modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
sgugger/bert-finetuned-mrpc
947a164a8bf38475ba012dbdff893aa98283386c
2021-09-14T17:10:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sgugger
null
sgugger/bert-finetuned-mrpc
2
null
transformers
24,700
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8602941176470589 - name: F1 type: f1 value: 0.9032258064516129 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5152 - Accuracy: 0.8603 - F1: 0.9032 - Combined Score: 0.8818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | No log | 1.0 | 230 | 0.3668 | 0.8431 | 0.8881 | 0.8656 | | No log | 2.0 | 460 | 0.3751 | 0.8578 | 0.9017 | 0.8798 | | 0.4264 | 3.0 | 690 | 0.5152 | 0.8603 | 0.9032 | 0.8818 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.10.3.dev0 - Tokenizers 0.10.3
sgugger/my-bert-model
809ca368a19b9403b2b2218ad40c9ccbcfb9b614
2021-10-04T15:25:17.000Z
[ "pytorch", "bert", "transformers" ]
null
false
sgugger
null
sgugger/my-bert-model
2
1
transformers
24,701
Entry not found
sgugger/my-finetuned-bert-mprc
fd57beeb0e919147f7b908fd45063adff5ee5346
2021-09-20T22:07:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
sgugger
null
sgugger/my-finetuned-bert-mprc
2
null
transformers
24,702
Entry not found
shahukareem/dhivehi-roberta-base
6c8515307f85c118a2eb8df86d417ac103bd4fef
2021-07-10T00:19:12.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "dv", "transformers", "autotrain_compatible" ]
fill-mask
false
shahukareem
null
shahukareem/dhivehi-roberta-base
2
null
transformers
24,703
--- language: dv tags: - dv - roberta widget: - text: "<mask> މާލެ އަކީ ދިވެހިރާއްޖޭގެ" --- # Dhivehi Roberta Base - Oscar ## Description RoBERTA pretrained from scratch using Jax/Flax backend and with the Dhivehi Oscar Corpus only.
shahukareem/wav2vec2-xls-r-1b-dv-with-lm
b8138f5f00dd233328ea1ad53f02864bb3456da0
2022-02-19T04:02:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shahukareem
null
shahukareem/wav2vec2-xls-r-1b-dv-with-lm
2
null
transformers
24,704
# wav2vec2-xls-r-1b-dv-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
shimu/bert_cn_finetuning
95bdbec1ec2e0305386143f498555c34fac6a6c1
2021-09-07T00:55:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
shimu
null
shimu/bert_cn_finetuning
2
null
transformers
24,705
Entry not found
shivam/xls-r-300m-hindi
9c307f7f2c78bcf0fd83c8dd9491cb77e2591ef6
2022-01-31T16:58:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shivam
null
shivam/xls-r-300m-hindi
2
null
transformers
24,706
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.8111 - Wer: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9733 | 2.59 | 500 | 5.0697 | 1.0 | | 3.3839 | 5.18 | 1000 | 3.3518 | 1.0 | | 2.0596 | 7.77 | 1500 | 1.3992 | 0.7869 | | 1.6102 | 10.36 | 2000 | 1.0712 | 0.6754 | | 1.4587 | 12.95 | 2500 | 0.9280 | 0.6361 | | 1.3667 | 15.54 | 3000 | 0.9281 | 0.6155 | | 1.3042 | 18.13 | 3500 | 0.9037 | 0.5921 | | 1.2544 | 20.73 | 4000 | 0.8996 | 0.5824 | | 1.2274 | 23.32 | 4500 | 0.8934 | 0.5797 | | 1.1763 | 25.91 | 5000 | 0.8643 | 0.5760 | | 1.149 | 28.5 | 5500 | 0.8251 | 0.5544 | | 1.1207 | 31.09 | 6000 | 0.8506 | 0.5527 | | 1.091 | 33.68 | 6500 | 0.8370 | 0.5366 | | 1.0613 | 36.27 | 7000 | 0.8345 | 0.5352 | | 1.0495 | 38.86 | 7500 | 0.8380 | 0.5321 | | 1.0345 | 41.45 | 8000 | 0.8285 | 0.5269 | | 1.0297 | 44.04 | 8500 | 0.7836 | 0.5141 | | 1.027 | 46.63 | 9000 | 0.8120 | 0.5180 | | 0.9876 | 49.22 | 9500 | 0.8109 | 0.5188 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
shivangi/CoLA_64_128_output
ae2b41738acb7ff5caf3d822e28df4e1b3740885
2021-05-20T05:50:08.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
shivangi
null
shivangi/CoLA_64_128_output
2
null
transformers
24,707
Entry not found
shivangi/MRPC_64_128_output
814bab5fe6da9ac1c4fe9659550646d282b45298
2021-05-20T05:51:42.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
shivangi
null
shivangi/MRPC_64_128_output
2
null
transformers
24,708
Entry not found
shivangi/MRPC_output
00212228e7496eb59343556f7a58a2159e0e8097
2021-05-20T05:52:41.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
shivangi
null
shivangi/MRPC_output
2
null
transformers
24,709
Entry not found
shiyue/roberta-large-realsumm-by-examples-fold1
f7c98f83c154dfe66dbfc06bb4e56c636629bec2
2021-09-23T19:04:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-examples-fold1
2
null
transformers
24,710
Entry not found
shiyue/roberta-large-realsumm-by-examples-fold2
3974c2d8d76e6a19a6b587a83a686d3b9c345e49
2021-09-23T19:15:59.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-examples-fold2
2
null
transformers
24,711
Entry not found
shiyue/roberta-large-realsumm-by-examples-fold4
3fc8644844de473bf0504c1bbc4f0898ddebff2b
2021-09-23T19:21:26.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-examples-fold4
2
null
transformers
24,712
Entry not found
shiyue/roberta-large-realsumm-by-examples-fold5
b60589a11434d1d4914385675196d2bf68e8a1df
2021-09-23T19:23:41.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-examples-fold5
2
null
transformers
24,713
Entry not found
shiyue/roberta-large-tac09
c0e65d7a70f8fa923a5f74558f7ec447a0c98fcf
2021-09-22T04:05:10.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-tac09
2
null
transformers
24,714
Entry not found
shortcake/Carlos
c19d3ca2d3787dcbb13a8e6a29460813db19ccd6
2022-01-02T04:18:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
shortcake
null
shortcake/Carlos
2
null
transformers
24,715
Entry not found
shpotes/xls-r-et-cv_8_0
38358378e39451096b28746f9889eb05f05a95cc
