 0.07207303494215012, 0.00044926785631105304, -0.0027224072255194187, -0.02058217115700245, -0.0009111214894801378, 0.02662012353539467, 0.04152929037809372, -0.09564941376447678, -0.0036800773814320564, -0.05899535119533539, 0.05270896852016449, -0.015506642870604992, 0.052959296852350235, -0.026291633024811745, 0.009795169346034527, 0.01769506186246872, -0.016057444736361504, -0.016982771456241608, -0.08281929790973663, -0.03149157017469406, 0.08974071592092514, 0.021000050008296967, 0.015844134613871574, 0.0640973150730133, -0.014156742952764034, 0.028555821627378464, -0.048096831887960434, 0.0860631987452507, -0.06658738851547241, -0.052808452397584915, -0.01316750980913639, -0.026864785701036453, -0.003970892634242773, -0.04572910815477371, 0.08064483851194382, 0.0013111622538417578, 0.056550659239292145, -0.09307368099689484, -0.023320088163018227, -0.015190012753009796, -0.045836467295885086, -0.08934830129146576, 0.04122884199023247, -0.008213086985051632, 0.0027775838971138, -0.03095499612390995, 0.018141131848096848, 0.05681731924414635, -0.036758601665496826, -0.0032938828226178885, -0.045694999396800995, -0.077986940741539, 0.002583189867436886, -0.0052038440480828285, -0.058112237602472305, 2.8302761357122157e-33, 0.09283210337162018, 0.05141240358352661, 0.03498391434550285, 0.0029217195697128773, 0.034294940531253815, -0.09071364998817444, -0.1097055971622467, 0.002394870389252901, -0.08663354068994522, -0.012330652214586735, -0.07371285557746887, 0.015163077041506767, -0.10391995310783386, 0.025998175144195557, -0.000011887025721080136, -0.022046798840165138, -0.050147514790296555, 0.04966820403933525, 0.03403544798493385, 0.03771317005157471, 0.0759163573384285, 0.028877360746264458, 0.0218028724193573, -0.059741728007793427, -0.014498081989586353, 0.08442997187376022, 0.05725269019603729, -0.06349048018455505, 0.000058079160226043314, 0.04118497297167778, -0.09818416833877563, 0.02358139678835869, 0.07907243818044662, -0.040459420531988144, 0.04739702492952347, -0.03885261341929436, -0.12500502169132233, 0.01510975044220686, -0.005577231757342815, -0.03162997588515282, -0.013944689184427261, 0.041173648089170456, -0.09687766432762146, -0.048957377672195435, -0.047672245651483536, 0.030903125181794167, -0.018274132162332535, -0.017008500173687935, 0.04697100818157196, 0.06660269945859909, 0.03462772071361542, -0.04000423848628998, -0.0011193660320714116, -0.027691973373293877, -0.06647631525993347, 0.030539274215698242, 0.02042798139154911, 0.020020518451929092, 0.049250368028879166, -0.01804381050169468, 0.007892046123743057, -0.02658982016146183, -0.026410706341266632, 0.006090909708291292, 0.05503574758768082, 0.06898283213376999, 0.007822327315807343, 0.01742684468626976, 0.054494958370923996, -0.008898315951228142, -0.0865502879023552, -0.012595012784004211, 0.0037515268195420504, 0.05077719688415527, 0.08916565775871277, 0.010533520020544529, -0.02942475490272045, -0.11452789604663849, -0.06572368741035461, 0.08518102765083313, -0.06819798797369003, -0.044733013957738876, 0.012723595835268497, -0.049772173166275024, -0.05163600295782089, -0.03848377615213394, 0.015440220013260841, -0.06288275122642517, 0.04742005094885826, -0.032561931759119034, -0.016880186274647713, 0.035813577473163605, -0.04032035917043686, 0.0005015071365050972, 0.004460697527974844, -3.984802422380718e-33, 0.020975597202777863, -0.004163156263530254, -0.07646646350622177, 0.019363466650247574, 0.00805276446044445, 0.009745120070874691, 0.033968351781368256, 0.11858850717544556, 0.11140590906143188, 0.021280651912093163, 0.07400957494974136, -0.01854904368519783, -0.00952118169516325, -0.024595651775598526, 0.025265326723456383, 0.04551650583744049, 0.025174656882882118, -0.042776573449373245, 0.01692504622042179, 0.08601304888725281, 0.06867201626300812, 0.01728859543800354, -0.10100586712360382, 0.03194280341267586, -0.05132315307855606, 0.06743372976779938, 0.00005055987276136875, 0.03507581725716591, -0.001028505270369351, -0.07767243683338165, -0.01639488898217678, -0.0355154313147068, -0.08218271285295486, -0.00004720540891867131, -0.10721627622842789, 0.053083330392837524, 0.019370341673493385, -0.04138341173529625, -0.03558092936873436, 0.06975989788770676, 0.06544613838195801, 0.04283270239830017, -0.1436316967010498, 0.019321974366903305, -0.005072321277111769, -0.061615705490112305, -0.023952605202794075, 0.04395586624741554, -0.013341404497623444, -0.0341741219162941, -0.020949603989720345, 0.005266835913062096, -0.06537336111068726, -0.007101231254637241, -0.018850557506084442, -0.07086025923490524, 0.0249044056981802, -0.06582657247781754, -0.04035838693380356, 0.06617303192615509, -0.038654595613479614, 0.0065021519549191, -0.04981827363371849, -0.022896122187376022, 0.003531542606651783, 0.019181378185749054, -0.004507931414991617, -0.027178434655070305, 0.0570959746837616, -0.004954512696713209, 0.038122180849313736, 0.03820527344942093, -0.01819346845149994, 0.0007328112842515111, -0.014951026067137718, 0.0001673976075835526, -0.06149931997060776, 0.005069802049547434, -0.009646642953157425, -0.04952764883637428, 0.001565161976031959, -0.05326894298195839, 0.04184070602059364, 0.03819374367594719, 0.13247545063495636, 0.1029905155301094, 0.05370127409696579, 0.044294897466897964, 0.030861305072903633, 0.01455654762685299, -0.01826540194451809, 0.03882129490375519, 0.026198148727416992, 0.15973567962646484, -0.004736847709864378, -5.579185824444721e-8, -0.04305500537157059, 0.017845112830400467, -0.054847847670316696, 0.019075490534305573, -0.07553663849830627, -0.07535701245069504, -0.04140353947877884, 0.06780490279197693, 0.042392730712890625, -0.009034681133925915, 0.05159813165664673, 0.04539671167731285, -0.1048576757311821, 0.037921082228422165, -0.04086805880069733, 0.03496198356151581, 0.022192195057868958, 0.14484022557735443, -0.018542267382144928, -0.014096192084252834, 0.04489303380250931, -0.022210005670785904, 0.04651691019535065, -0.07495730370283127, 0.0659223347902298, -0.05686398223042488, -0.03729720041155815, 0.03618432581424713, 0.0012937452411279082, -0.06849569082260132, -0.014609032310545444, 0.05357636883854866, -0.08347959071397781, -0.04491144046187401, 0.011776650324463844, 0.06627393513917923, 0.00024131972168106586, -0.02742314524948597, 0.0041688792407512665, 0.02476215921342373, 0.0781344622373581, 0.09695327281951904, -0.06700310856103897, -0.03189047798514366, 0.07850615680217743, 0.03114476054906845, 0.020451588556170464, -0.10448368638753891, 0.07719668745994568, -0.0016002415213733912, 0.005807155277580023, 0.01482232753187418, -0.08166863024234772, 0.09801987558603287, 0.06695781648159027, 0.012922899797558784, 0.021890681236982346, 0.02621966414153576, 0.011618363671004772, -0.008310558274388313, 0.09602658450603485, -0.02538982778787613, 0.019926823675632477, 0.0329098179936409 ]
kamalkraj/bioelectra-base-discriminator-pubmed
b08ce00d5a23e2682a20e9d33356730530bdecd1
2021-09-07T13:52:16.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
kamalkraj
null
kamalkraj/bioelectra-base-discriminator-pubmed
1,978
3
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). Cite our paper using below citation ``` @inproceedings{kanakarajan-etal-2021-bioelectra, title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bionlp-1.16", doi = "10.18653/v1/2021.bionlp-1.16", pages = "143--154", abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.", } ``` ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
[ -0.048747170716524124, -0.04893111437559128, -0.015514216385781765, -0.03868996724486351, -0.004656575154513121, 0.015299046412110329, -0.031510304659605026, 0.006487579550594091, 0.013422035612165928, -0.015993250533938408, -0.0350366085767746, -0.01311967521905899, -0.03418135643005371, 0.03687208890914917, -0.009974954649806023, 0.048269160091876984, 0.03937417268753052, 0.023297958076000214, -0.08805263787508011, -0.028495503589510918, 0.05981229618191719, 0.08828601241111755, 0.07127442210912704, 0.0591689832508564, 0.05469048395752907, -0.008966343477368355, -0.004947359673678875, -0.007438819855451584, -0.027663689106702805, 0.015052870847284794, 0.057905759662389755, 0.029994668439030647, 0.09426417946815491, 0.03942694514989853, -0.09002995491027832, 0.01068020612001419, -0.06005021557211876, 0.002421562559902668, 0.015133972279727459, -0.03344067558646202, 0.01915709488093853, -0.025661488994956017, 0.016714224591851234, 0.07885856181383133, 0.094540074467659, -0.028855200856924057, -0.025195615366101265, -0.007258655037730932, 0.03882303088903427, 0.01484126690775156, -0.08108720183372498, -0.0022962403018027544, 0.03725811839103699, 0.0980892926454544, -0.04480045661330223, 0.026541415601968765, 0.0066390675492584705, -0.0382826067507267, -0.052636872977018356, -0.03454998508095741, -0.025161487981677055, -0.07937739789485931, 0.02835587039589882, -0.008850052952766418, 0.004350640345364809, -0.07269241660833359, 0.038948904722929, -0.015059649012982845, -0.04135024920105934, -0.026012727990746498, 0.003596816211938858, 0.05769554525613785, 0.006586230825632811, 0.12522293627262115, -0.0016390591626986861, 0.052588801831007004, 0.07929012924432755, 0.03242895379662514, 0.0923914685845375, -0.11810814589262009, 0.026395158842206, -0.030058208853006363, 0.06455506384372711, 0.05233479663729668, 0.08849865943193436, -0.026754505932331085, 0.05129091441631317, 0.03160376474261284, -0.10493212938308716, 0.02432529255747795, 0.01636185683310032, -0.1059616208076477, 0.1408795863389969, -0.04496970400214195, -0.08828329294919968, 0.015237826853990555, -0.006284519098699093, -0.002410969464108348, 0.018696511164307594, -0.012692305259406567, -0.015251610428094864, 0.00650166068226099, -0.06742959469556808, -0.05295579880475998, -0.08978328108787537, -0.07041069865226746, 0.0904431864619255, 0.011601871810853481, 0.08324392884969711, -0.022651957347989082, 0.04253785312175751, 0.04521860554814339, -0.02817101590335369, 0.026628464460372925, 0.032538700848817825, 0.05845779553055763, 0.007724709343165159, -0.03141391649842262, 0.08583728969097137, 0.054823216050863266, -0.11859945207834244, -0.02716081589460373, -0.01798304170370102, 0.012474656105041504, 0.008149358443915844, 0.01392007153481245, -0.04600091278553009, 5.740467152839131e-33, 0.08548460900783539, 0.029209505766630173, 0.007621414493769407, -0.034706976264715195, -0.0170849971473217, -0.023549329489469528, -0.051736604422330856, -0.02439485862851143, -0.07481879740953445, -0.06802892684936523, -0.09149911999702454, -0.025105368345975876, 0.0067794183269143105, 0.06293052434921265, 0.04490029066801071, -0.03491179272532463, -0.12755639851093292, -0.013256537728011608, 0.01343111228197813, 0.019184408709406853, 0.06339436024427414, 0.0016293764347210526, -0.02364908903837204, 0.0036961243022233248, -0.01711912639439106, 0.03385253995656967, -0.02300284057855606, -0.058204326778650284, -0.004918698687106371, 0.0390762984752655, -0.12228763103485107, -0.0026522206608206034, 0.04327738657593727, -0.015567746013402939, 0.08212099224328995, -0.02429693192243576, 0.036394666880369186, 0.007718491833657026, -0.010705985128879547, -0.0034327509347349405, -0.037123847752809525, 0.04576700180768967, 0.05139230191707611, -0.059523265808820724, 0.00026073356275446713, -0.028735266998410225, -0.0600719079375267, 0.038944121450185776, 0.020439840853214264, 0.03707255423069, 0.03871726244688034, -0.02663593925535679, -0.019260697066783905, -0.0062150112353265285, 0.009537051431834698, 0.027213238179683685, -0.008897754363715649, 0.012042243964970112, 0.09441708028316498, 0.06613460183143616, 0.06466583907604218, 0.0542912483215332, 0.0498664565384388, 0.02436014637351036, 0.03873521462082863, -0.0347413532435894, 0.008827585726976395, 0.01725638099014759, -0.035573456436395645, 0.025887032970786095, -0.0055341762490570545, 0.040107257664203644, 0.00040339125553146005, -0.011751147918403149, 0.03638159856200218, 0.06711773574352264, 0.0030346259009093046, -0.08592862635850906, -0.07959814369678497, 0.02024340257048607, 0.0009617017931304872, -0.012761203572154045, -0.04587724432349205, -0.0617191381752491, -0.006193534936755896, -0.06499894708395004, 0.0097924480214715, -0.0455133356153965, -0.0510682687163353, 0.0036193602718412876, 0.0020197720732539892, 0.004302012734115124, 0.0030299799982458353, -0.026643168181180954, 0.012882180511951447, -5.602993455852449e-33, -0.036983098834753036, 0.013432254083454609, -0.03355947136878967, 0.07891395688056946, 0.008026398718357086, -0.02910449169576168, 0.015481241047382355, 0.05907292664051056, 0.03916321322321892, -0.047512706369161606, 0.07137112319469452, -0.029433606192469597, 0.03657536953687668, -0.006329938769340515, 0.03827708587050438, 0.013539721257984638, -0.09719154983758926, 0.06017640233039856, -0.040451034903526306, 0.08221365511417389, 0.008026707917451859, 0.06660216301679611, -0.11945311725139618, 0.07760652154684067, 0.024523332715034485, 0.04004354029893875, -0.04442431777715683, 0.08217008411884308, -0.01504739560186863, -0.1333765834569931, -0.061461057513952255, 0.025121277198195457, -0.11126445233821869, -0.04968144744634628, -0.08190622925758362, 0.01323104090988636, 0.03713707998394966, -0.07914196699857712, 0.030796192586421967, 0.017432864755392075, 0.08971191942691803, 0.04587980732321739, -0.1421416699886322, 0.023657694458961487, -0.020135080441832542, -0.050267480313777924, -0.16766300797462463, -0.009066306985914707, 0.06964356452226639, 0.0717427060008049, -0.01934918388724327, 0.0027890498749911785, -0.046735890209674835, 0.05554012954235077, 0.027769122272729874, -0.17476217448711395, -0.05139787867665291, -0.04516681283712387, -0.06824254989624023, -0.0015540296444669366, -0.09856569021940231, 0.03730475530028343, 0.040746886283159256, 0.028626734390854836, 0.011659528128802776, -0.10782201588153839, 0.040774669498205185, 0.02719959430396557, -0.030480114743113518, 0.0019317013211548328, 0.019099444150924683, -0.04244891181588173, -0.017228471115231514, 0.05172694846987724, 0.027836475521326065, -0.026732955127954483, -0.002089005196467042, -0.03689580783247948, -0.05738614872097969, -0.02381497621536255, 0.03970490023493767, 0.013440822251141071, 0.0013174673076719046, 0.025506997480988503, 0.05997597053647041, 0.10136914253234863, 0.012760650366544724, 0.006810190621763468, 0.00977540947496891, 0.04447334632277489, -0.03526165708899498, 0.04584905132651329, 0.005822503007948399, 0.023145468905568123, -0.08372804522514343, -4.50887895908636e-8, -0.01959838904440403, -0.04240763559937477, -0.06654133647680283, 0.019836677238345146, -0.033606257289648056, -0.05928324908018112, -0.08783889561891556, 0.09797456860542297, -0.011916824616491795, -0.07405474781990051, 0.0887230709195137, 0.014967404305934906, -0.11444579809904099, -0.048019591718912125, 0.031224094331264496, 0.04624580219388008, 0.043414488434791565, 0.04066905379295349, 0.02703481912612915, -0.07947428524494171, 0.021382370963692665, 0.02235407382249832, 0.018903275951743126, 0.010072524659335613, 0.05070485547184944, -0.03254159539937973, -0.07364804297685623, 0.0018729671137407422, 0.041663989424705505, -0.056638892740011215, 0.003016319591552019, 0.019668344408273697, 0.04487599804997444, -0.02649368718266487, 0.005876142531633377, 0.03660508990287781, 0.027674691751599312, -0.02468123659491539, -0.05239778384566307, 0.039110034704208374, 0.08566399663686752, 0.003540431149303913, -0.09664841741323471, -0.03661542013287544, 0.03462190926074982, -0.050480738282203674, 0.037139441817998886, -0.017223967239260674, 0.03977663815021515, -0.11132653802633286, -0.008469498716294765, -0.029190003871917725, 0.0019394728587940335, 0.014764802530407906, 0.04952642694115639, 0.09575806558132172, -0.023362746462225914, -0.005701456684619188, 0.04772565886378288, -0.020611407235264778, 0.03249702230095863, 0.007466966286301613, -0.0072782584466040134, 0.011241558939218521 ]
mbartolo/roberta-large-synqa
1ae8322fd562c2b2193a7d2b8d0887177b616d62
2022-07-25T23:36:39.000Z
[ "pytorch", "roberta", "question-answering", "en", "dataset:adversarial_qa", "dataset:mbartolo/synQA", "dataset:squad", "arxiv:2002.00293", "arxiv:2104.08678", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mbartolo
null
mbartolo/roberta-large-synqa
1,973
null
transformers
--- language: - en tags: - question-answering license: apache-2.0 datasets: - adversarial_qa - mbartolo/synQA - squad metrics: - exact_match - f1 model-index: - name: mbartolo/roberta-large-synqa results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 89.6529 verified: true - name: F1 type: f1 value: 94.8172 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 55.3333 verified: true - name: F1 type: f1 value: 66.7464 verified: true --- # Model Overview This is a RoBERTa-Large QA Model trained from https://huggingface.co/roberta-large in two stages. First, it is trained on synthetic adversarial data generated using a BART-Large question generator on Wikipedia passages from SQuAD, and then it is trained on SQuAD and AdversarialQA (https://arxiv.org/abs/2002.00293) in a second stage of fine-tuning. # Data Training data: SQuAD + AdversarialQA Evaluation data: SQuAD + AdversarialQA # Training Process Approx. 1 training epoch on the synthetic data and 2 training epochs on the manually-curated data. # Additional Information Please refer to https://arxiv.org/abs/2104.08678 for full details.
[ -0.10828176885843277, -0.040744077414274216, -0.04300656169652939, 0.024325594305992126, 0.03482784330844879, -0.000036329405702417716, -0.03341180831193924, -0.03643177077174187, 0.018875807523727417, -0.016250116750597954, 0.01248828787356615, -0.11017307639122009, -0.0170422475785017, 0.03166010603308678, -0.022669797763228416, 0.027704237028956413, 0.04750446975231171, -0.05450354143977165, -0.13918252289295197, -0.026985833421349525, -0.0020455101039260626, 0.03608481585979462, 0.07656878978013992, -0.00818209070712328, -0.0049974448047578335, -0.03605823218822479, -0.0658096969127655, 0.046652019023895264, -0.04865624010562897, -0.07245822250843048, -0.005544228479266167, 0.09483584016561508, -0.0005185077898204327, 0.041380178183317184, 0.01845838874578476, 0.11472912132740021, -0.02576921321451664, -0.04521254822611809, 0.05491139367222786, -0.03780422732234001, -0.020616980269551277, -0.08592887222766876, -0.028594940900802612, -0.011046208441257477, 0.06740779429674149, -0.08117420971393585, -0.05067085102200508, -0.03973397985100746, 0.04786418005824089, -0.024369243532419205, -0.12686876952648163, -0.013425005599856377, -0.008242152631282806, 0.0885460153222084, -0.007579449098557234, 0.0038178812246769667, -0.04095767065882683, -0.013370370492339134, -0.011669902130961418, 0.0028000869788229465, -0.04067130386829376, -0.015020082704722881, -0.09542118012905121, -0.00749337300658226, -0.038070231676101685, -0.0626559928059578, -0.06899066269397736, -0.035975582897663116, 0.00932550709694624, 0.022820910438895226, 0.0023691938258707523, 0.004865327849984169, -0.06389815360307693, 0.04470742866396904, 0.018217751756310463, 0.029933324083685875, -0.014129147864878178, 0.043855808675289154, 0.045048125088214874, -0.11111515760421753, 0.02243768982589245, -0.04005768895149231, 0.011921768076717854, 0.019543610513210297, 0.043737877160310745, 0.003137212945148349, -0.01906477101147175, 0.05245957151055336, 0.023043327033519745, 0.006179213058203459, -0.05457013472914696, 0.00470264395698905, 0.014437886886298656, 0.03460894152522087, 0.0393906831741333, 0.0006668050773441792, 0.01625842973589897, 0.046472951769828796, -0.04830983653664589, 0.11598605662584305, 0.010054218582808971, 0.013238177634775639, -0.004101229831576347, -0.0011931753251701593, 0.006598273292183876, 0.0019066232489421964, 0.03397933766245842, 0.12873144447803497, 0.03972281143069267, -0.05601341649889946, 0.03809422627091408, 0.0234671700745821, -0.0026758864987641573, -0.0043808650225400925, 0.021713024005293846, 0.0568009614944458, -0.013260805048048496, 0.08672020584344864, -0.06697050482034683, 0.060567475855350494, 0.016158299520611763, 0.004297312349081039, 0.02280421182513237, -0.042628925293684006, 0.0490000918507576, 0.005666377954185009, -0.05783688649535179, 1.0357464396087491e-32, 0.09388609230518341, 0.0259252842515707, 0.08395852148532867, 0.01408479269593954, -0.011879597790539265, 0.04314953088760376, -0.058111172169446945, 0.05852517485618591, -0.07864293456077576, 0.02902097813785076, -0.053150858730077744, 0.015142884105443954, -0.05907128006219864, 0.01995457150042057, 0.035413436591625214, 0.028545334935188293, -0.04123327508568764, -0.018513517454266548, -0.06809806823730469, 0.02024378813803196, 0.10985088348388672, -0.020036980509757996, -0.029693342745304108, 0.005659925751388073, 0.026042239740490913, 0.0020553034264594316, 0.06614551693201065, -0.020046664401888847, -0.052507828921079636, 0.04132074490189552, -0.15500907599925995, -0.007157475221902132, -0.05429136008024216, -0.05015242099761963, -0.0019581844098865986, -0.01916470378637314, -0.04390912503004074, -0.06851164251565933, -0.018359001725912094, -0.01796608790755272, 0.010313840582966805, 0.025498993694782257, -0.001988001400604844, -0.044149238616228104, -0.06229960173368454, -0.05131912976503372, -0.00659949192777276, 0.022243380546569824, 0.02740527130663395, -0.00633164681494236, -0.012377139180898666, -0.0243814829736948, 0.002865996677428484, -0.03344235569238663, -0.09592041373252869, 0.05953838303685188, 0.0728021040558815, 0.1400618553161621, -0.0331549309194088, 0.039331335574388504, 0.024097774177789688, -0.08389299362897873, -0.08121968805789948, 0.02214697375893593, -0.020634565502405167, -0.013167877681553364, -0.054802946746349335, 0.025052040815353394, 0.08035195618867874, 0.09968205541372299, -0.013598484918475151, 0.004600186366587877, 0.050596099346876144, 0.08111272752285004, 0.06199335679411888, -0.12066398561000824, 0.036605313420295715, -0.004197787027806044, -0.0011607939377427101, 0.010418771766126156, -0.04008759185671806, 0.04559611901640892, -0.014442535117268562, -0.016455141827464104, -0.10368390381336212, -0.01735704019665718, 0.03812697157263756, -0.05244995653629303, -0.06856958568096161, -0.018949970602989197, -0.0415072925388813, 0.054749127477407455, -0.03928279131650925, -0.04548916220664978, -0.05810605734586716, -1.0210388012280545e-32, 0.022569607943296432, 0.04339877888560295, -0.03283511847257614, 0.023859379813075066, 0.07172466069459915, -0.004022506065666676, 0.03882381692528725, 0.14611874520778656, -0.007009698543697596, 0.02361837960779667, 0.0603070892393589, -0.007540406193584204, 0.050890300422906876, -0.09900403022766113, 0.013091092929244041, -0.029596582055091858, -0.0634668841958046, -0.06510752439498901, -0.00037686683936044574, 0.046738699078559875, -0.017234794795513153, 0.0588211864233017, 0.02622995898127556, 0.0670081228017807, -0.0011708798119798303, -0.03361694514751434, 0.013103820383548737, 0.07812431454658508, 0.0011084212455898523, 0.005581504199653864, 0.028509004041552544, -0.01345419604331255, -0.1279359757900238, -0.02494092844426632, -0.031962327659130096, -0.002924496540799737, 0.041833873838186264, -0.0210280641913414, -0.03243853896856308, 0.14908826351165771, 0.04260535165667534, 0.01915927045047283, -0.09598319977521896, 0.03587917238473892, -0.02941424399614334, -0.036026015877723694, 0.00828272569924593, -0.04303798824548721, -0.041760291904211044, -0.04155610874295235, 0.05005276948213577, 0.013242055661976337, -0.08718540519475937, 0.056553713977336884, 0.008841775357723236, -0.07681726664304733, -0.016195783391594887, -0.015617725439369678, -0.04947894811630249, 0.007949280552566051, 0.004592674318701029, 0.05182250961661339, -0.054675258696079254, 0.021997181698679924, 0.12704263627529144, -0.021155226975679398, -0.0096041951328516, 0.026589933782815933, -0.004416920244693756, 0.029093043878674507, 0.025378553196787834, -0.07742711156606674, 0.06139068678021431, 0.06661944836378098, 0.06264711171388626, -0.04227684438228607, -0.07224173098802567, -0.021548403427004814, 0.053512975573539734, -0.0403202660381794, -0.027359483763575554, -0.04113394021987915, 0.05298083275556564, 0.09803646057844162, 0.008530162274837494, 0.07224562019109726, 0.0655585452914238, 0.11477893590927124, -0.040030188858509064, 0.07779642194509506, 0.015446318313479424, -0.034452732652425766, 0.025246383622288704, 0.061329908668994904, -0.05075358226895332, -6.11080182011392e-8, -0.0356399342417717, 0.04560481011867523, -0.06337771564722061, 0.022151395678520203, -0.04866885766386986, -0.020776253193616867, -0.057002078741788864, 0.04890693351626396, 0.0165614802390337, 0.02766389213502407, 0.014932851307094097, 0.0026833955198526382, -0.0903024896979332, 0.01482873409986496, 0.000807849457487464, 0.009467161260545254, 0.01751229539513588, 0.09565849602222443, -0.05145290121436119, -0.05108008533716202, 0.06513310223817825, 0.003246396780014038, -0.047049928456544876, 0.0030863878782838583, 0.09063633531332016, -0.032399486750364304, -0.13349628448486328, 0.11099141836166382, -0.04579649120569229, 0.0345706008374691, -0.013087133876979351, -0.05792047455906868, 0.004595163278281689, -0.06086087226867676, 0.013634410686790943, 0.061334311962127686, -0.05692644417285919, -0.05260257050395012, 0.026663001626729965, 0.048896413296461105, 0.046388059854507446, 0.028368357568979263, -0.05314774438738823, -0.018771400675177574, 0.03270480036735535, 0.000029491882742149755, -0.024494750425219536, -0.06477352231740952, 0.015174368396401405, -0.010941989719867706, 0.031592581421136856, -0.07760366052389145, 0.012078278698027134, 0.06072327867150307, -0.03877237066626549, 0.0011414902983233333, -0.0033089080825448036, 0.006107674445956945, 0.11495094001293182, -0.05072380602359772, 0.10688996315002441, -0.042354971170425415, -0.032014988362789154, -0.007169483229517937 ]
sberbank-ai/ruT5-large
4d14102f32e730d68b1950bfaeb7a4988c978737
2021-09-28T15:56:17.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "PyTorch", "Transformers", "autotrain_compatible" ]
text2text-generation
false
sberbank-ai
null
sberbank-ai/ruT5-large
1,962
7
transformers
--- language: - ru tags: - PyTorch - Transformers thumbnail: "https://github.com/sberbank-ai/model-zoo" --- # ruT5-large Model was trained by [SberDevices](https://sberdevices.ru/) team. * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101 ` * Num Parameters: `737 M` * Training Data Volume `300 GB`
