modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
mrm8488/RuPERTa-base
677ce6c9e527ad01d4d7c4cb6a3d88b6feca4009
2021-05-20T18:15:46.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "es", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/RuPERTa-base
380
null
transformers
2,600
--- language: es thumbnail: https://i.imgur.com/DUlT077.jpg widget: - text: "España es un país muy <mask> en la UE" --- # RuPERTa: the Spanish RoBERTa 🎃<img src="https://abs-0.twimg.com/emoji/v2/svg/1f1ea-1f1f8.svg" alt="spain flag" width="25"/> RuPERTa-base (uncased) is a [RoBERTa model](https://github.com/pytorch/fairseq/tree/master/examples/roberta) trained on a *uncased* verison of [big Spanish corpus](https://github.com/josecannete/spanish-corpora). RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. The architecture is the same as `roberta-base`: `roberta.base:` **RoBERTa** using the **BERT-base architecture 125M** params ## Benchmarks 🧾 WIP (I continue working on it) 🚧 | Task/Dataset | F1 | Precision | Recall | Fine-tuned model | Reproduce it | | -------- | ----: | --------: | -----: | --------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | POS | 97.39 | 97.47 | 97.32 | [RuPERTa-base-finetuned-pos](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-pos) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/RuPERTa_base_finetuned_POS.ipynb) | NER | 77.55 | 75.53 | 79.68 | [RuPERTa-base-finetuned-ner](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-ner) | | SQUAD-es v1 | to-do | | |[RuPERTa-base-finetuned-squadv1](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-squadv1) | SQUAD-es v2 | to-do | | |[RuPERTa-base-finetuned-squadv2](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-squadv2) ## Model in action 🔨 ### Usage for POS and NER 🏷 ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer id2label = { "0": "B-LOC", "1": "B-MISC", "2": "B-ORG", "3": "B-PER", "4": "I-LOC", "5": "I-MISC", "6": "I-ORG", "7": "I-PER", "8": "O" } tokenizer = AutoTokenizer.from_pretrained('mrm8488/RuPERTa-base-finetuned-ner') model = AutoModelForTokenClassification.from_pretrained('mrm8488/RuPERTa-base-finetuned-ner') text ="Julien, CEO de HF, nació en Francia." input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] for m in last_hidden_states: for index, n in enumerate(m): if(index > 0 and index <= len(text.split(" "))): print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())]) # Output: ''' Julien,: I-PER CEO: O de: O HF,: B-ORG nació: I-PER en: I-PER Francia.: I-LOC ''' ``` For **POS** just change the `id2label` dictionary and the model path to [mrm8488/RuPERTa-base-finetuned-pos](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-pos) ### Fast usage for LM with `pipelines` 🧪 ```python from transformers import AutoModelWithLMHead, AutoTokenizer model = AutoModelWithLMHead.from_pretrained('mrm8488/RuPERTa-base') tokenizer = AutoTokenizer.from_pretrained("mrm8488/RuPERTa-base", do_lower_case=True) from transformers import pipeline pipeline_fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) pipeline_fill_mask("España es un país muy <mask> en la UE") ``` ```json [ { "score": 0.1814306527376175, "sequence": "<s> españa es un país muy importante en la ue</s>", "token": 1560 }, { "score": 0.024842597544193268, "sequence": "<s> españa es un país muy fuerte en la ue</s>", "token": 2854 }, { "score": 0.02473250962793827, "sequence": "<s> españa es un país muy pequeño en la ue</s>", "token": 2948 }, { "score": 0.023991240188479424, "sequence": "<s> españa es un país muy antiguo en la ue</s>", "token": 5240 }, { "score": 0.0215945765376091, "sequence": "<s> españa es un país muy popular en la ue</s>", "token": 5782 } ] ``` ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for answering my doubts and Google for helping me with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program. > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
alisawuffles/roberta-large-wanli
b435dba21967eb5aef9744b84c61b5b103123ee0
2022-06-07T21:02:23.000Z
[ "pytorch", "roberta", "text-classification", "arxiv:2201.05955", "transformers" ]
text-classification
false
alisawuffles
null
alisawuffles/roberta-large-wanli
380
2
transformers
2,601
--- widget: - text: "I almost forgot to eat lunch.</s></s>I didn't forget to eat lunch." - text: "I almost forgot to eat lunch.</s></s>I forgot to eat lunch." - text: "I ate lunch.</s></s>I almost forgot to eat lunch." --- This is an off-the-shelf roberta-large model finetuned on WANLI, the Worker-AI Collaborative NLI dataset ([Liu et al., 2022](https://arxiv.org/abs/2201.05955)). It outperforms the `roberta-large-mnli` model on seven out-of-domain test sets, including by 11% on HANS and 9% on Adversarial NLI. ### How to use ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification model = RobertaForSequenceClassification.from_pretrained('alisawuffles/roberta-large-wanli') tokenizer = RobertaTokenizer.from_pretrained('alisawuffles/roberta-large-wanli') x = tokenizer("I almost forgot to eat lunch.", "I didn't forget to eat lunch.", hypothesis, return_tensors='pt', max_length=128, truncation=True) logits = model(**x).logits probs = logits.softmax(dim=1).squeeze(0) label_id = torch.argmax(probs).item() prediction = model.config.id2label[label_id] ``` ### Citation ``` @misc{liu-etal-2022-wanli, title = "WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation", author = "Liu, Alisa and Swayamdipta, Swabha and Smith, Noah A. and Choi, Yejin", month = jan, year = "2022", url = "https://arxiv.org/pdf/2201.05955", } ```
Deniskin/gpt3_medium
e338af13162e52e22f5a89a9986e5f7f3f66fbec
2021-05-21T09:41:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Deniskin
null
Deniskin/gpt3_medium
379
null
transformers
2,602
Entry not found
Stevo/DiagloGPT-medium-spamton
3667391bd5125de5c048b3934bb5fb86d514cc7c
2021-11-17T17:42:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Stevo
null
Stevo/DiagloGPT-medium-spamton
379
1
transformers
2,603
--- tags: - conversational --- @ Deltarune Spamton DialoGPT Model
anton-l/wav2vec2-base-lang-id
1d4eda836bb7b7c53053393b65ddfbe1811e4d10
2021-10-01T12:36:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:common_language", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/wav2vec2-base-lang-id
379
3
transformers
2,604
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: wav2vec2-base-lang-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-lang-id This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the anton-l/common_language dataset. It achieves the following results on the evaluation set: - Loss: 0.9836 - Accuracy: 0.7945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9568 | 1.0 | 173 | 3.2866 | 0.1146 | | 1.9243 | 2.0 | 346 | 2.1241 | 0.3840 | | 1.2923 | 3.0 | 519 | 1.5498 | 0.5489 | | 0.8659 | 4.0 | 692 | 1.4953 | 0.6126 | | 0.5539 | 5.0 | 865 | 1.2431 | 0.6926 | | 0.4101 | 6.0 | 1038 | 1.1443 | 0.7232 | | 0.2945 | 7.0 | 1211 | 1.0870 | 0.7544 | | 0.1552 | 8.0 | 1384 | 1.1080 | 0.7661 | | 0.0968 | 9.0 | 1557 | 0.9836 | 0.7945 | | 0.0623 | 10.0 | 1730 | 1.0252 | 0.7993 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
bioformers/bioformer-cased-v1.0
18d58ede143f4a89cc7a512e55dad960e4d3ad9f
2021-11-11T22:13:21.000Z
[ "pytorch", "tf", "bert", "fill-mask", "en", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
bioformers
null
bioformers/bioformer-cased-v1.0
379
3
transformers
2,605
--- language: - en license: apache-2.0 --- Bioformer is a lightweight BERT model for biomedical text mining. Bioformer uses a biomedical vocabulary and is pre-trained from scratch only on biomedical domain corpora. Our experiments show that Bioformer is 3x as fast as BERT-base, and achieves comparable or even better performance than BioBERT/PubMedBERT on downstream NLP tasks. Bioformer has 8 layers (transformer blocks) with a hidden embedding size of 512, and the number of self-attention heads is 8. Its total number of parameters is 42,820,610. ## Vocabulary of Bioformer Bioformer uses a cased WordPiece vocabulary trained from a biomedical corpus, which included all PubMed abstracts (33 million, as of Feb 1, 2021) and 1 million PMC full-text articles. PMC has 3.6 million articles but we down-sampled them to 1 million such that the total size of PubMed abstracts and PMC full-text articles are approximately equal. To mitigate the out-of-vocabulary issue and include special symbols (e.g. male and female symbols) in biomedical literature, we trained Bioformer’s vocabulary from the Unicode text of the two resources. The vocabulary size of Bioformer is 32768 (2^15), which is similar to that of the original BERT. ## Pre-training of Bioformer Bioformer was pre-trained from scratch on the same corpus as the vocabulary (33 million PubMed abstracts + 1 million PMC full-text articles). For the masked language modeling (MLM) objective, we used whole-word masking with a masking rate of 15%. There are debates on whether the next sentence prediction (NSP) objective could improve the performance on downstream tasks. We include it in our pre-training experiment in case the prediction of the next sentence is needed by end-users. Sentence segmentation of all training text was performed using [SciSpacy](https://allenai.github.io/scispacy/). Pre-training of Bioformer was performed on a single Cloud TPU device (TPUv2, 8 cores, 8GB memory per core). The maximum input sequence length was fixed to 512, and the batch size was set to 256. We pre-trained Bioformer for 2 million steps, which took about 8.3 days. ## Awards Bioformer achieved top performance (highest micro-F1 score) in the BioCreative VII COVID-19 multi-label topic classification challenge (https://biocreative.bioinformatics.udel.edu/media/store/files/2021/TRACK5_pos_1_BC7_submission_221.pdf) ## Acknowledgment Bioformer is partly supported by the Google TPU Research Cloud (TRC) program. ## Questions If you have any questions, please submit an issue here: https://github.com/WGLab/bioformer/issues You can also send an email to Li Fang ([email protected])
textattack/bert-base-uncased-STS-B
8a1d8f1cc0523b7af746daf104ddd0c1ce5911c1
2021-05-20T07:38:28.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/bert-base-uncased-STS-B
379
null
transformers
2,606
Entry not found
sijunhe/nezha-cn-base
bc68bfa5072f5c06055a2b59ba4858e9eea5183f
2022-06-24T03:53:56.000Z
[ "pytorch", "nezha", "fill-mask", "arxiv:1909.00204", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
sijunhe
null
sijunhe/nezha-cn-base
379
2
transformers
2,607
--- license: afl-3.0 --- **Please use 'Bert' related tokenizer classes and 'Nezha' related model classes** [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. The original checkpoints can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch) ## Example Usage ``` from transformers import BertTokenizer, NezhaModel tokenizer = BertTokenizer.from_pretrained('sijunhe/nezha-cn-base') model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") text = "我爱北京天安门" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```
cambridgeltl/mirror-bert-base-uncased-sentence-drophead
a61b9b9024f427b7a562209fac022e85986e9f00
2021-09-19T22:47:41.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.08027", "transformers" ]
feature-extraction
false
cambridgeltl
null
cambridgeltl/mirror-bert-base-uncased-sentence-drophead
378
null
transformers
2,608
--- language: en tags: - sentence-embeddings - sentence-similarity ### cambridgeltl/mirror-bert-base-uncased-sentence-drophead An unsupervised sentence encoder proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2104.08027.pdf), using [drophead](https://aclanthology.org/2020.findings-emnlp.178.pdf) instead of dropout as feature space augmentation. Trained with unlabelled raw sentences, using [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the base model. Please use mean-pooling over *all tokens* as the representation of the input. Note the model does not replicate the exact numbers in the paper since the reported numbers in the paper are average of three runs. ### Citation ```bibtex @inproceedings{ liu2021fast, title={Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders}, author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, booktitle={EMNLP 2021}, year={2021} } ```
cointegrated/rubert-base-cased-dp-paraphrase-detection
2288d9e23758fc028af565680d451d21f7693390
2022-06-29T12:54:01.000Z
[ "pytorch", "bert", "text-classification", "ru", "dataset:merionum/ru_paraphraser", "transformers", "sentence-similarity" ]
text-classification
false
cointegrated
null
cointegrated/rubert-base-cased-dp-paraphrase-detection
378
null
transformers
2,609
--- language: ["ru"] tags: - sentence-similarity - text-classification datasets: - merionum/ru_paraphraser --- This is a version of paraphrase detector by DeepPavlov ([details in the documentation](http://docs.deeppavlov.ai/en/master/features/overview.html#ranking-model-docs)) ported to the `Transformers` format. All credit goes to the authors of DeepPavlov. The model has been trained on the dataset from http://paraphraser.ru/. It classifies texts as paraphrases (class 1) or non-paraphrases (class 0). ```python import torch from transformers import AutoModelForSequenceClassification, BertTokenizer model_name = 'cointegrated/rubert-base-cased-dp-paraphrase-detection' model = AutoModelForSequenceClassification.from_pretrained(model_name).cuda() tokenizer = BertTokenizer.from_pretrained(model_name) def compare_texts(text1, text2): batch = tokenizer(text1, text2, return_tensors='pt').to(model.device) with torch.inference_mode(): proba = torch.softmax(model(**batch).logits, -1).cpu().numpy() return proba[0] # p(non-paraphrase), p(paraphrase) print(compare_texts('Сегодня на улице хорошая погода', 'Сегодня на улице отвратительная погода')) # [0.7056226 0.2943774] print(compare_texts('Сегодня на улице хорошая погода', 'Отличная погодка сегодня выдалась')) # [0.16524374 0.8347562 ] ``` P.S. In the DeepPavlov repository, the tokenizer uses `max_seq_length=64`. This model, however, uses `model_max_length=512`. Therefore, the results on long texts may be inadequate.