2022-03-24T11:56:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shpotes
null
shpotes/xls-r-et-cv_8_0
2
null
transformers
24,716
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - et - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-et-cv_8_0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: et metrics: - name: Test WER type: wer value: 0.34180826781638346 - name: Test CER type: cer value: 0.07356192733576256 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 34.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: et metrics: - name: Test WER type: wer value: 45.53 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: et metrics: - name: Test WER type: wer value: 54.41 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set: - Loss: 0.4623 - Wer: 0.3420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3082 | 12.5 | 500 | 0.3871 | 0.4907 | | 0.1497 | 25.0 | 1000 | 0.4168 | 0.4278 | | 0.1243 | 37.5 | 1500 | 0.4446 | 0.4220 | | 0.0954 | 50.0 | 2000 | 0.4426 | 0.3946 | | 0.0741 | 62.5 | 2500 | 0.4502 | 0.3800 | | 0.0533 | 75.0 | 3000 | 0.4618 | 0.3653 | | 0.0447 | 87.5 | 3500 | 0.4518 | 0.3461 | | 0.0396 | 100.0 | 4000 | 0.4623 | 0.3420 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
sijpapi/my-awesome-model
2128a84fa21236ba2aed8e981919accefc963215
2021-11-03T10:21:26.000Z
[ "pytorch", "layoutlmv2", "text-classification", "transformers" ]
text-classification
false
sijpapi
null
sijpapi/my-awesome-model
2
null
transformers
24,717
Entry not found
simjo/model1_test
a97be57323a2abeb8b8ad73acd616a364ea993cb
2021-11-29T21:46:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
simjo
null
simjo/model1_test
2
null
transformers
24,718
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: model1_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model1_test This model is a fine-tuned version of [DaNLP/da-bert-hatespeech-detection](https://huggingface.co/DaNLP/da-bert-hatespeech-detection) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1816 - Accuracy: 0.9667 - F1: 0.3548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 150 | 0.1128 | 0.9667 | 0.2 | | No log | 2.0 | 300 | 0.1666 | 0.9684 | 0.2963 | | No log | 3.0 | 450 | 0.1816 | 0.9667 | 0.3548 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
simonmun/COHA1810s
3b28e4308ed73b389b4aee9205e823c118541ec3
2021-05-20T21:29:41.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1810s
2
null
transformers
24,719
Entry not found
simonmun/COHA1840s
c303235ea83ad07740657916c119f228f83454b1
2021-05-20T21:33:07.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1840s
2
null
transformers
24,720
Entry not found
simonmun/COHA1870s
3f753442c4e8e29eaff6147268c2fbc10455fb25
2021-05-20T21:35:29.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1870s
2
null
transformers
24,721
Entry not found
simonmun/COHA1900s
d419d629bb26869507e8bbdbac49edfc512050a5
2021-05-20T21:38:56.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1900s
2
null
transformers
24,722
Entry not found
simonmun/COHA1930s
ecc907efc15a13443b4929363103b467596a7616
2021-05-20T21:42:21.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1930s
2
null
transformers
24,723
Entry not found
simonmun/COHA1950s
eaea5771ef10cd7198af65a8e0e1cff1fa82c993
2021-05-20T21:44:59.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1950s
2
null
transformers
24,724
Entry not found
simonmun/COHA1980s
7ed3d3d16e5226a87c5d8e7d7bdac42ed746d42c
2021-05-20T21:48:12.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1980s
2
null
transformers
24,725
Entry not found
simran-kh/muril-with-mlm-cased-temp
7e2f3db68490c34374d85f0bb21aa1071faaecc5
2021-05-20T06:02:01.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simran-kh
null
simran-kh/muril-with-mlm-cased-temp
2
null
transformers
24,726
Entry not found
sismetanin/rubert-ru-sentiment-liniscrowd
3262804a0ffc941503ca5723dddbeb93ff5216a7
2021-05-20T06:08:37.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert-ru-sentiment-liniscrowd
2
null
transformers
24,727
Entry not found
sismetanin/xlm_roberta_base-ru-sentiment-krnd
744cbebda0e994c24c925743cea5a039f693d7e2
2021-02-21T13:21:20.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_base-ru-sentiment-krnd
2
null
transformers
24,728
Entry not found
sismetanin/xlm_roberta_base-ru-sentiment-liniscrowd
886fbae77ac08c50f8d46016dccb316a72d51339
2021-02-21T15:24:43.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_base-ru-sentiment-liniscrowd
2
null
transformers
24,729
Entry not found
sismetanin/xlm_roberta_large-ru-sentiment-krnd
4c3c00a7a696b43013f9092a32380d0b48304c5e
2021-02-21T13:22:21.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_large-ru-sentiment-krnd
2
null
transformers
24,730
Entry not found
sismetanin/xlm_roberta_large-ru-sentiment-liniscrowd
90750454412b4af2f7e7df744b27f61857a0cb41
2021-02-21T15:24:59.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_large-ru-sentiment-liniscrowd
2
null
transformers
24,731
Entry not found
skillzzzzzy/urberto
823d06be797622f3cc65f3e4ad3f6f6ef6fae835
2021-11-14T13:25:59.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skillzzzzzy
null
skillzzzzzy/urberto
2
null
transformers
24,732
Entry not found
skylord/wav2vec2-large-xlsr-greek-1
287140fdf93bf0b98151feedd41d4ccba473a59d
2021-03-26T13:43:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
skylord
null
skylord/wav2vec2-large-xlsr-greek-1
2
null
transformers
24,733