[ -0.041847895830869675, -0.09142593294382095, -0.05420286953449249, 0.051295213401317596, 0.0757187157869339, -0.041045431047677994, -0.033653076738119125, 0.06798464059829712, -0.0075158895924687386, -0.05592004954814911, -0.03139244019985199, -0.023706773295998573, -0.05522305518388748, 0.04466718062758446, 0.017395297065377235, 0.050788763910532, 0.0034064624924212694, -0.007678435184061527, -0.06796122342348099, -0.09994935989379883, 0.04929539933800697, -0.007440513931214809, 0.04073783755302429, 0.0309353768825531, 0.017218368127942085, 0.06382116675376892, -0.020032525062561035, -0.05724194645881653, 0.03930230066180229, -0.07474236190319061, 0.0636274442076683, -0.0016506981337442994, 0.05510428920388222, 0.01016190741211176, 0.05656282976269722, 0.06666490435600281, -0.033025745302438736, -0.08385857939720154, 0.021075477823615074, -0.014776960015296936, 0.05102873593568802, -0.01361861452460289, -0.04768283665180206, -0.018742362037301064, 0.1256440430879593, 0.014311720617115498, -0.03986850008368492, -0.028998665511608124, 0.07109769433736801, -0.08012843877077103, -0.0875445157289505, -0.013993442989885807, -0.016216635704040527, -0.004195621237158775, -0.00779516389593482, -0.021395964547991753, 0.03818304464221001, -0.06256483495235443, 0.046141572296619415, -0.021133698523044586, 0.011103956028819084, 0.02377191372215748, 0.01375838927924633, -0.011216322891414165, -0.05743744969367981, 0.014064175076782703, 0.019185423851013184, 0.02467644028365612, 0.02801072783768177, -0.01936967298388481, 0.03415900468826294, -0.01277151145040989, -0.10881493985652924, 0.021080803126096725, 0.017155511304736137, -0.07077986001968384, 0.04809613898396492, 0.05207027867436409, 0.028775859624147415, -0.07396416366100311, -0.02215414121747017, -0.08541452884674072, 0.0669088363647461, 0.00002626275090733543, -0.010701621882617474, 0.021129600703716278, 0.016437167301774025, 0.02493288181722164, 0.0024554452393203974, 0.0017164436867460608, -0.003259857650846243, -0.12640292942523956, 0.042208943516016006, 0.04069750756025314, -0.08645222336053848, 0.028351599350571632, -0.044408779591321945, -0.012325339019298553, -0.03648877888917923, 0.060780689120292664, -0.032265931367874146, -0.015253179706633091, 0.06929130107164383, 0.028115369379520416, -0.04838333651423454, -0.042495641857385635, 0.01888340339064598, 0.0678839161992073, 0.029918309301137924, -0.035907089710235596, 0.09859780967235565, -0.005834640469402075, -0.016271919012069702, 0.04100266471505165, 0.08317552506923676, 0.02855747938156128, -0.03585420921444893, -0.0051773833110928535, -0.004867746960371733, 0.09539378434419632, 0.007023208774626255, 0.02890719287097454, -0.10389307141304016, 0.0012062094174325466, -0.0928412526845932, 0.0017869345610961318, -0.048512887209653854, 3.909074872248839e-33, 0.004474370740354061, -0.0413326658308506, 0.03205857425928116, 0.03515003249049187, 0.02632591314613819, 0.017050761729478836, -0.04168856889009476, 0.02034963294863701, -0.029716918244957924, -0.004817910958081484, -0.04453670233488083, -0.05799984559416771, -0.035723984241485596, 0.054556429386138916, 0.03245433419942856, -0.045189984142780304, -0.044192053377628326, 0.03808089345693588, 0.018448391929268837, 0.053173910826444626, 0.07014613598585129, 0.0021262853406369686, -0.04657122492790222, -0.022287189960479736, -0.00008005861309356987, 0.06914836913347244, 0.052596431225538254, -0.11696965247392654, 0.03620677813887596, 0.02722635678946972, -0.10317622125148773, -0.047413937747478485, 0.04017644748091698, 0.05882051959633827, -0.015092210844159126, -0.04222790151834488, 0.03288871794939041, -0.017060430720448494, -0.07850735634565353, -0.08114063739776611, 0.015986308455467224, 0.049130141735076904, -0.039699893444776535, -0.043375540524721146, -0.012396907433867455, -0.013529680669307709, 0.020965872332453728, 0.04099840670824051, -0.01907964237034321, 0.014629007317125797, 0.013574570417404175, 0.0557689443230629, -0.03937260061502457, -0.005223895888775587, 0.059008531272411346, 0.00018179907056037337, 0.07953902333974838, 0.054316598922014236, 0.10470777004957199, 0.07145500928163528, 0.07257036864757538, -0.00041511960444040596, 0.07155342400074005, 0.04033300653100014, 0.14188167452812195, 0.048177145421504974, 0.03612443432211876, 0.009551696479320526, 0.042243968695402145, 0.04885733872652054, -0.0869387611746788, -0.003846721490845084, 0.07481246441602707, 0.037271227687597275, 0.028784792870283127, -0.07787173241376877, -0.018367251381278038, -0.06588464975357056, -0.06670175492763519, 0.03571705147624016, -0.10221794247627258, 0.020396947860717773, 0.03225761279463768, -0.019428011029958725, -0.02770017832517624, -0.009634498506784439, 0.014141988009214401, -0.08346899598836899, -0.02263917587697506, 0.014977174811065197, 0.016112925484776497, -0.019607102498412132, -0.05548180639743805, -0.03725787624716759, -0.05617903172969818, -3.0602221161872483e-33, 0.02943672426044941, 0.01839284598827362, -0.0835631713271141, 0.05158475413918495, -0.05417914688587189, -0.06653233617544174, 0.007609765511006117, 0.13430950045585632, 0.0014485352439805865, 0.0579703263938427, 0.027203204110264778, -0.04386264830827713, 0.021230187267065048, -0.03542647510766983, 0.08480396866798401, -0.022598953917622566, 0.013012753799557686, -0.021184217184782028, 0.0011963321594521403, 0.037871528416872025, -0.031500641256570816, 0.0881420373916626, 0.009098743088543415, 0.05579637736082077, -0.00016281637363135815, 0.03662524372339249, -0.006855715531855822, 0.05158569663763046, 0.022782472893595695, -0.07113530486822128, -0.021081827580928802, -0.0045183273032307625, -0.06445243209600449, -0.01165973860770464, -0.09273035824298859, 0.0013736534165218472, 0.03450005501508713, 0.03088369220495224, -0.02900579944252968, 0.0407504141330719, 0.05537024512887001, 0.06503947824239731, -0.13723218441009521, 0.05749116465449333, -0.015609531663358212, -0.02309010922908783, -0.07503943890333176, 0.0021998744923621416, 0.0664605051279068, -0.08438735455274582, 0.014425210654735565, -0.03793671727180481, -0.08871451020240784, -0.018873892724514008, -0.06309318542480469, -0.09402961283922195, 0.010548761114478111, 0.02706599049270153, -0.0039196680299937725, -0.019654126837849617, -0.04522402957081795, -0.04647388309240341, 0.029423708096146584, -0.0244191475212574, -0.004079254809767008, -0.07040601968765259, -0.018120115622878075, 0.01290158275514841, -0.004416440147906542, 0.0009713447652757168, 0.08921413123607635, -0.0026669895742088556, 0.060396723449230194, 0.18418365716934204, -0.040357109159231186, -0.0006539248861372471, -0.08175117522478104, 0.015097342431545258, 0.07581696659326553, -0.03647267073392868, -0.044760189950466156, 0.020926212891936302, 0.05426813289523125, 0.09408389031887054, 0.09439649432897568, -0.044628582894802094, 0.023351013660430908, 0.08315455913543701, 0.04072597250342369, -0.008191556669771671, 0.051477134227752686, 0.01343382615596056, -0.0006152684800326824, 0.09911070019006729, -0.000011453291335783433, -4.652777008118392e-8, -0.029247304424643517, -0.019328800961375237, -0.08325503766536713, 0.06196767836809158, -0.01215765904635191, -0.052989888936281204, -0.030217280611395836, 0.06396995484828949, -0.04781433567404747, 0.0662921741604805, 0.006328659597784281, -0.03468506783246994, -0.12267960608005524, -0.003214627504348755, 0.047348715364933014, 0.10676403343677521, 0.05838486924767494, 0.07842548936605453, -0.0009859659476205707, -0.06556662917137146, 0.09433174133300781, -0.00784111674875021, -0.009156676940619946, -0.07704237103462219, 0.05773666128516197, -0.0707971379160881, -0.08076249063014984, 0.07747934013605118, 0.021171627566218376, -0.08217310160398483, 0.0415063202381134, -0.008886766619980335, -0.014156478457152843, -0.02599666453897953, 0.07197093963623047, 0.03540549427270889, -0.005235827993601561, -0.028180396184325218, 0.01565971039235592, -0.006594686768949032, -0.029533401131629944, -0.013506386429071426, -0.07787341624498367, -0.03911421447992325, 0.018627887591719627, 0.026907645165920258, -0.06243211403489113, -0.06900623440742493, 0.02054663747549057, -0.01517809834331274, 0.06579858064651489, -0.06652086973190308, 0.01782146282494068, 0.030654631555080414, -0.026590578258037567, 0.028647512197494507, -0.04904831200838089, -0.0803709626197815, -0.014750886708498001, 0.0076376814395189285, 0.06676071137189865, 0.05607517436146736, -0.01960519142448902, -0.009540853090584278 ]
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
9f18ece8499d11cd7e0679e14be9e32ac9148f5e
2021-08-25T21:38:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
1,961
null
transformers
--- language: en thumbnail: widget: - text: "Old people with COVID-19 tends to suffer" --- # GPT-2 + bio/medrxiv files from CORD19: 🦠 ✍ ⚕ **GPT-2** fine-tuned on **biorxiv_medrxiv** files from [CORD-19](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge) dataset. ## Datasets details: | Dataset | # Files | | ---------------------- | ----- | | biorxiv_medrxiv | 885 | ## Model training: The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash export TRAIN_FILE=/path/to/dataset/train.txt python run_language_modeling.py \\n --model_type gpt2 \\n --model_name_or_path gpt2 \\n --do_train \\n --train_data_file $TRAIN_FILE \\n --num_train_epochs 4 \\n --output_dir model_output \\n --overwrite_output_dir \\n --save_steps 2000 \\n --per_gpu_train_batch_size 3 ``` ## Model in action / Example of usage: ✒ You can get the following script [here](https://github.com/huggingface/transformers/blob/master/examples/text-generation/run_generation.py) ```bash python run_generation.py \\n --model_type gpt2 \\n --model_name_or_path mrm8488/GPT-2-finetuned-CORD19 \\n --length 200 ``` ```txt 👵👴🦠 # Input: Old people with COVID-19 tends to suffer # Output: === GENERATED SEQUENCE 1 === Old people with COVID-19 tends to suffer more symptom onset time and death. It is well known that many people with COVID-19 have high homozygous ZIKV infection in the face of severe symptoms in both severe and severe cases. The origin of Wuhan Fever was investigated by Prof. Shen Jiang at the outbreak of Wuhan Fever [34]. As Huanan Province is the epicenter of this outbreak, Huanan, the epicenter of epidemic Wuhan Fever, is the most potential location for the direct transmission of infection (source: Zhongzhen et al., 2020). A negative risk ratio indicates more frequent underlying signs in the people in Huanan Province with COVID-19 patients. Further analysis of reported Huanan Fever onset data in the past two years indicated that the intensity of exposure is the key risk factor for developing MERS-CoV infection in this region, especially among children and elderly. To be continued to develop infected patients would be a very important area for ``` ![Model in action](https://media.giphy.com/media/TgUdO72Iwk9h7hhm7G/giphy.gif) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
[ -0.04848047345876694, 0.006547929719090462, -0.09837093949317932, 0.019144877791404724, 0.08016050606966019, -0.054151374846696854, -0.02292047068476677, 0.10179144889116287, -0.055788978934288025, -0.08408620208501816, 0.05990283191204071, -0.01297376025468111, -0.027797972783446312, 0.012492181733250618, -0.06792528182268143, 0.006111695431172848, -0.08053026348352432, -0.039353445172309875, -0.05296183377504349, -0.05418642982840538, -0.0074276854284107685, 0.10310725122690201, 0.0669737383723259, 0.034564051777124405, -0.02367951162159443, 0.006281619425863028, -0.00010200170800089836, -0.03645351529121399, -0.0028415804263204336, 0.0026600046548992395, 0.049228280782699585, 0.08431900292634964, 0.00238189403899014, 0.04656446352601051, 0.058684270828962326, 0.10763274133205414, -0.03623037785291672, -0.08210471272468567, -0.02429961785674095, -0.006569675635546446, 0.07439596951007843, 0.010700473561882973, -0.02534707821905613, -0.027653668075799942, 0.052856940776109695, -0.00969933345913887, -0.06793481856584549, -0.07445037364959717, 0.03508966043591499, -0.01881321519613266, -0.11283785104751587, -0.0002388923312537372, -0.013886523433029652, 0.004390704445540905, 0.03897321969270706, -0.05951451137661934, -0.011564003303647041, -0.034656889736652374, -0.0222143717110157, -0.019288048148155212, 0.01648661494255066, 0.0001493585732532665, -0.048054568469524384, 0.0009628994157537818, -0.06492302566766739, -0.05176315829157829, 0.01593666337430477, 0.05369700491428375, -0.00077789556235075, 0.016864096745848656, -0.03211676701903343, 0.04901420697569847, -0.10499992221593857, 0.01842508278787136, -0.026182223111391068, -0.01376330479979515, 0.029847146943211555, -0.0291881263256073, 0.05075841769576073, -0.11582166701555252, -0.01964060217142105, -0.07820899039506912, 0.10239605605602264, -0.004753562156111002, 0.024988265708088875, -0.019502690061926842, 0.08054658770561218, 0.03275343030691147, 0.02054745890200138, -0.046284858137369156, -0.04357066750526428, -0.038725435733795166, 0.05909452959895134, 0.07498202472925186, -0.008276395499706268, 0.05535058304667473, 0.05246958136558533, 0.026082944124937057, -0.07335121184587479, 0.030005991458892822, 0.003639929462224245, 0.00335124135017395, 0.03258255124092102, 0.11056067794561386, -0.03326556086540222, 0.00017617622506804764, 0.04636683315038681, 0.06885369122028351, 0.019429054111242294, -0.009522054344415665, 0.0766490250825882, 0.06978833675384521, -0.04852449148893356, -0.03050093539059162, 0.04878286272287369, 0.062266286462545395, -0.10272025316953659, 0.02466476522386074, -0.058927446603775024, 0.13272878527641296, -0.044310685247182846, -0.06914815306663513, -0.03588056191802025, -0.008902537636458874, 0.01645895093679428, -0.0491303913295269, -0.03893231600522995, 1.8907240722511007e-33, 0.03769400715827942, -0.09309898316860199, 0.006546629127115011, -0.02146996185183525, 0.07983584702014923, 0.009521842002868652, -0.021231558173894882, -0.028225470334291458, -0.039423875510692596, 0.023019947111606598, -0.11218626797199249, -0.03253781050443649, -0.05981829762458801, 0.06708170473575592, 0.015089933760464191, -0.059255387634038925, -0.07470767945051193, 0.011283972300589085, -0.0411841943860054, 0.036096274852752686, 0.1867188811302185, 0.04078277572989464, -0.045303698629140854, -0.021043872460722923, -0.016317162662744522, -0.0038969058077782393, -0.01557082962244749, -0.03773048147559166, 0.01670997217297554, 0.030695324763655663, -0.1105121523141861, -0.025459399446845055, 0.04687044396996498, 0.029390353709459305, -0.020242491737008095, -0.009557466022670269, 0.01542437169700861, -0.04627842456102371, 0.025805719196796417, 0.028821446001529694, 0.0956682488322258, 0.06499656289815903, 0.01490325853228569, -0.08891807496547699, -0.013532493263483047, -0.011144143529236317, 0.046365171670913696, -0.016697300598025322, -0.09010084718465805, 0.07349184900522232, -0.08213896304368973, 0.03091910481452942, -0.027218887582421303, -0.006584246642887592, -0.0228949636220932, -0.020499393343925476, 0.03652412071824074, 0.008442142978310585, 0.08395415544509888, 0.015453956089913845, 0.04550793394446373, 0.0213319044560194, 0.03676667809486389, 0.06097085773944855, 0.051472507417201996, -0.04313422739505768, 0.03878486901521683, 0.0050290608778595924, -0.034774117171764374, 0.08042752742767334, -0.13358382880687714, -0.023466147482395172, -0.0019551278091967106, -0.03368654102087021, 0.08274637162685394, -0.09862333536148071, -0.019206073135137558, -0.016688773408532143, -0.10838272422552109, -0.05100720375776291, -0.0086240004748106, -0.00762939453125, -0.02239244617521763, -0.07359927892684937, -0.0303933247923851, -0.026907747611403465, -0.01573745720088482, -0.02924724854528904, -0.08342397212982178, -0.0009391935309395194, -0.04556713253259659, -0.00956423394382, -0.02230267971754074, -0.07997188717126846, -0.08626118302345276, -4.505316831054597e-33, 0.04779211804270744, 0.05316402018070221, 0.06775717437267303, 0.05714802443981171, 0.033885400742292404, -0.02647864632308483, 0.056843847036361694, 0.04347401484847069, 0.00775220338255167, -0.06205368414521217, 0.0462287999689579, -0.025198234245181084, 0.020218415185809135, -0.07763306796550751, 0.049693889915943146, 0.028446882963180542, -0.05471140518784523, -0.0051953149959445, -0.049772992730140686, 0.015758996829390526, -0.0923575684428215, 0.0713401585817337, -0.0377606526017189, 0.03330468758940697, -0.02312130108475685, 0.05797586217522621, 0.0427841879427433, 0.022136475890874863, 0.021645868197083473, -0.05173252150416374, -0.048042986541986465, 0.045184917747974396, -0.11395374685525894, 0.006680671591311693, -0.04001539945602417, 0.050994373857975006, 0.07746555656194687, -0.01443476416170597, -0.04883001744747162, 0.05516849085688591, 0.1503162831068039, 0.07469449192285538, -0.09311558306217194, 0.05734501779079437, 0.007753666024655104, -0.0002606181660667062, -0.07019272446632385, -0.049058280885219574, -0.006105692591518164, -0.040130458772182465, 0.04315647482872009, -0.024525385349988937, -0.027530120685696602, 0.04776722192764282, -0.01840813457965851, -0.11783477663993835, 0.04873155057430267, -0.007596553303301334, -0.10603684931993484, -0.05397355929017067, -0.011014476418495178, -0.07411463558673859, -0.10297903418540955, -0.07802236825227737, -0.02935478277504444, -0.06397154182195663, -0.026484815403819084, 0.022328725084662437, 0.08442947268486023, 0.06651446968317032, 0.026782415807247162, 0.06140783429145813, 0.03781098872423172, 0.006943291984498501, -0.04235711693763733, 0.051196902990341187, -0.08897152543067932, -0.009640541858971119, 0.07134108245372772, 0.0235800351947546, 0.019561482593417168, 0.01661320962011814, 0.09772931784391403, 0.010664612054824829, 0.05467633903026581, 0.04516500607132912, -0.05109599977731705, 0.0616740807890892, 0.02936173789203167, -0.017033252865076065, -0.05099176615476608, -0.0409090593457222, 0.047230932861566544, 0.05659167468547821, -0.014369338750839233, -5.567439131937135e-8, 0.023450687527656555, -0.031312618404626846, -0.0388946495950222, 0.057141952216625214, 0.014655283652245998, -0.02990816906094551, -0.06066387519240379, 0.08188793808221817, 0.012612386606633663, 0.045746296644210815, 0.11622622609138489, 0.00988260842859745, -0.07927646487951279, -0.006358026992529631, 0.004839220549911261, 0.0448482409119606, -0.026087038218975067, 0.0814935714006424, -0.011492532677948475, -0.004698288161307573, -0.028260067105293274, 0.015844974666833878, 0.01901470497250557, -0.005141465924680233, 0.04204747825860977, -0.024578912183642387, 0.013065098784863949, 0.028226735070347786, -0.013135130517184734, -0.05245808884501457, -0.021195320412516594, -0.06177915260195732, -0.00674221757799387, 0.0006738603115081787, 0.012041409499943256, -0.019994083791971207, 0.05842506140470505, 0.0022982233203947544, 0.03644363582134247, 0.005699130706489086, 0.0068104201927781105, 0.020859377458691597, -0.056161023676395416, 0.0016579048242419958, -0.00033883523428812623, -0.02053905837237835, -0.030829353258013725, -0.008356759324669838, 0.02101985178887844, -0.03207753598690033, 0.029993252828717232, 0.02031702548265457, -0.0430610217154026, 0.0475427582859993, 0.02950032614171505, 0.019824601709842682, -0.07396266609430313, -0.004292952362447977, -0.05202058330178261, -0.02586822211742401, -0.022803250700235367, -0.030647631734609604, -0.020321056246757507, -0.018827097490429878 ]
Jiva/xlm-roberta-large-it-mnli
c6e64469ec4aa17fedbd1b2522256f90a90b5b86
2021-12-10T14:56:38.000Z
[ "pytorch", "xlm-roberta", "text-classification", "it", "dataset:multi_nli", "dataset:glue", "arxiv:1911.02116", "transformers", "tensorflow", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
Jiva
null
Jiva/xlm-roberta-large-it-mnli
1,960
4
transformers
--- language: it tags: - text-classification - pytorch - tensorflow datasets: - multi_nli - glue license: mit pipeline_tag: zero-shot-classification widget: - text: "La seconda guerra mondiale vide contrapporsi, tra il 1939 e il 1945, le cosiddette potenze dell'Asse e gli Alleati che, come già accaduto ai belligeranti della prima guerra mondiale, si combatterono su gran parte del pianeta; il conflitto ebbe inizio il 1º settembre 1939 con l'attacco della Germania nazista alla Polonia e terminò, nel teatro europeo, l'8 maggio 1945 con la resa tedesca e, in quello asiatico, il successivo 2 settembre con la resa dell'Impero giapponese dopo i bombardamenti atomici di Hiroshima e Nagasaki." candidate_labels: "guerra, storia, moda, cibo" multi_class: true --- # XLM-roBERTa-large-it-mnli ## Version 0.1 | | matched-it acc | mismatched-it acc | | -------------------------------------------------------------------------------- |----------------|-------------------| | XLM-roBERTa-large-it-mnli | 84.75 | 85.39 | ## Model Description This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline). ## Intended Usage This model is intended to be used for zero-shot text classification of italian texts. Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the [XLM Roberata paper](https://arxiv.org/abs/1911.02116) For English-only classification, it is recommended to use [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True) ``` You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another: ```python # we will classify the following wikipedia entry about Sardinia" sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." # we can specify candidate labels in Italian: candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] classifier(sequence_to_classify, candidate_labels) # {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'], # 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]} ``` The default hypothesis template is the English, `This text is {}`. With this model better results are achieving when providing a translated template: ```python sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] hypothesis_template = "si parla di {}" # classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) # 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli') tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli') premise = sequence hypothesis = f'si parla di {}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ``` ## Training ## Version 0.1 The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model. | metric | value | |----------------- |------- | | learning_rate | 4e-6 | | optimizer | AdamW | | batch_size | 80 | | mcc | 0.77 | | train_loss | 0.34 | | eval_loss | 0.40 | | stopped_at_step | 9754 | ## Version 0.0 This model was pre-trained on set of 100 languages, as described in [the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.
[ -0.05990898981690407, 0.05719452723860741, -0.09016803652048111, -0.04915153980255127, 0.03888091444969177, 0.07147804647684097, 0.0487087219953537, 0.08475734293460846, -0.004352279473096132, -0.018608825281262398, 0.039780352264642715, -0.08909304440021515, 0.02462499402463436, 0.023739490658044815, -0.03252805024385452, -0.005624844692647457, -0.0018289375584572554, -0.04203327000141144, -0.06464546173810959, -0.028335433453321457, 0.041564665734767914, 0.03594505786895752, 0.07817809283733368, 0.032717835158109665, 0.03516558185219765, 0.07582682371139526, -0.09035944938659668, 0.04738038033246994, -0.06633474677801132, 0.02175455540418625, -0.01517684105783701, 0.12882958352565765, 0.02366855926811695, 0.035622406750917435, 0.08692582696676254, -0.012167928740382195, -0.015333922579884529, -0.0007246678578667343, 0.07580676674842834, 0.05483614653348923, -0.07970882952213287, 0.016758644953370094, -0.038090236485004425, 0.04924580082297325, -0.025641096755862236, 0.01002261321991682, -0.015973933041095734, 0.003025186015293002, -0.04486102610826492, 0.03349354490637779, -0.07093794643878937, 0.00039105533505789936, -0.02939143031835556, 0.06955007463693619, -0.0295364148914814, -0.057384192943573, 0.045360784977674484, -0.03467679023742676, 0.02531810849905014, -0.01211357768625021, -0.10893801599740982, -0.014559601433575153, -0.029613332822918892, 0.07023964077234268, -0.010126015171408653, 0.0013735985849052668, 0.02416905388236046, -0.006521251983940601, -0.07383926957845688, 0.038162194192409515, 0.08595429360866547, 0.007410421501845121, 0.04920702800154686, 0.01884831115603447, 0.006251368205994368, 0.02430211380124092, 0.012791533023118973, 0.04963022097945213, 0.036879345774650574, -0.10295405238866806, 0.03888639807701111, -0.027610238641500473, 0.08593543618917465, -0.045774757862091064, 0.08317548036575317, 0.04465126618742943, -0.058256667107343674, -0.027775481343269348, 0.09932150691747665, 0.032005976885557175, -0.06140599399805069, 0.026199335232377052, 0.05277125537395477, 0.09619569778442383, -0.027980895712971687, -0.0015836047241464257, 0.017993206158280373, 0.0012873222585767508, 0.03811020031571388, 0.11560115218162537, 0.023933226242661476, -0.09578707069158554, -0.026156943291425705, 0.0058529796078801155, -0.07472895830869675, -0.06766647845506668, 0.04893694818019867, -0.012139157392084599, -0.030411524698138237, -0.04875435307621956, -0.04283912107348442, -0.05030079185962677, -0.01776091940701008, -0.08453897386789322, 0.01146865077316761, -0.03058536909520626, 0.06538771092891693, -0.03405533730983734, 0.0034998145420104265, 0.006314943078905344, -0.013319278135895729, -0.04946393147110939, -0.11084717512130737, -0.014751695096492767, -0.0688081756234169, 0.02061587944626808, -0.0543045848608017, 1.2374377603228372e-32, 0.0400601364672184, 0.015544122084975243, -0.017510954290628433, -0.0016368352808058262, -0.01990014873445034, -0.023595374077558517, -0.08211699873209, -0.024700289592146873, -0.08189690858125687, 0.005974512547254562, -0.052329305559396744, -0.036006223410367966, -0.041880518198013306, 0.05664695426821709, 0.01826099492609501, -0.004919425584375858, 0.06686966121196747, 0.022400617599487305, -0.008827815763652325, -0.03127932548522949, 0.0014707843074575067, 0.03684283420443535, 0.025845874100923538, -0.04165130481123924, 0.06457824259996414, 0.14783768355846405, -0.0018178715836256742, -0.05912299081683159, -0.07390259206295013, 0.06338617205619812, -0.0030161207541823387, -0.004154794383794069, 0.04910680279135704, -0.00691773509606719, 0.05447275564074516, -0.07336974143981934, -0.08986641466617584, -0.019914617761969566, -0.03823815658688545, -0.003910730592906475, -0.05155481398105621, 0.06898082792758942, -0.03706452250480652, 0.026430662721395493, 0.05642743036150932, -0.03808313608169556, -0.04696691036224365, 0.027242589741945267, 0.05176561698317528, -0.003586159087717533, -0.026426177471876144, -0.024505671113729477, 0.0001341192255495116, -0.003230481641367078, -0.015841642394661903, 0.09197482466697693, -0.02585454098880291, 0.0484941191971302, 0.035158026963472366, -0.0705643892288208, -0.022493205964565277, 0.023608043789863586, -0.002032322809100151, 0.04167144373059273, 0.07099082320928574, 0.057831086218357086, -0.11380696296691895, 0.013900300487875938, 0.1367274522781372, 0.043803002685308456, -0.05072619765996933, -0.016539257019758224, 0.0117861432954669, 0.033167049288749695, 0.06690102815628052, 0.026991501450538635, 0.05407416820526123, -0.04654025286436081, -0.02902086079120636, 0.008774776011705399, -0.0908566489815712, -0.07088849693536758, 0.005534599535167217, -0.014051340520381927, -0.014779736287891865, -0.026624679565429688, 0.022371510043740273, -0.10877671092748642, 0.008789382874965668, 0.045479029417037964, -0.018730148673057556, 0.0009719990775920451, -0.08431461453437805, -0.049524568021297455, -0.09878282994031906, -1.2558628995880073e-32, 0.023766420781612396, 0.031191224232316017, -0.09085853397846222, -0.02408418618142605, -0.030322909355163574, 0.01676129549741745, -0.07447424530982971, 0.00987040251493454, 0.04393995925784111, 0.025082096457481384, 0.04989159479737282, -0.02252507023513317, -0.031631194055080414, -0.03459418937563896, -0.01570119336247444, 0.04963252693414688, 0.02072436362504959, 0.03408493101596832, 0.04345981031656265, 0.06545058637857437, 0.048636458814144135, -0.056033529341220856, -0.05748182535171509, -0.030225705355405807, -0.04397987201809883, -0.02200924977660179, 0.0693533644080162, -0.011314325965940952, 0.08522261679172516, -0.03512505069375038, -0.030099833384156227, -0.04920962080359459, -0.04459463432431221, -0.014871282503008842, 0.021005280315876007, 0.04360156133770943, 0.07222271710634232, -0.041928332298994064, 0.011110099032521248, 0.08482189476490021, -0.05906876176595688, 0.057241808623075485, -0.058070652186870575, 0.007217213045805693, -0.06635891646146774, -0.034079018980264664, -0.06867685914039612, 0.02571410872042179, -0.00302844843827188, -0.039352212101221085, -0.014140969142317772, 0.01629454456269741, -0.07560443878173828, 0.017695095390081406, 0.026181405410170555, -0.08376502245664597, -0.0036706156097352505, -0.11121650785207748, -0.08649352937936783, 0.005481273867189884, -0.016811911016702652, 0.05169828236103058, 0.0007418674067594111, -0.016531169414520264, 0.124269500374794, -0.09149572253227234, -0.09475240111351013, -0.006556783802807331, 0.007500653620809317, 0.04090707004070282, 0.06028898060321808, -0.020568478852510452, -0.05597256124019623, -0.008011574856936932, -0.08233707398176193, -0.033431652933359146, -0.031226206570863724, 0.09195061773061752, -0.00528757693246007, 0.05949145928025246, -0.03699655830860138, -0.007131324149668217, -0.017901873216032982, 0.07990685105323792, 0.05137670040130615, 0.03191583231091499, 0.047594256699085236, 0.06368796527385712, 0.022498421370983124, -0.017937153577804565, 0.0770476683974266, 0.0009441672009415925, 0.11031010746955872, 0.05374564602971077, -0.032392971217632294, -6.445257128007142e-8, -0.01668626256287098, 0.009022960439324379, -0.061906252056360245, 0.017799511551856995, -0.04333309456706047, -0.06590323895215988, -0.039823148399591446, -0.04617176204919815, -0.010872460901737213, -0.017452886328101158, 0.06444051116704941, 0.0898342877626419, -0.018825234845280647, -0.03752958029508591, -0.06739000976085663, 0.03128283470869064, -0.019599182531237602, 0.0031956308521330357, -0.024607796221971512, 0.047800902277231216, 0.042434725910425186, -0.07274423539638519, -0.006087522488087416, -0.10938528925180435, 0.015162333846092224, 0.001371189602650702, -0.05333301052451134, 0.008243455551564693, -0.054392632097005844, -0.014553967863321304, -0.05586174502968788, 0.05186533182859421, -0.06824449449777603, -0.10565806180238724, -0.024330247193574905, 0.0839463546872139, 0.013270048424601555, -0.09089595079421997, -0.04087677597999573, 0.004709218628704548, 0.03368591144680977, 0.013692045584321022, -0.03261655196547508, 0.01225036010146141, 0.1458093822002411, 0.03624345734715462, 0.02743583917617798, -0.031262487173080444, 0.018158074468374252, -0.019543243572115898, -0.038842275738716125, 0.013139376416802406, -0.048397015780210495, 0.07579253613948822, 0.017930472269654274, 0.030943483114242554, 0.07771115750074387, 0.031029820442199707, 0.07221411168575287, 0.0275079645216465, 0.08278237283229828, -0.03164155036211014, -0.03166359290480614, -0.07138343900442123 ]
ltgoslo/norbert
44815f7e109b53547cccdf3c6847f4c28b989816
2022-03-25T16:02:00.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "no", "arxiv:2104.06546", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
ltgoslo
null
ltgoslo/norbert
1,956
6
transformers
--- language: no license: cc-by-4.0 pipeline_tag: fill-mask tags: - norwegian - bert thumbnail: https://raw.githubusercontent.com/ltgoslo/NorBERT/main/Norbert.png --- ## Quickstart **Release 1.1** (February 13, 2021) Please check also our newer model: [NorBERT 2](https://huggingface.co/ltgoslo/norbert2), trained on a much larger corpus. Download the model here: * Cased Norwegian BERT Base: [216.zip](http://vectors.nlpl.eu/repository/20/216.zip) More about NorBERT training corpora and training procedure: http://norlm.nlpl.eu/ Associated code: https://github.com/ltgoslo/NorBERT Check this paper for more details: _Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja Øvrelid, Stephan Oepen. [Large-Scale Contextualised Language Modelling for Norwegian](https://arxiv.org/abs/2104.06546), NoDaLiDa'21 (2021)_ NorBERT was trained as a part of NorLM, a joint initiative of the projects [EOSC-Nordic](https://www.eosc-nordic.eu/) (European Open Science Cloud) and [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/index.html) (Sentiment Analysis for Norwegian), coordinated by the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo. The computations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.