Sheerwin02/DialoGPT-small-isla
0b6dff78f1bfbb1cc4d50c6d099420b57a4968da
2022-02-28T06:03:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Sheerwin02
null
Sheerwin02/DialoGPT-small-isla
378
null
transformers
2,610
--- tags: - conversational --- #isla DialoGPT Model
scales-okn/docket-language-model
1339be44c4185b118318131a7fbca1d65f12c4ac
2022-06-04T15:09:27.000Z
[ "pytorch", "tensorboard", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
scales-okn
null
scales-okn/docket-language-model
378
null
transformers
2,611
--- tags: - generated_from_trainer model-index: - name: deberta-v3-large-ddlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-ddlm This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/models/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.9823 | 0.01 | 1000 | 0.9163 | | 0.8817 | 0.02 | 2000 | 0.9022 | | 0.9647 | 0.03 | 3000 | 0.8879 | | 0.8646 | 0.04 | 4000 | 0.8577 | | 0.9159 | 0.06 | 5000 | 0.8677 | | 0.8449 | 0.07 | 6000 | 0.8221 | | 0.8681 | 0.08 | 7000 | 0.8332 | | 0.8738 | 0.09 | 8000 | 0.8334 | | 0.8638 | 0.1 | 9000 | 0.8236 | | 0.9066 | 0.11 | 10000 | 0.8200 | | 0.8686 | 0.12 | 11000 | 0.8092 | | 0.7736 | 0.13 | 12000 | 0.8199 | | 0.8054 | 0.14 | 13000 | 0.7972 | | 0.8934 | 0.16 | 14000 | 0.7998 | | 0.7884 | 0.17 | 15000 | 0.7895 | | 0.8278 | 0.18 | 16000 | 0.7586 | | 0.8482 | 0.19 | 17000 | 0.7562 | | 0.8716 | 0.2 | 18000 | 0.7819 | | 0.8881 | 0.21 | 19000 | 0.7878 | | 0.8397 | 0.22 | 20000 | 0.7989 | | 0.811 | 0.23 | 21000 | 0.7846 | | 0.7762 | 0.24 | 22000 | 0.7753 | | 0.7778 | 0.25 | 23000 | 0.7878 | | 0.737 | 0.27 | 24000 | 0.7473 | | 0.8451 | 0.28 | 25000 | 0.7460 | | 0.823 | 0.29 | 26000 | 0.7300 | | 0.7472 | 0.3 | 27000 | 0.7292 | | 0.8048 | 0.31 | 28000 | 0.7697 | | 0.7962 | 0.32 | 29000 | 0.7359 | | 0.8048 | 0.33 | 30000 | 0.7409 | | 0.8095 | 0.34 | 31000 | 0.7434 | | 0.7451 | 0.35 | 32000 | 0.7534 | | 0.6997 | 0.37 | 33000 | 0.7602 | | 0.8116 | 0.38 | 34000 | 0.7566 | | 0.7963 | 0.39 | 35000 | 0.7245 | | 0.786 | 0.4 | 36000 | 0.7311 | | 0.7991 | 0.41 | 37000 | 0.7230 | | 0.723 | 0.42 | 38000 | 0.7209 | | 0.789 | 0.43 | 39000 | 0.7418 | | 0.7296 | 0.44 | 40000 | 0.7325 | | 0.7363 | 0.45 | 41000 | 0.7134 | | 0.758 | 0.47 | 42000 | 0.6948 | | 0.711 | 0.48 | 43000 | 0.6992 | | 0.7984 | 0.49 | 44000 | 0.7055 | | 0.8402 | 0.5 | 45000 | 0.7108 | | 0.8553 | 0.51 | 46000 | 0.7005 | | 0.7538 | 0.52 | 47000 | 0.7208 | | 0.7169 | 0.53 | 48000 | 0.7291 | | 0.7345 | 0.54 | 49000 | 0.7195 | | 0.758 | 0.55 | 50000 | 0.6694 | | 0.7868 | 0.56 | 51000 | 0.6938 | | 0.6966 | 0.58 | 52000 | 0.6867 | | 0.7389 | 0.59 | 53000 | 0.6862 | | 0.7529 | 0.6 | 54000 | 0.7175 | | 0.7345 | 0.61 | 55000 | 0.6970 | | 0.766 | 0.62 | 56000 | 0.7017 | | 0.7043 | 0.63 | 57000 | 0.6916 | | 0.6474 | 0.64 | 58000 | 0.7129 | | 0.7456 | 0.65 | 59000 | 0.6802 | | 0.7512 | 0.66 | 60000 | 0.6951 | | 0.6816 | 0.68 | 61000 | 0.7072 | | 0.7206 | 0.69 | 62000 | 0.6967 | | 0.6439 | 0.7 | 63000 | 0.6798 | | 0.7309 | 0.71 | 64000 | 0.7163 | | 0.6925 | 0.72 | 65000 | 0.6794 | | 0.6833 | 0.73 | 66000 | 0.6637 | | 0.6643 | 0.74 | 67000 | 0.6855 | | 0.6433 | 0.75 | 68000 | 0.7035 | | 0.7595 | 0.76 | 69000 | 0.7008 | | 0.7214 | 0.78 | 70000 | 0.6618 | | 0.7111 | 0.79 | 71000 | 0.6850 | | 0.7375 | 0.8 | 72000 | 0.6909 | | 0.6779 | 0.81 | 73000 | 0.7042 | | 0.6646 | 0.82 | 74000 | 0.6634 | | 0.6616 | 0.83 | 75000 | 0.7020 | | 0.6762 | 0.84 | 76000 | 0.6638 | | 0.7509 | 0.85 | 77000 | 0.6541 | | 0.6963 | 0.86 | 78000 | 0.6781 | | 0.6949 | 0.87 | 79000 | 0.6576 | | 0.6781 | 0.89 | 80000 | 0.6900 | | 0.65 | 0.9 | 81000 | 0.6835 | | 0.7205 | 0.91 | 82000 | 0.6712 | | 0.6901 | 0.92 | 83000 | 0.6699 | | 0.6972 | 0.93 | 84000 | 0.6456 | | 0.7041 | 0.94 | 85000 | 0.6497 | | 0.6864 | 0.95 | 86000 | 0.6432 | | 0.7308 | 0.96 | 87000 | 0.6497 | | 0.6886 | 0.97 | 88000 | 0.6674 | | 0.6947 | 0.99 | 89000 | 0.6638 | | 0.6567 | 1.0 | 90000 | 0.6242 | | 0.7185 | 1.01 | 91000 | 0.6704 | | 0.7435 | 1.02 | 92000 | 0.6681 | | 0.7108 | 1.03 | 93000 | 0.6619 | | 0.6942 | 1.04 | 94000 | 0.6306 | | 0.6998 | 1.05 | 95000 | 0.6409 | | 0.6481 | 1.06 | 96000 | 0.6476 | | 0.727 | 1.07 | 97000 | 0.6354 | | 0.647 | 1.09 | 98000 | 0.6222 | | 0.6622 | 1.1 | 99000 | 0.6119 | | 0.6346 | 1.11 | 100000 | 0.6471 | | 0.6203 | 1.12 | 101000 | 0.6655 | | 0.6765 | 1.13 | 102000 | 0.6473 | | 0.6703 | 1.14 | 103000 | 0.6308 | | 0.6793 | 1.15 | 104000 | 0.6531 | | 0.683 | 1.16 | 105000 | 0.6693 | | 0.6654 | 1.17 | 106000 | 0.6241 | | 0.6626 | 1.18 | 107000 | 0.6215 | | 0.6976 | 1.2 | 108000 | 0.6479 | | 0.7494 | 1.21 | 109000 | 0.6345 | | 0.691 | 1.22 | 110000 | 0.6322 | | 0.6568 | 1.23 | 111000 | 0.6265 | | 0.705 | 1.24 | 112000 | 0.6281 | | 0.6307 | 1.25 | 113000 | 0.6202 | | 0.6828 | 1.26 | 114000 | 0.6158 | | 0.6403 | 1.27 | 115000 | 0.6495 | | 0.6615 | 1.28 | 116000 | 0.6298 | | 0.6237 | 1.3 | 117000 | 0.6234 | | 0.6707 | 1.31 | 118000 | 0.6267 | | 0.6823 | 1.32 | 119000 | 0.6299 | | 0.6333 | 1.33 | 120000 | 0.6169 | | 0.685 | 1.34 | 121000 | 0.6371 | | 0.6941 | 1.35 | 122000 | 0.6245 | | 0.6358 | 1.36 | 123000 | 0.6291 | | 0.6754 | 1.37 | 124000 | 0.6400 | | 0.6286 | 1.38 | 125000 | 0.6148 | | 0.7036 | 1.4 | 126000 | 0.6033 | | 0.645 | 1.41 | 127000 | 0.6295 | | 0.6578 | 1.42 | 128000 | 0.6348 | | 0.651 | 1.43 | 129000 | 0.6222 | | 0.5558 | 1.44 | 130000 | 0.6231 | | 0.6601 | 1.45 | 131000 | 0.6302 | | 0.6304 | 1.46 | 132000 | 0.6127 | | 0.6177 | 1.47 | 133000 | 0.6047 | | 0.5933 | 1.48 | 134000 | 0.6169 | | 0.6307 | 1.49 | 135000 | 0.6012 | | 0.6018 | 1.51 | 136000 | 0.5900 | | 0.6724 | 1.52 | 137000 | 0.6086 | | 0.6367 | 1.53 | 138000 | 0.6414 | | 0.6515 | 1.54 | 139000 | 0.6267 | | 0.5902 | 1.55 | 140000 | 0.5913 | | 0.6523 | 1.56 | 141000 | 0.5992 | | 0.6005 | 1.57 | 142000 | 0.6128 | | 0.6179 | 1.58 | 143000 | 0.6089 | | 0.6154 | 1.59 | 144000 | 0.6353 | | 0.6298 | 1.61 | 145000 | 0.5997 | | 0.5623 | 1.62 | 146000 | 0.5974 | | 0.5787 | 1.63 | 147000 | 0.6165 | | 0.6099 | 1.64 | 148000 | 0.6246 | | 0.658 | 1.65 | 149000 | 0.6116 | | 0.6567 | 1.66 | 150000 | 0.5938 | | 0.6227 | 1.67 | 151000 | 0.5948 | | 0.5858 | 1.68 | 152000 | 0.5822 | | 0.6227 | 1.69 | 153000 | 0.5802 | | 0.6699 | 1.71 | 154000 | 0.6067 | | 0.5989 | 1.72 | 155000 | 0.6073 | | 0.6184 | 1.73 | 156000 | 0.6124 | | 0.6404 | 1.74 | 157000 | 0.6169 | | 0.639 | 1.75 | 158000 | 0.5997 | | 0.6433 | 1.76 | 159000 | 0.5989 | | 0.5574 | 1.77 | 160000 | 0.5796 | | 0.5983 | 1.78 | 161000 | 0.6036 | | 0.6532 | 1.79 | 162000 | 0.5888 | | 0.6679 | 1.8 | 163000 | 0.6038 | | 0.62 | 1.82 | 164000 | 0.5984 | | 0.5541 | 1.83 | 165000 | 0.6003 | | 0.6192 | 1.84 | 166000 | 0.5786 | | 0.6613 | 1.85 | 167000 | 0.6064 | | 0.5923 | 1.86 | 168000 | 0.6018 | | 0.5894 | 1.87 | 169000 | 0.5912 | | 0.6462 | 1.88 | 170000 | 0.5902 | | 0.5811 | 1.89 | 171000 | 0.6030 | | 0.6358 | 1.9 | 172000 | 0.5915 | | 0.614 | 1.92 | 173000 | 0.5886 | | 0.5969 | 1.93 | 174000 | 0.6084 | | 0.6146 | 1.94 | 175000 | 0.6003 | | 0.6051 | 1.95 | 176000 | 0.5835 | | 0.6268 | 1.96 | 177000 | 0.5999 | | 0.6436 | 1.97 | 178000 | 0.5965 | | 0.6167 | 1.98 | 179000 | 0.5789 | | 0.5647 | 1.99 | 180000 | 0.5669 | | 0.6038 | 2.0 | 181000 | 0.6009 | | 0.6082 | 2.02 | 182000 | 0.5799 | | 0.6483 | 2.03 | 183000 | 0.5716 | | 0.5503 | 2.04 | 184000 | 0.5806 | | 0.6231 | 2.05 | 185000 | 0.5699 | | 0.5892 | 2.06 | 186000 | 0.5979 | | 0.5933 | 2.07 | 187000 | 0.5709 | | 0.594 | 2.08 | 188000 | 0.5719 | | 0.5838 | 2.09 | 189000 | 0.5879 | | 0.6039 | 2.1 | 190000 | 0.5984 | | 0.5911 | 2.11 | 191000 | 0.5953 | | 0.563 | 2.13 | 192000 | 0.5772 | | 0.5671 | 2.14 | 193000 | 0.5771 | | 0.6051 | 2.15 | 194000 | 0.5972 | | 0.5852 | 2.16 | 195000 | 0.5917 | | 0.5757 | 2.17 | 196000 | 0.5819 | | 0.6557 | 2.18 | 197000 | 0.5655 | | 0.6055 | 2.19 | 198000 | 0.5820 | | 0.6067 | 2.2 | 199000 | 0.5801 | | 0.6422 | 2.21 | 200000 | 0.5590 | | 0.624 | 2.23 | 201000 | 0.5573 | | 0.6222 | 2.24 | 202000 | 0.5661 | | 0.5597 | 2.25 | 203000 | 0.5786 | | 0.5746 | 2.26 | 204000 | 0.5622 | | 0.6269 | 2.27 | 205000 | 0.5804 | | 0.6241 | 2.28 | 206000 | 0.5696 | | 0.6519 | 2.29 | 207000 | 0.5367 | | 0.6161 | 2.3 | 208000 | 0.5666 | | 0.5415 | 2.31 | 209000 | 0.5633 | | 0.633 | 2.33 | 210000 | 0.5499 | | 0.5566 | 2.34 | 211000 | 0.5822 | | 0.6158 | 2.35 | 212000 | 0.5826 | | 0.5574 | 2.36 | 213000 | 0.5429 | | 0.5748 | 2.37 | 214000 | 0.5736 | | 0.5818 | 2.38 | 215000 | 0.5599 | | 0.6226 | 2.39 | 216000 | 0.5407 | | 0.5733 | 2.4 | 217000 | 0.5759 | | 0.6268 | 2.41 | 218000 | 0.5725 | | 0.5885 | 2.42 | 219000 | 0.5771 | | 0.5708 | 2.44 | 220000 | 0.5654 | | 0.5783 | 2.45 | 221000 | 0.5756 | | 0.61 | 2.46 | 222000 | 0.5647 | | 0.5848 | 2.47 | 223000 | 0.5532 | | 0.5869 | 2.48 | 224000 | 0.5519 | | 0.5717 | 2.49 | 225000 | 0.5621 | | 0.5675 | 2.5 | 226000 | 0.5446 | | 0.6321 | 2.51 | 227000 | 0.5812 | | 0.568 | 2.52 | 228000 | 0.5673 | | 0.5577 | 2.54 | 229000 | 0.5590 | | 0.5888 | 2.55 | 230000 | 0.5628 | | 0.6389 | 2.56 | 231000 | 0.5828 | | 0.5782 | 2.57 | 232000 | 0.5543 | | 0.5871 | 2.58 | 233000 | 0.5575 | | 0.5593 | 2.59 | 234000 | 0.5625 | | 0.6167 | 2.6 | 235000 | 0.5450 | | 0.5828 | 2.61 | 236000 | 0.5627 | | 0.5411 | 2.62 | 237000 | 0.5498 | | 0.6168 | 2.64 | 238000 | 0.5891 | | 0.6508 | 2.65 | 239000 | 0.5811 | | 0.6322 | 2.66 | 240000 | 0.5649 | | 0.6131 | 2.67 | 241000 | 0.5473 | | 0.5419 | 2.68 | 242000 | 0.5583 | | 0.5685 | 2.69 | 243000 | 0.5635 | | 0.5267 | 2.7 | 244000 | 0.5481 | | 0.5357 | 2.71 | 245000 | 0.5474 | | 0.585 | 2.72 | 246000 | 0.5281 | | 0.5894 | 2.73 | 247000 | 0.5457 | | 0.5665 | 2.75 | 248000 | 0.5579 | | 0.5409 | 2.76 | 249000 | 0.5412 | | 0.6051 | 2.77 | 250000 | 0.5447 | | 0.5866 | 2.78 | 251000 | 0.5535 | | 0.5348 | 2.79 | 252000 | 0.5377 | | 0.5606 | 2.8 | 253000 | 0.5524 | | 0.5142 | 2.81 | 254000 | 0.5441 | | 0.543 | 2.82 | 255000 | 0.5499 | | 0.5763 | 2.83 | 256000 | 0.5241 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.11.0
flair/upos-multi-fast
4610445ba7d097da7e0ff23c3a782e9c474382c8
2021-03-02T22:22:55.000Z
[ "pytorch", "en", "de", "fr", "it", "nl", "pl", "es", "sv", "da", "no", "fi", "cs", "dataset:ontonotes", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
flair
null
flair/upos-multi-fast
377
4
flair
2,612
--- tags: - flair - token-classification - sequence-tagger-model language: - en - de - fr - it - nl - pl - es - sv - da - no - fi - cs datasets: - ontonotes widget: - text: "Ich liebe Berlin, as they say." --- ## Multilingual Universal Part-of-Speech Tagging in Flair (fast model) This is the fast multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,88** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech) Predicts universal POS tags: | **tag** | **meaning** | |---------------------------------|-----------| |ADJ | adjective | | ADP | adposition | | ADV | adverb | | AUX | auxiliary | | CCONJ | coordinating conjunction | | DET | determiner | | INTJ | interjection | | NOUN | noun | | NUM | numeral | | PART | particle | | PRON | pronoun | | PROPN | proper noun | | PUNCT | punctuation | | SCONJ | subordinating conjunction | | SYM | symbol | | VERB | verb | | X | other | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/upos-multi-fast") # make example sentence sentence = Sentence("Ich liebe Berlin, as they say. ") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('pos'): print(entity) ``` This yields the following output: ``` Span [1]: "Ich" [− Labels: PRON (0.9999)] Span [2]: "liebe" [− Labels: VERB (0.9999)] Span [3]: "Berlin" [− Labels: PROPN (0.9997)] Span [4]: "," [− Labels: PUNCT (1.0)] Span [5]: "as" [− Labels: SCONJ (0.9991)] Span [6]: "they" [− Labels: PRON (0.9998)] Span [7]: "say" [− Labels: VERB (0.9998)] Span [8]: "." [− Labels: PUNCT (1.0)] ``` So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import MultiCorpus from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \ UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH from flair.embeddings import StackedEmbeddings, FlairEmbeddings # 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large) corpus = MultiCorpus([ UD_ENGLISH(in_memory=False), UD_GERMAN(in_memory=False), UD_DUTCH(in_memory=False), UD_FRENCH(in_memory=False), UD_ITALIAN(in_memory=False), UD_SPANISH(in_memory=False), UD_POLISH(in_memory=False), UD_CZECH(in_memory=False), UD_DANISH(in_memory=False), UD_SWEDISH(in_memory=False), UD_NORWEGIAN(in_memory=False), UD_FINNISH(in_memory=False), ]) # 2. what tag do we want to predict? tag_type = 'upos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('multi-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('multi-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=False) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/upos-multi-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
uclanlp/visualbert-nlvr2-coco-pre
155352ba56549d808a84e5c1f891300bf24f019b
2021-05-31T11:11:50.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-nlvr2-coco-pre
377
null
transformers
2,613
Entry not found
kakife3586/bad
19f022d577b7ff8b69f87a3c89aa066405398985
2022-07-22T19:16:26.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
kakife3586
null
kakife3586/bad
377
1
transformers
2,614
Entry not found
KoboldAI/GPT-Neo-1.3B-Adventure
803261b84356c383860f1140667bc49c7cfff2dc
2022-03-22T09:49:48.000Z
[ "pytorch", "gpt_neo", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
KoboldAI
null
KoboldAI/GPT-Neo-1.3B-Adventure
376
1
transformers
2,615
--- language: en license: mit pipeline_tag: text-generation --- # GPT-Neo 1.3B - Adventure ## Model Description GPT-Neo 1.3B-Adventure is a finetune created using EleutherAI's GPT-Neo 1.3B model. ## Training data The training data is a direct copy of the "cys" dataset by VE, a CYOA-based dataset. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-1.3B-Adventure') >>> generator("> You wake up.", do_sample=True, min_length=50) [{'generated_text': '> You wake up"\nYou get out of bed, don your armor and get out of the door in search for new adventures.'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ### BibTeX entry and citation info The model is made using the following software: ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } ```
Adapting/dialogue_agent_nlplab2022
51060a1364717812d951374c778573eae185f053
2022-06-30T07:46:33.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Adapting
null
Adapting/dialogue_agent_nlplab2022
376
null
transformers
2,616
Dataset trained on: https://huggingface.co/datasets/Adapting/empathetic_dialogues_with_special_tokens Commit hash of model versions 1. blenderbot-400M-distill - 10 epochs fine-tuning: **b86f62986872b4c1a9921acdb8cd226761d736cf** 2. blenderbot-400M-distill - 20 epochs fine-tuning: **e803a10542ea7e4f116e89aca0f7250fb71a8a04** 3. blenderbot-400M-distill - 30 epochs fine-tuning: **4e9e1331124134dc879adcbad6c0cad06d55ef1e**
cahya/distilbert-base-indonesian
9e948656420019310c5334dfcc3dd086c67d405a
2021-02-08T09:06:09.000Z
[ "pytorch", "distilbert", "fill-mask", "id", "dataset:wikipedia", "dataset:id_newspapers_2018", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
cahya
null
cahya/distilbert-base-indonesian
375
1
transformers
2,617