--- language: el datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Greek XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 34.006258 --- # Wav2Vec2-Large-XLSR-53-Greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Greek using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. #TODO: replace {language} with your language, *e.g.* French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("skylord/greek_lsr_1") model = Wav2Vec2ForCTC.from_pretrained("skylord/greek_lsr_1") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.006258 % ## Training The Common Voice `train`, `validation`, datasets were used for training as well as The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
smangrul/xls-r-mr
5f4984ffd982cb25d449f69f93a0fc623a1b3cbf
2022-03-24T11:58:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
smangrul
null
smangrul/xls-r-mr
2
null
transformers
24,734
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 49.7 name: Test WER - name: Test CER type: cer value: 11.11 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.5319 - Wer: 0.5973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.3987 | 22.73 | 500 | 3.3586 | 1.0 | | 2.0563 | 45.45 | 1000 | 1.0375 | 0.8428 | | 1.283 | 68.18 | 1500 | 0.5563 | 0.6996 | | 1.0308 | 90.91 | 2000 | 0.4922 | 0.6398 | | 0.8803 | 113.64 | 2500 | 0.4949 | 0.6153 | | 0.7581 | 136.36 | 3000 | 0.4932 | 0.5965 | | 0.6681 | 159.09 | 3500 | 0.5133 | 0.5921 | | 0.6191 | 181.82 | 4000 | 0.5281 | 0.5909 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
smartpim/k2t_ru_01
da258d6ce8412e1f9df35c61aeaa263c0ef01d1b
2022-02-08T12:36:41.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
smartpim
null
smartpim/k2t_ru_01
2
null
transformers
24,735
Entry not found
smeoni/roberta-large-clrp
e707952bedb1066f375845f78558d1e909994239
2021-06-23T07:37:47.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/roberta-large-clrp
2
null
transformers
24,736
Entry not found
socrates/socrates2.0
826e863c1a61e8cb42912c35ceebc99190ad2c1d
2022-01-14T16:07:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
socrates
null
socrates/socrates2.0
2
null
transformers
24,737
The unexamined life is not worth living
soheeyang/rdr-question_encoder-single-trivia-base
73cc73212a4d8553e749d1169826a8e5bde85dc0
2021-04-15T15:59:29.000Z
[ "pytorch", "tf", "dpr", "feature-extraction", "arxiv:2010.10999", "transformers" ]
feature-extraction
false
soheeyang
null
soheeyang/rdr-question_encoder-single-trivia-base
2
null
transformers
24,738
# rdr-queston_encoder-single-nq-base Reader-Distilled Retriever (`RDR`) Sohee Yang and Minjoon Seo, [Is Retriever Merely an Approximator of Reader?](https://arxiv.org/abs/2010.10999), arXiv 2020 The paper proposes to distill the reader into the retriever so that the retriever absorbs the strength of the reader while keeping its own benefit. The model is a DPR retriever further finetuned using knowledge distillation from the DPR reader. Using this approach, the answer recall rate increases by a large margin, especially at small numbers of top-k. This model is the question encoder of RDR trained solely on TriviaQA (single-trivia). This model is trained by the authors and is the official checkpoint of RDR. ## Performance The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0. For the values of DPR, those in parentheses are directly taken from the paper. The values without parentheses are reported using the reproduction of DPR that consists of [this question encoder](https://huggingface.co/soheeyang/dpr-question_encoder-single-trivia-base) and [this queston encoder](https://huggingface.co/soheeyang/dpr-question_encoder-single-trivia-base). | | Top-K Passages | 1 | 5 | 20 | 50 | 100 | |-------------|------------------|-----------|-----------|-----------|-----------|-----------| |**TriviaQA Dev** | **DPR** | 54.27 | 71.11 | 79.53 | 82.72 | 85.07 | | | **RDR (This Model)** | **61.84** | **75.93** | **82.56** | **85.35** | **87.00** | |**TriviaQA Test**| **DPR** | 54.41 | 70.99 | 79.31 (79.4) | 82.90 | 84.99 (85.0) | | | **RDR (This Model)** | **62.56** | **75.92** | **82.52** | **85.64** | **87.26** | ## How to Use RDR shares the same architecture with DPR. Therefore, It uses `DPRQuestionEncoder` as the model class. Using `AutoModel` does not properly detect whether the checkpoint is for `DPRContextEncoder` or `DPRQuestionEncoder`. Therefore, please specify the exact class to use the model. ```python from transformers import DPRQuestionEncoder, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("soheeyang/rdr-question_encoder-single-trivia-base") question_encoder = DPRQuestionEncoder.from_pretrained("soheeyang/rdr-question_encoder-single-trivia-base") data = tokenizer("question comes here", return_tensors="pt") question_embedding = question_encoder(**data).pooler_output # embedding vector for question ```
songqian/first_model
5c1a810b872c6fab475b12c515447c76ed1a4adf
2021-11-02T14:20:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
songqian
null
songqian/first_model
2
null
transformers
24,739
soniakris123/soniakris
ad22d0b28427f79824407cfea8857bf38e7a8ae9
2021-05-20T07:10:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
soniakris123
null
soniakris123/soniakris
2
null
transformers
24,740
Entry not found
sontn122/xlm-roberta-large-finetuned-squad-v2
83ff0c3bb41c7342f255f0bc9ff116b2eaed85fd
2021-10-11T13:30:06.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
sontn122
null
sontn122/xlm-roberta-large-finetuned-squad-v2
2
null
transformers
24,741
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: xlm-roberta-large-finetuned-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-squad-v2 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.029 | 1.0 | 950 | 0.9281 | | 0.9774 | 2.0 | 1900 | 0.6130 | | 0.6781 | 3.0 | 2850 | 0.4627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