[ -0.07350687682628632, -0.04478039592504501, 0.07119876146316528, -0.04217821732163429, 0.06748258322477341, 0.0011189571814611554, -0.04660071060061455, 0.045309215784072876, 0.010326388292014599, -0.023361731320619583, -0.004239283036440611, -0.044723957777023315, -0.015583706088364124, 0.033811479806900024, 0.04357830062508583, 0.05239760875701904, 0.021680979058146477, 0.04260355606675148, -0.033064648509025574, 0.005951548460870981, 0.07230054587125778, 0.06366302073001862, 0.05173679441213608, -0.13463526964187622, 0.0809081643819809, -0.011087042279541492, -0.02578013949096203, -0.10276246815919876, 0.11549229174852371, 0.016365183517336845, 0.08446072041988373, -0.0006757242372259498, 0.03613040968775749, 0.07942845672369003, 0.05274452641606331, 0.05386069416999817, 0.026680845767259598, 0.0006066481582820415, -0.034902650862932205, 0.1452290415763855, -0.07166086882352829, 0.018848003819584846, -0.06169499084353447, -0.012129134498536587, 0.09947777539491653, 0.02367531694471836, -0.07416882365942001, -0.007062345277518034, -0.03102690353989601, -0.006003784481436014, -0.07995028048753738, -0.09259506314992905, 0.0912816971540451, 0.024143051356077194, -0.02695666253566742, -0.03151102736592293, -0.01558662112802267, -0.052545323967933655, 0.007160349749028683, -0.04141915589570999, -0.061965472996234894, -0.04876832664012909, -0.031457044184207916, -0.007866193540394306, -0.06964991986751556, 0.03670896217226982, -0.06950365751981735, 0.0569453239440918, -0.01826011948287487, 0.026020575314760208, -0.0024036283139139414, 0.016265522688627243, -0.05499042570590973, 0.019624730572104454, -0.041339389979839325, -0.0377483032643795, 0.056462544947862625, -0.059116873890161514, 0.05444342643022537, -0.0770551785826683, 0.005821205675601959, 0.04809382185339928, 0.0375567227602005, -0.03526514023542404, 0.04774341359734535, -0.015163118951022625, 0.0804470032453537, 0.0031354259699583054, -0.011842397041618824, 0.019894370809197426, -0.01960902102291584, -0.05441545322537422, 0.035844381898641586, 0.00175699673127383, 0.00651079136878252, 0.011555394157767296, 0.05646076425909996, 0.037803180515766144, -0.024413514882326126, 0.1020088717341423, 0.008029942400753498, 0.004100071731954813, 0.017559140920639038, -0.10860755294561386, -0.020696520805358887, 0.02550371363759041, -0.011771670542657375, 0.01092162448912859, 0.07324188202619553, -0.09499888122081757, 0.009610345587134361, -0.03804031014442444, -0.05016014352440834, -0.06051643192768097, 0.01437652762979269, -0.0421481616795063, 0.03299015387892723, -0.06422341614961624, 0.06972845643758774, 0.07449550181627274, -0.03428197652101517, 0.027393732219934464, -0.044864945113658905, 0.034065429121255875, -0.019059695303440094, 0.040744006633758545, 0.009387197904288769, 3.068331190497999e-33, 0.03871249035000801, 0.0540442168712616, -0.09522182494401932, 0.014437483623623848, -0.028356386348605156, 0.02283320762217045, -0.010178964585065842, -0.03112621046602726, -0.0733233243227005, 0.0055981832556426525, -0.003267130348831415, -0.009447836317121983, -0.12298834323883057, 0.06192551553249359, -0.07086073607206345, -0.030508505180478096, 0.04387979209423065, 0.05811460688710213, 0.03218436241149902, 0.04933832958340645, 0.08680122345685959, 0.03637932240962982, 0.00680645601823926, -0.019956067204475403, 0.006238373927772045, 0.01334464829415083, 0.08327436447143555, -0.16487063467502594, 0.028183674439787865, 0.024785727262496948, -0.06771635264158249, 0.04414444416761398, 0.02030063606798649, 0.029360737651586533, 0.018526950851082802, -0.024486349895596504, -0.00007028946129139513, -0.022621752694249153, -0.0225176140666008, -0.08402234315872192, -0.065773606300354, 0.009956697933375835, 0.008600446395576, -0.04592542722821236, -0.03664760664105415, -0.0490766242146492, 0.039840955287218094, 0.02299487590789795, 0.034948404878377914, -0.05354098975658417, 0.054029203951358795, 0.03175657242536545, -0.06216597557067871, -0.0023837629705667496, 0.018385987728834152, -0.008782233111560345, 0.03241279348731041, 0.026684610173106194, 0.06402746587991714, -0.00006115126598160714, 0.00013460480840876698, -0.013147230260074139, 0.07793024182319641, 0.01364799216389656, 0.07123485952615738, -0.08762001991271973, -0.03642238676548004, -0.005488880444318056, 0.06241563335061073, -0.008425562642514706, -0.056145116686820984, 0.01571284793317318, 0.03417064622044563, 0.030572591349482536, 0.026099979877471924, -0.027702417224645615, 0.005767554976046085, -0.04683729261159897, -0.022603332996368408, 0.04619235545396805, -0.04279463365674019, 0.000992035144008696, -0.032078295946121216, -0.05721963942050934, -0.0008678013691678643, -0.025463316589593887, 0.035703953355550766, -0.04482468590140343, 0.007967810146510601, 0.009512534365057945, 0.06640347838401794, -0.08173033595085144, -0.04126286506652832, -0.044596873223781586, -0.0072594303637743, -3.2268646034636313e-33, 0.024850400164723396, 0.031094806268811226, -0.11609268933534622, 0.010909547097980976, -0.03335554897785187, -0.051027946174144745, 0.048987921327352524, 0.17751197516918182, -0.02295817993581295, -0.03124096244573593, -0.00982342753559351, -0.10104604810476303, 0.028216155245900154, -0.022739753127098083, 0.06080595403909683, -0.026366492733359337, -0.007303216960281134, 0.0854724869132042, 0.013613706454634666, 0.03272361680865288, 0.02564873918890953, -0.044537872076034546, -0.08103345334529877, 0.09456156939268112, 0.009995684027671814, 0.09281737357378006, -0.05010753497481346, 0.037555962800979614, -0.04519457370042801, -0.04015742242336273, -0.05235230177640915, 0.023140160366892815, -0.03791475296020508, 0.02505371905863285, -0.0434238575398922, 0.05956389755010605, 0.009556173346936703, 0.02972753532230854, -0.0015525189228355885, -0.01142608281224966, 0.05755149573087692, -0.005432938691228628, -0.031221507117152214, 0.008137645199894905, -0.04063669964671135, -0.062099017202854156, -0.06994634866714478, -0.030683351680636406, 0.025880301371216774, -0.07595042139291763, -0.047991055995225906, 0.001726116519421339, -0.07852606475353241, -0.014633437618613243, -0.028378762304782867, -0.03884085640311241, 0.037189699709415436, -0.13101640343666077, -0.027516843751072884, -0.0469590425491333, -0.06434950977563858, -0.01899830624461174, 0.030171366408467293, 0.02279050461947918, 0.012981707230210304, -0.03767890855669975, -0.04930591955780983, 0.039556220173835754, 0.003772624535486102, 0.014062212780117989, -0.028218630701303482, -0.03101876750588417, 0.08223196864128113, -0.00799687672406435, 0.003961086738854647, 0.004917241167277098, 0.03565584123134613, -0.06421740353107452, -0.008064203895628452, -0.05377788096666336, -0.0465383306145668, -0.04260069876909256, 0.02851048856973648, 0.08455944061279297, 0.08385345339775085, 0.13444678485393524, 0.06832318007946014, 0.009803160093724728, -0.03905255347490311, 0.03833284601569176, -0.025994043797254562, 0.044633541256189346, -0.05237681791186333, 0.08646682649850845, 0.03687981888651848, -5.8694414661886185e-8, -0.07238706201314926, 0.008371264673769474, -0.02202693186700344, 0.008646673522889614, 0.022784747183322906, -0.07920148223638535, -0.0017503072740510106, 0.00544793251901865, -0.09257103502750397, 0.029979173094034195, 0.024645620957016945, 0.09984638541936874, -0.0943744108080864, -0.09067022800445557, 0.03705551475286484, 0.07517429441213608, -0.0024429236073046923, 0.0643295869231224, -0.0035120476968586445, -0.010027504526078701, 0.004088962450623512, 0.051701392978429794, -0.02239718846976757, 0.0038344222120940685, -0.0014886779244989157, -0.011314613744616508, 0.021987639367580414, 0.14809246361255646, 0.07594715058803558, -0.02948668785393238, 0.004851360805332661, 0.05875327065587044, -0.10480423271656036, -0.02538437396287918, 0.08679549396038055, 0.019868046045303345, -0.06859568506479263, -0.0430203378200531, -0.054225724190473557, 0.0033585417550057173, 0.07304280996322632, 0.04495823010802269, -0.04991026967763901, -0.026207318529486656, 0.06604167819023132, 0.03905032202601433, -0.015871118754148483, -0.08120077848434448, 0.014729108661413193, 0.026542576029896736, 0.03158184513449669, -0.07696031033992767, -0.06349301338195801, 0.10328572988510132, 0.000775723485276103, 0.0414976067841053, -0.03583234176039696, -0.020278995856642723, 0.02465211972594261, 0.05763585865497589, -0.05257285758852959, 0.02659088373184204, 0.034645356237888336, 0.04301437735557556 ]
hf-internal-testing/test_dynamic_model_with_util
b731e5fae6d80a4a775461251c4388886fb7a249
2022-01-26T17:54:17.000Z
[ "pytorch", "new-model", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/test_dynamic_model_with_util
1,953
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
facebook/wav2vec2-large-960h-lv60
8e7d14742e8f98c6bbb24e5231406af321a8f9ce
2022-04-05T16:42:07.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-960h-lv60
1,947
5
transformers
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 model-index: - name: wav2vec2-large-960h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Librispeech (clean) type: librispeech_asr args: en metrics: - name: Test WER type: wer value: 2.2 --- # Wav2Vec2-Large-960h-Lv60 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 960 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 2.2 | 4.5 |
[ -0.10594869405031204, -0.13361258804798126, -0.014084266498684883, -0.037385378032922745, -0.01423906721174717, -0.0208125039935112, -0.08783972263336182, -0.05330595001578331, -0.04412361979484558, -0.06937962770462036, 0.006914814468473196, -0.07124453783035278, -0.04296686127781868, -0.035945355892181396, -0.041075099259614944, -0.01157431211322546, 0.08524638414382935, -0.06059584394097328, -0.022330205887556076, -0.011747688055038452, 0.07669126242399216, 0.04573235660791397, 0.065522700548172, -0.046318624168634415, 0.05424731597304344, 0.01889883726835251, -0.04758954420685768, -0.015534626320004463, 0.07013695687055588, -0.05405040830373764, 0.1488627791404724, 0.05680746212601662, 0.053705986589193344, -0.005044272169470787, 0.006413149181753397, -0.040652353316545486, -0.02879076451063156, -0.03948523476719856, -0.003558124415576458, -0.008118489757180214, 0.026226434856653214, -0.033273469656705856, -0.01191014051437378, -0.037606652826070786, -0.04488586261868477, 0.017259396612644196, 0.0039808363653719425, -0.029162725433707237, -0.025605488568544388, 0.04032067582011223, -0.03821420669555664, -0.028745831921696663, 0.02043154463171959, 0.04825439676642418, -0.12039216607809067, -0.01594468578696251, -0.020805256441235542, 0.027725808322429657, 0.04910263791680336, 0.015064754523336887, -0.07915865629911423, 0.05178258568048477, -0.0259842649102211, 0.024703484028577805, -0.08149532973766327, -0.0073195756413042545, 0.04803711175918579, 0.000867776689119637, 0.025831250473856926, -0.012415544129908085, -0.07721738517284393, 0.11096211522817612, 0.0359039269387722, 0.04233480617403984, 0.0300590917468071, -0.03260713815689087, 0.08886422216892242, 0.003504801308736205, 0.0831887498497963, -0.13298188149929047, 0.02057379111647606, -0.07688935846090317, 0.024972403421998024, -0.013961954042315483, 0.05179018899798393, -0.029569359496235847, 0.025706101208925247, -0.010769469663500786, 0.006426795851439238, -0.0221711453050375, -0.023033956065773964, -0.02095678262412548, -0.02997896820306778, 0.06452285498380661, 0.03628857806324959, 0.1073373332619667, 0.06137802451848984, 0.06529057770967484, -0.0059387050569057465, 0.06924651563167572, 0.007189640309661627, -0.010004259645938873, 0.0014906196156516671, -0.011453689076006413, -0.005714619066566229, -0.09989319741725922, -0.0069196452386677265, 0.06134968623518944, 0.05086676403880119, 0.02078724466264248, 0.09511444717645645, 0.07405879348516464, 0.030270956456661224, 0.0010553232859820127, 0.09928736835718155, 0.043570566922426224, -0.05195637792348862, -0.05482295900583267, -0.004139721859246492, 0.03616926819086075, -0.07014386355876923, 0.004909317009150982, -0.024295587092638016, 0.007979745976626873, 0.008335831575095654, -0.011964579112827778, -0.012833050452172756, 4.0702450659801594e-33, -0.011567477136850357, 0.052961159497499466, 0.010951091535389423, -0.030977336689829826, -0.014514288865029812, -0.06219492480158806, -0.0479685440659523, 0.045559756457805634, -0.03596113994717598, -0.017637141048908234, -0.022673707455396652, -0.07049866020679474, -0.04370688647031784, 0.07317397743463516, 0.03866460174322128, 0.015302694402635098, -0.05067150667309761, 0.021607844159007072, -0.000011406054909457453, 0.018013419583439827, 0.1511698216199875, -0.024731989949941635, 0.04186257719993591, 0.017526356503367424, 0.05040588229894638, 0.07393483072519302, 0.07168648391962051, -0.030134102329611778, -0.018774641677737236, 0.04889223724603653, -0.030123433098196983, -0.07889053970575333, 0.017164718359708786, -0.026554299518465996, 0.012919225730001926, 0.028939496725797653, 0.008285201154649258, -0.017035361379384995, -0.08418745547533035, -0.11200536042451859, 0.040214236825704575, 0.036126796156167984, -0.012125159613788128, -0.04148858040571213, -0.03040909767150879, -0.08817139267921448, 0.006141001358628273, 0.019823219627141953, 0.006887191440910101, 0.040108900517225266, -0.014189849607646465, -0.00984810572117567, -0.09144112467765808, 0.0537305623292923, -0.012509792111814022, 0.0006026989431120455, 0.08017485588788986, 0.04893532767891884, 0.03899814933538437, 0.024188747629523277, 0.042727548629045486, 0.022890770807862282, 0.053701918572187424, 0.01399637758731842, 0.06074349582195282, -0.0519319586455822, -0.0052865236066281796, 0.006028275471180677, -0.021277297288179398, -0.01652713678777218, -0.0013082980876788497, -0.07987971603870392, 0.09002082794904709, 0.04662342369556427, 0.028095467016100883, -0.009665594436228275, -0.00727752223610878, -0.07472976297140121, -0.06749866902828217, 0.038032375276088715, -0.05066418647766113, 0.054045286029577255, 0.013674519956111908, -0.08923894166946411, -0.0677521675825119, -0.04363415017724037, 0.04320446029305458, -0.06744581460952759, -0.072878398001194, -0.0368766225874424, -0.009585978463292122, 0.050640661269426346, -0.014964752830564976, -0.059042077511548996, -0.05828314647078514, -5.01520146471918e-33, 0.007897327654063702, 0.08447714895009995, 0.004886908456683159, 0.08952446281909943, -0.004346795845776796, -0.02065645530819893, 0.12506327033042908, 0.12349845468997955, -0.016245270147919655, -0.05957512557506561, 0.08172447979450226, -0.07839612662792206, 0.056865837424993515, -0.05354923754930496, 0.08718881756067276, -0.010479557327926159, 0.0005196892889216542, -0.01856769435107708, 0.08360539376735687, 0.05484117567539215, 0.03928446024656296, 0.07528672367334366, 0.0029662717133760452, 0.0783645287156105, -0.056323420256376266, -0.05590503290295601, -0.03985882177948952, 0.0519380085170269, -0.028295034542679787, -0.01646994613111019, -0.016820164397358894, 0.03383336588740349, -0.07330624014139175, 0.02536558173596859, -0.02532918006181717, 0.00334774237126112, 0.006879184860736132, -0.04464252293109894, -0.006875999737530947, 0.01519817765802145, 0.07726454734802246, 0.0773780569434166, -0.11410383880138397, -0.07391496002674103, -0.011838016100227833, -0.06405621767044067, -0.09141620248556137, -0.0600065179169178, 0.06622478365898132, -0.0784836858510971, 0.04416045546531677, -0.03641853109002113, 0.03075985051691532, 0.026131009683012962, -0.023920102044939995, -0.026096783578395844, -0.036470748484134674, -0.04140448197722435, -0.06233055144548416, -0.00042569354991428554, 0.00967047642916441, 0.051467977464199066, -0.07308951020240784, -0.03555513918399811, 0.0302448570728302, 0.013189858756959438, -0.009687590412795544, 0.0337093211710453, 0.051255010068416595, -0.010127929970622063, -0.03540189936757088, -0.018389616161584854, 0.03656214103102684, 0.04405134916305542, -0.05460212379693985, -0.04547664150595665, -0.03303481265902519, -0.020885523408651352, -0.0023964743595570326, -0.0820937231183052, -0.04514032602310181, 0.05514153465628624, 0.04199568182229996, 0.01582748256623745, 0.03253914788365364, 0.037942372262477875, -0.026279384270310402, -0.002614761935546994, -0.007218097802251577, 0.0020472873002290726, 0.0023760218173265457, 0.03189229965209961, 0.02103564515709877, 0.046259555965662, 0.008734369650483131, -4.9436415849868354e-8, -0.05228336527943611, 0.04900094494223595, 0.02431541495025158, -0.015503186732530594, -0.0158446803689003, -0.11067239195108414, -0.02289571985602379, 0.03075435571372509, -0.023563863709568977, 0.029311049729585648, 0.09601990878582001, -0.06346578150987625, -0.033245623111724854, 0.06659127026796341, 0.08473646640777588, 0.01829901710152626, 0.0021192121785134077, 0.08731762319803238, -0.043879177421331406, -0.124455027282238, 0.06540316343307495, 0.024668635800480843, 0.031103556975722313, -0.008806300349533558, 0.09283790737390518, -0.012701934203505516, -0.024229051545262337, 0.020925484597682953, -0.002796686952933669, -0.03221555054187775, -0.09191624820232391, 0.059139933437108994, -0.04741396754980087, -0.05225653573870659, 0.06053778529167175, 0.04909057170152664, -0.06909625977277756, -0.03439866006374359, 0.021688051521778107, 0.11482381820678711, 0.03406072407960892, 0.08336509019136429, -0.07424169778823853, -0.04542045295238495, 0.05753948166966438, 0.034784190356731415, -0.05162810534238815, -0.07164575904607773, 0.03529973700642586, 0.08289065212011337, 0.023440884426236153, 0.05472107231616974, 0.011621956713497639, -0.06469590216875076, 0.03658236563205719, 0.04318838194012642, -0.07360845059156418, -0.004705343395471573, 0.015067437663674355, -0.048817917704582214, 0.06207559257745743, -0.009877241216599941, -0.04940216988325119, -0.005254201125353575 ]
nikokons/gpt2-greek
b2bb85c722742ce6ea0b9e025d50425e061181c8
2022-07-20T09:59:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "el", "transformers" ]
text-generation
false
nikokons
null
nikokons/gpt2-greek
1,944
null
transformers
--- language: el --- ## gpt2-greek ## Dataset: The model is trained on a collection of almost 5GB Greek texts, with the main source to be from Greek Wikipedia. The content is extracted using the Wikiextractor tool (Attardi, 2012). The dataset is constructed as 5 sentences per sample (about 3.7 millions of samples) and the end of document is marked with the string <|endoftext|> providing the model with paragraph information, as done for the original GPT-2 training set by Radford . The input sentences are pre-processed and tokenized using 22,000 merges of byte-pair encoding. ## Model: The model is the "small" version of GPT-2 (12-layer, 768-hidden, 12-heads) with the only difference that the maximum sequence length is set at 512 tokens instead of 1024. ## Training details: It is trained from scratch a generative Transformer model as GPT-2 on a large corpus of Greek text so that the model can generate long stretches of contiguous coherent text. Attention dropouts with a rate of 0.1 are used for regularization on all layers and L2 weight decay of 0,01. In addition, a batch size of 4 and accumulated gradients over 8 iterations are used, resulting in an effective batch size of 32. The model uses the Adam optimization scheme with a learning rate of 1e-4 and is trained for 20 epochs. The learning rate increases linearly from zero over the first 9000 updates and decreases linearly by using a linear schedule. The implementation is based on the open-source PyTorch-transformer library (HuggingFace 2019).
