modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
toasterboy/TESDFEEEE
d4ddfadf3b3d5cd91926ac5b320e497fbc4467fd
2021-12-24T15:14:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasterboy
null
toasterboy/TESDFEEEE
2
null
transformers
24,800
--- license: mit tags: - generated_from_trainer model-index: - name: TESDFEEEE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TESDFEEEE This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 421 | 0.3940 | 0.8306 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toasthans/Facebook_Mit_HPS
c62bfd18defbceead9817540c50a2faf14ec8b3b
2021-12-23T17:47:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Facebook_Mit_HPS
2
null
transformers
24,801
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Accuracy: 0.9281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.906763521176542e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2394 | 0.9238 | | 0.2248 | 2.0 | 584 | 0.3112 | 0.9178 | | 0.2248 | 3.0 | 876 | 0.3681 | 0.9281 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toasthans/Facebook_Mit_HPS_5_Epoch
288ac05c84db281d23e33d6b7f8c95f17b457a41
2021-12-23T08:27:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Facebook_Mit_HPS_5_Epoch
2
null
transformers
24,802
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Mit_HPS_5_Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Mit_HPS_5_Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4774 - Accuracy: 0.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.546392051994155e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2181 | 0.9264 | | 0.2411 | 2.0 | 584 | 0.2571 | 0.9289 | | 0.2411 | 3.0 | 876 | 0.5712 | 0.8947 | | 0.0558 | 4.0 | 1168 | 0.4675 | 0.9332 | | 0.0558 | 5.0 | 1460 | 0.4774 | 0.9315 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toasthans/Facebook_Ohne_HPS
64991cbe31894f319307b0ad14411eb5d012117e
2021-12-23T15:11:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Facebook_Ohne_HPS
2
null
transformers
24,803
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Facebook_Ohne_HPS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Facebook_Ohne_HPS This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4648 - Accuracy: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 292 | 0.2030 | 0.9272 | | 0.2315 | 2.0 | 584 | 0.2811 | 0.9272 | | 0.2315 | 3.0 | 876 | 0.5461 | 0.8955 | | 0.0566 | 4.0 | 1168 | 0.4648 | 0.9255 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toasthans/Twitter_Mit_HPSearch
6a6bf30e104f90ffd247a8428a7e9a3f6c1dbf84
2021-12-24T15:52:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Twitter_Mit_HPSearch
2
null
transformers
24,804
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Twitter_Mit_HPSearch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Twitter_Mit_HPSearch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8389 - Accuracy: 0.8442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.9771872814096894e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 421 | 0.3838 | 0.8353 | | 0.4401 | 2.0 | 842 | 0.4340 | 0.8424 | | 0.2042 | 3.0 | 1263 | 0.6857 | 0.8508 | | 0.0774 | 4.0 | 1684 | 0.8389 | 0.8442 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toasthans/Twitter_Ohne_HPSearch
0160947ce276247f7527683f319a235a6020ebca
2021-12-24T10:20:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
toasthans
null
toasthans/Twitter_Ohne_HPSearch
2
null
transformers
24,805
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: Twitter_Ohne_HPSearch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Twitter_Ohne_HPSearch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0262 - Accuracy: 0.8300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 421 | 0.4296 | 0.8181 | | 0.4451 | 2.0 | 842 | 0.4889 | 0.8240 | | 0.1761 | 3.0 | 1263 | 0.9503 | 0.8103 | | 0.0486 | 4.0 | 1684 | 1.0262 | 0.8300 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
toastynews/electra-hongkongese-small-discriminator
019ac789367735fc9832309fb1d72146a8a254e1
2020-07-07T17:55:30.000Z
[ "pytorch", "tf", "electra", "pretraining", "yue", "transformers", "license:apache-2.0" ]
null
false
toastynews
null
toastynews/electra-hongkongese-small-discriminator
2
null
transformers
24,806
--- language: yue license: apache-2.0 metrics: - DRCD - openrice-senti - lihkg-cat - wordshk-sem --- # ELECTRA Hongkongese Small ## Model description ELECTRA trained exclusively with data from Hong Kong. A signaficant amount of Hongkongese/Cantonese/Yue is included in the training data. ## Intended uses & limitations This model is an alternative to Chinese models. It may offer better performance for tasks catering to the langauge usage of Hong Kongers. Yue Wikipedia is used which is much smaller than Chinese Wikipedia; this model will lack the breath of knowledge compared to other Chinese models. #### How to use This is the small model trained from the official repo. Further finetuning will be needed for use on downstream tasks. Other model sizes are also available. #### Limitations and bias The training data consists of mostly news articles and blogs. There is probably a bias towards formal language usage. ## Training data The following is the list of data sources. Total characters is about 507M. | Data | % | | ------------------------------------------------- | --: | | News Articles / Blogs | 58% | | Yue Wikipedia / EVCHK | 18% | | Restaurant Reviews | 12% | | Forum Threads | 12% | | Online Fiction | 1% | The following is the distribution of different languages within the corpus. | Language | % | | ------------------------------------------------- | --: | | Standard Chinese | 62% | | Hongkongese | 30% | | English | 8% | ## Training procedure Model was trained on a single TPUv3 from the official repo with the default parameters. | Parameter | Value | | ------------------------------------------------ | ----: | | Batch Size | 384 | | Max Sequence Size | 512 | | Generator Hidden Size | 1.0 | | Vocab Size | 30000 | *Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC)* ## Eval results Average evaluation task results over 10 runs. Comparison using the original repo model and code. Chinese models are available from [Joint Laboratory of HIT and iFLYTEK Research (HFL)](https://huggingface.co/hfl) | Model | DRCD (EM/F1) | openrice-senti | lihkg-cat | wordshk-sem | |:-----------:|:------------:|:--------------:|:---------:|:-----------:| | Chinese | 78.5 / 85.6 | 77.9 | 63.7 | 79.2 | | Hongkongese | 76.7 / 84.4 | 79.0 | 62.6 | 80.0 |
tobiaslee/roberta-large-qa-suffix-defteval-t6-st1
b70a5c4a045eb095a8aea13c2d0c9e8834f330de
2021-06-27T08:25:17.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
tobiaslee
null
tobiaslee/roberta-large-qa-suffix-defteval-t6-st1
2
null
transformers
24,807
Entry not found
tomascufaro/wav2vec2-large-xls-r-300m-spanish-custom
1acdc923fdc16018b71b045af920ec23ac4abf80
2022-01-27T15:27:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tomascufaro
null
tomascufaro/wav2vec2-large-xls-r-300m-spanish-custom
2
null
transformers
24,808