soroush/model
cfc3a0f497e719aeb6d38b6e7694c08df3f0697f
2020-07-11T18:01:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
soroush
null
soroush/model
2
null
transformers
24,742
Entry not found
spandan96/T5_SEO_Title_Generator
7ef37c1f060a99fc614f7d7f225920574ff22238
2021-06-30T16:07:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
spandan96
null
spandan96/T5_SEO_Title_Generator
2
null
transformers
24,743
Entry not found
sparki/kinkyfurs-gpt2
dfcc8850a0a48858ae1561e6f363a2a9c06c88fc
2021-10-28T16:26:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
sparki
null
sparki/kinkyfurs-gpt2
2
null
transformers
24,744
--- language: en license: mit --- Import it using pipeline from transformers import pipeline text_generation = pipeline('text-generation' , model='sparki/kinkyfurs-gpt2') Then use it prefix_text = input() text_generation(prefix_text, max_length=50, num_beams=5,no_repeat_ngram_size=2,early_stopping=True)
sripadh8/distilbert-base-uncased
fbaa40812c0555175d38df7c750eab5d3186aba0
2021-05-20T08:00:43.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
sripadh8
null
sripadh8/distilbert-base-uncased
2
null
transformers
24,745
Entry not found
sshasnain/wav2vec2-xls-r-300m-bangla-command-synthetic
cafc98d738be39722b4c5cb2777043241834d553
2022-02-14T08:39:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sshasnain
null
sshasnain/wav2vec2-xls-r-300m-bangla-command-synthetic
2
null
transformers
24,746
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-synthetic This model is a fine-tuned version of [sshasnain/wav2vec2-xls-r-300m-bangla-command](https://huggingface.co/sshasnain/wav2vec2-xls-r-300m-bangla-command) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0254 - eval_wer: 0.4311 - eval_runtime: 2.5036 - eval_samples_per_second: 76.689 - eval_steps_per_second: 9.586 - epoch: 35.71 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
sshleifer/bart-large-fp32
0a64a99d65087b3e4dec59ae20869194bac8346c
2020-09-22T16:20:39.000Z
[ "pytorch", "rust", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
sshleifer
null
sshleifer/bart-large-fp32
2
null
transformers
24,747
Entry not found
sshleifer/dev-ft-en-ro
75dcc68256bb83b4977d5aa1da69d895e1bdbced
2020-07-21T19:37:34.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/dev-ft-en-ro
2
null
transformers
24,748
Entry not found
sshleifer/distill-mbart-en-ro-12-6
d16a65b2610bfe828da53535476efc6d5aebfd7d
2021-03-16T01:57:13.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/distill-mbart-en-ro-12-6
2
null
transformers
24,749
Entry not found
sshleifer/student-pegasus-xsum-6-6
7d6583f33427337a083087cd16d719a24eb5656c
2020-09-11T04:04:22.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student-pegasus-xsum-6-6
2
null
transformers
24,750
Entry not found
sshleifer/student_enro_avg_12_1
ac8a206d8af22ae31594c3f0e64f46cb5537e493
2021-06-14T09:27:51.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_avg_12_1
2
null
transformers
24,751
Entry not found
sshleifer/student_enro_avg_12_6
2d3c893504f0e825980372919c89b3640695f528
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_avg_12_6
2
null
transformers
24,752
Entry not found
sshleifer/student_enro_sum_12_2
e7ff4566e259f41f5ddcb95db6e3fd743f31e462
2020-07-18T20:25:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_sum_12_2
2
null
transformers
24,753
Entry not found
sshleifer/student_enro_sum_12_3
d70cd4b75141ad96c19bf8257e18bf3d02ba2b33
2020-07-18T20:25:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_enro_sum_12_3
2
null
transformers
24,754
Entry not found
sshleifer/student_marian_en_ro_1_1
21c89559a52daeffa37bfe28611255b50c9b7dff
2020-08-26T02:19:58.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_marian_en_ro_1_1
2
null
transformers
24,755
Entry not found
sshleifer/student_marian_en_ro_6_4
6596503b9f5b91e767fa3306a4afab0a884a74a7
2020-08-26T05:14:16.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_marian_en_ro_6_4
2
null
transformers
24,756
Entry not found
sshleifer/student_mbart_en_ro_12_1
0be19fdf944e9aa3b3f2d651d1a412869beb6cd7
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_12_1
2
null
transformers
24,757
Entry not found
sshleifer/student_mbart_en_ro_12_6
fe2b55f76ade6d8692a73f06b7a8af2fa76257ef
2020-07-15T15:14:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_12_6
2
null
transformers
24,758
Entry not found
sshleifer/student_mbart_en_ro_1_1
03009b26cd280472927a109247d6c4777dd79bce
2020-07-15T15:27:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_mbart_en_ro_1_1
2
null
transformers
24,759
Entry not found
sshleifer/student_pegasus_xsum_16_8
e0d5f3de379e6acb9c031c9cd054b45ed2e6c13c
2020-08-27T21:23:21.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_pegasus_xsum_16_8
2
null
transformers
24,760
Entry not found
sshleifer/student_xsum_12_6
64fe9ab850ec03e682ca79ed136dff6c5b7d69fe
2021-06-14T09:51:51.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_12_6
2
null
transformers
24,761
Entry not found
sshleifer/student_xsum_6_12
c8c21566a8f466ee57d5a56788dd34ba8aab2617
2021-06-14T10:08:37.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_6_12
2
null
transformers
24,762
Entry not found
ssun32/bert_base_nli_turkle
4ad551f5bc382c87c6e9d5f62b7f43bbb72f0184
2021-05-20T07:13:17.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
ssun32
null
ssun32/bert_base_nli_turkle
2
null
transformers
24,763
Entry not found
stasvmk/tnkff_pulse_ru_gpt