[ -0.0869232565164566, -0.03407194837927818, 0.010280192829668522, 0.0014819958014413714, 0.09325341880321503, -0.020575473085045815, 0.03196948021650314, 0.03946312516927719, 0.05835631489753723, -0.04398651793599129, 0.009113320149481297, 0.05059497803449631, -0.0412650890648365, -0.014291197061538696, -0.03540574386715889, -0.041208330541849136, 0.007051841355860233, 0.03534705564379692, -0.10382504016160965, -0.0930730551481247, 0.07602345198392868, 0.05676839128136635, 0.08690468221902847, 0.012428969144821167, 0.03878539800643921, 0.03169400990009308, 0.008096800185739994, -0.0804409608244896, 0.02424943447113037, 0.01938514970242977, 0.04994834214448929, 0.0030943884048610926, -0.01084856502711773, 0.08233438432216644, -0.08973666280508041, 0.08528684824705124, -0.05162287876009941, -0.03697694092988968, 0.0031563311349600554, -0.023925624787807465, 0.0012237905757501721, -0.0022549715358763933, 0.016915341839194298, 0.06754907965660095, 0.07787153869867325, 0.015939079225063324, -0.06698118150234222, -0.021901387721300125, -0.056644078344106674, -0.004041827749460936, -0.06777392327785492, -0.005316510796546936, -0.020976601168513298, 0.05600036308169365, -0.02967633493244648, 0.04788624122738838, -0.031277019530534744, 0.018873896449804306, -0.021517882123589516, -0.03469713777303696, -0.03662971034646034, -0.08609416335821152, -0.11649172753095627, -0.026757046580314636, -0.04736876115202904, -0.03351727873086929, 0.05298694595694542, 0.0010603339178487659, -0.028057768940925598, -0.028990022838115692, -0.037965647876262665, 0.13476230204105377, -0.09064949303865433, 0.04479171335697174, -0.0019132014131173491, 0.06007982790470123, 0.05487455055117607, -0.027202073484659195, 0.02299639768898487, -0.052240606397390366, 0.0927460715174675, -0.025611594319343567, 0.13106995820999146, -0.004785861819982529, 0.017245827242732048, -0.05538465082645416, 0.03222104534506798, 0.09865579009056091, -0.025724219158291817, 0.04693079739809036, -0.06208755075931549, -0.04530474916100502, 0.10629788786172867, -0.014682125300168991, -0.02935906872153282, 0.03445616737008095, -0.0189349502325058, -0.016077427193522453, -0.016011783853173256, 0.090364471077919, 0.039797522127628326, 0.04015277698636055, 0.029219353571534157, -0.04629595950245857, -0.08783691376447678, -0.0562732107937336, -0.02840304747223854, 0.026486292481422424, 0.005402623675763607, -0.02945133112370968, 0.07622986286878586, -0.0062659685499966145, -0.05018867179751396, -0.0529962033033371, 0.006030424498021603, 0.05416416749358177, -0.023185746744275093, -0.0005981484428048134, 0.013583021238446236, 0.08265641331672668, -0.05912686511874199, 0.047616004943847656, -0.029350781813263893, -0.030757280066609383, -0.023369932547211647, 0.02430109493434429, -0.05484350025653839, 4.55469530797081e-33, 0.039471741765737534, 0.07521228492259979, -0.033119313418865204, 0.024062380194664, -0.047413501888513565, 0.044732414186000824, -0.023144392296671867, -0.05120653659105301, -0.02723008580505848, -0.04033835977315903, -0.06520425528287888, -0.028279755264520645, -0.05572423338890076, 0.06127332150936127, 0.03315357863903046, -0.025331620126962662, 0.03081987053155899, 0.04502660408616066, -0.03497040271759033, 0.04713568091392517, 0.046304840594530106, 0.10314439982175827, 0.04250357300043106, -0.0452539324760437, -0.027961652725934982, 0.03246930241584778, -0.010189052671194077, -0.053806766867637634, -0.016412245109677315, 0.03514323756098747, -0.1313113570213318, -0.02332128770649433, -0.010662063024938107, 0.0615001879632473, 0.07342811673879623, -0.042401283979415894, 0.023999594151973724, -0.1188199445605278, 0.08281689137220383, -0.0945301428437233, 0.01776173710823059, 0.05232792720198631, 0.11645982414484024, -0.02270919643342495, -0.03688406944274902, -0.03955407068133354, 0.08530860394239426, 0.006221462041139603, -0.011876903474330902, 0.05776359513401985, -0.021462332457304, 0.06432045996189117, -0.08800776302814484, 0.0068810125812888145, -0.01590067520737648, 0.07355901598930359, 0.06777867674827576, 0.03341805562376976, 0.08598220348358154, 0.09789210557937622, 0.05623365938663483, 0.06660599261522293, 0.08432337641716003, 0.07423873990774155, 0.06090651452541351, 0.04508046805858612, -0.07787454128265381, 0.013683099299669266, 0.026980023831129074, 0.04384547099471092, -0.009275858290493488, -0.043579280376434326, 0.046419478952884674, -0.013097438029944897, 0.05820730701088905, -0.023087119683623314, 0.06237204372882843, -0.08147339522838593, -0.06649813801050186, 0.051088087260723114, -0.0766383558511734, 0.0017523730639368296, 0.01448057871311903, -0.08726947754621506, -0.08124105632305145, -0.04787035286426544, 0.03745328262448311, -0.05815762281417847, 0.01882380060851574, -0.04332394525408745, -0.06389880180358887, -0.02952614054083824, -0.04764828830957413, -0.04168824106454849, 0.013142635114490986, -4.0792001288815175e-33, -0.009446080774068832, 0.02672920748591423, -0.029739243909716606, 0.0903150737285614, -0.07176873832941055, -0.07417495548725128, 0.011042078956961632, 0.09844492375850677, -0.021669449284672737, -0.020865987986326218, 0.03896905481815338, -0.011836287565529346, 0.07959244400262833, -0.07801046222448349, 0.0390578992664814, -0.04327036812901497, 0.06733061373233795, 0.018808700144290924, -0.015179538168013096, 0.05397530272603035, 0.048762060701847076, 0.018949514254927635, -0.08788836747407913, 0.052680209279060364, 0.023998210206627846, -0.03772588446736336, 0.0015308556612581015, 0.04504954069852829, 0.012174541130661964, -0.03826572746038437, -0.03464578092098236, 0.013158217072486877, -0.04248381033539772, -0.021305488422513008, -0.07872166484594345, -0.017253296449780464, 0.10568275302648544, 0.03623521327972412, -0.07760540395975113, 0.08417560160160065, 0.09576984494924545, -0.012977121397852898, -0.0329156331717968, 0.06817096471786499, -0.06888794898986816, -0.00644717225804925, -0.08461116254329681, -0.002856241539120674, -0.03716477379202843, -0.00599440885707736, -0.015838783234357834, -0.007005586288869381, -0.0342811681330204, 0.021862495690584183, -0.006257726810872555, -0.11199956387281418, -0.030420402064919472, 0.005678792949765921, -0.0696246474981308, -0.014096226543188095, 0.03104136697947979, -0.038643788546323776, 0.007684060372412205, -0.0015905986074358225, 0.07051289826631546, -0.11356622725725174, -0.05220216140151024, -0.0030920743010938168, 0.0055985040962696075, 0.055492497980594635, -0.014317335560917854, -0.036000557243824005, 0.019275622442364693, 0.05061366781592369, -0.06135133281350136, 0.015810072422027588, -0.04551003500819206, -0.0703788697719574, 0.03134972229599953, -0.06058148667216301, 0.004440782591700554, 0.03158034384250641, 0.03935667872428894, 0.03370312973856926, 0.11522460728883743, -0.0028277477249503136, 0.029052767902612686, 0.06704060733318329, -0.0027715228497982025, 0.024273188784718513, -0.06258539110422134, 0.08878472447395325, 0.047754570841789246, 0.08984013646841049, -0.04828573018312454, -5.312269024670968e-8, -0.03716908022761345, -0.05278796702623367, -0.0492546521127224, 0.03560585156083107, -0.041129015386104584, -0.07869132608175278, -0.020927274599671364, 0.05964990705251694, -0.025755625218153, -0.05130939558148384, 0.007709062658250332, -0.021403329446911812, -0.08040117472410202, -0.038675256073474884, -0.00019044955843128264, 0.09523563832044601, 0.07952223718166351, 0.030008064582943916, -0.01457345299422741, 0.027132393792271614, 0.029784051701426506, 0.018157539889216423, 0.015153123065829277, -0.04718704894185066, -0.017952432855963707, 0.011632394976913929, -0.004646481946110725, 0.0933365598320961, -0.008565369993448257, -0.05737724155187607, 0.0062802196480333805, -0.010987629182636738, -0.06440013647079468, -0.06573215872049332, -0.020899804309010506, 0.06927300244569778, 0.028739402070641518, -0.008940123952925205, 0.03483295813202858, 0.004267917480319738, 0.04349470138549805, 0.03499967232346535, -0.06494254618883133, 0.045252084732055664, 0.009373994544148445, -0.020365791395306587, -0.030072975903749466, -0.11608543246984482, 0.018593356013298035, -0.028519686311483383, 0.0296353530138731, 0.03337819129228592, -0.017361659556627274, -0.007517275866121054, 0.056677717715501785, -0.010782608762383461, 0.017969809472560883, -0.011396381072700024, -0.029609166085720062, 0.006537101697176695, -0.006604933179914951, 0.015415215864777565, -0.006623896304517984, -0.0024758491199463606 ]
nghuyong/ernie-gram-zh
257fee0915f1cba8dbea92c976493dcdd0491174
2022-04-04T06:00:26.000Z
[ "pytorch", "bert", "feature-extraction", "zh", "arxiv:2010.12148", "transformers" ]
feature-extraction
false
nghuyong
null
nghuyong/ernie-gram-zh
1,943
null
transformers
--- language: zh --- # ERNIE-Gram-zh ## Introduction ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding More detail: https://arxiv.org/abs/2010.12148 ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |ernie-gram-zh| Chinese |Layer:12, Hidden:768, Heads:12| This released Pytorch model is converted from the officially released PaddlePaddle ERNIE model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle ERNIE repo: https://github.com/PaddlePaddle/ERNIE - Pytorch Conversion repo: https://github.com/nghuyong/ERNIE-Pytorch ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-gram-zh") model = AutoModel.from_pretrained("nghuyong/ernie-gram-zh") ```
[ -0.1279805302619934, -0.03280772268772125, -0.004073866177350283, -0.02629801072180271, -0.0890774056315422, 0.011164892464876175, 0.007379804737865925, 0.02164941094815731, -0.021613966673612595, -0.02596859820187092, 0.06613249331712723, -0.054981473833322525, 0.023415373638272285, 0.03168141096830368, 0.009278042241930962, -0.012220636010169983, 0.03530748188495636, 0.1039368286728859, -0.09070797264575958, -0.11831961572170258, 0.08845548331737518, 0.05472572520375252, 0.02089601196348667, -0.02979428321123123, 0.04949883744120598, -0.049947138875722885, -0.022918740287423134, -0.013882419094443321, 0.10136104375123978, 0.024974824860692024, -0.03951859474182129, 0.0070757633075118065, 0.001126664923503995, 0.05083153396844864, 0.0448068231344223, 0.05597029998898506, -0.06779196858406067, 0.002804332412779331, 0.045146193355321884, -0.00963541492819786, 0.03497190400958061, -0.04094657674431801, 0.025418493896722794, -0.04796134680509567, 0.05093836411833763, 0.06442199647426605, -0.023551378399133682, -0.00022843075566925108, -0.0663515105843544, -0.04268287494778633, -0.012112434022128582, -0.04566733539104462, 0.05875037983059883, 0.05594858154654503, -0.02513420581817627, -0.014294934459030628, -0.0004171405453234911, 0.0014887299621477723, -0.005081615410745144, -0.022575702518224716, -0.16133050620555878, 0.04177806153893471, -0.06158517673611641, 0.0013556889025494456, -0.02671092562377453, -0.0034648955333977938, -0.04837345331907272, -0.04194292053580284, 0.013874850235879421, 0.022654417902231216, -0.10599778592586517, -0.019875073805451393, 0.016233686357736588, 0.0205300971865654, 0.028762536123394966, -0.08145331591367722, 0.08820771425962448, 0.003378588007763028, 0.04206443578004837, -0.08427033573389053, 0.032978300005197525, -0.01917196810245514, 0.07489796727895737, 0.06699808686971664, 0.04418317601084709, 0.0022109125275164843, -0.029502425342798233, 0.07759298384189606, 0.019801748916506767, 0.02075204625725746, -0.036946482956409454, -0.08028294891119003, 0.031778961420059204, 0.055524908006191254, 0.019151752814650536, 0.06326161324977875, -0.015061972662806511, 0.05922288820147514, -0.03778567165136337, 0.06098566949367523, 0.01653173565864563, 0.008770066313445568, 0.055313099175691605, -0.0892811119556427, -0.006113533861935139, 0.011532716453075409, -0.009124274365603924, -0.00266531971283257, 0.0598992295563221, -0.03695521876215935, 0.01863311231136322, -0.02410602755844593, -0.04567725211381912, -0.0763755813241005, -0.005129767116159201, -0.016835065558552742, -0.021022332832217216, 0.021512044593691826, 0.02598569728434086, 0.03782300651073456, 0.002179966773837805, -0.0019035676959902048, 0.01460090558975935, 0.04897420108318329, -0.013035128824412823, 0.04908151179552078, -0.009160080924630165, 2.6818800758254793e-33, -0.020728599280118942, 0.02687588892877102, 0.010143103078007698, -0.013327168300747871, -0.0058624339289963245, -0.006789256352931261, 0.04523732513189316, -0.009618515148758888, 0.03779732435941696, 0.045162126421928406, -0.038742367178201675, 0.0036708565894514322, -0.13136272132396698, 0.008219431154429913, -0.06112796068191528, 0.032788265496492386, -0.037764742970466614, 0.01369552407413721, -0.02109985426068306, 0.041895292699337006, 0.10756046324968338, 0.08724681288003922, -0.027566300705075264, -0.06332696229219437, -0.01815376803278923, 0.03412304073572159, 0.028888611122965813, -0.13483063876628876, -0.033942077308893204, 0.06023851037025452, -0.06558270752429962, -0.038872577250003815, -0.021465569734573364, -0.020185042172670364, -0.06753168255090714, -0.05882326140999794, 0.029261389747262, -0.08237595856189728, -0.033481307327747345, -0.11834628880023956, 0.011886422522366047, -0.007660060655325651, -0.021536054089665413, -0.027104703709483147, -0.09181921184062958, -0.03079318441450596, 0.011559046804904938, 0.03900780901312828, 0.029222674667835236, 0.0037008016370236874, 0.09362833946943283, 0.027984851971268654, -0.026616467162966728, 0.006185830570757389, 0.0019545024260878563, -0.0175576563924551, 0.0739370808005333, 0.035804085433483124, 0.062022071331739426, 0.02528674528002739, 0.006606552749872208, 0.03732822462916374, 0.058136649429798126, 0.0512503944337368, 0.06219949573278427, -0.013879667036235332, 0.055840421468019485, -0.03490796685218811, 0.006635480560362339, -0.011389209888875484, -0.10567256063222885, -0.07799093425273895, -0.09914557635784149, 0.000913978845346719, 0.02423057332634926, -0.04096111282706261, 0.03545021265745163, -0.07777564972639084, -0.0175637174397707, 0.0029481155797839165, -0.03326911851763725, 0.10215747356414795, -0.014681976288557053, -0.020235363394021988, -0.04086783155798912, -0.0073814187198877335, 0.059386562556028366, -0.04140002653002739, 0.006608414929360151, -0.0790758952498436, 0.027984555810689926, -0.0811026319861412, -0.005807674955576658, 0.027838755398988724, -0.03163100406527519, -5.203986224803224e-33, -0.02414010651409626, 0.12190057337284088, -0.08110102266073227, 0.08625341206789017, -0.06864319741725922, -0.12228135019540787, 0.09273717552423477, 0.080284483730793, -0.002770076273009181, -0.050229571759700775, -0.02413896843791008, -0.005934933666139841, 0.0012840742710977793, 0.01744324341416359, 0.1283176839351654, 0.02077099122107029, -0.08286159485578537, 0.09300313889980316, 0.05276394262909889, 0.036339759826660156, 0.0028104770462960005, 0.03646454960107803, -0.1069290041923523, 0.0735885500907898, -0.062463100999593735, 0.013674967922270298, 0.004776451271027327, 0.06782195717096329, 0.015400460921227932, 0.0557326003909111, -0.04336618632078171, 0.029595941305160522, 0.006682505831122398, 0.054834313690662384, -0.14892688393592834, -0.011558743193745613, 0.0033179123420268297, 0.005951788276433945, -0.002239957917481661, 0.03410431370139122, 0.062255859375, -0.009385133162140846, -0.07564478367567062, 0.049715571105480194, -0.10171034187078476, -0.0004994949558749795, -0.06259012222290039, -0.015555675141513348, 0.024491673335433006, -0.012683077715337276, 0.024320948868989944, 0.03492594137787819, -0.05288940668106079, -0.03934634476900101, -0.0729137510061264, -0.0012690955772995949, 0.011780313216149807, -0.09681794792413712, -0.04611086845397949, -0.039712678641080856, -0.10422852635383606, -0.0512525737285614, 0.03503888100385666, -0.024459952488541603, 0.01892382837831974, -0.005562473554164171, -0.01844032108783722, 0.012767426669597626, 0.01664891466498375, -0.07349807024002075, 0.04502454400062561, 0.062186870723962784, 0.04839182272553444, 0.034039683640003204, 0.004458348732441664, 0.03229168429970741, 0.033393796533346176, -0.04364747554063797, 0.04115056246519089, -0.03193425014615059, -0.12993691861629486, 0.013073112815618515, 0.031035173684358597, 0.06642965972423553, -0.03558799996972084, 0.013416396453976631, 0.022559601813554764, 0.0835268422961235, 0.025874124839901924, 0.0066438219510018826, 0.02113467827439308, 0.09760519117116928, 0.01201560627669096, 0.09102542698383331, -0.03582486882805824, -5.362274180242821e-8, -0.07347854226827621, 0.06802006810903549, 0.015157675370573997, 0.030815819278359413, -0.04447823762893677, -0.004132520407438278, -0.041567008942365646, 0.01632794737815857, -0.059941358864307404, -0.011777748353779316, 0.007067324128001928, -0.006169588770717382, -0.03142121806740761, -1.1540164024381738e-7, -0.028479719534516335, 0.12063825130462646, 0.0052659036591649055, 0.0947633758187294, -0.044543951749801636, -0.016731420531868935, -0.0030842595733702183, 0.0228780098259449, 0.0500904805958271, -0.022228077054023743, -0.06454794853925705, -0.002878449624404311, -0.08443071693181992, 0.11705834418535233, -0.029880356043577194, 0.019590629264712334, 0.0028200780507177114, 0.04961337149143219, -0.012185407802462578, -0.0022317187394946814, -0.029017316177487373, 0.09056230634450912, -0.038083698600530624, -0.08401970565319061, 0.040112562477588654, 0.044212456792593, 0.014593343250453472, -0.05320346727967262, -0.08465289324522018, -0.009032489731907845, 0.017476527020335197, 0.003255255986005068, -0.003456221194937825, -0.12283571064472198, 0.002989959204569459, 0.015579133294522762, 0.048708800226449966, 0.00375764979980886, -0.0485164113342762, 0.021915771067142487, 0.05422881990671158, 0.0038617639802396297, -0.059170398861169815, -0.04638662934303284, 0.03947160020470619, 0.051589012145996094, -0.052298903465270996, 0.05322623997926712, 0.028340840712189674, 0.009151685982942581 ]
monologg/distilkobert
cfbce1328041f68781414250c9013128e77e82d2
2020-05-13T03:37:29.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/distilkobert
1,941
2
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
sentence-transformers/msmarco-distilbert-base-dot-prod-v3
0bafe057815532ca7ee37f002d9d1413d78b6d67
2022-06-15T22:20:51.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/msmarco-distilbert-base-dot-prod-v3
1,936
1
sentence-transformers
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-dot-prod-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-dot-prod-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-dot-prod-v3) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
[ -0.0664677545428276, -0.0682670846581459, -0.026655318215489388, 0.03809172287583351, 0.03860831633210182, 0.04941051825881004, -0.04626838117837906, 0.057916004210710526, 0.0019445703364908695, -0.06177717074751854, 0.0403127521276474, -0.0071830060333013535, 0.05793493613600731, 0.04304727539420128, 0.059030864387750626, 0.04747176170349121, 0.029568126425147057, 0.09049411863088608, -0.05163247883319855, -0.107163205742836, 0.13494721055030823, 0.12098041921854019, 0.002731817774474621, 0.0266177486628294, -0.014306978322565556, 0.08518534898757935, -0.033624835312366486, 0.003180719679221511, 0.010144779458642006, -0.017104975879192352, 0.05950415879487991, -0.022249821573495865, -0.026804368942975998, 0.08092588931322098, 0.06388251483440399, 0.0710522010922432, 0.008268782868981361, -0.0006262151291593909, -0.024546856060624123, -0.08904323726892471, 0.012611513026058674, -0.021275481209158897, -0.04718044400215149, -0.02057259902358055, 0.034356433898210526, -0.07742823660373688, -0.10788630694150925, -0.01765473559498787, -0.004357991740107536, -0.02273569628596306, -0.1252569556236267, 0.023164531216025352, 0.004891316872090101, 0.07123855501413345, 0.00035964863491244614, 0.0334169864654541, 0.03942669555544853, 0.0130459601059556, 0.00893437396734953, -0.1416730135679245, -0.07730759680271149, -0.017298130318522453, 0.005088530946522951, -0.018703021109104156, -0.040474873036146164, -0.029656056314706802, 0.02979283034801483, 0.0005861974786967039, 0.02049942873418331, -0.012555365450680256, -0.10854140669107437, 0.050762519240379333, -0.046601224690675735, -0.020215144380927086, -0.059619441628456116, 0.03551698103547096, 0.07713446021080017, -0.011854712851345539, 0.04094132408499718, 0.022115478292107582, -0.015523744747042656, -0.07438252121210098, 0.029392845928668976, 0.08351211249828339, 0.03649310767650604, -0.06330420076847076, 0.0021546445786952972, -0.024465326219797134, 0.013198324479162693, -0.009479680098593235, -0.05669139698147774, -0.12587228417396545, 0.0052337804809212685, -0.0358063280582428, 0.017692016437649727, 0.042081352323293686, -0.04643911123275757, -0.008332916535437107, 0.040837548673152924, 0.061190150678157806, 0.02564871683716774, 0.009508222341537476, 0.03275078535079956, -0.12069713324308395, -0.04822993278503418, 0.030284631997346878, -0.019076185300946236, 0.025199774652719498, 0.07092364877462387, -0.12340867519378662, 0.018209220841526985, 0.008045053109526634, -0.03553588688373566, -0.0234802458435297, 0.05002877116203308, -0.045185450464487076, 0.016298504546284676, -0.03744276985526085, 0.0007786567439325154, 0.08520057797431946, -0.01405086275190115, 0.0702534168958664, -0.023948656395077705, 0.018137630075216293, -0.009394030086696148, -0.01388720516115427, 0.0038574098143726587, 9.7018673194049e-34, -0.034354835748672485, -0.014487724751234055, -0.004412449896335602, 0.013562852516770363, 0.015492460690438747, 0.030338000506162643, 0.021645741537213326, 0.055885929614305496, -0.09146969765424728, -0.05953315272927284, -0.05857432633638382, 0.02678018808364868, -0.02856198325753212, 0.06287281215190887, 0.013162738643586636, -0.021576037630438805, -0.025436649098992348, -0.029244741424918175, 0.06788958609104156, 0.004975032061338425, 0.030071943998336792, 0.030088884755969048, 0.010439311154186726, -0.024150658398866653, -0.10528073459863663, 0.0021998975425958633, 0.058298252522945404, -0.06829682737588882, -0.028830746188759804, 0.01347156148403883, -0.08342323452234268, 0.025080781430006027, -0.013485696166753769, 0.026334580034017563, 0.00026663043536245823, 0.002523133298382163, 0.005350785795599222, -0.04737728834152222, -0.0275566466152668, -0.06358933448791504, -0.03818982094526291, 0.015406427904963493, -0.010321958921849728, -0.0478757806122303, -0.010166828520596027, 0.004529439378529787, 0.029194045811891556, 0.030500931665301323, 0.11812426894903183, -0.0005483650602400303, 0.08522573113441467, 0.004474812187254429, 0.016416028141975403, -0.041171710938215256, 0.02198699302971363, 0.026288829743862152, 0.04433590546250343, 0.03545249253511429, 0.11796237528324127, -0.021796131506562233, 0.02435271441936493, -0.021002765744924545, 0.03387818858027458, 0.03039586916565895, 0.09974442422389984, -0.03139088675379753, 0.06063935160636902, 0.04927992448210716, 0.00885539036244154, 0.09575971961021423, -0.03036026656627655, 0.031541045755147934, -0.05360168218612671, 0.04188045114278793, 0.0053225127048790455, -0.019841281697154045, 0.0008136841934174299, -0.07488624006509781, -0.03314724192023277, 0.07657666504383087, -0.05052131041884422, -0.01749691553413868, 0.05135759711265564, -0.07811238616704941, -0.009099717251956463, -0.035599514842033386, 0.003208337351679802, -0.04667818918824196, 0.06678862869739532, -0.06529540568590164, 0.06000664085149765, -0.000007815709977876395, 0.005894732661545277, 0.06066720560193062, 0.04598283767700195, -2.6433152285818694e-33, -0.013265259563922882, 0.020787354558706284, -0.0683082789182663, 0.056975435465574265, -0.02786330133676529, -0.04817431420087814, 0.01869594305753708, 0.05700475722551346, -0.005211497191339731, -0.02362082339823246, -0.048181310296058655, -0.038805510848760605, 0.09312043339014053, -0.065952368080616, 0.06713267415761948, 0.08345908671617508, -0.023759426549077034, 0.0481385737657547, 0.030072299763560295, 0.06834829598665237, 0.003945903852581978, 0.10077893733978271, -0.10678914189338684, 0.04240656644105911, -0.024507390335202217, -0.023800648748874664, -0.024907970800995827, -0.015263134613633156, -0.03085949830710888, -0.03466581925749779, -0.005807683803141117, 0.012991946190595627, -0.062123559415340424, -0.03313705325126648, -0.11774259060621262, 0.014103211462497711, -0.023047633469104767, -0.06352370232343674, 0.052083682268857956, 0.042587872594594955, 0.017102496698498726, 0.0884568989276886, -0.029424019157886505, -0.0072395396418869495, 0.002187344478443265, 0.00765601173043251, -0.06749653071165085, -0.0727691799402237, 0.061379410326480865, 0.00719318026676774, -0.03742232173681259, 0.04368120804429054, -0.12174711376428604, 0.006634457968175411, -0.04686200991272926, -0.08374283462762833, -0.048920467495918274, -0.016437632963061333, -0.10891997814178467, -0.07585057616233826, -0.07991256564855576, -0.014603408053517342, 0.013797200284898281, -0.07281865924596786, 0.08831530064344406, -0.01769246719777584, -0.00912017934024334, 0.024658553302288055, -0.04625581204891205, -0.039064209908246994, -0.001452560885809362, -0.039229076355695724, 0.015268848277628422, 0.043511442840099335, 0.028148429468274117, -0.05477342754602432, -0.012714089825749397, 0.022495334967970848, -0.04192982614040375, -0.04651126265525818, 0.030818918719887733, -0.03615967556834221, 0.0307533647865057, -0.051273901015520096, 0.017262563109397888, -0.028094982728362083, 0.02224930189549923, 0.0920417532324791, -0.015100928023457527, 0.04662449285387993, -0.013985882513225079, -0.031278304755687714, -0.007268378045409918, 0.08473912626504898, 0.07549446076154709, -5.128475422111478e-8, -0.07644663751125336, -0.024287618696689606, -0.08088713139295578, 0.056853845715522766, -0.08110915869474411, -0.030644932761788368, 0.05047148838639259, 0.06621246039867401, -0.05668272823095322, -0.006801865994930267, 0.008874591439962387, -0.013231009244918823, -0.0949917882680893, 0.0017976239323616028, -0.014519546180963516, 0.12295092642307281, -0.02449807897210121, 0.0565696656703949, 0.022029979154467583, -0.014579158276319504, 0.03166920691728592, -0.007485387846827507, -0.00947971735149622, 0.04408855736255646, -0.008439325727522373, 0.007671753875911236, -0.0335368774831295, 0.026183828711509705, -0.0016291337087750435, 0.0014593026135116816, -0.011314409784972668, 0.019474247470498085, -0.04636992886662483, -0.06528054177761078, 0.01478835754096508, 0.05585021898150444, 0.06791814416646957, -0.027728937566280365, 0.04798918217420578, 0.09691836684942245, 0.05290643498301506, 0.06166788563132286, -0.13345584273338318, 0.0005402223905548453, 0.08891358226537704, 0.0447503998875618, -0.016542283818125725, -0.05192333459854126, 0.012441395781934261, 0.02747306041419506, 0.09376870095729828, -0.07006805390119553, -0.015920205041766167, -0.016087060794234276, 0.036791395395994186, 0.041817981749773026, 0.014066426083445549, -0.029835084453225136, 0.05064220353960991, -0.07965876162052155, 0.05941193178296089, 0.09582298994064331, 0.1266934871673584, -0.08633309602737427 ]
cahya/bert-base-indonesian-522M
7baa8f5fa385e6eff31184f11876d0d19bf5eb6c
2021-05-19T13:38:45.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
cahya
null
cahya/bert-base-indonesian-522M
1,934
3
transformers
--- language: "id" license: "mit" datasets: - wikipedia widget: - text: "Ibu ku sedang bekerja [MASK] sawah." --- # Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
