modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
speechbrain/asr-wav2vec2-commonvoice-rw
126572edaabc71a69e1ac004b6c444a2aa5d58db
2022-05-25T12:34:08.000Z
[ "wav2vec2", "feature-extraction", "rw", "dataset:commonvoice", "arxiv:2106.04624", "speechbrain", "CTC", "Attention", "pytorch", "Transformer", "hf-asr-leaderboard", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-commonvoice-rw
32
1
speechbrain
7,000
--- language: "rw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - speechbrain - Transformer - hf-asr-leaderboard license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on CommonVoice Kinyarwanda (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (Kinyarwanda Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test WER | GPUs | |:--------------:|:--------------:| :--------:| | 03-06-21 | 18.91 | 2xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (RW). - Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on CommonVoice En. The obtained final acoustic representation is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Kinyarwanda) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-rw", savedir="pretrained_models/asr-wav2vec2-commonvoice-rw") asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-rw/example.mp3") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ## Parallel Inference on a Batch Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/CommonVoice/ASR/seq2seq python train_with_wav2vec.py hparams/train_rw_with_wav2vec.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1tjz6IZmVRkuRE97E7h1cXFoGTer7pT73?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/ # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ```
superb/hubert-large-superb-sid
f1c93f39c0efc6d2c4f8fc690daed85a4d5b6efc
2021-11-04T16:03:32.000Z
[ "pytorch", "hubert", "audio-classification", "en", "dataset:superb", "arxiv:2105.01051", "transformers", "speech", "audio", "license:apache-2.0" ]
audio-classification
false
superb
null
superb/hubert-large-superb-sid
32
null
transformers
7,001
--- language: en datasets: - superb tags: - speech - audio - hubert - audio-classification license: apache-2.0 widget: - example_title: VoxCeleb Speaker id10003 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav - example_title: VoxCeleb Speaker id10004 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav --- # Hubert-Large for Speaker Identification ## Model description This is a ported version of [S3PRL's Hubert for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1). The base model is [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification). ## Usage examples You can use the model via the Audio Classification pipeline: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "si", split="test") classifier = pipeline("audio-classification", model="superb/hubert-large-superb-sid") labels = classifier(dataset[0]["file"], top_k=5) ``` Or use the model directly: ```python import torch import librosa from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "si", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-sid") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-sid") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9033` | `0.9035` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
susumu2357/bert-base-swedish-squad2
8287e4e54efca8d0e6973e94529d1ba1019732d4
2021-05-20T07:20:04.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "sv", "dataset:susumu2357/squad_v2_sv", "transformers", "squad", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
susumu2357
null
susumu2357/bert-base-swedish-squad2
32
1
transformers
7,002
--- language: - sv tags: - squad license: apache-2.0 datasets: - susumu2357/squad_v2_sv metrics: - squad_v2 --- # Swedish BERT Fine-tuned on SQuAD v2 This model is a fine-tuning checkpoint of Swedish BERT on SQuAD v2. ## Training data Fine-tuning was done based on the pre-trained model [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased). Training and dev datasets are our [Swedish translation of SQuAD v2](https://github.com/susumu2357/SQuAD_v2_sv). [Here](https://huggingface.co/datasets/susumu2357/squad_v2_sv) is the HuggingFace Datasets. ## Hyperparameters ``` batch_size = 16 n_epochs = 2 max_seq_len = 386 learning_rate = 3e-5 warmup_steps = 2900 # warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Eval results ``` 'exact': 66.72642524202223 'f1': 70.11149581003404 'total': 11156 'HasAns_exact': 55.574745730186144 'HasAns_f1': 62.821693965983044 'HasAns_total': 5211 'NoAns_exact': 76.50126156433979 'NoAns_f1': 76.50126156433979 'NoAns_total': 5945 ``` ## Limitations and bias This model may contain biases due to mistranslations of the SQuAD dataset. ## BibTeX entry and citation info ```bibtex @misc{svSQuADbert, author = {Susumu Okazawa}, title = {Swedish BERT Fine-tuned on Swedish SQuAD 2.0}, year = {2021}, howpublished = {\url{https://huggingface.co/susumu2357/bert-base-swedish-squad2}}, } ```
timm/eca_nfnet_l0
d1c0fff069f8cb8d83c1f42767cc4fcc8b21a3f3
2021-09-07T18:35:59.000Z
[ "pytorch", "dataset:imagenet", "arxiv:2102.06171", "arxiv:1910.03151", "arxiv:1903.10520", "arxiv:1906.02659", "arxiv:2010.15052", "arxiv:1909.13719", "timm", "image-classification", "normalization-free", "efficient-channel-attention", "license:apache-2.0" ]
image-classification
false
timm
null
timm/eca_nfnet_l0
32
1
timm
7,003
--- tags: - image-classification - timm - normalization-free - efficient-channel-attention license: apache-2.0 datasets: - imagenet library_tag: timm --- # ECA-NFNet-L0 Pretrained model on [ImageNet](http://www.image-net.org/), this is a variant of the [NFNet (Normalization Free)](https://arxiv.org/abs/2102.06171) model family. ## Model description This model variant was slimmed down from the original F0 variant in the paper for improved runtime characteristics (throughput, memory use) in PyTorch, on a GPU accelerator. It utilizes [Efficient Channel Attention (ECA)](https://arxiv.org/abs/1910.03151) instead of Squeeze-Excitation. It also features SiLU activations instead of the usual GELU. Like other models in the NF family, this model contains no normalization layers (batch, group, etc). The models make use of [Weight Standardized](https://arxiv.org/abs/1903.10520) convolutions with additional scaling values in lieu of normalization layers. ## Intended uses & limitations You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ### How to use You can use this model with the usual factory method in [`timm`](https://github.com/rwightman/pytorch-image-models): ```python import PIL import timm import torch model = timm.create_model("hf_hub:timm/eca_nfnet_l0") config = model.default_cfg img_size = config["test_input_size"][-1] if "test_input_size" in config else config["input_size"][-1] transform = timm.data.transforms_factory.transforms_imagenet_eval( img_size=img_size, interpolation=config["interpolation"], mean=config["mean"], std=config["std"], crop_pct=config["crop_pct"], ) img = PIL.Image.open(path_to_an_image) img = img.convert("RGB") input_tensor = transform(cat_img) input_tensor = input_tensor.unsqueeze(0) # ^ batch size = 1 with torch.no_grad(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ### Limitations and bias The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will probably not generalize well on drawings or images containing multiple objects with different labels. The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or models created by fine-tuning this model will work better on images picturing scenes from these countries (see [this paper](https://arxiv.org/abs/1906.02659) for examples). More generally, [recent research](https://arxiv.org/abs/2010.15052) has shown that even models trained in an unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in the training images. ## Training data This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 millions of hand-annotated images with 1,000 categories. ## Training procedure For stability during training it is highly recommended to train all NFNet variants with gradient clipping enabled. This model was trained with an Adaptive Gradient Clipping (AGC) factor of 0.015 as described in [the paper](https://arxiv.org/abs/2102.06171). Similar to the paper, a cosine learning rate decay was employed using SGD w/ nesterov. Moderate to heavy augmentation ([RandAugment](https://arxiv.org/abs/1909.13719)) and regularization (dropout, stochastic depth) is recommended for training. ### Preprocessing The images are resized using bicubic interpolation to 288x288 and normalized with the usual ImageNet statistics. ## Evaluation results This model has a top1-accuracy of 82.6% and a top-5 accuracy of 96.5% on the ImageNet evaluation set. ### BibTeX entry and citation info NFNet model architecture: ```bibtex @article{brock2021high, author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan}, title={High-Performance Large-Scale Image Recognition Without Normalization}, journal={arXiv preprint arXiv:2102.06171}, year={2021} } ``` L0 model variant & pretraining: ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
uer/chinese_roberta_L-12_H-128
dfbf1a17cb00693e63f97ddd65393a3b3cbaa6e1
2022-07-15T08:15:32.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-12_H-128
32
null
transformers
7,004
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
segments-tobias/segformer-b0-finetuned-segments-sidewalk
d801a52243bef0170b8676c76fa21b86b8eadeb7
2022-03-08T17:31:37.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "arxiv:2105.15203", "transformers", "vision", "image-segmentation" ]
image-segmentation
false
segments-tobias
null
segments-tobias/segformer-b0-finetuned-segments-sidewalk
32
1
transformers
7,005
--- tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge --- # SegFormer (b0-sized) model fine-tuned on Segments.ai sidewalk-semantic. SegFormer model fine-tuned on [Segments.ai](https://segments.ai) [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic). It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ### How to use Here is how to use this model to classify an image of the sidewalk dataset: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk") url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
tomofi/trocr-captcha
75b8f10563bc8e3067f0322f86a1dc021da96a04
2022-03-11T23:59:35.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "license:mit" ]
null
false
tomofi
null
tomofi/trocr-captcha
32
null
transformers
7,006
--- license: mit --- CER: 0.0019 training code https://colab.research.google.com/drive/14MfFkhgPS63RJcP7rpBOK6OII_y34jx_?usp=sharing
mrp/simcse-model-wangchanberta
86fe48b74c8496a599f7fbd6028cd5d8becd7a51
2022-03-20T09:00:47.000Z
[ "pytorch", "camembert", "feature-extraction", "arxiv:2104.08821", "transformers" ]
feature-extraction
false
mrp
null
mrp/simcse-model-wangchanberta
32
null
transformers
7,007
# {mrp/simcse-model-wangchanberta} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) by using mBERT as the baseline model and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ```
abdelhalim/Rec_Business_Names
5b1ca6af49085b25a2e5403da0194a3c47e6afbb
2022-04-04T01:39:41.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:BSD-1", "transformers", "Text2Text Generation", "Business names", "Recommendation system", "autotrain_compatible" ]
text2text-generation
false
abdelhalim
null
abdelhalim/Rec_Business_Names
32
null
transformers
7,008
--- datasets: - BSD-1 tags: - Text2Text Generation - Business names - Recommendation system metrics: - Rouge --- **Context** Most of the business name generator systems based on Rule based approach and only take as input a name or keyword not context. The present trained model its aim is to take in a summary for a business idea (1-2 sentences, could be even keywords) and generate a viable business name for users. **Introduction** The goal is to create an AI service which is helpful to people and yet could turn into a small business. After fiddling around with T5, I have realized it has an immense creative potential that could prove useful in creative text generation. So, after scraping around 350.000 websites from different Domain list, I have fine-tuned T5 small parameter on this dataset. Results are much depends to the context and creative at the same time. T5 small is already pre-trained language model which is capable of creating text with a near human quality. It's able to understand the context of a given prefix to generate text. When fine tuned based on the domain names and their meta context, it was able to understand the relation between domain name and the content of the website. **Dataset** t5 small needs lots of data to be trained properly. Quality of the data that we will use for fine tuning will have a direct effect on the model quality therefore we need to make sure the data we are scraping from the websites are as clean as possible. The dateset will be under request. # Usage In order to use the model in your Python script just copy the following code: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("abdelhalim/Rec_Business_Names") model = AutoModelForSeq2SeqLM.from_pretrained("abdelhalim/Rec_Business_Names") encoder_input_str = "fourniture and decor brand" number_of_business_names = 10 input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids outputs = model.generate( input_ids, num_beams=number_of_business_names, num_return_sequences=number_of_business_names, no_repeat_ngram_size=1, remove_invalid_values=True, ) for i in range(len(outputs)): print(tokenizer.decode(outputs[i], skip_special_tokens=True)) #Output edgy.com Furnace.com Decorsy.com Furnacea.com Decorse.com Furniture.com edgys.com Furnishing.com Lavender.com edgya.com ```
KoichiYasuoka/bert-large-slavic-cyrillic-upos
cab4969506ada96ee0c87e2544bf6fdc40b29368
2022-03-24T05:50:12.000Z
[ "pytorch", "bert", "token-classification", "be", "bg", "ru", "sr", "uk", "dataset:universal_dependencies", "transformers", "belarusian", "bulgarian", "russian", "serbian", "ukrainian", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/bert-large-slavic-cyrillic-upos
32
null
transformers
7,009
--- language: - "be" - "bg" - "ru" - "sr" - "uk" tags: - "belarusian" - "bulgarian" - "russian" - "serbian" - "ukrainian" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # bert-large-slavic-cyrillic-upos ## Model Description This is a BERT model pre-trained with Slavic-Cyrillic ([UD_Belarusian](https://universaldependencies.org/be/) [UD_Bulgarian](https://universaldependencies.org/bg/) [UD_Russian](https://universaldependencies.org/ru/) [UD_Serbian](https://universaldependencies.org/treebanks/sr_set/) [UD_Ukrainian](https://universaldependencies.org/treebanks/uk_iu/)) for POS-tagging and dependency-parsing, derived from [ruBert-large](https://huggingface.co/sberbank-ai/ruBert-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-slavic-cyrillic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-slavic-cyrillic-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-slavic-cyrillic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
JavierIA/es-en
da995058ff53af4d47db10c4927afb4480e6cb7a
2022-03-24T21:40:13.000Z
[ "pytorch", "jax", "marian", "text2text-generation", "en", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
JavierIA
null
JavierIA/es-en
32
null
transformers
7,010
--- language: - en - es tags: - translation license: apache-2.0 --- ### eng-spa * source group: English * target group: Spanish * OPUS readme: [eng-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-spa/README.md) * model: transformer * source language(s): eng * target language(s): spa * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.zip) * test set translations: [opus-2020-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.test.txt) * test set scores: [opus-2020-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-engspa.eng.spa | 31.0 | 0.583 | | news-test2008-engspa.eng.spa | 29.7 | 0.564 | | newstest2009-engspa.eng.spa | 30.2 | 0.578 | | newstest2010-engspa.eng.spa | 36.9 | 0.620 | | newstest2011-engspa.eng.spa | 38.2 | 0.619 | | newstest2012-engspa.eng.spa | 39.0 | 0.625 | | newstest2013-engspa.eng.spa | 35.0 | 0.598 | | Tatoeba-test.eng.spa | 54.9 | 0.721 | ### System Info: - hf_name: eng-spa - source_languages: eng - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'es'] - src_constituents: {'eng'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opus-2020-08-18.test.txt - src_alpha3: eng - tgt_alpha3: spa - short_pair: en-es - chrF2_score: 0.721 - bleu: 54.9 - brevity_penalty: 0.978 - ref_len: 77311.0 - src_name: English - tgt_name: Spanish - train_date: 2020-08-18 00:00:00 - src_alpha2: en - tgt_alpha2: es - prefer_old: False - long_pair: eng-spa - helsinki_git_sha: d2f0910c89026c34a44e331e785dec1e0faa7b82 - transformers_git_sha: f7af09b4524b784d67ae8526f0e2fcc6f5ed0de9 - port_machine: brutasse - port_time: 2020-08-24-18:20
stanford-crfm/pubmed_gpt
968133097a8a1a91ce7c878c4d668d232c4c4fc2
2022-04-07T19:52:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stanford-crfm
null
stanford-crfm/pubmed_gpt
32
1
transformers
7,011
Entry not found
veddm/paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT-10_epochs
9439dc98269b7261511bcbb6fba2ee3e38a55757
2022-04-13T11:21:29.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
veddm
null
veddm/paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT-10_epochs
32
null
transformers
7,012
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT-10_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphrase-multilingual-MiniLM-L12-v2-finetuned-DIT-10_epochs This model is a fine-tuned version of [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.6933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 9.1280 | | No log | 2.0 | 182 | 7.7624 | | No log | 3.0 | 273 | 6.8875 | | No log | 4.0 | 364 | 6.2064 | | No log | 5.0 | 455 | 5.6836 | | 7.584 | 6.0 | 546 | 5.2978 | | 7.584 | 7.0 | 637 | 5.0191 | | 7.584 | 8.0 | 728 | 4.8337 | | 7.584 | 9.0 | 819 | 4.7284 | | 7.584 | 10.0 | 910 | 4.6933 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
Helsinki-NLP/opus-mt-tc-big-bg-en
d30722fcd22c3239ecfc796e6c45a330ba575207
2022-06-01T13:01:41.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "en", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-bg-en
32
null
transformers
7,013