438b3c0d9cb59f1084d0124336615a86f6474923
2022-01-09T20:11:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
stasvmk
null
stasvmk/tnkff_pulse_ru_gpt
2
null
transformers
24,764
Entry not found
stefan-it/electra-base-gc4-64k-900000-cased-discriminator
96f12b233b9249e0622f14f86be4c53bf6d9c927
2021-05-01T11:11:31.000Z
[ "pytorch", "tf", "electra", "pretraining", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit" ]
null
false
stefan-it
null
stefan-it/electra-base-gc4-64k-900000-cased-discriminator
2
null
transformers
24,765
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stonkgs/protstonkgs
b0848b310bdcd238ce948cb367f6bc887d90bcf3
2021-10-13T14:45:38.000Z
[ "pytorch", "big_bird", "transformers" ]
null
false
stonkgs
null
stonkgs/protstonkgs
2
null
transformers
24,766
Entry not found
stonkgs/stonkgs-150k
bc5ba84b3732f3b93dbd844a0f7e6437c25ff8c6
2021-07-26T12:00:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
stonkgs
null
stonkgs/stonkgs-150k
2
null
transformers
24,767
Entry not found
subbareddyiiit/bert_csl_gold8k
d8ad6b5d7157609384c1cdf70cff17c759e1808f
2021-05-20T07:17:19.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
subbareddyiiit
null
subbareddyiiit/bert_csl_gold8k
2
null
transformers
24,768
hello
sultan/ArabicTransformer-large-encoder
83ba5d6f0f279cef48bd197af069225e0b73f1e6
2021-10-08T05:52:28.000Z
[ "pytorch", "funnel", "feature-extraction", "transformers" ]
feature-extraction
false
sultan
null
sultan/ArabicTransformer-large-encoder
2
null
transformers
24,769
Entry not found
sunqq2008/sunqq-bert_finetunning
d24d9048d44e4996dbf972fcb136954674c5f37e
2021-07-20T01:48:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
sunqq2008
null
sunqq2008/sunqq-bert_finetunning
2
null
transformers
24,770
Entry not found
sv/gpt2-finetuned-nft-shakes-seuss-2
4c5e85a37389303b49f00a7669419c303d82fab2
2021-09-07T06:05:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
sv
null
sv/gpt2-finetuned-nft-shakes-seuss-2
2
null
transformers
24,771
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-finetuned-nft-shakes-seuss-2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-nft-shakes-seuss-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3454 | 1.0 | 1490 | 4.1027 | | 4.0534 | 2.0 | 2980 | 3.9857 | | 3.9384 | 3.0 | 4470 | 3.9547 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
swapnil2911/DialoGPT-small-arya
215005d4d49b19eb39585e9de00d85b6df49be61
2021-06-09T06:27:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
swapnil2911
null
swapnil2911/DialoGPT-small-arya
2
null
transformers
24,772
pipeline_tag:conversational
swapnil2911/DialoGPT-test-arya
782e75dce1333b181643020dc8ebf0c582f76cc3
2021-06-09T06:19:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
swapnil2911
null
swapnil2911/DialoGPT-test-arya
2
null
transformers
24,773
pipeline_tag: conversational
swcrazyfan/KingJamesify-T5-Base
ae67833372d0d3b0826d83ee5fd2c69fe61988b5
2022-02-18T03:46:40.000Z
[ "pytorch", "t5", "text2text-generation", "en", "transformers", "Bible", "KJV", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
swcrazyfan
null
swcrazyfan/KingJamesify-T5-Base
2
null
transformers
24,774
--- language: en license: apache-2.0 tags: - Bible - KJV --- # King Jamesify This seq2seq model is my first experiment for "translating" modern English to the famous KJV Bible style. The model is based on Google's "T5 Efficient Base" model. It was fine-tuned for 3 epochs on a NET to KJV dataset.
swcrazyfan/TB-2.7B
c3048d3347f0126bca98cad498ba51c8d7c58088
2021-07-04T10:49:42.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TB-2.7B
2
null
transformers
24,775
Entry not found
swcrazyfan/TEFL-2.7B-6K
2279d5e96c5ff2578d2add15c988905d010b010a
2021-06-05T07:53:03.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-2.7B-6K
2
null
transformers
24,776
Entry not found
sylviachency/distilbert-base-uncased-finetuned-cola
3f23d5bed645b2f7a35596b26b371381b6bb458f
2022-02-12T06:48:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sylviachency
null
sylviachency/distilbert-base-uncased-finetuned-cola
2
null
transformers
24,777
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5235221651747541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9155 - Matthews Correlation: 0.5235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5174 | 0.4181 | | 0.3496 | 2.0 | 1070 | 0.5617 | 0.4857 | | 0.2359 | 3.0 | 1605 | 0.6661 | 0.5029 | | 0.1701 | 4.0 | 2140 | 0.8052 | 0.5091 | | 0.1266 | 5.0 | 2675 | 0.9155 | 0.5235 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
tal-yifat/injury-report-distilgpt2-test
e16d886daafdb9eab7d4670251efcbfef507d720
2021-10-18T02:15:31.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
tal-yifat
null
tal-yifat/injury-report-distilgpt2-test
2
null
transformers
24,778
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: injury-report-distilgpt2-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # injury-report-distilgpt2-test This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 380 | 3.6525 | | 3.9116 | 2.0 | 760 | 3.5507 | | 3.6015 | 3.0 | 1140 | 3.5243 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
tanmoyio/MiniVec
5c6b5feadb73e59973e9bd36cfa4f60934ee366a
2022-02-08T17:04:14.000Z
[ "pytorch" ]
null
false
tanmoyio
null
tanmoyio/MiniVec
2
null
null
24,779
Entry not found
tareknaous/bert2bert-empathetic-dialogues
f062773518b610e8ba88538b94dde51d319f16bf
2022-02-21T08:56:00.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/bert2bert-empathetic-dialogues
2
null
transformers
24,780
Entry not found
tau/t5-v1_1-large-rss