[ -0.10908884555101395, -0.030317245051264763, 0.03746083751320839, 0.016159024089574814, -0.05314822122454643, 0.016744349151849747, -0.04300319403409958, 0.017528031021356583, 0.006447220221161842, -0.01688619889318943, 0.015253201127052307, -0.081357441842556, -0.03760005533695221, 0.026737630367279053, 0.07591599971055984, 0.029573902487754822, 0.06089698523283005, 0.006957087200134993, -0.03952444717288017, -0.1517612338066101, 0.11103363335132599, 0.05274191126227379, 0.014506237581372261, -0.04793713614344597, 0.042414478957653046, 0.001249221502803266, 0.010379228740930557, -0.03677459806203842, 0.0801287442445755, 0.02413542941212654, -0.008253657259047031, 0.006766212172806263, 0.005236903205513954, 0.0833665132522583, -0.02394086867570877, 0.1031341478228569, -0.03535589948296547, 0.025219794362783432, 0.04987170547246933, 0.030970320105552673, -0.0055986810475587845, -0.03418019413948059, -0.061372555792331696, -0.08212725818157196, 0.07631997019052505, -0.06253419071435928, -0.09157995879650116, 0.007229774724692106, -0.08794483542442322, -0.03599274903535843, -0.06744414567947388, -0.023905841633677483, 0.007367383688688278, 0.03416877239942551, -0.03124404139816761, -0.030241480097174644, 0.05286083370447159, 0.00793836172670126, 0.00398045452311635, -0.07756143808364868, -0.08290155977010727, -0.032156459987163544, 0.007810194045305252, 0.022586669772863388, -0.07546721398830414, -0.0023509471211582422, -0.031034769490361214, 0.06520742923021317, 0.0019282004795968533, 0.003500811057165265, -0.05137602612376213, 0.052406661212444305, 0.04063386842608452, 0.019820062443614006, -0.01267949678003788, -0.0758170336484909, 0.08523331582546234, -0.007204841822385788, 0.050173569470644, -0.020698975771665573, 0.04994523525238037, 0.04956648126244545, 0.07809214293956757, 0.014436486177146435, 0.04797231778502464, 0.023924699053168297, -0.0066307163797318935, 0.028622105717658997, -0.04984069615602493, -0.010824623517692089, -0.015363774262368679, -0.14424383640289307, 0.06735236942768097, -0.002613502787426114, -0.026394173502922058, 0.006328792776912451, -0.0024375964421778917, 0.039445552974939346, -0.01290690153837204, 0.03269559144973755, 0.011778276413679123, 0.002695272909477353, 0.022453097626566887, -0.08602608740329742, 0.005996473133563995, 0.021087108179926872, -0.04246165230870247, -0.03331110253930092, 0.1344417929649353, -0.044289104640483856, -0.03242674469947815, -0.05418996140360832, -0.044235583394765854, -0.08542896807193756, -0.024832291528582573, -0.023759707808494568, 0.010964075103402138, -0.038923799991607666, -0.020170297473669052, 0.08891062438488007, 0.011673507280647755, -0.055839069187641144, 0.000902296626009047, 0.01729213260114193, -0.05652989447116852, 0.032701488584280014, 0.015373295173048973, 3.278503335611285e-33, 0.019974183291196823, -0.0160509143024683, 0.02549169398844242, -0.03661255165934563, 0.03081931173801422, -0.047943104058504105, 0.034605491906404495, -0.03743501752614975, -0.05970901995897293, -0.01590687409043312, -0.033583007752895355, 0.04925455525517464, -0.15218152105808258, 0.05376678705215454, -0.06235521286725998, 0.02482418157160282, -0.00038341418257914484, 0.03197678178548813, 0.024833712726831436, -0.026611432433128357, 0.13024741411209106, 0.05327509716153145, -0.005036578979343176, -0.08940308541059494, 0.00859648734331131, 0.0321904681622982, 0.030311264097690582, -0.12357167899608612, -0.05077434703707695, 0.056641723960638046, -0.11074225604534149, 0.03746936842799187, -0.032617758959531784, 0.04085586220026016, -0.10100923478603363, -0.05301094055175781, 0.008596253581345081, -0.07737638801336288, 0.0009413656662218273, -0.06061036139726639, 0.011417513713240623, 0.013624287210404873, 0.020812522619962692, -0.04414544999599457, -0.03513304889202118, -0.03270323574542999, 0.025613730773329735, -0.0624937005341053, 0.035163167864084244, 0.05929924547672272, -0.004734664689749479, 0.033971309661865234, -0.0260387621819973, 0.008164205588400364, 0.07433076947927475, -0.04091889411211014, 0.08601953834295273, 0.01336115412414074, 0.09186914563179016, -0.002562867943197489, -0.0026891606394201517, -0.012965240515768528, 0.023468896746635437, 0.059221185743808746, 0.05945536866784096, -0.03088798001408577, 0.03900573402643204, 0.009925886057317257, 0.013446197845041752, -0.030308395624160767, -0.042740173637866974, -0.003571238834410906, -0.044746674597263336, 0.046473000198602676, -0.035460468381643295, -0.05091961845755577, 0.011522832326591015, -0.018037835136055946, -0.06259768456220627, 0.03504468500614166, 0.03817486763000488, 0.029621344059705734, 0.00667959451675415, -0.06519422680139542, -0.019989902153611183, 0.04508016258478165, 0.058360323309898376, -0.06915246695280075, 0.011426315642893314, -0.01232807245105505, -0.0015046994667500257, -0.0040740673430264, -0.042052775621414185, 0.037391114979982376, 0.007310130167752504, -4.874575973504356e-33, 0.026272155344486237, 0.08052194118499756, -0.09376714378595352, 0.020697934553027153, -0.08519184589385986, -0.07030271738767624, 0.09785435348749161, 0.16686387360095978, -0.0027057311963289976, -0.05229802802205086, -0.04323972389101982, -0.04631313681602478, 0.031130092218518257, -0.012957780621945858, 0.08339519053697586, 0.014018415473401546, 0.0012827487662434578, 0.04523860290646553, 0.0120516587048769, -0.01098730880767107, -0.001981322420760989, 0.004539701621979475, -0.1531796157360077, 0.060502491891384125, -0.010275560431182384, 0.010481752455234528, -0.058757390826940536, 0.014154870994389057, 0.00577322905883193, 0.0059103816747665405, -0.03809729218482971, 0.026093559339642525, -0.018321184441447258, 0.052130259573459625, -0.12769325077533722, -0.05632070451974869, -0.010968461632728577, -0.0077930837869644165, -0.01845446042716503, 0.0491703599691391, 0.054925281554460526, 0.04321666806936264, -0.07364077121019363, 0.06692696362733841, -0.10295680910348892, 0.00022636345238424838, -0.05043164640665054, -0.029200581833720207, 0.05573700740933418, -0.11055543273687363, 0.01523969043046236, 0.023793956264853477, -0.07798945158720016, 0.005865416023880243, -0.0519358329474926, -0.037622980773448944, 0.03192597255110741, -0.04598180949687958, -0.09905870258808136, -0.024127298966050148, -0.047920502722263336, -0.024825090542435646, 0.059390634298324585, -0.04839097335934639, 0.048529572784900665, -0.010530740953981876, 0.02851671539247036, 0.07058533281087875, 0.010486027225852013, -0.08656290173530579, 0.06722569465637207, -0.013359125703573227, 0.02001590095460415, 0.04233921691775322, 0.052007149904966354, 0.021112652495503426, -0.035166896879673004, -0.03786122798919678, -0.003556963987648487, 0.010595566593110561, -0.0339970663189888, -0.03637639060616493, 0.013026908971369267, 0.04995430260896683, 0.041507117450237274, 0.031480010598897934, 0.021663041785359383, 0.009326322004199028, -0.014864583499729633, 0.0088282385841012, 0.022093622013926506, 0.047142449766397476, -0.04049478471279144, 0.10572952777147293, 0.024758100509643555, -4.8008836017743306e-8, -0.05567013844847679, -0.04709523916244507, -0.03879592567682266, 0.0026883448008447886, -0.08883669227361679, -0.05436955764889717, 0.016101311892271042, 0.011826478876173496, -0.05402807518839836, -0.037953801453113556, 0.021676167845726013, 0.0391765832901001, -0.05469464883208275, 0.04886338859796524, 0.010822351090610027, 0.03822494298219681, 0.021663857623934746, 0.13907136023044586, 0.020650221034884453, -0.019607918336987495, 0.0047478629276156425, 0.0181757640093565, 0.026703719049692154, -0.04577662795782089, 0.02321476861834526, 0.010440442711114883, -0.02644823119044304, 0.08973260968923569, 0.02740226686000824, 0.0069501763209700584, -0.0841306522488594, 0.013393372297286987, -0.08140937983989716, 0.0677608996629715, 0.053991805762052536, 0.061987314373254776, -0.026306448504328728, -0.056261152029037476, -0.05076415836811066, 0.0612821988761425, 0.17196546494960785, -0.02449803799390793, -0.0672241598367691, 0.007062616292387247, 0.04999866709113121, 0.06380583345890045, 0.01786285825073719, -0.10646656900644302, 0.026607202365994453, 0.0021730035077780485, 0.028903497382998466, -0.021256187930703163, -0.03483743965625763, 0.01431233249604702, -0.010121254250407219, 0.029701486229896545, -0.05535386875271797, 0.01659262925386429, 0.05209663510322571, 0.002930045360699296, 0.043742209672927856, 0.07097204774618149, 0.05691864341497421, 0.036416202783584595 ]
phiyodr/bert-base-finetuned-squad2
c73e3f22381ce4c230b49844ea7b8c703887385c
2021-05-20T02:34:19.000Z
[ "pytorch", "jax", "bert", "question-answering", "en", "dataset:squad2", "arxiv:1810.04805", "arxiv:1806.03822", "transformers", "autotrain_compatible" ]
question-answering
false
phiyodr
null
phiyodr/bert-base-finetuned-squad2
1,934
null
transformers
--- language: en tags: - pytorch - question-answering datasets: - squad2 metrics: - exact - f1 widget: - text: "What discipline did Winkelmann create?" context: "Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. The prophet and founding hero of modern archaeology, Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art." --- # bert-base-finetuned-squad2 ## Model description This model is based on **[bert-base-uncased](https://huggingface.co/bert-base-uncased)** and was finetuned on **[SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/)**. The corresponding papers you can found [here (model)](https://arxiv.org/abs/1810.04805) and [here (data)](https://arxiv.org/abs/1806.03822). ## How to use ```python from transformers.pipelines import pipeline model_name = "phiyodr/bert-base-finetuned-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What discipline did Winkelmann create?', 'context': 'Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. "The prophet and founding hero of modern archaeology", Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art. ' } nlp(inputs) ``` ## Training procedure ``` { "base_model": "bert-base-uncased", "do_lower_case": True, "learning_rate": 3e-5, "num_train_epochs": 4, "max_seq_length": 384, "doc_stride": 128, "max_query_length": 64, "batch_size": 96 } ``` ## Eval results - Data: [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) - Script: [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) (original script from [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/README.md)) ``` { "exact": 70.3950138970774, "f1": 73.90527661873521, "total": 11873, "HasAns_exact": 71.4574898785425, "HasAns_f1": 78.48808186475087, "HasAns_total": 5928, "NoAns_exact": 69.33557611438184, "NoAns_f1": 69.33557611438184, "NoAns_total": 5945 } ```
[ -0.15675802528858185, -0.007989153265953064, 0.0068563721142709255, -0.0038506819400936365, 0.00802692398428917, -0.0027652299031615257, -0.02590803988277912, 0.035925496369600296, -0.017866581678390503, -0.03765341266989708, 0.04252910986542702, -0.033240798860788345, 0.0048211850225925446, 0.04583992809057236, -0.059935588389635086, 0.023921530693769455, -0.0431741327047348, -0.019456729292869568, -0.04263262078166008, 0.006438800133764744, 0.012425655499100685, 0.014397555962204933, 0.0825905054807663, -0.06353597342967987, 0.06082708388566971, -0.0038940482772886753, -0.01859612576663494, -0.010510626249015331, 0.045213181525468826, -0.022020135074853897, 0.0017678828444331884, 0.05812179297208786, 0.02920900471508503, 0.05971319228410721, 0.0193703044205904, 0.09430542588233948, 0.021104734390974045, 0.03426828235387802, -0.03135788068175316, 0.0636724978685379, -0.043463632464408875, 0.010632691904902458, -0.023539703339338303, 0.0005775862955488265, 0.061657752841711044, 0.031172145158052444, -0.03178694471716881, 0.0023328126408159733, -0.07369396835565567, 0.027984239161014557, -0.10668787360191345, -0.06600906699895859, 0.017633598297834396, -0.008143874816596508, 0.02477729693055153, 0.04001787677407265, 0.00459829019382596, -0.030462341383099556, -0.03692912682890892, -0.10805952548980713, -0.02359369955956936, 0.009511779062449932, -0.04597518965601921, -0.005141761619597673, -0.062272194772958755, 0.042692918330430984, -0.07156078517436981, 0.018117547035217285, 0.018539633601903915, -0.002802131697535515, 0.014271137304604053, 0.0014050640165805817, -0.02107389271259308, -0.012630939483642578, 0.020861756056547165, -0.015893831849098206, 0.07966557890176773, 0.01665431261062622, 0.009376327507197857, -0.18792133033275604, 0.03526042401790619, -0.02057056687772274, 0.04124866798520088, 0.042119722813367844, 0.04512737691402435, 0.03239460662007332, -0.01366009283810854, -0.024596475064754486, 0.014330990612506866, 0.013766173273324966, 0.022903213277459145, -0.0575919933617115, 0.05378972738981247, 0.00024257069162558764, 0.057168155908584595, 0.06701476871967316, 0.0840902328491211, 0.0891069620847702, -0.0196217093616724, 0.09828853607177734, 0.019032945856451988, -0.0424313023686409, 0.02536378800868988, -0.009772497229278088, 0.014385313726961613, -0.0022899399045854807, 0.008380121551454067, 0.019891854375600815, 0.015739504247903824, -0.06672535836696625, 0.0010098705533891916, -0.028563736006617546, -0.03869127109646797, -0.03895583376288414, -0.006087822373956442, -0.07510261237621307, -0.029313765466213226, 0.025789624080061913, 0.014604155905544758, 0.032782409340143204, 0.060453061014413834, -0.013255642727017403, 0.022144658491015434, 0.045012928545475006, -0.03474411368370056, 0.05631145462393761, -0.04858490824699402, 4.603346815099437e-33, 0.08881866186857224, 0.035160131752491, -0.01174646895378828, 0.07139362394809723, 0.00941465049982071, -0.019209645688533783, -0.027656804770231247, -0.0019514901796355844, -0.03951290622353554, 0.01242747437208891, -0.07776451110839844, 0.032554417848587036, -0.06991222500801086, 0.044340405613183975, -0.01973838172852993, -0.011693675071001053, -0.017026009038090706, 0.08137441426515579, 0.043403688818216324, 0.026810508221387863, 0.04451841115951538, 0.048574574291706085, -0.004738201387226582, -0.10452321171760559, 0.021853847429156303, 0.07676808536052704, 0.04250134527683258, -0.03783402219414711, -0.05494482070207596, 0.05010053515434265, -0.0736164078116417, 0.031118027865886688, -0.05052094906568527, 0.02253052033483982, -0.0040062121115624905, -0.0025649461895227432, 0.0033665522933006287, -0.12276056408882141, -0.006501919124275446, -0.03318171948194504, 0.013975955545902252, 0.07029429823160172, 0.012793260626494884, -0.07400069385766983, -0.04127112403512001, -0.04581298679113388, 0.016861408948898315, 0.02187860757112503, 0.06922731548547745, 0.020875979214906693, -0.01122166495770216, 0.030534546822309494, 0.025525733828544617, -0.01774950698018074, -0.0029001967050135136, 0.009199233725667, 0.034890566021203995, 0.08370055258274078, 0.02873268909752369, 0.05012109503149986, 0.07135903090238571, 0.07957983016967773, 0.05365967005491257, 0.06762158870697021, 0.034452442079782486, 0.03272256255149841, -0.0683344379067421, 0.024733083322644234, 0.06505310535430908, 0.047700073570013046, -0.059055522084236145, 0.013061022385954857, 0.03953808173537254, 0.017757853493094444, 0.01965430937707424, -0.03631005063652992, -0.014223366975784302, -0.0610806979238987, -0.09733244776725769, -0.027978235855698586, -0.11962763220071793, 0.03920149430632591, -0.10286030173301697, -0.06066920608282089, -0.0846676453948021, -0.013147356919944286, 0.10281437635421753, -0.05079391598701477, 0.002505019074305892, -0.0038949346635490656, -0.022966153919696808, -0.10575365275144577, -0.09500986337661743, 0.005507286172360182, -0.08864204585552216, -4.457798206606575e-33, -0.0017648356733843684, 0.003511338494718075, -0.04217246174812317, 0.017335422337055206, 0.0045176539570093155, -0.09087129682302475, -0.00804891623556614, 0.11740516871213913, 0.03371929004788399, 0.008771127089858055, 0.09762540459632874, 0.0034425784833729267, -0.025814777240157127, -0.08528224378824234, 0.07774800062179565, -0.013367535546422005, -0.041691120713949203, -0.06406858563423157, -0.041608862578868866, 0.023128755390644073, 0.0678892433643341, -0.07568952441215515, -0.14595654606819153, 0.020809318870306015, -0.07901936769485474, 0.09904026985168457, -0.024103248491883278, 0.016473259776830673, -0.0000808866461738944, 0.03311791643500328, 0.007875066250562668, -0.07650500535964966, -0.046015262603759766, 0.040295761078596115, -0.05234687030315399, 0.05867251008749008, 0.04988694563508034, -0.002512316219508648, -0.03554728999733925, 0.01482132263481617, 0.07209204137325287, 0.04392851144075394, -0.07032226026058197, 0.07407867163419724, 0.012268497608602047, 0.013658217154443264, -0.07550834864377975, 0.007319561205804348, -0.017177632078528404, -0.11936900019645691, 0.049458906054496765, -0.018319685012102127, 0.00499986344948411, -0.006644866429269314, -0.03971642255783081, -0.027858631685376167, -0.0122218057513237, -0.02275151200592518, -0.05846787616610527, 0.06329890340566635, 0.04064493626356125, -0.03047429397702217, -0.06885623186826706, 0.06721539795398712, -0.025801947340369225, -0.07263313233852386, -0.10884024202823639, 0.07091711461544037, -0.09287737309932709, 0.0073144384659826756, 0.018352584913372993, -0.025014320388436317, 0.07747587561607361, 0.03153818100690842, 0.004038440994918346, -0.03375398740172386, 0.0019498399924486876, -0.0729917362332344, 0.07648327946662903, -0.012519625946879387, -0.09954998642206192, -0.07200112193822861, 0.03048386052250862, 0.11787539720535278, 0.0036619785241782665, 0.057644251734018326, -0.007306747604161501, 0.12522462010383606, 0.02729911170899868, -0.05861469358205795, 0.014821456745266914, -0.04785745218396187, 0.022987771779298782, 0.11679153889417648, 0.010251370258629322, -6.615321268554908e-8, -0.022899813950061798, 0.05251128971576691, -0.002468395745381713, 0.015473157167434692, -0.09197396039962769, -0.05851598456501961, -0.0504215732216835, -0.005964966025203466, -0.044189538806676865, 0.02242898941040039, -0.0207543782889843, 0.07318942248821259, -0.0752318948507309, -0.039485327899456024, -0.01840636506676674, 0.048224374651908875, 0.002782350406050682, 0.01913752593100071, -0.03997392952442169, -0.009150905534625053, 0.042213622480630875, 0.020310917869210243, -0.002177528804168105, -0.0779193863272667, -0.016878293827176094, 0.003922671545296907, -0.09982408583164215, 0.04182463884353638, -0.04439842328429222, 0.025095269083976746, -0.015111424960196018, 0.038826875388622284, -0.030025165528059006, 0.014674860052764416, 0.07619740813970566, 0.0584048256278038, -0.09077517688274384, -0.06947042793035507, 0.034614987671375275, 0.02349141240119934, 0.05117521062493324, -0.0013971553416922688, -0.046185221523046494, 0.04344472661614418, 0.14959129691123962, 0.0393894724547863, 0.01372590847313404, -0.0803312435746193, 0.00016828582738526165, 0.0009233746095560491, 0.051881853491067886, 0.012047120369970798, -0.0465884692966938, 0.02824903465807438, -0.07664085924625397, 0.01961860992014408, -0.05483141541481018, 0.04567110538482666, 0.046081360429525375, 0.012275499291718006, 0.06745537370443344, 0.030869074165821075, 0.021305417641997337, 0.032174672931432724 ]
microsoft/xlm-align-base
3e2a40ea5f9c75353ad2769bd74f7cb425fce671
2021-08-04T15:23:10.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
microsoft
null
microsoft/xlm-align-base
1,932
3
transformers
# XLM-Align **XLM-Align** (ACL 2021, [paper](https://aclanthology.org/2021.acl-long.265/), [repo](https://github.com/CZWin32768/XLM-Align), [model](https://huggingface.co/microsoft/xlm-align-base)) Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment XLM-Align is a pretrained cross-lingual language model that supports 94 languages. See details in our [paper](https://aclanthology.org/2021.acl-long.265/). ## Example ``` model = AutoModel.from_pretrained("microsoft/xlm-align-base") ``` ## Evaluation Results XTREME cross-lingual understanding tasks: | Model | POS | NER | XQuAD | MLQA | TyDiQA | XNLI | PAWS-X | Avg | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | XLM-R_base | 75.6 | 61.8 | 71.9 / 56.4 | 65.1 / 47.2 | 55.4 / 38.3 | 75.0 | 84.9 | 66.4 | | XLM-Align | **76.0** | **63.7** | **74.7 / 59.0** | **68.1 / 49.8** | **62.1 / 44.8** | **76.2** | **86.8** | **68.9** | ## MD5 ``` b9d214025837250ede2f69c9385f812c config.json 6005db708eb4bab5b85fa3976b9db85b pytorch_model.bin bf25eb5120ad92ef5c7d8596b5dc4046 sentencepiece.bpe.model eedbd60a7268b9fc45981b849664f747 tokenizer.json ``` ## About Contact: chizewen\@outlook.com BibTeX: ``` @inproceedings{xlmalign, title = "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment", author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei}, booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.265", doi = "10.18653/v1/2021.acl-long.265", pages = "3418--3430",} ```
[ -0.0632518082857132, -0.06782623380422592, -0.0007664964650757611, -0.027999838814139366, -0.03313056752085686, 0.0933753103017807, -0.09121180325746536, 0.007678649388253689, 0.021994946524500847, -0.01039494201540947, 0.08428443223237991, -0.1246107965707779, 0.03283899649977684, 0.008376583456993103, 0.012167949229478836, 0.03427469730377197, -0.011022219434380531, 0.022947296500205994, -0.07371079176664352, -0.003007546765729785, -0.01973199099302292, 0.04044738784432411, 0.011277327314019203, 0.00999443233013153, 0.03833505138754845, -0.03519671410322189, -0.00610241899266839, -0.0063018472865223885, 0.04649472236633301, -0.01970531791448593, -0.00006135204603197053, 0.06357643753290176, 0.02916223369538784, 0.12414403259754181, -0.02571840025484562, 0.01000390574336052, -0.06265255063772202, -0.11730753630399704, 0.05107555910944939, 0.03844476118683815, -0.021463781595230103, -0.020592283457517624, 0.050059471279382706, -0.05850685387849808, 0.07991344481706619, 0.03954658657312393, -0.023611396551132202, 0.0029800371266901493, -0.060097090899944305, 0.06119256839156151, -0.10200805962085724, 0.029063016176223755, 0.06204071640968323, 0.05467783287167549, -0.03499816730618477, -0.027244411408901215, -0.012861309573054314, -0.017689725384116173, -0.0074715400114655495, -0.022205304354429245, -0.001029311795718968, 0.0007131677703000605, -0.03774973750114441, 0.04421841353178024, -0.0798204243183136, 0.017399471253156662, -0.0012589067919179797, 0.024293169379234314, -0.026538515463471413, 0.05921357125043869, -0.07319127768278122, 0.003990841098129749, 0.005928033962845802, 0.013820173218846321, 0.05726794898509979, 0.060856591910123825, 0.028707129880785942, -0.03983524441719055, 0.022630417719483376, -0.08939247578382492, -0.024018768221139908, 0.10485615581274033, 0.061685338616371155, 0.006906982511281967, 0.05641920492053032, -0.07445511966943741, 0.005536532029509544, 0.045825451612472534, 0.01749080792069435, 0.004573839716613293, 0.01824350282549858, -0.08364962041378021, -0.0215789582580328, 0.013908686116337776, 0.013882162980735302, 0.004087530076503754, 0.09696964174509048, 0.05481451377272606, -0.04904842749238014, -0.04847189784049988, 0.04036538675427437, 0.08819501847028732, 0.015411500819027424, -0.0251168180257082, -0.046467140316963196, -0.10173285752534866, 0.024094508960843086, 0.047297000885009766, 0.03127063810825348, -0.1099655032157898, 0.0460234172642231, -0.07225417345762253, -0.06156269460916519, -0.006663707084953785, 0.00021453379304148257, 0.011445640586316586, 0.013436289504170418, -0.1202765554189682, 0.09202674776315689, -0.033523447811603546, -0.08774378895759583, -0.04747476801276207, 0.03478872776031494, -0.013802963308990002, 0.02254231460392475, -0.01876804791390896, -0.03714754432439804, 1.4969092201546486e-33, 0.01046723686158657, 0.06194595992565155, -0.02378331869840622, -0.0010881343623623252, -0.0012615800369530916, -0.03323995694518089, -0.026956019923090935, 0.023744838312268257, 0.019949674606323242, 0.044507261365652084, -0.07648829370737076, 0.12301934510469437, -0.0504540354013443, 0.026961004361510277, -0.051408857107162476, -0.022338373586535454, -0.04236732795834541, 0.033813171088695526, -0.08913576602935791, 0.058408528566360474, 0.1324804127216339, 0.04862260818481445, 0.017254957929253578, -0.05237485468387604, -0.011235385201871395, 0.08082946389913559, 0.09476011246442795, -0.07269900292158127, -0.061499886214733124, 0.024480465799570084, -0.09880296885967255, -0.031256042420864105, 0.024961726740002632, 0.01445705909281969, 0.008969171904027462, 0.011191670782864094, -0.03807478025555611, -0.026354487985372543, -0.002970292931422591, -0.02159752883017063, 0.007393369451165199, 0.057555750012397766, 0.09264494478702545, -0.06139489263296127, -0.0013484236551448703, -0.020742470398545265, -0.01462393905967474, -0.014989761635661125, 0.04473981261253357, -0.029892485588788986, 0.05094392970204353, 0.0068491739220917225, -0.06834667921066284, -0.007479156367480755, 0.009965712204575539, 0.08361544460058212, -0.023357395082712173, 0.10720473527908325, -0.021391650661826134, 0.040410127490758896, -0.01002234686166048, -0.032575108110904694, 0.025134842842817307, 0.03595428913831711, 0.0498846210539341, -0.003196402220055461, 0.02174181491136551, -0.052544042468070984, 0.05387495458126068, 0.006410347297787666, -0.02169802598655224, -0.08016840368509293, -0.030374236404895782, 0.011058112606406212, 0.1277034431695938, -0.009625938721001148, 0.018506551161408424, -0.03703445568680763, 0.046835336834192276, -0.013221120461821556, -0.0017802934162318707, 0.03462322801351547, 0.006139774806797504, -0.023111019283533096, -0.09458054602146149, -0.07766538858413696, 0.08970458060503006, -0.0157345999032259, 0.013042104430496693, 0.01474792417138815, 0.07094327360391617, 0.010626361705362797, 0.045477960258722305, 0.017230812460184097, 0.015621693804860115, -3.9796849811928104e-33, 0.042565856128931046, -0.017035042867064476, 0.0087282108142972, 0.02086649276316166, -0.03628858923912048, -0.021044116467237473, 0.10852927714586258, 0.11584452539682388, -0.044468216598033905, -0.029853038489818573, 0.07539267838001251, -0.04640941694378853, 0.009629222564399242, 0.0967743918299675, 0.008963124826550484, -0.010102926753461361, 0.019459404051303864, 0.028928648680448532, 0.0022218686062842607, 0.056201837956905365, -0.03422631323337555, 0.027184177190065384, -0.07477721571922302, 0.04578310623764992, 0.054043445736169815, 0.03142169862985611, -0.0014707983937114477, -0.006062494590878487, -0.0158246923238039, 0.023958217352628708, -0.06425149738788605, 0.030822930857539177, 0.003382219234481454, -0.008664964698255062, -0.07200764864683151, 0.023859022185206413, -0.022021247074007988, 0.032101720571517944, -0.022070102393627167, 0.027178604155778885, 0.06430187821388245, -0.02297579124569893, -0.11046727001667023, 0.0034681393299251795, 0.05824745446443558, 0.023905832320451736, -0.12704387307167053, -0.0601845383644104, -0.017600134015083313, 0.009430190548300743, -0.017468446865677834, 0.012458118610084057, -0.014200855977833271, -0.04610932618379593, -0.021406371146440506, -0.05164198949933052, -0.0751243457198143, -0.12162034958600998, -0.11787042766809464, -0.05662669986486435, -0.05811377242207527, 0.006580664776265621, 0.08695808798074722, -0.05480083450675011, 0.03433622419834137, -0.010473186150193214, -0.026798909530043602, -0.05551207810640335, -0.0005459601525217295, -0.04731143265962601, 0.08375056087970734, -0.005169552750885487, -0.07425560057163239, 0.0036263824440538883, -0.015755582600831985, -0.04917401075363159, 0.00229081092402339, -0.0989592969417572, -0.0139663340523839, -0.09538930654525757, -0.0030642682686448097, -0.005376489832997322, 0.02700704336166382, 0.09297464787960052, -0.07058412581682205, 0.02799673192203045, 0.04576904699206352, 0.08747372031211853, -0.04787577688694, 0.03937622159719467, -0.0009711135644465685, -0.0056893713772296906, -0.021582119166851044, 0.07690267264842987, -0.021098151803016663, -4.822122434688936e-8, -0.11360103636980057, 0.07705295085906982, 0.0022865664213895798, 0.032277047634124756, -0.07222768664360046, -0.061737582087516785, -0.09253671765327454, 0.003676759544759989, 0.02312561683356762, 0.038487426936626434, -0.03450245410203934, 0.023399358615279198, -0.06909266114234924, -0.00968639925122261, -0.05244211480021477, -0.0023329087998718023, -0.010805192403495312, 0.04316100478172302, -0.008756224066019058, 0.024974465370178223, -0.02579388953745365, 0.02461952529847622, 0.012706299312412739, -0.013989293947815895, 0.056926414370536804, -0.06534840166568756, -0.06327886879444122, 0.050853706896305084, 0.054320648312568665, -0.07318115234375, -0.03741944953799248, 0.02252751588821411, -0.04385488107800484, 0.019816774874925613, -0.04683712124824524, 0.033216338604688644, 0.018428275361657143, -0.01429264061152935, 0.07291267812252045, 0.03467927500605583, 0.020076408982276917, 0.05637533962726593, -0.15794329345226288, -0.011809092946350574, 0.0838957205414772, -0.03647392615675926, -0.06058746203780174, -0.128175750374794, 0.004636868834495544, -0.06692519038915634, 0.043568216264247894, 0.020820515230298042, 0.050444118678569794, -0.009965435601770878, 0.040059905499219894, 0.04299316555261612, -0.03547806292772293, -0.006200444884598255, 0.09763220697641373, 0.04835790395736694, 0.008412822149693966, -0.03182760253548622, 0.024238750338554382, -0.009561983868479729 ]
Alireza1044/albert-base-v2-sst2
e406771b99e1913921a68fbb95d121b582d1ecb7
2021-07-26T14:02:35.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-sst2
1,930
null
transformers
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.9231651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sst2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3808 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
[ -0.04976548254489899, -0.035171810537576675, -0.03869033232331276, 0.03656264394521713, -0.01340805646032095, 0.05725715681910515, -0.03857796639204025, 0.06698229908943176, -0.048188164830207825, -0.15046276152133942, 0.04119427129626274, -0.05502653494477272, -0.005924818105995655, -0.044307127594947815, -0.05571435019373894, 0.01833247020840645, 0.07240255922079086, 0.00788190308958292, -0.03541015088558197, 0.00822239089757204, 0.019258132204413414, 0.04960697889328003, -0.0014779913472011685, -0.017550688236951828, -0.00040446687489748, 0.0738755390048027, -0.050874050706624985, 0.030563825741410255, 0.0299928467720747, -0.03509048745036125, 0.033414795994758606, -0.0232083760201931, -0.00031540743657387793, 0.05116649344563484, 0.019359959289431572, 0.020792458206415176, -0.020871056243777275, -0.05046071857213974, -0.00721097132191062, -0.033395715057849884, 0.06074301898479462, -0.06081409379839897, -0.020592937245965004, 0.03413968160748482, 0.0040222397074103355, 0.018877815455198288, -0.031835220754146576, -0.08953789621591568, -0.06142782047390938, 0.003190451767295599, -0.12680816650390625, -0.10140618681907654, 0.13192962110042572, -0.02554706484079361, -0.0048806332051754, 0.045835498720407486, -0.038779888302087784, 0.012828762643039227, -0.014030697755515575, -0.012833775021135807, 0.11017879098653793, -0.030651720240712166, -0.07899057865142822, -0.028353530913591385, -0.061986543238162994, -0.06586196273565292, 0.02044512704014778, 0.006157461553812027, 0.06649547070264816, -0.02323424257338047, 0.014137537218630314, 0.05180004611611366, -0.042962536215782166, 0.05682378634810448, 0.049305979162454605, 0.053461138159036636, -0.04526013135910034, -0.008210365660488605, 0.07034794241189957, -0.07002325356006622, -0.043202340602874756, -0.06901540607213974, -0.010680237784981728, 0.0023058007936924696, 0.016014231368899345, 0.020534927025437355, 0.07386530935764313, 0.045175716280937195, -0.005876597482711077, 0.03555447980761528, 0.010700496844947338, -0.0279876459389925, 0.011429143138229847, 0.008090241812169552, -0.00298680760897696, 0.06435529887676239, -0.0010767487110570073, 0.05350654199719429, -0.10839612782001495, 0.10550849884748459, -0.06389623135328293, 0.09483323246240616, 0.009226796217262745, -0.006367845460772514, 0.03721565008163452, -0.025012629106640816, -0.06200648844242096, 0.0699382945895195, 0.061444707214832306, -0.08656235784292221, 0.08554939180612564, -0.07321793586015701, -0.07180958986282349, -0.007821735925972462, 0.0021508419886231422, 0.10032220184803009, -0.030108850449323654, 0.01079384982585907, -0.05313419550657272, 0.03169725090265274, 0.0026557340752333403, 0.010891136713325977, -0.020701538771390915, 0.03722571209073067, -0.0367274209856987, -0.07047325372695923, -0.11285020411014557, 4.88250688695256e-33, 0.04194805026054382, 0.06704667210578918, -0.0054624006152153015, 0.020804185420274734, -0.006753104273229837, -0.09060531854629517, -0.0459650419652462, -0.0009964699856936932, -0.007480766624212265, 0.004322746302932501, -0.03812188655138016, -0.0254171434789896, -0.02707243524491787, 0.02922302857041359, -0.0068710544146597385, -0.049200475215911865, -0.027704400941729546, 0.08624451607465744, 0.06927202641963959, 0.03422146663069725, 0.09836624562740326, 0.05553041771054268, 0.0028473760467022657, -0.06933754682540894, -0.02611500956118107, 0.0781790092587471, 0.03201155737042427, -0.0634181872010231, 0.007667336612939835, 0.0427488312125206, -0.031230853870511055, -0.007227291818708181, -0.0148417167365551, -0.02751825377345085, 0.03265601769089699, -0.0524129681289196, 0.026573412120342255, -0.030011214315891266, -0.07407073676586151, -0.07376284897327423, 0.08732981234788895, 0.025983717292547226, 0.04145895689725876, -0.026058413088321686, 0.0019596379715949297, -0.04510976001620293, 0.07482600212097168, 0.04324718564748764, 0.08157317340373993, 0.04407354071736336, -0.04543909803032875, -0.002682463265955448, 0.05634647235274315, 0.0061344485729932785, -0.04552251845598221, -0.007149169221520424, 0.03430893272161484, 0.14412212371826172, 0.021085314452648163, 0.02161407843232155, -0.03814991936087608, -0.0019326219335198402, -0.021264631301164627, 0.05489833652973175, -0.004931477829813957, 0.012437853962182999, -0.03795592486858368, -0.06367519497871399, 0.0103371636942029, 0.05020196735858917, -0.03532540798187256, 0.020270822569727898, 0.001260412740521133, -0.027048859745264053, 0.04337290674448013, -0.09521887451410294, -0.004934240132570267, 0.010129706934094429, -0.0397324338555336, -0.010525687597692013, -0.053454913198947906, 0.06616005301475525, 0.044904351234436035, -0.1276387721300125, -0.07440903782844543, -0.0652724876999855, -0.021370114758610725, -0.01980392076075077, -0.019573861733078957, 0.051355134695768356, 0.005742654670029879, 0.047223418951034546, -0.04796883836388588, 0.03132034093141556, -0.04061974957585335, -5.6328554204671505e-33, -0.024707933887839317, -0.016431156545877457, -0.012362447567284107, 0.07187610864639282, 0.020780907943844795, 0.03321241959929466, -0.024594569578766823, 0.10013756155967712, -0.05837104097008705, -0.006640822160989046, 0.12634265422821045, 0.015725117176771164, 0.0036142345052212477, -0.04234573617577553, 0.006872416008263826, -0.004855831619352102, -0.038193024694919586, -0.05379902198910713, 0.017131924629211426, 0.02267402596771717, 0.07189702242612839, 0.13608628511428833, -0.038663506507873535, 0.06858357042074203, 0.025882376357913017, 0.03807176277041435, 0.029576463624835014, 0.08769042044878006, 0.04254820570349693, -0.0022391704842448235, 0.03745146468281746, 0.0015500037698075175, -0.03834502771496773, 0.02583247609436512, -0.06693612039089203, 0.05709055811166763, 0.0262380950152874, 0.010886150412261486, -0.004379093647003174, 0.0890100970864296, 0.012524821795523167, 0.043895427137613297, -0.12790469825267792, 0.0899486392736435, 0.015803266316652298, -0.03229300305247307, 0.04871460795402527, -0.023719538003206253, 0.05135847255587578, -0.05999956279993057, 0.015005175024271011, -0.06457974761724472, -0.07982506603002548, -0.029470117762684822, -0.010447337292134762, 0.012342573143541813, -0.02485089935362339, -0.023055532947182655, -0.09579799324274063, 0.004379873629659414, -0.0117366723716259, 0.007031630724668503, 0.016883106902241707, -0.024591054767370224, 0.004317052662372589, -0.05065113306045532, -0.07909667491912842, 0.010204944759607315, -0.030306439846754074, 0.01758723147213459, -0.022752048447728157, 0.057825297117233276, 0.011100390926003456, 0.0015415854286402464, -0.0001504304527770728, -0.02474389784038067, 0.023809975013136864, 0.04330018162727356, -0.02760925702750683, -0.08087483048439026, -0.1084718331694603, 0.02999001555144787, 0.04730040207505226, 0.04151730611920357, 0.12417080253362656, 0.03634925186634064, 0.063742496073246, 0.10088633000850677, -0.026692980900406837, 0.012251373380422592, -0.022185729816555977, 0.04978880286216736, -0.0012472440721467137, 0.14881078898906708, -0.024969108402729034, -5.7324303526229414e-8, -0.004941237159073353, 0.0029402486979961395, -0.09681083261966705, 0.07536230981349945, 0.0010198716772720218, -0.04755023494362831, -0.0340721569955349, 0.015084724873304367, -0.07435502856969833, -0.006332636810839176, -0.024243127554655075, -0.013655534945428371, -0.10486704856157303, -0.004860997200012207, 0.06760791689157486, -0.050518304109573364, -0.05339909344911575, 0.0828300267457962, -0.0916074588894844, -0.06909751147031784, 0.05266689509153366, -0.09026147425174713, 0.09376668930053711, -0.04597898945212364, -0.004114965442568064, -0.03750833123922348, -0.06153982877731323, 0.07877545058727264, -0.025250334292650223, 0.002976176096126437, 0.03865274041891098, 0.013800948858261108, -0.03303312510251999, -0.0037165204994380474, 0.013683891855180264, 0.037649303674697876, -0.017615001648664474, 0.000544263340998441, 0.044459108263254166, 0.09559067338705063, -0.02547413669526577, 0.05198870599269867, -0.12248587608337402, 0.04008982330560684, 0.055551301687955856, 0.008443113416433334, -0.01233852468430996, -0.07634786516427994, 0.01259894110262394, 0.0044531309977173805, 0.025928683578968048, -0.011461395770311356, -0.08790944516658783, -0.01188565231859684, 0.030311668291687965, 0.03148530423641205, -0.013182112015783787, -0.03767717629671097, -0.007778484839946032, -0.011304008774459362, 0.034980010241270065, -0.07613453269004822, -0.00905181746929884, 0.027978448197245598 ]