--- language: "id" license: "mit" datasets: - wikipedia - id_newspapers_2018 widget: - text: "ayahku sedang bekerja di sawah untuk [MASK] padi." --- # Indonesian DistilBERT base model (uncased) ## Model description This model is a distilled version of the [Indonesian BERT base model](https://huggingface.co/cahya/bert-base-indonesian-1.5G). This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/distilbert-base-indonesian') >>> unmasker("Ayahku sedang bekerja di sawah untuk [MASK] padi") [ { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk menanam padi [SEP]", "score": 0.6853187084197998, "token": 12712, "token_str": "menanam" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk bertani padi [SEP]", "score": 0.03739545866847038, "token": 15484, "token_str": "bertani" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk memetik padi [SEP]", "score": 0.02742469497025013, "token": 30338, "token_str": "memetik" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk penggilingan padi [SEP]", "score": 0.02214187942445278, "token": 28252, "token_str": "penggilingan" }, { "sequence": "[CLS] ayahku sedang bekerja di sawah untuk tanam padi [SEP]", "score": 0.0185895636677742, "token": 11308, "token_str": "tanam" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel model_name='cahya/distilbert-base-indonesian' tokenizer = DistilBertTokenizer.from_pretrained(model_name) model = DistilBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel model_name='cahya/distilbert-base-indonesian' tokenizer = DistilBertTokenizer.from_pretrained(model_name) model = TFDistilBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was distiled with 522MB of indonesian Wikipedia and 1GB of [indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018). The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
clagator/biobert_squad2_cased
e7545839557ddb772e1d4df26c5fd26de41592a2
2021-05-19T14:22:23.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
clagator
null
clagator/biobert_squad2_cased
375
null
transformers
2,618
Entry not found
smmzhu/DialoGPT-medium-sam
3c41a977ed304546e1185275414a4ab2225562a1
2022-07-11T06:58:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
smmzhu
null
smmzhu/DialoGPT-medium-sam
375
null
transformers
2,619
--- tags: - conversational --- # My Awesome Model
Doquey/DialoGPT-small-Luisbot1
6da56bf264c4fb5f49e835aed78342293bc7da40
2021-09-01T23:20:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Doquey
null
Doquey/DialoGPT-small-Luisbot1
373
null
transformers
2,620
--- tags: - conversational --- #Rick DialoGPT model
Geotrend/bert-base-en-zh-cased
eebc9a2d0689a2073d0b0dd401e5d0decfa2864c
2021-05-18T19:52:44.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-zh-cased
373
null
transformers
2,621
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
valurank/distilroberta-clickbait
294a3fc0c737db43110a157136edb0e7728c28ac
2022-06-08T20:24:26.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/distilroberta-clickbait
373
null
transformers
2,622
--- license: other tags: - generated_from_trainer model-index: - name: distilroberta-clickbait results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-clickbait This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a dataset of headlines. It achieves the following results on the evaluation set: - Loss: 0.0268 - Acc: 0.9963 ## Training and evaluation data The following data sources were used: * 32k headlines classified as clickbait/not-clickbait from [kaggle](https://www.kaggle.com/amananandrai/clickbait-dataset) * A dataset of headlines from https://github.com/MotiBaadror/Clickbait-Detection ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0195 | 1.0 | 981 | 0.0192 | 0.9954 | | 0.0026 | 2.0 | 1962 | 0.0172 | 0.9963 | | 0.0031 | 3.0 | 2943 | 0.0275 | 0.9945 | | 0.0003 | 4.0 | 3924 | 0.0268 | 0.9963 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
Xuhui/ToxDect-roberta-large
7b97c89938cb241d3ae9235257bbe4916d4f0c75
2021-11-07T16:35:03.000Z
[ "pytorch", "roberta", "text-classification", "arxiv:2102.00086", "transformers" ]
text-classification
false
Xuhui
null
Xuhui/ToxDect-roberta-large
372
2
transformers
2,623
--- language: - - thumbnail: tags: - - - license: datasets: - - metrics: - - --- # Toxic language detection ## Model description A toxic language detection model trained on tweets. The base model is Roberta-large. For more information, including the **training data**, **limitations and bias**, please refer to the [paper](https://arxiv.org/pdf/2102.00086.pdf) and Github [repo](https://github.com/XuhuiZhou/Toxic_Debias) for more details. #### How to use Note that LABEL_1 means toxic and LABEL_0 means non-toxic in the output. ```python from transformers import pipeline classifier = pipeline("text-classification",model='Xuhui/ToxDect-roberta-large', return_all_scores=True) prediction = classifier("You are f**king stupid!", ) print(prediction) """ Output: [[{'label': 'LABEL_0', 'score': 0.002632011892274022}, {'label': 'LABEL_1', 'score': 0.9973680377006531}]] """ ``` ## Training procedure The random seed for this model is 22. For other details, please refer to the Github [repo](https://github.com/XuhuiZhou/Toxic_Debias) for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{zhou-etal-2020-debiasing, title = {Challenges in Automated Debiasing for Toxic Language Detection}, author = {Zhou, Xuhui and Sap, Maarten and Swayamdipta, Swabha and Choi, Yejin and Smith, Noah A.}, booktitle = {EACL}, abbr = {EACL}, html = {https://www.aclweb.org/anthology/2021.eacl-main.274.pdf}, code = {https://github.com/XuhuiZhou/Toxic_Debias}, year = {2021}, bibtex_show = {true}, selected = {true} } ```
asahi417/tner-xlm-roberta-base-uncased-ontonotes5
580551e1a8cf979711f3956848e4479345bd045f
2021-02-13T00:08:01.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-xlm-roberta-base-uncased-ontonotes5
372
1
transformers
2,624
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-ontonotes5") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-ontonotes5") ```
cahya/bert-base-indonesian-1.5G
a4400ab68607dea3f7f1522f9fed74909980bd77
2021-05-19T13:37:31.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "dataset:id_newspapers_2018", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
cahya
null
cahya/bert-base-indonesian-1.5G
372
0
transformers
2,625
--- language: "id" license: "mit" datasets: - wikipedia - id_newspapers_2018 widget: - text: "Ibu ku sedang bekerja [MASK] sawah." --- # Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This model is uncased. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-1.5G') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-1.5G' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of [indonesian newspapers](https://huggingface.co/datasets/id_newspapers_2018). The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
Maxwere/DiabloGPT-medium-maxbot
618d143972c3cfb64458586ab6a26fa62de8e5e3
2022-03-03T00:41:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Maxwere
null
Maxwere/DiabloGPT-medium-maxbot
372
null
transformers
2,626
--- tags: - conversational --- # Max DiabloGPT Model
Artem1/t5_squad_v1
8a6a2db32c91a1c1fa48c05b1740b22cb9fcdbd6
2022-07-12T11:25:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Artem1
null
Artem1/t5_squad_v1
372
null
transformers
2,627
Entry not found
ChrisVCB/DialoGPT-medium-cmjs
705a3520a4cb682316d11b238d89be3135da4f34
2021-12-10T20:02:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ChrisVCB
null
ChrisVCB/DialoGPT-medium-cmjs
371
null
transformers
2,628
--- tags: - conversational --- # CMJS DialoGPT Model
SajjadAyoubi/bert-base-fa-qa
610d047db3fcef30d0811d44bef629c69beba299
2021-05-18T22:30:21.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SajjadAyoubi
null
SajjadAyoubi/bert-base-fa-qa
371
5
transformers
2,629
### How to use #### Requirements Transformers require `transformers` and `sentencepiece`, both of which can be installed using `pip`. ```sh pip install transformers sentencepiece ``` #### Pipelines 🚀 In case you are not familiar with Transformers, you can use pipelines instead. Note that, pipelines can't have _no answer_ for the questions. ```python from transformers import pipeline model_name = "SajjadAyoubi/bert-base-fa-qa" qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] for question in questions: print(qa_pipeline({"context": text, "question": question})) >>> {'score': 0.4839823544025421, 'start': 8, 'end': 18, 'answer': 'سجاد ایوبی'} >>> {'score': 0.3747948706150055, 'start': 24, 'end': 32, 'answer': '۲۰ سالمه'} >>> {'score': 0.5945395827293396, 'start': 38, 'end': 55, 'answer': 'پردازش زبان طبیعی'} ``` #### Manual approach 🔥 Using the Manual approach, it is possible to have _no answer_ with even better performance. - PyTorch ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering from src.utils import AnswerPredictor model_name = "SajjadAyoubi/bert-base-fa-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] # this class is from src/utils.py and you can read more about it predictor = AnswerPredictor(model, tokenizer, device="cpu", n_best=10) preds = predictor(questions, [text] * 3, batch_size=3) for k, v in preds.items(): print(v) ``` Produces an output such below: ``` 100%|██████████| 1/1 [00:00<00:00, 3.56it/s] {'score': 8.040637016296387, 'text': 'سجاد ایوبی'} {'score': 9.901972770690918, 'text': '۲۰'} {'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'} ``` - TensorFlow 2.X ```python from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering from src.utils import TFAnswerPredictor model_name = "SajjadAyoubi/bert-base-fa-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] # this class is from src/utils.py, you can read more about it predictor = TFAnswerPredictor(model, tokenizer, n_best=10) preds = predictor(questions, [text] * 3, batch_size=3) for k, v in preds.items(): print(v) ``` Produces an output such below: ```text 100%|██████████| 1/1 [00:00<00:00, 3.56it/s] {'score': 8.040637016296387, 'text': 'سجاد ایوبی'} {'score': 9.901972770690918, 'text': '۲۰'} {'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'} ``` Or you can access the whole demonstration using [HowToUse iPython Notebook on Google Colab](https://colab.research.google.com/github/sajjjadayobi/PersianQA/blob/main/notebooks/HowToUse.ipynb)
castorini/ance-msmarco-doc-firstp
5b60aa5a8612e3db04390a0e91fda0d3154b0a8e
2021-05-20T15:17:20.000Z
[ "pytorch", "roberta", "arxiv:2007.00808", "transformers" ]
null
false
castorini
null
castorini/ance-msmarco-doc-firstp
371
null
transformers
2,630
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
elgeish/cs224n-squad2.0-albert-base-v2
95a8cdd3beb799d79384b8b50f310edefeb97492
2020-12-11T21:38:54.000Z
[ "pytorch", "albert", "question-answering", "arxiv:2004.07067", "transformers", "exbert", "autotrain_compatible" ]
question-answering
false
elgeish
null
elgeish/cs224n-squad2.0-albert-base-v2
371
null
transformers
2,631
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-base-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 78.94044093451794, "f1": 81.7724930324639, "total": 6078, "HasAns_exact": 76.28865979381443, "HasAns_f1": 82.20385314478195, "HasAns_total": 2910, "NoAns_exact": 81.37626262626263, "NoAns_f1": 81.37626262626263, "NoAns_total": 3168, "best_exact": 78.95689371503784, "best_exact_thresh": 0.0, "best_f1": 81.78894581298378, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-base-v2", "model_type": "albert", "num_train_epochs": 3, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
3320b11eacb143b6e6e6d71b727224dbd8f8b65a
2021-08-05T08:22:43.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
371
null
sentence-transformers
2,632
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base This is a port of the [DPR Model](https://github.com/facebookresearch/DPR) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base') model = AutoModel.from_pretrained('sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [DPR Model](https://github.com/facebookresearch/DPR)
ShreyaR/finetuned-roberta-depression
a34232531498f0975e3c67ce0ce02ebd9488945c
2022-05-20T04:38:42.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ShreyaR
null
ShreyaR/finetuned-roberta-depression
371
5
transformers
2,633
--- license: mit tags: - generated_from_trainer widget: - text: "I feel so low and numb, don't feel like doing anything. Just passing my days" - text: "Sleep is my greatest and most comforting escape whenever I wake up these days. The literal very first emotion I feel is just misery and reminding myself of all my problems." - text: "I went to a movie today. It was below my expectations but the day was fine." - text: "The first day of work was a little hectic but met pretty good colleagues, we went for a team dinner party at the end of the day." metrics: - accuracy model-index: - name: finetuned-roberta-depression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-roberta-depression This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1385 - Accuracy: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0238 | 1.0 | 625 | 0.1385 | 0.9745 | | 0.0333 | 2.0 | 1250 | 0.1385 | 0.9745 | | 0.0263 | 3.0 | 1875 | 0.1385 | 0.9745 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dbmdz/bert-base-cased-finetuned-conll03-english
4a108fba55732fd6570a15f7475ba13e83c6b8c5
2021-05-19T14:43:37.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dbmdz
null
dbmdz/bert-base-cased-finetuned-conll03-english
369
null
transformers
2,634
Entry not found
Starry/KARENTRIES
a256558b696d33b1aa2ed352ed15aad2b0c53116
2022-03-10T17:59:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Starry
null
Starry/KARENTRIES
369
null
transformers
2,635
--- tags: - conversational --- # DialoGPT model
KoboldAI/OPT-6B-nerys-v2
9e1f1498391df2c28ce35a9290a5a24b8022a43b
2022-07-04T07:45:47.000Z
[ "pytorch", "opt", "text-generation", "en", "arxiv:2205.01068", "transformers", "license:other" ]
text-generation
false
KoboldAI
null
KoboldAI/OPT-6B-nerys-v2
369
2
transformers
2,636
--- language: en license: other commercial: no --- # OPT 6B - Nerys ## Model Description OPT 6B-Nerys is a finetune created using Facebook's OPT model. ## Training data The training data contains around 2500 ebooks in various genres (the "Pike" dataset), a CYOA dataset called "CYS" and 50 Asian "Light Novels" (the "Manga-v1" dataset). Most parts of the dataset have been prepended using the following text: `[Genre: <genre1>, <genre2>]` This dataset has been cleaned in the same way as fairseq-dense-13B-Nerys-v2 ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/OPT-6B-Nerys-v2') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### License OPT-6B is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
csebuetnlp/mT5_m2o_russian_crossSum
6eedefa5d23a200078f75cb69430fa663562ff36
2022-04-22T15:05:47.000Z
[ "pytorch", "mt5", "text2text-generation", "am", "ar", "az", "bn", "my", "zh", "en", "fr", "gu", "ha", "hi", "ig", "id", "ja", "rn", "ko", "ky", "mr", "ne", "om", "ps", "fa", "pcm", "pt", "pa", "ru", "gd", "sr", "si", "so", "es", "sw", "ta", "te", "th", "ti", "tr", "uk", "ur", "uz", "vi", "cy", "yo", "arxiv:2112.08804", "transformers", "summarization", "mT5", "autotrain_compatible" ]
summarization
false
csebuetnlp
null
csebuetnlp/mT5_m2o_russian_crossSum
368
null
transformers
2,637