--- language: - bg - en tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-bg-en results: - task: name: Translation bul-eng type: translation args: bul-eng dataset: name: flores101-devtest type: flores_101 args: bul eng devtest metrics: - name: BLEU type: bleu value: 42.9 - task: name: Translation bul-eng type: translation args: bul-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-eng metrics: - name: BLEU type: bleu value: 60.5 --- # opus-mt-tc-big-bg-en Neural machine translation model for translating from Bulgarian (bg) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-09 * source language(s): bul * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip) * more information released models: [OPUS-MT bul-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "2001 е годината, с която започва 21-ви век.", "Това е Copacabana!" ] model_name = "pytorch-models/opus-mt-tc-big-bg-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # 2001 was the year the 21st century began. # It's Copacabana! ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-bg-en") print(pipe("2001 е годината, с която започва 21-ви век.")) # expected output: 2001 was the year the 21st century began. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bul-eng | tatoeba-test-v2021-08-07 | 0.73687 | 60.5 | 10000 | 71872 | | bul-eng | flores101-devtest | 0.67938 | 42.9 | 1012 | 24721 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:23:56 EEST 2022 * port machine: LM0-400-22516.local
kabelomalapane/test_model1.2_updated
5b6e8597f28a3ba6f7dc180ef41a8c3d76a00ffe
2022-04-14T15:27:44.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
kabelomalapane
null
kabelomalapane/test_model1.2_updated
32
null
transformers
7,014
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: test_model1.2_updated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_model1.2_updated This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6856 - Bleu: 12.3864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
dennishe97/longformer-code-mlm-v3
eaff95080bb17a5f3642920565bf4c6e2ae41445
2022-04-22T09:21:10.000Z
[ "pytorch", "longformer", "feature-extraction", "transformers" ]
feature-extraction
false
dennishe97
null
dennishe97/longformer-code-mlm-v3
32
null
transformers
7,015
Entry not found
Intel/xlm-roberta-base-mrpc
ea3ab2fbd0e5c6c160d50d397cbbab91ee2eff58
2022-04-21T07:08:18.000Z
[ "pytorch", "xlm-roberta", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Intel
null
Intel/xlm-roberta-base-mrpc
32
null
transformers
7,016
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8578431372549019 - name: F1 type: f1 value: 0.901023890784983 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-mrpc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3703 - Accuracy: 0.8578 - F1: 0.9010 - Combined Score: 0.8794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.1.0 - Tokenizers 0.11.6
mikeadimech/longformer-qmsum-meeting-summarization
d3799539e4559b4531be09eaa3b0e296893e36c0
2022-05-01T01:25:15.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mikeadimech
null
mikeadimech/longformer-qmsum-meeting-summarization
32
null
transformers
7,017
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: longformer-qmsum-meeting-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-qmsum-meeting-summarization This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2055 - Rouge1: 20.5333 - Rouge2: 7.6756 - Rougel: 16.2531 - Rougelsum: 19.0336 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 5.4071 | 1.09 | 100 | 5.2910 | 6.012 | 0.5556 | 4.936 | 5.6141 | 20.0 | | 5.269 | 2.17 | 200 | 5.1446 | 6.7419 | 0.9713 | 5.2774 | 6.3003 | 20.0 | | 5.1153 | 3.26 | 300 | 4.9976 | 8.1369 | 1.2365 | 6.391 | 7.5911 | 20.0 | | 4.9888 | 4.35 | 400 | 4.8763 | 9.9113 | 1.4239 | 8.0574 | 9.3442 | 20.0 | | 4.8687 | 5.43 | 500 | 4.7889 | 10.504 | 1.5638 | 8.1191 | 9.817 | 20.0 | | 4.7936 | 6.52 | 600 | 4.7226 | 12.6475 | 2.4733 | 9.968 | 11.541 | 20.0 | | 4.713 | 7.61 | 700 | 4.6770 | 15.2998 | 3.6209 | 11.8629 | 14.2323 | 20.0 | | 4.6843 | 8.7 | 800 | 4.6428 | 15.8299 | 4.4128 | 12.7301 | 14.8795 | 20.0 | | 4.6453 | 9.78 | 900 | 4.6105 | 16.3702 | 4.7356 | 13.1566 | 15.4497 | 20.0 | | 4.6212 | 10.87 | 1000 | 4.5849 | 16.9765 | 5.1101 | 13.617 | 15.9401 | 20.0 | | 4.5761 | 11.96 | 1100 | 4.5649 | 17.3024 | 5.2494 | 13.79 | 16.3173 | 20.0 | | 4.564 | 13.04 | 1200 | 4.5447 | 18.7699 | 6.2331 | 14.8264 | 17.645 | 20.0 | | 4.5393 | 14.13 | 1300 | 4.5277 | 19.1495 | 6.6082 | 15.1392 | 18.2546 | 20.0 | | 4.5069 | 15.22 | 1400 | 4.5132 | 20.3648 | 7.3895 | 16.018 | 19.1503 | 20.0 | | 4.4985 | 16.3 | 1500 | 4.4973 | 20.165 | 7.3477 | 16.1161 | 18.7585 | 20.0 | | 4.4476 | 17.39 | 1600 | 4.4859 | 20.4691 | 7.5734 | 16.438 | 19.1045 | 20.0 | | 4.4421 | 18.48 | 1700 | 4.4758 | 20.4402 | 7.7674 | 16.3998 | 19.1045 | 20.0 | | 4.4554 | 19.57 | 1800 | 4.4648 | 20.5992 | 7.3522 | 16.185 | 19.2869 | 20.0 | | 4.4138 | 20.65 | 1900 | 4.4560 | 20.497 | 7.1732 | 16.2177 | 19.0912 | 20.0 | | 4.4447 | 21.74 | 2000 | 4.4465 | 21.2936 | 7.8856 | 16.8994 | 19.7994 | 20.0 | | 4.3636 | 22.83 | 2100 | 4.4373 | 21.1015 | 7.6466 | 16.787 | 19.6918 | 20.0 | | 4.3647 | 23.91 | 2200 | 4.4288 | 21.3408 | 7.8052 | 17.1431 | 20.1456 | 20.0 | | 4.3707 | 25.0 | 2300 | 4.4217 | 21.523 | 8.017 | 17.1586 | 20.2724 | 20.0 | | 4.3503 | 26.09 | 2400 | 4.4145 | 21.485 | 8.015 | 17.064 | 20.209 | 20.0 | | 4.3295 | 27.17 | 2500 | 4.4069 | 21.5167 | 7.6749 | 16.9976 | 20.265 | 20.0 | | 4.3444 | 28.26 | 2600 | 4.4004 | 21.748 | 7.8808 | 17.1592 | 20.4054 | 20.0 | | 4.3135 | 29.35 | 2700 | 4.3958 | 21.5523 | 7.5449 | 17.2103 | 20.5405 | 20.0 | | 4.3028 | 30.43 | 2800 | 4.3880 | 21.3016 | 7.6531 | 17.1515 | 20.3301 | 20.0 | | 4.3406 | 31.52 | 2900 | 4.3834 | 21.4169 | 7.5647 | 16.9477 | 20.3379 | 20.0 | | 4.286 | 32.61 | 3000 | 4.3760 | 21.4684 | 7.4776 | 17.1018 | 20.5254 | 20.0 | | 4.2717 | 33.7 | 3100 | 4.3736 | 21.596 | 7.514 | 17.164 | 20.6272 | 20.0 | | 4.285 | 34.78 | 3200 | 4.3666 | 21.3495 | 7.676 | 17.0703 | 20.3182 | 20.0 | | 4.2496 | 35.87 | 3300 | 4.3628 | 21.5539 | 7.6574 | 17.1393 | 20.5116 | 20.0 | | 4.2618 | 36.96 | 3400 | 4.3591 | 21.08 | 7.6814 | 16.6941 | 20.2386 | 20.0 | | 4.255 | 38.04 | 3500 | 4.3522 | 21.1979 | 7.7334 | 16.8281 | 20.3095 | 20.0 | | 4.2353 | 39.13 | 3600 | 4.3502 | 21.1162 | 8.0427 | 16.9948 | 20.3903 | 20.0 | | 4.2556 | 40.22 | 3700 | 4.3462 | 21.3417 | 7.7851 | 16.6548 | 20.5316 | 20.0 | | 4.207 | 41.3 | 3800 | 4.3401 | 21.4329 | 7.948 | 16.944 | 20.5075 | 20.0 | | 4.234 | 42.39 | 3900 | 4.3388 | 21.6109 | 8.033 | 16.9375 | 20.6668 | 20.0 | | 4.2118 | 43.48 | 4000 | 4.3347 | 21.5051 | 7.9239 | 16.7403 | 20.6123 | 20.0 | | 4.1898 | 44.57 | 4100 | 4.3319 | 21.2644 | 7.8222 | 16.7109 | 20.3999 | 20.0 | | 4.1951 | 45.65 | 4200 | 4.3265 | 21.3383 | 7.997 | 16.7605 | 20.4542 | 20.0 | | 4.1851 | 46.74 | 4300 | 4.3248 | 21.3509 | 7.9038 | 16.9098 | 20.4593 | 20.0 | | 4.1674 | 47.83 | 4400 | 4.3223 | 21.3516 | 8.0058 | 17.0061 | 20.4199 | 20.0 | | 4.1785 | 48.91 | 4500 | 4.3182 | 21.4118 | 8.0755 | 16.959 | 20.5154 | 20.0 | | 4.1599 | 50.0 | 4600 | 4.3175 | 21.2748 | 7.8562 | 16.8107 | 20.3536 | 20.0 | | 4.1564 | 51.09 | 4700 | 4.3141 | 21.1811 | 7.8563 | 16.7687 | 20.2242 | 20.0 | | 4.1513 | 52.17 | 4800 | 4.3101 | 21.1557 | 7.6616 | 16.8105 | 19.8191 | 20.0 | | 4.1234 | 53.26 | 4900 | 4.3083 | 21.0718 | 7.8625 | 16.7849 | 20.0014 | 20.0 | | 4.1532 | 54.35 | 5000 | 4.3041 | 21.4241 | 7.984 | 16.6561 | 20.3073 | 20.0 | | 4.1371 | 55.43 | 5100 | 4.3035 | 21.259 | 7.6476 | 16.9931 | 20.3421 | 20.0 | | 4.1342 | 56.52 | 5200 | 4.3009 | 21.0745 | 7.386 | 16.7976 | 20.1148 | 20.0 | | 4.1146 | 57.61 | 5300 | 4.2985 | 21.0796 | 7.6743 | 16.5062 | 19.8702 | 20.0 | | 4.0774 | 58.7 | 5400 | 4.2965 | 21.2129 | 7.2871 | 17.0019 | 20.3176 | 20.0 | | 4.1726 | 59.78 | 5500 | 4.2930 | 21.159 | 7.4045 | 16.7762 | 19.9886 | 20.0 | | 4.0931 | 60.87 | 5600 | 4.2900 | 20.957 | 7.2307 | 16.784 | 19.8402 | 20.0 | | 4.0838 | 61.96 | 5700 | 4.2887 | 21.13 | 7.2664 | 16.7837 | 19.951 | 20.0 | | 4.0878 | 63.04 | 5800 | 4.2853 | 21.0281 | 7.2664 | 16.6847 | 19.7843 | 20.0 | | 4.1067 | 64.13 | 5900 | 4.2848 | 20.941 | 7.2307 | 16.74 | 19.8262 | 20.0 | | 4.0743 | 65.22 | 6000 | 4.2817 | 21.1234 | 7.4612 | 16.755 | 20.027 | 20.0 | | 4.103 | 66.3 | 6100 | 4.2807 | 21.2852 | 7.4802 | 16.8037 | 20.2316 | 20.0 | | 4.0434 | 67.39 | 6200 | 4.2777 | 21.236 | 7.3169 | 16.7967 | 20.0534 | 20.0 | | 4.0829 | 68.48 | 6300 | 4.2793 | 20.947 | 7.3164 | 16.8597 | 19.7938 | 20.0 | | 4.0619 | 69.57 | 6400 | 4.2736 | 21.4626 | 7.7245 | 16.8395 | 20.2035 | 20.0 | | 4.079 | 70.65 | 6500 | 4.2729 | 21.163 | 7.6397 | 16.7826 | 20.0295 | 20.0 | | 4.0411 | 71.74 | 6600 | 4.2721 | 20.8673 | 7.3841 | 16.6784 | 19.6854 | 20.0 | | 4.046 | 72.83 | 6700 | 4.2697 | 20.9774 | 7.3325 | 16.7779 | 19.761 | 20.0 | | 4.0384 | 73.91 | 6800 | 4.2684 | 21.0736 | 7.6569 | 16.7631 | 19.992 | 20.0 | | 4.0401 | 75.0 | 6900 | 4.2670 | 21.2708 | 7.8224 | 16.5649 | 20.2364 | 20.0 | | 4.0153 | 76.09 | 7000 | 4.2669 | 21.3638 | 7.7586 | 16.765 | 19.9744 | 20.0 | | 4.0227 | 77.17 | 7100 | 4.2652 | 21.0611 | 7.709 | 16.3201 | 20.0516 | 20.0 | | 4.0264 | 78.26 | 7200 | 4.2634 | 21.3766 | 7.7666 | 16.7508 | 20.0938 | 20.0 | | 4.0475 | 79.35 | 7300 | 4.2615 | 21.2356 | 7.5533 | 16.6339 | 19.9254 | 20.0 | | 4.0145 | 80.43 | 7400 | 4.2580 | 20.7689 | 7.3386 | 16.287 | 19.7335 | 20.0 | | 4.0087 | 81.52 | 7500 | 4.2580 | 20.9816 | 7.343 | 16.4598 | 19.701 | 20.0 | | 3.9835 | 82.61 | 7600 | 4.2577 | 21.1001 | 7.5887 | 16.5226 | 19.714 | 20.0 | | 4.0029 | 83.7 | 7700 | 4.2562 | 21.1875 | 7.7333 | 16.4799 | 19.9907 | 20.0 | | 3.9912 | 84.78 | 7800 | 4.2549 | 20.8265 | 7.3897 | 16.2191 | 19.4398 | 20.0 | | 4.008 | 85.87 | 7900 | 4.2541 | 21.4955 | 7.7602 | 16.4989 | 20.1402 | 20.0 | | 3.9659 | 86.96 | 8000 | 4.2523 | 21.687 | 7.9463 | 16.5832 | 20.1598 | 20.0 | | 3.9923 | 88.04 | 8100 | 4.2505 | 21.4615 | 7.817 | 16.3628 | 19.9159 | 20.0 | | 3.9811 | 89.13 | 8200 | 4.2498 | 21.1917 | 7.5813 | 16.3066 | 19.4905 | 20.0 | | 3.9819 | 90.22 | 8300 | 4.2488 | 21.239 | 7.4585 | 16.4297 | 19.5213 | 20.0 | | 3.9889 | 91.3 | 8400 | 4.2456 | 21.5052 | 7.7994 | 16.3783 | 19.8739 | 20.0 | | 3.942 | 92.39 | 8500 | 4.2468 | 21.3482 | 7.7517 | 16.34 | 19.764 | 20.0 | | 3.9959 | 93.48 | 8600 | 4.2446 | 21.4615 | 7.817 | 16.3628 | 19.9159 | 20.0 | | 3.987 | 94.57 | 8700 | 4.2438 | 21.1265 | 7.6497 | 16.4132 | 19.5981 | 20.0 | | 3.9803 | 95.65 | 8800 | 4.2420 | 21.2956 | 7.7796 | 16.3643 | 19.8607 | 20.0 | | 3.9415 | 96.74 | 8900 | 4.2410 | 20.8332 | 7.5468 | 16.1678 | 19.316 | 20.0 | | 3.97 | 97.83 | 9000 | 4.2407 | 21.4223 | 7.8688 | 16.533 | 19.8081 | 20.0 | | 3.9495 | 98.91 | 9100 | 4.2400 | 21.5678 | 7.9698 | 16.5492 | 19.9404 | 20.0 | | 3.9489 | 100.0 | 9200 | 4.2391 | 21.3928 | 7.8416 | 16.3595 | 19.7579 | 20.0 | | 3.9194 | 101.09 | 9300 | 4.2394 | 21.2216 | 7.8416 | 16.2499 | 19.5661 | 20.0 | | 3.966 | 102.17 | 9400 | 4.2372 | 21.2756 | 7.8798 | 16.3124 | 19.6303 | 20.0 | | 3.934 | 103.26 | 9500 | 4.2367 | 21.3106 | 7.8585 | 16.3937 | 19.7289 | 20.0 | | 3.9316 | 104.35 | 9600 | 4.2349 | 21.3296 | 7.9392 | 16.3574 | 19.8031 | 20.0 | | 3.9586 | 105.43 | 9700 | 4.2366 | 21.0662 | 7.771 | 16.2242 | 19.4813 | 20.0 | | 3.9189 | 106.52 | 9800 | 4.2338 | 21.1348 | 7.8414 | 16.2757 | 19.7301 | 20.0 | | 3.937 | 107.61 | 9900 | 4.2350 | 21.2434 | 7.7611 | 16.4693 | 19.6923 | 20.0 | | 3.911 | 108.7 | 10000 | 4.2331 | 21.2697 | 7.8282 | 16.3636 | 19.6627 | 20.0 | | 3.8956 | 109.78 | 10100 | 4.2312 | 21.2697 | 7.8117 | 16.3636 | 19.6321 | 20.0 | | 3.9396 | 110.87 | 10200 | 4.2303 | 21.0842 | 7.7105 | 16.221 | 19.4378 | 20.0 | | 3.9058 | 111.96 | 10300 | 4.2290 | 21.1633 | 7.8117 | 16.3196 | 19.5575 | 20.0 | | 3.9198 | 113.04 | 10400 | 4.2278 | 21.1633 | 7.8117 | 16.3196 | 19.5311 | 20.0 | | 3.9104 | 114.13 | 10500 | 4.2276 | 21.0784 | 7.6899 | 16.3248 | 19.5625 | 20.0 | | 3.915 | 115.22 | 10600 | 4.2282 | 20.9369 | 7.6522 | 16.1615 | 19.4826 | 20.0 | | 3.8748 | 116.3 | 10700 | 4.2268 | 20.9369 | 7.6522 | 16.1615 | 19.4826 | 20.0 | | 3.9341 | 117.39 | 10800 | 4.2252 | 21.0067 | 7.7263 | 16.3314 | 19.5589 | 20.0 | | 3.8713 | 118.48 | 10900 | 4.2253 | 20.7028 | 7.5712 | 16.0398 | 19.2212 | 20.0 | | 3.8861 | 119.57 | 11000 | 4.2243 | 20.7075 | 7.6844 | 16.0626 | 19.2959 | 20.0 | | 3.8905 | 120.65 | 11100 | 4.2252 | 20.6546 | 7.5642 | 15.9451 | 19.1838 | 20.0 | | 3.8682 | 121.74 | 11200 | 4.2238 | 20.8809 | 7.6536 | 16.1667 | 19.4217 | 20.0 | | 3.904 | 122.83 | 11300 | 4.2241 | 20.6916 | 7.5324 | 15.9692 | 19.1791 | 20.0 | | 3.8577 | 123.91 | 11400 | 4.2231 | 20.9271 | 7.6536 | 16.2314 | 19.4695 | 20.0 | | 3.8851 | 125.0 | 11500 | 4.2230 | 20.8097 | 7.6891 | 16.1087 | 19.3872 | 20.0 | | 3.8725 | 126.09 | 11600 | 4.2219 | 20.8965 | 7.6891 | 16.197 | 19.4319 | 20.0 | | 3.8918 | 127.17 | 11700 | 4.2210 | 20.8203 | 7.6562 | 16.1283 | 19.388 | 20.0 | | 3.845 | 128.26 | 11800 | 4.2210 | 20.7633 | 7.6883 | 16.0813 | 19.3537 | 20.0 | | 3.8812 | 129.35 | 11900 | 4.2197 | 20.6605 | 7.6351 | 15.9703 | 19.2425 | 20.0 | | 3.8734 | 130.43 | 12000 | 4.2208 | 20.6164 | 7.601 | 15.9703 | 19.1967 | 20.0 | | 3.8704 | 131.52 | 12100 | 4.2201 | 20.533 | 7.5141 | 15.941 | 19.1898 | 20.0 | | 3.8302 | 132.61 | 12200 | 4.2194 | 20.6164 | 7.601 | 15.9703 | 19.1967 | 20.0 | | 3.8793 | 133.7 | 12300 | 4.2178 | 20.5427 | 7.5674 | 15.9591 | 19.2078 | 20.0 | | 3.8631 | 134.78 | 12400 | 4.2181 | 20.6953 | 7.6549 | 16.0402 | 19.2734 | 20.0 | | 3.8565 | 135.87 | 12500 | 4.2173 | 20.6168 | 7.5808 | 16.0402 | 19.2734 | 20.0 | | 3.8842 | 136.96 | 12600 | 4.2163 | 20.6525 | 7.5782 | 16.0402 | 19.3124 | 20.0 | | 3.8183 | 138.04 | 12700 | 4.2165 | 20.6168 | 7.5808 | 16.0402 | 19.2734 | 20.0 | | 3.8482 | 139.13 | 12800 | 4.2155 | 20.6953 | 7.6154 | 16.0402 | 19.2734 | 20.0 | | 3.8689 | 140.22 | 12900 | 4.2158 | 20.8264 | 7.7844 | 16.1396 | 19.4834 | 20.0 | | 3.8361 | 141.3 | 13000 | 4.2144 | 20.8264 | 7.6986 | 16.2466 | 19.5192 | 20.0 | | 3.8336 | 142.39 | 13100 | 4.2148 | 20.7613 | 7.7027 | 16.2516 | 19.4307 | 20.0 | | 3.8532 | 143.48 | 13200 | 4.2155 | 20.6905 | 7.6695 | 16.1708 | 19.3584 | 20.0 | | 3.8424 | 144.57 | 13300 | 4.2137 | 20.7613 | 7.7027 | 16.2516 | 19.4307 | 20.0 | | 3.8781 | 145.65 | 13400 | 4.2128 | 20.6905 | 7.6695 | 16.1708 | 19.3584 | 20.0 | | 3.8693 | 146.74 | 13500 | 4.2128 | 20.5395 | 7.4561 | 16.1388 | 19.1866 | 20.0 | | 3.8304 | 147.83 | 13600 | 4.2123 | 20.6345 | 7.7324 | 16.1761 | 19.2764 | 20.0 | | 3.8434 | 148.91 | 13700 | 4.2123 | 20.7145 | 7.6768 | 16.1729 | 19.3787 | 20.0 | | 3.8348 | 150.0 | 13800 | 4.2123 | 20.7859 | 7.7023 | 16.2986 | 19.4932 | 20.0 | | 3.8375 | 151.09 | 13900 | 4.2126 | 20.6319 | 7.5676 | 16.325 | 19.2512 | 20.0 | | 3.8421 | 152.17 | 14000 | 4.2120 | 20.6665 | 7.5619 | 16.3257 | 19.2911 | 20.0 | | 3.831 | 153.26 | 14100 | 4.2110 | 20.609 | 7.4912 | 16.2881 | 19.2953 | 20.0 | | 3.8172 | 154.35 | 14200 | 4.2112 | 20.7352 | 7.6588 | 16.2115 | 19.3408 | 20.0 | | 3.7853 | 155.43 | 14300 | 4.2107 | 20.6635 | 7.5987 | 16.2131 | 19.2667 | 20.0 | | 3.8274 | 156.52 | 14400 | 4.2109 | 20.7352 | 7.7559 | 16.3035 | 19.3408 | 20.0 | | 3.8362 | 157.61 | 14500 | 4.2099 | 20.7559 | 7.6865 | 16.325 | 19.4191 | 20.0 | | 3.8561 | 158.7 | 14600 | 4.2098 | 20.6225 | 7.6943 | 16.3448 | 19.1425 | 20.0 | | 3.7832 | 159.78 | 14700 | 4.2098 | 20.6307 | 7.6684 | 16.2469 | 19.269 | 20.0 | | 3.8409 | 160.87 | 14800 | 4.2092 | 20.683 | 7.7924 | 16.2986 | 19.2414 | 20.0 | | 3.821 | 161.96 | 14900 | 4.2092 | 20.5235 | 7.6721 | 16.2191 | 18.9879 | 20.0 | | 3.8343 | 163.04 | 15000 | 4.2089 | 20.5235 | 7.6721 | 16.2191 | 18.9879 | 20.0 | | 3.8279 | 164.13 | 15100 | 4.2087 | 20.5304 | 7.5448 | 16.2106 | 19.0909 | 20.0 | | 3.7874 | 165.22 | 15200 | 4.2083 | 20.6319 | 7.6145 | 16.3035 | 19.2294 | 20.0 | | 3.8316 | 166.3 | 15300 | 4.2076 | 20.5759 | 7.6145 | 16.2528 | 19.1508 | 20.0 | | 3.7817 | 167.39 | 15400 | 4.2084 | 20.4845 | 7.5473 | 16.2067 | 19.0683 | 20.0 | | 3.8338 | 168.48 | 15500 | 4.2075 | 20.5375 | 7.614 | 16.2509 | 19.1047 | 20.0 | | 3.8515 | 169.57 | 15600 | 4.2069 | 20.4845 | 7.5473 | 16.2067 | 19.0683 | 20.0 | | 3.7895 | 170.65 | 15700 | 4.2074 | 20.4845 | 7.5473 | 16.2067 | 19.0683 | 20.0 | | 3.8129 | 171.74 | 15800 | 4.2076 | 20.4845 | 7.5473 | 16.2067 | 19.0683 | 20.0 | | 3.8582 | 172.83 | 15900 | 4.2073 | 20.4845 | 7.5473 | 16.2067 | 19.0683 | 20.0 | | 3.7716 | 173.91 | 16000 | 4.2073 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8142 | 175.0 | 16100 | 4.2069 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8186 | 176.09 | 16200 | 4.2068 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8323 | 177.17 | 16300 | 4.2065 | 20.5333 | 7.6281 | 16.2531 | 19.0336 | 20.0 | | 3.774 | 178.26 | 16400 | 4.2064 | 20.5724 | 7.677 | 16.2545 | 19.0747 | 20.0 | | 3.8123 | 179.35 | 16500 | 4.2062 | 20.5333 | 7.6281 | 16.2531 | 19.0336 | 20.0 | | 3.7914 | 180.43 | 16600 | 4.2066 | 20.5333 | 7.6281 | 16.2531 | 19.0336 | 20.0 | | 3.7988 | 181.52 | 16700 | 4.2063 | 20.5724 | 7.6287 | 16.2545 | 19.0747 | 20.0 | | 3.8331 | 182.61 | 16800 | 4.2059 | 20.6225 | 7.7265 | 16.3103 | 19.1036 | 20.0 | | 3.8125 | 183.7 | 16900 | 4.2061 | 20.494 | 7.5897 | 16.2303 | 18.9697 | 20.0 | | 3.8069 | 184.78 | 17000 | 4.2059 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.7933 | 185.87 | 17100 | 4.2058 | 20.5333 | 7.6281 | 16.2531 | 19.0336 | 20.0 | | 3.807 | 186.96 | 17200 | 4.2058 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8 | 188.04 | 17300 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.776 | 189.13 | 17400 | 4.2057 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.7976 | 190.22 | 17500 | 4.2057 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8293 | 191.3 | 17600 | 4.2057 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.7807 | 192.39 | 17700 | 4.2057 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8246 | 193.48 | 17800 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.7719 | 194.57 | 17900 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8055 | 195.65 | 18000 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.7803 | 196.74 | 18100 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8287 | 197.83 | 18200 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8066 | 198.91 | 18300 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | | 3.8011 | 200.0 | 18400 | 4.2055 | 20.5333 | 7.6756 | 16.2531 | 19.0336 | 20.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
cfilt/HiNER-original-muril-base-cased
57623b7631f81492feb271b696cf7d51cd811d26
2022-07-22T06:21:29.000Z
[ "pytorch", "bert", "token-classification", "dataset:cfilt/HiNER-original", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