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-custom This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4426 - Wer: 0.2117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.2307 | 0.4 | 400 | 1.4431 | 0.9299 | | 0.7066 | 0.79 | 800 | 0.5928 | 0.4836 | | 0.4397 | 1.19 | 1200 | 0.4341 | 0.3730 | | 0.3889 | 1.58 | 1600 | 0.4063 | 0.3499 | | 0.3607 | 1.98 | 2000 | 0.3834 | 0.3235 | | 0.2866 | 2.37 | 2400 | 0.3885 | 0.3163 | | 0.2833 | 2.77 | 2800 | 0.3765 | 0.3140 | | 0.2692 | 3.17 | 3200 | 0.3849 | 0.3132 | | 0.2435 | 3.56 | 3600 | 0.3779 | 0.2984 | | 0.2404 | 3.96 | 4000 | 0.3756 | 0.2934 | | 0.2153 | 4.35 | 4400 | 0.3770 | 0.3075 | | 0.2087 | 4.75 | 4800 | 0.3819 | 0.3022 | | 0.1999 | 5.14 | 5200 | 0.3756 | 0.2959 | | 0.1838 | 5.54 | 5600 | 0.3827 | 0.2858 | | 0.1892 | 5.93 | 6000 | 0.3714 | 0.2999 | | 0.1655 | 6.33 | 6400 | 0.3814 | 0.2812 | | 0.1649 | 6.73 | 6800 | 0.3685 | 0.2727 | | 0.1668 | 7.12 | 7200 | 0.3832 | 0.2825 | | 0.1487 | 7.52 | 7600 | 0.3848 | 0.2788 | | 0.152 | 7.91 | 8000 | 0.3810 | 0.2787 | | 0.143 | 8.31 | 8400 | 0.3885 | 0.2856 | | 0.1353 | 8.7 | 8800 | 0.4103 | 0.2827 | | 0.1386 | 9.1 | 9200 | 0.4142 | 0.2874 | | 0.1222 | 9.5 | 9600 | 0.3983 | 0.2830 | | 0.1288 | 9.89 | 10000 | 0.4179 | 0.2781 | | 0.1199 | 10.29 | 10400 | 0.4035 | 0.2789 | | 0.1196 | 10.68 | 10800 | 0.4043 | 0.2746 | | 0.1169 | 11.08 | 11200 | 0.4105 | 0.2753 | | 0.1076 | 11.47 | 11600 | 0.4298 | 0.2686 | | 0.1124 | 11.87 | 12000 | 0.4025 | 0.2704 | | 0.1043 | 12.26 | 12400 | 0.4209 | 0.2659 | | 0.0976 | 12.66 | 12800 | 0.4070 | 0.2672 | | 0.1012 | 13.06 | 13200 | 0.4161 | 0.2720 | | 0.0872 | 13.45 | 13600 | 0.4245 | 0.2697 | | 0.0933 | 13.85 | 14000 | 0.4295 | 0.2684 | | 0.0881 | 14.24 | 14400 | 0.4011 | 0.2650 | | 0.0848 | 14.64 | 14800 | 0.3991 | 0.2675 | | 0.0852 | 15.03 | 15200 | 0.4166 | 0.2617 | | 0.0825 | 15.43 | 15600 | 0.4188 | 0.2639 | | 0.081 | 15.83 | 16000 | 0.4181 | 0.2547 | | 0.0753 | 16.22 | 16400 | 0.4103 | 0.2560 | | 0.0747 | 16.62 | 16800 | 0.4017 | 0.2498 | | 0.0761 | 17.01 | 17200 | 0.4159 | 0.2563 | | 0.0711 | 17.41 | 17600 | 0.4112 | 0.2603 | | 0.0698 | 17.8 | 18000 | 0.4335 | 0.2529 | | 0.073 | 18.2 | 18400 | 0.4120 | 0.2512 | | 0.0665 | 18.6 | 18800 | 0.4335 | 0.2496 | | 0.0657 | 18.99 | 19200 | 0.4143 | 0.2468 | | 0.0617 | 19.39 | 19600 | 0.4339 | 0.2435 | | 0.06 | 19.78 | 20000 | 0.4179 | 0.2438 | | 0.0613 | 20.18 | 20400 | 0.4251 | 0.2393 | | 0.0583 | 20.57 | 20800 | 0.4347 | 0.2422 | | 0.0562 | 20.97 | 21200 | 0.4246 | 0.2377 | | 0.053 | 21.36 | 21600 | 0.4198 | 0.2338 | | 0.0525 | 21.76 | 22000 | 0.4511 | 0.2427 | | 0.0499 | 22.16 | 22400 | 0.4482 | 0.2353 | | 0.0475 | 22.55 | 22800 | 0.4449 | 0.2329 | | 0.0465 | 22.95 | 23200 | 0.4364 | 0.2320 | | 0.0443 | 23.34 | 23600 | 0.4481 | 0.2304 | | 0.0458 | 23.74 | 24000 | 0.4442 | 0.2267 | | 0.0453 | 24.13 | 24400 | 0.4402 | 0.2261 | | 0.0426 | 24.53 | 24800 | 0.4262 | 0.2232 | | 0.0431 | 24.93 | 25200 | 0.4251 | 0.2210 | | 0.0389 | 25.32 | 25600 | 0.4455 | 0.2232 | | 0.039 | 25.72 | 26000 | 0.4372 | 0.2236 | | 0.0378 | 26.11 | 26400 | 0.4236 | 0.2212 | | 0.0348 | 26.51 | 26800 | 0.4359 | 0.2204 | | 0.0361 | 26.9 | 27200 | 0.4248 | 0.2192 | | 0.0356 | 27.3 | 27600 | 0.4397 | 0.2184 | | 0.0325 | 27.7 | 28000 | 0.4367 | 0.2181 | | 0.0313 | 28.09 | 28400 | 0.4477 | 0.2136 | | 0.0306 | 28.49 | 28800 | 0.4533 | 0.2135 | | 0.0314 | 28.88 | 29200 | 0.4410 | 0.2136 | | 0.0307 | 29.28 | 29600 | 0.4457 | 0.2113 | | 0.0309 | 29.67 | 30000 | 0.4426 | 0.2117 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
tonyalves/wav2vec2-large-xls-r-300m-pt-colab
dbb08e33b5645eb71cab1bd111517c860f920fe8
2022-01-09T17:40:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tonyalves
null
tonyalves/wav2vec2-large-xls-r-300m-pt-colab
2
null
transformers
24,809
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3637 - Wer: 0.2982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.591 | 1.15 | 400 | 0.9128 | 0.6517 | | 0.5049 | 2.31 | 800 | 0.4596 | 0.4437 | | 0.2871 | 3.46 | 1200 | 0.3964 | 0.3905 | | 0.2077 | 4.61 | 1600 | 0.3958 | 0.3744 | | 0.1695 | 5.76 | 2000 | 0.4040 | 0.3720 | | 0.1478 | 6.92 | 2400 | 0.3866 | 0.3651 | | 0.1282 | 8.07 | 2800 | 0.3987 | 0.3674 | | 0.1134 | 9.22 | 3200 | 0.4128 | 0.3688 | | 0.1048 | 10.37 | 3600 | 0.3928 | 0.3561 | | 0.0938 | 11.53 | 4000 | 0.4048 | 0.3619 | | 0.0848 | 12.68 | 4400 | 0.4229 | 0.3555 | | 0.0798 | 13.83 | 4800 | 0.3974 | 0.3468 | | 0.0688 | 14.98 | 5200 | 0.3870 | 0.3503 | | 0.0658 | 16.14 | 5600 | 0.3875 | 0.3351 | | 0.061 | 17.29 | 6000 | 0.4133 | 0.3417 | | 0.0569 | 18.44 | 6400 | 0.3915 | 0.3414 | | 0.0526 | 19.6 | 6800 | 0.3957 | 0.3231 | | 0.0468 | 20.75 | 7200 | 0.4110 | 0.3301 | | 0.0407 | 21.9 | 7600 | 0.3866 | 0.3186 | | 0.0384 | 23.05 | 8000 | 0.3976 | 0.3193 | | 0.0363 | 24.21 | 8400 | 0.3910 | 0.3177 | | 0.0313 | 25.36 | 8800 | 0.3656 | 0.3109 | | 0.0293 | 26.51 | 9200 | 0.3712 | 0.3092 | | 0.0277 | 27.66 | 9600 | 0.3613 | 0.3054 | | 0.0249 | 28.82 | 10000 | 0.3783 | 0.3015 | | 0.0234 | 29.97 | 10400 | 0.3637 | 0.2982 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
torque29/DialoGPT-small-harrypotter
f7993560524bd5df11a160e8b06dba8536339d3e
2021-10-27T10:18:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
torque29
null
torque29/DialoGPT-small-harrypotter
2
null
transformers
24,810
---- tags: - conversational --- # Harry Potter DialoGPT Model
tosin/pcl_22
bc3a45b6f61917346ae93d4d9d98c63b7fbb8b11
2022-02-18T12:33:52.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:PCL", "transformers", "text classification", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
tosin
null
tosin/pcl_22
2
null
transformers
24,811
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - text classification - transformers datasets: - PCL metrics: - F1 inference: false --- ## T5Base-PCL This is a fine-tuned model of T5 (base) on the patronizing and condenscending language (PCL) dataset by Pérez-Almendros et al (2020) used for Task 4 competition of SemEval-2022. It is intended to be used as a classification model for identifying PCL (0 - neg; 1 - pos). The task prefix we used for the T5 model is 'classification: '. The dataset it's trained on is limited in scope, as it covers only some news texts covering about 20 English-speaking countries. The macro F1 score achieved on the test set, based on the official evaluation, is 0.5452. More information about the original pre-trained model can be found [here](https://huggingface.co/t5-base) * Classification examples: |Prediction | Input | |---------|------------| |0 | selective kindness : in europe , some refugees are more equal than others | |1 | he said their efforts should not stop only at creating many graduates but also extended to students from poor families so that they could break away from the cycle of poverty | ### How to use ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch model = T5ForConditionalGeneration.from_pretrained("tosin/pcl_22") tokenizer = T5Tokenizer.from_pretrained("t5-base") # use the source tokenizer because T5 finetuned tokenizer breaks tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer("he said their efforts should not stop only at creating many graduates but also extended to students from poor families so that they could break away from the cycle of poverty", padding=True, truncation=True, return_tensors='pt').input_ids outputs = model.generate(input_ids) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) print(pred)
tpanza/dummy-model
201b399727529916af8b04d315a1577f54a8eb90
2022-01-27T06:00:59.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tpanza
null
tpanza/dummy-model
2
null
transformers
24,812
Entry not found
trangdieu/roberta-base-retrained-6-epochs
7be04de66d5a729fcca1b4967da714ad2b2756ae
2021-06-02T17:56:07.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
trangdieu
null
trangdieu/roberta-base-retrained-6-epochs
2
null
transformers
24,813
Entry not found
transformersbook/xlm-roberta-base-finetuned-panx-fr
b0af87014b62880f00a8c988fad201964bc08557
2022-02-05T17:07:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
transformersbook
null
transformersbook/xlm-roberta-base-finetuned-panx-fr
2
null
transformers
24,814
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8454790823211876 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.2772 - F1: 0.8455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.562 | 1.0 | 191 | 0.3183 | 0.7828 | | 0.2697 | 2.0 | 382 | 0.2706 | 0.8324 | | 0.1735 | 3.0 | 573 | 0.2772 | 0.8455 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
transformersbook/xlm-roberta-base-finetuned-panx-it
7826c072686ef209c62e967fcfb44d4f8fe4efbf
2022-02-05T17:07:26.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
transformersbook
null
transformersbook/xlm-roberta-base-finetuned-panx-it
2
null
transformers
24,815
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8215158924205379 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the PAN-X dataset. The model is trained in Chapter 4: Multilingual Named Entity Recognition in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/04_multilingual-ner.ipynb). It achieves the following results on the evaluation set: - Loss: 0.2445 - F1: 0.8215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7594 | 1.0 | 70 | 0.3402 | 0.7467 | | 0.2942 | 2.0 | 140 | 0.2555 | 0.7971 | | 0.1814 | 3.0 | 210 | 0.2445 | 0.8215 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