--- tags: - summarization - mT5 language: - am - ar - az - bn - my - zh - en - fr - gu - ha - hi - ig - id - ja - rn - ko - ky - mr - ne - om - ps - fa - pcm - pt - pa - ru - gd - sr - si - so - es - sw - ta - te - th - ti - tr - uk - ur - uz - vi - cy - yo licenses: - cc-by-nc-sa-4.0 widget: - text: "Videos that say approved vaccines are dangerous and cause autism, cancer or infertility are among those that will be taken down, the company said. The policy includes the termination of accounts of anti-vaccine influencers. Tech giants have been criticised for not doing more to counter false health information on their sites. In July, US President Joe Biden said social media platforms were largely responsible for people's scepticism in getting vaccinated by spreading misinformation, and appealed for them to address the issue. YouTube, which is owned by Google, said 130,000 videos were removed from its platform since last year, when it implemented a ban on content spreading misinformation about Covid vaccines. In a blog post, the company said it had seen false claims about Covid jabs \"spill over into misinformation about vaccines in general\". The new policy covers long-approved vaccines, such as those against measles or hepatitis B. \"We're expanding our medical misinformation policies on YouTube with new guidelines on currently administered vaccines that are approved and confirmed to be safe and effective by local health authorities and the WHO,\" the post said, referring to the World Health Organization." --- # mT5-m2o-russian-CrossSum This repository contains the many-to-one (m2o) mT5 checkpoint finetuned on all cross-lingual pairs of the [CrossSum](https://huggingface.co/datasets/csebuetnlp/CrossSum) dataset, where the target summary was in **russian**, i.e. this model tries to **summarize text written in any language in Russian.** For finetuning details and scripts, see the [paper](https://arxiv.org/abs/2112.08804) and the [official repository](https://github.com/csebuetnlp/CrossSum). ## Using this model in `transformers` (tested on 4.11.0.dev0) ```python import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) article_text = """Videos that say approved vaccines are dangerous and cause autism, cancer or infertility are among those that will be taken down, the company said. The policy includes the termination of accounts of anti-vaccine influencers. Tech giants have been criticised for not doing more to counter false health information on their sites. In July, US President Joe Biden said social media platforms were largely responsible for people's scepticism in getting vaccinated by spreading misinformation, and appealed for them to address the issue. YouTube, which is owned by Google, said 130,000 videos were removed from its platform since last year, when it implemented a ban on content spreading misinformation about Covid vaccines. In a blog post, the company said it had seen false claims about Covid jabs "spill over into misinformation about vaccines in general". The new policy covers long-approved vaccines, such as those against measles or hepatitis B. "We're expanding our medical misinformation policies on YouTube with new guidelines on currently administered vaccines that are approved and confirmed to be safe and effective by local health authorities and the WHO," the post said, referring to the World Health Organization.""" model_name = "csebuetnlp/mT5_m2o_russian_crossSum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_ids = tokenizer( [WHITESPACE_HANDLER(article_text)], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=84, no_repeat_ngram_size=2, num_beams=4 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(summary) ``` ## Citation If you use this model, please cite the following paper: ``` @article{hasan2021crosssum, author = {Tahmid Hasan and Abhik Bhattacharjee and Wasi Uddin Ahmad and Yuan-Fang Li and Yong-bin Kang and Rifat Shahriyar}, title = {CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs}, journal = {CoRR}, volume = {abs/2112.08804}, year = {2021}, url = {https://arxiv.org/abs/2112.08804}, eprinttype = {arXiv}, eprint = {2112.08804} } ```
google/ddpm-celebahq-256
cd5c944777ea2668051904ead6cc120739b86c4d
2022-07-21T15:00:31.000Z
[ "diffusers", "arxiv:2006.11239", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ddpm-celebahq-256
368
2
diffusers
2,638
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-celebahq-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm()["sample"] # save image image[0].save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-celebahq-256/resolve/main/images/generated_image_3.png)
Lauler/deformer
8c196932a1fee0f57293b4a9ad0e0e49fc469145
2021-12-29T07:21:08.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Lauler
null
Lauler/deformer
367
null
transformers
2,639
--- widget: - text: "dem har sökt upp de för att prata." example_title: "de/dem exempel 1" - text: "Jag såg de komma runt hörnet och gå i riktning mot dem byggnaderna." example_title: "de/dem exempel 2" --- ## DeFormer DeFormer är en modell som har tränats på att skilja mellan `de` och `dem` i svenska meningar. Modellen kan testas direkt i panelerna till höger under **Hosted Inference API** genom att skriva in en mening och trycka på **Compute**. **Instruktioner (VIKTIGT):** Använd endast de/dem med små bokstäver vid testning. I träningen av modellen gjordes alla "De" och "Dem" om till gemener. Avsluta meningen med skiljetecken (punkt, frågetecken, osv) för bäst möjliga resultat. ## Träningsdata DeFormer har tränats på meningar från Europarlamentet och svenskspråkiga Wikimedia. Dessa hämtades från [OPUS](https://opus.nlpl.eu/). Källorna valdes ut för att de antogs ha ett korrekt språkbruk. Endast meningar innehållandes `de` eller `dem` -- eller bägge två -- behölls i konstruktionen av träningsdataset. I tabellen nedan återfinns beskrivande statistik över antalet meningar som behölls från respektive dataset, samt frekvenser över förekomsten av `de/dem`. | Datakälla | Meningar | # De | # Dem | De/Dem ratio | | ----------- | ----------- | ------- | ------- | ------------ | | [Europaparl sv.txt.gz](https://opus.nlpl.eu/download.php?f=Europarl/v8/mono/sv.txt.gz) | 500660 | 465977 | 54331 | 8.57x | | [JRC-Acquis raw.sv.gz](https://opus.nlpl.eu/download.php?f=JRC-Acquis/mono/JRC-Acquis.raw.sv.gz) | 417951 | 408576 | 17028 | 23.99x | | [Wikimedia sv.txt.gz](https://opus.nlpl.eu/download.php?f=wikimedia/v20210402/mono/sv.txt.gz) | 630601 | 602393 | 38852 | 15.48x | | **Total** | **1549212** | **1476946** | **110211** | **13.40x** | Vid träningen av DeFormer introducerades slumpmässiga substitioner, där `de` eller `dem` byttes ut mot den motsatta formen. Modellen utmanades sedan att klassificera huruvida ett givet ord tillhörde ett av följande kategorier 1. **`ord`** (alla bakgrundsord som inte är de/dem tillhör denna kategori) 2. **`DE`** 3. **`DEM`** Innan observationerna skickades in till modellträning byttes `de` ut mot `dem` med 47 procent sannolikhet, medan `dem` byttes till `de` i 40 procent av fallen. ## Träffsäkerhet/Accuracy DeFormer utvärderades på ett valideringsset bestående av 31200 meningar från samma datakälla (svenska wiki + europaparlamentet + JRC) som modellen tränats på. Slumpmässiga fel introducerades för att utmana modellen. 47 procent av förekommande `de` i ursprungsmeningarna ändrades till `dem`, medan 40 procent av förekommande `dem` ändrades till `de`. Tabellen nedan visar att DeFormer är väldigt träffsäker. De få "felaktiga" prediktioner som modellen outputtar är nästan samtliga `de/dem som`-konstruktioner med bisatser. Majoriteten av dessa är egentligen inte att anse som felaktiga, eftersom [båda formerna är accepterade](https://www4.isof.se/cgi-bin/srfl/visasvar.py?sok=dem%20som&svar=79718&log_id=705355). | | Accuracy | | ----------- | ----------- | | de | 99.9\% | | dem | 98.6\% |
Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
62a5cc04518c1339a2c88bdaa63f1dedaa61146a
2022-06-19T06:34:12.000Z
[ "pytorch", "gptj", "feature-extraction", "arxiv:2202.08904", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
Muennighoff
null
Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
367
2
sentence-transformers
2,640
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # SGPT-5.8B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 249592 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
kornosk/bert-election2020-twitter-stance-biden-KE-MLM
b8913cc4d8d2e857667f20908c0c028bd3d1183d
2022-05-02T22:58:37.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "politics", "license:gpl-3.0" ]
text-classification
false
kornosk
null
kornosk/bert-election2020-twitter-stance-biden-KE-MLM
367
1
transformers
2,641
--- language: "en" tags: - twitter - stance-detection - election2020 - politics license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Joe Biden (KE-MLM) Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Joe Biden. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Joe Biden. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Joe Biden. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-biden-KE-MLM" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Biden!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Biden is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
roberta-base-openai-detector
2de46c869ee117c00af7b2e9e4cba743c2cbc778
2022-07-22T08:00:35.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1904.09751", "arxiv:1910.09700", "transformers", "exbert", "license:mit" ]
text-classification
false
null
null
roberta-base-openai-detector
366
3
transformers
2,642
--- language: en license: mit tags: - exbert datasets: - bookcorpus - wikipedia --- # RoBERTa Base OpenAI Detector ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) - [Model Card Authors](#model-card-author) - [How To Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details **Model Description:** RoBERTa base OpenAI Detector is the GPT-2 output detector model, obtained by fine-tuning a RoBERTa base model with the outputs of the 1.5B-parameter GPT-2 model. The model can be used to predict if text was generated by a GPT-2 model. This model was released by OpenAI at the same time as OpenAI released the weights of the [largest GPT-2 model](https://huggingface.co/gpt2-xl), the 1.5B parameter version. - **Developed by:** OpenAI, see [GitHub Repo](https://github.com/openai/gpt-2-output-dataset/tree/master/detector) and [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf) for full author list - **Model Type:** Fine-tuned transformer-based language model - **Language(s):** English - **License:** MIT - **Related Models:** [RoBERTa base](https://huggingface.co/roberta-base), [GPT-XL (1.5B parameter version)](https://huggingface.co/gpt2-xl), [GPT-Large (the 774M parameter version)](https://huggingface.co/gpt2-large), [GPT-Medium (the 355M parameter version)](https://huggingface.co/gpt2-medium) and [GPT-2 (the 124M parameter version)](https://huggingface.co/gpt2) - **Resources for more information:** - [Research Paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf) (see, in particular, the section beginning on page 12 about Automated ML-based detection). - [GitHub Repo](https://github.com/openai/gpt-2-output-dataset/tree/master/detector) - [OpenAI Blog Post](https://openai.com/blog/gpt-2-1-5b-release/) - [Explore the detector model here](https://huggingface.co/openai-detector ) ## Uses #### Direct Use The model is a classifier that can be used to detect text generated by GPT-2 models. #### Downstream Use The model's developers have stated that they developed and released the model to help with research related to synthetic text generation, so the model could potentially be used for downstream tasks related to synthetic text generation. See the [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf) for further discussion. #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model developers discuss the risk of adversaries using the model to better evade detection in their [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf), suggesting that using the model for evading detection or for supporting efforts to evade detection would be a misuse of the model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. #### Risks and Limitations In their [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf), the model developers discuss the risk that the model may be used by bad actors to develop capabilities for evading detection, though one purpose of releasing the model is to help improve detection research. In a related [blog post](https://openai.com/blog/gpt-2-1-5b-release/), the model developers also discuss the limitations of automated methods for detecting synthetic text and the need to pair automated detection tools with other, non-automated approaches. They write: > We conducted in-house detection research and developed a detection model that has detection rates of ~95% for detecting 1.5B GPT-2-generated text. We believe this is not high enough accuracy for standalone detection and needs to be paired with metadata-based approaches, human judgment, and public education to be more effective. The model developers also [report](https://openai.com/blog/gpt-2-1-5b-release/) finding that classifying content from larger models is more difficult, suggesting that detection with automated tools like this model will be increasingly difficult as model sizes increase. The authors find that training detector models on the outputs of larger models can improve accuracy and robustness. #### Bias Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by RoBERTa base and GPT-2 1.5B (which this model is built/fine-tuned on) can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups (see the [RoBERTa base](https://huggingface.co/roberta-base) and [GPT-2 XL](https://huggingface.co/gpt2-xl) model cards for more information). The developers of this model discuss these issues further in their [paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf). ## Training #### Training Data The model is a sequence classifier based on RoBERTa base (see the [RoBERTa base model card](https://huggingface.co/roberta-base) for more details on the RoBERTa base training data) and then fine-tuned using the outputs of the 1.5B GPT-2 model (available [here](https://github.com/openai/gpt-2-output-dataset)). #### Training Procedure The model developers write that: > We based a sequence classifier on RoBERTaBASE (125 million parameters) and fine-tuned it to classify the outputs from the 1.5B GPT-2 model versus WebText, the dataset we used to train the GPT-2 model. They later state: > To develop a robust detector model that can accurately classify generated texts regardless of the sampling method, we performed an analysis of the model’s transfer performance. See the [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf) for further details on the training procedure. ## Evaluation The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf). #### Testing Data, Factors and Metrics The model is intended to be used for detecting text generated by GPT-2 models, so the model developers test the model on text datasets, measuring accuracy by: > testing 510-token test examples comprised of 5,000 samples from the WebText dataset and 5,000 samples generated by a GPT-2 model, which were not used during the training. #### Results The model developers [find](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf): > Our classifier is able to detect 1.5 billion parameter GPT-2-generated text with approximately 95% accuracy...The model’s accuracy depends on sampling methods used when generating outputs, like temperature, Top-K, and nucleus sampling ([Holtzman et al., 2019](https://arxiv.org/abs/1904.09751). Nucleus sampling outputs proved most difficult to correctly classify, but a detector trained using nucleus sampling transfers well across other sampling methods. As seen in Figure 1 [in the paper], we found consistently high accuracy when trained on nucleus sampling. See the [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf), Figure 1 (on page 14) and Figure 2 (on page 16) for full results. ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Unknown - **Hours used:** Unknown - **Cloud Provider:** Unknown - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Technical Specifications The model developers write that: See the [associated paper](https://d4mucfpksywv.cloudfront.net/papers/GPT_2_Report.pdf) for further details on the modeling architecture and training details. ## Citation Information ```bibtex @article{solaiman2019release, title={Release strategies and the social impacts of language models}, author={Solaiman, Irene and Brundage, Miles and Clark, Jack and Askell, Amanda and Herbert-Voss, Ariel and Wu, Jeff and Radford, Alec and Krueger, Gretchen and Kim, Jong Wook and Kreps, Sarah and others}, journal={arXiv preprint arXiv:1908.09203}, year={2019} } ``` APA: - Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., ... & Wang, J. (2019). Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203. ## Model Card Authors This model card was written by the team at Hugging Face. ## How to Get Started with the Model More information needed.
ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
4207aaa00b26aea91d99cb1abc2d7f56814fbe05
2021-12-17T10:33:13.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:common_language", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ivanlau
null
ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
366
1
transformers
2,643
--- license: mit tags: - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: language-detection-fine-tuned-on-xlm-roberta-base results: - task: name: Text Classification type: text-classification dataset: name: common_language type: common_language args: full metrics: - name: Accuracy type: accuracy value: 0.9738386718094919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-fine-tuned-on-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [common_language](https://huggingface.co/datasets/common_language) dataset. It achieves the following results on the evaluation set: - Loss: 0.1886 - Accuracy: 0.9738 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1 | 1.0 | 22194 | 0.1886 | 0.9738 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3 ### Notebook [notebook](https://github.com/IvanLauLinTiong/language-detector/blob/main/xlm_roberta_base_commonlanguage_language_detector.ipynb)
valurank/finetuned-distilbert-news-article-categorization
3046ba5378260ac2ed8b7c49265fd1f4e9e68d97
2022-07-03T21:23:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/finetuned-distilbert-news-article-categorization
366
null
transformers
2,644
--- license: other tags: - generated_from_trainer model-index: - name: finetuned-distilbert-news-article-categorization results: [] --- ### finetuned-distilbert-news-article-catgorization This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the news_article_categorization dataset. It achieves the following results on the evaluation set: - Loss: 0.1548 - F1_score(weighted): 0.96 ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data The model was trained on some subset of the news_article_categorization dataset and it was validated on the remaining subset of the data ### Training procedure More information needed ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-5 - train_batch_size: 3 - eval_batch_size: 3 - seed: 17 - optimizer: AdamW(lr=1e-5 and epsilon=1e-08) - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0 - num_epochs: 2 ### Training results | Training Loss | Epoch | Validation Loss | f1 score | |:-------------:|:-----:|:---------------: |:------:| | 0.6359 | 1.0 | 0.1739 | 0.9619 | | 0.1548 | 2.0 | 0.1898 | 0.9648 |
SI2M-Lab/DarijaBERT
f88ae61231ac5b42ced6733310b92a2133ea67a7
2022-06-20T14:55:01.000Z
[ "pytorch", "bert", "fill-mask", "ar", "transformers", "autotrain_compatible" ]
fill-mask
false
SI2M-Lab
null
SI2M-Lab/DarijaBERT
365
3
transformers
2,645
--- language: ar widget: - text: " جاب ليا [MASK] ." - text: "مشيت نجيب[MASK] فالفرماسيان ." --- AIOX Lab and SI2M Lab INSEA have joined forces to offer researchers, industrialists and the NLP (Natural Language Processing) community the first intelligent Open Source system that understands Moroccan dialectal language "Darija". **DarijaBERT** is the first BERT model for the Moroccan Arabic dialect called “Darija”. It is based on the same architecture as BERT-base, but without the Next Sentence Prediction (NSP) objective. This model was trained on a total of ~3 Million sequences of Darija dialect representing 691MB of text or a total of ~100M tokens. The model was trained on a dataset issued from three different sources: * Stories written in Darija scrapped from a dedicated website * Youtube comments from 40 different Moroccan channels * Tweets crawled based on a list of Darija keywords. More details about DarijaBert are available in the dedicated GitHub [repository](https://github.com/AIOXLABS/DBert) **Loading the model** The model can be loaded directly using the Huggingface library: ```python from transformers import AutoTokenizer, AutoModel DarijaBERT_tokenizer = AutoTokenizer.from_pretrained("SI2M-Lab/DarijaBERT") DarijaBert_model = AutoModel.from_pretrained("SI2M-Lab/DarijaBERT") ``` **Acknowledgments** We gratefully acknowledge Google’s TensorFlow Research Cloud (TRC) program for providing us with free Cloud TPUs.
NlpHUST/t5-small-vi-summarization
d579ec553e3bd8574413a7736a005acea50f8508
2021-06-23T03:36:33.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
NlpHUST
null
NlpHUST/t5-small-vi-summarization
365
1
transformers
2,646
# T5-SMALL-SUMMARIZATION :Pretraining Text-To-Text Transfer Transformer for Vietnamese Text Summarization #### Example Using ``` bash import torch from transformers import T5ForConditionalGeneration, T5Tokenizer import torch if torch.cuda.is_available(): device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('We will use the GPU:', torch.cuda.get_device_name(0)) else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") model = T5ForConditionalGeneration.from_pretrained("NlpHUST/t5-small-vi-summarization") tokenizer = T5Tokenizer.from_pretrained("NlpHUST/t5-small-vi-summarization") model.to(device) src = "Theo BHXH Việt Nam, nhiều doanh nghiệp vẫn chỉ đóng BHXH cho người lao động theo mức lương. \\\\ Dù quy định từ 1/1/2018, tiền lương tháng đóng BHXH gồm mức lương và thêm khoản bổ sung khác. \\\\ BHXH Việt Nam vừa có báo cáo về tình hình thực hiện chính sách BHXH thời gian qua. \\\\ Theo đó, tình trạng nợ, trốn đóng BHXH, BHTN vẫn xảy ra ở hầu hết các tỉnh, thành. \\\\ Thống kê tới ngày 31/12/2020, tổng số nợ BHXH, BHYT, BHTN là hơn 13.500 tỷ đồng, \\\\ chiếm 3,35 % số phải thu, trong đó: Số nợ BHXH bắt buộc là hơn 8.600 tỷ đồng, \\\\ nợ BHTN là 335 tỷ đồng. Liên quan tới tiền lương đóng BHXH, báo cáo của \\\\ BHXH Việt Nam cho thấy: Nhiều doanh nghiệp vẫn chủ yếu xây dựng thang, \\\\ bảng lương để đóng BHXH bằng mức thấp nhất. Tức là bằng mức lương tối \\\\ thiểu vùng, cộng thêm 7 % đối với lao động đã qua đào tạo nghề và cộng \\\\ thêm 5 % hoặc 7 % đối với lao động làm nghề hoặc công việc nặng nhọc, \\\\ độc hại, nguy hiểm, đặc biệt nặng nhọc độc hại và nguy hiểm. Đối với \\\\ lao động giữ chức vụ, khoảng 80 % doanh nghiệp đã xây dựng thang, \\\\ bảng lương cụ thể theo chức danh. Đơn cử như với chức vụ giám đốc \\\\ sản xuất, giám đốc điều hành, trưởng phòng. Còn lại các doanh nghiệp \\\\ xây dựng đối với lao động giữ chức vụ theo thang lương, bảng lương \\\\ chuyên môn nghiệp vụ và bảng phụ cấp chức vụ, phụ cấp trách nhiệm. \\\\ Thống kê của BHXH Việt Nam cũng cho thấy, đa số doanh nghiệp đã đăng \\\\ ký đóng BHXH cho người lao động theo mức lương mà không có khoản bổ \\\\ sung khác. Mặc dù quy định từ ngày 1/1/2018, tiền lương tháng đóng BHXH \\\\ gồm mức lương và thêm khoản bổ sung khác." tokenized_text = tokenizer.encode(src, return_tensors="pt").to(device) model.eval() summary_ids = model.generate( tokenized_text, max_length=256, num_beams=5, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(output) ``` #### Output ``` bash Nhiều doanh nghiệp vẫn chủ yếu xây dựng thang, bảng lương để đóng BHXH bằng mức thấp nhất. \\ Dù quy định từ 1/1/2018, tiền lương tháng đóng BHXH gồm mức lương và thêm khoản bổ sung khác. \\ Thống kê của BHXH Việt Nam cho thấy, nhiều doanh nghiệp vẫn chỉ đóng BHXH \\ cho người lao động theo mức lương mà không có khoản bổ sung khác. ``` ### Contact information For personal communication related to this project, please contact Nha Nguyen Van ([email protected]).
ajitrajasekharan/biomedical
dfd137b5429ef4e3ca250053967f4384b6a99c02
2022-02-05T08:44:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
ajitrajasekharan
null
ajitrajasekharan/biomedical
364
1
transformers
2,647
--- language: - {en} # Example: fr license: mit widget: - text: "Lou Gehrig who works for XCorp and lives in New York suffers from [MASK]" example_title: "Test for entity type: Disease" - text: "Overexpression of [MASK] occurs across a wide range of cancers" example_title: "Test for entity type: Gene" - text: "Patients treated with [MASK] are vulnerable to infectious diseases" example_title: "Test for entity type: Drug" - text: "A eGFR level below [MASK] indicates chronic kidney disease" example_title: "Test for entity type: Measure " - text: "In the [MASK], increased daily imatinib dose induced MMR" example_title: "Test for entity type: STUDY/TRIAL" - text: "Paul Erdos died at [MASK]" example_title: "Test for entity type: TIME" inference: parameters: top_k: 10 tags: - {fill-mask} # Example: audio - exbert --- This **cased model** was pretrained from scratch using a custom vocabulary on the following corpora - Pubmed - Clinical trials corpus - and a small subset of Bookcorpus The pretrained model was used to do NER **as is, with no fine-tuning**. The approach is described [in this post](https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html). [Towards Data Science review](https://twitter.com/TDataScience/status/1486300137366466560?s=20) [App in Spaces](https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-biomedical) demonstrates this approach. [Github link](https://github.com/ajitrajasekharan/unsupervised_NER) to perform NER using this model in an ensemble with bert-base cased. The ensemble detects 69 entity subtypes (17 broad entity groups) <img src="https://ajitrajasekharan.github.io/images/1.png" width="600"> ### Ensemble model performance <img src="https://ajitrajasekharan.github.io/images/6.png" width="600"> ### Additional notes - The model predictions on the right do not include [CLS] predictions. Hosted inference API only returns the masked position predictions. In practice, the [CLS] predictions are just as useful as the model predictions for the masked position _(if the next sentence prediction loss was low during pretraining)_ and are used for NER. - Some of the top model predictions like "a", "the", punctuations, etc. while valid predictions, bear no entity information. These are filtered when harvesting descriptors for NER. The examples on the right are unfiltered results. - [Use this link](https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation) to examine both fill-mask prediction and [CLS] predictions ### License MIT license <a href="https://huggingface.co/exbert/?model=ajitrajasekharan/biomedical&modelKind=bidirectional&sentence=Gefitinib%20is%20an%20EGFR%20tyrosine%20kinase%20inhibitor,%20which%20is%20often%20used%20for%20breast%20cancer%20and%20NSCLC%20treatment.&layer=3&heads=..0,1,2,3,4,5,6,7,8,9,10,11&threshold=0.7&tokenInd=17&tokenSide=right&maskInds=..&hideClsSep=true"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
minimaxir/reddit
d8caacc8da7948b068192e398f0d9b4d5137d815
2021-05-23T09:36:11.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
minimaxir
null
minimaxir/reddit
364
0
transformers
2,648
Entry not found
TurkuNLP/wikibert-base-en-cased
aba47c7a4b7f05ea5ec5e645e0843d31d9018f18
2020-05-24T19:59:24.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-en-cased
363
null
transformers
2,649
Entry not found
facebook/wav2vec2-xls-r-1b-21-to-en
286d0470e6ed5468b5a4ef0a9bd15b0aebe1a034
2022-05-26T22:24:32.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "multilingual", "fr", "de", "es", "ca", "it", "ru", "zh", "pt", "fa", "et", "mn", "nl", "tr", "ar", "sv", "lv", "sl", "ta", "ja", "id", "cy", "en", "dataset:common_voice", "dataset:multilingual_librispeech", "dataset:covost2", "arxiv:2111.09296", "transformers", "speech", "xls_r", "xls_r_translation", "license:apache-2.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-xls-r-1b-21-to-en
363
1
transformers
2,650
--- language: - multilingual - fr - de - es - ca - it - ru - zh - pt - fa - et - mn - nl - tr - ar - sv - lv - sl - ta - ja - id - cy - en datasets: - common_voice - multilingual_librispeech - covost2 tags: - speech - xls_r - automatic-speech-recognition - xls_r_translation pipeline_tag: automatic-speech-recognition license: apache-2.0 widget: - example_title: Swedish src: https://cdn-media.huggingface.co/speech_samples/cv_swedish_1.mp3 - example_title: Arabic src: https://cdn-media.huggingface.co/speech_samples/common_voice_ar_19058308.mp3 - example_title: Russian src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3 - example_title: German src: https://cdn-media.huggingface.co/speech_samples/common_voice_de_17284683.mp3 - example_title: French src: https://cdn-media.huggingface.co/speech_samples/common_voice_fr_17299386.mp3 - example_title: Indonesian src: https://cdn-media.huggingface.co/speech_samples/common_voice_id_19051309.mp3 - example_title: Italian src: https://cdn-media.huggingface.co/speech_samples/common_voice_it_17415776.mp3 - example_title: Japanese src: https://cdn-media.huggingface.co/speech_samples/common_voice_ja_19482488.mp3 - example_title: Mongolian src: https://cdn-media.huggingface.co/speech_samples/common_voice_mn_18565396.mp3 - example_title: Dutch src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3 - example_title: Russian src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3 - example_title: Turkish src: https://cdn-media.huggingface.co/speech_samples/common_voice_tr_17341280.mp3 - example_title: Catalan src: https://cdn-media.huggingface.co/speech_samples/common_voice_ca_17367522.mp3 - example_title: English src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3 - example_title: Dutch src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3 --- # Wav2Vec2-XLS-R-2b-21-EN Facebook's Wav2Vec2 XLS-R fine-tuned for **Speech Translation.** ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png) This is a [SpeechEncoderDecoderModel](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html) model. The encoder was warm-started from the [**`facebook/wav2vec2-xls-r-1b`**](https://huggingface.co/facebook/wav2vec2-xls-r-1b) checkpoint and the decoder from the [**`facebook/mbart-large-50`**](https://huggingface.co/facebook/mbart-large-50) checkpoint. Consequently, the encoder-decoder model was fine-tuned on 21 `{lang}` -> `en` translation pairs of the [Covost2 dataset](https://huggingface.co/datasets/covost2). The model can translate from the following spoken languages `{lang}` -> `en` (English): {`fr`, `de`, `es`, `ca`, `it`, `ru`, `zh-CN`, `pt`, `fa`, `et`, `mn`, `nl`, `tr`, `ar`, `sv-SE`, `lv`, `sl`, `ta`, `ja`, `id`, `cy`} -> `en` For more information, please refer to Section *5.1.2* of the [official XLS-R paper](https://arxiv.org/abs/2111.09296). ## Usage ### Demo The model can be tested directly on the speech recognition widget on this model card! Simple record some audio in one of the possible spoken languages or pick an example audio file to see how well the checkpoint can translate the input. ### Example As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. You can use the model directly via the ASR pipeline ```python from datasets import load_dataset from transformers import pipeline # replace following lines to load an audio file of your choice librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") audio_file = librispeech_en[0]["file"] asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-21-to-en", feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en") translation = asr(audio_file) ``` or step-by-step as follows: ```python import torch from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel from datasets import load_dataset model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en") processor = Speech2Text2Processor.from_pretrained("facebook/wav2vec2-xls-r-1b-21-to-en") ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["array"]["sampling_rate"], return_tensors="pt") generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) transcription = processor.batch_decode(generated_ids) ``` ## Results `{lang}` -> `en` See the row of **XLS-R (1B)** for the performance on [Covost2](https://huggingface.co/datasets/covost2) for this model. ![results image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/X-%3EEnglish.png) ## More XLS-R models for `{lang}` -> `en` Speech Translation - [Wav2Vec2-XLS-R-300M-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-300m-21-to-en) - [Wav2Vec2-XLS-R-1B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-1b-21-to-en) - [Wav2Vec2-XLS-R-2B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-2b-21-to-en) - [Wav2Vec2-XLS-R-2B-22-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16)
google/realm-cc-news-pretrained-embedder
ba2b2d766d08235b15608e0b95f2bbbe3f8dfed6
2022-01-05T18:47:59.000Z
[ "pytorch", "realm", "en", "transformers", "license:apache-2.0" ]
null
false
google
null
google/realm-cc-news-pretrained-embedder
363
null
transformers
2,651
--- language: en license: apache-2.0 --- # realm-cc-news-pretrained-embedder ## Model description The REALM checkpoint pretrained with CC-News as target corpus and Wikipedia as knowledge corpus, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmEmbedder embedder = RealmEmbedder.from_pretrained("qqaatw/realm-cc-news-pretrained-embedder") ```
anton-l/wav2vec2-base-superb-sd
3b9021739e0bb551b176f8acb7e5a8a0cf33d944
2021-12-14T09:57:00.000Z
[ "pytorch", "wav2vec2", "audio-frame-classification", "transformers" ]
null
false
anton-l
null
anton-l/wav2vec2-base-superb-sd
362
null
transformers
2,652
google/tapas-small-finetuned-sqa
7b8f70a63c913442114f3b6b516d48657f044f0a
2021-11-29T13:09:34.000Z
[ "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:msr_sqa", "arxiv:2004.02349", "arxiv:2010.00571", "transformers", "license:apache-2.0" ]
table-question-answering
false
google
null
google/tapas-small-finetuned-sqa
362
null
transformers
2,653