cfilt
null
cfilt/HiNER-original-muril-base-cased
32
null
transformers
7,018
--- tags: - generated_from_trainer datasets: - cfilt/HiNER-original metrics: - precision - recall - f1 widget: - text: "बैंगलोर यूनिवर्सिटी में सेमेस्टर जुलाई से शुरू हो रही है ।" model-index: - name: HiNER-original-muril-base-cased results: - task: name: Named Entity Recognition type: Named Entity Recognition dataset: type: cfilt/HiNER-original name: HiNER Original metrics: - name: Precision type: precision value: 0.8874067587220668 - name: Recall type: recall value: 0.880125938333643 - name: F1 type: f1 value: 0.8837513529507954 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HiNER-original-muril-base-cased This model was trained from scratch on the cfilt/HiNER-original dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.14.0 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
ArthurZ/jukebox-dummy
e03afff150a81e761d5e1a153ed6d2a3e1b8c2b1
2022-05-31T07:17:02.000Z
[ "pytorch", "jukebox", "transformers" ]
null
false
ArthurZ
null
ArthurZ/jukebox-dummy
32
null
transformers
7,019
Entry not found
K024/shiki-mt5-streaming
a5026bec7fa545d5ebbee7c0f06862223350c037
2022-05-20T06:07:56.000Z
[ "pytorch", "mt5", "text2text-generation", "zh", "ja", "en", "transformers", "translation", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
translation
false
K024
null
K024/shiki-mt5-streaming
32
2
transformers
7,020
--- language: - zh - ja - en tags: - translation license: cc-by-nc-sa-4.0 --- # K024/shiki-mt5-streaming This model is finetuned from [K024/mt5-zh-ja-en-trimmed](https://huggingface.co/K024/mt5-zh-ja-en-trimmed) with context-aware back-translation. "Streaming" means the model is updated from time to time. Visit huggingface space [Shiki Translation](https://huggingface.co/spaces/K024/shiki-translation) for the basic usage and some inference codes. Training data contains a large amount of private data or works protected by copyrights and is therefore not listed here. License: [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
sahn/distilbert-base-uncased-finetuned-imdb-blur
45bf40d8a657fbef02e1f452dbc38f012da0fa81
2022-05-30T04:48:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sahn
null
sahn/distilbert-base-uncased-finetuned-imdb-blur
32
null
transformers
7,021
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb-blur results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9776 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-blur This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Added `...` at the end of all the sentences with the label 1, and `;` with the label 0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0662 | 1.0 | 1250 | 0.0524 | 0.9762 | | 0.0365 | 2.0 | 2500 | 0.0683 | 0.9756 | | 0.012 | 3.0 | 3750 | 0.0455 | 0.9906 | | 0.0051 | 4.0 | 5000 | 0.1425 | 0.9742 | | 0.001 | 5.0 | 6250 | 0.1484 | 0.9776 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tinkoff-ai/response-quality-classifier-tiny
deb23997f1c61ec9aa292847d226557b979e6f3e
2022-06-01T06:34:56.000Z
[ "pytorch", "bert", "text-classification", "ru", "transformers", "conversational", "license:mit" ]
text-classification
false
tinkoff-ai
null
tinkoff-ai/response-quality-classifier-tiny
32
0
transformers
7,022
--- license: mit widget: - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" language: - ru tags: - conversational --- This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). The model should be used to produce relevance and specificity of the last message in the context of a dialogue. The labels explanation: - `relevance`: is the last message in the dialogue relevant in the context of the full dialogue. - `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue. It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random. Then it was finetuned on manually labelled examples (dataset will be posted soon). The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```. The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples): | | threshold | f0.5 | ROC AUC | |:------------|------------:|-------:|----------:| | relevance | 0.51 | 0.82 | 0.74 | | specificity | 0.54 | 0.81 | 0.8 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-tiny') inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt') with torch.inference_mode(): logits = model(**inputs).logits probas = torch.sigmoid(logits)[0].cpu().detach().numpy() relevance, specificity = probas ``` The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model. The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).
KM4STfulltext/SSCI-BERT-e2
0a9aec5f090c7ebe4361164723a46fcfbb785cc4
2022-06-01T09:24:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
KM4STfulltext
null
KM4STfulltext/SSCI-BERT-e2
32
1
transformers
7,023
--- license: apache-2.0 --- # SSCI-BERT: A pretrained language model for social scientific text ## Introduction The research for social science texts needs the support natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in social science. We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed [SSCI-BERT and SSCI-SciBERT](https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py). We designed four downstream tasks of Text Classification on different social scientific article corpus to verify the performance of the model. - SSCI-BERT and SSCI-SciBERT are trained on the abstract of articles published in SSCI journals from 1986 to 2021. The training set involved in the experiment included a total of `503910614 words`. - Based on the idea of Domain-Adaptive Pretraining, `SSCI-BERT` and `SSCI-SciBERT` combine a large amount of abstracts of scientific articles based on the BERT structure, and continue to train the BERT and SSCI-SciBERT models respectively to obtain pre-training models for the automatic processing of Social science research texts. ## News - 2022-03-24 : SSCIBERT and SSCI-SciBERT has been put forward for the first time. ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain SSCI-BERT and SSCI-SciBERT models online. - SSCI-BERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-BERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-BERT-e2") ``` - SSCI-SciBERT ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") model = AutoModel.from_pretrained("KM4STfulltext/SSCI-SciBERT-e2") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [KM4STfulltext/SSCI-BERT-e2](https://huggingface.co/KM4STfulltext/SSCI-BERT-e2) - [KM4STfulltext/SSCI-SciBERT-e2](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e2) - [KM4STfulltext/SSCI-BERT-e4 ](https://huggingface.co/KM4STfulltext/SSCI-BERT-e4) - [KM4STfulltext/SSCI-SciBERT-e4](https://huggingface.co/KM4STfulltext/SSCI-SciBERT-e4) ### From Google Drive We have put the model on Google Drive for users. | Model | DATASET(year) | Base Model | | ------------------------------------------------------------ | ------------- | ---------------------- | | [SSCI-BERT-e2](https://drive.google.com/drive/folders/1xEDnovlwGO2JxqCaf3rdjS2cB6DOxhj4?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e2](https://drive.google.com/drive/folders/16DtIvnHvbrR_92MwgthRRsULW6An9te1?usp=sharing) (recommended) | 1986-2021 | Scibert-scivocab-cased | | [SSCI-BERT-e4](https://drive.google.com/drive/folders/1sr6Av8p904Jrjps37g7E8aj4HnAHXSxW?usp=sharing) | 1986-2021 | Bert-base-cased | | [SSCI-SciBERT-e4](https://drive.google.com/drive/folders/1ty-b4TIFu8FbilgC4VcI7Bgn_O5MDMVe?usp=sharing) | 1986-2021 | Scibert-scivocab-cased | ## Evaluation & Results - We use SSCI-BERT and SSCI-SciBERT to perform Text Classificationon different social science research corpus. The experimental results are as follows. Relevant data sets are available for download in the **Verification task datasets** folder of this project. #### JCR Title Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 28.43 | 22.06 | 21.86 | | Scibert-scivocab-cased | 38.48 | 33.89 | 33.92 | | SSCI-BERT-e2 | 40.43 | 35.37 | 35.33 | | SSCI-SciBERT-e2 | 41.35 | 37.27 | 37.25 | | SSCI-BERT-e4 | 40.65 | 35.49 | 35.40 | | SSCI-SciBERT-e4 | 41.13 | 36.96 | 36.94 | | Support | 2300 | 2300 | 2300 | #### JCR Abstract Classify Dataset | Model | accuracy | macro avg | weighted avg | | ---------------------- | -------- | --------- | ------------ | | Bert-base-cased | 48.59 | 42.8 | 42.82 | | Scibert-scivocab-cased | 55.59 | 51.4 | 51.81 | | SSCI-BERT-e2 | 58.05 | 53.31 | 53.73 | | SSCI-SciBERT-e2 | 59.95 | 56.51 | 57.12 | | SSCI-BERT-e4 | 59.00 | 54.97 | 55.59 | | SSCI-SciBERT-e4 | 60.00 | 56.38 | 56.90 | | Support | 2200 | 2200 | 2200 | #### JCR Mixed Titles and Abstracts Dataset | **Model** | **accuracy** | **macro avg** | **weighted avg** | | ---------------------- | ------------ | -------------- | ----------------- | | Bert-base-cased | 58.24 | 57.27 | 57.25 | | Scibert-scivocab-cased | 59.58 | 58.65 | 58.68 | | SSCI-BERT-e2 | 60.89 | 60.24 | 60.30 | | SSCI-SciBERT-e2 | 60.96 | 60.54 | 60.51 | | SSCI-BERT-e4 | 61.00 | 60.48 | 60.43 | | SSCI-SciBERT-e4 | 61.24 | 60.71 | 60.75 | | Support | 4500 | 4500 | 4500 | #### SSCI Abstract Structural Function Recognition (Classify Dataset) | | Bert-base-cased | SSCI-BERT-e2 | SSCI-BERT-e4 | support | | ------------ | -------------------------- | ------------------- | ------------------- | ----------- | | B | 63.77 | 64.29 | 64.63 | 224 | | P | 53.66 | 57.14 | 57.99 | 95 | | M | 87.63 | 88.43 | 89.06 | 323 | | R | 86.81 | 88.28 | **88.47** | 419 | | C | 78.32 | 79.82 | 78.95 | 316 | | accuracy | 79.59 | 80.9 | 80.97 | 1377 | | macro avg | 74.04 | 75.59 | 75.82 | 1377 | | weighted avg | 79.02 | 80.32 | 80.44 | 1377 | | | **Scibert-scivocab-cased** | **SSCI-SciBERT-e2** | **SSCI-SciBERT-e4** | **support** | | B | 69.98 | **70.95** | **70.95** | 224 | | P | 58.89 | **60.12** | 58.96 | 95 | | M | 89.37 | **90.12** | 88.11 | 323 | | R | 87.66 | 88.07 | 87.44 | 419 | | C | 80.7 | 82.61 | **82.94** | 316 | | accuracy | 81.63 | **82.72** | 82.06 | 1377 | | macro avg | 77.32 | **78.37** | 77.68 | 1377 | | weighted avg | 81.6 | **82.58** | 81.92 | 1377 | ## Cited - If our content is helpful for your research work, please quote our research in your article. - If you want to quote our research, you can use this url (https://github.com/S-T-Full-Text-Knowledge-Mining/SSCI-BERT) as an alternative before our paper is published. ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - SSCI-BERT was trained based on [BERT-Base-Cased]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)). - SSCI-SciBERT was trained based on [scibert-scivocab-cased]([allenai/scibert: A BERT model for scientific text. (github.com)](https://github.com/allenai/scibert))
asdc/roberta-base-biomedical-clinical-es-finetuned-text_classification
44665c9ae5656e6e3cf72d5c28812b44b6c591c2
2022-06-15T10:14:53.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
asdc
null
asdc/roberta-base-biomedical-clinical-es-finetuned-text_classification
32
null
transformers
7,024
Entry not found
facebook/roberta-hate-speech-dynabench-r1-target
64b34ed9222de68a47908642251def8a88c83938
2022-06-10T22:36:34.000Z
[ "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "transformers" ]
text-classification
false
facebook
null
facebook/roberta-hate-speech-dynabench-r1-target
32
null
transformers
7,025
--- language: en --- # LFTW R1 Target The R1 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-repnum_wl-rua_wl_3_classes
5aca238b6f97a45842eb58f02f68f9cae323174a
2022-06-20T12:40:57.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-repnum_wl-rua_wl_3_classes
32
null
transformers
7,026
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 75.4 | 75.4 | | test | 76.1 | 76.0 |
KoichiYasuoka/bert-large-japanese-wikipedia-ud-head
0067f7c14b99922b78c017ef0f5b5e5dbfa5a061
2022-07-20T03:51:48.000Z
[ "pytorch", "bert", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/bert-large-japanese-wikipedia-ud-head
32
null
transformers
7,027
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # bert-large-japanese-wikipedia-ud-head ## Model Description This is a BERT model pretrained on Japanese Wikipedia texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model) print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/bert-large-japanese-wikipedia-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ```
Sayan01/tiny-bert-qqp-distilled
17f75e1c83b5db90afc168341ea90efb5c180ce7
2022-07-24T01:52:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-qqp-distilled
32
null
transformers
7,028
Entry not found
hf-internal-testing/tiny-random-bloom
e8ce66e3837114693d99ab121fbf96951684ce42
2022-06-27T18:38:43.000Z
[ "pytorch", "bloom", "feature-extraction", "eng", "transformers", "integration", "text-generation" ]
text-generation
false
hf-internal-testing
null
hf-internal-testing/tiny-random-bloom
32
null
transformers
7,029
--- language: - eng tags: - integration pipeline_tag: text-generation --- # BigScience - testing model This model aims to test the conversion between Megatron-LM and transformers. It is a small ```GPT-2```-like model that has been used to debug the script. Use it only for integration tests
domenicrosati/deberta-mlm-test
94d7b7819a8d1a33991c2f396cff22c2119dab62
2022-06-29T05:17:09.000Z
[ "pytorch", "tensorboard", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
domenicrosati
null
domenicrosati/deberta-mlm-test
32
null
transformers
7,030
--- license: mit tags: - fill-mask - generated_from_trainer metrics: - accuracy model-index: - name: deberta-mlm-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-mlm-test This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2792 - Accuracy: 0.4766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.4466 | 1.0 | 2067 | 4.1217 | 0.3847 | | 3.9191 | 2.0 | 4134 | 3.6562 | 0.4298 | | 3.6397 | 3.0 | 6201 | 3.4417 | 0.4550 | | 3.522 | 4.0 | 8268 | 3.3239 | 0.4692 | | 3.4504 | 5.0 | 10335 | 3.2792 | 0.4766 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base-aeslc-23419
2208d22648160b08f252f6c6b4a26147e31f858e
2022-07-01T15:20:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base-aeslc-23419
32
null
transformers
7,031
Entry not found
anneke/finetuning-distilbert-base-uncased-5000-samples
bfe2377c15873c4fa8941aadc7f3235726cc7222
2022-07-05T14:05:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anneke
null
anneke/finetuning-distilbert-base-uncased-5000-samples
32
null
transformers
7,032
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-distilbert-base-uncased-5000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-distilbert-base-uncased-5000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1147 - Accuracy: 0.982 - F1: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SushantGautam/LogClassification
cbf587c7938109589b55be35d227eb1766ce9bdb
2022-07-09T14:21:33.000Z
[ "pytorch", "canine", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SushantGautam
null
SushantGautam/LogClassification
32
null
transformers
7,033
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: LogClassification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LogClassification This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
tbboukhari/wav2vec2-base-timit-demo-google-colab
c8d45cd05187486896e095643319178159c38164
2022-07-20T13:44:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tbboukhari
null
tbboukhari/wav2vec2-base-timit-demo-google-colab
32
null
transformers
7,034
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5261 - Wer: 0.3351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5764 | 1.0 | 500 | 2.3358 | 1.0 | | 0.9494 | 2.01 | 1000 | 0.6086 | 0.5448 | | 0.4527 | 3.01 | 1500 | 0.4731 | 0.4685 | | 0.307 | 4.02 | 2000 | 0.4432 | 0.4341 | | 0.2366 | 5.02 | 2500 | 0.4343 | 0.4025 | | 0.1934 | 6.02 | 3000 | 0.4284 | 0.4105 | | 0.154 | 7.03 | 3500 | 0.4709 | 0.3936 | | 0.14 | 8.03 | 4000 | 0.4296 | 0.3889 | | 0.1189 | 9.04 | 4500 | 0.4864 | 0.3862 | | 0.1057 | 10.04 | 5000 | 0.4903 | 0.3776 | | 0.1034 | 11.04 | 5500 | 0.4889 | 0.3838 | | 0.0899 | 12.05 | 6000 | 0.4680 | 0.3701 | | 0.0864 | 13.05 | 6500 | 0.4981 | 0.3608 | | 0.0714 | 14.06 | 7000 | 0.4608 | 0.3589 | | 0.0673 | 15.06 | 7500 | 0.4970 | 0.3754 | | 0.0606 | 16.06 | 8000 | 0.5344 | 0.3618 | | 0.0603 | 17.07 | 8500 | 0.4980 | 0.3675 | | 0.0588 | 18.07 | 9000 | 0.5339 | 0.3601 | | 0.0453 | 19.08 | 9500 | 0.4973 | 0.3526 | | 0.0433 | 20.08 | 10000 | 0.5359 | 0.3572 | | 0.0421 | 21.08 | 10500 | 0.4885 | 0.3532 | | 0.0359 | 22.09 | 11000 | 0.5184 | 0.3471 | | 0.032 | 23.09 | 11500 | 0.5230 | 0.3483 | | 0.0333 | 24.1 | 12000 | 0.5512 | 0.3474 | | 0.0279 | 25.1 | 12500 | 0.5102 | 0.3437 | | 0.0232 | 26.1 | 13000 | 0.5195 | 0.3384 | | 0.0237 | 27.11 | 13500 | 0.5350 | 0.3355 | | 0.0209 | 28.11 | 14000 | 0.5432 | 0.3368 | | 0.023 | 29.12 | 14500 | 0.5261 | 0.3351 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Fagen/TrueNeuromiron1
e297e1ce01e794b447edb33b172ca63230f1efb0
2022-07-14T20:10:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:unknown" ]
text-generation
false
Fagen
null
Fagen/TrueNeuromiron1
32
null
transformers
7,035
--- license: unknown ---
GeniusVoice/tinybertje-v2
69833f79c74ec941254c577a17a5c124c1770cc8
2022-07-20T09:00:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
GeniusVoice
null
GeniusVoice/tinybertje-v2
32
null
transformers
7,036
Entry not found
christofid/pgt
d73cf7457c1029a773f6030b193ee699bad2ea09
2022-07-27T09:00:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
christofid
null
christofid/pgt
32
0
transformers
7,037