trig/multiverse-second
461dd70ad7ae66739dd0e891a96beb91aa3c0bb1
2021-08-30T20:15:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trig
null
trig/multiverse-second
2
null
transformers
24,816
--- tags: - conversational --- # multiverse but with swapped characters and more learning
trig/tlok-test
07ca9e1e3a20a95b5cab24809c7f2f931ead8122
2021-08-29T05:05:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trig
null
trig/tlok-test
2
null
transformers
24,817
--- tags: - conversational --- # some test idk
tromedlov/t5-small-cnn
17ae74d5fcb51ef5a811c1eec712f8edf42197ff
2021-06-23T14:27:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tromedlov
null
tromedlov/t5-small-cnn
2
null
transformers
24,818
Entry not found
troythewar/DialogGPT-small-harrypotter
a13cbd340dcb83c7ea22266807ff3798379e7a0c
2021-09-03T05:23:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
troythewar
null
troythewar/DialogGPT-small-harrypotter
2
null
transformers
24,819
--- tags: - conversational --- # Harry Potter DialogGPT
turing1729/gpt-neo-1.3B-news
d1d4e1cade87f4c6ae030a102d18fc5f8d75ab79
2022-02-13T10:21:51.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
turing1729
null
turing1729/gpt-neo-1.3B-news
2
null
transformers
24,820
--- license: apache-2.0 --- Fine-tuned on short news articles for summarization with GPT-neo 1.3B parameters
tyoyo/t5-base-TEDxJP-1body-0context
4d42c1bae1b89f8ecf9757a8b16602ce46071115
2021-12-03T02:16:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-0context
2
null
transformers
24,821
Entry not found
tyoyo/t5-base-TEDxJP-1body-5context
3e07c47c9bfadb218dd01371c523766c60e86683
2021-11-30T13:49:54.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tyoyo
null
tyoyo/t5-base-TEDxJP-1body-5context
2
null
transformers
24,822
Epoch Training Loss Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer 1 0.572400 0.447836 0.262284 0.241764 0.333088 0.666912 54709 7126 4673 5645 0.242417 2 0.492700 0.400297 0.203600 0.196446 0.285798 0.714202 55389 6777 4342 2422 0.183740 3 0.429200 0.385705 0.201179 0.193641 0.282458 0.717542 55717 6745 4046 2589 0.179833 4 0.408700 0.383085 0.198277 0.190817 0.280919 0.719081 55921 6867 3720 2600 0.177468 5 0.386100 0.381157 0.192488 0.186279 0.274890 0.725110 55923 6709 3876 2217 0.171644 6 0.353400 0.380517 0.193315 0.186615 0.275510 0.724490 56039 6747 3722 2388 0.170799 7 0.346100 0.379445 0.194713 0.187616 0.276780 0.723220 56074 6780 3654 2516 0.171347 8 0.314700 0.383521 0.196022 0.188486 0.277974 0.722026 56130 6820 3558 2659 0.179184
uclanlp/plbart-en_XX-java
a3c889b251b9128a3fa4fbbd9afc9a319d54a1ef
2021-11-09T17:08:15.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-en_XX-java
2
null
transformers
24,823
Entry not found
uclanlp/plbart-single_task-dynamic-generation
254517c7e3b833ab8864b02fa9639c5aa9896a7f
2022-03-02T07:16:49.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-dynamic-generation
2
null
transformers
24,824
Entry not found
uclanlp/plbart-single_task-en_php
8779774c91f2509079b6e1697cec41af6c8c8562
2022-03-02T07:11:11.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-en_php
2
null
transformers
24,825
Entry not found
uclanlp/plbart-single_task-go_en
3c12631d9d7ffd9276701c82f61246aecfb740d1
2022-03-02T07:01:07.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-go_en
2
null
transformers
24,826
Entry not found
uclanlp/plbart-single_task-php_en
78fcfa9b8cefbeb8b49031c4aec2ad60e33c6368
2022-03-02T07:03:40.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-php_en
2
null
transformers
24,827
Entry not found
uclanlp/plbart-single_task-ruby_en
e83cd19c1baa3fced34694e891a846999c82af0b
2022-03-02T06:59:58.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-ruby_en
2
null
transformers
24,828
Entry not found
uclanlp/plbart-single_task-static-summarization
9e25b5ddcd536c4f828ec524905b09d4744752c8
2022-03-02T07:23:18.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-static-summarization
2
null
transformers
24,829
Entry not found
uclanlp/plbart-single_task-weak-summarization
f03b149c6e00582a9d72c41d1b3eb02ad70ebb88
2022-03-02T07:26:48.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-weak-summarization
2
null
transformers
24,830
Entry not found
ueb1/IceBERT-finetuned-grouped
02e88a7ec32be3092912cd4d269aec9a0eb00dea
2021-11-24T00:18:29.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index" ]
text-classification
false
ueb1
null
ueb1/IceBERT-finetuned-grouped
2
null
transformers
24,831
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: IceBERT-finetuned-grouped results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-grouped This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5660 - Accuracy: 0.2259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 269 | 4.1727 | 0.1172 | | 4.3535 | 2.0 | 538 | 3.8406 | 0.1632 | | 4.3535 | 3.0 | 807 | 3.6718 | 0.2113 | | 3.6711 | 4.0 | 1076 | 3.5660 | 0.2259 | | 3.6711 | 5.0 | 1345 | 3.5332 | 0.2176 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ueb1/IceBERT-finetuned
5fbffbfe3e47907106c7ed4258732153904acc4b
2021-11-23T01:05:03.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index" ]
text-classification
false
ueb1
null
ueb1/IceBERT-finetuned
2
null
transformers
24,832
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: IceBERT-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7361 - Accuracy: 0.352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.5309 | 1.0 | 563 | 4.1093 | 0.329 | | 3.9723 | 2.0 | 1126 | 3.8339 | 0.344 | | 3.6949 | 3.0 | 1689 | 3.7490 | 0.346 | | 3.5124 | 4.0 | 2252 | 3.7488 | 0.358 | | 3.3763 | 5.0 | 2815 | 3.7361 | 0.352 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ufal/byt5-small-multilexnorm2021-en
59c345a61a185187f548c48d80862caf79aa62ad
2021-10-20T12:17:33.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-en
2
null
transformers
24,833
--- language: en datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (English version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-sr
a0f88a00863a51bdf5747b8eb3a37b52e16708b9
2021-10-20T12:52:41.000Z
[ "pytorch", "t5", "text2text-generation", "sr", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-sr
2
null
transformers
24,834
--- language: sr datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Serbian version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
ufal/byt5-small-multilexnorm2021-trde
a5add5dda3b2cc92bbc059a498e987ab7e36278c
2021-10-20T13:02:55.000Z
[ "pytorch", "t5", "text2text-generation", "tr", "de", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-trde
2
null
transformers
24,835
--- language: - tr - de datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (Turkish-German version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
umit/distilbert-base-uncased-finetuned-emotion
cfa8be9daa28a793894b0df5a38d2f970b5b273e
2022-02-22T16:35:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
umit
null
umit/distilbert-base-uncased-finetuned-emotion
2
null
transformers
24,836
Entry not found
unicamp-dl/mt5-base-en-pt-msmarco-v1
700ab114bf9b582566342387bfafd3cfca95827f
2022-01-05T21:30:38.000Z
[ "pytorch", "mt5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "t5", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/mt5-base-en-pt-msmarco-v1
2
null
transformers
24,837
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mt5-base Reranker finetuned on mMARCO ## Introduction mT5-base-en-pt-msmarco-v1 is a mT5-based model fine-tuned on a bilingual version of MS MARCO passage dataset. This bilingual dataset version is formed by the original MS MARCO dataset (in English) and a Portuguese translated version. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our paper [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration model_name = 'unicamp-dl/mt5-base-en-pt-msmarco-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use mt5-base-en-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1
611202955bffed7512efd161bf6711df5a79ab2d
2022-01-05T21:31:05.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1
2
null