google/bert_uncased_L-2_H-256_A-4
4e937a8675e5afd9a4836735c186ec01695bc3ea
2021-05-19T17:28:46.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
null
false
google
null
google/bert_uncased_L-2_H-256_A-4
1,928
1
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
[ -0.02777470275759697, -0.02693094126880169, 0.07438826560974121, 0.03228488564491272, -0.0023304771166294813, 0.018128493800759315, -0.06253628432750702, 0.0994548574090004, -0.014644814655184746, 0.018868697807192802, -0.015814494341611862, 0.03585591912269592, 0.03645862638950348, 0.04551365599036217, -0.014007769525051117, 0.02179890125989914, 0.07545263320207596, 0.024630775675177574, -0.08102796226739883, -0.038678135722875595, 0.04442288726568222, 0.004127463325858116, 0.035637278109788895, -0.06602323800325394, -0.0036878888495266438, -0.04231955111026764, -0.10835908353328705, -0.10179445147514343, 0.1127767413854599, 0.017838995903730392, 0.01322801411151886, -0.0231491569429636, 0.060954611748456955, 0.10242877900600433, 0.0375167578458786, 0.07160431146621704, -0.007885153405368328, 0.06596683710813522, 0.08308044821023941, 0.037167150527238846, -0.012698134407401085, 0.05730978772044182, -0.046946585178375244, -0.020251978188753128, 0.08908210694789886, -0.059475671499967575, -0.03805408999323845, -0.05272062495350838, -0.04246129095554352, -0.06516197323799133, -0.08722401410341263, -0.0465037040412426, -0.00350557011552155, -0.006868511438369751, -0.012093286029994488, -0.017656998708844185, -0.018602291122078896, -0.08509580790996552, -0.048703644424676895, -0.05522743612527847, -0.1006460189819336, -0.05546271428465843, -0.03855401650071144, -0.02299017831683159, -0.08375518023967743, 0.010514002293348312, -0.0332985445857048, 0.020559493452310562, 0.02245338261127472, 0.017550311982631683, 0.02086251601576805, 0.07695921510457993, -0.002593731041997671, 0.04768828675150871, 0.0177034679800272, -0.08130199462175369, 0.08254873752593994, 0.01259934064000845, 0.05082662031054497, -0.056801896542310715, 0.003977705724537373, -0.011792338453233242, 0.061928100883960724, -0.027844129130244255, 0.03977213054895401, -0.01979219727218151, 0.050365421921014786, -0.03929493576288223, 0.0031530733685940504, -0.041712965816259384, -0.025899091735482216, -0.02879168465733528, 0.0234839990735054, 0.01508942898362875, 0.041859906166791916, -0.013815062120556831, 0.07762707024812698, -0.06824886798858643, -0.035266585648059845, 0.06303618848323822, 0.08460132032632828, 0.05870901793241501, 0.11230025440454483, -0.0903414711356163, 0.07434411346912384, 0.05187731981277466, 0.025597769767045975, 0.017762847244739532, 0.06019540876150131, -0.07116957008838654, 0.025501219555735588, 0.0264898668974638, -0.03993377089500427, -0.02484058029949665, 0.033353839069604874, -0.04111992195248604, -0.012459754012525082, -0.032413944602012634, 0.04432254657149315, 0.08561859279870987, 0.0311464574187994, 0.010137348435819149, 0.009034326300024986, -0.013844281435012817, -0.037362899631261826, 0.022949982434511185, -0.04159504920244217, 3.0798436882963647e-33, 0.010033472441136837, 0.08980696648359299, -0.015826981514692307, 0.0021228354889899492, 0.04828347638249397, -0.012724562548100948, 0.07859385013580322, 0.013289345428347588, -0.04710506275296211, 0.0008750183042138815, -0.024205293506383896, 0.040203407406806946, -0.08776650577783585, 0.1084313839673996, 0.05108625441789627, -0.0076477923430502415, -0.03032587841153145, 0.09285354614257812, 0.04229235649108887, 0.02342383936047554, 0.012891994789242744, -0.03050696663558483, 0.021354084834456444, -0.08490459620952606, -0.04626283422112465, -0.004968647845089436, 0.06569510698318481, 0.006347084417939186, -0.05621005594730377, 0.04938972741365433, -0.09828261286020279, 0.04791073501110077, 0.005325495731085539, 0.0073667350225150585, -0.009293892420828342, -0.030588563531637192, -0.025204559788107872, -0.03599413484334946, 0.06201314181089401, -0.055159613490104675, 0.015916872769594193, 0.08668506890535355, 0.01913357712328434, -0.03226336091756821, 0.019701041281223297, 0.016111237928271294, 0.07878092676401138, 0.027088068425655365, -0.03437655791640282, -0.04213705286383629, 0.038557808846235275, 0.018548857420682907, -0.09642824530601501, -0.02115079015493393, 0.014828594401478767, -0.014169528149068356, 0.052391670644283295, -0.021084407344460487, 0.018860751762986183, 0.0188959501683712, -0.018108483403921127, -0.017935508862137794, -0.0007771972450427711, 0.0875239372253418, 0.05831224471330643, -0.01666453666985035, -0.03579762578010559, 0.019875947386026382, -0.03154779225587845, 0.024714933708310127, -0.04408795386552811, -0.017733389511704445, 0.031613849103450775, -0.034551091492176056, 0.019006161019206047, -0.09389360249042511, 0.0749051496386528, -0.06782030314207077, -0.060423046350479126, -0.0027907630428671837, 0.036781832575798035, 0.03104851022362709, -0.06610022485256195, -0.07133632153272629, -0.09378468245267868, -0.05997026711702347, 0.06689010560512543, -0.027257995679974556, 0.019673382863402367, 0.02110666036605835, 0.0042736465111374855, -0.07312818616628647, 0.004901031032204628, 0.009528765454888344, -0.08911892771720886, -2.745649909673619e-33, 0.0021529693622142076, 0.03855104371905327, -0.10308390855789185, 0.050320789217948914, -0.04681287705898285, -0.04624652862548828, 0.04134273901581764, 0.15953823924064636, -0.05114345625042915, -0.06880908459424973, -0.03467176482081413, -0.01697215437889099, -0.02391764335334301, -0.08151818066835403, -0.013180517591536045, 0.008677455596625805, -0.00866649392992258, 0.0117244403809309, 0.06523464620113373, -0.031274884939193726, 0.06625952571630478, -0.050342388451099396, -0.05482276901602745, 0.08445682376623154, -0.0037109581753611565, 0.08581460267305374, -0.1056312620639801, -0.006267915479838848, 0.0016805074410513043, 0.03180089220404625, -0.037861187011003494, -0.026890192180871964, 0.029224365949630737, 0.041481297463178635, -0.05287330225110054, 0.028274059295654297, -0.004168998915702105, -0.04711843654513359, 0.028253236785531044, 0.026713063940405846, 0.05356067046523094, -0.07454729825258255, 0.01215335913002491, 0.008674802258610725, 0.002732679480686784, -0.005528884474188089, -0.1011095717549324, -0.08269007503986359, -0.00893216859549284, -0.028915394097566605, 0.01280263438820839, -0.03088524378836155, -0.10103844851255417, -0.027487996965646744, -0.09202675521373749, -0.08071903884410858, -0.011788311414420605, -0.010570026002824306, 0.040800344198942184, 0.03534208983182907, -0.03600774705410004, -0.08346249163150787, -0.04663081839680672, 0.0144363883882761, -0.0611286535859108, -0.01945393905043602, -0.0429740846157074, 0.06830962002277374, -0.04516363888978958, 0.03358118236064911, -0.04700200632214546, -0.03670932725071907, 0.06817365437746048, 0.030344508588314056, -0.10013546049594879, 0.05196927860379219, -0.004978442098945379, -0.04802384972572327, -0.029270552098751068, 0.011249368079006672, -0.035611048340797424, -0.04569050669670105, -0.007384720258414745, 0.06185262277722359, -0.003068223362788558, 0.07179275900125504, 0.042144566774368286, 0.042808420956134796, -0.043737392872571945, 0.1017121970653534, -0.03529709577560425, 0.015136893838644028, 0.06037892401218414, 0.0446556992828846, 0.020039809867739677, -5.7391801533412945e-8, -0.020838076248764992, 0.05167875811457634, -0.0003159099433105439, 0.032759685069322586, -0.08053361624479294, -0.07808814197778702, -0.0645233765244484, 0.073664091527462, -0.03812188282608986, 0.0739324614405632, 0.05438229441642761, 0.0640188530087471, -0.051926061511039734, 0.03982805460691452, 0.06603474169969559, 0.08508943021297455, -0.04874661564826965, -0.007028104271739721, -0.0013886261731386185, -0.043596457690000534, 0.01172784436494112, 0.03845464810729027, 0.012406852096319199, -0.03461853042244911, 0.06254647672176361, -0.07115825265645981, -0.016401374712586403, 0.15517796576023102, -0.07044593244791031, 0.03150911629199982, -0.028944045305252075, 0.0592564232647419, -0.0842917189002037, 0.004482691176235676, 0.12364226579666138, 0.051830366253852844, -0.1016145721077919, -0.02944220043718815, -0.0042844912968575954, 0.026145359501242638, 0.04261724650859833, -0.0030251643620431423, -0.05400453135371208, -0.009814517572522163, 0.12240474671125412, 0.01839965581893921, -0.012614627368748188, -0.005961736664175987, 0.022503379732370377, 0.0739760547876358, 0.024917954578995705, -0.027219194918870926, -0.0398184210062027, 0.008865961804986, -0.036761652678251266, 0.03012857772409916, -0.07172215729951859, -0.008826298639178276, 0.015618893317878246, 0.011758017353713512, -0.004138866905122995, 0.05558526888489723, -0.027862677350640297, 0.07714439183473587 ]
indobenchmark/indobart
73bead20e4a67f578f6f3b3f7038040304dc7065
2022-06-21T17:52:16.000Z
[ "pytorch", "mbart", "text2text-generation", "id", "dataset:Indo4B+", "arxiv:2104.08200", "transformers", "indogpt", "indobenchmark", "indonlg", "license:mit", "autotrain_compatible" ]
text2text-generation
false
indobenchmark
null
indobenchmark/indobart
1,923
1
transformers
--- language: id tags: - indogpt - indobenchmark - indonlg license: mit inference: false datasets: - Indo4B+ --- # IndoBART Model [IndoBART](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the BART model. The pretrained model is trained using the BART training objective. ## All Pre-trained Models | Model | #params | Training data | |--------------------------------|--------------------------------|-----------------------------------| | `indobenchmark/indobart` | 132M | Indo4B-Plus (23.79 GB of text) | ## Authors <b>IndoBART</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung ## Citation If you use our work, please cite: ```bibtex @article{cahyawijaya2021indonlg, title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation}, author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others}, journal={arXiv preprint arXiv:2104.08200}, year={2021} } ```
[ -0.013703456148505211, -0.03858499601483345, 0.032011691480875015, -0.036327652633190155, -0.078417107462883, 0.08799941837787628, -0.025135699659585953, 0.023976793512701988, 0.07147400826215744, 0.02604273334145546, 0.10672129690647125, -0.05894240736961365, -0.016188107430934906, -0.03765704855322838, -0.009259538725018501, -0.009916143491864204, 0.042446568608284, -0.024954527616500854, -0.00994261633604765, -0.1104184165596962, 0.028765954077243805, 0.03706857189536095, 0.022081933915615082, -0.06913251429796219, 0.04079880565404892, 0.010449747554957867, 0.02811170369386673, -0.09702451527118683, 0.01780831441283226, -0.03155890479683876, 0.009819396771490574, 0.06864684075117111, 0.03115544281899929, 0.014130113646388054, -0.06443211436271667, 0.01959964632987976, -0.021225804463028908, -0.028638429939746857, 0.09544475376605988, 0.05317527800798416, -0.021431494504213333, -0.009915863163769245, -0.04996984079480171, -0.025656087324023247, 0.11544360220432281, -0.000303895678371191, -0.04326274245977402, 0.004006031900644302, -0.033122915774583817, -0.0439448282122612, -0.11717867851257324, -0.03031538985669613, -0.020700104534626007, 0.046334389597177505, 0.022950924932956696, -0.10974714159965515, 0.002493318635970354, 0.04734928905963898, 0.021314403042197227, 0.0063075534999370575, -0.06670732796192169, -0.0072930241003632545, -0.08548812568187714, 0.03361242637038231, -0.013058027252554893, 0.025804977864027023, -0.04156254604458809, 0.06876120716333389, -0.042398396879434586, 0.058497171849012375, -0.03436872735619545, 0.08047527074813843, -0.020734364166855812, 0.056937847286462784, -0.06040360778570175, -0.04027707874774933, 0.07627438008785248, 0.006597556173801422, 0.06161104887723923, -0.11649181693792343, 0.001025245408527553, 0.034806232899427414, 0.07467792928218842, -0.010434458032250404, 0.007996827363967896, 0.004199969582259655, 0.014403562992811203, -0.001957125263288617, 0.0024001861456781626, -0.013662457466125488, 0.047230929136276245, -0.03941841796040535, -0.005673462059348822, -0.0023833841551095247, -0.00843162089586258, 0.056892503052949905, -0.02192053198814392, 0.04084033519029617, -0.0035177418030798435, 0.053862638771533966, 0.08356571942567825, 0.11852666735649109, -0.02732706628739834, -0.07816314697265625, -0.047159165143966675, -0.05175744742155075, -0.02564893662929535, -0.01850237511098385, 0.12208539247512817, -0.0028558059129863977, -0.030629487708210945, -0.015754451975226402, -0.05696042627096176, -0.008740688674151897, -0.06457503139972687, -0.014419296756386757, -0.021852321922779083, -0.016327695921063423, -0.015401095151901245, -0.0005031803157180548, -0.05616766959428787, -0.007033266592770815, 0.03940653055906296, 0.025204848498106003, -0.08406853675842285, -0.05139414966106415, -0.006849025841802359, -3.289020703973283e-33, 0.03553624078631401, -0.03331277146935463, 0.010683625005185604, -0.04621400684118271, -0.011698284186422825, -0.06234809011220932, -0.03975001350045204, -0.0764712318778038, -0.04492277279496193, -0.0700010433793068, -0.04884770140051842, -0.040998801589012146, -0.1075671836733818, 0.0421198345720768, 0.016128674149513245, 0.051366038620471954, -0.08372636884450912, 0.040598466992378235, 0.012242288328707218, -0.005167901050299406, 0.08095243573188782, 0.016404593363404274, 0.03931352496147156, -0.06818678230047226, 0.01487488579005003, 0.028338924050331116, 0.09550817310810089, -0.07738590240478516, -0.06866007298231125, 0.042817458510398865, -0.0906735509634018, -0.02194741554558277, -0.04549221321940422, 0.017863567918539047, -0.09465355426073074, -0.02456110715866089, 0.012702803127467632, -0.07984969019889832, -0.04708404093980789, -0.06176694855093956, -0.0055042146705091, 0.03573796525597572, 0.09187580645084381, -0.043731845915317535, -0.002316294005140662, -0.032505687326192856, -0.011856685392558575, -0.06505250930786133, -0.02681151032447815, 0.113590769469738, -0.06626657396554947, 0.0061853923834860325, 0.040457095950841904, 0.0237212423235178, 0.027387453243136406, 0.03179841488599777, 0.0266822949051857, 0.018350008875131607, 0.0033258565235882998, 0.06380772590637207, 0.011018904857337475, -0.03495541960000992, 0.05185871943831444, 0.02953147143125534, 0.046466827392578125, 0.04990163818001747, -0.03591592609882355, -0.03932150825858116, 0.05966007336974144, -0.01883166842162609, -0.03369227051734924, -0.08483761548995972, 0.072164386510849, 0.04476877674460411, -0.016265487298369408, -0.022294895723462105, 0.02278820239007473, -0.04056348651647568, -0.0764651894569397, 0.03776932135224342, -0.04101148247718811, -0.05922519043087959, 0.0064862859435379505, -0.04687698557972908, 0.007429081480950117, -0.006602423265576363, 0.05549946799874306, -0.058140505105257034, -0.03973844647407532, -0.0064213937148451805, 0.02541118860244751, 0.029099052771925926, -0.05963991582393646, 0.04507782682776451, 0.011076042428612709, -1.4518595011853384e-33, -0.013306103646755219, 0.06130962073802948, -0.08910821378231049, -0.0025824757758527994, -0.0789167732000351, -0.05979783833026886, 0.043653227388858795, 0.12059326469898224, -0.0345943346619606, -0.01611519232392311, -0.016394278034567833, -0.09597935527563095, 0.060879360884428024, 0.04236846789717674, 0.052613310515880585, -0.0039599076844751835, 0.01263123843818903, 0.0834924653172493, -0.014923915266990662, 0.05419624596834183, 0.01050077099353075, 0.07079349458217621, -0.08987176418304443, 0.09720620512962341, 0.07728685438632965, 0.028123704716563225, -0.005646274890750647, 0.0749087780714035, -0.09157489985227585, -0.0032263589091598988, 0.017386484891176224, -0.055335115641355515, -0.07967559248209, 0.01754515804350376, -0.10229554772377014, -0.0427037850022316, 0.050978682935237885, -0.009293576702475548, -0.032350700348615646, 0.11665431410074234, 0.07805031538009644, 0.09658870846033096, -0.08777988702058792, -0.030898932367563248, -0.05711040273308754, -0.015320373699069023, -0.061002057045698166, -0.037651970982551575, 0.050914522260427475, -0.12001214921474457, 0.04786771535873413, 0.02217957191169262, 0.005982370115816593, -0.023914052173495293, -0.04918505623936653, -0.055403146892786026, 0.0047691017389297485, -0.013787268660962582, -0.030068207532167435, -0.05471824109554291, -0.08899640291929245, -0.03133069723844528, 0.06439956277608871, 0.005837355274707079, 0.03780428320169449, -0.046239420771598816, 0.04496212303638458, 0.06605193763971329, 0.01603803224861622, -0.11904837936162949, 0.032821282744407654, 0.001394358347170055, 0.0031194298062473536, 0.07458126544952393, 0.021752389147877693, 0.009698732756078243, -0.020404724404215813, -0.03631832078099251, 0.01147592905908823, -0.050758715718984604, -0.009340545162558556, -0.024348612874746323, 0.05646006762981415, 0.03097725473344326, 0.03734222799539566, 0.06271343678236008, -0.030973687767982483, 0.02333296649158001, -0.02063596434891224, 0.028298985213041306, 0.024883940815925598, 0.05024144425988197, -0.025207163766026497, 0.08782351762056351, -0.028017576783895493, -4.96039085362554e-8, -0.034405939280986786, -0.08699502050876617, 0.021912265568971634, 0.06871746480464935, -0.021632883697748184, -0.04218128323554993, -0.012886370532214642, 0.01762411929666996, -0.10348079353570938, -0.05268973112106323, 0.003168964758515358, 0.03973047062754631, -0.10380364954471588, 0.05037767440080643, -0.0071975369937717915, 0.0034424313344061375, 0.023405032232403755, 0.07339857518672943, -0.029985999688506126, -0.054224807769060135, 0.06478047370910645, 0.014771581627428532, 0.06208150088787079, 0.008507589809596539, 0.040142010897397995, -0.0009944661287590861, -0.019286097958683968, 0.07614597678184509, 0.039101265370845795, -0.05394071340560913, -0.04209868982434273, 0.04502837732434273, -0.08004496246576309, -0.014433752745389938, 0.02873837575316429, 0.05520887300372124, 0.007652274798601866, -0.011025245301425457, -0.0452679768204689, 0.12507747113704681, -0.008994195610284805, -0.053954482078552246, -0.056635502725839615, 0.0015865161549299955, 0.09833317250013351, 0.021078046411275864, 0.0008285134099423885, -0.057651691138744354, 0.05699273571372032, -0.03801628202199936, -0.022533146664500237, 0.005701057147234678, 0.03160924091935158, -0.07486281543970108, -0.033408015966415405, 0.02809532918035984, -0.08313995599746704, 0.05049138888716698, 0.033450737595558167, -0.008193252608180046, 0.12147051095962524, -0.007974887266755104, -0.014406641013920307, 0.038879621773958206 ]
microsoft/CodeGPT-small-py
97ebaaa7103f64e3085e88f0ecd28d1ffeb01bea
2021-05-23T09:01:50.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
microsoft
null
microsoft/CodeGPT-small-py
1,922
1
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
saattrupdan/nbailab-base-ner-scandi
8635b40703c27f868a29a36d99e264facddc6610
2022-02-09T15:21:05.000Z
[ "pytorch", "bert", "token-classification", "da", "no", "nb", "nn", "sv", "fo", "is", "dataset:dane", "dataset:norne", "dataset:wikiann", "dataset:suc3.0", "arxiv:1911.12146", "transformers", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
saattrupdan
null
saattrupdan/nbailab-base-ner-scandi
1,921
8
transformers
--- language: - da - no - nb - nn - sv - fo - is license: mit datasets: - dane - norne - wikiann - suc3.0 model-index: - name: nbailab-base-ner-scandi results: [] widget: - "Hans er en professor på Københavns Universitetet i København, og han er en rigtig københavner. Hans kat, altså Hans' kat, Lisa, er supersød. Han fik købt en Mona Lisa på tilbud i Netto og gav den til sin kat, og nu er Mona Lisa'en Lisa's kæreste eje. Hans bror Peter og Hans besluttede, at Peterskirken skulle have fint besøg. Men nu har de begge Corona." inference: parameters: aggregation_strategy: "first" --- # ScandiNER - Named Entity Recognition model for Scandinavian Languages This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) for Named Entity Recognition for Danish, Norwegian (both Bokmål and Nynorsk), Swedish, Icelandic and Faroese. It has been fine-tuned on the concatenation of [DaNE](https://aclanthology.org/2020.lrec-1.565/), [NorNE](https://arxiv.org/abs/1911.12146), [SUC 3.0](https://spraakbanken.gu.se/en/resources/suc3) and the Icelandic and Faroese parts of the [WikiANN](https://aclanthology.org/P17-1178/) dataset. It also works reasonably well on English sentences, given the fact that the pretrained model is also trained on English data along with Scandinavian languages. The model will predict the following four entities: | **Tag** | **Name** | **Description** | | :------ | :------- | :-------------- | | `PER` | Person | The name of a person (e.g., *Birgitte* and *Mohammed*) | | `LOC` | Location | The name of a location (e.g., *Tyskland* and *Djurgården*) | | `ORG` | Organisation | The name of an organisation (e.g., *Bunnpris* and *Landsbankinn*) | | `MISC` | Miscellaneous | A named entity of a different kind (e.g., *Ūjķnustu pund* and *Mona Lisa*) | ## Quick start You can use this model in your scripts as follows: ```python >>> from transformers import pipeline >>> import pandas as pd >>> ner = pipeline(task='ner', ... model='saattrupdan/nbailab-base-ner-scandi', ... aggregation_strategy='first') >>> result = ner('Borghild kjøper seg inn i Bunnpris') >>> pd.DataFrame.from_records(result) entity_group score word start end 0 PER 0.981257 Borghild 0 8 1 ORG 0.974099 Bunnpris 26 34 ``` ## Performance The following is the Micro-F1 NER performance on Scandinavian NER test datasets, compared with the current state-of-the-art. The models have been evaluated on the test set along with 9 bootstrapped versions of it, with the mean and 95% confidence interval shown here: | **Model ID** | **DaNE** | **NorNE-NB** | **NorNE-NN** | **SUC 3.0** | **WikiANN-IS** | **WikiANN-FO** | **Average** | | :----------- | -------: | -----------: | -----------: | ----------: | -------------: | -------------: | ----------: | | saattrupdan/nbailab-base-ner-scandi | **87.44 ± 0.81** | **91.06 ± 0.26** | **90.42 ± 0.61** | **88.37 ± 0.17** | **88.61 ± 0.41** | **90.22 ± 0.46** | **89.08 ± 0.46** | | chcaa/da\_dacy\_large\_trf | 83.61 ± 1.18 | 78.90 ± 0.49 | 72.62 ± 0.58 | 53.35 ± 0.17 | 50.57 ± 0.46 | 51.72 ± 0.52 | 63.00 ± 0.57 | | RecordedFuture/Swedish-NER | 64.09 ± 0.97 | 61.74 ± 0.50 | 56.67 ± 0.79 | 66.60 ± 0.27 | 34.54 ± 0.73 | 42.16 ± 0.83 | 53.32 ± 0.69 | | Maltehb/danish-bert-botxo-ner-dane | 69.25 ± 1.17 | 60.57 ± 0.27 | 35.60 ± 1.19 | 38.37 ± 0.26 | 21.00 ± 0.57 | 27.88 ± 0.48 | 40.92 ± 0.64 | | Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane | 70.41 ± 1.19 | 48.76 ± 0.70 | 27.58 ± 0.61 | 35.39 ± 0.38 | 26.22 ± 0.52 | 28.30 ± 0.29 | 39.70 ± 0.61 | | radbrt/nb\_nocy\_trf | 56.82 ± 1.63 | 68.20 ± 0.75 | 69.22 ± 1.04 | 31.63 ± 0.29 | 20.32 ± 0.45 | 12.91 ± 0.50 | 38.08 ± 0.75 | Aside from its high accuracy, it's also substantially **smaller** and **faster** than the previous state-of-the-art: | **Model ID** | **Samples/second** | **Model size** | | :----------- | -----------------: | -------------: | | saattrupdan/nbailab-base-ner-scandi | 4.16 ± 0.18 | 676 MB | | chcaa/da\_dacy\_large\_trf | 0.65 ± 0.01 | 2,090 MB | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90135.90000000001 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro F1 No Misc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------------:| | 0.6682 | 1.0 | 2816 | 0.0872 | 0.6916 | 0.7306 | | 0.0684 | 2.0 | 5632 | 0.0464 | 0.8167 | 0.8538 | | 0.0444 | 3.0 | 8448 | 0.0367 | 0.8485 | 0.8783 | | 0.0349 | 4.0 | 11264 | 0.0316 | 0.8684 | 0.8920 | | 0.0282 | 5.0 | 14080 | 0.0290 | 0.8820 | 0.9033 | | 0.0231 | 6.0 | 16896 | 0.0283 | 0.8854 | 0.9060 | | 0.0189 | 7.0 | 19712 | 0.0253 | 0.8964 | 0.9156 | | 0.0155 | 8.0 | 22528 | 0.0260 | 0.9016 | 0.9201 | | 0.0123 | 9.0 | 25344 | 0.0266 | 0.9059 | 0.9233 | | 0.0098 | 10.0 | 28160 | 0.0280 | 0.9091 | 0.9279 | | 0.008 | 11.0 | 30976 | 0.0309 | 0.9093 | 0.9287 | | 0.0065 | 12.0 | 33792 | 0.0313 | 0.9103 | 0.9284 | | 0.0053 | 13.0 | 36608 | 0.0322 | 0.9078 | 0.9257 | | 0.0046 | 14.0 | 39424 | 0.0343 | 0.9075 | 0.9256 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ -0.11449264734983444, 0.01043164823204279, -0.009990046732127666, -0.027925102040171623, -0.0318794846534729, 0.022546619176864624, -0.007544053252786398, 0.0033466105815023184, 0.09138554334640503, -0.03690354898571968, 0.055450741201639175, -0.08400768786668777, 0.06029530242085457, -0.03394573554396629, -0.012074110098183155, -0.041682831943035126, -0.0013322620652616024, 0.002556473482400179, -0.037712447345256805, 0.0000852960511110723, -0.006971219088882208, -0.011089951731264591, 0.034942157566547394, -0.09904240816831589, 0.05836225301027298, 0.029334021732211113, -0.015450735576450825, -0.060508374124765396, -0.006302736233919859, -0.04826962947845459, 0.02191394567489624, 0.05386822670698166, 0.05541309714317322, 0.08261682838201523, 0.055655188858509064, 0.030357487499713898, -0.047804560512304306, -0.03719838336110115, -0.03636256605386734, 0.08910173922777176, -0.05847853422164917, -0.06441935896873474, -0.047640468925237656, -0.03828942030668259, 0.08716749399900436, 0.11355216056108475, -0.08663436025381088, 0.004621201194822788, -0.07349498569965363, 0.005669206380844116, -0.0974099338054657, -0.009799833409488201, 0.06406378746032715, 0.06088985875248909, -0.004444904159754515, 0.01705927401781082, -0.0384337343275547, -0.04069436714053154, -0.0032194440718740225, -0.04503283649682999, -0.06764473766088486, -0.024917136877775192, 0.005352787207812071, -0.00127974315546453, -0.013959212228655815, -0.03085559979081154, -0.02018645778298378, -0.01139302272349596, -0.05420439690351486, 0.03029446303844452, -0.009650102816522121, 0.0033206837251782417, -0.047124069184064865, 0.04747477546334267, -0.0103537542745471, 0.04006163403391838, 0.04606599360704422, -0.036952294409275055, 0.057110417634248734, -0.09469404071569443, -0.02003324218094349, 0.02495753951370716, 0.012054343707859516, -0.005381861701607704, 0.010351522825658321, 0.02772649936378002, 0.05761922150850296, -0.02613654173910618, 0.04429714381694794, -0.005410210229456425, -0.014090283773839474, -0.06808152794837952, -0.006926379632204771, -0.007116524036973715, 0.04856467992067337, 0.018978100270032883, 0.06986118853092194, 0.09461604058742523, 0.006612004246562719, 0.09286879003047943, -0.01218757126480341, 0.0893249660730362, 0.08099319785833359, -0.03500719368457794, -0.05840882286429405, -0.07199873775243759, -0.009450355544686317, 0.012107672169804573, 0.07589469850063324, -0.04645533859729767, 0.0034118606708943844, -0.06572546809911728, -0.02533361315727234, -0.09437325596809387, 0.02416272833943367, -0.015725499019026756, 0.03858385607600212, -0.07895934581756592, 0.04636998474597931, -0.02401554211974144, 0.06643037497997284, 0.0202687606215477, 0.029704654589295387, 0.07542094588279724, -0.015540399588644505, 0.10822892189025879, -0.031004663556814194, 1.2705058857794067e-32, 0.02251042239367962, 0.1018921509385109, 0.011735630221664906, -0.04309341683983803, -0.0733153373003006, -0.03237879276275635, -0.0845598354935646, 0.011476007290184498, -0.08515800535678864, 0.0006394763477146626, -0.08395736664533615, 0.026292121037840843, -0.08629071712493896, -0.007650753483176231, 0.01300512719899416, 0.051323339343070984, 0.03997413441538811, 0.00832359865307808, -0.07086232304573059, 0.04174898937344551, 0.13515734672546387, 0.0066190073266625404, 0.03758792579174042, -0.008650480769574642, -0.07316242158412933, 0.006953352130949497, -0.002244579140096903, -0.09452468901872635, -0.0538959838449955, 0.0218551903963089, -0.018618999049067497, -0.060509711503982544, -0.013052839785814285, -0.03039541281759739, -0.0012710954761132598, -0.05541899800300598, -0.013950335793197155, -0.022394534200429916, -0.0779985636472702, -0.075267493724823, -0.03622148558497429, 0.03400908038020134, 0.020654063671827316, -0.015429284423589706, -0.038390662521123886, -0.020914699882268906, 0.02236304059624672, -0.0505448542535305, 0.0004649956536013633, 0.002761021489277482, -0.0016189386369660497, 0.01983952522277832, -0.029290571808815002, 0.01976792886853218, 0.027651354670524597, 0.056507401168346405, 0.07625141739845276, 0.04291597381234169, 0.001715235412120819, -0.002119959332048893, -0.008865167386829853, -0.022462230175733566, 0.0707399919629097, 0.032303858548402786, 0.07033190876245499, 0.005932371132075787, -0.054733727127313614, 0.06040582060813904, 0.09990967065095901, -0.003093003062531352, -0.019146988168358803, 0.0033555685076862574, 0.10968238860368729, 0.034018345177173615, 0.045304302126169205, -0.016013845801353455, 0.051455702632665634, -0.033000290393829346, -0.04600415751338005, 0.0006148273241706192, -0.028628651052713394, 0.0029589503537863493, -0.035275477916002274, -0.0723281055688858, -0.01272700633853674, -0.054880280047655106, 0.07590746879577637, -0.0879192054271698, -0.04708178713917732, -0.034787654876708984, 0.055885545909404755, 0.04985131695866585, 0.010049022734165192, -0.0709778293967247, -0.050204161554574966, -1.1962601197451356e-32, 0.01547144539654255, -0.0010869849938899279, -0.06830941885709763, 0.011158079840242863, -0.01415693573653698, -0.03814796730875969, 0.061426736414432526, 0.08959615230560303, -0.01975090801715851, -0.08688747137784958, 0.023884126916527748, -0.08855298161506653, 0.04213361069560051, -0.01425404753535986, 0.12381816655397415, 0.026251796633005142, -0.031985804438591, 0.050220053642988205, 0.011833103373646736, 0.11434478312730789, 0.012878078036010265, 0.015794912353157997, -0.1291467696428299, 0.1016273945569992, 0.02036619931459427, 0.08417534083127975, 0.03677595034241676, 0.012178425677120686, -0.025764619931578636, -0.025461388751864433, -0.055930718779563904, 0.0038342494517564774, -0.03025810234248638, 0.07187998294830322, -0.06781763583421707, 0.011998291127383709, 0.02295224368572235, -0.0005658515729010105, -0.0584196075797081, 0.01866287738084793, 0.004246861208230257, 0.027611173689365387, -0.09966739267110825, -0.006671046372503042, 0.007872496731579304, -0.06305311620235443, -0.020668581128120422, 0.04807692766189575, 0.023530034348368645, -0.07226479053497314, -0.01591627486050129, 0.012680530548095703, -0.06150424852967262, 0.025176426395773888, 0.01827538199722767, -0.012572837062180042, -0.01664002425968647, -0.049900006502866745, -0.032096147537231445, -0.011825175024569035, -0.03970097005367279, -0.019771402701735497, 0.04835359379649162, 0.04252679646015167, 0.0210232175886631, -0.06842860579490662, -0.07518993318080902, -0.0020916624926030636, -0.02851555496454239, -0.07389888167381287, -0.020420534536242485, -0.03422106057405472, 0.04193229600787163, 0.004294463898986578, 0.045958153903484344, -0.038696397095918655, 0.00358796794898808, 0.004081389866769314, -0.03461550921201706, -0.06694526225328445, -0.1649877279996872, -0.04984298348426819, 0.029344934970140457, 0.0472274124622345, 0.03996029868721962, 0.017599942162632942, 0.03234252333641052, -0.032295163720846176, -0.02493808977305889, -0.016424238681793213, -0.03380222246050835, 0.049703940749168396, 0.019093532115221024, 0.11498689651489258, -0.011071647517383099, -6.902004656694771e-8, -0.02607627771794796, -0.027853816747665405, -0.03823114186525345, 0.010283347219228745, 0.10078584402799606, -0.13026735186576843, -0.03040074184536934, -0.0150164058431983, -0.07839254289865494, -0.010560674592852592, 0.035203441977500916, 0.11977093666791916, -0.088663250207901, -0.060680340975522995, 0.0709034875035286, 0.06251552700996399, 0.043988242745399475, 0.012178843840956688, -0.03891471028327942, 0.029191281646490097, 0.033271484076976776, 0.02171451225876808, -0.016916325315833092, -0.09348142892122269, -0.02497616782784462, 0.023476967588067055, -0.004801302682608366, 0.10730355978012085, 0.0479353666305542, -0.11774200201034546, -0.00022828110377304256, 0.08273763954639435, -0.013508016243577003, 0.006984272506088018, 0.07262659817934036, 0.04390571266412735, -0.06945332884788513, 0.004241019021719694, -0.029799548909068108, 0.10681802034378052, 0.09678172320127487, 0.011894246563315392, -0.08333295583724976, 0.005795092787593603, 0.028171831741929054, 0.06569275259971619, 0.001319841598160565, -0.11209513247013092, 0.060693882405757904, 0.03334520384669304, -0.026748590171337128, -0.025186296552419662, -0.021175255998969078, 0.008033737540245056, -0.0014851418090984225, 0.06731487810611725, 0.018046455457806587, 0.0097919050604105, 0.06114359572529793, 0.03677301108837128, 0.05150828883051872, -0.025900449603796005, 0.029114916920661926, 0.011378691531717777 ]