--- license: mit --- ### PGT PGT is a GPT-2 prompt-based model trained to facilitate 3 patent generation-related tasks, namely: *part-of-patent generation*, *part-of-patent editing* and *patent coherence check*. For more information about the dataset and the training procedure with refer the reader to [our paper](https://openreview.net/pdf?id=dLHtwZKvJmE). The task specification is taken place by appending a short sentence at the end of a given input. The general format is: `input <|sep|> task specific prompt <|sep|>` In all cases, the generated output ends with the special token <|endoftext|> to facilitate postprocessing. ### Supported tasks **Part-of-patent generation** attempts to generate a part of a patent given as input another, already existing part of it. The model has been trained to perform title-to-abstract, abstract-to-claim as well as their inverse generations. For the claim case, the model was only exposed to independent claims during the training. Input example for part-of-patent generation for the abstract-to-title case: `An interesting patent abstract. <|sep|> Given the above abstract, suggest a title <|sep|>` **Part-of-patent editing** attempts to suggest alternatives for some highlighted parts of a patent abstract or claim. These parts are defined in the input with the special [MASK] token. The expected size of these masked parts can be from a single word to a small phrase. If more than one masks are given in the input, then the generated suggestions are distinguished in the output but the special <|mask_sep|> token. Input example for part-of-patent editing working on a claim input: `An interesting patent claim with a [MASK] part. <|sep|> Replace the [MASK] tokens in the above claim <|sep|>` The **coherence check** assesses the quality of a patent by examining whether to given parts of a patent could belong to the same patent in terms of content and syntax. The input patent parts can be title, abstract or claim. The expected output is Yes or No. Input example for the coherence check task having as input a title and a claim: `A patent title <|sep|> An interesting patent claim. <|sep|> Do the above title and claim belong to the same patent? <|sep|>"` Further prompts and tasks can be tried in a zero-shot fashion. The model and the tasks are also integrated and available via the [GT4SD python library](https://github.com/GT4SD/gt4sd-core/blob/main/notebooks/explore-pgt.ipynb). ### Example A full example of part-of-patent generation ``` from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("christofid/pgt") model = AutoModelForCausalLM.from_pretrained("christofid/pgt") text = "Automated patent generation <|sep|> Given the above title, suggest an abstract <|sep|>" text_encoded = tokenizer.encode(text, return_tensors="pt") generated = model.generate(text_encoded, do_sample=True, top_k=50, num_return_sequences = 3, max_length=512) generated_text = [tokenizer.decode(case).split("<|endoftext|>")[0].strip() for case in generated] ``` ### BibTeX entry and citation info ``` @inproceedings{christofidellis2022pgt, title={PGT: a prompt based generative transformer for the patent domain}, author={Christofidellis, Dimitrios and Torres, Antonio Berrios and Dave, Ashish and Roveri, Manuel and Schmidt, Kristin and Swaminathan, Sarath and Vandierendonck, Hans and Zubarev, Dmitry and Manica, Matteo}, booktitle={ICML 2022 Workshop on Knowledge Retrieval and Language Models}, year={2022} } ```
rufimelo/Legal-BERTimbau-large
6513127ccfa4c94213a86c86f79fbd68c82e7be6
2022-07-25T13:49:27.000Z
[ "pytorch", "bert", "fill-mask", "pt", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
rufimelo
null
rufimelo/Legal-BERTimbau-large
32
1
transformers
7,038
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" tags: - bert - pytorch license: "mit" widget: - text: "O advogado apresentou [MASK] ao juíz." --- # Legal_BERTimbau ## Introduction Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 30 000 legal Portuguese Legal documents available online. ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large") ``` ### Masked language modeling prediction example ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large") pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('O advogado apresentou [MASK] para o juíz') # [{'score': 0.5034703612327576, #'token': 8190, #'token_str': 'recurso', #'sequence': 'O advogado apresentou recurso para o juíz'}, #{'score': 0.07347951829433441, #'token': 21973, #'token_str': 'petição', #'sequence': 'O advogado apresentou petição para o juíz'}, #{'score': 0.05165359005331993, #'token': 4299, #'token_str': 'resposta', #'sequence': 'O advogado apresentou resposta para o juíz'}, #{'score': 0.04611917585134506, #'token': 5265, #'token_str': 'exposição', #'sequence': 'O advogado apresentou exposição para o juíz'}, #{'score': 0.04068068787455559, #'token': 19737, 'token_str': #'alegações', #'sequence': 'O advogado apresentou alegações para o juíz'}] ``` ### For BERT embeddings ```python import torch from transformers import AutoModel model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large') input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], #..., #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) ``` ## Citation If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
anzorq/kbd_lat-835k_ru-3M_t5-small
134aa6d7cf2e76d9f5c0bfeb81174785f6e400a7
2022-07-26T21:21:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "kbd", "ru", "dataset:anzorq/kbd_lat-835k_ru-3M", "transformers", "circassian", "kabardian", "license:unknown", "autotrain_compatible" ]
text2text-generation
false
anzorq
null
anzorq/kbd_lat-835k_ru-3M_t5-small
32
null
transformers
7,039
--- language: - kbd - ru tags: - circassian - kabardian license: unknown datasets: - anzorq/kbd_lat-835k_ru-3M --- t5-v1_1-small pretrained with mlm task on • kbd (custom latin script) 835K lines: a pile of scraped text from news sites, books etc. • ru 3M lines: wiki corpus from OPUS tokenizer: sentencepiece unigram, 8K, shared vocabulary
AnonymousSub/recipes-roberta-base-tokenwise-token-and-step-losses_with_ingr
3740a1be4fa7952e0d7fa32d129fd4c2b0bdcd8c
2022-07-28T02:01:28.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/recipes-roberta-base-tokenwise-token-and-step-losses_with_ingr
32
null
transformers
7,040
Entry not found
aware-ai/wav2vec2-xls-r-300m
e3f05d57fee07844432244aaf29cb581d2ffa698
2022-07-30T09:39:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/wav2vec2-xls-r-300m
32
null
transformers
7,041
Entry not found
xlm-roberta-large-finetuned-conll02-spanish
9224ae48fe1128e0bd8c5b43738a144d6ce5e335
2022-07-22T08:07:22.000Z
[ "pytorch", "rust", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "arxiv:1910.09700", "transformers", "autotrain_compatible" ]
fill-mask
false
null
null
xlm-roberta-large-finetuned-conll02-spanish
31
null
transformers
7,042
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # xlm-roberta-large-finetuned-conll02-spanish # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 6. [Environmental Impact](#environmental-impact) 7. [Technical Specifications](#technical-specifications) 8. [Citation](#citation) 9. [Model Card Authors](#model-card-authors) 10. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [CoNLL-2002](https://huggingface.co/datasets/conll2002) dataset in Spanish. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in Spanish. - **License:** More information needed - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) - **Resources for more information:** -[GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) -[Associated Paper](https://arxiv.org/abs/1911.02116) -[CoNLL-2002 data card](https://huggingface.co/datasets/conll2002) # Uses ## Direct Use The model is a language model. The model can be used for token classification, a natural language understanding task in which a label is assigned to some tokens in a text. ## Downstream Use Potential downstream use cases include Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. To learn more about token classification and other potential downstream use cases, see the Hugging Face [token classification docs](https://huggingface.co/tasks/token-classification). ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations **CONTENT WARNING: Readers should be made aware that language generated by this model may be disturbing or offensive to some and may propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. # Training See the following resources for training data and training procedure details: - [XLM-RoBERTa-large model card](https://huggingface.co/xlm-roberta-large) - [CoNLL-2002 data card](https://huggingface.co/datasets/conll2002) - [Associated paper](https://arxiv.org/pdf/1911.02116.pdf) # Evaluation See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for evaluation details. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 500 32GB Nvidia V100 GPUs (from the [associated paper](https://arxiv.org/pdf/1911.02116.pdf)) - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications See the [associated paper](https://arxiv.org/pdf/1911.02116.pdf) for further details. # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ``` **APA:** - Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116. # Model Card Authors This model card was written by the team at Hugging Face. # How to Get Started with the Model Use the code below to get started with the model. You can use this model directly within a pipeline for NER. <details> <summary> Click to expand </summary> ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> from transformers import pipeline >>> tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll02-spanish") >>> model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll02-spanish") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Efectuaba un vuelo entre bombay y nueva york.") [{'end': 30, 'entity': 'B-LOC', 'index': 7, 'score': 0.95703226, 'start': 25, 'word': '▁bomba'}, {'end': 39, 'entity': 'B-LOC', 'index': 10, 'score': 0.9771854, 'start': 34, 'word': '▁nueva'}, {'end': 43, 'entity': 'I-LOC', 'index': 11, 'score': 0.9914097, 'start': 40, 'word': '▁yor'}] ``` </details>
BramVanroy/gpt-neo-125M_finetuned-tolkien
3c91dbac23866d12ec91bf1c73a92087b1d272c9
2021-10-04T09:30:59.000Z
[ "pytorch", "gpt_neo", "text-generation", "en", "transformers" ]
text-generation
false
BramVanroy
null
BramVanroy/gpt-neo-125M_finetuned-tolkien
31
1
transformers
7,043
--- language: - en --- *First attempt. Likely poor quality!* Finetuned version of GPT-Neo 125M on some of Tolkien's works, namely Beren and Lúthien, The Lord of The Rings (+ appendices), and The Hobbit. Trained with a strided sliding window. Paragraphs were separated by new lines. - batch size: 32 - train epochs: 10 - context window size: 128 - input chunk size: 2048 - current revision: chkpt 6300
Cameron/BERT-mdgender-wizard
10d96a9c252b6f11aa594e693dea08e30db38a99
2021-05-18T17:33:48.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-mdgender-wizard
31
null
transformers
7,044
Entry not found
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
f0aca5ea2d7bef0378bcbd0a6a00ed1072d83b5e
2021-05-18T18:06:20.000Z
[ "pytorch", "jax", "bert", "text-classification", "multilingual", "arxiv:2104.09947", "transformers", "Dutch", "French", "English", "Tweets", "Sentiment analysis" ]
text-classification
false
DTAI-KULeuven
null
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
31
null
transformers
7,045
--- language: "multilingual" tags: - Dutch - French - English - Tweets - Sentiment analysis widget: - text: "I really wish I could leave my house after midnight, this makes no sense!" --- # Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT [Blog post »](https://people.cs.kuleuven.be/~pieter.delobelle/attitudes-towards-covid-19-measures/?utm_source=huggingface&utm_medium=social&utm_campaign=corona_tweets) · [paper »](http://arxiv.org/abs/2104.09947) This model can be used to determine if a tweet expresses support or not for a curfew. The model was trained on manually labeled tweets from Belgium in Dutch, French and English. We categorized several months worth of these Tweets by topic (government COVID measure) and opinion expressed. Below is a timeline of the relative number of Tweets on the curfew topic (middle) and the fraction of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the number of daily cases in Belgium to give context on the pandemic situation (top). ![chart.png](https://github.com/iPieter/bert-corona-tweets/raw/master/chart.png) Models used in this paper are on HuggingFace: - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7
6e74d16e5521c8f0ae3773eaf299a2d6155ff208
2022-03-24T11:52:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7
31
null
transformers
7,046
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - hi - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 0.3531946325249292 - name: Test CER type: cer value: 0.11310803379493076 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-CV7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6588 - Wer: 0.2987 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: # - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.809 | 1.36 | 200 | 6.2066 | 1.0 | | 4.3402 | 2.72 | 400 | 3.5184 | 1.0 | | 3.4365 | 4.08 | 600 | 3.2779 | 1.0 | | 1.8643 | 5.44 | 800 | 0.9875 | 0.6270 | | 0.7504 | 6.8 | 1000 | 0.6382 | 0.4666 | | 0.5328 | 8.16 | 1200 | 0.6075 | 0.4505 | | 0.4364 | 9.52 | 1400 | 0.5785 | 0.4215 | | 0.3777 | 10.88 | 1600 | 0.6279 | 0.4227 | | 0.3374 | 12.24 | 1800 | 0.6536 | 0.4192 | | 0.3236 | 13.6 | 2000 | 0.5911 | 0.4047 | | 0.2877 | 14.96 | 2200 | 0.5955 | 0.4097 | | 0.2643 | 16.33 | 2400 | 0.5923 | 0.3744 | | 0.2421 | 17.68 | 2600 | 0.6307 | 0.3814 | | 0.2218 | 19.05 | 2800 | 0.6036 | 0.3764 | | 0.2046 | 20.41 | 3000 | 0.6286 | 0.3797 | | 0.191 | 21.77 | 3200 | 0.6517 | 0.3889 | | 0.1856 | 23.13 | 3400 | 0.6193 | 0.3661 | | 0.1721 | 24.49 | 3600 | 0.7034 | 0.3727 | | 0.1656 | 25.85 | 3800 | 0.6293 | 0.3591 | | 0.1532 | 27.21 | 4000 | 0.6075 | 0.3611 | | 0.1507 | 28.57 | 4200 | 0.6313 | 0.3565 | | 0.1381 | 29.93 | 4400 | 0.6564 | 0.3578 | | 0.1359 | 31.29 | 4600 | 0.6724 | 0.3543 | | 0.1248 | 32.65 | 4800 | 0.6789 | 0.3512 | | 0.1198 | 34.01 | 5000 | 0.6442 | 0.3539 | | 0.1125 | 35.37 | 5200 | 0.6676 | 0.3419 | | 0.1036 | 36.73 | 5400 | 0.7017 | 0.3435 | | 0.0982 | 38.09 | 5600 | 0.6828 | 0.3319 | | 0.0971 | 39.45 | 5800 | 0.6112 | 0.3351 | | 0.0968 | 40.81 | 6000 | 0.6424 | 0.3252 | | 0.0893 | 42.18 | 6200 | 0.6707 | 0.3304 | | 0.0878 | 43.54 | 6400 | 0.6432 | 0.3236 | | 0.0827 | 44.89 | 6600 | 0.6696 | 0.3240 | | 0.0788 | 46.26 | 6800 | 0.6564 | 0.3180 | | 0.0753 | 47.62 | 7000 | 0.6574 | 0.3130 | | 0.0674 | 48.98 | 7200 | 0.6698 | 0.3175 | | 0.0676 | 50.34 | 7400 | 0.6441 | 0.3142 | | 0.0626 | 51.7 | 7600 | 0.6642 | 0.3121 | | 0.0617 | 53.06 | 7800 | 0.6615 | 0.3117 | | 0.0599 | 54.42 | 8000 | 0.6634 | 0.3059 | | 0.0538 | 55.78 | 8200 | 0.6464 | 0.3033 | | 0.0571 | 57.14 | 8400 | 0.6503 | 0.3018 | | 0.0491 | 58.5 | 8600 | 0.6625 | 0.3025 | | 0.0511 | 59.86 | 8800 | 0.6588 | 0.2987 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os
94327a35a5dd57fef3d038fbe605923f297c9c1d
2022-03-23T18:28:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl_BE", "nl_NL", "robust-speech-event", "model-index" ]
automatic-speech-recognition
false
FremyCompany
null
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os
31
1
transformers
7,047
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 4.06 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 17.77 - name: Test CER type: cer value: 9.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 16.32 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.04057 - Cer: 0.01222 ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
GKLMIP/electra-khmer-small-uncased
6e1ef7197c46c929ff90f78cbb0453deb60abb5d
2021-07-31T05:39:36.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-khmer-small-uncased
31
null
transformers
7,048
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
Geotrend/bert-base-tr-cased
f3827b90bd2393dc83292addd95dc1598c66edc0
2021-05-18T20:12:30.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "tr", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-tr-cased
31
null
transformers
7,049
--- language: tr datasets: wikipedia license: apache-2.0 --- # bert-base-tr-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-tr-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-tr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Hellisotherpeople/T5_Reassuring_Parables
40c8c1be8c3cf65c557644c0e3c222ca5ebfb283
2021-12-25T06:48:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Hellisotherpeople
null
Hellisotherpeople/T5_Reassuring_Parables
31
null
transformers
7,050
https://imgs.xkcd.com/comics/reassuring.png
Helsinki-NLP/opus-mt-en-sq
b2365d93766da5d5bb7570a2289491bf9db40a44
2021-09-09T21:39:15.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sq", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sq
31
null
transformers
7,051
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-sq * source languages: en * target languages: sq * OPUS readme: [en-sq](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-sq/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-sq/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sq/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sq/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.sq | 46.5 | 0.669 |
Helsinki-NLP/opus-mt-gl-es
1acbbb2ecac07dfcacd9e1cbcaa3a40e4db23a0c
2021-01-18T08:52:42.000Z
[ "pytorch", "marian", "text2text-generation", "gl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gl-es
31
null
transformers
7,052
--- language: - gl - es tags: - translation license: apache-2.0 --- ### glg-spa * source group: Galician * target group: Spanish * OPUS readme: [glg-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-spa/README.md) * model: transformer-align * source language(s): glg * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.glg.spa | 72.2 | 0.836 | ### System Info: - hf_name: glg-spa - source_languages: glg - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gl', 'es'] - src_constituents: {'glg'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.test.txt - src_alpha3: glg - tgt_alpha3: spa - short_pair: gl-es - chrF2_score: 0.836 - bleu: 72.2 - brevity_penalty: 0.982 - ref_len: 17443.0 - src_name: Galician - tgt_name: Spanish - train_date: 2020-06-16 - src_alpha2: gl - tgt_alpha2: es - prefer_old: False - long_pair: glg-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-sv-th
f3466880baa26cf96f27dd60599b86b09fde36e4
2021-09-10T14:09:49.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "th", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-th
31
null
transformers
7,053
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-th * source languages: sv * target languages: th * OPUS readme: [sv-th](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-th/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-th/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.th | 21.2 | 0.373 |
Jorgeutd/bert-large-uncased-finetuned-ner
9fac416c8e7631a311d169f7827502af9b521e52
2022-02-16T16:05:14.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Jorgeutd
null
Jorgeutd/bert-large-uncased-finetuned-ner
31
null
transformers
7,054