transformers
24,838
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on both English and Portuguese MS MARCO ## Introduction ptt5-base-msmarco-en-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, fine-tuned on both English and Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-en-pt-10k-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-en-pt-10k-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-pt-msmarco-100k-v1
da65a473a8d91f3d83b01909e6ee630f80bf0aee
2022-01-05T21:29:11.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-pt-msmarco-100k-v1
2
null
transformers
24,839
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-100k-v1 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-100k-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-pt-msmarco-100k-v2
44dc5b0c6517ba9c9e7d65aac58b053ae925a1d0
2022-01-06T13:44:21.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-pt-msmarco-100k-v2
2
null
transformers
24,840
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-100k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-100k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/ptt5-base-pt-msmarco-10k-v2
f6e9757f00db313ac1412c6911dedc9144882776
2022-01-06T13:41:02.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-pt-msmarco-10k-v2
2
null
transformers
24,841
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on Portuguese MS MARCO ## Introduction ptt5-base-msmarco-pt-10k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 10k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-pt-10k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
upskyy/kobart-summarization
6d8712cfac8b9271cc211e0ed90b846d774d6726
2021-10-03T05:20:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
upskyy
null
upskyy/kobart-summarization
2
1
transformers
24,842
Entry not found
uutkras/Pandabot
825f2bb7991facdd189d26b3ed16eac6ebc9b003
2021-08-27T07:32:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
uutkras
null
uutkras/Pandabot
2
1
transformers
24,843
--- tags: - conversational --- #ut friend
vahmohh/t5-qag-base
9f1d49169c3ef5e409604474ba4c8cc14388a027
2021-06-23T14:36:28.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vahmohh
null
vahmohh/t5-qag-base
2
null
transformers
24,844
[www.github.com/vahmohh/masters-thesis](https://www.github.com/vahmohh/masters-thesis) The model has been built upon the pre-trained T5 model by fine-tuning it on SQuAD dataset for the porpuse of automatic question and answer generation. The following format should be used for generating questions. ```sh generate question: domain_specific_text </sep> answer_1 </sep> answer_2 </sep> ... </sep> answer_n </end> ``` Output: ```sh question_1 </sep> question_2 </sep> ... </sep> question_n </end> ``` The following format should be used for generating answers. ```sh generate answer: domain_specific_text </end> ``` Output: ```sh answer_1 </sep> answer_2 </sep> ... </sep> answer_n </end> ```
valhalla/s2t_librispeech_large
2cf9cebc02dc4dbb7092476183e614edeed1f9ee
2021-02-26T14:25:12.000Z
[ "pytorch", "speech_to_text_transformer", "text2text-generation", "en", "dataset:librispeech_asr", "transformers", "audio", "automatic-speech-recognition", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/s2t_librispeech_large
2
null
transformers
24,845
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- TODO: [To be filled] ## Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer import soundfile as sf from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_large").to("cuda") tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_large", do_upper_case=True) def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.3 | 7.5 |
valhalla/s2t_mustc_en_fr_small
12b820783f11000aa43cf3909bfd9c6e49def402
2021-02-26T14:34:11.000Z
[ "pytorch", "speech_to_text_transformer", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/s2t_mustc_en_fr_small
2
null
transformers
24,846
Entry not found
valurank/distilroberta-mbfc-bias-4class
378ac409decb8b00d50c20150570a6b0df0aea7f
2022-06-08T20:29:05.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/distilroberta-mbfc-bias-4class
2
null
transformers
24,847
--- license: other tags: - generated_from_trainer model-index: - name: distilroberta-mbfc-bias-4class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-mbfc-bias-4class This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Acc: 0.8503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.488 | 1.0 | 584 | 0.3702 | 0.8519 | | 0.3544 | 2.0 | 1168 | 0.3531 | 0.8575 | | 0.3602 | 3.0 | 1752 | 0.3068 | 0.8896 | | 0.2555 | 4.0 | 2336 | 0.3560 | 0.8715 | | 0.1695 | 5.0 | 2920 | 0.3896 | 0.8704 | | 0.117 | 6.0 | 3504 | 0.5336 | 0.8503 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
vasudevgupta/dl-hack-gpt2-large
98fd305889810be22a07a7c16a0521037bc22797
2021-05-23T13:34:31.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
vasudevgupta
null
vasudevgupta/dl-hack-gpt2-large
2
null
transformers
24,848
DL research papers **Title -> abstract** **Using this model** ```python from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("vasudevgupta/dl-hack-gpt2-large") model = GPT2LMHeadModel.from_pretrained("vasudevgupta/dl-hack-gpt2-large") agent = pipeline("text-generation", model=model, tokenizer=tokenizer) print(agent("An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", max_length=200)) ```
vasudevgupta/mbart-bhasha-guj-eng
3edb80a4d7d27c3efa9c7c9032306b551a871679
2021-05-12T03:30:44.000Z
[ "pytorch", "mbart", "text2text-generation", "dataset:pib", "transformers", "autotrain_compatible" ]
text2text-generation
false
vasudevgupta
null
vasudevgupta/mbart-bhasha-guj-eng
2
null
transformers
24,849
--- datasets: pib widget: - text: "હેય! હું વાસુદેવ ગુપ્તા છું" --- mBART (a pre-trained model by Facebook) is pre-trained to de-noise multiple languages simultaneously with BART objective. Checkpoint available in this repository is obtained after fine-tuning `facebook/mbart-large-cc25` on all samples (~60K) from Bhasha (pib_v1.3) Gujarati-English parallel corpus. This checkpoint gives decent results for Gujarati-english translation.
veronica320/ADEPT_roberta-l
02701e410da39ad078d0300c2dd9768be9c9d074
2022-05-03T02:28:02.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
veronica320
null
veronica320/ADEPT_roberta-l
2
null
transformers
24,850
Entry not found
vesteinn/IceBERT-QA
2e3bc0af6ac0d1afbfe5522fdffd9b61cfe9f0a1
2021-07-19T11:25:25.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vesteinn
null
vesteinn/IceBERT-QA
2
null
transformers
24,851
---- language: - is thumbnail: tags: - icelandic - qa license: datasets: - ic3 - igc metrics: - em - f1 widget: - text: "Hvenær var Halldór Laxness í menntaskóla ?" context: "Halldór Laxness ( Halldór Kiljan ) fæddist í Reykjavík 23. apríl árið 1902 og átti í fyrstu heima við Laugaveg en árið 1905 settist fjölskyldan að í Laxnesi í Mosfellssveit . Þar ólst Halldór upp en sótti skóla í Reykjavík á unglingsárum . Ungur hélt hann síðan utan og var langdvölum erlendis um árabil – í ýmsum Evrópulöndum og síðar í Ameríku . Þegar hann var heima bjó hann í Reykjavík þar til hann og kona hans , Auður Sveinsdóttir , byggðu sér húsið Gljúfrastein í Mosfellssveit og fluttu þangað árið 1945 . Þar var heimili þeirra alla tíð síðan og þar er nú safn til minningar um þau . Halldór lést 8. febrúar 1998 . Skólaganga Halldórs varð ekki löng . Árið 1918 hóf hann nám við Menntaskólann í Reykjavík en hafði lítinn tíma til að læra , enda var hann að skrifa skáldsögu , Barn náttúrunnar , sem kom út haustið 1919 – þá þegar var höfundurinn ungi farinn af landi brott . Sagan vakti þó nokkra athygli og í Alþýðublaðinu sagði m.a. : „ Og hver veit nema að Halldór frá Laxnesi eigi eftir að verða óskabarn íslensku þjóðarinnar . “ Upp frá þessu sendi Halldór frá sér bók nánast á hverju ári , stundum fleiri en eina , í yfir sex áratugi . Afköst hans voru með eindæmum ; hann skrifaði fjölda skáldsagna , sumar í nokkrum hlutum , leikrit , kvæði , smásagnasöfn og endurminningabækur og gaf auk þess út mörg greinasöfn og ritgerðir . Bækurnar eru fjölbreyttar en eiga það sameiginlegt að vera skrifaðar af einstakri stílgáfu , djúpum