studio-ousia/luke-large-finetuned-conll-2003
2508abe6e591d7a9142d5ee9ab2eb5dccd7741fd
2021-04-26T16:09:42.000Z
[ "pytorch", "luke", "transformers" ]
null
false
studio-ousia
null
studio-ousia/luke-large-finetuned-conll-2003
1,920
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0
4454cfbc82952da79729e33e81c37a72dc095b4b
2021-05-19T22:20:54.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
m-polignano-uniba
null
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0
1,917
3
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
klue/roberta-small
f360e3d753b17f3b7508154fefdb042c706db147
2021-10-20T16:13:01.000Z
[ "pytorch", "roberta", "fill-mask", "ko", "arxiv:2105.09680", "transformers", "korean", "klue", "autotrain_compatible" ]
fill-mask
false
klue
null
klue/roberta-small
1,911
null
transformers
--- language: ko tags: - korean - klue mask_token: "[MASK]" widget: - text: 대한민국의 수도는 [MASK] 입니다. --- # KLUE RoBERTa small Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. ## How to use _NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("klue/roberta-small") tokenizer = AutoTokenizer.from_pretrained("klue/roberta-small") ``` ## BibTeX entry and citation info ```bibtex @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.14636178314685822, -0.011534344404935837, 0.06657921522855759, 0.02165084145963192, -0.042297132313251495, 0.06317547708749771, 0.02430441416800022, 0.042119383811950684, 0.000834080798085779, -0.01416704710572958, -0.004429937340319157, -0.06439081579446793, 0.014072272926568985, 0.0474577434360981, 0.048516895622015, 0.06150955706834793, 0.01257176510989666, 0.019400138407945633, -0.1024407148361206, -0.05228295177221298, 0.08415886759757996, 0.013955292291939259, 0.08873672038316727, -0.017345068976283073, 0.06271084398031235, -0.05378260463476181, -0.04495875909924507, -0.021091993898153305, 0.049161188304424286, 0.08684474974870682, -0.03543074429035187, 0.041090939193964005, 0.021771518513560295, 0.0437907837331295, 0.04278000816702843, 0.1005798950791359, -0.04328589141368866, 0.050465360283851624, 0.052682701498270035, 0.01841985620558262, -0.02822110429406166, 0.014293093234300613, -0.07291334122419357, -0.0666799321770668, 0.02713136002421379, -0.06475359201431274, -0.033614642918109894, -0.004743543919175863, -0.08184894174337387, 0.006280917674303055, -0.05719539895653725, 0.010091423988342285, 0.01776302419602871, -0.02932038903236389, -0.06749903410673141, -0.009681059047579765, 0.015843437984585762, -0.009334771893918514, 0.07301445305347443, -0.0775688961148262, -0.0711742416024208, -0.07182224094867706, -0.023404907435178757, -0.013383869081735611, -0.05892682448029518, -0.017260519787669182, -0.03956688567996025, 0.06828043609857559, 0.03354541212320328, 0.03902481868863106, 0.007700042333453894, -0.026403073221445084, 0.01811874471604824, 0.06971440464258194, 0.021872950717806816, -0.10343381017446518, 0.04367129132151604, 0.021513676270842552, -0.011311850510537624, -0.07486891001462936, 0.037527214735746384, -0.014697224833071232, 0.04923221468925476, 0.03645500913262367, 0.06839831173419952, 0.0048160068690776825, -0.01649661920964718, -0.010129955597221851, -0.010707953944802284, -0.012118994258344173, 0.02045697160065174, -0.0786665752530098, 0.0336938239634037, -0.01907813362777233, -0.025267591699957848, 0.023288048803806305, 0.009325854480266571, 0.04203009605407715, -0.03502792865037918, 0.07826443016529083, 0.06775032728910446, 0.041062697768211365, 0.054919056594371796, -0.0015452818479388952, 0.017861051484942436, -0.027842750772833824, 0.033393263816833496, -0.033409275114536285, 0.04740212485194206, -0.0284697487950325, 0.00612100912258029, -0.0076944464817643166, -0.004544421564787626, -0.03134031221270561, 0.011392824351787567, 0.008712510578334332, 0.05949835106730461, -0.07597962021827698, 0.02262534573674202, 0.11369013041257858, 0.044139500707387924, -0.049705199897289276, -0.07214249670505524, 0.030946576967835426, -0.04690352454781532, 0.03882407769560814, 0.05052395164966583, 4.648221679284062e-33, 0.045150574296712875, 0.02344893105328083, 0.06616707146167755, -0.002714726375415921, -0.06803134828805923, -0.02499634027481079, -0.03500702232122421, -0.014460671693086624, -0.11677601933479309, -0.07945001125335693, -0.028780734166502953, 0.04518447816371918, -0.06937647610902786, 0.021355096250772476, -0.1322164684534073, 0.023929066956043243, -0.06582489609718323, 0.0462300069630146, 0.07549820840358734, 0.031221481040120125, 0.13683180510997772, 0.022086385637521744, -0.05140222609043121, -0.013891802169382572, -0.026797059923410416, 0.004610102158039808, 0.06330741941928864, -0.1024574413895607, -0.0427311509847641, 0.04392293095588684, -0.07547372579574585, 0.0027349675074219704, -0.013312733732163906, 0.0064042010344564915, -0.11464883387088776, -0.08408223092556, -0.03962205350399017, -0.034142520278692245, -0.012237684801220894, -0.08914078772068024, -0.018966661766171455, 0.027345558628439903, -0.09918848425149918, -0.03423536941409111, -0.007173801772296429, -0.018624387681484222, 0.04503766447305679, 0.02796376682817936, 0.0744314193725586, 0.03159952536225319, 0.02250215783715248, -0.009596365503966808, -0.03360338509082794, 0.05170294642448425, 0.03020341694355011, 0.030324921011924744, 0.12078339606523514, -0.01807207614183426, 0.07713838666677475, -0.08033224195241928, 0.0031779534183442593, -0.014133784919977188, 0.031834643334150314, 0.04249202460050583, 0.11658605188131332, -0.024996889755129814, -0.025157922878861427, -0.0021293454337865114, 0.007532926741987467, 0.012139758095145226, -0.09104694426059723, -0.030257003381848335, 0.019536761566996574, 0.02458350360393524, -0.01972622238099575, -0.06877396255731583, 0.002843182533979416, -0.03441068157553673, -0.0945558100938797, 0.05308283120393753, 0.002751727355644107, -0.0023093249183148146, -0.058512669056653976, -0.020870689302682877, -0.051480408757925034, -0.06141463667154312, 0.09388959407806396, -0.09833326935768127, -0.05437225103378296, -0.040184732526540756, 0.00676035787910223, -0.012987547554075718, -0.0705464631319046, 0.028947435319423676, -0.08422571420669556, -5.4260275567819536e-33, 0.08633355796337128, 0.06974141299724579, 0.054174479097127914, 0.022528689354658127, -0.011753343977034092, -0.03049388714134693, 0.08445971459150314, 0.15740199387073517, 0.040360648185014725, 0.012559968046844006, 0.009713291190564632, -0.07867540419101715, 0.013955381698906422, -0.018076086416840553, 0.09738410264253616, 0.03144017606973648, -0.005952177569270134, 0.10431621223688126, 0.07060329616069794, 0.028050294145941734, -0.02783256210386753, -0.04572596773505211, -0.05749082565307617, 0.08997207134962082, -0.02454603835940361, 0.03860460966825485, 0.016184180974960327, 0.010195442475378513, -0.024427294731140137, -0.00673733139410615, 0.008780847303569317, 0.04149049147963524, -0.05798695608973503, 0.07399201393127441, -0.028825514018535614, -0.028259359300136566, -0.02355349436402321, -0.005199824925512075, -0.03300365433096886, -0.03979065641760826, 0.09657958149909973, 0.03987368568778038, -0.012318072840571404, 0.026232659816741943, 0.005642982665449381, -0.06082672253251076, -0.06114054098725319, 0.003813971998170018, -0.019232913851737976, -0.10985580086708069, 0.05895121395587921, -0.051854416728019714, -0.08816779404878616, -0.03270112723112106, -0.0597245879471302, -0.03252538666129112, 0.08140794187784195, -0.035650528967380524, -0.06705879420042038, -0.019763855263590813, -0.08908168971538544, -0.042337507009506226, 0.032442156225442886, -0.037769582122564316, -0.010324174538254738, -0.09470603615045547, 0.05893784761428833, 0.0737401694059372, 0.032107286155223846, 0.0013113378081470728, 0.021514663472771645, 0.038626447319984436, 0.08247462660074234, 0.0007136919302865863, 0.06758565455675125, 0.0595955029129982, -0.014868853613734245, -0.013398206792771816, 0.0009986074874177575, -0.028701242059469223, -0.06781493127346039, 0.017722392454743385, 0.054298918694257736, 0.04473830759525299, -0.06057014316320419, 0.025328153744339943, -0.03513610363006592, 0.10656540095806122, 0.022606203332543373, 0.01225859671831131, -0.016926152631640434, 0.018199363723397255, 0.026204025372862816, 0.07066427916288376, -0.0009415831882506609, -4.8625761195353334e-8, -0.017145060002803802, -0.02243589609861374, -0.036484844982624054, 0.021059362217783928, -0.09490630775690079, -0.04366490617394447, -0.05169818177819252, -0.03994183614850044, -0.02997077815234661, -0.01805347017943859, 0.05649824067950249, 0.02146691456437111, -0.08599753677845001, 0.016295569017529488, -0.06659948825836182, -0.005921523552387953, -0.016450749710202217, 0.07809484750032425, 0.007703572977334261, 0.017244402319192886, 0.03326788172125816, 0.022818805649876595, 0.05332966893911362, -0.04947267472743988, -0.013059264048933983, 0.023461494594812393, -0.07001624256372452, 0.06176796555519104, -0.03842105343937874, -0.04397924244403839, 0.009607551619410515, -0.009877467527985573, -0.03427828475832939, 0.04220769554376602, -0.020765289664268494, 0.01918347366154194, -0.042930588126182556, -0.05245254188776016, -0.04591929540038109, 0.05281402915716171, 0.09109613299369812, -0.021714212372899055, -0.1010773554444313, -0.037418752908706665, 0.018480515107512474, -0.005924237426370382, 0.03585749864578247, -0.07592735439538956, 0.04829352721571922, 0.005049368366599083, 0.010273924097418785, -0.09680752456188202, -0.06850126385688782, -0.020704906433820724, -0.053583983331918716, 0.030412090942263603, -0.03974415361881256, -0.002227504039183259, 0.055073488503694534, -0.0439068004488945, 0.0004797331930603832, 0.06487210094928741, 0.02245965786278248, 0.042935531586408615 ]
monologg/koelectra-base-v3-naver-ner
7fe2d3297113e0753716d7f2c85d4880d288542d
2020-11-30T11:55:35.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
monologg
null
monologg/koelectra-base-v3-naver-ner
1,911
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
hf-internal-testing/tiny-random-rembert
917e1c9f997b17fc81d9ed84713f5de8abe57c1b
2022-03-08T13:50:53.000Z
[ "pytorch", "tf", "rembert", "feature-extraction", "transformers", "generated_from_keras_callback", "model-index" ]
feature-extraction
false
hf-internal-testing
null
hf-internal-testing/tiny-random-rembert
1,909
null
transformers
--- tags: - generated_from_keras_callback model-index: - name: tiny-random-rembert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-random-rembert This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
[ -0.03651832044124603, -0.0006451349472627044, 0.009294786490499973, 0.0647704154253006, 0.034709081053733826, 0.007055279333144426, 0.0009832663927227259, -0.03898831084370613, -0.07697777450084686, -0.09333143383264542, 0.04877287894487381, -0.06799846142530441, -0.017806848511099815, -0.07218224555253983, -0.1722366213798523, -0.02507605217397213, 0.06267532706260681, -0.041093725711107254, -0.09724234789609909, -0.018124110996723175, 0.04606951028108597, 0.06861347705125809, 0.0019370084628462791, 0.04217591881752014, 0.019842760637402534, -0.04483821615576744, 0.01573764532804489, 0.03695687651634216, 0.05400178208947182, -0.042179983109235764, 0.06122935935854912, 0.033176928758621216, -0.030910400673747063, 0.0002121903235092759, 0.0505533367395401, 0.060481395572423935, -0.03187599033117294, -0.011029648594558239, 0.05563224479556084, 0.010806649923324585, 0.03140650689601898, -0.09597361832857132, -0.040396835654973984, 0.03842809423804283, 0.03611307963728905, -0.006243366748094559, -0.02387148141860962, -0.06479164212942123, -0.057182006537914276, -0.022460969164967537, -0.02000066637992859, -0.03181373327970505, 0.0009668500279076397, -0.011409666389226913, -0.046204276382923126, -0.007873881608247757, -0.021654466167092323, -0.05993819981813431, 0.011308527551591396, -0.02560761198401451, -0.0017638218123465776, -0.030201027169823647, -0.013591259717941284, -0.015928441658616066, -0.045432377606630325, -0.06427064538002014, -0.00424881000071764, -0.05524429306387901, 0.07444500178098679, -0.10236911475658417, 0.11207713186740875, 0.07406125962734222, -0.012034377083182335, 0.09911517798900604, 0.07314382493495941, 0.020573090761899948, 0.03263741359114647, 0.0031501345802098513, 0.05739162489771843, -0.013657618314027786, -0.0027967907954007387, -0.06434024125337601, 0.01529996283352375, -0.008868958801031113, 0.005522458348423243, -0.03326454386115074, 0.0641581267118454, 0.011541820131242275, 0.10144485533237457, -0.07793860882520676, -0.03187080845236778, 0.01186313759535551, -0.04896498844027519, 0.017451340332627296, 0.0480312742292881, 0.014463691972196102, -0.03870958834886551, -0.009765563532710075, -0.0549871064722538, 0.07927002757787704, 0.0005210047820582986, 0.035562582314014435, 0.0665055438876152, 0.051045700907707214, 0.0034590130671858788, 0.05300673097372055, 0.047051284462213516, 0.06347999721765518, 0.07789722830057144, -0.03759126737713814, 0.0311661995947361, 0.02724088355898857, -0.017405616119503975, 0.011523962020874023, 0.0739792063832283, 0.08121538162231445, -0.06175601854920387, -0.0014577475376427174, -0.09441937506198883, 0.06806901842355728, -0.07035453617572784, 0.021585775539278984, -0.060668736696243286, -0.035269107669591904, -0.03896789997816086, 0.03986028954386711, -0.08289951831102371, 6.042942787798829e-33, 0.06543289124965668, 0.025392599403858185, 0.0058987862430512905, -0.042812954634428024, 0.07016193866729736, -0.03363047167658806, 0.06868163496255875, -0.051675666123628616, -0.0054049366153776646, 0.005713785067200661, -0.11644255369901657, -0.030139431357383728, -0.023327946662902832, 0.05878913402557373, -0.024018585681915283, -0.020196842029690742, -0.023192549124360085, -0.01633383147418499, 0.02461603656411171, 0.0497216135263443, 0.07073371112346649, 0.09668636322021484, -0.009383434429764748, -0.11493206024169922, -0.052255891263484955, 0.03929970785975456, 0.022221095860004425, -0.02236403338611126, -0.009026415646076202, 0.044144872575998306, -0.09537598490715027, 0.030582556501030922, 0.047477882355451584, -0.02240091748535633, -0.015399991534650326, 0.018009230494499207, 0.053523678332567215, 0.033827219158411026, -0.04045182093977928, -0.08106078207492828, 0.06465451419353485, 0.023115897551178932, 0.015053106471896172, -0.1334443837404251, -0.06062778830528259, -0.05556739494204521, 0.03449437767267227, 0.03646838292479515, 0.04525623098015785, 0.029573049396276474, -0.018268320709466934, 0.02580169588327408, 0.03005414642393589, -0.034114740788936615, -0.07299398630857468, 0.0015032184310257435, 0.028717881068587303, 0.08418527245521545, 0.024680273607373238, 0.0001785173371899873, -0.0263191070407629, -0.0007834975840523839, -0.003368214936926961, 0.0524168498814106, -0.00013528020645026118, -0.028940018266439438, 0.021203046664595604, -0.03086329624056816, 0.02710708975791931, 0.03689626231789589, -0.10266672819852829, 0.020663518458604813, -0.05493221431970596, -0.038487330079078674, 0.06424377113580704, -0.08048903942108154, 0.04754623770713806, 0.006317362189292908, -0.035818930715322495, -0.027955222874879837, 0.012417195364832878, 0.06964249163866043, -0.017530933022499084, -0.03664811700582504, -0.054911766201257706, -0.08901096880435944, -0.03121892549097538, -0.02435705065727234, -0.004353006836026907, -0.0021907477639615536, -0.00011744568473659456, 0.002717845141887665, -0.05174056440591812, 0.007505054585635662, -0.06968123465776443, -6.87275180069313e-33, -0.026417579501867294, 0.07684178650379181, -0.00884493999183178, 0.05398843437433243, -0.0037853382527828217, 0.013823660090565681, 0.028004372492432594, 0.14050275087356567, -0.07034897059202194, -0.03419366478919983, 0.0355251170694828, 0.012334833852946758, -0.01716437190771103, -0.0700889304280281, 0.04829341918230057, 0.04010837897658348, -0.07261272519826889, -0.032802700996398926, 0.02895423397421837, 0.018334606662392616, 0.007344095502048731, 0.10354795306921005, -0.07087486982345581, 0.06306826323270798, -0.002751575782895088, 0.03157231956720352, 0.05558904632925987, 0.09698456525802612, 0.09663404524326324, -0.07867583632469177, -0.02675376459956169, -0.03014550358057022, -0.035727329552173615, 0.0336320661008358, 0.03570710867643356, 0.016572769731283188, 0.08576793223619461, -0.0331617034971714, 0.04932669550180435, 0.06420840322971344, 0.02284805104136467, 0.11087774485349655, -0.04411940649151802, 0.05381046608090401, -0.01835019513964653, 0.009970669634640217, 0.017569471150636673, -0.01604948751628399, -0.014082489535212517, -0.05699926242232323, -0.001961587928235531, -0.038787178695201874, -0.12956158816814423, -0.01547335833311081, -0.07513604313135147, -0.024750985205173492, -0.02527255192399025, 0.061613284051418304, 0.02817651815712452, 0.08707563579082489, -0.05740406736731529, -0.06503332406282425, -0.03953001648187637, -0.10097551345825195, -0.022918863222002983, 0.00781261920928955, -0.09241020679473877, 0.031922440975904465, -0.003252966096624732, 0.06832001358270645, 0.012728403322398663, 0.04574919864535332, 0.01783725619316101, -0.005630875006318092, -0.04431178793311119, -0.05468524247407913, -0.06488960236310959, -0.018783096224069595, 0.032912738621234894, -0.08086974918842316, 0.03903426602482796, -0.023536765947937965, 0.007297603413462639, 0.01855548284947872, 0.1301685869693756, 0.03969800844788551, 0.0856151208281517, 0.08004282414913177, 0.007428277283906937, -0.0006967770168557763, -0.0027226691599935293, -0.011895723640918732, 0.0339430533349514, 0.16033518314361572, -0.03917129710316658, -6.328985335812831e-8, 0.049906447529792786, 0.0434095673263073, 0.004603215493261814, 0.10599258542060852, -0.00529418233782053, 0.010952957905828953, 0.03706180676817894, 0.03519119322299957, -0.04083569720387459, -0.047977957874536514, 0.0429210439324379, -0.004755291156470776, -0.06724389642477036, 0.004656727891415358, 0.05854128673672676, 0.025553107261657715, -0.0901101678609848, 0.062131840735673904, -0.025149671360850334, -0.07373826950788498, -0.003089288715273142, -0.027609631419181824, 0.005975998938083649, -0.024728447198867798, 0.014456924051046371, -0.045900166034698486, 0.022784244269132614, 0.09744833409786224, -0.07920479774475098, -0.010423104278743267, -0.028986552730202675, 0.037318695336580276, -0.014556469395756721, -0.0034731775522232056, -0.042607467621564865, 0.1305159628391266, -0.020111260935664177, -0.00034529142430983484, 0.05508365109562874, -0.023426951840519905, -0.07913440465927124, 0.02867499180138111, -0.02707586996257305, -0.033196210861206055, -0.015817951411008835, -0.03919906169176102, -0.014799566939473152, -0.0878564640879631, 0.10295133292675018, -0.026212777942419052, -0.0038578021340072155, -0.025411086156964302, -0.06089997664093971, 0.005826466251164675, 0.01065769512206316, -0.012722323648631573, -0.06006893888115883, -0.0468047596514225, 0.04117472469806671, -0.032367825508117676, 0.07339277863502502, 0.01636052317917347, -0.03285519406199455, -0.0025617065839469433 ]
textattack/bert-base-uncased-MNLI
3a97f689528cbd91bcc71ab29ea6c20c089d8f28
2021-05-20T07:31:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/bert-base-uncased-MNLI
1,908
null
transformers
Entry not found
[ 0.0461147278547287, -0.038838207721710205, -0.01049656979739666, -0.03682169318199158, 0.011261860840022564, 0.013094935566186905, 0.0019101888174191117, -0.013979103416204453, 0.027092741802334785, -0.015212527476251125, 0.017284274101257324, -0.08189476281404495, 0.03817418962717056, -0.04920130595564842, 0.021389011293649673, -0.015245908871293068, -0.03203780576586723, -0.1245758980512619, 0.03150877356529236, 0.032381657510995865, -0.060957908630371094, 0.05409295856952667, -0.025087490677833557, 0.01568586938083172, 0.028129950165748596, -0.04710396006703377, -0.018688226118683815, 0.013785239309072495, -0.04001208767294884, 0.01173911802470684, -0.04317743331193924, 0.05500618368387222, 0.004543041344732046, 0.02973111905157566, 0.14852192997932434, 0.02658126689493656, 0.02907961793243885, -0.05169107764959335, 0.05803573504090309, -0.07732241600751877, -0.017637968063354492, -0.04219653457403183, 0.041807834059000015, 0.023620979860424995, 0.021563321352005005, 0.016478516161441803, -0.0021814992651343346, -0.06400240957736969, 0.06393089145421982, 0.019599027931690216, -0.08565037697553635, 0.00934905931353569, -0.008718925528228283, -0.028583496809005737, -0.07310017943382263, 0.09416428208351135, 0.001759322709403932, 0.06184990331530571, 0.011840506456792355, -0.035997264087200165, 0.08358278125524521, -0.02619801089167595, 0.03736566752195358, -0.028206506744027138, -0.07454850524663925, -0.08883563429117203, -0.06279942393302917, -0.008695344440639019, 0.014119276776909828, -0.0825355276465416, 0.0649217739701271, -0.00223911227658391, -0.14716917276382446, 0.07743025571107864, -0.03548373281955719, -0.055201586335897446, 0.006981803569942713, -0.012166670523583889, 0.055111464112997055, -0.007116836030036211, -0.023175746202468872, -0.005835152696818113, -0.09185640513896942, 0.055196937173604965, 0.034148022532463074, 0.03835180774331093, 0.038685429841279984, -0.025987252593040466, 0.017804903909564018, 0.022428328171372414, 0.025005368515849113, -0.10761535167694092, -0.048001550137996674, -0.04343584179878235, 0.012374646961688995, -0.019502125680446625, 0.029218152165412903, 0.0842173621058464, -0.011719699949026108, 0.09283553808927536, -0.007015465293079615, -0.03543110564351082, -0.06936459988355637, 0.09425332397222519, -0.010958523489534855, -0.00805904995650053, 0.004974212497472763, -0.0031528924591839314, 0.06105927750468254, -0.03964288905262947, -0.03619541600346565, -0.019901901483535767, 0.07134733349084854, 0.039514873176813126, -0.012729483656585217, -0.006646515801548958, -0.04746140539646149, -0.014432490803301334, -0.05157482624053955, 0.09506245702505112, -0.049747664481401443, -0.04591796174645424, -0.008965466171503067, -0.0325421579182148, -0.08626784384250641, -0.06624380499124527, 0.02538885548710823, -4.303924894057984e-33, 0.01133066974580288, 0.0033434738870710135, -0.002155609894543886, 0.04871906340122223, -0.023564351722598076, -0.07933273911476135, 0.0600903145968914, 0.02335330657660961, -0.03844716399908066, -0.020433755591511726, -0.06952055543661118, -0.03235611692070961, 0.0062485747039318085, 0.064804308116436, -0.03201229125261307, 0.061689723283052444, 0.0417000837624073, -0.00761845987290144, 0.03340127319097519, -0.047770582139492035, 0.00887306872755289, -0.04066338762640953, -0.010506896302103996, 0.0106519665569067, 0.021333497017621994, 0.12854498624801636, -0.009705503471195698, 0.010055632330477238, -0.017507633194327354, 0.006515394430607557, 0.06334009766578674, -0.057817306369543076, 0.013668818399310112, -0.020286159589886665, 0.05430467426776886, -0.023184705525636673, 0.0828516036272049, 0.0005449643940664828, -0.10372652113437653, -0.07634282112121582, -0.005381610710173845, -0.039263784885406494, 0.0006114727002568543, -0.013281986117362976, 0.07119110971689224, 0.043696220964193344, 0.03168422728776932, 0.04338686540722847, 0.05728672817349434, 0.0832006186246872, -0.07961414009332657, 0.015234283171594143, 0.017002005130052567, 0.047004107385873795, -0.09794387966394424, 0.004990279674530029, -0.07062993198633194, -0.028000490739941597, -0.04018733277916908, -0.0702052190899849, 0.011351344175636768, 0.06020182743668556, -0.03297270089387894, 0.09396500885486603, 0.03417910635471344, -0.019825750961899757, -0.034690454602241516, -0.013036907650530338, 0.05896938592195511, -0.012359356507658958, -0.017275206744670868, -0.07982361316680908, 0.02059139870107174, 0.06737419217824936, 0.04176458343863487, -0.04978838190436363, -0.05877475067973137, -0.06289287656545639, -0.03354167565703392, -0.03871942684054375, 0.009898529388010502, -0.05514208599925041, -0.11629002541303635, -0.011855563148856163, 0.10663620382547379, 0.037354156374931335, -0.0065480442717671394, -0.051189567893743515, 0.06663123518228531, 0.01874656230211258, 0.032841797918081284, 0.041593004018068314, -0.06879369914531708, 0.04216769337654114, -0.01628219522535801, 5.4139394340936695e-34, 0.05697013810276985, -0.006972255185246468, 0.015711724758148193, -0.17956365644931793, 0.02320219948887825, 0.007923615165054798, -0.008062449283897877, 0.0074974060989916325, 0.07391711324453354, 0.0309313777834177, 0.060510627925395966, 0.058605875819921494, 0.09515274316072464, -0.002282935893163085, 0.001603541080839932, 0.07024981826543808, 0.012629246339201927, 0.07425693422555923, -0.038426291197538376, 0.01861148327589035, 0.030608950182795525, -0.02449394389986992, 0.021528491750359535, -0.003039651783183217, -0.03676343336701393, 0.03130284696817398, 0.07998586446046829, 0.010451192036271095, -0.07930229604244232, -0.013543923385441303, 0.018781835213303566, 0.05168003588914871, -0.07191970944404602, 0.15783067047595978, 0.026191607117652893, 0.01262354850769043, 0.08218053728342056, -0.029807550832629204, -0.07528624683618546, -0.04250097647309303, 0.017244765534996986, 0.04411793500185013, 0.03708017244935036, 0.009233047254383564, -0.040271829813718796, 0.022496428340673447, 0.02495843544602394, 0.07633638381958008, 0.005147108342498541, 0.013892097398638725, 0.05610476806759834, -0.06684739887714386, 0.05862557515501976, -0.020688841119408607, 0.05377643182873726, 0.06718500703573227, 0.005329249892383814, -0.01388032827526331, 0.029931528493762016, 0.009508464485406876, -0.045173756778240204, 0.11534366756677628, -0.06510116159915924, 0.05117698386311531, -0.0026125339791178703, -0.08554837852716446, -0.03784770518541336, 0.0804959163069725, 0.011298024095594883, -0.07695550471544266, -0.04868878796696663, 0.02515520341694355, 0.06252261996269226, -0.04509226232767105, -0.01246943511068821, 0.028559505939483643, -0.030573077499866486, 0.05066261067986488, -0.08187384903430939, 0.04469604790210724, 0.0034051244147121906, 0.04145054519176483, -0.021858664229512215, -0.06112268194556236, -0.00908052921295166, -0.05903250351548195, 0.0259539932012558, 0.059690944850444794, -0.07613514363765717, -0.03720718249678612, -0.036316655576229095, 0.07058046013116837, -0.008224100805819035, 0.041961874812841415, -0.0285952128469944, -1.496900736697171e-8, -0.0014124972512945533, 0.03401879221200943, -0.040338415652513504, 0.04116074740886688, 0.0935964286327362, -0.05115952715277672, 0.0008746005478315055, -0.03389839455485344, -0.00567849725484848, -0.010686947964131832, -0.04789939522743225, -0.04820054769515991, -0.02011880651116371, -0.03209094703197479, -0.04211259260773659, -0.10229527950286865, -0.07819421589374542, -0.031228765845298767, -0.02154778689146042, -0.04960230365395546, 0.08087796717882156, -0.07801242172718048, 0.06919731199741364, -0.04999840259552002, 0.03687043860554695, 0.03889009356498718, -0.049989692866802216, -0.04254625365138054, -0.04606937617063522, 0.08682432025671005, -0.031148413196206093, 0.11826753616333008, 0.034102488309144974, -0.0208592489361763, -0.0205202866345644, 0.027134142816066742, 0.09741277992725372, 0.051608603447675705, 0.013477512635290623, -0.13649295270442963, -0.022304272279143333, 0.02385953813791275, 0.038732077926397324, -0.09249968826770782, -0.04549082741141319, 0.054220106452703476, 0.01160438358783722, 0.051190607249736786, 0.07713303714990616, -0.022097084671258926, -0.06127818301320076, -0.01857956498861313, 0.006740490905940533, -0.00496308971196413, 0.024095389991998672, 0.0736224576830864, -0.003481915919110179, -0.0699305310845375, -0.006629763171076775, -0.0598808117210865, 0.05297163128852844, -0.02902800403535366, -0.027858933433890343, -0.01287526823580265 ]
google/mt5-xxl
d4ac5e6d5125f8d30cba8763cd0ad71e5d34c17b
2022-05-27T15:06:56.000Z
[ "pytorch", "tf", "mt5", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "arxiv:2010.11934", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/mt5-xxl
1,906
8
transformers
--- language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 license: apache-2.0 --- [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Abstract The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available.