--- license: apache-2.0 tags: - generated_from_trainer language: en widget: - text: "My name is Scott and I live in Columbus." - text: "My name is Scott and I am calling from Buffalo, NY. I would like to file a complain with United Airlines." - text: "Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne." datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9504719600222099 - name: Recall type: recall value: 0.9574896520863632 - name: F1 type: f1 value: 0.9539679001337494 - name: Accuracy type: accuracy value: 0.9885618059637473 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 - Precision: 0.9505 - Recall: 0.9575 - F1: 0.9540 - Accuracy: 0.9886 ## Model description More information needed #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases. #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") model = AutoModelForTokenClassification.from_pretrained("Jorgeutd/bert-large-uncased-finetuned-ner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "My name is Scott and I live in Ohio" ner_results = nlp(example) print(ner_results) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1997 | 1.0 | 878 | 0.0576 | 0.9316 | 0.9257 | 0.9286 | 0.9837 | | 0.04 | 2.0 | 1756 | 0.0490 | 0.9400 | 0.9513 | 0.9456 | 0.9870 | | 0.0199 | 3.0 | 2634 | 0.0557 | 0.9436 | 0.9540 | 0.9488 | 0.9879 | | 0.0112 | 4.0 | 3512 | 0.0602 | 0.9443 | 0.9569 | 0.9506 | 0.9881 | | 0.0068 | 5.0 | 4390 | 0.0631 | 0.9451 | 0.9589 | 0.9520 | 0.9882 | | 0.0044 | 6.0 | 5268 | 0.0638 | 0.9510 | 0.9567 | 0.9538 | 0.9885 | | 0.003 | 7.0 | 6146 | 0.0722 | 0.9495 | 0.9560 | 0.9527 | 0.9885 | | 0.0016 | 8.0 | 7024 | 0.0762 | 0.9491 | 0.9595 | 0.9543 | 0.9887 | | 0.0018 | 9.0 | 7902 | 0.0769 | 0.9496 | 0.9542 | 0.9519 | 0.9883 | | 0.0009 | 10.0 | 8780 | 0.0778 | 0.9505 | 0.9575 | 0.9540 | 0.9886 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
KBLab/bart-base-swedish-cased
5e2e4b3d0b5a34f6c3e152f1b7d11fc944e27fa0
2022-04-14T10:55:32.000Z
[ "pytorch", "bart", "text2text-generation", "sv", "arxiv:1910.13461", "transformers", "autotrain_compatible" ]
text2text-generation
false
KBLab
null
KBLab/bart-base-swedish-cased
31
1
transformers
7,055
--- language: sv widget: - text: "Jag har ätit en <mask>" --- ## KB-BART A [BART](https://arxiv.org/abs/1910.13461) model trained on a Swedish corpus consisting of 15 billion tokens (about 80GB of text). The model was trained with [Fairseq](https://github.com/pytorch/fairseq), and converted to be compatible with Huggingface. Training code can be found [here](https://github.com/kb-labb/kb_bart). ## Usage ```python from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast, AutoTokenizer model = BartForConditionalGeneration.from_pretrained("KBLab/bart-base-swedish-cased") tok = AutoTokenizer.from_pretrained("KBLab/bart-base-swedish-cased") model.eval() input_ids = tok.encode( "Jag har ätit en utsökt <mask> på restaurang vid <mask> .", return_tensors="pt" ) # Simple greedy search output_ids = model.generate( input_ids, min_length=15, max_length=25, num_beams=1, do_sample=False, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang vid havet på restaurang vid havet.</s>' # Sampling output_ids = model.generate( input_ids, min_length=15, max_length=20, num_beams=1, do_sample=True, ) tok.decode(output_ids[0]) #'</s><s> Jag har ätit en utsökt god mat som de tagit in på restaurang vid avröjda</s>' # Beam search output_ids = model.generate( input_ids, min_length=15, max_length=25, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=True, num_return_sequences=6 ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet. Jag har varit ute och gått en sväng.</s><pad><pad>' # Diverse beam generation output_ids = model.generate( input_ids, min_length=50, max_length=100, no_repeat_ngram_size=3, num_beams=8, early_stopping=True, do_sample=False, num_return_sequences=6, num_beam_groups=8, diversity_penalty=2.0, ) tok.decode(output_ids[0]) # '</s><s> Jag har ätit en utsökt middag på restaurang vid havet på restaurang. Jag har varit på restaurang i två dagar... Jag..,..!!!.. Så.. Nu.. Hej.. Vi.. Här.</s>' ``` ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
M47Labs/spanish_news_classification_headlines
83d2420324598f7a4fe69b1122d00660992fb147
2021-09-07T11:56:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/spanish_news_classification_headlines
31
null
transformers
7,056
--- widget: - text: "El dólar se dispara tras la reunión de la Fed" --- # Spanish News Classification Headlines SNCH: this model was develop by [M47Labs](https://www.m47labs.com/es/) the goal is text classification, the base model use was [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), it was fine-tuned on 1000 example dataset. ## Dataset Sample Dataset size : 1000 Columns: idTask,task content 1,idTag,tag. |idTask|task content 1|idTag|tag| |------|------|------|------| |3637d9ac-119c-4a8f-899c-339cf5b42ae0|Alcalá de Guadaíra celebra la IV Semana de la Diversidad Sexual con acciones de sensibilización|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |d56bab52-0029-45dd-ad90-5c17d4ed4c88|El Archipiélago Chinijo Graciplus se impone en el Trofeo Centro Comercial Rubicón|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |dec70bc5-4932-4fa2-aeac-31a52377be02|Un total de 39 personas padecen ELA actualmente en la provincia|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |fb396ba9-fbf1-4495-84d9-5314eb731405|Eurocopa 2021 : Italia vence a Gales y pasa a octavos con su candidatura reforzada|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |bc5a36ca-4e0a-422e-9167-766b41008c01|Resolución de 10 de junio de 2021, del Ayuntamiento de Tarazona de La Mancha (Albacete), referente a la convocatoria para proveer una plaza.|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |a87f8703-ce34-47a5-9c1b-e992c7fe60f6|El primer ministro sueco pierde una moción de censura|209ae89e-55b4-41fd-aac0-5400feab479e|politica| |d80bdaad-0ad5-43a0-850e-c473fd612526|El dólar se dispara tras la reunión de la Fed|11925830-148e-4890-a2bc-da9dc059dc17|economia| ## Labels: * ciencia_tecnologia * clickbait * cultura * deportes * economia * educacion * medio_ambiente * opinion * politica * sociedad ## Example of Use ### Pipeline ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline review_text = 'los vehiculos que esten esperando pasajaeros deberan estar apagados para reducir emisiones' path = "M47Labs/spanish_news_classification_headlines" tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) nlp = TextClassificationPipeline(task = "text-classification", model = model, tokenizer = tokenizer) print(nlp(review_text)) ``` ```[{'label': 'medio_ambiente', 'score': 0.5648820996284485}]``` ### Pytorch ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline from numpy import np model_name = 'M47Labs/spanish_news_classification_headlines' MAX_LEN = 32 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) texto = "las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno" encoded_review = tokenizer.encode_plus( texto, max_length=MAX_LEN, add_special_tokens=True, #return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoded_review['input_ids'] attention_mask = encoded_review['attention_mask'] output = model(input_ids, attention_mask) _, prediction = torch.max(output['logits'], dim=1) print(f'Review text: {texto}') print(f'Sentiment : {model.config.id2label[prediction.detach().cpu().numpy()[0]]}') ``` ```Review text: las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno``` ```Sentiment : medio_ambiente``` A more in depth example on how to use the model can be found in this colab notebook: https://colab.research.google.com/drive/1XsKea6oMyEckye2FePW_XN7Rf8v41Cw_?usp=sharing ## Finetune Hyperparameters * MAX_LEN = 32 * TRAIN_BATCH_SIZE = 8 * VALID_BATCH_SIZE = 4 * EPOCHS = 5 * LEARNING_RATE = 1e-05 ## Train Results |n_example|epoch|loss|acc| |------|------|------|------| |100|0|2.286327266693115|12.5| |100|1|2.018876111507416|40.0| |100|2|1.8016730904579163|43.75| |100|3|1.6121837735176086|46.25| |100|4|1.41565443277359|68.75| |n_example|epoch|loss|acc| |------|------|------|------| |500|0|2.0770938420295715|24.5| |500|1|1.6953029704093934|50.25| |500|2|1.258900796175003|64.25| |500|3|0.8342628020048142|78.25| |500|4|0.5135736921429634|90.25| |n_example|epoch|loss|acc| |------|------|------|------| |1000|0|1.916002897115854|36.1997226074896| |1000|1|1.2941598492664295|62.2746185852982| |1000|2|0.8201534710415117|76.97642163661581| |1000|3|0.524806430051615|86.9625520110957| |1000|4|0.30662027455784463|92.64909847434119| ## Validation Results |n_examples|100| |------|------| |Accuracy Score|0.35| |Precision (Macro)|0.35| |Recall (Macro)|0.16| |n_examples|500| |------|------| |Accuracy Score|0.62| |Precision (Macro)|0.60| |Recall (Macro)|0.47| |n_examples|1000| |------|------| |Accuracy Score|0.68| |Precision(Macro)|0.68| |Recall (Macro)|0.64| ![alt text](https://media-exp1.licdn.com/dms/image/C4D0BAQHpfgjEyhtE1g/company-logo_200_200/0/1625210573748?e=1638403200&v=beta&t=toQNpiOlyim5Ja4f7Ejv8yKoCWifMsLWjkC7XnyXICI "Logo M47")
MMG/mlm-spanish-roberta-base
60432d13849407dfab272feca531865d57989279
2021-08-06T09:18:26.000Z
[ "pytorch", "roberta", "fill-mask", "es", "transformers", "autotrain_compatible" ]
fill-mask
false
MMG
null
MMG/mlm-spanish-roberta-base
31
1
transformers
7,057
--- language: - es widget: - text: "MMG se dedica a la <mask> artificial." --- # mlm-spanish-roberta-base This model has a RoBERTa base architecture and was trained from scratch with 3.6 GB of raw text over 10 epochs. 4 Tesla V-100 GPUs were used for the training. To test the quality of the resulting model we evaluate it over the [GLUES](https://github.com/dccuchile/GLUES) benchmark for Spanish NLU. The results are the following: | Task | Score (metric) | |:-----------------------:|:---------------------:| | XNLI | 71.99 (accuracy) | | Paraphrasing | 74.85 (accuracy) | | NER | 85.34 (F1) | | POS | 97.49 (accuracy) | | Dependency Parsing | 85.14/81.08 (UAS/LAS) | | Document Classification | 93.00 (accuracy) |
NTUYG/SOTitle-csharp-BART
03cd470aea8744f0af23ece2c24b2e30bb64db03
2021-06-13T17:33:05.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
NTUYG
null
NTUYG/SOTitle-csharp-BART
31
null
transformers
7,058
Entry not found
Narsil/tiny-distilbert-sequence-classification
39367a0b6b79c45362261fb6dfc738a910d06ce0
2021-07-29T13:20:56.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
Narsil
null
Narsil/tiny-distilbert-sequence-classification
31
1
transformers
7,059
Entry not found
NbAiLab/roberta_NCC_des_128_decayfrom200
c26e2875ad97beec22cb1984cf0a64a3a2ff08d6
2022-01-15T00:11:52.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/roberta_NCC_des_128_decayfrom200
31
null
transformers
7,060
Just for performing some experiments. Do not use.
Noricum/wav2vec2-large-xlsr-53-german
53f748d205e5eda1c055555a6a408e5902ee17b3
2022-03-08T13:44:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Noricum
null
Noricum/wav2vec2-large-xlsr-53-german
31
null
transformers
7,061
# Wav2vec2 German Model This model has been fine-tuned on the wav2vec-large-xlsr-53 with the German CommonVoice dataset. It achieves a 11.26 WER on the full test dataset. It was basically trained with the code provided by [Max Idahl](https://huggingface.co/maxidl/wav2vec2-large-xlsr-german) with small adjustments in data preprocessing and on training parameters. You can use it to transcribe your own files by the following code. Please note, that your input file must be *.wav, encoded in 16 kHz and be single channel. To convert an audio file using ffmpeg use: "ffmpeg -i input.wav -ar 16000 -ac 1 output.wav". The transcribe process is very memory consuming (around 10GB per 10 seconds). If the script ends with "Killed" it means the Python interpreter ran out of memory. In this case, try with a shorter audio file. ```python # !pip3 install transformers torch soundfile import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer # load pretrained model tokenizer = Wav2Vec2Tokenizer.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") #load audio audio_input, _ = sf.read("/path/to/your/audio.wav") # transcribe input_values = tokenizer(audio_input, return_tensors="pt").input_values logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids)[0] print(str(transcription)) ``` To evaluate the model on the full CommonVoice test dataset, run this script: ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "de", split="test") # use "test[:1%]" for 1% sample wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model = Wav2Vec2ForCTC.from_pretrained("Noricum/wav2vec2-large-xlsr-53-german") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=4) # batch_size=8 -> requires ~14.5GB GPU memory # Chunked version, see https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/5: import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("Total (chunk_size=1000), WER: {:2f}".format(100 * chunked_wer(result["pred_strings"], result["sentence"], chunk_size=1000))) ``` Output: Total (chunk_size=1000), WER: 11.256522
Ulto/pythonCoPilot3
adb0517ece979b3a5bf18414652a6184be54e935
2021-11-22T01:24:16.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Ulto
null
Ulto/pythonCoPilot3
31
null
transformers
7,062
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
e1926c3fa9f86395a3ded0adb6e576de9c199bb7
2022-03-23T18:28:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sk", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
31
null
transformers
7,063
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sk metrics: - name: Test WER type: wer value: 18.609 - name: Test CER type: cer value: 5.488 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 40.548 - name: Test CER type: cer value: 17.733 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 44.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.3067 - Wer: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.175 | 2.41 | 400 | 4.6909 | 1.0 | | 3.3785 | 4.82 | 800 | 3.3080 | 1.0 | | 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 | | 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 | | 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 | | 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 | | 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 | | 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 | | 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 | | 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 | | 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 | | 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 | | 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 | | 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 | | 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 | | 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 | | 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 | | 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 | | 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 | | 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 | | 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 | | 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 | | 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 | | 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.707 | 18.609 |
arianpasquali/distilbert-base-multilingual-cased-toxicity
b9f9177a7b8da0154817fe02cb7d3da511104838
2022-01-25T14:31:56.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
arianpasquali
null
arianpasquali/distilbert-base-multilingual-cased-toxicity
31
1
transformers
7,064
Entry not found
asahi417/tner-xlm-roberta-large-multiconer-multi
aedcade5597fd3e989bcca24831cb83f6c4e5b4c
2022-01-25T22:56:45.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-xlm-roberta-large-multiconer-multi
31
null
transformers
7,065
Entry not found
beomi/kykim-gpt3-kor-small_based_on_gpt2
92f2c3e2aeec328af28f87143ed8fef05a54dc1f
2021-11-16T15:21:35.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "ko", "transformers" ]
text-generation
false
beomi
null
beomi/kykim-gpt3-kor-small_based_on_gpt2
31
2
transformers
7,066
--- language: ko --- # Bert base model for Korean ## Update - Update at 2021.11.17 : Add Native Support for BERT Tokenizer (works with AutoTokenizer, pipeline) --- * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python from transformers import pipeline pipe = pipeline('text-generation', model='beomi/kykim-gpt3-kor-small_based_on_gpt2') print(pipe("안녕하세요! 오늘은")) # [{'generated_text': '안녕하세요! 오늘은 제가 요즘 사용하고 있는 클렌징워터를 소개해드리려고 해요! 바로 이 제품!! 바로 이'}] ```
cardiffnlp/bertweet-base-stance-abortion
0198c45ea89fe77f2acf1d5931635309b35ab04a
2021-05-20T14:52:02.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/bertweet-base-stance-abortion
31
null
transformers
7,067
cardiffnlp/twitter-roberta-base-stance-feminist
6e738d1ec8a26e17722e75fda280cfacb82340f7
2021-05-20T15:11:14.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
cardiffnlp
null
cardiffnlp/twitter-roberta-base-stance-feminist
31
null
transformers
7,068
finiteautomata/bert-contextualized-hate-speech-es
047fa04d69dd9461c733c34c4e1b59432c9e5c91
2021-05-19T16:51:14.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
finiteautomata
null
finiteautomata/bert-contextualized-hate-speech-es
31
null
transformers
7,069
Entry not found
gooohjy/suicidal-electra
41b4e633358dff27934ebce3aed500d2a940e8bf
2022-03-30T12:18:23.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
gooohjy
null
gooohjy/suicidal-electra
31
1
transformers
7,070
# Suicidal-ELECTRA This text classification model predicts whether a sequence of words are suicidal (1) or non-suicidal (0). ## Data The model was trained on the [Suicide and Depression Dataset](https://www.kaggle.com/nikhileswarkomati/suicide-watch) obtained from Kaggle. The dataset was scraped from Reddit and consists of 232,074 rows equally distributed between 2 classes - suicide and non-suicide. ## Parameters The model fine-tuning was conducted on 1 epoch, with batch size of 6, and learning rate of 0.00001. Due to limited computing resources and time, we were unable to scale up the number of epochs and batch size. ## Performance The model has achieved the following results after fine-tuning on the aforementioned dataset: - Accuracy: 0.9792 - Recall: 0.9788 - Precision: 0.9677 - F1 Score: 0.9732 ## How to Use Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("gooohjy/suicidal-electra") model = AutoModel.from_pretrained("gooohjy/suicidal-electra") ``` ## Resources For more resources, including the source code, please refer to the GitHub repository [gohjiayi/suicidal-text-detection](https://github.com/gohjiayi/suicidal-text-detection/).