mannskilningi og víðtækri þekkingu á sögu og samfélagi . Þar birtast oft afgerandi skoðanir á þjóðfélagsmálum og sögupersónur eru margar einkar eftirminnilegar ; tilsvör þeirra og lunderni hafa orðið samofin þjóðarsálinni . Þekktustu verk Halldórs eru eflaust skáldsögurnar stóru og rismiklu , s.s. Salka Valka , Sjálfstætt fólk , Heimsljós , Íslandsklukkan og Gerpla , og raunar mætti telja upp mun fleiri ; Kvæðabók hans er í uppáhaldi hjá mörgum sem og minningabækurnar sem hann skrifaði á efri árum um æskuár sín ; af þekktum greinasöfnum og ritgerðum má nefna Alþýðubókina og Skáldatíma . Mikið hefur verið skrifað um verk og ævi skáldsins , en hér skal aðeins bent á ítarlega frásögn og greiningu Halldórs Guðmundssonar í bókinni Halldór Laxness – ævisaga ." --- # IceBERT-QA ## Model description This is an Icelandic reading comprehension Q&A model. ## Intended uses & limitations This model is part of my MSc thesis about Q&A for Icelandic. #### How to use ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("vesteinn/IceBERT-QA") model = AutoModelForQuestionAnswering.from_pretrained("vesteinn/IceBERT-QA") ``` #### Limitations and bias ## Training data Translated English datasets were used along with the Natural Questions in Icelandic dataset. ## Training procedure ## Eval results ### BibTeX entry and citation info ```bibtex ```
vesteinn/IceBERT-finetuned-iec-sentence
920f88e179313866eb77a065a1fd209af1b1dbce
2021-11-05T18:27:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:gpl-3.0", "model-index" ]
text-classification
false
vesteinn
null
vesteinn/IceBERT-finetuned-iec-sentence
2
null
transformers
24,852
--- license: gpl-3.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: IceBERT-finetuned-iec-sentence results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-iec-sentence This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4438 - Matthews Correlation: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 455 | 0.5283 | 0.4755 | | 0.5696 | 2.0 | 910 | 0.4889 | 0.5272 | | 0.4898 | 3.0 | 1365 | 0.4508 | 0.5793 | | 0.4508 | 4.0 | 1820 | 0.4340 | 0.6042 | | 0.4153 | 5.0 | 2275 | 0.4438 | 0.6062 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.0 - Datasets 1.15.1 - Tokenizers 0.10.3
vesteinn/XLMR-ENIS-finetuned-stsb
0c39ba4063834130dd215162a40d04ef1c0590e1
2021-10-14T10:28:20.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:agpl-3.0", "sentence-similarity", "model-index" ]
sentence-similarity
false
vesteinn
null
vesteinn/XLMR-ENIS-finetuned-stsb
2
null
transformers
24,853
--- license: agpl-3.0 pipeline_tag: sentence-similarity tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: XLMR-ENIS-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8887885342806044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-stsb This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5232 - Pearson: 0.8915 - Spearmanr: 0.8888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.6330 | 0.8562 | 0.8570 | | 1.2835 | 2.0 | 720 | 0.6368 | 0.8790 | 0.8781 | | 0.4518 | 3.0 | 1080 | 0.5352 | 0.8883 | 0.8852 | | 0.4518 | 4.0 | 1440 | 0.4881 | 0.8910 | 0.8885 | | 0.288 | 5.0 | 1800 | 0.5232 | 0.8915 | 0.8888 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.0 - Tokenizers 0.10.3
vesteinn/XLMR-ENIS
6eeab159d99df459361f3cf7921e8dfd502161cc
2021-09-27T22:09:54.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vesteinn
null
vesteinn/XLMR-ENIS
2
null
transformers
24,854
---- language: - is - en thumbnail: tags: - icelandic - xlmr license: agpl-3.0 datasets: - ic3 - igc - books3 pipeline: fill-mask widget: - text: "The capital of Iceland is<mask> ." - text: "Höfuðborg Íslands er<mask> ." --- # XLMR-ENIS ## Model description This is a XLMR model trained on Icelandic and English text. ## Intended uses & limitations This model is part of my MSc thesis about Q&A for Icelandic. #### How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("vesteinn/XLMR-ENIS") model = AutoModelForMaskedLM.from_pretrained("vesteinn/XLMR-ENIS") ``` #### Limitations and bias ## Training data ## Training procedure ## Eval results ### BibTeX entry and citation info ```bibtex ```
vesteinn/open-qa-icelandic-english-densephrases
34dd9a8d54612cc20f68872a019ee92c4ad90ff5
2021-09-30T10:40:18.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
null
false
vesteinn
null
vesteinn/open-qa-icelandic-english-densephrases
2
null
transformers
24,855
Entry not found
vibranium19/DialoGPT-medium-jake
e623b83922b40c70f62e2db21cc9cbefd06df459
2021-09-16T21:34:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
vibranium19
null
vibranium19/DialoGPT-medium-jake
2
null
transformers
24,856
--- tags: - conversational --- # Jake Peralta DialoGPT Model
vidhur2k/mBERT-Arabic-Mono
5e3ece52b85bf93358226078175a6a2f4a047a72
2021-12-03T06:01:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-Arabic-Mono
2
null
transformers
24,857
Entry not found
vidhur2k/mBERT-Danish-Mono
6bd48d904e8d39af5d76d7ac12d7ec7a22e3044c
2021-12-03T05:16:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-Danish-Mono
2
null
transformers
24,858
Entry not found
vidhur2k/mBERT-English-Mono
da2ad018405e488d32e35c65c40b2e562177a470
2021-12-03T11:33:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-English-Mono
2
null
transformers
24,859
Entry not found
vidhur2k/mBERT-Indonesian-Mono
b4c87c4ec52c863c2b264fee9a2316fa4c993cbc
2021-12-03T20:20:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-Indonesian-Mono
2
null
transformers
24,860
Entry not found
vidhur2k/mBERT-RomanceLang
e2dc0e87d49e901f5c294d2cc2b3b814d8bd4622
2021-12-06T06:37:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-RomanceLang
2
null
transformers
24,861
Entry not found
vinaydngowda/xlnettest
b652464dacc1250426ce538e6ebd9b62d7dcedd0
2022-01-14T19:38:07.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
vinaydngowda
null
vinaydngowda/xlnettest
2
null
transformers
24,862
Entry not found
vishnun/distilgpt2-finetuned-tamil-gpt
1bed75d51c9d72094d37d48aec29238a7c370ea4
2021-08-16T14:25:43.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-generation
false
vishnun
null
vishnun/distilgpt2-finetuned-tamil-gpt
2
null
transformers
24,863
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-tamil-gpt results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-tamil-gpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 228 | 4.4097 | | No log | 2.0 | 456 | 4.4097 | | 4.3169 | 3.0 | 684 | 4.4097 | | 4.3169 | 4.0 | 912 | 4.4097 | | 4.3116 | 5.0 | 1140 | 4.4097 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
visualjoyce/chengyubert_2stage_stage1_wwm_ext
3525ae82a969973d70aed2e6ca19b91c91dbf596
2021-05-20T09:00:46.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
visualjoyce
null
visualjoyce/chengyubert_2stage_stage1_wwm_ext
2
null
transformers
24,864
Entry not found
visualjoyce/transformers4vl-uniter-base
20369e0344e1ea6f16a97d091f0297ab91be8ebb
2021-07-10T10:48:06.000Z
[ "pytorch", "uniter", "transformers" ]
null
false
visualjoyce
null
visualjoyce/transformers4vl-uniter-base
2
null
transformers
24,865
Entry not found
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k_emb_updated
893a984658621e00b4ea6526e0b6c0a69de0f062
2022-02-21T20:13:11.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k_emb_updated
2
null
sentence-transformers
24,866
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-distilbert-word2vec256k **Note: Token embeddings where updated!** This model is based on [msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. Performance: - MS MARCO dev: 34.51 (MRR@10) - TREC-DL 2019: 66.12 (nDCG@10) - TREC-DL 2020: 68.62 (nDCG@10) ## Usage (Sentence-Transformers) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_400k
1ffb2cb7965e594838c770287708a7d87e78433a
2022-02-22T17:03:11.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vocab-transformers
null
vocab-transformers/msmarco-distilbert-word2vec256k-MLM_400k
2
null
transformers
24,867
# Model This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec. This model has been trained with MLM on the MS MARCO corpus collection for 400k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs. The word embedding matrix was frozen.