--- language: en tags: - tapas license: apache-2.0 datasets: - msr_sqa --- # TAPAS small model fine-tuned on Sequential Question Answering (SQA) This model has 2 versions which can be used. The default version corresponds to the `tapas_sqa_inter_masklm_small_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_sqa_inter_masklm_small` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results on SQA - Dev Accuracy Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.7223 | [tapas-large-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/no_reset) LARGE | reset | 0.7289 | [tapas-large-finetuned-sqa](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/main) BASE | noreset | 0.6737 | [tapas-base-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/no_reset) BASE | reset | 0.6874 | [tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/main) MEDIUM | noreset | 0.6464 | [tapas-medium-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/no_reset) MEDIUM | reset | 0.6561 | [tapas-medium-finetuned-sqa](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/main) **SMALL** | **noreset** | **0.5876** | [tapas-small-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/no_reset) **SMALL** | **reset** | **0.6155** | [tapas-small-finetuned-sqa](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/main) MINI | noreset | 0.4574 | [tapas-mini-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/no_reset) MINI | reset | 0.5148 | [tapas-mini-finetuned-sqa](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/main)) TINY | noreset | 0.2004 | [tapas-tiny-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/no_reset) TINY | reset | 0.2375 | [tapas-tiny-finetuned-sqa](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on SQA. ## Intended uses & limitations You can use this model for answering questions related to a table in a conversational set-up. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 200,000 steps with maximum sequence length 512 and batch size of 128. In this setup, fine-tuning takes around 20 hours. The optimizer used is Adam with a learning rate of 1.25e-5, and a warmup ratio of 0.2. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See also table 12 of the [original paper](https://arxiv.org/abs/2004.02349). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @InProceedings{iyyer2017search-based, author = {Iyyer, Mohit and Yih, Scott Wen-tau and Chang, Ming-Wei}, title = {Search-based Neural Structured Learning for Sequential Question Answering}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, year = {2017}, month = {July}, abstract = {Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions.}, publisher = {Association for Computational Linguistics}, url = {https://www.microsoft.com/en-us/research/publication/search-based-neural-structured-learning-sequential-question-answering/}, } ```
microsoft/beit-large-patch16-512
f03bc4a94ad012c74bdd32d80ec7169a751034f9
2022-01-28T10:20:07.000Z
[ "pytorch", "jax", "beit", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2106.08254", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
microsoft
null
microsoft/beit-large-patch16-512
362
1
transformers
2,654
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet - imagenet-21k --- # BEiT (large-sized model, fine-tuned on ImageNet-1k) BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 512x512. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches. Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. Alternatively, one can mean-pool the final hidden states of the patch embeddings, and place a linear layer on top of that. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import BeitFeatureExtractor, BeitForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-patch16-512') model = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-512') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254). ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```@article{DBLP:journals/corr/abs-2106-08254, author = {Hangbo Bao and Li Dong and Furu Wei}, title = {BEiT: {BERT} Pre-Training of Image Transformers}, journal = {CoRR}, volume = {abs/2106.08254}, year = {2021}, url = {https://arxiv.org/abs/2106.08254}, archivePrefix = {arXiv}, eprint = {2106.08254}, timestamp = {Tue, 29 Jun 2021 16:55:04 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
BrunoNogueira/DialoGPT-kungfupanda
89c1a1f2bb2c5ab517ec9319094a8c0405de9240
2021-09-23T18:49:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BrunoNogueira
null
BrunoNogueira/DialoGPT-kungfupanda
361
null
transformers
2,655
--- tags: - conversational --- #DialoGPT-kungfupanda
aluserhuggingface/DialoGPT-small-harrypotter
99262a7670e2d0053c5c46724110f4135fc33e67
2022-02-18T19:41:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
aluserhuggingface
null
aluserhuggingface/DialoGPT-small-harrypotter
361
null
transformers
2,656
--- tags: - conversational --- #Harry Potter DialoGPT Model
lassl/gpt2-ko-small
e7d6eaeacf4937a07a1c57394b9d70448b0a0141
2022-02-20T00:13:44.000Z
[ "pytorch", "gpt2", "text-generation", "ko", "transformers", "korean", "lassl", "license:apache-2.0" ]
text-generation
false
lassl
null
lassl/gpt2-ko-small
361
3
transformers
2,657
--- license: apache-2.0 language: ko tags: - korean - lassl --- # LASSL gpt2-ko-small ## How to use ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("lassl/gpt2-ko-small") tokenizer = AutoTokenizer.from_pretrained("lassl/gpt2-ko-small") ``` ## Evaluation Evaulation results will be released soon. ## Corpora This model was trained from 6,831,079 examples (whose have 3,497,512,448 tokens). 6,831,079 examples are extracted from below corpora. If you want to get information for training, you should see `config.json`. ```bash corpora/ ├── [707M] kowiki_latest.txt ├── [ 26M] modu_dialogue_v1.2.txt ├── [1.3G] modu_news_v1.1.txt ├── [9.7G] modu_news_v2.0.txt ├── [ 15M] modu_np_v1.1.txt ├── [1008M] modu_spoken_v1.2.txt ├── [6.5G] modu_written_v1.0.txt └── [413M] petition.txt ```
poom-sci/bert-base-uncased-multi-emotion
09b04517929ddbb0a90d439018418d47377bcac3
2021-11-14T16:22:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "en", "dataset:go_emotions", "transformers", "translation", "license:apache-2.0" ]
text-classification
false
poom-sci
null
poom-sci/bert-base-uncased-multi-emotion
361
null
transformers
2,658
--- language: - en tags: - translation license: apache-2.0 datasets: - go_emotions --- created for study
Narrativa/mT5-base-finetuned-tydiQA-question-generation
5e36ab2e87781ca9cbd4e7101e6904c7e5cf7568
2021-08-23T10:05:14.000Z
[ "pytorch", "mt5", "text2text-generation", "multilingual", "dataset:tydiqa", "arxiv:2010.11934", "transformers", "autotrain_compatible" ]
text2text-generation
false
Narrativa
null
Narrativa/mT5-base-finetuned-tydiQA-question-generation
360
1
transformers
2,659
--- language: multilingual datasets: - tydiqa widget: - text: "answer: monitoring and managing PR strategy including relations with the media and journalists context: Sofía has a degree in Communications and public relations agency experience where she was in charge of monitoring and managing PR strategy including relations with the media and journalists." --- # mT5-base fine-tuned on TyDiQA for multilingual Question Generation 🗺📖❓ [Google's mT5-base](https://huggingface.co/google/mt5-base) fine-tuned on [TyDi QA](https://huggingface.co/nlp/viewer/?dataset=tydiqa&config=secondary_task) (secondary task) for **multingual Question Generation** downstream task (by answer prepending). ## Details of mT5 [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Details of the dataset 📚 **TyDi QA** is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language expresses -- such that we expect models performing well on this set to generalize across a large number of the languages in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without the use of translation (unlike MLQA and XQuAD). | Dataset | Task | Split | # samples | | -------- | ----- |------| --------- | | TyDi QA | GoldP | train| 49881 | | TyDi QA | GoldP | valid| 5077 | ## Results on validation dataset 📝 ### WIP ## Model in Action 🚀 ### WIP Created by: [Narrativa](https://www.narrativa.com/) About Narrativa: Natural Language Generation (NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. #NLG #AI
cpierse/gpt2_film_scripts
423a12f965f84b34e8e9bd85cfb32e7cec634e7d
2021-05-21T15:09:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
cpierse
null
cpierse/gpt2_film_scripts
360
null
transformers
2,660
Entry not found
google/multiberts-seed_10
2eb55a013190f8ec91466b5cd9404699b379f48a
2021-11-05T22:26:09.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_10", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_10
360
null
transformers
2,661
--- language: en tags: - multiberts - multiberts-seed_10 license: apache-2.0 --- # MultiBERTs - Seed 10 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #10. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10') model = TFBertModel.from_pretrained("google/multiberts-seed_10") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_10') model = BertModel.from_pretrained("google/multiberts-seed_10") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/muril-large-cased
ace319f0d17524297957e249aff028b0b7357ab5
2021-10-16T03:28:16.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:1810.04805", "arxiv:1911.02116", "arxiv:2003.11080", "arxiv:2009.05166", "arxiv:2103.10730", "transformers" ]
feature-extraction
false
google
null
google/muril-large-cased
360
10
transformers
2,662
# MuRIL Large Multilingual Representations for Indian Languages : A BERT Large (24L) model pre-trained on 17 Indian languages, and their transliterated counterparts. ## Overview This model uses a BERT large architecture [1] pretrained from scratch using the Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6] Indian languages. We use a training paradigm similar to multilingual bert, with a few modifications as listed: * We include translation and transliteration segment pairs in training as well. * We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to enhance low-resource performance. [7] See the Training section for more details. ## Training The MuRIL model is pre-trained on monolingual segments as well as parallel segments as detailed below : * Monolingual Data : We make use of publicly available corpora from Wikipedia and Common Crawl for 17 Indian languages. * Parallel Data : We have two types of parallel data : * Translated Data : We obtain translations of the above monolingual corpora using the Google NMT pipeline. We feed translated segment pairs as input. We also make use of the publicly available PMINDIA corpus. * Transliterated Data : We obtain transliterations of Wikipedia using the IndicTrans [8] library. We feed transliterated segment pairs as input. We also make use of the publicly available Dakshina dataset. We keep an exponent value of 0.3 to calculate duplication multiplier values for upsampling of lower resourced languages and set dupe factors accordingly. Note, we limit transliterated pairs to Wikipedia only. The model was trained using a self-supervised masked language modeling task. We do whole word masking with a maximum of 80 predictions. The model was trained for 1500K steps, with a batch size of 8192, and a max sequence length of 512. ### Trainable parameters All parameters in the module are trainable, and fine-tuning all parameters is the recommended practice. ## Uses & Limitations This model is intended to be used for a variety of downstream NLP tasks for Indian languages. This model is trained on transliterated data as well, a phenomenon commonly observed in the Indian context. This model is not expected to perform well on languages other than the ones used in pre-training, i.e. 17 Indian languages. ## Evaluation We provide the results of fine-tuning this model on a set of downstream tasks.<br/> We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/> All results are computed in a zero-shot setting, with English being the high resource training set language.<br/> The results for XLM-R (Large) are taken from the XTREME paper [9]. * Shown below are results on datasets from the XTREME benchmark (in %) <br/> PANX (F1) | bn | en | hi | ml | mr | ta | te | ur | Average :------------ | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ------: XLM-R (large) | 78.8 | 84.7 | 73.0 | 67.8 | 68.1 | 59.5 | 55.8 | 56.4 | 68.0 MuRIL (large) | 85.8 | 85.0 | 78.3 | 75.6 | 77.3 | 71.1 | 65.6 | 83.0 | 77.7 <br/> UDPOS (F1) | en | hi | mr | ta | te | ur | Average :------------ | ---: | ---: | ---: | ---: | ---: | ---: | ------: XLM-R (large) | 96.1 | 76.4 | 80.8 | 65.2 | 86.6 | 70.3 | 79.2 MuRIL (large) | 95.7 | 71.3 | 85.7 | 62.6 | 85.8 | 62.8 | 77.3 <br/> XNLI (Accuracy) | en | hi | ur | Average :-------------- | ---: | ---: | ---: | ------: XLM-R (large) | 88.7 | 75.6 | 71.7 | 78.7 MuRIL (large) | 88.4 | 75.8 | 71.7 | 78.6 <br/> XQUAD (F1/EM) | en | hi | Average :------------ | --------: | --------: | --------: XLM-R (large) | 86.5/75.7 | 76.7/59.7 | 81.6/67.7 MuRIL (large) | 88.2/77.8 | 78.4/62.4 | 83.3/70.1 <br/> MLQA (F1/EM) | en | hi | Average :------------ | --------: | --------: | --------: XLM-R (large) | 83.5/70.6 | 70.6/53.1 | 77.1/61.9 MuRIL (large) | 84.4/71.7 | 72.2/54.1 | 78.3/62.9 <br/> TyDiQA (F1/EM) | en | bn | te | Average :------------- | --------: | --------: | --------: | --------: XLM-R (large) | 71.5/56.8 | 64.0/47.8 | 70.1/43.6 | 68.5/49.4 MuRIL (large) | 75.9/66.8 | 67.1/53.1 | 71.5/49.8 | 71.5/56.6 <br/> The fine-tuning hyperparameters are as follows: Task | Batch Size | Learning Rate | Epochs | Warm-up Ratio :----- | ---------: | ------------: | -----: | ------------: PANX | 32 | 2e-5 | 10 | 0.1 UDPOS | 64 | 5e-6 | 10 | 0.1 XNLI | 128 | 2e-5 | 5 | 0.1 XQuAD | 32 | 3e-5 | 2 | 0.1 MLQA | 32 | 3e-5 | 2 | 0.1 TyDiQA | 32 | 3e-5 | 3 | 0.1 ## References \[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint arXiv:1810.04805, 2018. \[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia) \[3]: [Common Crawl](http://commoncrawl.org/the-data/) \[4]: [PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html) \[5]: [Dakshina](https://github.com/google-research-datasets/dakshina) \[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi), Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya (or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu (ur). \[7]: Conneau, Alexis, et al. [Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf). arXiv preprint arXiv:1911.02116 (2019). \[8]: [IndicTrans](https://github.com/libindic/indic-trans) \[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M. (2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv preprint arXiv:2003.11080. \[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020). [FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf) arXiv preprint arXiv:2009.05166. ## Citation If you find MuRIL useful in your applications, please cite the following paper: ``` @misc{khanuja2021muril, title={MuRIL: Multilingual Representations for Indian Languages}, author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar}, year={2021}, eprint={2103.10730}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact Please mail your queries/feedback to [email protected].
google/realm-orqa-nq-openqa
ea416e495785cd9612f659b69af3a7857c91fe2a
2022-01-05T18:00:40.000Z
[ "pytorch", "realm", "en", "transformers", "license:apache-2.0" ]
null
false
google
null
google/realm-orqa-nq-openqa
360
2
transformers
2,663
--- language: en license: apache-2.0 --- # realm-orqa-nq-openqa ## Model description The REALM checkpoint finetuned with Natural Questions(NQ) dataset, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmForOpenQA openqa = RealmForOpenQA.from_pretrained("qqaatw/realm-orqa-nq-openqa") ```
voidful/bart-distractor-generation
31759a44a1319ed9804ba667cbb9b0cc03faff11
2021-04-04T16:18:19.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:race", "transformers", "distractor", "generation", "seq2seq", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/bart-distractor-generation
360
2
transformers
2,664
--- language: en tags: - bart - distractor - generation - seq2seq datasets: - race metrics: - bleu - rouge pipeline_tag: text2text-generation widget: - text: "When you ' re having a holiday , one of the main questions to ask is which hotel or apartment to choose . However , when it comes to France , you have another special choice : treehouses . In France , treehouses are offered to travelers as a new choice in many places . The price may be a little higher , but you do have a chance to _ your childhood memories . Alain Laurens , one of France ' s top treehouse designers , said , ' Most of the people might have the experience of building a den when they were young . And they like that feeling of freedom when they are children . ' Its fairy - tale style gives travelers a special feeling . It seems as if they are living as a forest king and enjoying the fresh air in the morning . Another kind of treehouse is the ' star cube ' . It gives travelers the chance of looking at the stars shining in the sky when they are going to sleep . Each ' star cube ' not only offers all the comfortable things that a hotel provides for travelers , but also gives them a chance to look for stars by using a telescope . The glass roof allows you to look at the stars from your bed . </s> The passage mainly tells us </s> treehouses in france." --- # bart-distractor-generation ## Model description This model is a sequence-to-sequence distractor generator which takes an answer, question and context as an input, and generates a distractor as an output. It is based on a pretrained `bart-base` model. For details, please see https://github.com/voidful/BDG. ## Intended uses & limitations The model is trained to generate examinations-style multiple choice distractor. The model performs best with full sentence answers. #### How to use The model takes concatenated context, question and answers as an input sequence, and will generate a full distractor sentence as an output sequence. The max sequence length is 1024 tokens. Inputs should be organised into the following format: ``` context </s> question </s> answer ``` The input sequence can then be encoded and passed as the `input_ids` argument in the model's `generate()` method. For details, please see https://github.com/voidful/BDG. #### Limitations and bias The model is limited to generating distractor in the same style as those found in [RACE](https://www.aclweb.org/anthology/D17-1082/). The generated distractors can potentially be leading or reflect biases that are present in the context. If the context is too short or completely absent, or if the context, question and answer do not match, the generated distractor is likely to be incoherent.