huggingtweets/mattjope
e033072cd1c82b68d7cd0e4f0521f3fd9868922d
2021-05-22T13:47:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mattjope
31
null
transformers
7,071
--- language: en thumbnail: https://www.huggingtweets.com/mattjope/1616749400584/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359792499104047106/Wur41M8Q_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Jope 🤖 AI Bot </div> <div style="font-size: 15px">@mattjope bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattjope's tweets](https://twitter.com/mattjope). | Data | Quantity | | --- | --- | | Tweets downloaded | 827 | | Retweets | 104 | | Short tweets | 95 | | Tweets kept | 628 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8z6lpq25/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattjope's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2386axt1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2386axt1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattjope') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/microsoft
689c89d778efea163d0fc103428886c6d5660b50
2021-05-22T14:32:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/microsoft
31
null
transformers
7,072
--- language: en thumbnail: https://www.huggingtweets.com/microsoft/1609714866268/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1334505837147029504/dg_Twuy0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Microsoft 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@microsoft bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@microsoft's tweets](https://twitter.com/microsoft). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3243</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>431</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>730</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2082</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l9quqlq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microsoft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nxetoau) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nxetoau/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/microsoft'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
imvladikon/wav2vec2-xls-r-1b-hebrew
027e6d57e40b4a5e9a29b67ad68f085a6a15c433
2022-03-24T11:51:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "he", "transformers", "robust-speech-event", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
imvladikon
null
imvladikon/wav2vec2-xls-r-1b-hebrew
31
null
transformers
7,073
--- language: - he license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - he - generated_from_trainer - hf-asr-leaderboard model-index: - name: wav2vec2-xls-r-1b-hebrew results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-hebrew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3533 - Wer: 0.2251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.3587 | 0.47 | 400 | 1.1883 | 0.8392 | | 1.8377 | 0.95 | 800 | 0.8831 | 0.6852 | | 1.7118 | 1.42 | 1200 | 0.8031 | 0.6566 | | 1.6741 | 1.89 | 1600 | 0.7518 | 0.6104 | | 1.6163 | 2.36 | 2000 | 0.6888 | 0.5591 | | 1.5782 | 2.84 | 2400 | 0.6580 | 0.5165 | | 1.5548 | 3.31 | 2800 | 0.6506 | 0.5184 | | 1.5249 | 3.78 | 3200 | 0.6198 | 0.5028 | | 1.5078 | 4.26 | 3600 | 0.5992 | 0.4932 | | 1.4836 | 4.73 | 4000 | 0.5705 | 0.4651 | | 1.4505 | 5.2 | 4400 | 0.5489 | 0.4508 | | 1.4481 | 5.67 | 4800 | 0.5577 | 0.4562 | | 1.4136 | 6.15 | 5200 | 0.5452 | 0.4371 | | 1.3861 | 6.62 | 5600 | 0.5101 | 0.4087 | | 1.3772 | 7.09 | 6000 | 0.4933 | 0.3951 | | 1.3478 | 7.56 | 6400 | 0.4849 | 0.3922 | | 1.3394 | 8.04 | 6800 | 0.4805 | 0.3892 | | 1.3095 | 8.51 | 7200 | 0.4839 | 0.3834 | | 1.306 | 8.98 | 7600 | 0.4611 | 0.3587 | | 1.2707 | 9.46 | 8000 | 0.4545 | 0.3730 | | 1.2626 | 9.93 | 8400 | 0.4516 | 0.3524 | | 1.2412 | 10.4 | 8800 | 0.4314 | 0.3310 | | 1.2456 | 10.87 | 9200 | 0.4401 | 0.3459 | | 1.2081 | 11.35 | 9600 | 0.4399 | 0.3356 | | 1.1998 | 11.82 | 10000 | 0.4195 | 0.3215 | | 1.1826 | 12.29 | 10400 | 0.4221 | 0.3178 | | 1.1573 | 12.77 | 10800 | 0.4098 | 0.3084 | | 1.1416 | 13.24 | 11200 | 0.4086 | 0.3119 | | 1.1174 | 13.71 | 11600 | 0.3854 | 0.2910 | | 1.1048 | 14.18 | 12000 | 0.3859 | 0.2824 | | 1.0748 | 14.66 | 12400 | 0.3854 | 0.2757 | | 1.0697 | 15.13 | 12800 | 0.3740 | 0.2724 | | 1.0477 | 15.6 | 13200 | 0.3693 | 0.2643 | | 1.0356 | 16.08 | 13600 | 0.3727 | 0.2561 | | 1.0083 | 16.55 | 14000 | 0.3652 | 0.2501 | | 1.0 | 17.02 | 14400 | 0.3641 | 0.2457 | | 0.9779 | 17.49 | 14800 | 0.3568 | 0.2409 | | 0.9596 | 17.97 | 15200 | 0.3558 | 0.2376 | | 0.946 | 18.44 | 15600 | 0.3591 | 0.2311 | | 0.9389 | 18.91 | 16000 | 0.3540 | 0.2283 | | 0.9173 | 19.39 | 16400 | 0.3552 | 0.2265 | | 0.9122 | 19.86 | 16800 | 0.3535 | 0.2250 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese
fbb87b1aedfc9232dc50f7d5f230d3bd14943e52
2021-07-06T06:20:06.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "as", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese
31
null
transformers
7,074
--- language: as datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Joydeep Bhattacharjee XLSR Wav2Vec2 Large 53 Assamese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice as type: common_voice args: as metrics: - name: Test WER type: wer value: 69.63 --- # Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "as", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese") model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "as", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese") model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Assamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 69.63 % ## Training The Common Voice `train` and `validation` datasets were used for training.
iocust/horos_gpt_neo
c667b5e6c71f696a75a8a4099a82fab52fd8427b
2021-07-13T11:41:17.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
iocust
null
iocust/horos_gpt_neo
31
null
transformers
7,075
Entry not found
jky594176/recipe_BART1
a9f20d1134f5682e3a1b078476ccce35e9675eb7
2021-05-30T15:15:52.000Z
[ "pytorch", "bart", "text-generation", "transformers" ]
text-generation
false
jky594176
null
jky594176/recipe_BART1
31
null
transformers
7,076
Entry not found
jonatasgrosman/wav2vec2-large-xlsr-53-greek
fd831ad49d7bef2a461a6e46536989bca94e5489
2022-07-27T23:34:34.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/wav2vec2-large-xlsr-53-greek
31
null
transformers
7,077
--- language: el datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Greek by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 11.62 - name: Test CER type: cer value: 3.36 --- # Fine-tuned XLSR-53 large model for speech recognition in Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-greek") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ | | ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ | | ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | | ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ | | ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ | | ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ | | ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ | | ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ | | ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "el" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-greek" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | lighteternal/wav2vec2-large-xlsr-53-greek | **10.13%** | **2.66%** | | jonatasgrosman/wav2vec2-large-xlsr-53-greek | 11.62% | 3.36% | | vasilis/wav2vec2-large-xlsr-53-greek | 19.09% | 5.88% | | PereLluis13/wav2vec2-large-xlsr-53-greek | 20.16% | 5.71% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-greek, title={Fine-tuned {XLSR}-53 large model for speech recognition in {G}reek}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-greek}}, year={2021} } ```
kmfoda/staging-pegasus-gmeetsamsum
754f6d7c1bc561a173b6671fece11822e2082803
2022-02-02T14:34:58.000Z
[ "pytorch", "pegasus", "feature-extraction", "en", "arxiv:1912.08777", "transformers", "summarization" ]
summarization
false
kmfoda
null
kmfoda/staging-pegasus-gmeetsamsum
31
null
transformers
7,078
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lighteternal/gpt2-finetuned-greek-small
44ce2064df77b9cf528232a386182df8f980ca04
2021-05-23T08:32:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "el", "transformers", "causal-lm", "license:apache-2.0" ]
text-generation
false
lighteternal
null
lighteternal/gpt2-finetuned-greek-small
31
null
transformers
7,079
--- language: - el tags: - pytorch - causal-lm widget: - text: "Το αγαπημένο μου μέρος είναι" license: apache-2.0 --- # Greek (el) GPT2 model - small <img src="https://huggingface.co/lighteternal/gpt2-finetuned-greek-small/raw/main/GPT2el.png" width="600"/> #### A new version (recommended) trained on 5x more data is available at: https://huggingface.co/lighteternal/gpt2-finetuned-greek ### By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) * language: el * licence: apache-2.0 * dataset: ~5GB of Greek corpora * model: GPT2 (12-layer, 768-hidden, 12-heads, 117M parameters. OpenAI GPT-2 English model, finetuned for the Greek language) * pre-processing: tokenization + BPE segmentation ### Model description A text generation (autoregressive) model, using Huggingface transformers and fastai based on the English GPT-2(small). &NewLine; Finetuned with gradual layer unfreezing. This is a more efficient and sustainable alternative compared to training from scratch, especially for low-resource languages. &NewLine; Based on the work of Thomas Dehaene (ML6) for the creation of a Dutch GPT2: https://colab.research.google.com/drive/1Y31tjMkB8TqKKFlZ5OJ9fcMp3p8suvs4?usp=sharing ### How to use ``` from transformers import pipeline model = "lighteternal/gpt2-finetuned-greek-small" generator = pipeline( 'text-generation', device=0, model=f'{model}', tokenizer=f'{model}') text = "Μια φορά κι έναν καιρό" print("\\\\ ".join([x.get("generated_text") for x in generator( text, max_length=len(text.split(" "))+15, do_sample=True, top_k=50, repetition_penalty = 1.2, add_special_tokens=False, num_return_sequences=5, temperature=0.95, top_p=0.95)])) ``` ## Training data We used a small (~5GB) sample from a consolidated Greek corpus based on CC100, Wikimatrix, Tatoeba, Books, SETIMES and GlobalVoices. A bigger corpus is expected to provide better results (T0D0). ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call) Based on the work of Thomas Dehaene (ML6): https://blog.ml6.eu/dutch-gpt2-autoregressive-language-modelling-on-a-budget-cff3942dd020
mrm8488/bert-tiny2bert-tiny_shared-finetuned-wikisql
88b44ad03e9239967134c48e307a64fc0df6cf4e
2020-11-12T20:30:55.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/bert-tiny2bert-tiny_shared-finetuned-wikisql
31
null
transformers
7,080
Entry not found
mrm8488/bioclinicalBERT-finetuned-covid-papers
9d5e3686566f2bc68799b26093e1bd0d35643bea
2021-08-25T22:05:46.000Z
[ "pytorch", "jax", "bert", "fill-mask", "en", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/bioclinicalBERT-finetuned-covid-papers
31
1
transformers
7,081
--- language: - en widget: - text: "Masks are [MASK] for preventing" --- # BioclinicalBERT fine-tuned for MLM on COVID Papers
mrm8488/gpt2-finetuned-reddit-tifu
7b57f6cce4ebcbc31ae3dd778593ba245e18b695
2021-05-23T10:26:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/gpt2-finetuned-reddit-tifu
31
1
transformers
7,082
Entry not found
mrm8488/legalectra-base-spanish
a5a47b3ecb625bcde4e94394ac97cc5655dafccd
2021-11-25T20:42:48.000Z
[ "pytorch", "electra", "pretraining", "es", "dataset:Spanish-legal-corpora", "transformers", "Spanish", "Electra", "Legal" ]
null
false
mrm8488
null
mrm8488/legalectra-base-spanish
31
3
transformers
7,083
--- language: es tags: - Spanish - Electra - Legal datasets: - Spanish-legal-corpora --- ## LEGALECTRA ⚖️ **LEGALECTRA** (base) is an Electra like model (discriminator in this case) trained on [A collection of corpora of Spanish legal domain](https://zenodo.org/record/5495529#.YZItp3vMLJw). As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Training details TBA ## Model details ⚙ |Name| # Value| |-----|--------| |Layers| 12 | |Hidden | 768 | |Params| 110M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.941| |AUC | 0.794| |Precision| | ## Benchmarks 🔨 WIP 🚧 ## How to use the discriminator in `transformers` TBA ## Acknowledgments TBA > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
neuralspace-reverie/indic-transformers-hi-distilbert
d1aa35663a0dcfffc090b32c31e6907d4ffc82ca
2020-12-11T21:57:21.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "hi", "transformers", "MaskedLM", "Hindi", "DistilBERT", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-hi-distilbert
31
1
transformers
7,084
--- language: - hi tags: - MaskedLM - Hindi - DistilBERT - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Hindi DistilBERT ## Model description This is a DistilBERT language model pre-trained on ~10 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-hi-distilbert') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-hi-distilbert') text = "आपका स्वागत हैं" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned
ec65d64835701d73081616a9ccea9b46e2a1c2d0
2022-02-22T18:22:01.000Z
[ "pytorch", "bert", "question-answering", "tr", "dataset:TQuAD", "transformers", "loodos-bert-base", "TQuAD", "model-index", "autotrain_compatible" ]
question-answering
false
oguzhanolm
null
oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned
31
null
transformers
7,085
--- language: tr tags: - question-answering - loodos-bert-base - TQuAD - tr datasets: - TQuAD model-index: - name: loodos-bert-base-uncased-QA-fine-tuned results: - task: name: Question Answering type: question-answering dataset: name: TQuAD type: question-answering args: tr metrics: - name: Accuracy type: acc value: 0.91 --- # Turkish SQuAD Model : Question Answering I fine-tuned Loodos-Turkish-Bert-Model for Question-Answering problem with TQuAD dataset. Since the "loodos/bert-base-turkish-uncased" model gave the best results for the Turkish language in classification in the "Auto-tagging of Short Conversational Sentences using Transformer Methods" research we conducted with my teammates, I used this model because I thought that the success rate could be high in the question-answering. * Loodos-BERT-base-uncased: https://huggingface.co/loodos/bert-base-turkish-uncased * TQuAD dataset: https://github.com/TQuad/turkish-nlp-qa-dataset # Training Code ``` !python3 Turkish-QA.py \ --model_type bert \ --model_name_or_path loodos/bert-base-turkish-uncased --do_train \ --do_eval \ --train_file trainQ.json \ --predict_file dev1.json \ --per_gpu_train_batch_size 8 \ --learning_rate 5e-5 \ --num_train_epochs 6 \ --max_seq_length 384 \ --output_dir "./model" ``` # Example Usage > Load Model ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned") model = AutoModelForQuestionAnswering.from_pretrained("oguzhanolm/loodos-bert-base-uncased-QA-fine-tuned") nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) ``` > Apply the model ``` def ask(question,context): temp = nlp(question=question, context=context) start_idx = temp["start"] end_idx = temp["end"] return context[start_idx:end_idx] istanbul="İstanbul, Türkiye'de Marmara Bölgesi'nde yer alan şehir ve Türkiye Cumhuriyeti Devletinin 81 ilinden biridir. Ülkenin nüfus bakımından en çok göç alan ve en kalabalık ilidir. Ekonomik, tarihî ve sosyo-kültürel açıdan önde gelen şehirlerden biridir. Şehir, iktisadi büyüklük açısından dünyada 34. sırada yer alır. Nüfuslarına göre şehirler listesinde belediye sınırları göz önüne alınarak yapılan sıralamaya göre Avrupa'da birinci, dünyada ise altıncı sırada yer almaktadır." soru1 = "İstanbul büyüklük açısından kaçıncı sıradadır?" print(ask(soru1,istanbul)) soru2 = "İstanbul nerede bulunur?" print(ask(soru2,istanbul)) ```
progg/shopping-list-ner
e466d8e7834b27008d8a3bc801d7d06766f5a1cc
2021-03-01T09:52:13.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
progg
null
progg/shopping-list-ner
31
null
transformers
7,086
Entry not found
qanastek/pos-french-camembert-flair
ceef7e8e36f3d92621dfefe3c77f94a26c50d3bf
2022-07-06T23:49:12.000Z
[ "pytorch", "fr", "dataset:qanastek/ANTILLES", "arxiv:1911.03894", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
qanastek
null
qanastek/pos-french-camembert-flair
31
1
flair
7,087