5cf6eccfd46682758bc2216777c2c177adcc21e0
2021-08-20T17:35:51.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "arxiv:2108.05857", "arxiv:2101.00438", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5-v1_1-large-rss
2
null
transformers
24,781
--- language: en datasets: - c4 - wikipedia metrics: - f1 --- # T5-V1.1-large-rss This model is [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) finetuned on RSS dataset. The model was finetuned as part of ["How Optimal is Greedy Decoding for Extractive Question Answering?"](https://arxiv.org/abs/2108.05857), while the RSS pretraining method was introduced in [this paper](https://arxiv.org/pdf/2101.00438.pdf). ## Model description The original [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) was only pre-trained on C4 excluding any supervised training. Our version is further trained on Rucurrent Span Selection scheme (RSS), using a sample from the dataset used to pretrain [Splinter](tau/splinter-large): * contexts with a span occurring more than once are detected * a single instance of the recurring span is maked * the model is trained (teacher forcing) to predict the masked span This training scheme naturally matches the extractive question answering task. During training time, the masked span is replaced with `<extra_id_0>` and the labels are formatted as `<extra_id_0>span<extra_id_0>`. Unlike [Splinter](tau/splinter-large), only one span is mask at a time. ## Intended uses & limitations This model naturally fits tasks where a span from a context is intended to be copied, like extractive question answering. This checkpoint is primarily aimed to be used in zero-shot setting - further fine-tuning it on an annotated dataset gives equal results to those of the original T5-v1.1-large. ### How to use You can use this model directly but it is recommended to format the input to be aligned with that of the training scheme and as a text-question context: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained('tau/t5-v1_1-large-rss') tokenizer = AutoTokenizer.from_pretrained('tau/t5-v1_1-large-rss') passage = 'Barack Hussein Obama II is an American politician and attorney who served as the 44th president of the United States from 2009 to 2017. ' question = 'When was Obama inaugurated?' text = f'Text: {passage}.\nQuestion: {question}\nAnswer:{tokenizer.additional_special_tokens[0]}.' encoded_input = tokenizer(text, return_tensors='pt') output_ids = model.generate(input_ids=encoded_input.input_ids, attention_mask=encoded_input.attention_mask, eos_token_id=tokenizer.additional_special_tokens_ids[1], num_beams=1, max_length=512, min_length=3) tokenizer.decode(output_ids[0]) ``` The generated answer is then `"<pad><extra_id_0> 2009<extra_id_1>"`, while the one generated by the original [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) is `"<pad><extra_id_0> On January 20, 2009<extra_id_1>"` - a correct yet non-extractive answer. ### Limitations and bias Although using the model with greedy decoding tends toward extracted outputs, is may sometimes produce non-extracted ones - may it be different casing or a whole different string (or substring) that may bear another semantic meaning. ### Pretraining The model was finetuned with 100,000 rss-examples for 3 epochs using Adafactor optimizer with constant learning rate of 5e-5. ## Evaluation results Evaluated over few-shot QA in a zero-shot setting (no finetuning on annotated examples): |Model \ Dataset| SQuAD |TriviaQA | NaturalQs | NewsQA | SearchQA | HotpotQA | BioASQ | TextbookQA| |:-------------:|:-----:|:-------:|:---------:|:------:|:--------:|:--------:|:------:|:---------:| |T5 | 50.4 | 61.7 | 42.1 | 19.2 | 24.0 | 43.3 | 55.5 | 17.8 | |T5-rss | 71.4 | 69.3 | 57.2 | 43.2 | 29.7 | 59.0 | 65.5 | 39.0 | The gap between the two models diminishes as more training examples are introduced, for additional result see the [paper]((https://arxiv.org/abs/2108.05857). ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", }, @misc{castel2021optimal, title={How Optimal is Greedy Decoding for Extractive Question Answering?}, author={Or Castel and Ori Ram and Avia Efrat and Omer Levy}, year={2021}, eprint={2108.05857}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tbochens/test-train
89ce140dca9103e07a8550410652b705fd8cbbc0
2021-12-29T19:25:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tbochens
null
tbochens/test-train
2
null
transformers
24,782
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-train results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8926746166950595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-train This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7268 - Accuracy: 0.8456 - F1: 0.8927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3470 | 0.8627 | 0.9014 | | 0.4987 | 2.0 | 918 | 0.5782 | 0.8382 | 0.8914 | | 0.2796 | 3.0 | 1377 | 0.7268 | 0.8456 | 0.8927 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
tdeme/twitter_bias_model
4fc4f213a40c91016eea1f7539d9208d13b25771
2021-08-05T21:40:47.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
tdeme
null
tdeme/twitter_bias_model
2
null
transformers
24,783
Entry not found
textattack/albert-base-v2-WNLI
a744b4cca9bb8b5251508e8f14a982379b42084c
2020-07-06T16:33:17.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/albert-base-v2-WNLI
2
null
transformers
24,784
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5915492957746479, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-cased-STS-B
a2bedc49081149ae315d7117481b1119fc7c613d