stanleychu2/system_400M
954462cbb137d6b684df0a6daa60f135a528799b
2022-03-07T09:10:43.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stanleychu2
null
stanleychu2/system_400M
360
null
transformers
2,665
Entry not found
Batsy24/DialoGPT-medium-Twilight_BellaBot
da351b3d0906189e60536326b516606cce4210c6
2021-11-18T09:15:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Batsy24
null
Batsy24/DialoGPT-medium-Twilight_BellaBot
359
null
transformers
2,666
--- tags: - conversational --- # Bella Swan DialoGPT model
ccdv/lsg-base-4096
63ab0e0d4b0b6d2c8d882070c6fa01d360c9b17b
2022-07-25T05:36:08.000Z
[ "pytorch", "roberta", "fill-mask", "en", "transformers", "long context", "autotrain_compatible" ]
fill-mask
false
ccdv
null
ccdv/lsg-base-4096
359
1
transformers
2,667
--- language: en tags: - long context --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ The model is trained starting from a RoBERTa-base checkpoint on 16Gb of data (Wikipedia, Bookcorpus etc...) using the same number of parameters/layers and the same tokenizer. Support encoder-decoder and causal masking but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-base-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-base-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-base-4096") SENTENCES = ["Paris is the <mask> of France.", "The goal of life is <mask>."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.', 'The goal of life is happiness.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-base-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-base-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ```
google/multiberts-seed_11
d6aff2e50dfed3e7de6efc38459cb0070901f176
2021-11-05T22:28:19.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_11", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_11
359
null
transformers
2,668
--- language: en tags: - multiberts - multiberts-seed_11 license: apache-2.0 --- # MultiBERTs - Seed 11 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #11. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11') model = TFBertModel.from_pretrained("google/multiberts-seed_11") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_11') model = BertModel.from_pretrained("google/multiberts-seed_11") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_12
b6933aed309729c8305d033bbb9dde829a901c04
2021-11-05T22:30:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_12", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_12
359
null
transformers
2,669
--- language: en tags: - multiberts - multiberts-seed_12 license: apache-2.0 --- # MultiBERTs - Seed 12 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #12. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12') model = TFBertModel.from_pretrained("google/multiberts-seed_12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_12') model = BertModel.from_pretrained("google/multiberts-seed_12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_8
95242f2431926edbd81cac9a7c643ce60193d979
2021-11-05T22:21:22.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_8", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_8
359
null
transformers
2,670
--- language: en tags: - multiberts - multiberts-seed_8 license: apache-2.0 --- # MultiBERTs - Seed 8 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #8. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_8') model = TFBertModel.from_pretrained("google/multiberts-seed_8") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_8') model = BertModel.from_pretrained("google/multiberts-seed_8") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_9
225772f575cc16e5e1f27e06a6c4d888dc82ddab
2021-11-05T22:23:00.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_9", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_9
359
null
transformers
2,671
--- language: en tags: - multiberts - multiberts-seed_9 license: apache-2.0 --- # MultiBERTs - Seed 9 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #9. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_9') model = TFBertModel.from_pretrained("google/multiberts-seed_9") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_9') model = BertModel.from_pretrained("google/multiberts-seed_9") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
huggingface-course/distilbert-base-uncased-finetuned-imdb
10abb8b26c1b5163624c5ccc649986aa7ace845b
2021-11-11T17:42:21.000Z
[ "pytorch", "tf", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
huggingface-course
null
huggingface-course/distilbert-base-uncased-finetuned-imdb
359
null
transformers
2,672
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.708 | 1.0 | 157 | 2.4715 | | 2.5627 | 2.0 | 314 | 2.4145 | | 2.5385 | 3.0 | 471 | 2.4451 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
stanleychu2/user_400M
96801813e5be15b4bc5b85529097e35019f973b5
2022-03-07T09:10:11.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stanleychu2
null
stanleychu2/user_400M
359
null
transformers
2,673
Entry not found
jinmang2/kpfbert
e060b6039623d70d4b6df98245376f75a6e3a4e5
2022-04-05T16:03:00.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
jinmang2
null
jinmang2/kpfbert
359
null
transformers
2,674
# KpfBERT https://github.com/jinmang2/kpfbert
tscholak/t5.1.1.lm100k.large
9b42e0fff7709a21b3da746bf3fce8774d5136a2
2021-10-09T13:42:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tscholak
null
tscholak/t5.1.1.lm100k.large
358
1
transformers
2,675
Entry not found
l3cube-pune/hing-bert
fccd12879be703ba59ae4d306f4fb10685559812
2022-06-26T15:13:10.000Z
[ "pytorch", "bert", "fill-mask", "hi", "en", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "transformers", "codemix", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/hing-bert
358
1
transformers
2,676
--- license: cc-by-4.0 language: - hi - en tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingBERT HingBERT is a Hindi-English code-mixed BERT model trained on roman text. It is a base BERT model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) ``` @InProceedings{nayak-joshi:2022:WILDRE6, author = {Nayak, Ravindra and Joshi, Raviraj}, title = {L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {7--12} } ```
valurank/distilroberta-current
ed30e164cbf3eb30df98cb71576bad2098df9529
2022-06-08T20:20:10.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/distilroberta-current
358
null
transformers
2,677
--- license: other tags: - generated_from_trainer model-index: - name: distilroberta-current results: [] --- # distilroberta-current This model classifies articles as current (covering or discussing current events) or not current (not relating to current events). The model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on a dataset of articles labeled using weak-supervision and manual labeling It achieves the following results on the evaluation set: - Loss: 0.1745 - Acc: 0.9355 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 12345 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 11 | 0.6559 | 0.7097 | | 0.6762 | 2.0 | 22 | 0.5627 | 0.7097 | | 0.5432 | 3.0 | 33 | 0.4606 | 0.7097 | | 0.5432 | 4.0 | 44 | 0.3651 | 0.8065 | | 0.411 | 5.0 | 55 | 0.2512 | 0.9194 | | 0.269 | 6.0 | 66 | 0.2774 | 0.9355 | | 0.269 | 7.0 | 77 | 0.2062 | 0.8710 | | 0.2294 | 8.0 | 88 | 0.2598 | 0.9355 | | 0.1761 | 9.0 | 99 | 0.1745 | 0.9355 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
HYPJUDY/layoutlmv3-base-finetuned-funsd
90be3a172349c0290245ffa81d41c6f5c9f24040
2022-07-19T02:25:28.000Z
[ "pytorch", "tensorboard", "layoutlmv3", "token-classification", "arxiv:2204.08387", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
HYPJUDY
null
HYPJUDY/layoutlmv3-base-finetuned-funsd
358
3
transformers
2,678
--- license: mit --- # layoutlmv3-base-finetuned-funsd The model [layoutlmv3-base-finetuned-funsd](https://huggingface.co/HYPJUDY/layoutlmv3-base-finetuned-funsd) is fine-tuned on the FUNSD dataset initialized from [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base). This finetuned model achieves an F1 score of 90.59 on the test split of the FUNSD dataset. [Paper](https://arxiv.org/pdf/2204.08387.pdf) | [Code](https://aka.ms/layoutlmv3) | [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) If you find LayoutLMv3 helpful, please cite the following paper: ``` @article{huang2022layoutlmv3, title={LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking}, author={Yupan Huang and Tengchao Lv and Lei Cui and Yutong Lu and Furu Wei}, journal={arXiv preprint arXiv:2204.08387}, year={2022} } ``` ## License The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
Wi/arxiv-topics-distilbert-base-cased
20469cc8a5611f69a6b8911188d7dee8b27a493d
2022-07-12T01:02:14.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "arxiv", "topic-classification", "license:apache-2.0" ]
text-classification
false
Wi
null
Wi/arxiv-topics-distilbert-base-cased
358
0
transformers
2,679
--- language: en license: apache-2.0 tags: - arxiv - topic-classification - distilbert widget: - text: "Title: The Design of Radio Telescope Array Configurations using Multiobjective\n\ \ Optimization: Imaging Performance versus Cable Length\nAbstract: The next generation\ \ of radio telescope interferometric arrays requires\ncareful design of the array\ \ configuration to optimize the performance of the\noverall system. We have developed\ \ a framework, based on a genetic algorithm,\nfor rapid exploration and optimization\ \ of the objective space pertaining to\nmultiple objectives. We have evaluated\ \ a large space of possible designs for\n27-, 60-, 100-, and 160-station arrays.\ \ The 27-station optimizations can be\ncompared to the well-known VLA case, and\ \ the larger array designs apply to\narrays currently under design such as LOFAR,\ \ ATA, and the SKA. In the initial\nimplementation of our framework we evaluate\ \ designs with respect to two\nmetrics, array imaging performance and the length\ \ of cable necessary to connect\nthe stations. Imaging performance is measured\ \ by the degree to which the\nsampling of the uv plane is uniform. For the larger\ \ arrays we find that\nwell-known geometric designs perform well and occupy the\ \ Pareto front of\noptimum solutions. For the 27-element case we find designs,\ \ combining features\nof the well-known designs, that are more optimal as measured\ \ by these two\nmetrics. The results obtained by the multiobjective genetic optimization\ \ are\ncorroborated by simulated annealing, which also reveals the role of entropy\ \ in\narray optimization. Our framework is general, and may be applied to other\n\ design goals and issues, such as particular schemes for sampling the uv plane,\n\ array robustness, and phased deployment of arrays.\nAuthors: Babak E. Cohanim,\ \ Jacqueline N. Hewitt, Olivier de Weck" - text: "Title: Evidence for a Neutron Star in the non-pulsating massive X-ray binary\n\ \ 4U2206+54\nAbstract: We present an analysis of archival RXTE and BeppoSAX data\ \ of the X-ray source\n4U2206+54 . For the first time, high energy data (> 30\ \ kev) are analyzed for\nthis source. The data are well described by comptonization\ \ models (CompTT and\nBMC) in which seed photons with temperatures between 1.1\ \ kev and 1.5 kev are\ncomptonized by a hot plasma at 50 kev thereby producing\ \ a hard tail which\nextends up to, at least, 100 kev. We offer a new method of\ \ identification of\nneutron star systems using a temperature - luminosity relation.\ \ If a given\nX-ray source is characterized by a low bolometric luminosity and\ \ a relatively\nhigh color blackbody temperature (>1 kev) it has necessarily to\ \ be a neutron\nstar rather than a black hole. From these arguments it is shown\ \ that the area\nof the soft photon source must be small (r ~ 1 km) and that the\ \ accretion disk,\nif present, must be truncated very far from the compact object.\ \ Here we report\non the possible existence of a cyclotron line around 30 kev.\ \ The presence of a\nneutron star in the system is strongly favored by the available\ \ data.\nAuthors: J. M. Torrej\xF3n, I. Kreykenbohm, A. Orr, L. Titarchuk, I.\ \ Negueruela" - text: "Title: Solving the Schrodinger Equation for a Quantum Well\n with a Non-Uniform\ \ Potential\nAbstract: We present a numerical solution to the Schrodinger equation\ \ for a\nquantum well with a non-uniform potential. The potential is a Gaussian\n\ with a non-uniform distribution of energies. The solution is a solution to the\n\ Schrodinger equation with a non-uniform potential. The solution is a\nnon-uniform\ \ solution to the Schrodinger equation with a non-uniform potential.\nAuthors:\ \ George K. Kostopoulos, John A. Kostopoulos, and John C. Kostopoulos" - text: "Title: Inverting Black-Scholes Model for Option Pricing\n with a Non-Uniformly\ \ Distributed Risk\nAbstract: We present a numerical solution to the Black-Scholes\ \ model for\noption pricing with a non-uniformly distributed risk. The solution\ \ is a\nnon-uniform solution to the Black-Scholes model with a non-uniformly\n\ distributed risk. The solution is a non-uniform solution to the\nBlack-Scholes\ \ model with a non-uniformly distributed risk.\nAuthors: Z. Starosov, L. Randhawa" --- # DistilBERT on ArXiv This model was developed to predict the top-level category of a paper, given the paper's abstract, title, and list of authors. It was trained over a subset of data pulled from the ArXiv API.