--- tags: - flair - token-classification - sequence-tagger-model language: fr datasets: - qanastek/ANTILLES widget: - text: "George Washington est allé à Washington" --- # POET: A French Extended Part-of-Speech Tagger - Corpora: [ANTILLES](https://github.com/qanastek/ANTILLES) - Embeddings: [Flair](https://aclanthology.org/C18-1139.pdf) & [CamemBERT](https://arxiv.org/abs/1911.03894) - Sequence Labelling: [Bi-LSTM-CRF](https://arxiv.org/abs/1011.4088) - Number of Epochs: 50 **People Involved** * [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1) * [DUFOUR Richard](https://cv.archives-ouvertes.fr/richard-dufour) (2) **Affiliations** 1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France. 2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France. ## Demo: How to use in Flair Requires [Flair](https://pypi.org/project/flair/): ```pip install flair``` ```python from flair.data import Sentence from flair.models import SequenceTagger # Load the model model = SequenceTagger.load("qanastek/pos-french") sentence = Sentence("George Washington est allé à Washington") # predict tags model.predict(sentence) # print predicted pos tags print(sentence.to_tagged_string()) ``` Output: ![Preview Output](preview.PNG) ## Training data `ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb). Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add linguistic and semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora. We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001. The corpora used for this model is available on [Github](https://github.com/qanastek/ANTILLES) at the [CoNLL-U format](https://universaldependencies.org/format.html). Training data are fed to the model as free language and doesn't pass a normalization phase. Thus, it's made the model case and punctuation sensitive. ## Original Tags ```plain PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ ``` ## New additional POS tags | Abbreviation | Description | Examples | |:--------:|:--------:|:--------:| | PREP | Preposition | de | | AUX | Auxiliary Verb | est | | ADV | Adverb | toujours | | COSUB | Subordinating conjunction | que | | COCO | Coordinating Conjunction | et | | PART | Demonstrative particle | -t | | PRON | Pronoun | qui ce quoi | | PDEMMS | Demonstrative Pronoun - Singular Masculine | ce | | PDEMMP | Demonstrative Pronoun - Plural Masculine | ceux | | PDEMFS | Demonstrative Pronoun - Singular Feminine | cette | | PDEMFP | Demonstrative Pronoun - Plural Feminine | celles | | PINDMS | Indefinite Pronoun - Singular Masculine | tout | | PINDMP | Indefinite Pronoun - Plural Masculine | autres | | PINDFS | Indefinite Pronoun - Singular Feminine | chacune | | PINDFP | Indefinite Pronoun - Plural Feminine | certaines | | PROPN | Proper noun | Houston | | XFAMIL | Last name | Levy | | NUM | Numerical Adjective | trentaine vingtaine | | DINTMS | Masculine Numerical Adjective | un | | DINTFS | Feminine Numerical Adjective | une | | PPOBJMS | Pronoun complements of objects - Singular Masculine | le lui | | PPOBJMP | Pronoun complements of objects - Plural Masculine | eux y | | PPOBJFS | Pronoun complements of objects - Singular Feminine | moi la | | PPOBJFP | Pronoun complements of objects - Plural Feminine | en y | | PPER1S | Personal Pronoun First-Person - Singular | je | | PPER2S | Personal Pronoun Second-Person - Singular | tu | | PPER3MS | Personal Pronoun Third-Person - Singular Masculine | il | | PPER3MP | Personal Pronoun Third-Person - Plural Masculine | ils | | PPER3FS | Personal Pronoun Third-Person - Singular Feminine | elle | | PPER3FP | Personal Pronoun Third-Person - Plural Feminine | elles | | PREFS | Reflexive Pronoun First-Person - Singular | me m' | | PREF | Reflexive Pronoun Third-Person - Singular | se s' | | PREFP | Reflexive Pronoun First / Second-Person - Plural | nous vous | | VERB | Verb | obtient | | VPPMS | Past Participle - Singular Masculine | formulé | | VPPMP | Past Participle - Plural Masculine | classés | | VPPFS | Past Participle - Singular Feminine | appelée | | VPPFP | Past Participle - Plural Feminine | sanctionnées | | DET | Determinant | les l' | | DETMS | Determinant - Singular Masculine | les | | DETFS | Determinant - Singular Feminine | la | | ADJ | Adjective | capable sérieux | | ADJMS | Adjective - Singular Masculine | grand important | | ADJMP | Adjective - Plural Masculine | grands petits | | ADJFS | Adjective - Singular Feminine | française petite | | ADJFP | Adjective - Plural Feminine | légères petites | | NOUN | Noun | temps | | NMS | Noun - Singular Masculine | drapeau | | NMP | Noun - Plural Masculine | journalistes | | NFS | Noun - Singular Feminine | tête | | NFP | Noun - Plural Feminine | ondes | | PREL | Relative Pronoun | qui dont | | PRELMS | Relative Pronoun - Singular Masculine | lequel | | PRELMP | Relative Pronoun - Plural Masculine | lesquels | | PRELFS | Relative Pronoun - Singular Feminine | laquelle | | PRELFP | Relative Pronoun - Plural Feminine | lesquelles | | INTJ | Interjection | merci bref | | CHIF | Numbers | 1979 10 | | SYM | Symbol | € % | | YPFOR | Endpoint | . | | PUNCT | Ponctuation | : , | | MOTINC | Unknown words | Technology Lady | | X | Typos & others | sfeir 3D statu | ## Evaluation results The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/ANTILLES/blob/main/ANTILLES/test.conllu). ```plain Results: - F-score (micro) 0.9797 - F-score (macro) 0.9178 - Accuracy 0.9797 By class: precision recall f1-score support PREP 0.9966 0.9987 0.9976 1483 PUNCT 1.0000 1.0000 1.0000 833 NMS 0.9634 0.9801 0.9717 753 DET 0.9923 0.9984 0.9954 645 VERB 0.9913 0.9811 0.9862 583 NFS 0.9667 0.9839 0.9752 560 ADV 0.9940 0.9821 0.9880 504 PROPN 0.9541 0.8937 0.9229 395 DETMS 1.0000 1.0000 1.0000 362 AUX 0.9860 0.9915 0.9888 355 YPFOR 1.0000 1.0000 1.0000 353 NMP 0.9666 0.9475 0.9570 305 COCO 0.9959 1.0000 0.9980 245 ADJMS 0.9463 0.9385 0.9424 244 DETFS 1.0000 1.0000 1.0000 240 CHIF 0.9648 0.9865 0.9755 222 NFP 0.9515 0.9849 0.9679 199 ADJFS 0.9657 0.9286 0.9468 182 VPPMS 0.9387 0.9745 0.9563 157 COSUB 1.0000 0.9844 0.9921 128 DINTMS 0.9918 0.9918 0.9918 122 XFAMIL 0.9298 0.9217 0.9258 115 PPER3MS 1.0000 1.0000 1.0000 87 ADJMP 0.9294 0.9634 0.9461 82 PDEMMS 1.0000 1.0000 1.0000 75 ADJFP 0.9861 0.9342 0.9595 76 PREL 0.9859 1.0000 0.9929 70 DINTFS 0.9839 1.0000 0.9919 61 PREF 1.0000 1.0000 1.0000 52 PPOBJMS 0.9565 0.9362 0.9462 47 PREFP 0.9778 1.0000 0.9888 44 PINDMS 1.0000 0.9773 0.9885 44 VPPFS 0.8298 0.9750 0.8966 40 PPER1S 1.0000 1.0000 1.0000 42 SYM 1.0000 0.9474 0.9730 38 NOUN 0.8824 0.7692 0.8219 39 PRON 1.0000 0.9677 0.9836 31 PDEMFS 1.0000 1.0000 1.0000 29 VPPMP 0.9286 1.0000 0.9630 26 ADJ 0.9524 0.9091 0.9302 22 PPER3MP 1.0000 1.0000 1.0000 20 VPPFP 1.0000 1.0000 1.0000 19 PPER3FS 1.0000 1.0000 1.0000 18 MOTINC 0.3333 0.4000 0.3636 15 PREFS 1.0000 1.0000 1.0000 10 PPOBJMP 1.0000 0.8000 0.8889 10 PPOBJFS 0.6250 0.8333 0.7143 6 INTJ 0.5000 0.6667 0.5714 6 PART 1.0000 1.0000 1.0000 4 PDEMMP 1.0000 1.0000 1.0000 3 PDEMFP 1.0000 1.0000 1.0000 3 PPER3FP 1.0000 1.0000 1.0000 2 NUM 1.0000 0.3333 0.5000 3 PPER2S 1.0000 1.0000 1.0000 2 PPOBJFP 0.5000 0.5000 0.5000 2 PRELMS 1.0000 1.0000 1.0000 2 PINDFS 0.5000 1.0000 0.6667 1 PINDMP 1.0000 1.0000 1.0000 1 X 0.0000 0.0000 0.0000 1 PINDFP 1.0000 1.0000 1.0000 1 micro avg 0.9797 0.9797 0.9797 10019 macro avg 0.9228 0.9230 0.9178 10019 weighted avg 0.9802 0.9797 0.9798 10019 samples avg 0.9797 0.9797 0.9797 10019 ``` ## BibTeX Citations Please cite the following paper when using this model. ANTILLES corpus and POET taggers: ```latex @inproceedings{labrak:hal-03696042, TITLE = {{ANTILLES: An Open French Linguistically Enriched Part-of-Speech Corpus}}, AUTHOR = {Labrak, Yanis and Dufour, Richard}, URL = {https://hal.archives-ouvertes.fr/hal-03696042}, BOOKTITLE = {{25th International Conference on Text, Speech and Dialogue (TSD)}}, ADDRESS = {Brno, Czech Republic}, PUBLISHER = {{Springer}}, YEAR = {2022}, MONTH = Sep, KEYWORDS = {Part-of-speech corpus ; POS tagging ; Open tools ; Word embeddings ; Bi-LSTM ; CRF ; Transformers}, PDF = {https://hal.archives-ouvertes.fr/hal-03696042/file/ANTILLES_A_freNch_linguisTIcaLLy_Enriched_part_of_Speech_corpus.pdf}, HAL_ID = {hal-03696042}, HAL_VERSION = {v1}, } ``` UD_French-GSD corpora: ```latex @misc{ universaldependencies, title={UniversalDependencies/UD_French-GSD}, url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub}, author={UniversalDependencies} } ``` LIA TAGG: ```latex @techreport{LIA_TAGG, author = {Frédéric Béchet}, title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer}, institution = {Aix-Marseille University & CNRS}, year = {2001} } ``` Flair Embeddings: ```latex @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` ## Acknowledgment This work was financially supported by [Zenidoc](https://zenidoc.fr/)
soikit/chinese-bert-wwm-chinese_bert_wwm3
187d2eb60011e10d706a762f105378146aa298d2
2021-10-22T05:09:25.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
soikit
null
soikit/chinese-bert-wwm-chinese_bert_wwm3
31
null
transformers
7,088
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: chinese-bert-wwm-chinese_bert_wwm3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bert-wwm-chinese_bert_wwm3 This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 72 | 0.4251 | | No log | 2.0 | 144 | 0.0282 | | No log | 3.0 | 216 | 0.0048 | | No log | 4.0 | 288 | 0.0018 | | No log | 5.0 | 360 | 0.0011 | | No log | 6.0 | 432 | 0.0006 | | 0.483 | 7.0 | 504 | 0.0004 | | 0.483 | 8.0 | 576 | 0.0004 | | 0.483 | 9.0 | 648 | 0.0002 | | 0.483 | 10.0 | 720 | 0.0002 | | 0.483 | 11.0 | 792 | 0.0002 | | 0.483 | 12.0 | 864 | 0.0001 | | 0.483 | 13.0 | 936 | 0.0001 | | 0.0031 | 14.0 | 1008 | 0.0001 | | 0.0031 | 15.0 | 1080 | 0.0001 | | 0.0031 | 16.0 | 1152 | 0.0001 | | 0.0031 | 17.0 | 1224 | 0.0001 | | 0.0031 | 18.0 | 1296 | 0.0001 | | 0.0031 | 19.0 | 1368 | 0.0001 | | 0.0031 | 20.0 | 1440 | 0.0001 | | 0.0015 | 21.0 | 1512 | 0.0001 | | 0.0015 | 22.0 | 1584 | 0.0001 | | 0.0015 | 23.0 | 1656 | 0.0001 | | 0.0015 | 24.0 | 1728 | 0.0001 | | 0.0015 | 25.0 | 1800 | 0.0000 | | 0.0015 | 26.0 | 1872 | 0.0001 | | 0.0015 | 27.0 | 1944 | 0.0000 | | 0.001 | 28.0 | 2016 | 0.0000 | | 0.001 | 29.0 | 2088 | 0.0000 | | 0.001 | 30.0 | 2160 | 0.0000 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
stanford-crfm/beren-gpt2-medium-x49
fcf9ff1254e0d5c87de2fbc88f606e7a56201f22
2022-06-20T11:13:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stanford-crfm
null
stanford-crfm/beren-gpt2-medium-x49
31
null
transformers
7,089
Entry not found
thunlp/neuba-roberta
55a55fffdd35a65833cd06a6f6062866f1fcb24a
2021-09-16T06:06:29.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
thunlp
null
thunlp/neuba-roberta
31
null
transformers
7,090
Entry not found
vuiseng9/bert-base-squadv1
eab1115060d076a1a54703c7105813dfd17c6300
2022-01-19T19:03:57.000Z
[ "pytorch", "onnx", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vuiseng9
null
vuiseng9/bert-base-squadv1
31
null
transformers
7,091
This model is a fork of [```csarron/bert-base-uncased-squad-v1```](https://huggingface.co/csarron/bert-base-uncased-squad-v1). ``` eval_exact_match = 80.9082 eval_f1 = 88.2275 eval_samples = 10784 ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1 WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1 \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
chitanda/merit-albert-v2-xxlarge-v1
4622991a5822a369bb982958c5581680de2dfc68
2022-02-26T13:12:08.000Z
[ "pytorch", "albert", "transformers", "license:mit" ]
null
false
chitanda
null
chitanda/merit-albert-v2-xxlarge-v1
31
null
transformers
7,092
--- license: mit ---
nlpaueb/sec-bert-num
eefb9538dfcca0f889d6c2fedb6549c1060a9e01
2022-04-28T14:46:16.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2203.06482", "transformers", "finance", "financial", "license:cc-by-sa-4.0", "fill-mask" ]
fill-mask
false
nlpaueb
null
nlpaueb/sec-bert-num
31
4
transformers
7,093
--- language: en pipeline_tag: fill-mask license: cc-by-sa-4.0 thumbnail: https://i.ibb.co/0yz81K9/sec-bert-logo.png tags: - finance - financial widget: - text: "Total net sales decreased [MASK]% or $[NUM] billion during [NUM] compared to [NUM]." - text: "Total net sales decreased [NUM]% or $[MASK] billion during [NUM] compared to [NUM]." - text: "Total net sales decreased [NUM]% or $[NUM] billion during [MASK] compared to [NUM]." - text: "During [MASK], the Company repurchased $[NUM] billion of its common stock and paid dividend equivalents of $[NUM] billion." - text: "During 2019, the Company repurchased $[MASK] billion of its common stock and paid dividend equivalents of $[NUM] billion." --- # SEC-BERT <img align="center" src="https://i.ibb.co/0yz81K9/sec-bert-logo.png" alt="sec-bert-logo" width="400"/> <div style="text-align: justify"> SEC-BERT is a family of BERT models for the financial domain, intended to assist financial NLP research and FinTech applications. SEC-BERT consists of the following models: * [**SEC-BERT-BASE**](https://huggingface.co/nlpaueb/sec-bert-base): Same architecture as BERT-BASE trained on financial documents. * **SEC-BERT-NUM** (this model): Same as SEC-BERT-BASE but we replace every number token with a [NUM] pseudo-token handling all numeric expressions in a uniform manner, disallowing their fragmentation). * [**SEC-BERT-SHAPE**](https://huggingface.co/nlpaueb/sec-bert-shape): Same as SEC-BERT-BASE but we replace numbers with pseudo-tokens that represent the number’s shape, so numeric expressions (of known shapes) are no longer fragmented, e.g., '53.2' becomes '[XX.X]' and '40,200.5' becomes '[XX,XXX.X]'. </div> ## Pre-training corpus The model was pre-trained on 260,773 10-K filings from 1993-2019, publicly available at <a href="https://www.sec.gov/">U.S. Securities and Exchange Commission (SEC)</a> ## Pre-training details <div style="text-align: justify"> * We created a new vocabulary of 30k subwords by training a [BertWordPieceTokenizer](https://github.com/huggingface/tokenizers) from scratch on the pre-training corpus. * We trained BERT using the official code provided in [Google BERT's GitHub repository](https://github.com/google-research/bert)</a>. * We then used [Hugging Face](https://huggingface.co)'s [Transformers](https://github.com/huggingface/transformers) conversion script to convert the TF checkpoint in the desired format in order to be able to load the model in two lines of code for both PyTorch and TF2 users. * We release a model similar to the English BERT-BASE model (12-layer, 768-hidden, 12-heads, 110M parameters). * We chose to follow the same training set-up: 1 million training steps with batches of 256 sequences of length 512 with an initial learning rate 1e-4. * We were able to use a single Google Cloud TPU v3-8 provided for free from [TensorFlow Research Cloud (TRC)](https://sites.research.google/trc), while also utilizing [GCP research credits](https://edu.google.com/programs/credits/research). Huge thanks to both Google programs for supporting us! </div> ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nlpaueb/sec-bert-num") model = AutoModel.from_pretrained("nlpaueb/sec-bert-num") ``` ## Pre-process Text <div style="text-align: justify"> To use SEC-BERT-NUM, you have to pre-process texts replacing every numerical token with [NUM] pseudo-token. Below there is an example of how you can pre-process a simple sentence. This approach is quite simple; feel free to modify it as you see fit. </div> ```python import re import spacy from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("nlpaueb/sec-bert-num") spacy_tokenizer = spacy.load("en_core_web_sm") sentence = "Total net sales decreased 2% or $5.4 billion during 2019 compared to 2018." def sec_bert_num_preprocess(text): tokens = [t.text for t in spacy_tokenizer(text)] processed_text = [] for token in tokens: if re.fullmatch(r"(\d+[\d,.]*)|([,.]