[ -0.08226951956748962, 0.05192454159259796, -0.016503630205988884, -0.09610544890165329, 0.06950594484806061, -0.05049009621143341, 0.05426013469696045, -0.043981023132801056, -0.01146115455776453, 0.004685561638325453, 0.12800902128219604, -0.053880609571933746, 0.06841910630464554, -0.06570184975862503, -0.057674944400787354, -0.0013009844115003943, -0.05389399453997612, 0.04419076070189476, -0.05483875051140785, -0.004046211950480938, 0.0073880041018128395, -0.010940438136458397, 0.01667744107544422, 0.00952968094497919, 0.03960338234901428, 0.10661116242408752, -0.06073056533932686, 0.0827154889702797, 0.03343956172466278, -0.09017574042081833, -0.0011138860136270523, 0.09719036519527435, 0.060916878283023834, 0.017047910019755363, 0.09357113391160965, 0.052383407950401306, -0.05059842765331268, -0.03020942397415638, -0.056635383516550064, 0.005089709535241127, 0.07504089921712875, -0.026256386190652847, 0.05258495360612869, -0.001976985950022936, 0.01068537775427103, -0.010172707028687, 0.006030503660440445, -0.06620049476623535, 0.03360452875494957, -0.01641184650361538, -0.08662446588277817, 0.06118741258978844, -0.07349595427513123, 0.031867027282714844, -0.06241359934210777, -0.08172176033258438, -0.06838659197092056, 0.0674639567732811, 0.07017546147108078, 0.046055398881435394, -0.05119737237691879, 0.013286932371556759, -0.09187904745340347, 0.06714498996734619, -0.027266452088952065, -0.004266867879778147, 0.05302584916353226, -0.025762775912880898, -0.06248275190591812, 0.04067865386605263, 0.031319379806518555, -0.00838304590433836, -0.07063866406679153, 0.09988468140363693, -0.03511491045355797, 0.0714864730834961, 0.02362125925719738, 0.007606879808008671, -0.014948847703635693, -0.06433169543743134, 0.01354188658297062, -0.02238389104604721, 0.10109997540712357, -0.03373122587800026, -0.024004042148590088, 0.011627874337136745, -0.01733003370463848, 0.019437912851572037, 0.049975063651800156, -0.04660605639219284, -0.012942076660692692, 0.012130456045269966, -0.006176701746881008, 0.06014304980635643, -0.09442616999149323, 0.06977616250514984, -0.009427439421415329, 0.07728400081396103, -0.021725235506892204, 0.10221806913614273, 0.05835402384400368, 0.006102845072746277, 0.020591821521520615, -0.031848758459091187, -0.0419524684548378, -0.027866890653967857, -0.04597426950931549, 0.11782439053058624, 0.03180980682373047, -0.014605610631406307, -0.024843750521540642, 0.008602677844464779, -0.016399361193180084, -0.07798462361097336, -0.025021182373166084, 0.013461777940392494, -0.059679847210645676, -0.025139303877949715, 0.04873678460717201, 0.05331956595182419, -0.033771973103284836, -0.04190007969737053, -0.0833921879529953, -0.07550914585590363, -0.05121512711048126, -0.01999840885400772, -0.012782692909240723, -5.177575070792155e-33, 0.047543082386255264, -0.02607608772814274, 0.019410325214266777, -0.07196234166622162, 0.01080375537276268, -0.07022661715745926, -0.04414408281445503, -0.014508184045553207, -0.12656724452972412, 0.001085383351892233, -0.013839338906109333, -0.0010521075455471873, -0.06194690242409706, 0.026530306786298752, 0.03457600250840187, -0.010319623164832592, 0.0756610780954361, -0.034429118037223816, 0.004918399266898632, 0.056022197008132935, 0.02169242687523365, 0.08023496717214584, 0.03726128861308098, -0.02719949185848236, -0.06473927944898605, 0.06178782880306244, -0.004193208646029234, -0.05213300138711929, 0.0024899388663470745, 0.05306767672300339, -0.04179225489497185, -0.012370132841169834, -0.07599841803312302, -0.04848992079496384, -0.010885324329137802, -0.05308421328663826, -0.02930128201842308, -0.024629559367895126, -0.04874396324157715, -0.07331804186105728, -0.06298509985208511, -0.013800329528748989, -0.05801979824900627, 0.008073466829955578, -0.006712800357490778, 0.020526010543107986, -0.022033000364899635, -0.04620474949479103, -0.0021668109111487865, 0.07867113500833511, -0.034411605447530746, -0.0088359909132123, -0.015667052939534187, 0.03038167394697666, -0.02661776915192604, 0.06920995563268661, -0.014758666977286339, 0.018130648881196976, 0.033689241856336594, 0.02300318144261837, -0.0014624020550400019, 0.046865444630384445, 0.015077435411512852, 0.040411219000816345, 0.09609732031822205, -0.08579211682081223, 0.011583329178392887, -0.03252565115690231, 0.006047783885151148, 0.0630653128027916, -0.051646143198013306, -0.05259852856397629, 0.07511261850595474, 0.1112237349152565, 0.023712050169706345, -0.04496588930487633, 0.014943128451704979, -0.04338112100958824, 0.0458889938890934, 0.04351869598031044, -0.06638592481613159, -0.002034885808825493, 0.0018859489355236292, -0.08784838020801544, -0.07015493512153625, -0.000751463056076318, 0.03540247306227684, -0.03321869298815727, -0.02278093993663788, -0.006122150458395481, -0.11412569135427475, 0.07255146652460098, -0.0492815338075161, -0.08647774904966354, -0.12023685872554779, 1.4029451608667075e-33, -0.05966714397072792, 0.06163305789232254, -0.0013074759626761079, 0.0737469270825386, -0.06516411155462265, -0.010741688311100006, 0.10451854020357132, 0.08959180861711502, 0.00855121947824955, 0.02887588180601597, 0.09541132301092148, -0.04202093183994293, 0.06007642298936844, -0.07749076932668686, 0.10692419111728668, -0.014502192847430706, -0.031121380627155304, 0.03265605494379997, 0.0017593915108591318, 0.06715693324804306, -0.07051373273134232, 0.09467417001724243, -0.08750158548355103, 0.11446143686771393, 0.0042797052301466465, -0.04467932879924774, 0.0212510097771883, 0.03234926611185074, 0.030432045459747314, 0.02003355883061886, 0.053889911621809006, -0.009858638048171997, -0.0711526870727539, 0.017228445038199425, -0.0018322690157219768, -0.035425424575805664, -0.036619916558265686, 0.08421974629163742, 0.0127663379535079, 0.05410563573241234, -0.009932374581694603, 0.03086979314684868, 0.011450721882283688, -0.058614786714315414, 0.011420962400734425, -0.017519233748316765, -0.024143872782588005, 0.00046923471381887794, -0.03393923491239548, -0.03125164285302162, 0.10358507931232452, 0.06307535618543625, -0.04204455390572548, -0.015571961179375648, 0.05310972034931183, -0.01870930939912796, -0.014143908396363258, -0.04841592162847519, -0.09805329889059067, -0.021160781383514404, -0.02040218748152256, -0.1011844053864479, -0.08104423433542252, -0.044632766395807266, 0.07938779145479202, 0.0397975780069828, -0.0105733098462224, -0.020173203200101852, 0.03728258237242699, -0.02675710618495941, 0.02452203258872032, -0.06348703056573868, -0.05482710525393486, -0.04174099490046501, 0.038104914128780365, -0.03746628761291504, -0.026550497859716415, 0.07309646904468536, -0.01575443707406521, -0.055388033390045166, 0.03279346227645874, 0.03140338137745857, 0.03518225997686386, 0.021301692351698875, 0.029349278658628464, -0.06607211381196976, -0.09337961673736572, 0.004805712960660458, 0.033978644758462906, 0.0004536047053989023, -0.017808105796575546, 0.022589797154068947, -0.054385747760534286, 0.14296457171440125, -0.0355200320482254, -4.981630752354249e-8, -0.04394590109586716, -0.03739868849515915, -0.01823284476995468, 0.04959499090909958, 0.07390817254781723, 0.028114179149270058, -0.045683249831199646, -0.0591815710067749, 0.024307236075401306, -0.015005465596914291, 0.08971016854047775, -0.02177094854414463, -0.1302589774131775, -0.008974679745733738, -0.0548921599984169, 0.043083395808935165, -0.013364007696509361, 0.116261787712574, -0.011118242517113686, -0.01243581809103489, -0.0008205277263186872, 0.015747113153338432, 0.038751233369112015, -0.03704372048377991, 0.01997259445488453, 0.044191211462020874, 0.033992599695920944, 0.05888907611370087, 0.005006789229810238, 0.010494234040379524, -0.033356647938489914, -0.052566271275281906, -0.02608330361545086, -0.04685505852103233, -0.009877425618469715, -0.004835542757064104, -0.044064730405807495, -0.020079581066966057, 0.009862438775599003, 0.030157405883073807, 0.016809897497296333, 0.09873920679092407, 0.0230304803699255, 0.03444686904549599, 0.022682776674628258, 0.009789573028683662, 0.007757692597806454, 0.058846063911914825, 0.027345245704054832, -0.013102594763040543, -0.013480603694915771, 0.022732805460691452, -0.04916395619511604, -0.03948116675019264, 0.042752355337142944, -0.017884233966469765, 0.08941526710987091, -0.028881100937724113, -0.02080703340470791, 0.012945747934281826, 0.07268215715885162, 0.021486755460500717, 0.05497001111507416, -0.013256281614303589 ]
ml6team/keyphrase-extraction-kbir-inspec
70c7250d0cb932f4ee3332c50a73583b7cd7995d
2022-06-16T14:51:11.000Z
[ "pytorch", "roberta", "token-classification", "en", "dataset:midas/inspec", "arxiv:2112.08547", "transformers", "keyphrase-extraction", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ml6team
null
ml6team/keyphrase-extraction-kbir-inspec
1,906
2
transformers
--- language: en license: mit tags: - keyphrase-extraction datasets: - midas/inspec metrics: - seqeval widget: - text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text." example_title: "Example 1" - text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks." example_title: "Example 2" model-index: - name: DeDeckerThomas/keyphrase-extraction-kbir-inspec results: - task: type: keyphrase-extraction name: Keyphrase Extraction dataset: type: midas/inspec name: inspec metrics: - type: F1 (Seqeval) value: 0.588 name: F1 (Seqeval) - type: F1@M value: 0.564 name: F1@M --- # 🔑 Keyphrase Extraction Model: KBIR-inspec Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. ## 📓 Model Description This model uses [KBIR](https://huggingface.co/bloomberg/KBIR) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC). You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547). Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not. | Label | Description | | ----- | ------------------------------- | | B-KEY | At the beginning of a keyphrase | | I-KEY | Inside a keyphrase | | O | Outside a keyphrase | Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021). Sahrawat, Dhruva, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and Roger Zimmermann. "Keyphrase extraction as sequence labeling using contextualized embeddings." In European Conference on Information Retrieval, pp. 328-335. Springer, Cham, 2020. ## ✋ Intended Uses & Limitations ### 🛑 Limitations * This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out. * Only works for English documents. * For a custom model, please consult the [training notebook]() for more information. ### ❓ How To Use ```python from transformers import ( TokenClassificationPipeline, AutoModelForTokenClassification, AutoTokenizer, ) from transformers.pipelines import AggregationStrategy import numpy as np # Define keyphrase extraction pipeline class KeyphraseExtractionPipeline(TokenClassificationPipeline): def __init__(self, model, *args, **kwargs): super().__init__( model=AutoModelForTokenClassification.from_pretrained(model), tokenizer=AutoTokenizer.from_pretrained(model), *args, **kwargs ) def postprocess(self, model_outputs): results = super().postprocess( model_outputs=model_outputs, aggregation_strategy=AggregationStrategy.SIMPLE, ) return np.unique([result.get("word").strip() for result in results]) ``` ```python # Load pipeline model_name = "ml6team/keyphrase-extraction-kbir-inspec" extractor = KeyphraseExtractionPipeline(model=model_name) ``` ```python # Inference text = """ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. """.replace("\n", " ") keyphrases = extractor(text) print(keyphrases) ``` ``` # Output ['Artificial Intelligence' 'Keyphrase extraction' 'deep learning' 'linguistic features' 'machine learning' 'semantic meaning' 'text analysis'] ``` ## 📚 Training Dataset [Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors. You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383). ## 👷‍♂️ Training Procedure For more in detail information, you can take a look at the [training notebook](). ### Training Parameters | Parameter | Value | | --------- | ------| | Learning Rate | 1e-4 | | Epochs | 50 | | Early Stopping Patience | 3 | ### Preprocessing The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens. ```python from datasets import load_dataset from transformers import AutoTokenizer # Labels label_list = ["B", "I", "O"] lbl2idx = {"B": 0, "I": 1, "O": 2} idx2label = {0: "B", 1: "I", 2: "O"} # Tokenizer tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR", add_prefix_space=True) max_length = 512 # Dataset parameters dataset_full_name = "midas/inspec" dataset_subset = "raw" dataset_document_column = "document" dataset_biotags_column = "doc_bio_tags" def preprocess_fuction(all_samples_per_split): tokenized_samples = tokenizer.batch_encode_plus( all_samples_per_split[dataset_document_column], padding="max_length", truncation=True, is_split_into_words=True, max_length=max_length, ) total_adjusted_labels = [] for k in range(0, len(tokenized_samples["input_ids"])): prev_wid = -1 word_ids_list = tokenized_samples.word_ids(batch_index=k) existing_label_ids = all_samples_per_split[dataset_biotags_column][k] i = -1 adjusted_label_ids = [] for wid in word_ids_list: if wid is None: adjusted_label_ids.append(lbl2idx["O"]) elif wid != prev_wid: i = i + 1 adjusted_label_ids.append(lbl2idx[existing_label_ids[i]]) prev_wid = wid else: adjusted_label_ids.append( lbl2idx[ f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}" ] ) total_adjusted_labels.append(adjusted_label_ids) tokenized_samples["labels"] = total_adjusted_labels return tokenized_samples # Load dataset dataset = load_dataset(dataset_full_name, dataset_subset) # Preprocess dataset tokenized_dataset = dataset.map(preprocess_fuction, batched=True) ``` ### Postprocessing (Without Pipeline Function) If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed. ```python # Define post_process functions def concat_tokens_by_tag(keyphrases): keyphrase_tokens = [] for id, label in keyphrases: if label == "B": keyphrase_tokens.append([id]) elif label == "I": if len(keyphrase_tokens) > 0: keyphrase_tokens[len(keyphrase_tokens) - 1].append(id) return keyphrase_tokens def extract_keyphrases(example, predictions, tokenizer, index=0): keyphrases_list = [ (id, idx2label[label]) for id, label in zip( np.array(example["input_ids"]).squeeze().tolist(), predictions[index] ) if idx2label[label] in ["B", "I"] ] processed_keyphrases = concat_tokens_by_tag(keyphrases_list) extracted_kps = tokenizer.batch_decode( processed_keyphrases, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) return np.unique([kp.strip() for kp in extracted_kps]) ``` ## 📝 Evaluation Results Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. The model achieves the following results on the Inspec test set: | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:| | Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 | For more information on the evaluation process, you can take a look at the keyphrase extraction [evaluation notebook](). ## 🚨 Issues Please feel free to start discussions in the Community Tab.
[ -0.0805460587143898, 0.008236224763095379, 0.03966188058257103, -0.014175022952258587, 0.05817509815096855, -0.007063322234898806, 0.04605871066451073, 0.04151735082268715, 0.06610295176506042, -0.037019308656454086, -0.02522243745625019, 0.05210624635219574, 0.05790720880031586, -0.029039304703474045, 0.0029369040858000517, 0.028191957622766495, 0.05112295597791672, 0.020484987646341324, -0.13807184994220734, -0.09506358951330185, 0.09094663709402084, 0.005835050716996193, 0.02205318957567215, -0.0374906063079834, 0.02843804471194744, 0.04001888260245323, -0.01038367673754692, 0.02134895883500576, -0.005798927042633295, 0.02458486706018448, 0.050934795290231705, 0.019210873171687126, 0.08018460869789124, 0.08462654054164886, -0.043986618518829346, 0.09084440022706985, -0.04151653125882149, 0.03644193708896637, 0.020643480122089386, -0.03690282627940178, -0.022791264578700066, -0.0496419258415699, -0.02059258334338665, 0.08834567666053772, 0.1185024157166481, 0.013433110900223255, -0.079208143055439, 0.0009472669335082173, -0.06629351526498795, 0.06894034147262573, -0.17855983972549438, 0.04684600979089737, -0.01184922456741333, 0.09607923030853271, -0.03729381412267685, 0.05112900212407112, -0.04551848769187927, -0.03766149282455444, -0.005291033070534468, -0.06920194625854492, 0.0032001789659261703, -0.07829999178647995, 0.01778949797153473, 0.0087387440726161, -0.03575962036848068, -0.05151093006134033, 0.0032459001522511244, 0.026779290288686752, 0.050121404230594635, -0.008717399090528488, 0.05039451643824577, 0.058497410267591476, 0.013597344979643822, 0.0020418111234903336, -0.04486696049571037, 0.004404130857437849, -0.004876621067523956, -0.00862627662718296, 0.0011373397428542376, -0.05841110274195671, 0.018329840153455734, 0.004933347459882498, 0.11374778300523758, 0.08893048018217087, 0.03391208127140999, -0.03704696521162987, 0.0397678017616272, 0.005320803262293339, -0.05843105539679527, 0.04830486327409744, 0.003408692078664899, -0.1250826120376587, 0.0949932262301445, -0.0969439446926117, 0.08134022355079651, 0.040958747267723083, -0.02536883018910885, -0.1011764407157898, 0.03173643350601196, 0.07514237612485886, 0.009898502379655838, 0.07854684442281723, -0.047661229968070984, -0.1307535320520401, -0.038364965468645096, 0.02177155204117298, 0.05268042907118797, -0.020751813426613808, 0.05095198005437851, -0.06660298258066177, 0.006512987427413464, 0.0290488563477993, -0.039375189691782, -0.06155719980597496, 0.04133988544344902, -0.01196722500026226, 0.08685406297445297, -0.00055987189989537, 0.0851379930973053, 0.07084199786186218, -0.09487603604793549, 0.021688377484679222, -0.00018646322132553905, -0.017867712303996086, -0.08877038955688477, 0.019322821870446205, -0.035973574966192245, 5.5077313936618106e-33, -0.015891363844275475, 0.013331733644008636, -0.013446436263620853, 0.02226676419377327, -0.09146186709403992, -0.03934468328952789, -0.0347818024456501, -0.018042150884866714, -0.09654757380485535, -0.0006069045048207045, 0.03303227946162224, 0.010920621454715729, -0.019357869401574135, 0.04002232849597931, 0.014244460500776768, -0.03843625634908676, -0.07370655238628387, 0.012233254499733448, 0.012320449575781822, -0.03010452352464199, 0.03426497429609299, -0.04044496640563011, 0.07437747716903687, 0.010585196316242218, 0.02014586329460144, -0.016479237005114555, 0.05000642314553261, -0.05808519944548607, 0.045671429485082626, -0.0002340019855182618, -0.016223590821027756, -0.01582295261323452, -0.03564434498548508, -0.003871204098686576, 0.022515971213579178, -0.020336110144853592, 0.00006794351793359965, -0.01376278791576624, 0.010206375271081924, -0.05821315199136734, -0.05536464974284172, 0.005019964650273323, 0.05766046419739723, -0.07706371694803238, -0.022002706304192543, 0.007805423811078072, -0.05693626403808594, -0.03523954749107361, 0.07214104384183884, -0.04403824359178543, 0.0029724561609327793, 0.000852600613143295, 0.0016684160800650716, -0.05281843990087509, 0.01873171515762806, 0.08118259161710739, 0.024603165686130524, 0.01134015154093504, 0.028249768540263176, -0.007352898828685284, -0.04668763279914856, -0.007978756912052631, 0.0088689299300313, 0.10009736567735672, 0.09801416099071503, 0.0267080906778574, -0.006157508119940758, 0.0889093354344368, 0.02346513606607914, -0.02091524377465248, 0.008757178671658039, -0.021083462983369827, -0.04009556770324707, -0.04537111520767212, 0.028592383489012718, 0.030731556937098503, -0.003692355938255787, -0.10002878308296204, -0.03171895071864128, 0.07793295383453369, -0.01602942682802677, -0.022161317989230156, 0.03848741576075554, -0.02626180648803711, -0.05415879562497139, 0.03707919642329216, 0.0005096224485896528, -0.11423955112695694, 0.0710616484284401, -0.010501290671527386, -0.011601010337471962, -0.0018718434730544686, -0.08889487385749817, -0.03702152147889137, -0.05911986157298088, -6.0875494923346734e-33, -0.005313302390277386, -0.04558006674051285, -0.069138303399086, 0.06205340474843979, 0.022630469873547554, 0.005239446181803942, -0.06760691851377487, 0.04834872484207153, 0.014812037348747253, -0.024106349796056747, -0.04915378987789154, -0.0001895133755169809, 0.004346942529082298, -0.057133469730615616, 0.0155134666711092, -0.03773724287748337, 0.019391309469938278, -0.01109821442514658, -0.011480811983346939, 0.11266443133354187, -0.01600414514541626, -0.040158115327358246, -0.07412898540496826, 0.05282500758767128, 0.0006452851230278611, 0.013473720289766788, 0.0051395404152572155, 0.07990201562643051, -0.049337342381477356, -0.04716874286532402, -0.04040319100022316, 0.03761672228574753, -0.09684503823518753, -0.006923265289515257, -0.08703769743442535, -0.02688409760594368, -0.020347900688648224, -0.024957051500678062, -0.04523633420467377, 0.01709498092532158, 0.056615542620420456, 0.054358769208192825, -0.026705091819167137, -0.10263726115226746, -0.05332646891474724, -0.049452029168605804, -0.09661856293678284, 0.030548198148608208, -0.002441172720864415, 0.011979417875409126, 0.0492822527885437, -0.040686603635549545, -0.08301178365945816, -0.06411584466695786, -0.030713537707924843, -0.07523219287395477, 0.0023033968172967434, -0.005435564089566469, -0.039580781012773514, 0.022116905078291893, -0.037807732820510864, 0.019168850034475327, 0.0312834233045578, 0.06666545569896698, 0.015820009633898735, -0.05587188899517059, -0.04775804281234741, 0.04036436602473259, -0.10504120588302612, -0.027931666001677513, 0.10851497203111649, -0.04161826893687248, 0.009849951602518559, 0.04654518887400627, 0.009393529035151005, -0.016256436705589294, 0.02205149456858635, -0.026945820078253746, -0.07112101465463638, -0.11547897756099701, 0.0846400260925293, -0.055806100368499756, -0.011199413798749447, 0.043367043137550354, 0.02871469222009182, 0.04982481151819229, 0.011814062483608723, 0.014777195639908314, 0.018336940556764603, 0.003313927911221981, -0.009008137509226799, 0.0072765774093568325, -0.07306713610887527, 0.07534796744585037, -0.05611306056380272, -5.446825568355962e-8, -0.03177030757069588, 0.055660199373960495, -0.04311208426952362, 0.021998686715960503, -0.031880080699920654, -0.055951010435819626, 0.04194924980401993, 0.09203530102968216, -0.016203250735998154, -0.0667034238576889, 0.06604813039302826, -0.0036869579926133156, -0.11720463633537292, -0.02980741299688816, -0.014857017435133457, 0.12959924340248108, 0.06382300704717636, 0.029311558231711388, 0.05135051906108856, -0.0315222293138504, 0.06561063230037689, 0.01892685703933239, -0.005019431002438068, 0.02752542868256569, 0.04630458727478981, 0.016741974279284477, -0.04497503489255905, 0.09085632115602493, 0.019637705758213997, -0.010269547812640667, 0.03834155946969986, 0.01420969981700182, -0.023189691826701164, -0.045040473341941833, 0.11175977438688278, 0.08963073790073395, 0.028576385229825974, -0.06648615747690201, 0.0005806541885249317, 0.03682245314121246, 0.021032851189374924, 0.11536245048046112, -0.046656470745801926, -0.026586245745420456, -0.04086773470044136, -0.04271315038204193, -0.023606104776263237, 0.036804597824811935, 0.07366049289703369, 0.04700087010860443, -0.005900242831557989, -0.04766570404171944, -0.027532363310456276, 0.00864469911903143, -0.01805882900953293, 0.07487476617097855, 0.08460487425327301, 0.00037899913149885833, 0.04823409020900726, 0.008421110920608044, 0.06902813166379929, 0.02758648805320263, 0.021750258281826973, 0.027155239135026932 ]