vovaf709/bert_mlm_negative
03a5bcd86c4d310abe87dbaf0d3eca5265335b46
2021-12-17T16:33:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vovaf709
null
vovaf709/bert_mlm_negative
2
null
transformers
24,868
Entry not found
vovaf709/bert_mlm_positive
9f8338564508651c4af998cef8c7e75404a83c45
2021-12-17T16:34:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vovaf709
null
vovaf709/bert_mlm_positive
2
null
transformers
24,869
Entry not found
voxmenthe/distilbert-base-uncased-finetuned-emotion
746ce9e0da6ad217bf93be03dce97a82afeed228
2022-02-14T02:13:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
voxmenthe
null
voxmenthe/distilbert-base-uncased-finetuned-emotion
2
null
transformers
24,870
Entry not found
vr25/fin_BERT-v1
cf7b9681617452d9afa4a2c131de0306e73edd2e
2021-05-20T23:05:00.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vr25
null
vr25/fin_BERT-v1
2
null
transformers
24,871
Entry not found
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt
0e842dc7c75139903d38f8a3e23b0d782c736e84
2022-02-08T22:58:08.000Z
[ "pytorch", "onnx", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt
2
null
transformers
24,872
This model is a downstream optimization of [```vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt```](https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt) using [OpenVINO/NNCF](https://github.com/openvinotoolkit/nncf). Applied optimization includes: 1. magnitude sparsification at 57.92% upon initialization so that sparsity over all linear layers of bert-base is at 90%. Parameters are ranked globally via thier absolute norm. Only linear layers of self-attention and ffnn are targeted. 2. NNCF Quantize-Aware Training - Symmetric 8-bit for both weight and activation on all learnable layers. 3. Custom distillation with large model ```bert-large-uncased-whole-word-masking-finetuned-squad``` ``` eval_exact_match = 80.4541 eval_f1 = 87.6832 eval_samples = 10784 ``` # Setup ```bash # OpenVINO/NNCF git clone https://github.com/vuiseng9/nncf && cd nncf git checkout tld-poc git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2 python setup.py develop pip install -r examples/torch/requirements.txt # Huggingface nn_pruning git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning git checkout reproduce-evaluation git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446 pip install -e ".[dev]" # Huggingface Transformers git clone https://github.com/vuiseng9/transformers && cd transformers git checkout tld-poc git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5 pip install -e . head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {} # Additional dependencies pip install onnx ``` # Train ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt BASE_MODEL=/path/to/cloned_repo_above #to-revise wget https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt/raw/main/nncf_bert_squad_sparsity.json NNCF_CFG=/path/to/downloaded_nncf_cfg_above #to-revise OUTROOT=/path/to/train_output_root #to-revise WORKDIR=transformers/examples/pytorch/question-answering #to-revise RUNID=bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt cd $WORKDIR OUTDIR=$OUTROOT/$RUNID mkdir -p $OUTDIR export CUDA_VISIBLE_DEVICES=0 NEPOCH=5 python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --optimize_model_before_eval \ --optimized_checkpoint $BASE_MODEL \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --lr_scheduler_type cosine_with_restarts \ --warmup_ratio 0.25 \ --cosine_cycles 1 \ --teacher bert-large-uncased-whole-word-masking-finetuned-squad \ --teacher_ratio 0.9 \ --num_train_epochs $NEPOCH \ --per_device_eval_batch_size 128 \ --per_device_train_batch_size 16 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 250 \ --nncf_config $NNCF_CFG \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR ``` # Eval This repo must be cloned locally. ```bash git clone https://huggingface.co/vuiseng9/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt MODELROOT=/path/to/cloned_repo_above #to-revise export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt WORKDIR=transformers/examples/pytorch/question-answering #to-revise cd $WORKDIR mkdir $OUTDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid \ --dataset_name squad \ --optimize_model_before_eval \ --qat_checkpoint $MODELROOT/checkpoint-21750 \ --nncf_config $MODELROOT/nncf_bert_squad_sparsity.json \ --to_onnx $OUTDIR/bert-base-squadv1-block-pruning-hybrid-filled-lt-nncf-57.92sparse-qat-lt.onnx \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` ### tile-alignment to evaluate tile-alignment checkpoint, add ```--tile_alignment``` and point ```--qat_checkpoint``` to checkpoint with 'tilealigned' postfix. Use branch ```tld-poc``` with commit id ```c525c52cq```
vuiseng9/bert-base-squadv1-pruneofa-90pc-bt
b3285931cfd5020d62b6d77e451ec7ee60c95291
2022-01-18T19:13:21.000Z
[ "pytorch", "onnx", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
vuiseng9
null
vuiseng9/bert-base-squadv1-pruneofa-90pc-bt
2
null
transformers
24,873
This model is transfer-learning of [bert-base pruneofa 90% sparse](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) on Squadv1 dataset. ``` eval_exact_match = 80.2933 eval_f1 = 87.6788 eval_samples = 10784 ``` # Train use https://github.com/IntelLabs/Model-Compression-Research-Package.git see ```pruneofa-transfer-learning.sh``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-base-squadv1-pruneofa-90pc-bt WORKDIR=transformers/examples/pytorch/question-answering cd $WORKDIR nohup python run_qa.py \ --model_name_or_path vuiseng9/bert-base-squadv1-pruneofa-90pc-bt \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-base-uncased-squadv1-72.9-sparse
8371e81c0b17580760fa6d52710cf3647003ae56
2021-11-11T18:13:18.000Z
[ "pytorch", "tf", "bert", "transformers" ]
null
false
vuiseng9
null
vuiseng9/bert-base-uncased-squadv1-72.9-sparse
2
null
transformers
24,874
* A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1. * Tensorflow models are created using ```TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)``` and ```model.save_pretrained(tf_pth)```. * Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models. * Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN. * Evaluation cli: ```bash python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad ``` | | HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |---:|:------------------------------------------------------------------------------------------------------------------------|-----------:|---------------:|----------:|---------------:|----------:| | 0 | [vuiseng9/bert-base-uncased-squadv1-85.4-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-85.4-sparse) | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 | | 1 | [vuiseng9/bert-base-uncased-squadv1-72.9-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-72.9-sparse) | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 | | 2 | [vuiseng9/bert-base-uncased-squadv1-65.1-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-65.1-sparse) | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 | | 3 | [vuiseng9/bert-base-uncased-squadv1-59.6-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-59.6-sparse) | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 | | 4 | [vuiseng9/bert-base-uncased-squadv1-52.0-sparse](https://huggingface.co/vuiseng9/bert-base-uncased-squadv1-52.0-sparse) | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |
vuiseng9/pegasus-arxiv
86ce966387a7da19c81bdb084d700b431360a6ed
2021-12-21T02:23:21.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vuiseng9
null
vuiseng9/pegasus-arxiv
2
null
transformers
24,875
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-arxiv-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-ft/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name ccdv/arxiv-summarization \ --do_train \ --adafactor \ --learning_rate 8e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 10000 \ --save_strategy steps \ --save_steps 5000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-arxiv-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-eval/${RUNID} mkdir -p $OUTDIR python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-arxiv \ --dataset_name ccdv/arxiv-summarization \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 5 epochs, this model is the checkpoint @150000 steps, 5.91 epoch, 34hrs) with lowest eval loss during training. Test/predict with this checkpoint should give results below. Note that we observe model at 80000 steps is closed to published result from HF. ``` ***** predict metrics ***** predict_gen_len = 210.0925 predict_loss = 1.7192 predict_rouge1 = 46.1383 predict_rouge2 = 19.1393 predict_rougeL = 27.7573 predict_rougeLsum = 41.583 predict_runtime = 2:40:25.86 predict_samples = 6440 predict_samples_per_second = 0.669 predict_steps_per_second = 0.084 ```
vuiseng9/pegasus-xsum
66280b21a24f22c0b81b09387df05abb879f8689
2022-01-23T02:33:40.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vuiseng9
null
vuiseng9/pegasus-xsum
2
null
transformers
24,876
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 3db4b452 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1 # 2 cards on xsum NEPOCH=10 RUNID=pegasus-xsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name xsum \ --do_train \ --adafactor \ --learning_rate 1e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 8 \ --do_eval \ --per_device_eval_batch_size 8 \ --num_beams 8 \ --max_source_length 512 \ --max_target_length 64 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-xsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-xsum \ --dataset_name xsum \ --max_source_length 512 \ --max_target_length 64 \ --do_predict \ --per_device_eval_batch_size 16 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@62000 steps, 4.9epoch, 20hrs) with lower loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 24.0499 predict_loss = 1.5801 predict_rouge1 = 47.2124 predict_rouge2 = 24.3673 predict_rougeL = 39.0055 predict_rougeLsum = 39.0007 predict_runtime = 0:34:23.32 predict_samples = 11334 predict_samples_per_second = 5.493 predict_steps_per_second = 0.344 ```