\d+)", token): processed_text.append('[NUM]') else: processed_text.append(token) return ' '.join(processed_text) tokenized_sentence = tokenizer.tokenize(sec_bert_num_preprocess(sentence)) print(tokenized_sentence) """ ['total', 'net', 'sales', 'decreased', '[NUM]', '%', 'or', '$', '[NUM]', 'billion', 'during', '[NUM]', 'compared', 'to', '[NUM]', '.'] """ ``` ## Using SEC-BERT variants as Language Models | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales [MASK] 2% or $5.4 billion during 2019 compared to 2018. | decreased | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | increased (0.221), were (0.131), are (0.103), rose (0.075), of (0.058) | **SEC-BERT-BASE** | increased (0.678), decreased (0.282), declined (0.017), grew (0.016), rose (0.004) | **SEC-BERT-NUM** | increased (0.753), decreased (0.211), grew (0.019), declined (0.010), rose (0.006) | **SEC-BERT-SHAPE** | increased (0.747), decreased (0.214), grew (0.021), declined (0.013), rose (0.002) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased 2% or $5.4 [MASK] during 2019 compared to 2018. | billion | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | billion (0.841), million (0.097), trillion (0.028), ##m (0.015), ##bn (0.006) | **SEC-BERT-BASE** | million (0.972), billion (0.028), millions (0.000), ##million (0.000), m (0.000) | **SEC-BERT-NUM** | million (0.974), billion (0.012), , (0.010), thousand (0.003), m (0.000) | **SEC-BERT-SHAPE** | million (0.978), billion (0.021), % (0.000), , (0.000), millions (0.000) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased [MASK]% or $5.4 billion during 2019 compared to 2018. | 2 | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | 20 (0.031), 10 (0.030), 6 (0.029), 4 (0.027), 30 (0.027) | **SEC-BERT-BASE** | 13 (0.045), 12 (0.040), 11 (0.040), 14 (0.035), 10 (0.035) | **SEC-BERT-NUM** | [NUM] (1.000), one (0.000), five (0.000), three (0.000), seven (0.000) | **SEC-BERT-SHAPE** | [XX] (0.316), [XX.X] (0.253), [X.X] (0.237), [X] (0.188), [X.XX] (0.002) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased 2[MASK] or $5.4 billion during 2019 compared to 2018. | % | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | % (0.795), percent (0.174), ##fold (0.009), billion (0.004), times (0.004) | **SEC-BERT-BASE** | % (0.924), percent (0.076), points (0.000), , (0.000), times (0.000) | **SEC-BERT-NUM** | % (0.882), percent (0.118), million (0.000), units (0.000), bps (0.000) | **SEC-BERT-SHAPE** | % (0.961), percent (0.039), bps (0.000), , (0.000), bcf (0.000) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased 2% or $[MASK] billion during 2019 compared to 2018. | 5.4 | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | 1 (0.074), 4 (0.045), 3 (0.044), 2 (0.037), 5 (0.034) | **SEC-BERT-BASE** | 1 (0.218), 2 (0.136), 3 (0.078), 4 (0.066), 5 (0.048) | **SEC-BERT-NUM** | [NUM] (1.000), l (0.000), 1 (0.000), - (0.000), 30 (0.000) | **SEC-BERT-SHAPE** | [X.X] (0.787), [X.XX] (0.095), [XX.X] (0.049), [X.XXX] (0.046), [X] (0.013) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased 2% or $5.4 billion during [MASK] compared to 2018. | 2019 | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | 2017 (0.485), 2018 (0.169), 2016 (0.164), 2015 (0.070), 2014 (0.022) | **SEC-BERT-BASE** | 2019 (0.990), 2017 (0.007), 2018 (0.003), 2020 (0.000), 2015 (0.000) | **SEC-BERT-NUM** | [NUM] (1.000), as (0.000), fiscal (0.000), year (0.000), when (0.000) | **SEC-BERT-SHAPE** | [XXXX] (1.000), as (0.000), year (0.000), periods (0.000), , (0.000) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | Total net sales decreased 2% or $5.4 billion during 2019 compared to [MASK]. | 2018 | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | 2017 (0.100), 2016 (0.097), above (0.054), inflation (0.050), previously (0.037) | **SEC-BERT-BASE** | 2018 (0.999), 2019 (0.000), 2017 (0.000), 2016 (0.000), 2014 (0.000) | **SEC-BERT-NUM** | [NUM] (1.000), year (0.000), last (0.000), sales (0.000), fiscal (0.000) | **SEC-BERT-SHAPE** | [XXXX] (1.000), year (0.000), sales (0.000), prior (0.000), years (0.000) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | During 2019, the Company [MASK] $67.1 billion of its common stock and paid dividend equivalents of $14.1 billion. | repurchased | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | held (0.229), sold (0.192), acquired (0.172), owned (0.052), traded (0.033) | **SEC-BERT-BASE** | repurchased (0.913), issued (0.036), purchased (0.029), redeemed (0.010), sold (0.003) | **SEC-BERT-NUM** | repurchased (0.917), purchased (0.054), reacquired (0.013), issued (0.005), acquired (0.003) | **SEC-BERT-SHAPE** | repurchased (0.902), purchased (0.068), issued (0.010), reacquired (0.008), redeemed (0.006) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | During 2019, the Company repurchased $67.1 billion of its common [MASK] and paid dividend equivalents of $14.1 billion. | stock | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | stock (0.835), assets (0.039), equity (0.025), debt (0.021), bonds (0.017) | **SEC-BERT-BASE** | stock (0.857), shares (0.135), equity (0.004), units (0.002), securities (0.000) | **SEC-BERT-NUM** | stock (0.842), shares (0.157), equity (0.000), securities (0.000), units (0.000) | **SEC-BERT-SHAPE** | stock (0.888), shares (0.109), equity (0.001), securities (0.001), stocks (0.000) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | During 2019, the Company repurchased $67.1 billion of its common stock and paid [MASK] equivalents of $14.1 billion. | dividend | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | cash (0.276), net (0.128), annual (0.083), the (0.040), debt (0.027) | **SEC-BERT-BASE** | dividend (0.890), cash (0.018), dividends (0.016), share (0.013), tax (0.010) | **SEC-BERT-NUM** | dividend (0.735), cash (0.115), share (0.087), tax (0.025), stock (0.013) | **SEC-BERT-SHAPE** | dividend (0.655), cash (0.248), dividends (0.042), share (0.019), out (0.003) | Sample | Masked Token | | --------------------------------------------------- | ------------ | | During 2019, the Company repurchased $67.1 billion of its common stock and paid dividend [MASK] of $14.1 billion. | equivalents | Model | Predictions (Probability) | | --------------------------------------------------- | ------------ | | **BERT-BASE-UNCASED** | revenue (0.085), earnings (0.078), rates (0.065), amounts (0.064), proceeds (0.062) | **SEC-BERT-BASE** | payments (0.790), distributions (0.087), equivalents (0.068), cash (0.013), amounts (0.004) | **SEC-BERT-NUM** | payments (0.845), equivalents (0.097), distributions (0.024), increases (0.005), dividends (0.004) | **SEC-BERT-SHAPE** | payments (0.784), equivalents (0.093), distributions (0.043), dividends (0.015), requirements (0.009) ## Publication <div style="text-align: justify"> If you use this model cite the following article:<br> [**FiNER: Financial Numeric Entity Recognition for XBRL Tagging**](https://arxiv.org/abs/2203.06482)<br> Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis, Eirini Spyropoulou, Prodromos Malakasiotis, Ion Androutsopoulos and George Paliouras<br> In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022) (Long Papers), Dublin, Republic of Ireland, May 22 - 27, 2022 </div> ``` @inproceedings{loukas-etal-2022-finer, title = {FiNER: Financial Numeric Entity Recognition for XBRL Tagging}, author = {Loukas, Lefteris and Fergadiotis, Manos and Chalkidis, Ilias and Spyropoulou, Eirini and Malakasiotis, Prodromos and Androutsopoulos, Ion and Paliouras George}, booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022)}, publisher = {Association for Computational Linguistics}, location = {Dublin, Republic of Ireland}, year = {2022}, url = {https://arxiv.org/abs/2203.06482} } ``` ## About Us <div style="text-align: justify"> [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr) develops algorithms, models, and systems that allow computers to process and generate natural language texts. The group's current research interests include: * question answering systems for databases, ontologies, document collections, and the Web, especially biomedical question answering, * natural language generation from databases and ontologies, especially Semantic Web ontologies, text classification, including filtering spam and abusive content, * information extraction and opinion mining, including legal text analytics and sentiment analysis, * natural language processing tools for Greek, for example parsers and named-entity recognizers, machine learning in natural language processing, especially deep learning. The group is part of the Information Processing Laboratory of the Department of Informatics of the Athens University of Economics and Business. </div> [Manos Fergadiotis](https://manosfer.github.io) on behalf of [AUEB's Natural Language Processing Group](http://nlp.cs.aueb.gr)
nickmuchi/sec-bert-finetuned-finance-classification
e6f300a57b40c2944ae8da5f1159d0a7d55a2be6
2022-04-05T04:57:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:financial_phrasebank", "dataset:Kaggle Self label", "dataset:nickmuchi/financial-classification", "transformers", "financial-sentiment-analysis", "sentiment-analysis", "sentence_50agree", "generated_from_trainer", "financial", "stocks", "sentiment", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
nickmuchi
null
nickmuchi/sec-bert-finetuned-finance-classification
31
null
transformers
7,094
--- license: cc-by-sa-4.0 tags: - financial-sentiment-analysis - sentiment-analysis - sentence_50agree - generated_from_trainer - financial - stocks - sentiment datasets: - financial_phrasebank - Kaggle Self label - nickmuchi/financial-classification metrics: - accuracy - f1 - precision - recall widget: - text: "The USD rallied by 10% last night" example_title: "Bullish Sentiment" - text: "Covid-19 cases have been increasing over the past few months impacting earnings for global firms" example_title: "Bearish Sentiment" - text: "the USD has been trending lower" example_title: "Mildly Bearish Sentiment" model-index: - name: sec-bert-finetuned-finance-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sec-bert-finetuned-finance-classification This model is a fine-tuned version of [nlpaueb/sec-bert-base](https://huggingface.co/nlpaueb/sec-bert-base) on the sentence_50Agree [financial-phrasebank + Kaggle Dataset](https://huggingface.co/datasets/nickmuchi/financial-classification), a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). The Kaggle dataset includes Covid-19 sentiment data and can be found here: [sentiment-classification-selflabel-dataset](https://www.kaggle.com/percyzheng/sentiment-classification-selflabel-dataset). It achieves the following results on the evaluation set: - Loss: 0.5277 - Accuracy: 0.8755 - F1: 0.8744 - Precision: 0.8754 - Recall: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6005 | 0.99 | 71 | 0.3702 | 0.8478 | 0.8465 | 0.8491 | 0.8478 | | 0.3226 | 1.97 | 142 | 0.3172 | 0.8834 | 0.8822 | 0.8861 | 0.8834 | | 0.2299 | 2.96 | 213 | 0.3313 | 0.8814 | 0.8805 | 0.8821 | 0.8814 | | 0.1277 | 3.94 | 284 | 0.3925 | 0.8775 | 0.8771 | 0.8770 | 0.8775 | | 0.0764 | 4.93 | 355 | 0.4517 | 0.8715 | 0.8704 | 0.8717 | 0.8715 | | 0.0533 | 5.92 | 426 | 0.4851 | 0.8735 | 0.8728 | 0.8731 | 0.8735 | | 0.0363 | 6.9 | 497 | 0.5107 | 0.8755 | 0.8743 | 0.8757 | 0.8755 | | 0.0248 | 7.89 | 568 | 0.5277 | 0.8755 | 0.8744 | 0.8754 | 0.8755 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
IIC/xprophetnet-spanish-mlsum
3b166bb62f7ecf8b39433afe5d0d97cfb8a99e38
2022-04-02T15:09:07.000Z
[ "pytorch", "xlm-prophetnet", "text2text-generation", "es", "dataset:mlsum", "transformers", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
IIC
null
IIC/xprophetnet-spanish-mlsum
31
2
transformers
7,095
--- language: - es tags: - summarization license: apache-2.0 datasets: - mlsum metrics: - rouge1 - rouge2 - rougeL - rougeLsum model-index: - name: xprophetnet-spanish-mlsum results: - task: type: summarization name: abstractive summarization dataset: type: mlsum name: mlsum-es args: es metrics: - type: rouge1 value: 25.1158 name: rouge1 - type: rouge2 value: 8.4847 name: rouge2 - type: rougeL value: 20.6184 name: rougeL - type: rougeLsum value: 20.8948 name: rougeLsum --- This is a model for text summarization in Spanish. It has been trained on the spanish portion of [mlsum](https://huggingface.co/datasets/mlsum). For that, [XLM-ProphetNet (a multilingual version of Prophetnet)](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) was used. For tuning the hyperparameters of the model we used [Optuna](https://optuna.org/), with only 10 different trials and 7 initial random trials, as the dataset chosen for training the model was huge. The set of hyperparameters used was the following: ```python def hp_space(trial): return { "learning_rate": trial.suggest_float( "learning_rate", 1e-5, 7e-5, log=True ), "num_train_epochs": trial.suggest_categorical( "num_train_epochs", [3, 5, 7, 10] ), "per_device_train_batch_size": trial.suggest_categorical( "per_device_train_batch_size", [16]), "per_device_eval_batch_size": trial.suggest_categorical( "per_device_eval_batch_size", [32]), "gradient_accumulation_steps": trial.suggest_categorical( "gradient_accumulation_steps", [2, 4, 8]), "warmup_steps": trial.suggest_categorical( "warmup_steps", [50, 100, 500, 1000] ), "weight_decay": trial.suggest_float( "weight_decay", 0.0, 0.1 ), ``` The reported results are on the test split of mlsum. Complete metrics are: ```json {"rouge1": 25.1158, "rouge2": 8.4847, "rougeL": 20.6184, "rougeLsum": 20.8948, "gen_len": 19.6496} ``` This model is really easy to use, and with the following lines of code you can just start summarizing your documents in Spanish: ```python from transformers import ProphetNetForConditionalGeneration, AutoTokenizer text = "Hola esto es un ejemplo de texto a resumir. Poco hay que resumir aquí, pero es sólo de muestra." model_str = "avacaondata/xprophetnet-spanish-mlsum" tokenizer = AutoTokenizer.from_pretrained(model_str) model = ProphetNetForConditionalGeneration.from_pretrained(model_str) input_ids = tokenizer(text, return_tensors="pt").input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) ``` ### Contributions Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model.
bipin/malayalam-gpt2
2780084e16c6814992511af8146c6db8c1d6f776
2022-03-20T11:05:57.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
bipin
null
bipin/malayalam-gpt2
31
null
transformers
7,096
--- license: mit tags: - generated_from_trainer model-index: - name: malayalam-gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # malayalam-gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9042 | 1.0 | 641 | 1.8638 | | 1.8516 | 2.0 | 1282 | 1.8250 | | 1.8034 | 3.0 | 1923 | 1.8095 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
junnyu/roformer_v2_chinese_char_small
da2234d6aef756525bb9622d2e9be18c1f4b2130
2022-05-11T03:32:58.000Z
[ "pytorch", "roformer", "fill-mask", "zh", "arxiv:2104.09864", "transformers", "roformer-v2", "tf2.0", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/roformer_v2_chinese_char_small
31
null
transformers
7,097
--- language: zh tags: - roformer-v2 - pytorch - tf2.0 inference: False --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer-v2 ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## 评测对比 ### CLUE-dev榜单分类任务结果,base+large版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | BERT | 60.06 | 56.80 | 72.41 | 79.56 | 73.93 | 78.62 | 83.93 | | RoBERTa | 60.64 | 58.06 | 74.05 | 81.24 | 76.00 | 87.50 | 84.50 | | RoFormer | 60.91 | 57.54 | 73.52 | 80.92 | 76.07 | 86.84 | 84.63 | | RoFormerV2<sup>*</sup> | 60.87 | 56.54 | 72.75 | 80.34 | 75.36 | 80.92 | 84.67 | | GAU-α | 61.41 | 57.76 | 74.17 | 81.82 | 75.86 | 79.93 | 85.67 | | RoFormer-pytorch(本仓库代码) | 60.60 | 57.51 | 74.44 | 80.79 | 75.67 | 86.84 | 84.77 | | RoFormerV2-pytorch(本仓库代码) | **62.87** | 59.03 | **76.20** | 80.85 | 79.73 | 87.82 | **91.87** | | GAU-α-pytorch(Adafactor) | 61.18 | 57.52 | 73.42 | 80.91 | 75.69 | 80.59 | 85.5 | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.68 | 57.95 | 73.08 | 81.02 | 75.36 | 81.25 | 83.93 | | RoFormerV2-large-pytorch(本仓库代码) | 61.75 | **59.21** | 76.14 | 82.35 | **81.73** | **91.45** | 91.5 | | Chinesebert-large-pytorch | 61.25 | 58.67 | 74.70 | **82.65** | 79.63 | 87.83 | 84.97 | ### CLUE-1.0-test榜单分类任务结果,base+large版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | RoFormer-pytorch(本仓库代码) | 59.54 | 57.34 | 74.46 | 80.23 | 73.67 | 80.69 | 84.57 | | RoFormerV2-pytorch(本仓库代码) | **63.15** | 58.24 | 75.42 | 80.59 | 74.17 | 83.79 | 83.73 | | GAU-α-pytorch(Adafactor) | 61.38 | 57.08 | 74.05 | 80.37 | 73.53 | 74.83 | **85.6** | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.54 | 57.67 | 72.44 | 80.32 | 72.97 | 76.55 | 84.13 | | RoFormerV2-large-pytorch(本仓库代码) | 61.85 | **59.13** | **76.38** | 80.97 | 76.23 | **85.86** | 84.33 | | Chinesebert-large-pytorch | 61.54 | 58.57 | 74.8 | **81.94** | **76.93** | 79.66 | 85.1 | ### 注: - 其中RoFormerV2<sup>*</sup>表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。 - 其中不带有pytorch后缀结果都是从[GAU-alpha](https://github.com/ZhuiyiTechnology/GAU-alpha)仓库复制过来的。 - 其中带有pytorch后缀的结果都是自己训练得出的。 - 苏神代码中拿了cls标签后直接进行了分类,而本仓库使用了如下的分类头,多了2个dropout,1个dense,1个relu激活。 ```python class RoFormerClassificationHead(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) # 这里是relu x = self.dropout(x) x = self.out_proj(x) return x ``` ### 安装 - pip install roformer==0.4.3 ## pytorch & tf2.0使用 ```python import torch import tensorflow as tf from transformers import BertTokenizer from roformer import RoFormerForMaskedLM, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_v2_chinese_char_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_v2_chinese_char_small") tf_model = TFRoFormerForMaskedLM.from_pretrained( "junnyu/roformer_v2_chinese_char_base", from_pt=True ) pt_inputs = tokenizer(text, return_tensors="pt") tf_inputs = tokenizer(text, return_tensors="tf") # pytorch with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pt_outputs_sentence) # tf tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(tf_outputs_sentence) # small # pytorch: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。 # tf: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。 # base # pytorch: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。 # tf: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。 # large # pytorch: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。 # tf: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```tex @techreport{roformerv2, title={RoFormerV2: A Faster and Better RoFormer - ZhuiyiAI}, author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu}, year={2022}, url="https://github.com/ZhuiyiTechnology/roformer-v2", } ```
spartan97/distilbert-base-uncased-finetuned-objectivity-rotten
5291bfca9b1dbbf5af1ffa0b9b17630669f847c1
2022-04-08T11:10:02.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:gpl-3.0" ]
text-classification
false
spartan97
null
spartan97/distilbert-base-uncased-finetuned-objectivity-rotten
31
null
transformers
7,098
--- license: gpl-3.0 --- Objectivity sentence classification model based on **distilbert-base-uncased-finetuned-sst-2-english**. It was fine-tuned with Rotten-IMDB movie review [data](http://www.cs.cornell.edu/people/pabo/movie-review-data/) using extracted sentences from film plots as objective examples and review comments as subjective language examples. With a test set of 5%, we obtained an accuracy of 96% and f1 of the same value. Please, feel free to try the demo online with subjective language examples like "I think...", "I believe...", and more objective claims. For any further comments contact me, at [email protected].
bespin-global/klue-roberta-base-korquad2
44ba601528e7e449c08aba3588582ce031da4ab0
2022-04-14T01:07:13.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
bespin-global
null
bespin-global/klue-roberta-base-korquad2
31
null
transformers
7,099
Entry not found