2020-06-09T16:46:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-cased-STS-B
2
null
transformers
24,785
Entry not found
textattack/facebook-bart-large-MRPC
a818d6c8eedf33f85bd9955f445aa7c4de98d324
2020-06-09T16:49:43.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/facebook-bart-large-MRPC
2
null
transformers
24,786
Entry not found
tgood/bigbird-roberta-base
3992e460426871ae5068ab1a90f39d7bf218db69
2022-01-28T18:28:37.000Z
[ "pytorch", "big_bird", "feature-extraction", "transformers" ]
feature-extraction
false
tgood
null
tgood/bigbird-roberta-base
2
null
transformers
24,787
Entry not found
thatdramebaazguy/movie-roberta-MITmovie-squad
88a895b955f85dca73f20da15f601af847eca32e
2022-07-01T19:02:00.000Z
[ "pytorch", "tf", "jax", "roberta", "question-answering", "English", "dataset:imdb", "dataset:cornell_movie_dialogue", "dataset:MIT Movie", "transformers", "roberta-base", "qa", "movies", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
thatdramebaazguy
null
thatdramebaazguy/movie-roberta-MITmovie-squad
2
1
transformers
24,788
--- datasets: - imdb - cornell_movie_dialogue - MIT Movie language: - English thumbnail: tags: - roberta - roberta-base - question-answering - qa - movies license: cc-by-4.0 --- # roberta-base + DAPT + Task Transfer for Domain-Specific QA Objective: This is Roberta Base with Domain Adaptive Pretraining on Movie Corpora --> Then trained for the NER task using MIT Movie Dataset --> Then a changed head to do the SQuAD Task. This makes a QA model capable of answering questions in the movie domain, with additional information coming from a different task (NER - Task Transfer). https://huggingface.co/thatdramebaazguy/movie-roberta-base was used as the MovieRoberta. ``` model_name = "thatdramebaazguy/movie-roberta-MITmovie-squad" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** NER --> QA **Training data:** imdb, polarity movie data, cornell_movie_dialogue, 25mlens movie names, MIT Movie, SQuADv1 **Eval data:** MoviesQA (From https://github.com/ibm-aur-nlp/domain-specific-QA) **Infrastructure**: 4x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh) ## Hyperparameters ``` Num examples = 88567 Num Epochs = 3 Instantaneous batch size per device = 32 Total train batch size (w. parallel, distributed & accumulation) = 128 ``` ## Performance ### Eval on SQuADv1 - eval_samples = 10790 - exact_match = 83.0274 - f1 = 90.1615 ### Eval on MoviesQA - eval_samples = 5032 - exact_match = 51.64944 - f1 = 65.53983 Github Repo: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
thatdramebaazguy/movie-roberta-base
cc2c9085e9639921e2db8ec0bdbd1aff7f7f945f
2022-07-01T19:23:33.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "English", "dataset:imdb", "dataset:cornell_movie_dialogue", "dataset:polarity_movie_data", "dataset:25mlens_movie_data", "transformers", "roberta-base", "masked-language-modeling", "masked-lm", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
thatdramebaazguy
null
thatdramebaazguy/movie-roberta-base
2
1
transformers
24,789
--- datasets: - imdb - cornell_movie_dialogue - polarity_movie_data - 25mlens_movie_data language: - English thumbnail: tags: - roberta - roberta-base - masked-language-modeling - masked-lm license: cc-by-4.0 --- # roberta-base for MLM Objective: To make a Roberta Base for the Movie Domain by using various Movie Datasets as simple text for Masked Language Modeling. This is the Movie Roberta to be used in Movie Domain applications. ``` model_name = "thatdramebaazguy/movie-roberta-base" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="Fill-Mask") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Fill-Mask **Training data:** imdb, polarity movie data, cornell_movie_dialogue, 25mlens movie names **Eval data:** imdb, polarity movie data, cornell_movie_dialogue, 25mlens movie names **Infrastructure**: 4x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/train_movie_roberta.sh) ## Hyperparameters ``` Num examples = 4767233 Num Epochs = 2 Instantaneous batch size per device = 20 Total train batch size (w. parallel, distributed & accumulation) = 80 Gradient Accumulation steps = 1 Total optimization steps = 119182 eval_loss = 1.6153 eval_samples = 20573 perplexity = 5.0296 learning_rate=5e-05 n_gpu = 4 ``` ## Performance perplexity = 5.0296 Some of my work: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
thatdramebaazguy/movie-roberta-squad
00d41ff842d7225f201df2f1c79c70f633bd75de
2022-07-01T18:53:05.000Z
[ "pytorch", "tf", "jax", "roberta", "question-answering", "English", "dataset:imdb", "dataset:cornell_movie_dialogue", "dataset:SQuAD", "transformers", "roberta-base", "qa", "movies", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
thatdramebaazguy
null
thatdramebaazguy/movie-roberta-squad
2
1
transformers
24,790
--- datasets: - imdb - cornell_movie_dialogue - SQuAD language: - English thumbnail: tags: - roberta - roberta-base - question-answering - qa - movies license: cc-by-4.0 --- # roberta-base + DAPT + Domain-Specific QA Objective: This is Roberta Base with Domain Adaptive Pretraining on Movie Corpora --> Then a changed head to do the SQuAD Task. This makes a QA model capable of answering questions in the movie domain. https://huggingface.co/thatdramebaazguy/movie-roberta-base was used as the MovieRoberta. ``` model_name = "thatdramebaazguy/movie-roberta-squad" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** QA **Training data:** imdb, polarity movie data, cornell_movie_dialogue, 25mlens movie names, SQuADv1 **Eval data:** MoviesQA (From https://github.com/ibm-aur-nlp/domain-specific-QA) **Infrastructure**: 1x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/train_movieR_just_squadv1.sh) ## Hyperparameters ``` Num examples = 88567 Num Epochs = 10 Instantaneous batch size per device = 32 Total train batch size (w. parallel, distributed & accumulation) = 32 ``` ## Performance ### Eval on MoviesQA - eval_samples = 5032 - exact_match = 51.64944 - f1 = 65.53983 ### Eval on SQuADv1 - exact_match = 81.23936 - f1 = 89.27827 Github Repo: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