vuiseng9/wav2vec2-base-100h
70009d9636773b38763a0ec67d18b5d0be5a134e
2022-01-27T20:03:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "transformers", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
vuiseng9
null
vuiseng9/wav2vec2-base-100h
2
null
transformers
24,877
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Wav2Vec2-Base-100h This is a fork of [```facebook/wav2vec2-base-100h```](https://huggingface.co/facebook/wav2vec2-base-100h) ### Changes & Notes 1. Document reproducible evaluation (below) to new transformer and datasets version. 2. Use batch size of 1 to reproduce results. 3. Validated with ```transformers v4.15.0```, ```datasets 1.18.0``` 4. You may need to manually install pypkg ```librosa```, ```jiwer``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-100h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import soundfile as sf import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # librispeech_eval = load_dataset("librispeech_asr", "other", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-100h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-100h") def map_to_array(batch): # speech, _ = sf.read(batch["file"]) # batch["speech"] = speech batch["speech"] = batch['audio']['array'] return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean/test" | "other/test" | |--------------| ------------| | 6.1 | 13.5 |
vutankiet2901/wav2vec2-large-xlsr-53-ja
080e96b48dd0e7f4b9adbca46a2bf79af0ad823f
2022-03-23T18:28:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vutankiet2901
null
vutankiet2901/wav2vec2-large-xlsr-53-ja
2
1
transformers
24,878
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-53-ja results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 15.37 - name: Test CER (with LM) type: cer value: 6.91 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 16.09 - name: Test CER (with LM) type: cer value: 7.15 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 37.96 - name: Test CER (with LM) type: cer value: 21.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 26.02 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 15.74 | 25.10 | |with 4-grams LM| 15.37 | 16.09 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 9.51 | 9.95 | |with 4-grams LM| 6.91 | 7.15 | ## Evaluation Please use the eval.py file to run the evaluation: ```python python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 4.7776 | 4.73 | 1500 | 2.9540 | 0.9772 | 0.8489 | | 1.9076 | 9.46 | 3000 | 0.7146 | 0.5371 | 0.2484 | | 1.507 | 14.2 | 4500 | 0.5843 | 0.4689 | 0.2196 | | 1.3742 | 18.93 | 6000 | 0.5286 | 0.4321 | 0.1988 | | 1.2776 | 23.66 | 7500 | 0.5007 | 0.4056 | 0.1870 | | 1.2003 | 28.39 | 9000 | 0.4676 | 0.3848 | 0.1802 | | 1.1281 | 33.12 | 10500 | 0.4524 | 0.3694 | 0.1720 | | 1.0657 | 37.85 | 12000 | 0.4449 | 0.3590 | 0.1681 | | 1.0129 | 42.59 | 13500 | 0.4266 | 0.3423 | 0.1617 | | 0.9691 | 47.32 | 15000 | 0.4214 | 0.3375 | 0.1587 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
vxvxx/t5-small-finetuned-no_paragraph-to-yes_paragraph-2
229891aeffba01febbc56d42e32ea3bb59770a9e
2022-02-16T07:13:28.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
vxvxx
null
vxvxx/t5-small-finetuned-no_paragraph-to-yes_paragraph-2
2
null
transformers
24,879
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-no_paragraph-to-yes_paragraph-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-no_paragraph-to-yes_paragraph-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 0.006 | 1.0 | 8081 | 0.0002 | 0.0 | 19.0 | | 0.0032 | 2.0 | 16162 | 0.0001 | 0.0 | 19.0 | | 0.0026 | 3.0 | 24243 | 0.0001 | 0.0 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
w11wo/indo-gpt2-small
d5cca3adcf47fcadfb6b6f08f8bb5ad44303aed8
2021-05-23T13:41:42.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "id", "dataset:wikipedia", "transformers", "indo-gpt2-small", "license:mit" ]
text-generation
false
w11wo
null
w11wo/indo-gpt2-small
2
null
transformers
24,880
--- language: id tags: - indo-gpt2-small license: mit datasets: - wikipedia widget: - text: "Nama saya Budi, dari Indonesia" --- ## Indo GPT-2 Small Indo GPT-2 Small is a language model based on the [GPT-2 model](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). It was trained on the latest (late December 2020) Indonesian Wikipedia articles. The model was originally HuggingFace's pretrained [English GPT-2 model](https://huggingface.co/transformers/model_doc/gpt2.html) and is later fine-tuned on the Indonesian dataset. Many of the techniques used are based on a [notebook](https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb)/[blog](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787) shared by [Pierre Guillou](https://medium.com/@pierre_guillou), where Pierre Guillou fine-tuned the English GPT-2 model on a Portuguese dataset. Frameworks used include HuggingFace's [Transformers](https://huggingface.co/transformers) and fast.ai's [Deep Learning library](https://docs.fast.ai/). PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training /Validation data (text) | |-------------------|---------|-------------|---------------------------------------| | `indo-gpt2-small` | 124M | GPT-2 Small | Indonesian Wikipedia (3.1 GB of text) | ## Evaluation Results The model was trained for only 1 epoch and the following is the final result once the training ended. | epoch | train loss | valid loss | perplexity | total time | |-------|------------|------------|------------|------------| | 0 | 2.981 | 2.936 | 18.85 | 2:45:25 | ## How to Use (PyTorch) ### Load Model and Byte-level Tokenizer ```python from transformers import GPT2TokenizerFast, GPT2LMHeadModel pretrained_name = "w11wo/indo-gpt2-small" tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name) tokenizer.model_max_length = 1024 model = GPT2LMHeadModel.from_pretrained(pretrained_name) ``` ### Generate a Sequence ```python # sample prompt prompt = "Nama saya Budi, dari Indonesia" input_ids = tokenizer.encode(prompt, return_tensors='pt') model.eval() # generate output using top-k sampling sample_outputs = model.generate(input_ids, pad_token_id=50256, do_sample=True, max_length=40, min_length=40, top_k=40, num_return_sequences=1) for i, sample_output in enumerate(sample_outputs): print(tokenizer.decode(sample_output.tolist())) ``` ## Disclaimer Do remember that although the dataset originated from Wikipedia, the model may not always generate factual texts. Additionally, the biases which came from the Wikipedia articles may be carried over into the results of this model. ## Credits Major thanks to Pierre Guillou for sharing his work, which did not only enable me to realize this project but also taught me tons of new, exciting stuff. ## Author Indo GPT-2 Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
w11wo/javanese-bert-small-imdb
454de0c243ef2df4f7c276a9ae5c771c2ea08ed5
2022-02-14T16:19:18.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "jv", "dataset:w11wo/imdb-javanese", "arxiv:1810.04805", "transformers", "javanese-bert-small-imdb", "license:mit", "autotrain_compatible" ]
fill-mask
false
w11wo
null
w11wo/javanese-bert-small-imdb
2
null
transformers
24,881
--- language: jv tags: - javanese-bert-small-imdb license: mit datasets: - w11wo/imdb-javanese widget: - text: "Fast and Furious iku film sing [MASK]." --- ## Javanese BERT Small IMDB Javanese BERT Small IMDB is a masked language model based on the [BERT model](https://arxiv.org/abs/1810.04805). It was trained on Javanese IMDB movie reviews. The model was originally the pretrained [Javanese BERT Small model](https://huggingface.co/w11wo/javanese-bert-small) and is later fine-tuned on the Javanese IMDB movie review dataset. It achieved a perplexity of 19.87 on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |----------------------------|----------|----------------|---------------------------------| | `javanese-bert-small-imdb` | 110M | BERT Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|-------------| | 3.070 | 2.989 | 19.87 | 3:12:33 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-bert-small-imdb" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Aku mangan sate ing [MASK] bareng konco-konco") ``` ### Feature Extraction in PyTorch ```python from transformers import BertModel, BertTokenizerFast pretrained_name = "w11wo/javanese-bert-small-imdb" model = BertModel.from_pretrained(pretrained_name) tokenizer = BertTokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese BERT Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/sundanese-roberta-base-emotion-classifier
4cc2e9561a5324f5a670b4a04921504e9ec06220
2022-02-26T13:15:29.000Z
[ "pytorch", "tf", "roberta", "text-classification", "su", "arxiv:1907.11692", "transformers", "sundanese-roberta-base-emotion-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/sundanese-roberta-base-emotion-classifier
2
null
transformers
24,882