mymusise/CPM-Generate-distill
1611f575f3db84c83fd120ca8fd826953b4afdbf
2021-05-23T10:40:31.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "zh", "transformers" ]
text-generation
false
mymusise
null
mymusise/CPM-Generate-distill
357
4
transformers
2,680
--- language: zh widget: - text: "天下熙熙," - text: "天气不错," --- <h1 align="center"> CPM-Generate-distill </h1> CPM(Chinese Pre-Trained Language Models), which has 2.6B parameters, made by the research team of Beijing Zhiyuan Institute of artificial intelligence and Tsinghua University @TsinghuaAI. [repo: CPM-Generate](https://github.com/TsinghuaAI/CPM-Generate) The One Thing You Need to Know is this model is not uploaded by official, the conver script is [here](https://github.com/mymusise/CPM-TF2Transformer/blob/main/transfor_CMP.ipynb) And the `CPM-Generate-distill` is the distill model of `CPM`. # How to use How to use this model directly from the 🤗/transformers library: ```python from transformers import XLNetTokenizer, TFGPT2LMHeadModel from transformers import TextGenerationPipeline import jieba # add spicel process class XLNetTokenizer(XLNetTokenizer): translator = str.maketrans(" \n", "\u2582\u2583") def _tokenize(self, text, *args, **kwargs): text = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)] text = " ".join(text) return super()._tokenize(text, *args, **kwargs) def _decode(self, *args, **kwargs): text = super()._decode(*args, **kwargs) text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n') return text tokenizer = XLNetTokenizer.from_pretrained('mymusise/CPM-Generate-distill') model = TFGPT2LMHeadModel.from_pretrained("mymusise/CPM-Generate-distill") text_generater = TextGenerationPipeline(model, tokenizer) print(text_generater("天下熙熙,", max_length=15, top_k=1, use_cache=True, prefix='')) ``` ![avatar](https://github.com/mymusise/CPM-TF2Transformer/raw/main/example-cpm-distill.jpeg)
junnyu/wobert_chinese_plus_base
298f3eb6ce959a8d191d608f85ba90b3e65740cf
2021-07-07T01:18:40.000Z
[ "pytorch", "jax", "bert", "fill-mask", "zh", "transformers", "wobert", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/wobert_chinese_plus_base
356
1
transformers
2,681
--- language: zh tags: - wobert inference: False --- ## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/WoBERT ### pytorch版本 https://github.com/JunnYu/WoBERT_pytorch ## 安装(主要为了安装WoBertTokenizer) ```bash pip install git+https://github.com/JunnYu/WoBERT_pytorch.git ``` ## 使用 ```python import torch from transformers import BertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer pretrained_model_or_path_list = [ "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base" ] for path in pretrained_model_or_path_list: text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = WoBertTokenizer.from_pretrained(path) model = WoBertForMaskedLM.from_pretrained(path) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits[0] outputs_sentence = "" for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += "[" + "||".join(tokens) + "]" else: outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # RoFormer 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 # PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。 # WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
Helsinki-NLP/opus-mt-ht-en
c45c603fdf8b878d6002148783a21d85e5ece0b5
2021-09-09T22:10:28.000Z
[ "pytorch", "marian", "text2text-generation", "ht", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ht-en
355
null
transformers
2,682
--- tags: - translation license: apache-2.0 --- ### opus-mt-ht-en * source languages: ht * target languages: en * OPUS readme: [ht-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.en | 37.5 | 0.542 | | Tatoeba.ht.en | 57.0 | 0.689 |
google/multiberts-seed_13
db04544bc9fe3a2c40fff2a460003e1a4d31c85f
2021-11-05T22:31:43.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_13", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_13
355
null
transformers
2,683
--- language: en tags: - multiberts - multiberts-seed_13 license: apache-2.0 --- # MultiBERTs - Seed 13 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #13. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_13') model = TFBertModel.from_pretrained("google/multiberts-seed_13") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_13') model = BertModel.from_pretrained("google/multiberts-seed_13") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
raruidol/ArgumentRelation
eabc480c237123f0a4f9487d0872ec460d3c6b66
2022-01-26T15:04:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
raruidol
null
raruidol/ArgumentRelation
355
1
transformers
2,684
# Argument Relation Mining Best performing model trained in the "Transformer-Based Models for Automatic Detection of Argument Relations: A Cross-Domain Evaluation" paper. Code available in https://github.com/raruidol/ArgumentRelationMining Cite: ``` @article{ruiz2021transformer, title={Transformer-based models for automatic identification of argument relations: A cross-domain evaluation}, author={Ruiz-Dolz, Ramon and Alemany, Jose and Heras, Stella and Garcia-Fornes, Ana}, journal={IEEE Intelligent Systems}, year={2021}, publisher={IEEE} } ```
speechbrain/asr-wav2vec2-commonvoice-fr
269ef5853401e2aa2e47fe6fd7027b067c630c9b
2022-06-05T15:38:43.000Z
[ "wav2vec2", "feature-extraction", "fr", "dataset:commonvoice", "speechbrain", "CTC", "pytorch", "Transformer", "hf-asr-leaderboard", "license:apache-2.0", "automatic-speech-recognition", "model-index" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-commonvoice-fr
355
5
speechbrain
2,685
--- language: - fr thumbnail: null pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer - hf-asr-leaderboard license: apache-2.0 datasets: - commonvoice metrics: - wer - cer model-index: - name: asr-wav2vec2-commonvoice-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: CommonVoice 6.1 (French) type: mozilla-foundation/common_voice_6_1 config: fr split: test args: language: fr metrics: - name: Test WER type: wer value: '9.96' --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on CommonVoice French (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (French Language) within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The performance of the model is the following: | Release | Test CER | Test WER | GPUs | |:-------------:|:--------------:|:--------------:| :--------:| | 24-08-21 | 3.19 | 9.96 | 2xV100 32GB | ## Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (FR). - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large)) is combined with two DNN layers and finetuned on CommonVoice FR. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in French) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr") asr_model.transcribe_file('speechbrain/asr-wav2vec2-commonvoice-fr/example-fr.wav') ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/CommonVoice/ASR/CTC/ python train_with_wav2vec.py hparams/train_fr_with_wav2vec.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1T9DfdZwcNI9CURxhLCi8GA5JVz8adiY8?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
stanford-crfm/arwen-gpt2-medium-x21
fc6844fbbbdc91bc63546c672282b8fb1d70b5d3
2022-06-20T11:36:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stanford-crfm
null
stanford-crfm/arwen-gpt2-medium-x21
355
null
transformers
2,686
Entry not found
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
54e2905e7c756883b00877cd48ed710a304af0d1
2021-10-17T11:07:13.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
354
null
transformers
2,687
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT MSA NER Model ## Model description **CAMeLBERT MSA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678). "* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT MSA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-msa-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
SajjadAyoubi/xlm-roberta-large-fa-qa
8e071d1d25324e15ebe203a245019e4e4f782e25
2021-04-21T07:23:30.000Z
[ "pytorch", "tf", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SajjadAyoubi
null
SajjadAyoubi/xlm-roberta-large-fa-qa
354
null
transformers
2,688
### How to use #### Requirements Transformers require `transformers` and `sentencepiece`, both of which can be installed using `pip`. ```sh pip install transformers sentencepiece ``` #### Pipelines 🚀 In case you are not familiar with Transformers, you can use pipelines instead. Note that, pipelines can't have _no answer_ for the questions. ```python from transformers import pipeline model_name = "SajjadAyoubi/lm-roberta-large-fa-qa" qa_pipeline = pipeline("question-answering", model=model_name, tokenizer=model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] for question in questions: print(qa_pipeline({"context": text, "question": question})) >>> {'score': 0.4839823544025421, 'start': 8, 'end': 18, 'answer': 'سجاد ایوبی'} >>> {'score': 0.3747948706150055, 'start': 24, 'end': 32, 'answer': '۲۰ سالمه'} >>> {'score': 0.5945395827293396, 'start': 38, 'end': 55, 'answer': 'پردازش زبان طبیعی'} ``` #### Manual approach 🔥 Using the Manual approach, it is possible to have _no answer_ with even better performance. - PyTorch ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering from src.utils import AnswerPredictor model_name = "SajjadAyoubi/lm-roberta-large-fa-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForQuestionAnswering.from_pretrained(model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] # this class is from src/utils.py and you can read more about it predictor = AnswerPredictor(model, tokenizer, device="cpu", n_best=10) preds = predictor(questions, [text] * 3, batch_size=3) for k, v in preds.items(): print(v) ``` Produces an output such below: ``` 100%|██████████| 1/1 [00:00<00:00, 3.56it/s] {'score': 8.040637016296387, 'text': 'سجاد ایوبی'} {'score': 9.901972770690918, 'text': '۲۰'} {'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'} ``` - TensorFlow 2.X ```python from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering from src.utils import TFAnswerPredictor model_name = "SajjadAyoubi/lm-roberta-large-fa-qa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) text = "سلام من سجاد ایوبی هستم ۲۰ سالمه و به پردازش زبان طبیعی علاقه دارم" questions = ["اسمم چیه؟", "چند سالمه؟", "به چی علاقه دارم؟"] # this class is from src/utils.py, you can read more about it predictor = TFAnswerPredictor(model, tokenizer, n_best=10) preds = predictor(questions, [text] * 3, batch_size=3) for k, v in preds.items(): print(v) ``` Produces an output such below: ```text 100%|██████████| 1/1 [00:00<00:00, 3.56it/s] {'score': 8.040637016296387, 'text': 'سجاد ایوبی'} {'score': 9.901972770690918, 'text': '۲۰'} {'score': 12.117212295532227, 'text': 'پردازش زبان طبیعی'} ``` Or you can access the whole demonstration using [HowToUse iPython Notebook on Google Colab](https://colab.research.google.com/github/sajjjadayobi/PersianQA/blob/main/notebooks/HowToUse.ipynb)
microsoft/beit-large-finetuned-ade-640-640
db2221bdd42a0f4c934ccd08a0eec10060ebd4d8
2022-02-22T09:08:30.000Z
[ "pytorch", "beit", "dataset:scene_parse_150", "arxiv:2106.08254", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
microsoft
null
microsoft/beit-large-finetuned-ade-640-640
354
null
transformers
2,689
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - scene_parse_150 widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # BEiT (large-sized model, fine-tuned on ADE20k) BEiT model pre-trained in a self-supervised fashion on ImageNet-21k (14 million images, 21,841 classes) at resolution 224x224, and fine-tuned on [ADE20k](https://huggingface.co/datasets/scene_parse_150) (an important benchmark for semantic segmentation of images) at resolution 640x640. It was introduced in the paper [BEIT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong and Furu Wei and first released in [this repository](https://github.com/microsoft/unilm/tree/master/beit). Disclaimer: The team releasing BEiT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The BEiT model is a Vision Transformer (ViT), which is a transformer encoder model (BERT-like). In contrast to the original ViT model, BEiT is pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. The pre-training objective for the model is to predict visual tokens from the encoder of OpenAI's DALL-E's VQ-VAE, based on masked patches. Next, the model was fine-tuned in a supervised fashion on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. Contrary to the original ViT models, BEiT models do use relative position embeddings (similar to T5) instead of absolute position embeddings, and perform classification of images by mean-pooling the final hidden states of the patches, instead of placing a linear layer on top of the final hidden state of the [CLS] token. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: for semantic segmentation, one can just add one of the decode heads available in the [mmseg library](https://github.com/open-mmlab/mmsegmentation) for example, and fine-tune the model in a supervised fashion on annotated images. This is what the authors did: they fine-tuned BEiT with an UperHead segmentation decode head, allowing it to obtain SOTA results on important benchmarks such as ADE20k and CityScapes. ## Intended uses & limitations You can use the raw model for semantic segmentation of images. See the [model hub](https://huggingface.co/models?search=microsoft/beit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model for semantic segmentation: ```python from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation from datasets import load_dataset from PIL import Image # load ADE20k image ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") feature_extractor = BeitFeatureExtractor.from_pretrained('microsoft/beit-large-finetuned-ade-640-640') model = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-large-finetuned-ade-640-640') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # logits are of shape (batch_size, num_labels, height/4, width/4) logits = outputs.logits ``` Currently, both the feature extractor and model support PyTorch. ## Training data This BEiT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes, and fine-tuned on [ADE20k](http://sceneparsing.csail.mit.edu/), a dataset consisting of thousands of annotated images and 150 classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py). Images are cropped and padded to the same resolution (640x640) and normalized across the RGB channels with the ImageNet mean and standard deviation. ### Pretraining For all pre-training related hyperparameters, we refer to page 15 of the [original paper](https://arxiv.org/abs/2106.08254). ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 1 and 2 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution (384x384). Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```@article{DBLP:journals/corr/abs-2106-08254, author = {Hangbo Bao and Li Dong and Furu Wei}, title = {BEiT: {BERT} Pre-Training of Image Transformers}, journal = {CoRR}, volume = {abs/2106.08254}, year = {2021}, url = {https://arxiv.org/abs/2106.08254}, archivePrefix = {arXiv}, eprint = {2106.08254}, timestamp = {Tue, 29 Jun 2021 16:55:04 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-08254.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
norie4/DialoGPT-small-kyutebot
f0c0206ce3e265361c03fd0b84f4a09f1872210f
2022-01-31T08:32:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
norie4
null
norie4/DialoGPT-small-kyutebot
354
null
transformers
2,690
--- tags: - conversational --- # mingbot DialoGPT Model
Graphcore/gpt2-wikitext-103
2024fe13f55566bf24d75919f6880857beb1b537
2022-05-25T18:26:50.000Z
[ "pytorch", "gpt2", "text-generation", "dataset:wikitext", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Graphcore
null
Graphcore/gpt2-wikitext-103
354
1
transformers
2,691
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikitext model-index: - name: clm_output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Graphcore/gpt2-wikitext-103 Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description GPT2 is a large transformer-based language model. It is built using transformer decoder blocks. BERT, on the other hand, uses transformer encoder blocks. It adds Layer normalisation to the input of each sub-block, similar to a pre-activation residual networks and an additional layer normalisation. Paper link : [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) ## Intended uses & limitations This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset. It achieves the following results on the evaluation set: - Loss: 2.9902 ## Training and evaluation data - [HuggingFace/wikitext-103-raw-v1](https://huggingface.co/datasets/wikitext) dataset ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/language-modeling/run_clm.py \ --model_name_or_path gpt2 \ --ipu_config_name Graphcore/gpt2-small-ipu \ --dataset_name wikitext \ --dataset_config_name wikitext-103-raw-v1 \ --do_train \ --do_eval \ --num_train_epochs 10 \ --dataloader_num_workers 64 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 128 \ --output_dir /tmp/clm_output \ --logging_steps 5 \ --learning_rate 1e-5 \ --lr_scheduler_type linear \ --loss_scaling 16384 \ --weight_decay 0.01 \ --warmup_ratio 0.1 \ --ipu_config_overrides="embedding_serialization_factor=4,optimizer_state_offchip=true,inference_device_iterations=5" \ --dataloader_drop_last \ --pod_type pod16 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 1024 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** "epoch": 10.0, "train_loss": 3.1787637246621623, "train_runtime": 4372.4031, "train_samples": 114248, "train_samples_per_second": 261.293, "train_steps_per_second": 0.254 ***** eval metrics ***** "eval_loss": 2.990234375, "eval_samples": 240, "perplexity": 19.89034374461794 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
Ahmad/parsT5-base
cfcb398d4d33113e3b8c63f15875e52c6be62077
2021-11-03T13:47:07.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ahmad
null
Ahmad/parsT5-base
353
3
transformers
2,692
A monolingual T5 model for Persian trained on OSCAR 21.09 (https://oscar-corpus.com/) corpus with self-supervised method. 35 Gig deduplicated version of Persian data was used for pre-training the model. It's similar to the English T5 model but just for Persian. You may need to fine-tune it on your specific task. Example code: ``` from transformers import T5ForConditionalGeneration,AutoTokenizer import torch model_name = "Ahmad/parsT5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) input_ids = tokenizer.encode('دانش آموزان به <extra_id_0> میروند و <extra_id_1> میخوانند.', return_tensors='pt') with torch.no_grad(): hypotheses = model.generate(input_ids) for h in hypotheses: print(tokenizer.decode(h)) ``` Steps: 725000 Accuracy: 0.66 Training More? ======== To train the model further please refer to its github repository at: https://github.com/puraminy/parsT5
Contrastive-Tension/BERT-Base-Swe-CT-STSb
7554c0a9f8abb8bc61193eb6cf26a243d586d565
2021-05-18T17:51:43.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Base-Swe-CT-STSb
353
null
transformers
2,693
Entry not found
google/multiberts-seed_15
eff6de8f489d357cae470131562c20adadde6fb0
2021-11-05T22:35:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_15", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_15
353
null
transformers
2,694
--- language: en tags: - multiberts - multiberts-seed_15 license: apache-2.0 --- # MultiBERTs - Seed 15 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #15. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_15') model = TFBertModel.from_pretrained("google/multiberts-seed_15") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_15') model = BertModel.from_pretrained("google/multiberts-seed_15") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
HooshvareLab/bert-base-parsbert-armanner-uncased
70a465658022ef6721ac95374b2bc38340d5fdc5
2021-05-18T20:42:28.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
HooshvareLab
null
HooshvareLab/bert-base-parsbert-armanner-uncased
352
null
transformers
2,695
--- language: fa license: apache-2.0 --- ## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|----------|------------|--------------|----------|----------------|------------| | ARMAN | 93.10* | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
Laptop/DialoGPT-small-gandalf
2e91521c0ec43d77db6447f26a9b3511b9f6c9ae
2021-08-27T21:48:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Laptop
null
Laptop/DialoGPT-small-gandalf
352
null
transformers
2,696
--- tags: - conversational --- # Gandalf DialoGPT Model
google/multiberts-seed_14
3f10c679bb54bdcd581412d4f47a7fd589e41622
2021-11-05T22:33:27.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_14", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_14
352
null
transformers
2,697
--- language: en tags: - multiberts - multiberts-seed_14 license: apache-2.0 --- # MultiBERTs - Seed 14 MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #14. ## Model Description This model is a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14') model = TFBertModel.from_pretrained("google/multiberts-seed_14") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_14') model = BertModel.from_pretrained("google/multiberts-seed_14") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
huggingtweets/getfiscal
761c0fe3c38033fe81940399fdd9963dffd48bc5
2021-05-22T05:24:29.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/getfiscal
351
null
transformers
2,698
--- language: en thumbnail: https://www.huggingtweets.com/getfiscal/1616662151704/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1164709780885106690/5nqTrvC0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Don Hughes 🦌 🤖 AI Bot </div> <div style="font-size: 15px">@getfiscal bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@getfiscal's tweets](https://twitter.com/getfiscal). | Data | Quantity | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 1002 | | Short tweets | 409 | | Tweets kept | 1810 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/d6p1oytn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @getfiscal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28d4ali8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28d4ali8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/getfiscal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
puugz/DialoGPT-small-spiderman
979eca1cebf1ae920bae64439d36aee8b6a62a24
2022-02-20T14:01:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
puugz
null
puugz/DialoGPT-small-spiderman
351
null
transformers
2,699
--- tags: - conversational --- # Spider-Man DialoGPT Model