this-is-real/easybart
a54206758c06db53a5604a2991f799598a12a210
2021-12-22T14:22:51.000Z
[ "pytorch", "bart", "transformers" ]
null
false
this-is-real
null
this-is-real/easybart
2
null
transformers
24,791
this-is-real/mrc-pretrained-roberta-large-1
2895d130700101836b517a1d336ca448b283aa88
2021-11-02T13:53:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
this-is-real
null
this-is-real/mrc-pretrained-roberta-large-1
2
null
transformers
24,792
- model: klue/roberta-large - learning rate: 1e-4 - lr scheduler type: linear - weight decay: 0.01 - epochs: 5 - checkpoint: 2700
tiennvcs/bert-base-uncased-finetuned-vi-infovqa
2fa675b15d869543a727542c92f68cf70a98fe30
2021-12-27T09:57:23.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/bert-base-uncased-finetuned-vi-infovqa
2
null
transformers
24,793
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.21 | 100 | 4.2058 | | No log | 0.43 | 200 | 4.0210 | | No log | 0.64 | 300 | 4.0454 | | No log | 0.85 | 400 | 3.7557 | | 4.04 | 1.07 | 500 | 3.8257 | | 4.04 | 1.28 | 600 | 3.7713 | | 4.04 | 1.49 | 700 | 3.6075 | | 4.04 | 1.71 | 800 | 3.6155 | | 4.04 | 1.92 | 900 | 3.5470 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
tiennvcs/bert-large-uncased-finetuned-vi-infovqa
05bd8ede52b40f920c0bd7c6e7229ca5238ee390
2021-12-27T08:30:25.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/bert-large-uncased-finetuned-vi-infovqa
2
null
transformers
24,794
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.4878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.11 | 100 | 4.6256 | | No log | 0.21 | 200 | 4.4042 | | No log | 0.32 | 300 | 5.0021 | | No log | 0.43 | 400 | 4.2825 | | 4.6758 | 0.53 | 500 | 4.3886 | | 4.6758 | 0.64 | 600 | 4.2519 | | 4.6758 | 0.75 | 700 | 4.2977 | | 4.6758 | 0.85 | 800 | 3.9916 | | 4.6758 | 0.96 | 900 | 4.1650 | | 4.1715 | 1.07 | 1000 | 4.5001 | | 4.1715 | 1.17 | 1100 | 4.0898 | | 4.1715 | 1.28 | 1200 | 4.1623 | | 4.1715 | 1.39 | 1300 | 4.3271 | | 4.1715 | 1.49 | 1400 | 3.9661 | | 3.7926 | 1.6 | 1500 | 3.8727 | | 3.7926 | 1.71 | 1600 | 3.8934 | | 3.7926 | 1.81 | 1700 | 3.7262 | | 3.7926 | 1.92 | 1800 | 3.7701 | | 3.7926 | 2.03 | 1900 | 3.7653 | | 3.5041 | 2.13 | 2000 | 3.9261 | | 3.5041 | 2.24 | 2100 | 4.0915 | | 3.5041 | 2.35 | 2200 | 4.0348 | | 3.5041 | 2.45 | 2300 | 4.0212 | | 3.5041 | 2.56 | 2400 | 4.4653 | | 2.8475 | 2.67 | 2500 | 4.2959 | | 2.8475 | 2.77 | 2600 | 4.1039 | | 2.8475 | 2.88 | 2700 | 3.8037 | | 2.8475 | 2.99 | 2800 | 3.7552 | | 2.8475 | 3.09 | 2900 | 4.2476 | | 2.5488 | 3.2 | 3000 | 4.6716 | | 2.5488 | 3.3 | 3100 | 4.7058 | | 2.5488 | 3.41 | 3200 | 4.6266 | | 2.5488 | 3.52 | 3300 | 4.5697 | | 2.5488 | 3.62 | 3400 | 5.1017 | | 2.0347 | 3.73 | 3500 | 4.6254 | | 2.0347 | 3.84 | 3600 | 4.4822 | | 2.0347 | 3.94 | 3700 | 4.9413 | | 2.0347 | 4.05 | 3800 | 5.3600 | | 2.0347 | 4.16 | 3900 | 5.7323 | | 1.6566 | 4.26 | 4000 | 5.8822 | | 1.6566 | 4.37 | 4100 | 6.0173 | | 1.6566 | 4.48 | 4200 | 5.6688 | | 1.6566 | 4.58 | 4300 | 6.0617 | | 1.6566 | 4.69 | 4400 | 6.6631 | | 1.3348 | 4.8 | 4500 | 6.0290 | | 1.3348 | 4.9 | 4600 | 6.2455 | | 1.3348 | 5.01 | 4700 | 6.0963 | | 1.3348 | 5.12 | 4800 | 7.0983 | | 1.3348 | 5.22 | 4900 | 7.5483 | | 1.0701 | 5.33 | 5000 | 7.7187 | | 1.0701 | 5.44 | 5100 | 7.4630 | | 1.0701 | 5.54 | 5200 | 7.1394 | | 1.0701 | 5.65 | 5300 | 7.0703 | | 1.0701 | 5.76 | 5400 | 7.5611 | | 0.9414 | 5.86 | 5500 | 7.6038 | | 0.9414 | 5.97 | 5600 | 7.4878 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
tiennvcs/distilbert-base-uncased-finetuned-squad
ff90c91d9f1be5e8aa7a96d601955478057032ed
2021-10-19T02:41:19.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/distilbert-base-uncased-finetuned-squad
2
null
transformers
24,795
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
tizaino/bert-base-uncased-finetuned-Pisa
19996d1c6498db77a33ca1b7126cde1fa392e9b2
2022-02-09T18:49:30.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
tizaino
null
tizaino/bert-base-uncased-finetuned-Pisa
2
null
transformers
24,796
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-Pisa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-Pisa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 9 | 1.4146 | | No log | 2.0 | 18 | 1.1013 | | No log | 3.0 | 27 | 1.1237 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
tk3879110/bert_finetuning_test
c905380a2306c35a725b1a01471e7aa45a46103b
2021-05-20T07:52:28.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
tk3879110
null
tk3879110/bert_finetuning_test
2
null
transformers
24,797
Entry not found
tmills/event-thyme-colon
1dbb41b929ad56d9a75f57d6cfba853cb0f75381
2022-05-02T20:50:17.000Z
[ "pytorch", "cnlpt", "transformers" ]
null
false
tmills
null
tmills/event-thyme-colon
2
null
transformers
24,798
Entry not found
tnsaiexp/tns-gpt-neo-125M
0cbb08f752c64bf018e97b1a8adc70928133c5b0
2021-12-09T13:17:09.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
tnsaiexp
null
tnsaiexp/tns-gpt-neo-125M
2
null
transformers
24,799
Entry not found