--- language: su tags: - sundanese-roberta-base-emotion-classifier license: mit widget: - text: "Wah, éta gélo, keren pisan!" --- ## Sundanese RoBERTa Base Emotion Classifier Sundanese RoBERTa Base Emotion Classifier is an emotion-text-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Sundanese RoBERTa Base](https://hf.co/w11wo/sundanese-roberta-base) model, which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 98.41% and F1-macro of 98.43%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------------------- | ------- | ------------ | ------------------------------- | | `sundanese-roberta-base-emotion-classifier` | 124M | RoBERTa Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.801800 | 0.293695 | 0.900794 | 0.899048 | 0.903466 | 0.900406 | | 2 | 0.208700 | 0.185291 | 0.936508 | 0.935520 | 0.939460 | 0.935540 | | 3 | 0.089700 | 0.150287 | 0.956349 | 0.956569 | 0.956500 | 0.958612 | | 4 | 0.025600 | 0.130889 | 0.972222 | 0.972865 | 0.973029 | 0.973184 | | 5 | 0.002200 | 0.100031 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 6 | 0.001300 | 0.104971 | 0.980159 | 0.980430 | 0.980430 | 0.980430 | | 7 | 0.000600 | 0.107744 | 0.980159 | 0.980174 | 0.980814 | 0.979743 | | 8 | 0.000500 | 0.102327 | 0.980159 | 0.980171 | 0.979970 | 0.980430 | | 9 | 0.000500 | 0.101935 | 0.984127 | 0.984376 | 0.984073 | 0.984741 | | 10 | 0.000400 | 0.105965 | 0.984127 | 0.984142 | 0.983720 | 0.984741 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-roberta-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Wah, éta gélo, keren pisan!") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese RoBERTa Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
walkacross/my-awesome-model
0b860f6829f49f7175e9d2cceae834b43101551c
2021-08-13T04:25:32.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
walkacross
null
walkacross/my-awesome-model
2
null
transformers
24,883
Entry not found
wbmitcast/bert_finetuning_test_0925
2f31c81c33941f4e40c403be9cff53168e1fcfa8
2021-09-25T01:43:13.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wbmitcast
null
wbmitcast/bert_finetuning_test_0925
2
null
transformers
24,884
Entry not found
wesam266/wav2vec2-xls-r-300m_english
c76993126157ad1a55c1deabc0c1d5b0fc255c34
2022-01-22T20:33:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
wesam266
null
wesam266/wav2vec2-xls-r-300m_english
2
null
transformers
24,885
Entry not found
willemjan/gado_gado
ca78f343c0c21fc50c2e4b815fffb22c241fd718
2021-05-26T11:03:16.000Z
[ "pytorch" ]
null
false
willemjan
null
willemjan/gado_gado
2
null
null
24,886
Entry not found
wilsoncwc/dontpatronizeme
d934a7e21c13df88c7ee79c40d49892c802db243
2022-02-09T14:58:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
wilsoncwc
null
wilsoncwc/dontpatronizeme
2
null
transformers
24,887
Entry not found
wisdomify/wisdomify
d8fabaf0dff45e4a7a54042e010caffeffdb732d
2021-09-22T10:34:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wisdomify
null
wisdomify/wisdomify
2
null
transformers
24,888
test
wudi7758521521/model_ankai
44acc6376c95c50d2592dab9680a86a9e3544635
2021-07-30T04:25:28.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wudi7758521521
null
wudi7758521521/model_ankai
2
null
transformers
24,889
Entry not found
xhluca/tapas-nq-hn-retriever-medium-1
a1b5a084f3c760b1a97063704b2ce78a401a842f
2022-02-10T02:45:54.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
xhluca
null
xhluca/tapas-nq-hn-retriever-medium-1
2
null
transformers
24,890
Entry not found
xhyi/distilLED1_08_31_2021_v3
bd95910b3071b6f1ac773bbe7eed6efa170962d8
2021-09-02T01:41:23.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
xhyi
null
xhyi/distilLED1_08_31_2021_v3
2
null
transformers
24,891
Step Training Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 240 2.513600 3.049892 0.082800 0.102600 0.085700 240 steps
yazdipour/sparql-qald9-t5-base-2021-10-19_00-15
cdf9eccce22e52f8d883c3a1264abd8208357e90
2021-10-19T00:37:58.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yazdipour
null
yazdipour/sparql-qald9-t5-base-2021-10-19_00-15
2
null
transformers
24,892
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_00-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_00-15 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-18_16-15](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-18_16-15) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8998 | 19.0 | 0.3634 | 0.0387 | 0.1963 | 9.9428 | [71.94645844952593, 49.30006086427267, 35.36503683858004, 28.145941921072225] | 0.2294 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-base-qald9
a7e342f37e85c9791a29c70445d069002a0fccbc
2021-10-19T23:25:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
yazdipour
null
yazdipour/text-to-sparql-t5-base-qald9
2
null
transformers
24,893
--- tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_23-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_23-02 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-19_15-35_lastDS) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8300 | 19.0 | 0.3640 | 0.0346 | 0.1943 | 10.0358 | [72.88988261598658, 50.27455765710799, 35.93015446608462, 28.454070201643017] | 0.2281 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
yerevann/x-r-hy
dcf85100abbeb865eec31d06bd70ed3d39f8285d
2021-12-19T03:19:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
yerevann
null
yerevann/x-r-hy
2
null
transformers
24,894
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-2b-armenian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-2b-armenian-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5166 - Wer: 0.7397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.7057 | 2.38 | 200 | 0.7731 | 0.8091 | | 0.5797 | 4.76 | 400 | 0.8279 | 0.7804 | | 0.4341 | 7.14 | 600 | 1.0343 | 0.8285 | | 0.3135 | 9.52 | 800 | 1.0551 | 0.8066 | | 0.2409 | 11.9 | 1000 | 1.0686 | 0.7897 | | 0.1998 | 14.29 | 1200 | 1.1329 | 0.7766 | | 0.1729 | 16.67 | 1400 | 1.3234 | 0.8567 | | 0.1533 | 19.05 | 1600 | 1.2432 | 0.8160 | | 0.1354 | 21.43 | 1800 | 1.2780 | 0.7954 | | 0.12 | 23.81 | 2000 | 1.2228 | 0.8054 | | 0.1175 | 26.19 | 2200 | 1.3484 | 0.8129 | | 0.1141 | 28.57 | 2400 | 1.2881 | 0.9130 | | 0.1053 | 30.95 | 2600 | 1.1972 | 0.7910 | | 0.0954 | 33.33 | 2800 | 1.3702 | 0.8048 | | 0.0842 | 35.71 | 3000 | 1.3963 | 0.7960 | | 0.0793 | 38.1 | 3200 | 1.4690 | 0.7991 | | 0.0707 | 40.48 | 3400 | 1.5045 | 0.8085 | | 0.0745 | 42.86 | 3600 | 1.4749 | 0.8004 | | 0.0693 | 45.24 | 3800 | 1.5047 | 0.7960 | | 0.0646 | 47.62 | 4000 | 1.4216 | 0.7997 | | 0.0555 | 50.0 | 4200 | 1.4676 | 0.8029 | | 0.056 | 52.38 | 4400 | 1.4273 | 0.8104 | | 0.0465 | 54.76 | 4600 | 1.3999 | 0.7841 | | 0.046 | 57.14 | 4800 | 1.6130 | 0.8473 | | 0.0404 | 59.52 | 5000 | 1.5586 | 0.7841 | | 0.0403 | 61.9 | 5200 | 1.3959 | 0.7653 | | 0.0404 | 64.29 | 5400 | 1.5318 | 0.8041 | | 0.0365 | 66.67 | 5600 | 1.5300 | 0.7854 | | 0.0338 | 69.05 | 5800 | 1.5051 | 0.7885 | | 0.0307 | 71.43 | 6000 | 1.5647 | 0.7935 | | 0.0235 | 73.81 | 6200 | 1.4919 | 0.8154 | | 0.0268 | 76.19 | 6400 | 1.5259 | 0.8060 | | 0.0275 | 78.57 | 6600 | 1.3985 | 0.7897 | | 0.022 | 80.95 | 6800 | 1.5515 | 0.8154 | | 0.017 | 83.33 | 7000 | 1.5737 | 0.7647 | | 0.0205 | 85.71 | 7200 | 1.4876 | 0.7572 | | 0.0174 | 88.1 | 7400 | 1.6331 | 0.7829 | | 0.0188 | 90.48 | 7600 | 1.5108 | 0.7685 | | 0.0134 | 92.86 | 7800 | 1.7125 | 0.7866 | | 0.0125 | 95.24 | 8000 | 1.6042 | 0.7635 | | 0.0133 | 97.62 | 8200 | 1.4608 | 0.7478 | | 0.0272 | 100.0 | 8400 | 1.4784 | 0.7309 | | 0.0133 | 102.38 | 8600 | 1.4471 | 0.7459 | | 0.0094 | 104.76 | 8800 | 1.4852 | 0.7272 | | 0.0103 | 107.14 | 9000 | 1.5679 | 0.7409 | | 0.0088 | 109.52 | 9200 | 1.5090 | 0.7309 | | 0.0077 | 111.9 | 9400 | 1.4994 | 0.7290 | | 0.0068 | 114.29 | 9600 | 1.5008 | 0.7340 | | 0.0054 | 116.67 | 9800 | 1.5166 | 0.7390 | | 0.0052 | 119.05 | 10000 | 1.5166 | 0.7397 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
yliu337/sliding_window_token_both_ctx
5b3313761ff6d78739da5a71ac93f86c72f9b1f1
2021-09-26T02:53:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yliu337
null
yliu337/sliding_window_token_both_ctx
2
null
transformers
24,895
Note: no filter
yoshitomo-matsubara/bert-base-uncased-cola_from_bert-large-uncased-cola
daa9fda4e73eef54bb9b21fa630a7cdc844c382b
2021-06-03T05:00:03.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:cola", "transformers", "cola", "glue", "kd", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-cola_from_bert-large-uncased-cola
2
null
transformers
24,896
--- language: en tags: - bert - cola - glue - kd - torchdistill license: apache-2.0 datasets: - cola metrics: - matthew's correlation --- `bert-base-uncased` fine-tuned on CoLA dataset, using fine-tuned `bert-large-uncased` as a teacher model, [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_kd_and_submission.ipynb) for knowledge distillation. The training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/cola/kd/bert_base_uncased_from_bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **78.9**.
yoshitomo-matsubara/bert-large-uncased-cola
9fd912f70d5b0dfc74cb3c7833dd46e868bb3d16
2021-05-29T21:32:06.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:cola", "transformers", "cola", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-cola
2
null
transformers
24,897
--- language: en tags: - bert - cola - glue - torchdistill license: apache-2.0 datasets: - cola metrics: - matthew's correlation --- `bert-large-uncased` fine-tuned on CoLA dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/cola/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
youzanai/bert-product-comment-chinese
352a6c7f9e04168ae7029d4d156c92706da85bf6
2022-03-21T02:42:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
youzanai
null
youzanai/bert-product-comment-chinese
2
2
transformers
24,898
基于有赞商品评论语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
ytlin/1klqb7u9_35
a4bfc53fd00ead57eef8e49352258690e876ff33
2021-05-23T13:48:32.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
ytlin
null
ytlin/1klqb7u9_35
2
null
transformers
24,899
Entry not found